107 research outputs found

    Optimized range-free localization scheme using autonomous groups particles swarm optimization for anisotropic wireless sensor networks

    Get PDF
    Location information is a required concern for localization-based service application in the field of wireless sensor networks (WSNs). Distance Vector-Hop (DV-Hop) algorithm as the most typical range-free localization scheme is more suitable for large-scaled WSNs. Its localization performance is good in even distributed networks. However, it demonstrated extremely poor accuracy under anisotropic networks, which is an urgent problem that need to be addressed. Accordingly, an optimized DV-Hop localization algorithm is put forward in this study with considering several anisotropic factors. Accumulated hop size error and collinearity are two main reasons that led to low accuracy and poor stability. Hence, hop size error of anchors is reduced by introducing distance gap based on anchors. Besides, weighted least square method is adopted to replace the least square method to against anisotropic factors caused by irregular radio patterns. Moreover, an Autonomous Groups Particles Swarm Optimization (AGPSO) is employed to further optimize the obtained coordinate in the first round. It developed a novel method to determine localization coverage. The localization coverage is also added to be one evaluation metric in our study, which makes up for the lack of this evaluation indicator in most of the studies. Simulation results display good localization accuracy and strong stability under anisotropic networks. In addition, it also concluded that metaheuristic optimization algorithm and weighted least square method are more suitable to conquer anisotropic factor. It briefly points out a new direction for the future research work in the localization area under anisotropic networks

    Communication Security in Wireless Sensor Networks

    Get PDF
    A wireless sensor network (WSN) usually consists of a large number of small, low-cost devices that have limited energy supply, computation, memory, and communication capacities. Recently, WSNs have drawn a lot of attention due to their broad applications in both military and civilian domains. Communication security is essential to the success of WSN applications, especially for those mission-critical applications working in unattended and even hostile environments. However, providing satisfactory security protection in WSNs has ever been a challenging task due to various network & resource constraints and malicious attacks. This motivates the research on communication security for WSNs. This dissertation studies communication security in WSNs with respect to three important aspects. The first study addresses broadcast/multicast security in WSNs. We propose a multi-user broadcast authentication technique, which overcomes the security vulnerability of existing solutions. The proposed scheme guarantees immediate broadcast authentication by employing public key cryptography, and achieves the efficiency through integrating various techniques from different domains. We also address multicast encryption to solve data confidentiality concern for secure multicast. We propose an efficient multicast key management scheme supporting a wide range of multicast semantics, which utilizes the fact that sensors are both routers and end-receivers. The second study addresses data report security in WSNs. We propose a location-aware end-to-end security framework for WSNs, in which secret keys are bound to geographic locations so that the impact of sensor compromise are limited only to their vicinity. The proposed scheme effectively defeats not only bogus data injection attacks but also various DoS attacks. In this study, we also address event boundary detection as a specific case of secure data aggregation in WSNs. We propose a secure and fault-tolerant event boundary detection scheme, which securely detects the boundaries of large spatial events in a localized statistic manner. The third study addresses random key pre-distribution in WSNs. We propose a keyed-hash-chain-based key pool generation technique, which leads to a more efficient key pre-distribution scheme with better security resilience in the case of sensor compromise

    Fault-tolerant wireless sensor networks using evolutionary games

    Get PDF
    This dissertation proposes an approach to creating robust communication systems in wireless sensor networks, inspired by biological and ecological systems, particularly by evolutionary game theory. In this approach, a virtual community of agents live inside the network nodes and carry out network functions. The agents use different strategies to execute their functions, and these strategies are tested and selected by playing evolutionary games. Over time, agents with the best strategies survive, while others die. The strategies and the game rules provide the network with an adaptive behavior that allows it to react to changes in environmental conditions by adapting and improving network behavior. To evaluate the viability of this approach, this dissertation also describes a micro-component framework for implementing agent-based wireless sensor network services, an evolutionary data collection protocol built using this framework, ECP, and experiments evaluating the performance of this protocol in a faulty environment. The framework addresses many of the programming challenges in writing network software for wireless sensor networks, while the protocol built using the framework provides a means of evaluating the general viability of the agent-based approach. The results of this evaluation show that an evolutionary approach to designing wireless sensor networks can improve the performance of wireless sensor network protocols in the presence of node failures. In particular, we compared the performance of ECP with a non-evolutionary rule-based variant of ECP. While the purely-evolutionary version of ECP has more routing timeouts than the rule-based approach in failure-free networks, it sends significantly fewer beacon packets and incurs statistically fewer routing timeouts in both simple fault and periodic fault scenarios

    7. GI/ITG KuVS Fachgespräch Drahtlose Sensornetze

    Get PDF
    In dem vorliegenden Tagungsband sind die Beiträge des Fachgesprächs Drahtlose Sensornetze 2008 zusammengefasst. Ziel dieses Fachgesprächs ist es, Wissenschaftlerinnen und Wissenschaftler aus diesem Gebiet die Möglichkeit zu einem informellen Austausch zu geben – wobei immer auch Teilnehmer aus der Industrieforschung willkommen sind, die auch in diesem Jahr wieder teilnehmen.Das Fachgespräch ist eine betont informelle Veranstaltung der GI/ITG-Fachgruppe „Kommunikation und Verteilte Systeme“ (www.kuvs.de). Es ist ausdrücklich keine weitere Konferenz mit ihrem großen Overhead und der Anforderung, fertige und möglichst „wasserdichte“ Ergebnisse zu präsentieren, sondern es dient auch ganz explizit dazu, mit Neueinsteigern auf der Suche nach ihrem Thema zu diskutieren und herauszufinden, wo die Herausforderungen an die zukünftige Forschung überhaupt liegen.Das Fachgespräch Drahtlose Sensornetze 2008 findet in Berlin statt, in den Räumen der Freien Universität Berlin, aber in Kooperation mit der ScatterWeb GmbH. Auch dies ein Novum, es zeigt, dass das Fachgespräch doch deutlich mehr als nur ein nettes Beisammensein unter einem Motto ist.Für die Organisation des Rahmens und der Abendveranstaltung gebührt Dank den beiden Mitgliedern im Organisationskomitee, Kirsten Terfloth und Georg Wittenburg, aber auch Stefanie Bahe, welche die redaktionelle Betreuung des Tagungsbands übernommen hat, vielen anderen Mitgliedern der AG Technische Informatik der FU Berlin und natürlich auch ihrem Leiter, Prof. Jochen Schiller

    Emerging Communications for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are deployed in a rapidly increasing number of arenas, with uses ranging from healthcare monitoring to industrial and environmental safety, as well as new ubiquitous computing devices that are becoming ever more pervasive in our interconnected society. This book presents a range of exciting developments in software communication technologies including some novel applications, such as in high altitude systems, ground heat exchangers and body sensor networks. Authors from leading institutions on four continents present their latest findings in the spirit of exchanging information and stimulating discussion in the WSN community worldwide

    System support for robust data collection in wireless sensing systems

    Get PDF
    This dissertation studied how to provide system support for robust data collection in wireless sensing systems through addressing a few urgent design issues in the existing systems. A wireless sensing system may suffer issues arising at the sensors, during the data transmission, and during the data access by applications. Due to the unique characteristics of wireless sensing systems, certain conventional solutions for networked systems may not work well with these issues. We developed approaches to resolve these urgent problems in the design of wireless sensing systems. Specially, we have achieved the following: (1) we developed a resilient trust model to effectively detect faulty data in wireless sensing systems due to either sensor malfunctioning or malicious attempts to report false data; (2) we developed a low-cost, self-contained, accurate localization system for small-sized ground robotic vehicles, which enhances the wireless sensing systems containing mobile sensors by providing more accurate and highly available location data, with only limited overhead in economic cost and management; (3) we designed and implemented a robust trust-aware routing framework to secure multi-hop routing through a set of sensors in wireless sensing systems; (4) we developed a privacy-preserving wireless sensing system, which protects the user privacy while allowing arbitrary third-party applications to extract knowledge from the collected data

    Cluster-based Vibration Analysis of Structures with GSP

    Get PDF
    This article describes a divide-and-conquer strategy suited for vibration monitoring applications. Based on a low-cost embedded network of microelectromechanical accelerometers, the proposed architecture strives to reduce both power consumption and computational resources. Moreover, it eases the sensor deployment on large structures by exploiting a novel clustering scheme, which consists of unconventional and nonoverlapped sensing configurations. Signal processing techniques for inter- and intracluster data assembly are introduced to allow for a fullscale assessment of the structural integrity. More specifically, the capability of graph signal processing is adopted for the first time in vibration-based monitoring scenarios to capture the spatial relationship between acceleration data. The experimental validation, conducted on a steel beam perturbed with additive mass, reveals high accuracy in damage detection tasks. Deviations in spectral content and mode shape envelopes are correctly revealed regardless of environmental factors and operational uncertainties. Furthermore, an additional key advantage of the implemented architecture relies on its compliance with blind modal investigations, an approach that favors the implementation of autonomous smart monitoring systems
    • …
    corecore