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SUMMARY

A study of SiGe HBTs for use in space applications was presented. While SiGe HBTs

are considered TID tolerant compared to CMOS at similar lithography nodes, experiment,

analysis, and simulation have all shown that system-level susceptibilities still exist due

to TID-induced mismatch between nominally matched transistors. This exaggeration of

mismatch was connected to process variations such as random doping fluctuation. Poten-

tial methods to predict TID response from preirradiation performance are suggested, and

system-level mitigation methods must be applied when high levels of TID are expected.

The design of a SiGe-based, space-capable VG-LNA was presented, where power and

noise performance are optimized by the use of a bias-tuned topology compared to a more

common LNA with digital step attenuator (DSA) combination. The designed and charac-

terized VG-LNA demonstrates state-of-the-art performance for both noise and DC power

consumption.

Future work should be focused on exposing the system-level failure mechanisms that

appear when device mismatch is an error. Critical circuits and sub-circuits such as current

mirrors and DACs should be examined to develop a complete understanding of issues that

arise as more complex systems are considered.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Radiation Effects in SiGe BiCMOS

The effects of radiation are broadly categorized into three groups: TID effects, displacement-

damage dose (DDD) effects, and single-event effects (SEEs). The response of SiGe HBTs

to these types of radiation has been studied since the earliest generations of SiGe BiC-

MOS technology platforms [1, 2]. The tolerance of SiGe HBTs to TID was shown early

on [1, 3], leading to an interest in the use of SiGe HBTs for radiation-intense applica-

tions such as space exploration and particle accelerator instrumentation [4, 5]. Since then,

extensive work has been conducted on SiGe HBTs and other devices in SiGe BiCMOS

platforms to understand their tolerance (or intolerance) to radiation [6]. Recently, SiGe

HBTs have demonstrated performance at 100s of GHz [7, 8, 9]. Accordingly, more interest

has been shown for using SiGe HBTs in RF, millimeter-wave (mmW), and even sub-THz

applications [10]. Thus, new emphasis has been placed on qualifying the behavior of high-

frequency circuit components subject to radiation.

1.1.1 Ionizing-Dose Effects

When charged particles such as X-rays or γ-rays pass through SiO2, if their energy is suffi-

ciently high, electron-hole pairs (EHPs) can be generated by direct ionization of electrons

from the valence band to the conduction band. Since the mobility of electrons is much

larger than that of holes in SiO2, the electrons tend to be swept away by electric fields,

leaving fixed positive charges, which behave as traps. Over time, these positive charges

can diffuse to oxide-semiconductor interfaces, becoming interface traps [11].

The locations where interface traps become critical to SiGe HBT performance in forward-
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EB1 B2C1 C2

p− – Substrate

n+ – Sub-Collector

SICSTI STISTI STI

DT DT

EB-S EB-S

Figure 1.1: Cross section of a SiGe HBT with emitter in red, SiGe base in blue, extrinsic
polysilicon base in magenta, and SIC in green. The EB-S is the critical oxide for forward-
active operation, and the regions of TID damage are shown by yellow circles.

active mode are shown in Figure 1.1. Generally, after TID, interface traps are formed

around the deep trench (DT) isolation oxide, the shallow-trench isolation (STI), and the

EB-S oxide. However, the current distribution throughout the device desensitizes forward-

active mode performance to traps in the DT and STI. The primary mechanism for forward-

active collector current is the diffusion of electrons across the emitter-base (EB) junction,

which traverse the quasi-neutral base region to reach the collector. This current is typi-

cally constrained to the center of the device, so the carriers are unlikely to interact with the

STI/collector interface or DT/sub-collector interface. Therefore, for operation in forward-

active mode (e.g., amplifiers), the EB-S is the critical oxide.

When interface traps are formed near the EB-S, they tend to increase the base leakage

current due to more carrier recombination in the EB space-charge region (SCR) [1]. Cor-

respondingly, the current gain decreases. The trapping lifetime also increases the device’s

flicker noise power [1]. On the other hand, only minor degradation in transistor speed has

2



been documented [12]. Resulting impacts on LNA and receiver performance have been

studied, and mitigation methods have been proposed [13, 14]. Overall, SiGe HBTs are

considered tolerant to TID up to several Mrad(SiO2) [3, 6].

1.1.2 Displacement-Damage Effects

DDD generates bulk traps in silicon, as compared to TID, which generates mostly oxide and

interface traps. The fundamental trap physics has been studied, demonstrating increased

base current and decreased collector current due to bulk traps [15]. Frequency synthesizers

have been shown to be sensitive to DDD effects, and damage mitigation methods have been

proposed [16]. Previous work has shown SiGe HBTs to be highly tolerant to DDD due to

1-MeV neutrons [17].

1.1.3 Single-Event Effects

Although the SiGe HBT is relatively tolerant to TID and DDD effects, it remains sensitive

to single-event transients (SETs), short pulses of current created by energetic particles pass-

ing through the HBT. Investigations of the impact of SETs on RF and mmW LNAs [18,

19, 20] and mixers [21] have been conducted. Correspondingly, the effects of SETs on

receiver performance have been shown [22, 23]. Methods of detecting [24] and mitigating

SET-induced errors in receivers have been proposed in response [25, 26, 27, 28].

1.2 Ka-band Phased Arrays

Emerging radar and communications applications have driven the development of highly

integrated phased arrays. By intelligently combining radiated signals from multiple anten-

nas in an array, the direction of maximum antenna gain can be dynamically pointed towards

a desired target. Such technology is essential in orbital space applications (e.g, CubeSat

and SmallSat constellations), where communications circuits need to transmit very long

distances and precision imaging is necessary for scientific exploration.
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Operating at higher frequency, such as at Ka-band, has gained momentum in order to

improve instrument spatial resolution [29] and reduce size, weight, and power (SWaP).

However, moving to Ka-band over legacy solutions at X-band and below presents design

challenges in the receiver. In particular, electronic components tend to consume more

power and introduce more noise as frequency increases. To support higher frequency, tech-

nology scaling leads to higher power densities, making the noise and power trade-off more

stringent.

To achieve pointing with a phased array, the relative amplitudes and phases must be

controlled amongst the numerous antenna elements. Ka-band arrays have been proposed,

which utilize improved RF performance of modern silicon process technologies to achieve

excellent performance [30, 31, 32, 33]. To further boost available phased-array perfor-

mance, novel phase shifter [34, 35, 36] and attenuator [37, 38, 39] topologies have been

proposed in silicon technologies for Ka-band operation.

1.3 System-Level Considerations for Space Applications

1.3.1 Variability in TID Response

SiGe HBTs are often considered tolerant to TID on the because they exhibit minimal degra-

dation to AC performance while having nearly negligible changes DC characteristics com-

pared to CMOS at similar lithographic nodes. However, new concerns arise at the system

level, where low degradation on average is insufficient to guarantee system performance. In

precision instrumentation amplifiers, for example, device-to-device matching is critical to

reduce common-mode noise [40]. As another example, in data converters, device match-

ing is a key bottleneck for both noise and linearity [41]. Ideally, when two supposedly

performance-matched devices experience degradation due to TID, it is desirable that they

degrade in a similar fashion as to remain matched over dose. Therefore, a comprehensive

investigation of the statistics of TID response in the SiGe HBT is necessary to fully un-

derstand the ramifications of TID on important circuits like instrumentation amplifiers and

4



data converters.

Previous investigations have shown that, in both CMOS [42, 43, 44, 45, 46] and bipolar

technologies [47, 48, 49], TID increases device-to-device and part-to-part variability. The

authors in [50] give some insight into the origins of increased variability in lateral, silicon,

pnp bipolar junction transistors (BJTs). However, since the flow of current in the SiGe

HBT is vertical, the carriers’ interactions with critical oxides are fundamentally different,

and the existing analysis may not apply.

1.3.2 Amplitude Control for Phased Arrays

The RainCube [51] is a weather radar CubeSat operating at Ka-band. Its development em-

phasized the need to simultaneously reduce power consumption and improve minimum

detectable reflectivity (i.e., system noise) to enable upcoming weather monitoring appli-

cations. Furthermore, these improvements should come at minimum overhead to system

complexity. Many phased arrays use an LNA to maximize receiver sensitivity, then rely

on DSAs to adjust the relative weights of array elements. While conceptually straightfor-

ward, the use of a DSA not only increases size and complexity, but imposes more stringent

performance constraints on the LNA. To maintain receiver sensitivity at high attenuation,

the LNA needs to provide high gain, therefore consume more power, to suppress the noise

contribution of the DSA and overcome its reference-state insertion loss.

Since low-power, low-noise operation is essential to supporting long mission duration

and accurate scientific measurement, the standard LNA and DSA methodology becomes

unappealing. Instead, a more tenable approach is to combine the LNA and DSA into a sin-

gle, VG-LNA. This approach requires less gain and accordingly lower power consumption,

while simultaneously reducing receiver noise figure by removing an explicit attenuator.

5



1.4 Proposed Work

To begin, an extension of the TID tolerance of SiGe HBTs is made to the variability of TID

response in chapter 2. It is shown that the variability of the HBT base current increases as

TID is accumulated, and further, that this increase in base current is not easily predictable.

Transistor computer-aided design (TCAD) is used to investigate the physical mechanisms

driving these changes.

In chapter 3, the design of a VG-LNA targeting space applications is discussed. A

comparison of variable-gain techniques is made to motivate bias-tuned topologies. A co-

integrated DAC is also presented to achieve linear-in-dB gain tuning. The VG-LNA was

fabricated using GlobalFoundries (GF) BiCMOS9HP technology platform, and measured

performance of the fabricated VG-LNA is demonstrated, showing state-of-the-art perfor-

mance among similar VG-LNAs at Ka-band.

Finally, the translation of TID-response variability to circuit and system performance

is analyzed in chapter 4. CMs and current-steering DACs test vehicles to demonstrate

how variability in TID response can lead to system-level degradation despite the apparent

tolerance of SiGe HBTs to TID on average.
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CHAPTER 2

VARIABILITY IN THE TID RESPONSE OF SIGE HBTS

2.1 Experimental Setup and Procedure

2.1.1 Device Samples

The characterized devices were fabricated in GF BiCMOS9HP, a 90-nm BiCMOS plat-

form featuring SiGe HBTs with nominal performance reported as forward current gain

β = 500, cutoff frequencies fT/fmax = 300/350 GHz, and open-base breakdown volt-

age BVCEO = 1.7 V [52]. The devices tested had a collector-base-emitter-base-collector

(CBEBC) layout with an on-wafer emitter window of 0.1 × 6.0 µm2. A schematic cross-

section of this device is shown in Figure 1.1. All measured devices were taken from the

same wafer lot to isolate device-to-device variation from potential lot-to-lot variation.

TID experiments were conducted at Vanderbilt University using 10-keV X-rays gen-

erated by an ARACOR Model 4100 Semiconductor Irradiation System with a dose rate

of 30.26 krad(SiO2)/min [53]. Dose rate is not expected to affect the TID response of

studied SiGe HBTs [54]. Sample sets of 28 devices were wire-bonded to 100-pin quad

flat-pack no-lead (QFN) packages to enable simultaneous bias and irradiation of many de-

vices followed by rapid measurement. The QFN packages were mounted onto a test circuit

board using a clamp with an aperture on top to allow X-ray exposure. Mechanical switches

were used to toggle between the 28 devices. All devices in a sample set were then ir-

radiated to 2 Mrad(SiO2), with pauses at intermediate doses (10, 30, 50, 100, 300, 500,

1000 krad(SiO2)) to capture any changes in DC response with increasing dose. During

exposure, all terminals of all devices were grounded, which is the worst case condition

for TID damage in forward-active operation [55]. Intermediate measurements were taken

5 minutes after irradiation was stopped, and the total measurement time was 40 minutes.

7



Figure 2.1: Number of valid samples as VBE varies.

Temperature was monitored throughout measurement, and fluctuations within 2 ◦C were

not significant enough to impact the results. Given the extended time required for inter-

mediate measurements, checks for annealing were made by re-measuring the first device

in the sequence after completing all 28 devices. No systematic offsets were found when

re-measuring, so annealing was not considered an issue for the present study.

2.1.2 Device Characterization

The Gummel characteristics of the SiGe HBTs were used as a metrics for quantifying TID

damage. The device collector current, IC , and base current, IB, were recorded as func-

tions of base-emitter voltage, VBE . The collector-base voltage, VCB, was fixed at 0 V. Both

forward- and inverse-mode characteristics were measured using an Agilent 4155 Semicon-

ductor Parameter Analyzer.

Due to the high gain of SiGe HBTs, the devices tend to exhibit parasitic oscillatory

behavior during characterization, a well-known experimental artifact [56]. The data after

oscillation points are unusable, so any results at VBE values higher than an oscillation point

were discarded. As a result, at a given VBE , the number of samples with valid data varies,

as displayed in Figure 2.1. In addition, some devices demonstrated apparent degradation in

8



Figure 2.2: Mean (left), standard deviation (center), and coefficient of variation (right) for
IC as a function of bias for all measured doses. Observed glitches in the CoV are caused
by the ranging circuitry of the Agilent 4155.

IB consistent with electrostatic discharge (ESD) damage likely during packaging or trans-

port. Those devices had to be omitted. While 56 devices (in two separate packages) were

irradiated, only 40 could be used in statistical analysis, decreasing to 13 at high VBE due

to oscillations. It should be noted that the confidence in the measured statistics decreases

at high VBE due to the effectively smaller sample size. The decreased confidence was not

a concern for the present study, since the focus was on the base current at low VBE (e.g.,

< 0.8 V). To quantify the uncertainty in the statistics, confidence intervals for both the mean

and standard deviation were calculated given the number of samples used. To achieve sta-

tistical significance with 99% confidence, any change in the mean should be more than 5%

and any change in the standard deviation should be more than 40%.

2.2 Measurement Results

Statistics were calculated across the ensemble of devices. At a given TID, for each VBE that

was measured, the currents of all devices with valid data (sample size in Figure 2.1) were
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Figure 2.3: Mean (left), standard deviation (center), and coefficient of variation (right) for
IB as a function of bias for selected doses.

combined to determine the mean, µ, and standard deviation, σ. The statistics for the IC

measurements are shown in Figure 2.2 as a function of VBE for all dose points. Neither the

mean nor the standard deviation vary with TID, as consistent with previous literature [57,

3]. The CoV is defined as the ratio σ/µ, and measures the relative dispersion of a random

variable. While standard deviation characterizes the spread of data about the mean, the

CoV describes the amount by which two random samples tend to differ from each other.

In cases where we wish to understand how much multiple samples deviate from a nominal

performance specification, the standard deviation is most appropriate. However, for analog

circuit applications where device-to-device matching is crucial, and their difference from

some mean is inconsequential, such as in a DAC, the CoV is used instead of the standard

deviation [58]. For example, achieving 90% yield for 12-bit DACs requires CoV less than

0.5% [58]. For IC , the CoV changes between 3 – 5%, but does not change with dose,

meaning the matching of device collector currents does not degrade with TID. Note that

the measured CoV does not include special device matching techniques (e.g., common-

centroid layout) and thus does not disqualify SiGe for precision DAC design. Since no
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Figure 2.4: Mean (left) and standard deviation (right) for IB, normalized to their pre-
irradiation values, as a function of bias for selected doses.

statistically significant changes in IC statistics are observed, further analysis in the present

work focuses on degradation in IB.

Figure 2.3 shows the IB statistics as a function of VBE for all dose points. The num-

ber of samples for each VBE is the same as for IC , shown in Figure 2.1. To highlight the

changes, mean and standard deviation are shown again in Figure 2.4, this time normalized

to their pre-irradiation values. Since the changes in µ and σ exceed 5% and 40%, respec-

tively, these variations with TID are statistically significant. With larger dose, both the

mean and standard deviation increase at low VBE . It is widely known that, as TID creates

traps near the EB space-charge region, trap-assisted recombination causes the average base

current to increase [59, 60, 3]. However, the mechanism behind the observed increase in

standard deviation is not clear, and is investigated in Section section 2.3.

The CoV for the base current is also shown in Figure 2.3. It demonstrates a non-

monotonic trend over TID, peaking to 31% at 500 krad(SiO2). This may be a concern for

differential amplifiers, where mismatch in the base currents of the two input transistors can
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Figure 2.5: Scatter plots of post-irradiation IB at 100 krad(SiO2) (left) and 2 Mrad(SiO2)
(right) versus its pre-irradiation value. The lines show least-squares fits, and correlation is
taken as the Pearson correlation coefficient, calculated from the best-fit line. A substantial
decrease in correlation from 83% to 30% is observed.

lead to higher noise and degraded bandwidth [40].

Given that the standard deviation of IB steadily increases as dose is accumulated, a

question arises of whether the change in IB remains predictable, which aids in both RHA

testing and component selection. Therefore, is relevant to investigate the correlation co-

efficient, ρ, between pre-irradiation and post-irradiation device performance. The peak

pre-irradiation current gain had a sample mean of 480 at VBE of 0.65 V, so this bias was

selected as an example for subsequent analysis. Figure 2.5 shows scatter plots of the IB

measured at 100 krad(SiO2) and 2 Mrad(SiO2) versus its pre-irradiation value, extracted at

a VBE of 0.65 V. Least-squares regression lines are superimposed, and correlation coeffi-

cient is taken from the fit. At the lower dose, the correlation is 83%, still relatively high.

However, at 2 Mrad(SiO2), the correlation decreases to 30%.

The scatter plots in Figure 2.5 were generated for all VBE at each dose, and the cor-

relation coefficients from the best-fit lines were recorded and plotted in Figure 2.6. The
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Figure 2.6: Correlation coefficient between post-irradiation IB and pre-irradiation IB ex-
tracted across bias for all dose points.

correlation coefficient shows a trend of decreasing correlation with increasing dose for a

given bias. From Figure 2.3, base current is shown not to change significantly due to TID

above VBE of 0.8 V. At biases above 0.8 V, where damage is not apparent, correlation

remains large. Below 0.8 V, where base-current leakage increases significantly, correla-

tion decreases. This decrease suggests that trap-assisted generation/recombination current

(post-irradiation) is independent of the diffusion current (ideal, pre-irradiation), which will

be important for the analysis in Section section 2.3.

Decreasing correlation also suggests that the device performance metrics may “cross

over” with increasing dose. Indeed, this behavior is present in the data in Figure 2.7.

Though IB is monotonically increasing for all devices, the slope of the increase varies,

causing the curves to cross. As a result, pre-irradiation IB is a poor predictor of post-

irradiation IB.

Since operation in inverse mode, with emitter and collector terminals swapped, has

been proposed as a radiation-hardening-by-design technique [25, 26], statistics were also

13



Figure 2.7: IB extracted at VBE of 0.65 V, plotted across dose, for 10 selected devices.

calculated for inverse-mode operation. Mean and standard deviation were found to increase

in a similar fashion to forward mode. The correlation is shown in Figure 2.8. Indeed,

inverse-mode operation still shows decreasing correlation. Thus, inverse mode does not

give a benefit over forward mode for variability or predictability in TID response, yet still

incurs a performance penalty, a poor trade-off for applications with high TID requirements.

2.3 Analysis

Thus far, the data have shown that TID causes increasing standard deviation and decreasing

predictability in IB. In this section, a mathematical formulation is developed for TID-

response variability. These analyses will be verified in TCAD simulation. To begin, we

must understand the basic operation of the SiGe HBT.

In an npn SiGe HBT, the ideal, pre-irradiation terminal currents originate from the

drift-diffusion of carriers across the EB junction. This action is controlled by the germa-

nium fraction at the metallurgical EB junction, x0, the change in the germanium fraction

across the base, ∆x, the metallurgical base width, Wb, and the dopant concentrations in

the intrinsic emitter, Nde, and base, Nab. Variation in the forward-mode terminal currents

are dominated by these five parameters [57]. The germanium in the SiGe base is added
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Figure 2.8: Correlation coefficient between post-irradiation IB and pre-irradiation IB ex-
tracted across bias for all dose points for inverse-mode operation.

during epitaxial growth, and is therefore extremely well controlled [57]. Pre-irradiation

device-to-device variability, thus, should come primarily from random variation in doping

concentration between devices.

Post-irradiation increases in base current arise from trap-assisted generation and recom-

bination (G/R) due to a non-zero interface-trap density, Nit, generated by TID [60]. On the

time scale of a DC measurement, as the Gummel characteristics in the present study, border

traps are expected to behave similarly to interface traps [61, 62]. In an npn transistor, oxide

traps tend to enhance the effect of interface traps [60]. Accordingly, the behaviors of both

oxide and border traps are expected to be captured by Nit. The translation from TID to Nit

is determined by the electric field at the oxide-semiconductor boundary, which influences

charge yield [53, 63]. Even under process variation, the electric field is not expected to

be different enough to create large variations in Nit between devices [53]. Thus, for the

present analysis, Nit is assumed to be constant between devices, which is sufficient to pre-

dict the behavior observed in the measured data. Under these assumptions, the variability

of the base current can be examined.
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In practice, IB has a complicated dependence upon the listed parameters. To reach an

intuitive explanation, it is helpful to abstract that complexity. Accordingly, let g be some

function that controls the drift-diffusion component of base current, typically represented

by the reverse-saturation current [64]. Additionally, let h be some function controlling the

G/R component of base current, a treatment of which is presented in [60]. Note g and h

are implicit functions of Wb, Nab, and Nde and are assumed not to change with Nit or VBE .

The authors in [59] and [60] show that the G/R component is linearly proportional to the

interface trap density, so Nit can be written explicitly, and IB for a given device is

IB = g eqVBE/kT +Nith e
qVBE/2kT (2.1)

where q is the magnitude of the electron charge, k is the Boltzmann constant, and T is the

device temperature. The population mean of IB is readily determined from Equation 2.1 as

µ[IB] = µ[g]eqVBE/kT +Nitµ[h]eqVBE/2kT (2.2)

With an expression for IB in hand, we first investigate why σ increases in Figure 2.3.

The population variance of the linear combination of two arbitrary random variablesX and

Y is defined to be

Var[aX + bY ] = a2Var[X] + b2Var[Y ] + 2abC[X, Y ] (2.3)

where Var[X] is the square of the standard deviation, σ2, of X , C[X, Y ] is the covariance

between X and Y , and a and b are deterministic constants. In Equation 2.1, g and h are the

random variables. Accordingly, the population variance of IB as a function of VBE is

Var[IB] = Var[g]e2qVBE/kT +N2
itVar[h]eqVBE/kT + 2NitC[g, h]e3qVBE/2kT (2.4)

Examining Figure 2.6 note that the correlation coefficient decreases at low VBE where the

16



post-irradiation IB is predominantly G/R current. Accordingly, the correlation coefficient

at low VBE describes the relationship between drift-diffusion current (pre-irradiation) and

G/R current (post-irradiation), which is shown to be weak. Therefore, it is assumed that

C[g, h] is negligible. This assumption is verified in TCAD simulation below. Under this

assumption, the variance of IB is given approximately by

Var[IB] ≈ Var[g]e2qVBE/kT +N2
itVar[h]eqVBE/kT (2.5)

Recall that g and h represent process variation due to unavoidable randomness in the

doping profile and do not change with VBE or Nit. Therefore, Equation 2.5 directly reveals

that the introduction of interface traps can exacerbate inherent variability, explaining the

increasing σ shown in Figure 2.3. We note that these results give an optimistic bound for

variability. This simplified analysis assumes Nit does not vary between devices, i.e., that

the charge yield is the same for all measured devices. However, if this assumption is lifted,

or Nit varies between devices due to changes in charge yield, the increase in variability can

only become worse.

With the variance determined, we now examine the changes in correlation in Figure 2.6.

The correlation coefficient, ρ, between random variables X and Y is defined as

ρ[X, Y ] =
C[X, Y ]

σ[X]σ[Y ]
(2.6)

Letting X be the pre-irradiation IB (Nit = 0) and Y be the post-irradiation IB, based on

Eqs. Equation 2.1 and Equation 2.5, the pre-to-post correlation coefficient, ρ, is

ρ[Pre,Post] ≈ σ[g]√
Var[g] +N2

itVar[h]e−qVBE/kT
(2.7)

where, again, C[g, h] is assumed negligible. The full derivation is shown in Appendix A.

For fixed VBE Equation 2.7 predicts that the correlation will decrease from an initial value
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of 100% as Nit increases, consistent with the data in Figure 2.6. In addition, increasing

VBE decreases the contribution of the Nit term, also reflected in Figure 2.6.

The result in Equation 2.7 shows that, regardless of the initial process variation (g and

h), the predictability of the base current will always degrade as Nit increases, for fixed

bias. This conclusion means that biasing at very low VBE , for instance, to save power,

will unavoidably cause the post-irradiation response to be unpredictable. In the design

of a radiation-tolerant system, it is therefore desirable to determine a VBE point that can

optimize power and circuit performance while maintaining acceptable levels of correlation,

which will depend on the maximum required operational dose.

2.4 TCAD Modeling

2.4.1 Monte Carlo Analysis

Three trends were observed with increasing dose in the analysis of section 2.3:

• Increasing µ

• Increasing σ

• Decreasing pre-irradiation to post-irradiation ρ

To provide additional insight, the device in Figure 1.1 was simulated in two dimen-

sions using Sentaurus TCAD. The germanium profile was taken as a triangle with x0 = 5%

and ∆x = 20%. The doping concentrations were set to Nde of 3× 1020/cm3 and Nab of

5× 1019/cm3. Although these parameters do not exactly represent the fabricated device,

the simulations are sufficient for drawing a qualitative understanding of our observations.

TID response was simulated by adding interface donor traps in the sensitive oxides, high-

lighted in the yellow regions of Figure 1.1. Donor traps were defined with uniform spatial

distribution throughout the oxide-semiconductor interfaces and mid-bandgap energy level,

with concentrations up to 1011/cm2. Acceptor traps were determined in simulation to have

insignificant effect on the base current.
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Figure 2.9: Doping profiles for the various devices simulated, emphasizing the doping
variations. The Ge profile was fixed, assuming that process control of SiGe growth is very
well controlled.

To simulate the randomness of doping concentrations, 40 random profiles were gen-

erated by sampling 40 values of Nde, 40 values of Nab, and 40 values of Wb from inde-

pendent Gaussian distributions, which are commonly used to model process variation [65].

Dopants are typically introduced during epitaxial growth, so variations in doping concen-

tration come from uncertainty in the injected dopant flux [65] and the out-diffusion of

dopant ions during subsequent thermal cycling [57], so we do not expect variation in the

location of peak doping. Therefore, the randomness was introduced by modifying the peak

and spatial distribution of the doping concentrations. Since the foundry process control

specifications list 10% for emitter and base resistances, each spread in doping was taken

to be 10% of the nominal peak doping concentrations given that doping and resistance are

closely related [64]. The various profiles are represented in Figure 2.9 with arrows denoting

where randomness was introduced.

First, consider σ as Nit increases. The initial IB and the change in IB, based on Equa-

tion 2.1, are

IB0 = IB(Nit = 0) = g eqVBE/kT (2.8)
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Figure 2.10: Comparison of theoretical σ (=
√

Var) from Equation 2.5 with simulated
data, showing excellent agreement over both VBE and Nit. Data is normalized to Nit = 0
to highlight trends.

∆IB = IB − IB0 = Nith e
qVBE/2kT (2.9)

respectively. In simulation, Nit is known, so Eqs. Equation 2.8 and Equation 2.9 can be

used to determine g and h. From each of the 40 simulated profiles, g and h were calculated

and used to predict σ based on Equation 2.5. The results are plotted in Figure 2.10. To ac-

centuate the trends, statistics are shown normalized to their trap-free value, similarly to the

measured data in Figure 2.4. The simulations are able to reproduce the trends observed in

measurement wherein σ grows for a given VBE as dose (i.e., trap density) is accumulated.

Further σ is shown to have excellent agreement between simulated IB and theoretical pre-

dictions, validating our previous conclusion that TID-induced interface-trap density can

exacerbate pre-existing process variation, even if Nit itself is the same between all devices.

Figure 2.11 compares the analytical model for the correlation of pre-to-post-irradiation

base current developed in Section section 2.3 with simulation results. In Section sec-
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Figure 2.11: Comparison of theoretical correlation from Equation 2.7 to simulated data,
showing acceptable agreement across both bias and trap density. The divergence around
0.95 V is a numerical artifact of the simulator.

tion 2.3, it was assumed that g and h do not change with Nit, which may not be true in

real devices. Given this assumption, the result still shows reasonable agreement between

simulation and theory and sufficiently captures the trends of correlation across bothNit and

VBE .

To understand why the pre-to-post correlation decreases, correlations of IB to Nde and

Nab are examined to determine the dominant factors contributing to randomness in cur-

rent. It is well known that the drift-diffusion component of IB in a bipolar transistor is

controlled primarily by its emitter doping concentration [64]. Thus, it is expected that IB0

is highly correlated to Nde and less so to Nab. The simulated data are shown in Figure 2.12,

corroborating the simple theory in [64].

The theory in [59, 60] demonstrates that the G/R component of post-irradiation IB

depends primarily on the base profile. This dependence is a result of the design of a bipolar

transistor, where Nde � Nab to improve current gain, causing the interaction of carriers

with interface traps to occur primarily on the base side of the emitter-base junction. To
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Figure 2.12: Scatter plot of simulated IB0 to doping concentrations Nde (left) and Nab

(right) with corresponding best-fit line and correlation and bias point labeled.

confirm this analysis, scatter plots of ∆IB versus Nde and Nab are shown in Figure 2.13.

Indeed, the G/R component given by ∆IB shows very little dependence on Nde and nearly

one-to-one correspondence with Nab.

The results in Figure 2.11 clearly show that ρ decreases as Nit rises. Then, based on

Figure 2.12 and Figure 2.13, when TID is accumulated, the factors controlling IB trade

dominance between the emitter and base profiles. This trade of dominance explains why

the pre-irradiation IB is a poor predictor of the post-irradiation IB: they are controlled by

different parts of the device. Going back to the the analysis in Section section 2.3, this

confirms our assumption that the drift-diffusion part of the current (g) and the G/R part of

the current (h) are independent of each other, or that C[g, h] ≈ 0.

Finally, the simulations were performed again with doping spreads of 5% and 1% to

assess the translation from doping variation to IB variation. The previous conclusions

suggest that controlling process variation will naturally reduce post-irradiation variability.

The values of σ extracted from simulation are shown in Figure 2.14 as a function of Nit

for different doping variability. The simulated data confirm that minimizing the process
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Figure 2.13: Scatter plot of simulated ∆IB atNit of 1011 to doping concentrationsNde (left)
and Nab (right) with corresponding best-fit line and correlation and bias point labeled.

variation, particularly in the base profile, naturally improves the post-irradiation spread.

2.4.2 Challenges for Predicting Post-Irradiation Performance

With very little correlation between pre-irradiation IB and post-irradiation IB, a question

arises naturally: Is there any method to predict the post-irradiation IB? The answer to

this question is critical in part selection for radiation-rich applications. If g and h were

known, it would be possible to make predictions based on Equation 2.1. However, based

on terminal currents only, it is difficult for a user to determine the likely post-irradiation

Nit. A possible approach is to fit the mean data in Figure 2.3 to Equation 2.2. However,

it remains difficult to determine Nit without prior knowledge of h or some external way

to determine it. Previous work suggests a sophisticated method to extract Nit in silicon

BJTs [59, 60], but the introduction of Ge to the base complicates the problem.

Instead, we found that other device performance metrics that are controlled by Nab,

which also controls ∆IB, serve as better predictors of post-irradiation base current. For in-

stance, the collector current, IC , is known to be controlled primarily by the base profile [57,
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Figure 2.14: Increase in σ of IB for three different spreads in doping.

64]. Unfortunately, this idealized behavior does not translate perfectly to measured data,

as shown in Figure 2.15. An ideal predictor would be close to 100% correlated with the

∆IB such that the post-irradiation spread in base current is completely captured. Indeed,

IC shows some correlation to ∆IB, but not enough to be used as a sole predictor of post-

irradiation performance, only capturing around 50% of the post-irradiation IB at best.

To further explore this suggested predictive method, various combinations of the mea-

sured IB and IC were tested as predictors of either post-irradiation IB or ∆IB. A promising

example was ∆IB and pre-irradiation current gain, β. The data are shown in Figure 2.16,

where correlation between pre-irradiation β and post-irradiation ∆IB increases to a peak

of 75% at the highest dose.

Although AC small-signal parameters could not be measured in the experimental setup

for the present study, TCAD simulations could be used as a preliminary test to identify po-

tential AC predictors of TID response. From the same 40 devices simulated in Section sec-

tion 2.4, collector-base (CB) capacitance, CCB, base-emitter (BE) capacitance, CBE , and

base resistance, RB, were extracted from two-port network parameters [66]. Their corre-

lations with ∆IB are listed in Table 2.1. The listed ranges were determined across all Nit

and VBE values. RB shows a very high correlation with ∆IB, meaning a linear fit of ∆IB
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Figure 2.15: Measured correlation of change in base current to pre-irradiation collector
current showing increasing predictability.

Table 2.1: Simulated Range of Correlation Between ∆IB and AC Parameters

Parameter Correlation with ∆IB (%)
CBE (−70,−80)
CCB (−10,+10)
RB (+90,+99)

as a function of RB captures at least 90% of the spread in ∆IB. While RB seems to be an

excellent predictor, this simulated result needs further testing in measurement.

2.5 Implications for Radiation-Rich Applications

Three major trends over dose can be observed from the data. As dose is increased:

1. the mean IB increases (as expected)

2. the standard deviation of IB increases

3. the correlation of pre-irradiation IB to post-irradiation IB decreases.

Result 1) is important for low-power circuitry, where a device might have quiescent bias
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Figure 2.16: Measured correlation of change in base current to pre-irradiation current gain,
β, showing increasing predictability.

at a VBE where IB degrades. For instance, in an operational amplifier, increased IB causes

the input impedance of the amplifier to drop, lowering the loaded voltage gain as dose

accumulates. When also considering 2), the problem becomes worse. Variation between

amplifiers can generate offset voltages in the signal path. Since standard deviation is rising,

those offset voltages are expected to rise as well. Such offsets can lead to degraded dynamic

range. In the worst case, offset can saturate receiver channels, rendering them inoperable.

Trend 3) is problematic for component selection and RHA testing. One might naively

choose parts by measuring non-irradiated parts and selecting the ones with the best perfor-

mance. However, the data in the present work show that performance at high doses is not

correlated to the pre-irradiation performance. Thus, this method is not effective. Instead, a

predictive method based on a combination of device parameters may be more practical, as

suggested above.

When tight statistical bounds are required at high dose for a component, it may be-

come impossible to use pre-existing, off-the-shelf components. Instead, a more practical

approach is to design custom, application-specific integrated circuits such that their post-
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irradiation tolerances are still within specifications. Such an approach requires statistical

characterization, as done in the present work, combined with modeling of devices to in-

clude TID response, such as in [42]. MC tools native to integrated circuit design tools (e.g.,

Cadence Virtuoso [67]) can then be leveraged in design.

For SiGe HBTs, and for bipolar transistors in general, Equation 2.5 and Equation 2.7

are meaningful in design for radiation-rich environments at both the process and circuit

levels. From a device perspective, reducing process variation, especially in the base, will

naturally improve the variability and predictability of TID response. For circuits, biasing

at higher VBE will prevent the increase of both µ[IB] and σ[IB], mitigating performance

degradation at the cost of power consumption. When considering statistical yield as well,

a new dimension is added to design, where post-irradiation variability versus performance

is a trade-off that should be considered.

2.6 Summary

Characterization of a 40 SiGe HBTs for TID response revealed trends of increasing stan-

dard deviation and decreasing pre-to-post-irradiation correlation with increasing dose. Inverse-

mode operation was not found to prevent this behavior. These statistical trends were traced

to the pre-existing process variation between devices. A simulation methodology was

demonstrated in TCAD, which confirmed that process variation can cause increased vari-

ability and decreased pre-to-post-irradiation correlation. Further, the mechanism causing

the decreased correlation was traced to the trade of dominance between emitter profile for

drift-diffusion current and base profile for G/R current. The results highlight the need to

perform statistical testing for components meant for high-dose applications and reveal a

new dimension of design post-irradiation variability needs to be considered.
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CHAPTER 3

DESIGN OF A KA-BAND VG-LNA FOR SPACE APPLICATIONS

3.1 Circuit Design

3.1.1 Gain Control

Q1

Q2

Q3

Q4VCAS1 VCAS2

RFIN

CIN LB1 LB2

CB1

VB1 LE1

RC1

LC1

CB2 CB3

LB3

VB2 LE2

RC2

LC2

CO LO
RFOUT

VCC

Figure 3.1: Schematic of the designed amplifier.

Table 3.1: VG-LNA Component Values

Q1 0.1× 4× 3 Q2 0.1× 4× 3
Q3 0.1× 8× 3 Q4 0.1× 8× 3

LB1 110 pH CB1 78 fF LB2 340 pH
LE1 60 pH RC1 5 Ω LC1 370 pH
CB2 19 fF LB3 200 pH CB3 58 fF
LE2 50 pH RC2 7 Ω LC2 280 pH
CIN 0.8 pF CO 0.5 pF LO 150 pH

Device sizes are given as width (µm) × length (µm) × number of devices.

A popular technique for implementing variable gain is current stealing [68, 69, 70], in

which a shunting RF path is switched on and off to “steal” signal from the amplifier output.
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While effective, current stealing simply discards available signal, which is inefficient. In

the present work, a bias tuning approach is selected instead, which saves power when only

low gain is needed, improving system efficiency. A common problem with bias-tuned

variable-gain amplifiers (VGAs) is the nonlinear bias-to-gain translation. To overcome

this limitation, the present work integrates a linear-in-dB control circuit in the form of a

current-steering DAC. The co-integrated design alleviates the need for extensive external

gain calibration.

The present work demonstrates the design, implementation, and characterization of a

SiGe VG-LNA for emerging Ka-band radar and communications applications. The mea-

sured VG-LNA exhibits state-of-the-art performance for both noise figure and DC power

consumption across wide bandwidth and gain-tuning range.

Figure 3.2: Simulated minimum noise figure and maximum available gain for the first stage
as a function of VCB of Q1.

3.1.2 Low-Noise Amplifier

The VG-LNA was implemented in GF BiCMOS9HP, the same process technology as in

chapter 2. It has previously been shown that this SiGe technology platform is robust to

total ionizing radiation and single-event latch-up, making it ideal for orbital space applica-

tions [3]. EMX was used for electromagnetic simulation [71].
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The schematic of the designed SiGe VG-LNA is shown in Figure 3.1. Corresponding

component values are listed in Table 3.1. A two-stage cascode amplifier topology is used.

To optimize both noise and power consumption (PDC), fixed bias VB1 sets stage one at

minimum NFmin. This relatively low bias still provides sufficient gain to suppress the

noise of stage two. Then, bias tuning is applied at VB2 to achieve variable gain in stage

two. The resonant loads of either stage are tuned to give gain flatness across the desired

band.

To optimize for both noise and DC power, PDC , VCAS1 and VCAS2 are set to 1.6 V,

pushing Q1 and Q3 into weak saturation. Then, the supply voltage can also be lowered to

1.6 V. Q2 and Q4 thus remain in forward-active mode, preventing further degradation in

maximum available gain, Gmax due to their CB-junction capacitances. Previous work has

shown that SiGe HBTs in weak saturation still provide substantial RF performance [72,

73]. Beyond saving power, VCB < 0 also slightly reduces NFmin, though available gain is

also reduced. Simulations of this trade-off are shown in Figure 3.2. For this design, a 1.6 V

supply set VCB at -0.2 V, giving 10–20% power savings over a more typical 2 V supply at

an acceptable 2 dB degradation in Gmax.

Inductive degeneration, LE1 and LE2, allow simultaneous noise and gain matching both

at the input and between stages. VB1 is relatively low, making broadband input matching

more difficult. To compensate, a two-section input-matching network is used. Due to the

high-quality RF metals and physical separation from the lossy silicon substrate in the 9HP

platform, the extra inductor, LB1, has little insertion loss (Q ≈ 30), contributing negligible

degradation in noise figure.

3.1.3 Digital-to-Analog Converter

An on-chip current-steering DAC was designed to facilitate bias tuning. The schematic

is shown in Figure 3.3. An external bias current of 10 µA is applied to the input NPN,

QDAC0. QDAC1-QDAC16 are individually sized to achieve gain steps of 1 dB, a benefit
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of co-designing the amplifier and DAC. T1-T16 are used as analog switches to steer the

currents of QDAC1-QDAC16, which are summed at the output pMOS mirror, T0 and TOUT .

Finally, QB performs I-to-V conversion to generate VB2. Because the bias steps required

to attain linear-in-dB steps of gain are not constant, a non-uniform thermometer coding

scheme was utilized. A binary-to-thermometer decoder was also implemented on-chip.

These integrated control circuits simplify the system-level control complexity.

QDAC0
QDAC1

T1

QDAC2

T2

QDAC16

T16

T0 TOUT

QB

VC1 VC2 VC16
10 µA

VB2

Figure 3.3: Schematic of the integrated DAC.

3.2 Measurement Results

A micrograph of the designed VG-LNA is shown in Figure 3.4. In measurement, a Keysight

E36300 power supply was used to generate supply voltages. Keithley 2400 Source Meters

were used to drive VB1 and the 10 µA DAC reference current. The supply voltages were

1.6 V for the LNA, 2.2 V for the DAC, and 1.2 V for the digital logic. The input stage of

the LNA was fixed at 7 mA quiescent current. A plot of DC power consumption over the

various gain states is shown in Figure 3.5. Power consumption ranges from 12.0–17.3 mW

over gain states for the LNA alone, or 13.2–21.7 mW including the DAC.

The S-parameters of the VG-LNA were measured with an Agilent E8364B vector net-
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Figure 3.4: Die micrograph of fabricated VG-LNA. The total area, including DC and RF
pads, is 1.50× 1.54 mm2. The area of the LNA without the DAC is 1.35× 0.44 mm2.

Figure 3.5: DC power consumption over gain states showing variation from 12.0–17.3 mW
for the LNA alone or 13.2–21.7 mW including the DAC.

work analyzer via on-die probing with RF and DC probes from GGB Industries Inc. Open

and short structures were used to de-embed the effects of the RF pads [74]. The measured

input matching and small-signal gain across frequency for all 16 gain states are shown

in Figure 3.6a and Figure 3.6b, respectively. Input matching is independent of gain state,

since the input stage has fixed bias and the cascode configuration provides excellent reverse

isolation. The results demonstrate nearly constant bandwidth from 26–35 GHz, limited by
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–10 dB input matching.

(a)

(b)

Figure 3.6: Plots of (a) input matching and (b) small-signal gain across frequency for all
16 gain states. Both gain and matching bandwidth are maintained for all gain states. The
dashed lines show the simulated result for the highest gain state.

The peak gain for each state is shown in Figure 3.7a, varying from 4.0 to 18.5 dB, occur-

ring at 33.5 GHz for all gain states. The corresponding gain steps are shown in Figure 3.7b,

highlighting nearly linear-in-dB steps.

RMS phase error (∆φ), averaged over all gain states, is shown in Figure 3.8. The error
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(a) (b)

Figure 3.7: (a) Gain over tune state and (b) corresponding change in gain over tune state.

remains less than 6◦ until 32 GHz, peaking to 10◦ at 35 GHz. The phase error peak is a

result of the bias-tuned topology. Changing the bias current of the second stage also varies

the base-emitter capacitance of Q3, causing the insertion phase to change with state. In

design, the height of the phase-error peak can be reduced by biasing the second stage at

higher quiescent currents, and comes at a trade-off of power and gain-bandwidth. In this

work, higher phase error was accepted in order to reduce power consumption. The result

still demonstrates very competitive phase error from 26–32 GHz.

An Agilent N9030A PXA signal analyzer and Agilent 346C noise source were used to

characterize noise figure. Cable losses and impedance mismatches were calibrated out. The

measured NF is shown in Figure 3.9 as a function of frequency for the highest gain state. A

minimum NF of 3 dB is achieved at 26 GHz, the lowest reported value among comparable

amplifiers. This low noise figure highlights the efficacy of the VG-LNA approach. Since a

DSA is no longer required, this approach promises even greater noise savings at the receiver

level.

Large-signal linearity was measured using an Agilent E8257D PSG analog signal gen-
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Figure 3.8: RMS phase error, ∆φ, across frequency with a peak of 10◦ near 35 GHz.

Figure 3.9: NF across frequency for the highest gain state, < 5 dB across the bandwidth.
Circles indicate measured frequencies.

erator and Agilent N9030A PXA signal analyzer. Figure 3.10 shows large-signal power

sweeps taken at 26 GHz for selected gain states. The extracted input 1-dB compression

point (IP1dB) is shown to be –24 dBm. Over frequency and gain state, IP1dB was found to

vary between –29 and –22 dBm.

3.2.1 Performance Comparison

Table 3.2 compares silicon-based VG-LNAs at similar operating frequencies. The demon-

strated design offers the lowest noise figure and the widest gain tuning range except for [75],

which uses a DSA. Phase error remains below a very competitive 6◦ until 32 GHz, while
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Figure 3.10: Large-signal power sweeps for selected gain states at 26 GHz with dashed
lines showing extraction of IP1dB of –24 dBm.

peak phase error reaches 10◦ at the upper band edge. For full-band operation the slight

trade-off in phase error to reduce noise and power remains attractive for power-constrained

applications such as space systems. When compared to [76], the present design offers

3.5 dB higher gain range and lower DC power. Furthermore, this work is the only analog-

based tuning method that uses an integrated DAC with co-designed bias steps.

The present work highlights the receiver performance that can be achieved when com-

bining an LNA and DSA into a unified VG-LNA topology. Whereas current stealing ap-

proaches waste power by shunting it away, the present work uses bias tuning, which en-

hances receiver efficiency. Optimization of noise and power was performed using weakly

saturated SiGe HBTs. For space applications from 26–32 GHz the resulting amplifier

demonstrates state-of-the-art noise figure and power consumption with the widest tuning

range among non-attenuator designs and less than 6◦ phase error, and is the only analog-

tunable design with integrated bias control. The presented VG-LNA is well-suited for

emerging, power-constrained, radar and communications applications such as CubeSat and

SmallSat constellations.

36



Ta
bl

e
3.

2:
C

om
pa

ri
so

n
of

St
at

e-
of

-t
he

-A
rt

,S
ili

co
n-

B
as

ed
,V

ar
ia

bl
e-

G
ai

n
L

N
A

s

R
ef

.
Te

ch
.

G
ai

n
Tu

ne
B
W

G
ai

n
R

an
ge

N
F

I
P
1
d
B

∆
φ

P
D
C

A
re

a
In

te
gr

at
ed

To
po

lo
gy

(G
H

z)
(d

B
)

(d
B

)
(d

B
m

)
(d

eg
)

(m
W

)
(m

m
2 )

C
on

tr
ol

[7
7]

18
0

nm
C

M
O

S
B

ia
s

Tu
ne

26
.6

-5
.4

–
8.

8
8.

3
-1

6
8.

9
25

.7
0.

65
N

on
e

[7
8]

65
-n

m
C

M
O

S
B

ia
s

Tu
ne

30
–

34
.5

10
.2

–
20

.8
3.

71
(1
)

-2
0.

4(
1
)

8
16

.5
–

26
.7

0.
2

N
on

e
[7

9]
90

-n
m

C
M

O
S

C
ur

r.
St

ea
l.

34
.7

–
39

.2
18

.9
/1

6.
5/

8.
4

6.
74

(1
)

-2
0/

-1
5/

-7
—

15
.6

2
0.

20
3

N
on

e
[7

6]
12

0-
nm

Si
G

e
C

ur
r.

St
ea

l.
26

–
40

9
–

20
3.

4
–

4.
3

-2
7

2.
5

33
0.

13
B

in
ar

y
[7

5]
65

-n
m

C
M

O
S

D
SA

33
.5

–
39

-1
0

–
21

4(
1
)

-2
2(

1
)

5.
4

28
1.

05
B

in
ar

y
[8

0]
(3
)

40
-n

m
C

M
O

S
C

ur
r.

St
ea

l.
27

–
33

-6
.5

–
1

6.
62

(1
)

2.
5(

1
)

—
11

.8
5

0.
08

B
in

ar
y

T
hi

sW
or

k
90

-n
m

Si
G

e
B

ia
sT

un
e

26
–

32
4

–
18

.5
3

–
5

-2
9

–
-2

2
6

13
.2

–
21

.7
0.

59
O

n-
ch

ip
26

–
35

10
2.

31
(2
)

D
A

C
1

=
N

ot
ch

ar
ac

te
ri

ze
d

ov
er

ga
in

st
at

e,
2

=
W

ith
in

te
gr

at
ed

D
A

C
,3

=
Si

m
ul

at
io

n
on

ly

37



CHAPTER 4

IMPACT OF VARIABILITY ON CIRCUIT PERFORMANCE

4.1 Current Mirrors

Figure 4.1: Schematic of a simple CM.

Consider a simple CM composed of two nominally identical transistors, the schematic

of which is shown in Figure 4.1. The mirror ratio of this CM is less than unity because of

both the Early effect and the finite current gain, β, of the transistors. Assuming a proper de-

sign, the Early effect should not be a strong factor, so the main cause of random mismatches

can be attributed to variations in β.

Observing the data in Figure 2.3, the increase in IB is equivalent to a decrease in β.

As an example, the mean peak β decreases from 450 to 150 at the maximum TID with the

standard deviation increasing from 30 to 50. These parameters are used to perform a MC

analysis on the mirror ratio of the CM.

In MATLAB, 10,000 random pairs of (β1, β2) were from Gaussian distributions with

means and standard deviations taken from the TID data. These pairs of β were used to

evaluate the theoretical mirror ratio of the simple CM in Equation 4.1, AI .

AI =
1

1 +
1

β1
+

1

β2

(4.1)

38



Figure 4.2: MC simulations of the mirror ratio of a current mirror before and after irradia-
tion.

The results are shown in Figure 4.2. Due to the decrease in mean β, the average AI also

decreases. However, the simultaneous increase in standard deviation also causes the his-

togram of AI to spread out drastically at 2 Mrad(SiO2).

4.2 Current-Steering Digital-to-Analog Converter

The data for the CMs above readily translates to the behavior of current-steering DACs, the

same topology as in the presented VG-LNA. To demonstrate a possible worst case, a purely

binary encoding was selected. The DAC is assumed to be composed of nominally identical

unit cells. Each bit b in the weighting is created by a summation of 2b unit cells, and the

DAC is set to have B = 4 bits, similar to that in the VG-LNA. To perform the Monte Carlo

simulation, the current of each of the binary cells is

Ib = I0AI2
b (4.2)
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Figure 4.3: MC simulations DAC transfer curves before (above) and after (below) irradia-
tion.

where I0 is some reference current, AI is the current gain in Equation 4.1, and b is the bit

number. The Ib are summed according to the selected binary state. For each Monte Carlo

point, the β of every transistor in the circuit was randomized.

First, the DAC transfer curve is shown in Figure 4.3. Due to the decreased β of the

constituent transistors, the gain error decreases on the average, which is not necessarily

a concern if proper DAC calibration is available. However, the increase in the standard

deviation of β also leads to impacted linearity. In some cases, if the mismatch is severe on

the most significant bit of the DAC, the transfer characteristic can become non-monotonic.

The simulated results for the DNL and INL are shown in Figure 4.4 and Figure 4.5,

respectively. The worst-case DNL increases from 0.002 least-significant bits (LSBs) before

irradiation to almost 3 LSB after 2 Mrad(SiO2). The worst-case post-irradiation INL was as

large as 5 LSB. From these results, it is clear that, even though the SiGe HBT is considered

TID-tolerant for RF applications, their use in DACs can still be strongly impacted by TID

due to exasperated variability amongst devices.
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Figure 4.4: MC simulations DAC DNL before (above) and after (below) irradiation.
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Figure 4.5: MC simulations DAC INL before (above) and after (below) irradiation.

41



CHAPTER 5

FUTURE WORK

Thus far, the impact of the variability in TID response has been shown using analytical

theory and MC simulation. In order to properly evaluate the system-level complications

that may arise, characterization must be performed. Possible circuits of interest are

• Current Mirrors: Current mirrors are a key building block in analog circuits like

bias blocks and data converters. Different topologies of current mirrors such as cas-

code current mirrors can be studied to find optimal conditions for current mirror

performance subject to TID.

• Data Converters: Data converter linearity and noise performance can be limited

by device-to-device performance matching. This was shown for binary-weighted

current-steering DACs in chapter 4. Further theoretical examination and character-

ization are warranted to compare coding schemes and device layout techniques to

mitigate TID-induced variability.

• Frequency Converters: Mixers, frequency multipliers, and oscillators are all sus-

ceptible to performance degradation due to device mismatch. Possible weaknesses

are worsened harmonic suppression and increased common-mode noise. Given the

complex nature of these circuits, TID characterization of test circuits will be required

to examine these degradations.
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CHAPTER 6

CONCLUSION

An exaggeration of mismatch following exposure to TID was observed for 90-nm SiGe

HBTs, which was tied to preexisting process variations in the base and emitter dopings.

This increasing mismatch was shown to be a potential concern for DACs. Since DACs

are common components in RF receiver systems, for instance to implement tunable perfor-

mance in a VG-LNA, degradation in linearity due to increased mismatch can impair these

systems. Further investigation is necessary to understand the full system-level implications

and failure mechanisms that can arise from device-to-device mismatch in TID-sensitive

applications such as science missions to Europa.
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APPENDIX A

DERIVATION OF BASE CURRENT CORRELATION

The definition of the correlation coefficient between random variables X and Y was given

in Equation 2.6. Letting X be the pre-irradiation base current, IB0, and Y be the post-

irradiation base current, IB0 + ∆IB, the pre-to-post correlation can be derived from the

standard rules of covariance as follows:

ρ[pre, post] =
C[IB0 + ∆IB, IB0]

σ[IB0]σ[IB0 + ∆IB]
(A.1)

=
C[IB0, IB0] + C[IB0,∆IB]

σ[IB0]σ[IB0 + ∆IB]
(A.2)

=
Var[IB0] + C[IB0,∆IB]

σ[IB0]σ[IB0 + ∆IB]
(A.3)

where the covariance between IB0 and ∆IB can be expanded as

C[IB0,∆IB] = NitC[g, h]e3qVBE/2kT (A.4)

Substituting in the previously derived expressions for IB0 and ∆IB in Equation 2.8

and Equation 2.9, respectively, and the variance in Equation 2.5, again assuming C[g, h] is

negligible,

ρ[pre, post] ≈ Var[g]e2qVBE/kT

σ[g]eqVBE/kT
√
g2e2qVBE/kT +N2

ith
2eqVBE/kT

(A.5)

=
σ[g]√

Var[g] +N2
itVar[h]e−qVBE/kT

(A.6)
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