
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

12-1-2012

Fault-tolerant wireless sensor networks using
evolutionary games
Ricardo Villalon

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Villalon, Ricardo. "Fault-tolerant wireless sensor networks using evolutionary games." (2012). https://digitalrepository.unm.edu/
cs_etds/25

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Mexico

https://core.ac.uk/display/151574762?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/25?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/25?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Candidate

 Department

 This dissertation is approved, and it is acceptable in quality and form for publication:

 Approved by the Dissertation Committee:

 , Chairperson

Ricardo Villalon

Computer Science

Patrick G. Bridges

Melanie Moses

David Ackley

Thomas Caudell

Fault-Tolerant Wireless Sensor Networks
using Evolutionary Games

by

Ricardo Villalón-Fonseca

B.S., Computer Science, Universidad de Costa Rica, 1989

M.S., Computer Science, Universidad de Costa Rica, 2002

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2012

c©2012, Ricardo Villalón-Fonseca

iii

Fault-Tolerant Wireless Sensor Networks
using Evolutionary Games

by

Ricardo Villalón-Fonseca

B.S., Computer Science, Universidad de Costa Rica, 1989

M.S., Computer Science, Universidad de Costa Rica, 2002

Ph.D., Computer Science, University of New Mexico, 2012

Abstract

This dissertation proposes an approach to creating robust communication sys-

tems in wireless sensor networks, inspired by biological and ecological systems, par-

ticularly by evolutionary game theory. In this approach, a virtual community of

agents live inside the network nodes and carry out network functions. The agents

use different strategies to execute their functions, and these strategies are tested and

selected by playing evolutionary games. Over time, agents with the best strategies

survive, while others die. The strategies and the game rules provide the network with

an adaptive behavior that allows it to react to changes in environmental conditions

by adapting and improving network behavior.

To evaluate the viability of this approach, this dissertation also describes a micro-

component framework for implementing agent-based wireless sensor network services,

an evolutionary data collection protocol built using this framework, ECP, and ex-

periments evaluating the performance of this protocol in a faulty environment. The

iv

framework addresses many of the programming challenges in writing network soft-

ware for wireless sensor networks, while the protocol built using the framework pro-

vides a means of evaluating the general viability of the agent-based approach.

The results of this evaluation show that an evolutionary approach to designing

wireless sensor networks can improve the performance of wireless sensor network

protocols in the presense of node failures. In particular, we compared the perfor-

mance of ECP with a non-evolutionary rule-based variant of ECP. While the purely-

evolutionary version of ECP has more routing timeouts than the rule-based approach

in failure-free networks, it sends significantly fewer beacon packets and incurs statis-

tically fewer routing timeouts in both simple fault and periodic fault scenarios.

v

Contents

List of Figures xii

List of Tables xv

1 Introduction 1

1.1 Challenges in Constructing WSNs . 2

1.1.1 General Challenges . 3

1.1.2 Network Communication Challenges 4

1.1.3 Programming Challenges . 4

1.2 A WSN Communication Example . 5

1.3 Optimizing WSN Communication . 6

1.3.1 Agent-based Approach . 6

1.3.2 Evolutionary Games . 7

1.3.3 Micro-component Framework 8

1.4 Thesis Statement . 9

vi

Contents

1.5 Contributions . 9

1.6 Dissertation Outline . 10

2 Related Work 11

2.1 WSN Routing Protocols . 12

2.1.1 Collection Tree Protocol . 12

2.1.2 Other Routing Protocols . 14

2.2 Fault tolerance in WSN Protocols . 15

2.2.1 WEAR and SCORE . 15

2.2.2 ENFAT-AODV . 16

2.2.3 Fault Management Architecture for WSNs 16

2.2.4 Dynamic hybrid fault-models 17

2.3 Agent-based Systems in WSNs . 18

2.3.1 BIONETS . 18

2.3.2 BiSNET . 19

2.3.3 kOS . 19

2.3.4 Agent-based architecture for fault tolerance in WSN 20

2.4 Evolutionary Approaches in WSN protocols 21

2.4.1 Evolutionary congestion control protocol for WSN 21

2.4.2 Evolution of Cooperation in Multi-class WSNs 21

2.4.3 Routing Protocol with Hybrid Genetic Algorithm in WSNs . . 22

vii

Contents

2.5 Programming in WSN . 22

2.6 Summary . 23

3 Agent-based WSNs Optimization 25

3.1 Overview . 25

3.2 Agent-Based Model . 26

3.2.1 Process Overview . 26

3.2.2 The Agents . 28

3.2.3 The Environment . 28

3.2.4 Agent Interactions . 29

3.2.5 Illustrative Example . 30

3.3 Evolutionary Games . 32

3.3.1 Strategies . 33

3.3.2 Resources . 33

3.3.3 Game Rules . 34

3.3.4 Population Dynamics . 35

3.4 Summary . 37

4 Implementing Agent-Based WSN Software 38

4.1 Micro-Protocol Architecture . 39

4.2 Micro-component Framework . 41

viii

Contents

4.2.1 Simple Micro-components . 42

4.2.2 Virtual Micro-components . 43

4.2.3 Group Micro-components . 45

4.3 Micro-component Framework Example 45

4.4 Framework Implementation Details 46

4.4.1 Micro-component Implementation 47

4.4.2 Micro-component Scheduling and Execution 49

4.5 Summary . 52

5 Evolutionary Collection Protocol 53

5.1 ECP Overview . 54

5.1.1 Basic Features . 54

5.1.2 ECP Enhancements . 55

5.2 ECP Routing Engine . 56

5.2.1 Beacon Advertising . 56

5.2.2 Beacon Receive . 57

5.2.3 Neighbor Check Fault . 59

5.3 ECP Execution Example . 60

5.4 Agents in ECP . 61

5.4.1 Structure of Agents . 61

5.4.2 Advertiser Strategies and Interactions 61

ix

Contents

5.5 Interactions in ECP . 62

5.5.1 Agent Creation . 63

5.5.2 Agent Selection . 64

5.5.3 Agent Competitions . 64

5.6 Summary . 66

6 ECP Game Structure 67

6.1 Methodology . 68

6.1.1 Evaluation Metrics . 68

6.1.2 Network Scenarios . 69

6.1.3 Simulation Configuration . 70

6.2 Basic Game Description . 71

6.2.1 Agent Creation and Selection 71

6.2.2 Agent Competitions . 72

6.3 Basic Game Results . 73

6.3.1 Results . 73

6.3.2 Analysis . 74

6.4 Aligned Game Description . 76

6.5 Aligned Game Results . 78

6.5.1 Results . 78

6.5.2 Analysis . 79

x

Contents

6.6 Summary . 81

7 ECP Rule-based Game Comparison 83

7.1 A Rule-based ECP Variant . 84

7.1.1 Agent Generation . 84

7.1.2 Comparison with Evolutionary ECP 85

7.1.3 Analysis . 86

7.2 Hybrid Game Description . 87

7.2.1 Results . 89

7.3 Summary . 90

8 Conclusions and Future Work 92

8.1 Conclusions . 92

8.2 Future Work . 93

8.2.1 Operating System Integration 94

8.2.2 Micro-component Framework Extensions 94

8.2.3 Complex Evolutionary Games 95

8.2.4 Extensions Based on Biological Concepts 95

A ECP Variant Behavior in Failure-Free Environments 96

References 101

xi

List of Figures

4.1 Micro-protocol example . 40

4.2 Micro-component Framework Block Diagram 41

4.3 Structure of the micro-component framework Virtual Action Struc-

ture for selecting the micro-component to use based on the agent as-

sociated with the micro-component. The lowest level of the tree con-

tains the micro-component ID of the appropriate micro-component

to execute. 44

4.4 Micro-protocol Execution Example 45

4.5 MicroComponent Interface source code 47

4.6 VirtualTrait Interface source code 48

4.7 MicroComponentGroup Interface source code 49

4.8 MicroComponentTask Interface source code 51

5.1 ECP beacon advertising micro-protocol 56

5.2 ECP Mote structure . 57

5.3 Routing table entry structure in ECP 58

xii

List of Figures

5.4 ECP beacon receive micro-protocol 59

5.5 ECP check fault micro-protocol . 59

5.6 Beacon Time Parameters of ECP Games 65

6.1 Basic Game Population Dynamics - Faulty Environment 75

6.2 Average Beacon Time for B/SA:N/FD:E and B/SA:I/FD:E - Simple-

fault Environment . 76

6.3 Aligned Game Beacon Time Strategy for ECP 77

6.4 Aligned Game Population Dynamics - Simple-fault Environment . . 80

6.5 Aligned Game Population Dynamics - Periodic-fault Environment . 80

6.6 Average Beacon Time for Aligned Games - Simple-fault Environment 81

6.7 Average Beacon Time for Aligned Games - Periodic-fault Environment 82

7.1 Rule-based ECP Variant Population Dynamics - Simple-fault Envi-

ronment . 87

7.2 Rule-based ECP Variant Dynamics - Periodic-fault Environment . . 88

7.3 Rule-based Game Beacon Time - Simple-fault Environment 89

7.4 Rule-based Game Beacon Time - Periodic-fault Environment 90

A.1 Basic Game Population Dynamics - Failure-free Environment 97

A.2 Average Beacon Time for Games B/SA:N/FD:E, B/SA:N/FD:N and

B/SA:I/FD:N - Failure-free Environment 98

A.3 Aligned Game Population Dynamics - Failure-free Environment . . . 98

xiii

List of Figures

A.4 Average Beacon Time for Aligned Games - Failure-free Environment 99

A.5 Rule-based and Hybrid Game Population Dynamics - Failure-free

Environment . 99

A.6 Average Beacon Time for Rule-based and Hybrid Games - Failure-

free Environment . 100

xiv

List of Tables

3.1 Fitness Function Components for Advertising Agents 36

5.1 Parameters for Advertising Game in ECP 65

6.1 Wireless Environment Setup for Simulation 70

6.2 ECP Basic Games Rules . 72

6.3 Basic Game Results - Simple-fault Environment 74

6.4 ECP Aligned Games Rules . 78

6.5 Aligned Game Results - Simple-fault Environment 79

6.6 Aligned Game Results - Periodic-fault Environment 79

7.1 Beacon times for given link quality changes in the rule-based ECP

variant . 85

7.2 Rule-based ECP Results - Failure-free Environment 85

7.3 Rule-based ECP vs. Evolutionary ECP - Simple-fault Environment . 86

7.4 Rule-based ECP vs. Evolutionary ECP - Periodic Fault Results . . . 86

7.5 Hybrid Game Results - Simple-fault Environment 89

xv

List of Tables

7.6 Hybrid Game Results - Periodic Fault Results 90

A.1 Basic Game Results - Failure-free Environment 97

A.2 Aligned Game Results - Failure-free Environment 97

A.3 Rule-based and Hybrid Game Results - Failure-free Environment . . 98

xvi

Chapter 1

Introduction

Wireless Sensor Networks (WSNs) [21, 43] are networks composed of small inde-

pendent electronic devices, with environmental sensing capabilities and wireless net-

working to share collected information. They provide data in a broad range of fields

using sensors such as temperature, humidity, visible light, infrared light, acoustic, vi-

bration, pressure, chemical, mechanical stress, magnetic, and more. WSNs are used

in a wide range of applications, including disaster relief applications [8, 9, 84, 78],

environmental control [62], biodiversity mapping [54, 74, 18], and structural health

monitoring [44, 63].

WSN applications have complex communication demands [25], requiring infor-

mation processing inside the network and detailed control over the sensor nodes.

Applications typically require periodic sensing of environmental events [13], and dy-

namically adjust sampling frequency. The collected data is usually sent to a main

location, and many applications process data inside the network to produce summa-

rized values before sending them to a destination [65].

Maintaining node communication in WSNs is challenging [70]. Most WSN ap-

plications require long-term operation with high levels of survivability. WSNs are

1

Chapter 1. Introduction

deployed in dynamic failure-prone environments with harsh environmental conditions

and physical failures of the devices [22, 75]. The network degrades over time because

of device failures, environmental changes, or other external factors, and faults arise

at different times and locations, affecting groups of nodes, single nodes, or the link

between two nodes.

This dissertation proposes an approach to creating robust communication sys-

tems in WSNs, inspired by biological and ecological systems [55] particularly by

evolutionary game theory [56]. In this approach, a virtual community of agents live

inside the network nodes and carry out network functions. The agents use different

strategies to execute their functions, and these strategies are tested and selected by

playing evolutionary games. Over time, agents with the best strategies survive, while

others die. The strategies and game rules provide the network with an adaptive be-

havior that allows it to react to changes in environmental conditions by adapting

and improving network behavior.

1.1 Challenges in Constructing WSNs

This section describes the general challenges faced by sensor network software, and

also describes the specific impact they have on network communication and software

implementation. The broad range of applications for WSNs can not be implemented

with a single network topology or software system [3]. However many of the appli-

cations share a common set of challenges, and realizing new ways to overcome the

challenges is an important step for the development of WSNs.

2

Chapter 1. Introduction

1.1.1 General Challenges

Power management and fault tolerance are the two most significant challenges faced

by WSNs. In addition, the diverse set of WSN deployments makes flexibility an

important challenge. Details about these general challenges are provided below.

Power management. Power management is important in WSNs because nodes

are generally battery powered, and this restricts the lifetime of the nodes and the

whole network. Replacing batteries in the field is frequently either infeasible or

very expensive. Furthermore, there is a trade-off between communication quality

and battery lifetime because increasing communication quality usually requires more

energy, at the cost of decreased sensor lifetime [46, 1]. New techniques to balance

these two quantities are an important issue studied in this dissertation.

Fault tolerance. Failures are generally common in WSNs: nodes may run

out of battery, suffer a hardware fault, or environmental conditions can block a

communication link. As a result, some nodes can be disconnected temporarily or

permanently. In addition, repairing failures can be challenging because it can be

very expensive, or replacement of sensors in the field can be infeasible.

Flexibility. Applications can be different in the type of sensors they use to

sample the environment, the frequency of sampling, the number of nodes in the

network, the environmental conditions where the nodes are deployed, the communi-

cation scheme between the nodes, and more. In addition, operational requirements of

the nodes can change over time. As a result, sensor network software must be flexible

enough to adapt to different deployment scenarios and changing network conditions.

3

Chapter 1. Introduction

1.1.2 Network Communication Challenges

Network communication challenges are directly related to the general challenges in

the previous section. Maintaining communication requires up-to-date routing tables,

and the packet transmissions needed for this consume power, which impacts the

network lifetime. On the other hand, frequent transmissions are required to detect

changes in network topology or communication conditions. This makes balancing

the power cost of packet transmissions with the potential improved communication

quality important and challenging.

Fault tolerance is also important in WSN communication systems because data

delivery in WSNs is inherently faulty [81]. Node failures and lost packets can cause

previously working communication routes to fail. Detecting and recovering from

these failures requires additional communication, consuming additional node power.

As a result, faults and failures make balancing communication quality and power

consumption very challenging.

1.1.3 Programming Challenges

Software and hardware capabilities of WSNs are different from conventional net-

worked system. WSNs have constrained hardware resources on the sensor devices

and this imposes important restrictions on software design.

The IRIS sensor mote from MEMSIC Inc.[57] is a good example of a low-cost

WSN. It has a 16MHz processor with 128 Kbytes of flash memory to store the

operating system and application software, 8 Kbytes of RAM for program data, and

512 Kbytes of serial low-speed memory to collect sensor samples. The operating

system platform is TinyOS, developed by UC Berkeley [48].

With this hardware configuration, program instructions and the operating system

4

Chapter 1. Introduction

must fit in 128 Kbytes as opposed to the 4 Gbytes of RAM available in a regular

desktop computer. There is no support in the language for dynamic linking, and no

support for function pointers. Also, some dynamic behaviors available in conven-

tional programming environments, such as virtual functions, are not available in a

sensor network platform. Similarly, memory for data is only 8 Kbytes, and there is

no support in the operating system for allocating memory dynamically.

1.2 A WSN Communication Example

To better illustrate the communication challenges in WSNs, consider a WSN appli-

cation that collects data from the environment and communicates it to the outside

world. In this application, some nodes gather data from the environment using the

sensors, and the collected data is sent to other nodes for export. We refer to nodes

gathering information as sources, and nodes collecting gathered information as sinks.

To send data from sources to sinks, each node collects and maintains information

about other nodes in the neighborhood, specifically a record of the number of suc-

cessful and failed communications with them and how far each node is from a sink.

The successful/failed values provide a quality measurement on the communication,

and this, along with how close each node is to a sink, is used to decide to which

neighbor to route gathered data.

The neighborhood information is maintained using a very simple communication

scheme. Each node periodically advertises its location to the network by sending

a beacon packet to all of its neighbors; the beacon contains information about its

quality to communicate with the neighbors and its distance to a sink. This simple

communication example can be used to demonstrate the challenges and trade-offs in

WSNs.

5

Chapter 1. Introduction

A higher frequency of beacon packets keeps the neighborhood information up-

dated, but at the same time may increase the number of packet collisions because

more packets are sent simultaneously per unit time. A lower frequency of beacon

packets may decrease packet collisions, but it may also increase the time to receive

new information about costs between neighbors because costs are calculated from

quality information, and a good quality value will take more time to show because

less packets are sent.

Sending more beacons when the network starts running or when the network

topology changes is preferable because stable quality values are calculated faster,

but the quality value obtained could be lower than expected because of more packet

collisions when trying to calculate the quality faster. On the other hand, sending

fewer beacons when quality values are stable can help to reduce energy usage, but

also makes it hard to quickly detect quality changes or node failures.

1.3 Optimizing WSN Communication

This dissertation describes an approach to optimizing WSN communication in failure-

prone environments using an agent-based model. This agent-based approach ad-

dresses the challenges described in Section 1.1 and the trade-offs described in the

communication example of Section 1.2.

1.3.1 Agent-based Approach

The approach to optimizing WSN communication proposed in this dissertation is

based on using agents residing in WSN nodes to execute network functions. Each

agent contains one or more parameters related to network communication that needs

to be optimized, for example the rate at which to send a beacon. When a network

6

Chapter 1. Introduction

function needs to be executed, the node selects an agent to perform that function,

which the agent executes based on its parameters. In addition, agents may move

between nodes or replicate on other nodes as part of executing this network func-

tionality. Finally, agents use their parameters to compete with other agents to survive

in the network. Agents with parameters that consistently perform better compared

to other agents survive, changing and optimizing network performance.

The first step to optimizing a WSN application with an agent-based approach

consists of identifying the parameters and function to be improved or optimized.

These parameters are then assigned to agents. For example, using the example in

Section 1.2, the beacon time parameter and beacon transmission function can be

assigned to an agent. The second step in this process is determining how and when

these agents are created, moved, and replicated in the system; for example, beacon

time agents may move to or replicate on other nodes when those nodes receive beacon

packets.

The final step in this process is to construct a game between agents that compares

how well they perform their assigned function based on their parameter values. The

structure of this game is specific to the parameter being optimized, but its outcome

may result in the destruction of either of the agents in the competition based on their

performance in the game. In our example, the beacon agent can be evaluated when

it is received at some receiving node. This competition can be, for example, with a

randomly selected agent already at the node, and could be based on the quality of

the information the new beacon contains and how quickly it arrived.

1.3.2 Evolutionary Games

Our agent-based approach comprises an evolutionary game as defined in [56]*p.10-

27. An evolutionary game consists of players, strategy sets, strategies, and payoffs.

7

Chapter 1. Introduction

It also assumes an infinite random-mixing population, asexual reproduction, and

symmetric and asymmetric pairwise contests.

In the agent-based system the dissertation describes, agents are the players of

the evolutionary game, strategy sets and strategies correspond to the network pa-

rameters being optimized and their specific values, and payoffs are defined by the

rules of the competitions between agents. Our system provides an infinite random-

mixing population over time through random agent creation, reproduction of agents,

and movement of agents between network nodes. The pairwise competition between

agents directly correspond to the competitions in evolutionary games. A more com-

plete discussion of this agent-based approach in the evolutionary game context is

provided in Chapter 3.

1.3.3 Micro-component Framework

The agent-based model and the evolutionary games are supported by a software

framework that we call the micro-component framework. Functions executed by

agents and the interactions for the evolutionary game require software support be-

cause agents execute their functions in several different ways, and the nodes must

dynamically execute strategies for agents while at the same time respecting a correct

execution according to the application requirements.

TinyOS does not have support for this dynamic behavior. It does not provide a

convenient mechanism to add and remove new implementations for agent functions or

new interaction rules for games between agents to improve the network. To address

this, Chapter 4 presents a micro-component framework supporting an agent-based

evolutionary game approach.

8

Chapter 1. Introduction

1.4 Thesis Statement

My thesis is that power consumption and node connectivity in WSNs in the presence

of failures can be improved by implementing routing protocols as evolutionary games.

To evaluate this thesis, I examine the performance of both evolutionary and non-

evolutionary variants of a wireless sensor network routing protocol in the presence of

node reboot faults. The performance of these protocols is evaluated based on their

ability to maintain communication with neighbors and on the amount of power they

consume over the course of a test.

The remainder of this dissertation describes the general approach to implementing

wireless sensor network protocols as agent-based evolutionary games, a framework

for implementing these protocols, a routing protocol with both evolutionary and

non-evolutionary variants implemented using this framework, and an evaluation of

the thesis stated above using these protocols.

1.5 Contributions

The major contributions of my dissertation are:

• An agent-based approach to optimizing routing protocols for wireless sensor

networks, where the behavior of the system is determined by the phenotypic

makeup of the population of agents in the system.

• An approach to optimizing the composition of the population of agents in the

system based on the use of biologically-inspired approaches, primarily evolu-

tionary games.

• A software framework for implementing wireless network protocols based on

9

Chapter 1. Introduction

this approach in the TinyOS software environment.

• The design and implementation of a network routing protocol for TinyOS using

this agent-based approach to create WSN applications.

• A simulation-based evaluation of the effectiveness of different approaches to

controlling agent creation, selection, and survival in the context of a network

routing protocol in simple and periodic faulty network configurations.

• A discussion with directions for future work using this approach.

1.6 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 summarizes the main

ideas from other research projects related to this research. Chapter 3 explains the

agent-based approach, and it relationship with evolutionary game theory. Chapter 4

describes the components of the micro-component framework to support the agent-

based design, and evolutionary games to evaluate the performance of the network.

Chapter 5 describes the agent-based implementation of a network protocol called

Evolutionary Collection Protocol (ECP). Chapter 6 study the structure of the game

in ECP and its general impact on WSN communication behavior. Chapter 7 then

compares the obtained game with various heuristic-based routing variants of ECP,

including a rule-based non-evolutionary game, to evaluate the thesis statement. Fi-

nally, Chapter 8 provides a summary of the dissertation and a discussion of future

work.

10

Chapter 2

Related Work

Extensive research has been done in WSNs on power management and fault toler-

ance. Many existing routing protocols and algorithms [73, 66, 58] attempt to satisfy

different application requirements, optimize energy usage, and improve fault toler-

ance, and this shows the importance of these elements when designing and optimizing

a communication system for WSNs. There is also some research on using agent-based

systems to optimize protocols and WSN operation.

This chapter describes such previous work. Section 2.1 describes the general fea-

tures of WSN communication protocols, focusing primarily on the CTP protocol to

which our agent-based routing protocol is most similar. Section 2.2 presents rout-

ing protocols for WSNs focusing primarily on fault tolerance. Section 2.3 describes

solutions for WSNs using agent-based approaches or inspired by biological systems.

Section 2.4 then describes previous research on evolutionary games related to rout-

ing protocols and WSNs. Finally, Section 2.5 describes general concepts related to

programming in WSNs, and Section 2.6 summarizes related work.

11

Chapter 2. Related Work

2.1 WSN Routing Protocols

Routing protocols for WSN have been extensively researched. Traditional routing

protocols have several shortcomings when applied to WSNs, mainly due to energy

constrained operation. For example, techniques such as flooding, in which nodes

broadcast received packets to the rest of nodes until a destination node is reached,

produce undesirable effects in WSNs such as implosion and overlap, with multiple

duplicated copies of data being delivered to the destination point [30, 2].

Major routing protocols available for WSNs are divided in several categories [73],

namely location-based, data-centric, hierarchical-based, mobility-based, QoS-based,

multipath-based, and heterogeneity-based. The example protocol we developed in

this research is a data-centric protocol based on the Colletion Tree Protocol (CTP)

provided by the TinyOS [48] operating system. In the remainder of this section we

provide an overview of the CTP protocol used as the reference protocol to implement

and test our agent-based approach using evolutionary games, and briefly discuss other

related WSN protocols.

2.1.1 Collection Tree Protocol

CTP [33] is a tree-based collection protocol where some nodes advertise themselves

as tree roots, and other nodes form routing trees towards the roots. Packets are sent

to any root, and a routing decision is made at each node by selecting the next hop

to the nearest root.

CTP assumes that the data-link layer provides four elements: a) an efficient

local broadcast address; b) synchronous acknowledgments for unicast packets; c)

a protocol dispatch field to support multiple higher-level protocols; and d) single

source and destination fields. Other assumptions are that a link quality estimator,

12

Chapter 2. Related Work

i.e. a measurement of the quality for wireless transmissions between each pair of

communicating nodes, is available for some number of nearby neighbor nodes. The

protocol does not guarantee 100% reliability.

Routes in CTP are generated using a routing gradient, a calculated value based

on the quality of the wireless link between each pair of nodes. The routing metric

is called ETX for expected transmissions. The ETX for one node is the sum of the

individual ETX for all links in the path between the node and the nearest root node.

The ETX for a root node is always 0.

A CTP network can have routing loops. They may occur when a node chooses

a new route with significantly higher ETX than the previous one, or in response

to losing connectivity with a candidate parent. A loop occurs when the new route

includes a node that was a descendant. CTP detects loops by including the source

ETX in the data packets when moving to the next hop. If a data packet comes from

a node with lower ETX, then a loop is detected and the node must request an update

of its routing tables.

Routing tables are updated when a node receives a beacon packet. ETX infor-

mation coming from neighbor nodes is used to change the routing table accordingly,

and then communicate any relevant changes to other nodes in the neighborhood.

CTP uses a variant of the Trickle algorithm [47] for beacon timing [32]. Routing

validation and failed nodes are detected with data packet acknowledgments, and by

relying on the mechanism to detect routing loops described above.

Our agent-based protocol inherited the described features available in CTP, but

we changed the conventional procedural implementation into an agent-based ap-

proach and added evolutionary behavior to test the approach in a dynamic and

faulty environment. Furthermore, we replaced the trickle algorithm with our agent-

based optimization approach, and failed nodes are detected using beacon packets

13

Chapter 2. Related Work

and timeouts, not data/ack packets.

2.1.2 Other Routing Protocols

WSNs can be used in a large number of different applications, and most of them

work with many hardware and software restrictions in the sensor devices and are

deployed in dynamic environments with unreliable communications. This has gener-

ated the creation of a vast set of routing protocols [73] to satisfy different application

requirements. In this section we briefly describe additional routing protocols that

are commonly used in WSN applications.

GEAR [83] is a location-based energy-efficient routing protocol to route queries

to specific regions of a sensor network. In this protocol, sensors need localization

hardware, for example a GPS unit, so they know their position. Furthermore, sensors

are aware of their residual energy, and also the residual energy and localization of

the neighbors. This protocol uses energy-aware heuristics based on geographical

information to select the route to send a packet towards its destination.

Directed diffusion [41, 42] is a data-centric routing protocol to disseminate and

process queries. This protocol has several key elements, namely data naming, inter-

ests and gradients, data propagation, and reinforcement. A sensing task is defined

by a list of attribute-value pairs. At the beginning of the routing process, the sink

specifies a low data rate for incoming events. Then, the sink can reinforce one par-

ticular sensor to send events with a higher rate using a smaller time interval, and

the reinforcement is also applied to the neighbor nodes receiving the message.

Rumor routing [14] is another data-centric routing protocol that makes a compro-

mise between query flooding and event flooding application schemes. The protocol

is based on the concept of an agent, which is a long-lived packet that traverses a

network and informs the sensors about events it has learned while traveling. The

14

Chapter 2. Related Work

agent travels for a certain number of hops and then dies. Each sensor and the agent

keep an event list with event-distance pairs to provide the actual distance in hops

to the corresponding event, and the agent synchronizes its event list with the visited

sensors.

LEACH [35, 36] the Low-Energy Adaptive Clustering Hierarchy routing protocol,

uses clusters to extend the life time of the network, and it also does aggregation of

data inside the network. In LEACH, clusters are created using localized coordination

and control to reduce the amount of data transmitted to the sink. The cluster head

is rotated based on its energy level to avoid battery depletion of individual devices.

Protocol operation is divided into rounds having two phases. First, a setup phase

creates the clusters, performs cluster head advertisement, and creates a transmission

schedule. Then, there is a steady-state phase for data aggregation, compression,

and transmission to the sink. LEACH uses single-hop routing where each node can

transmit directly to the cluster-head and the sink, and is not suitable for deployment

in large regions.

2.2 Fault tolerance in WSN Protocols

Fault tolerance in WSN protocols is a hot topic because of the inherent complexity

of the environment where the networks are deployed and the restrictions that nodes

have. In this section we describe theoretical and practical research projects proposed

for fault tolerance in WSNs to adapt to network conditions.

2.2.1 WEAR and SCORE

In [72], authors propose WEAR, a routing protocol for fault tolerance in WSNs

that considers four factors affecting the routing policy, namely the distance to the

15

Chapter 2. Related Work

destination, the energy level of the sensor, global location information, and local

hole information. To handle holes, large spaces without active sensors caused by

faulty sensors, they propose a size-oblivious hole identification and maintenance pro-

tocol. Complimentary to this protocol, [4] proposes a framework named SCORE that

provides basic pieces of information such as neighborhood information and node op-

erational state that are used by WEAR network components to base their actions

and promote protocol optimization.

The primary difference of this project with our approach is that they do not

address optimization for the timing of the actions, and they instead check for the

physical state of the nodes to distribute the load and deal with faults appropriately.

2.2.2 ENFAT-AODV

ENFAT-AODV [20] is a fault-tolerant routing protocol based on the AODV [67]

routing protocol. It uses a backup route to improve reliability for packet delivery

and keep the system running even under presence of failures such as link breaks and

node failures. Backup routes are used when the main route is not available, and this

improves throughput, reduces the delay to deliver packets, and reduces the number

of packets dropped in the network. This solution satisfies the trade-off between fault

tolerance and low transmission delay, but at the same time increases the load of

control packets to create the backup route.

2.2.3 Fault Management Architecture for WSNs

[6] proposes a fault management architecture for WSNs. This system partitions

the network into a virtual grid of cells to perform fault detection, execute recovery

actions locally with minimum energy consumption, and support scalability. The grid

16

Chapter 2. Related Work

architecture [82] detects faults in a distributed way and reports them across the cells.

A cell manager handles management tasks at individual cells, and coordinates

with a gateway node to detect faults and perform recovery inside the cell. The cells

combine to form groups, and each group promotes one of its cell managers to a group

manager. Group managers detect faulty cells and avoid future faults.

While this architecture can detect multiple and distributed faults in the network,

it has significant management overhead imposed by creation of the groups, the cell

manager, and gateway maintenance. In contrast, we chose a simpler fault detection

system that detects individual node failures to test our agent-based approach.

2.2.4 Dynamic hybrid fault-models

In [52, 53], the authors introduce the term dynamic hybrid fault models to add time

and covariate dependence to hybrid fault models, and make real-time predictions of

fault tolerance in WSNs. The authors propose a theoretical layered architecture to

create fault-tolerant sensor networks. In the approach, sensor nodes are players of

an evolutionary game, and they propose extensions to the classical failure models to

represent real-time and dynamic hybrid models.

Some of the theoretical ideas about fault tolerance handling proposed in this

work inspired the approach described in this dissertation. However, the approach

they describe is largely theoretical, and does not clearly define how strategies evolve

nor how population dynamics happen. Our approach, on the other hand, clearly

defines these features to make a concrete system that can be evaluated and tested.

17

Chapter 2. Related Work

2.3 Agent-based Systems in WSNs

There are currently research projects for WSNs using different agent-based ap-

proaches, and several use biological ideas because the way nature optimizes processes

has been been useful for solving engineering problems. In this section, we briefly de-

scribe the main features of a few projects in this area. An important difference

between our approach and all these projects is that they do not have the compe-

tition environment provided by the evolutionary games to compare strategies when

the network is operating.

2.3.1 BIONETS

BIONETS [17] is an agent-based bio-inspired architecture. It proposes mobile sensor-

enabled networks with self-organizing and self-optimizing services to enable operation

in low-cost pervasive environments. The approach is proposed in the context of the

communications requirements placed by pervasive communication environments on

low-cost sensor nodes.

In this approach, network services are modeled as living organisms. The goal of

the network is to optimize entire network services. The network is proposed as the

habitat where services move from device to device, and genetic information encodes

their behavior and goals. Services evolve and adapt to the environment constantly

and autonomously using what appears to be a basic genetic algorithm. In contrast,

we focus on optimizing parameters in individual services and use an evolutionary

game approach to parameter optimization.

18

Chapter 2. Related Work

2.3.2 BiSNET

BiSNET [11, 12, 10] is an agent-based bio-inspired sensor network architecture that

seeks to address issues in WSNs such as autonomy, adaptability, self-healing, and

simplicity. It is implemented as a middle-ware platform on top of TinyOS, where

agents follow biological principles such as decentralization, food gathering and stor-

age, and natural selection.

BiSNET uses a bee analogy to structure the system, where the platform corre-

sponds to a hive and agents to bees. Agents read sensor data, and discard or report it

to a base station using biological behaviors such as replication, death, and migration.

BisNET designs agent behavior based on virtual energy exchange—agents acquire

energy by sensing data, split energy with their children with they replicate, report

results when their energy is high, and die due to energy starvation when they cannot

balance energy gain and expenditure.

As a result of this biological design, BiSNET allows sensor nodes to autonomously

adapt their duty cycles for battery efficiency, to draw inference on potential envi-

ronmental changes from sensing activities of neighboring sensor nodes, to collec-

tively detect and eliminate false positives in sensor readings, and to be simple and

lightweight.

2.3.3 kOS

kOS [16] is an operating system designed to support the operation of distributed

biologically-inspired algorithms by defining biological agents which interact with their

neighbors via simple rules, and cooperate with a large number of individuals to

perform some complex global task. kOS provides a single-task run-to-completion

execution model designed to run on a cheap wallet-sized devices. This model is

19

Chapter 2. Related Work

simpler than the one we selected when using TinyOS because the target sensor devices

are larger than the devices typically used by TinyOS.

2.3.4 Agent-based architecture for fault tolerance in WSN

In [71], the authors propose an agent-based architecture for fault tolerance in WSNs

based on a federation of mobile agents that diagnose and repair the network. Agents

are classified as local, metropolitan, and global, to provide fault tolerance at node,

network, and functional levels. Agents play two roles, namely sniffers and correctors.

Sniffers observe the behavior of the network at different levels, and correctors repair

the network.

The authors state that interactions between agents are inspired by honey bee

dance language. An error database contains detailed information about errors, the

faults causing the errors, and the resulting failures. The database is present partially

at some nodes identified as cluster heads in a hierarchical structure of nodes that

define the system.

The system has a mechanism to capture the statistics of the network elements

in the form of attributes for fault detection. Later, a protocol announces the pres-

ence of faults to the relevant entities in order to initiate fault repair. The scope of

communication is set according to the severity of the fault.

This system is modeled mathematically to analyze the overhead imposed by the

fault tolerance architecture, and the authors concluded that the overhead generated

is need-based, leading to an attractive cost-benefit relation.

20

Chapter 2. Related Work

2.4 Evolutionary Approaches in WSN protocols

This section provides a brief description of other theoretical research using evolu-

tionary approaches to model and design routing protocols for WSNs.

2.4.1 Evolutionary congestion control protocol for WSN

The authors in [5] describe a theoretical approach to congestion control in WSNs

where they apply evolutionary game theory to non-cooperative networks containing

a large number of sensors. They show how the characteristics of the wireless channel

influences evolution and the evolutionarily stable strategy by defining two popula-

tions of connections using a TCP protocol implementation based on the technique

additive increase and multiplicative decrease (AIMD). The approach proposes an

iterative application of the Hawk and Dove classical game that uses the parame-

ters to increase and decrease the window size of the protocol, and they evaluate the

performance for throughput and congestion control for the selected strategies.

2.4.2 Evolution of Cooperation in Multi-class WSNs

In [23], the authors propose evolution of cooperation for reliable routing in a finite

large WSN with a static population of nodes that can be stationary or mobile.

They define multi-class network nodes as players in the context of an evolutionary

game motivated by the iterated prisoners dilemma game with strategies and fitness

functions.

The approach determines conditions under which spatially dispersed multi-class

WSNs exhibit tendencies to cooperate, and also proposes a localized distributed and

scalable algorithm called the Patient Grim Strategy that enforces cooperation in

21

Chapter 2. Related Work

WSNs. The solution focuses on packet forwarding with random static topologies;

they do not analyze network flow because of the complexity of the problem.

2.4.3 Routing Protocol with Hybrid Genetic Algorithm in

WSNs

The routing protocol described in [34] uses a genetic algorithm in the design of a high

performance multi-path routing protocol for WSNs to improve energy usage. The

algorithm has two stages, namely single-parent evolution and population evolution.

In single-parent evolution, only a single individual is evaluated, and the speed of

the evolution that produces a good individual is very fast; a global optimal path is

generated at the same time. For the second stage, population evolution is introduced

to improve the solution quality. Results show that their genetic operators avoid

premature convergence, balances energy consumption, and extends network lifetime.

2.5 Programming in WSN

[61] and [60] provide a reference to fundamental concepts for WSN programming.

The authors present a taxonomy for WSN applications that considers distributed

processing occurring inside the WSN and focuses on solutions that allow program-

mers to express communication and coordination among the nodes.

The taxonomy includes the following aspects of a WSN application: goal, interac-

tion pattern, mobility, space, and time. Goal refers to sense-only or sense-and-react

applications. Interaction patterns can be one-to-many, many-to-many, or many-to-

one on the communication between nodes. Mobility has to do with static nodes,

mobile nodes, or mobile sinks in the network topology. Space relates to global or

22

Chapter 2. Related Work

localized processing of information in the network. Finally, time aspects refer to

periodic execution of operations or event-triggered functions.

Besides the taxonomy for classifying WSNs applications, they also present a ref-

erence hardware and software architecture. The boundaries between programming

abstractions and the rest of the software are often unclear in WSN, mainly because

of the restricted resources, and application are usually intertwined with system-level

services.

[61] also classifies aspects and features required by the programming language

to implement WSN applications. It specifically describes aspects of the program-

ming paradigms, data access models, computation scope, and some components of

communication such as scope and addressing that can be considered from the pro-

gramming language perspective. Even though this publication appeared after we

selected the hardware and software platform for this dissertation, it provides a de-

tailed explanation and good support of our decision to use TinyOS as the selected

operating system, and many decisions about locality of the implemented solutions

are supported in the taxonomy.

2.6 Summary

In this chapter we described previous work about WSN communication protocols,

including the CTP protocol we used as the reference routing protocol to implement

our agent-based approach, and other routing protocols for WSNs with fault-tolerance

capabilities. We found that, in most cases the timing issues and real-time optimiza-

tions are not addressed in detail, or that systems implement complex schemes for

fault tolerance with high costs on resource usage for WSNs. We also described previ-

ous theoretical research addressing fault-tolerance problems in WSNs that suggests

biological ideas as the approach to improve WSN operation, and we considered some

23

Chapter 2. Related Work

of these ideas when designing our agent-based approach with evolutionary games.

We also described some agent-based and biologically-inspired projects, such as

BIONETS, BiSNET, and kOS. None of these consider evolutionary games as a mech-

anism to evolve agent strategies when network conditions change, and to evaluate

and optimized network operation. Finally, we presented previous theoretical research

applying evolutionary games to a routing protocol in WSNs, and also research about

concepts and challenges when creating software for WSNs.

24

Chapter 3

Agent-based WSNs Optimization

3.1 Overview

As discussed in Section 1.3, this dissertation describes an agent-based approach to

optimizing routing protocols for WSNs. Agents are virtual organisms living in the

network, and they represent parameters requiring optimization. Agents execute net-

work functions when they interact with other agents and with the environment ac-

cording to their parameter values.

Repeated agent interactions optimize the composition of the population, and

changes in the population optimize the network behavior. Agents interact in the

context of an evolutionary game, and the game provides measurements of perfor-

mance of the actions executed by the agents.

We selected an agent-base model because of its ability to cope with the dynamic

behavior [39] and irregular failure rates generally present in WSNs [64]. In our

model, agents are selected to execute specific network functions inside the nodes,

and performance optimization is done locally because agents are assigned to localized

25

Chapter 3. Agent-based WSNs Optimization

network functions. In addition, an agent-based approach naturally optimizes in a

given network locality. Agents move between nodes, and optimization decisions

at one node are automatically shared in the network neighborhood. Interactions

between agents result in an evolutionary game [56], as mentioned briefly in Chapter

1.

In the remainder of this chapter, we describe the proposed agent-based model in

more detail, including illustrative examples in the context of the routing example

described in Chapter 1. In addition, we fully describe the relationship between the

agent-based model and evolutionary games as defined in the literature.

3.2 Agent-Based Model

This section describes the components of the agent-based model, namely the agents

representing parameters to be optimized, the environment representing the network

where agents live, and the interactions between agents to execute the network opti-

mization process.

3.2.1 Process Overview

The agent-based model is designed to optimize power management and improve rout-

ing performance in WSNs. Every time a network operation involving some kind of

optimization is executed, agents participate in the operation to improve the process.

Participation of agents is as follows:

1. Initialization. Each network node has a pre-allocated memory space to store

a group of agents to execute/optimize network functions, termed the selection

room. When a node starts, a randomly generated set of agents is placed in the

26

Chapter 3. Agent-based WSNs Optimization

selection room to provide an initial population available to execute network

operations.

2. Selection. Before executing each network operation, the system randomly

selects an agent from the pool of available agents residing in the selection room,

and the selected agent is assigned to execute the operation. If the selection

room is empty, additional agents are randomly created as necessary.

3. Operation execution. The selected agent executes the operation. As part

of this operation, the agent may replicate or move to a different network node.

For example, an additional identical or modified replica of the agent can be

added to the selection room, the agent may send itself to a single remote node,

or may replicate by sending copies of itself to multiple remote nodes (e.g. by

broadcast).

4. Competition. After executing the operation, the agent, if it remains on the

local node, may enter a competition with another agent if another agent is also

involved in the network operation. The goal of the game is to evaluate how well

the agents performed their jobs under the rules defined in the game. Either or

both agents may win the game and survive this competition, but if an agent

loses this game, it is discarded.

5. Return. Any agents that remain on the node and survived any resulting

competition return to that node’s selection room, where they may later again

be selected to perform network operations.

The described process is executed repeatedly over time. Iterated agent com-

petition produces changes in the composition of the population of agents, and the

composition of the population optimizes the network parameters that optimize net-

work operation.

27

Chapter 3. Agent-based WSNs Optimization

3.2.2 The Agents

An agent encapsulates a set of parameters to execute a network function. A function

assigned to an agent is executed according to the value of its parameters. Parameters

of agents are similar to phenotypes of organisms in an ecological system. They are

the visible features or behaviors that interact with the environment and with other

organisms. In the context of a WSN, parameters are network values to be optimized

for a network function.

An agent is represented by an agent type and a set of parameters. For an individ-

ual agent, the type and parameters are constant during its life, but different agents

can have different parameter values. The agent type enables different parameter sets,

similar to the species in real world representing organisms with different phenotypes

[77]*p.16. Note that while there can be in general be multiple agent types, this

dissertation focuses on cases with only a single agent type.

3.2.3 The Environment

The environment comprises all the network nodes and the real environment where

the network is deployed. All variables in RAM memory are considered part of the

environment, except for the memory locations containing the agents.

This definition of the environment is convenient because it enables agents to

obtain useful information from network state variables. For example, information

from the real environment can be collected periodically using sensor devices. Data

collected from the sensors can be used by agents to respond to changes in the real

environment. Information can also be obtained from the environment in RAM mem-

ory, for example data about actions executed by agents such as the current sampling

rate of a sensor device, or the difference between two values read from a sensor can

28

Chapter 3. Agent-based WSNs Optimization

be used to adjust the time for sampling the sensor.

Statistics collected from some components of the node are also an important

source of information obtained from the environment. For example the number of

packets sent, received, or lost by the wireless transmitter can help adjust the timing

of transmissions.

3.2.4 Agent Interactions

Interactions are the relations between an agent and the environment, or between two

agents. Agent interactions modify the environment, and changes in the environment

can also change the composition of the population of agents. Interactions measure

the successfulness of the parameter values represented by the agents; a survivor agent

represents an instance of a successful parameter value that can be re-selected over

time because it was successful when executing a network function under the existing

environmental conditions. We consider three different types of agent interactions:

1. Selection. The system selects an agent from the existing population in the

selection room and assign it to execute a network function.

2. Creation. The system creates a new agent because there are no available

agents in the selection room, or an agent is replicated after another agent

executes a network function.

3. Competition. Two agents participate in a one-to-one competition to compare

their parameter values, and determine how well are they performing in the

network.

Interactions requiring selection of agents generally randomly select them from the

existing population, resulting in an evolutionary system where the composition of the

29

Chapter 3. Agent-based WSNs Optimization

population determines the behavior of the system. In addition, the node can also

select the agent preferentially by considering the influence of some environmental

variables. With preferential selection, picking an agent from the population is not

necessarily a random function; it can also be a function mapping a value of the

environment to a parameter value of the agent. However, if agent selection does

not consider the entire population of available agents and the composition of the

agent population does not impact system behavior, the resulting system cannot be

considered evolutionary.

Similar to selection, creation of agents can be random by selecting a random

value for each its parameters, or environmentally influenced. In the environmentally

influenced case, some parameters of the new agent are based on environmental con-

ditions instead of a random function. This approach can bias the population from

which agents are selected; if this biased creation in some way dominates the entire

population, the resulting system again may not be considered evolutionary.

Competitions are interactions requiring two agents. The details about the inter-

action are specific to the network function being implemented, but the goal in all

cases is to evaluate how well the agents are doing according to network requirements.

After a competition, one of the agents is declared the winner, where the winner agent

survives and the other agent dies. In some cases, a tie is also a possible result for

the game and both agents survive.

3.2.5 Illustrative Example

To illustrate our agent-based approach, consider the network process of keeping the

neighborhood information to decide the route for gathered data updated, as described

in Section 1.2. For this process, we want to optimize the frequency at which to send

beacon packets by adjusting the time between beacons. In this case, each agent

30

Chapter 3. Agent-based WSNs Optimization

contains a beacon time parameter, the interval between successive beacons. There

are two operations in this process which involve agents, the beacon send operation

and the beacon receive operation.

For the beacon send operation, the node selects an agent from the available agents

in the selection room, creating an agent with a random beacon time if the selection

room is empty. The selected agent then starts a timer to send the beacon. The length

of the timer is selected according to the strategy for beacon timing in the agent.

When the timer expires, the node transmits a beacon containing information about

the communication status of this node, and the selected agent is also transmitted

inside the beacon. Any node that receives the beacon will receive a replica of this

agent. At this point, the beacon send operation is completed at the node, no agents

remain, no competition occurs, no agents return the local selection room, and a new

beacon send operation can be started.

For the beacon receive operation, a complementary process is executed to evaluate

and monitor the incoming beacon packets. First, the node again selects an agent

from its selection room which listens for incoming beacons using a timeout of the

beacon time in this agent. When a beacon is received, this agent processes the

incoming beacon, updating neighborhood information appropriately. Because the

incoming beacon also contains an agent, the agent performing the receive operation

and the incoming agent conduct a competition based on the quality of the information

received and the speed at which it was sent to evaluate both agents. Agents that

survive this competition are placed in this node’s selection room, where they can

later be selected for both beacon send and receive operations.

31

Chapter 3. Agent-based WSNs Optimization

3.3 Evolutionary Games

Interactions between agents comprise an evolutionary game in the network that de-

termines the composition of the population of agents. In our model, we used evolu-

tionary games as defined in [56] and [77]:

”The players are individual organisms. Strategies are heritable phe-

notypes. A player’s strategy set is the set of all evolutionarily feasible

strategies. Payoffs in the evolutionary game are expressed in term of fit-

ness, where fitness is defined as the expected per capita growth rate for a

given strategy and ecological circumstance. The fitness of an individual

directly influences changes in the strategy’s frequency within the popula-

tion as that strategy is passed from generation to generation. Evolution,

then, has to do with the survival of a given strategy within a population

of individuals using potentially many different strategies.” [77]*p.16.

Evolutionary games provide a mechanism to measure the performance of the agents,

and also provide a simple but powerful tool to evaluate and optimize network be-

havior based on agent actions.

Following the notation in [77]*p.29-30, the dynamics of an evolutionary game with

ns types of players (species) and ny environmental resources is determined by the

number of players of each species, x, the strategies of these players, u, the resources

available to these players, y, and the fitness function of the strategies, H(u, x, y).

Note that the fitness function of the strategies, which corresponds directly to the

population dynamics of the system in the notation of [77], is partially determined

by the game rules that evaluate the relative fitness of individual agents’ strategies.

The rules of the game define the relative fitness of pairs of agents, but are usu-

ally considered part of the formal definition of an evolutionary game in the above

32

Chapter 3. Agent-based WSNs Optimization

notation.

In the remainder of this section, we describe how the elements of our agent-based

system correspond to the strategies and resources, the role of game rules that in

our system and evolutionary game theory, and the resulting fitness function and

population dynamics.

3.3.1 Strategies

Strategies in the evolutionary game setting are the parameters of the agents in our

agent-based model. A strategy represents a network parameter to be optimized.

Strategies are used by the community of agents to interact and select the best strategy

values.

Strategies are the equivalent of phenotypes in real organisms. They represent

visible features or behaviors of the organism. Strategies are fixed for an individual

agent during its life, but they evolve over time when individuals with winning strategy

values make progress in the population by replicating as a result of the interactions.

Using our example on Section 1.2, the beacon time parameter is a strategy of the

agents advertising a node to the neighborhood. Agents have different beacon times

and they compete according to some rules to survive the network.

3.3.2 Resources

A resource is any element of a node that is not an agent. Resources are an impor-

tant component of evolutionary game theory because they influence the selection and

creation processes described in Section 3.2.4. Resources are used by agents to mod-

ify the environment, and changes in the resources modify the population of agents.

33

Chapter 3. Agent-based WSNs Optimization

Considering again our beacon broadcasting example, the quality of the communi-

cation with a neighbor node is an environmental resource that can be changed by

agents, but at the same time the population could be affected by changes in the

communication quality.

3.3.3 Game Rules

An evolutionary game has an inner game and an outer game:

The inner game involves only ecological processes and can be consid-

ered as a classical game. For the inner game, players interact with others

and receive payoffs in accordance with their own and others’ strategies.

Evolution takes place in the outer game. It is the dynamical link, via

inheritance and fitness, whereby the players’ payoffs become translated

into changes in strategy frequencies [77]*p.17.

In our agent-based system, the rules of the game produce the inner game between

strategies that results in the destruction of agents of the population. The repeated

execution of this game with agents changes the composition of the entire population,

resulting in the overall evolutionary game between different strategies.

In our system, the individual games between strategies correspond to the inter-

actions between agents. The rules of these games produce pressure in the population

of agents according to the goals of the network. This pressure generates population

dynamics because some agents live and others die as a consequence of the interac-

tions.

Considering the example in Section 1.2 one more time, the rules for this game

define that an advertising agent survives if the link quality value it brings inside a

beacon is different from previous information received from the same node at some

34

Chapter 3. Agent-based WSNs Optimization

neighbor node, or if the information is not different but the beacon is not coming too

quickly. On the other side of the game, a monitoring agent located at a destination

node dies if the incoming quality value is different from a previous value because the

network is changing and the monitoring agent was going to wait a longer time for

the next beacon because it was not expecting a change in the quality.

3.3.4 Population Dynamics

As mentioned above, the available resources and game rules produce a fitness function

for strategies in the population, and this fitness function corresponds directly to the

population dynamics of the strategies. This fitness function determines the change

in the population of each strategy over time. When resources and game rules are

known, this fitness function can be explicitly defined, and applying it repeatedly to

an initial population simulates the population dynamics of the system.

In our system, the resources available in the network are dynamic, and not gen-

erally explicitly known at a given time; as a result, we cannot define an explicit

complete fitness function. Instead, we explicitly simulate individual games on agents

across the entire system, implicitly defining this fitness function.

Despite the lack of an explicit complete fitness function, analyzing the structure

of the function provides insight into the dynamics of the system. To do this, we use

the definition of fitness function as defined in [77]*p.40, where fitness is defined as

“the per-capita change in population density (the finite growth rate) from one time

period to the next, for discrete time periods.”

In the example from Section 1.2, the fitness function shows how the population

of different agents changes over time. Table 3.1 contains the functions comprising

the fitness function for this example. In all these functions, t represents the current

time, u represents the strategies of the agents, and y represents the environmental

35

Chapter 3. Agent-based WSNs Optimization

Variable Description
u, x, y Vectors of strategies, population of agents, and

other resources respectively, at time t.
e(u, x, y) Agents created during time interval [t,t+1]
v(u, x, y) Agents replicated by arriving at some neighbor

after beacon transmissions during time interval
[t,t+1]

k(u, x, y) Agents killed because of the game rules during
time interval [t,t+1]

r(u, x, y) Agents killed because of the system capac-
ity (i.e., system was full) during time interval
[t,t+1]

Table 3.1: Fitness Function Components for Advertising Agents

resources used in the game.

In this case, our population model for advertising agents at time t+1, as in

[77]*p.40, eq. 2.6, and is given by the expression:

x (t + 1) = x (t)[1 + H(u, x, y)]

where H(u, x, y) is the fitness function given by

H(u, x, y) = [[e(u, x, y) + v(u, x, y)]− [k(u, x, y) + r(u, x, y)]]/x (t)

This fitness function reflects the new or replicated agents with the terms e(u, x, y)

and v(u, x, y), and dead agents with k(u, x, y) and r(u, x, y) during the last time

interval. How the frequency of the strategies in the population changes over time

is shown with x(t + 1). Note that agents can die because of the game rules, and

because the maximum capacity of the node to host agents is reached.

36

Chapter 3. Agent-based WSNs Optimization

3.4 Summary

This dissertation proposes an agent-based approach to optimizing WSNs. A popu-

lation of virtual agents living in the nodes optimize network operation by playing

evolutionary games, and agents with the best strategies replicate over time.

The resulting population represents the best adapted agents according to the

game and environmental conditions of the network, and that population determines

the network behavior. Evolutionary games provide a mechanism to measure pop-

ulation dynamics, and consequently a measurement of the network performance.

The agent-based approach combined with evolutionary games produces an adaptive

system to improve performance and fault-tolerance locally at the nodes, and allow

optimization and adaptation of the network according to changes on operating con-

ditions.

37

Chapter 4

Implementing Agent-Based WSN

Software

In this chapter, we describe a component-based micro-protocol architecture designed

to build WSN applications that support the agent-based approach described in Chap-

ter 3. The micro-protocol architecture is based on ideas proposed in [15] of designing

and implementing network protocols using a set of fine-grained composable compo-

nents.

To build a WSN application, this architecture has a high-level abstraction called

a micro-protocol. A micro-protocol represents a network function, such as sending

or receiving a beacon packet in the example application described in Section 1.2.

A micro-protocol is constructed from one or more smaller units called actions. For

example, a micro-protocol to send a beacon packet might be composed of three

actions, namely pick a time to send the beacon, setup the beacon packet, and transmit

the beacon.

To implement micro-protocols, we constructed a micro-component framework

with fine-grained composable components. Simple micro-components define micro-

38

Chapter 4. Implementing Agent-Based WSN Software

protocol actions, while more complex micro-component types handle component

specialization for different types of agents and sequencing of actions in full micro-

protocols.

In the rest of this chapter, Section 4.1 explains the basic micro-protocol archi-

tecture, and Section 4.2 describes the micro-component framework for implementing

micro-protocols and actions. Section 4.3 follows with an example of execution a

micro-component-based implementation of a simple micro-protocol. Finally, Section

4.4 describes key details of the implementation of this software framework in TinyOS.

4.1 Micro-Protocol Architecture

Micro-protocols are sequences of actions executed to perform a specific network func-

tion. They may be invoked at any point in the system, and they are executed as

deferred procedure calls. Micro-protocols can be passed arguments; when network

functions are optimized using agents, an agent may be passed to the micro-protocol

for optimization purposes, for example.

We represent micro-protocols in this dissertation using conventional control flow

diagrams. Boxes in the flow are actions executed by agents, and arrows represent the

execution ordering. As an example, Figure 4.1 shows a micro-protocol implementing

the receive packet function for the Evolutionary Collection Protocol described in

more detail in Chapter 5.

The names inside the boxes in Figure 4.1 provide a basic description of the pur-

pose of each action. Rectangular boxes represent normal actions containing a se-

quence of instructions executed as an atomic block of code. Actions with a diamond

shape represent decisions to change the normal execution sequence inside the micro-

protocol. Cross-hatched boxes are actions that use an agent for optimization pur-

39

Chapter 4. Implementing Agent-Based WSN Software

Figure 4.1: Micro-protocol example

poses. Boxes with no pattern represent functions not assigned to any agent because

they are always executed as part of the micro-protocol, and they do not optimize

any network parameter.

Each WSN application generally requires several micro-protocols to implement a

complete system. These micro-protocols optimize one or more network parameters,

and the parameters are optimized by running the actions composing the correspond-

ing micro-protocols using appropriate agents.

We define two types of actions within micro-protocols:

• Simple actions, which require no optimization, and consequently do not use

an agent. For example, preparing a data packet for transmission requires in-

formation available in the node but no optimization.

• Virtual actions, which are actions executed by agents that optimize network

operation when executed using agents with different strategies. For example,

picking the time to send a beacon packet can be optimized by agents to improve

power management in the node. They allow different action implementations

to be selected at runtime based on the specific agent executing the action.

40

Chapter 4. Implementing Agent-Based WSN Software

4.2 Micro-component Framework

To implement the micro-protocol architecture, we created a micro-component soft-

ware framework that we describe in this section. A micro-component is a simple

event-driven execution element that can be composed with other micro-components

to implement complex, modular network services, including agent-based execution to

optimize system performance. Micro-components provide a simple run() interface

for external code to schedule their future execution.

The micro-component framework provides the abstractions required to optimize

a WSN application using the proposed agent-based approach. A block diagram of

the framework is shown in Figure 4.2.

Figure 4.2: Micro-component Framework Block Diagram

The micro-component framework addresses the hardware and software restric-

tions inherent to a WSN platform and the programming challenges mentioned in

Section 1.1.3. The framework uses a variety of techniques to address these chal-

41

Chapter 4. Implementing Agent-Based WSN Software

lenges, particularly by providing higher-level features than provided by the sensor

network OS, as well as new programming abstractions to support agent-based exe-

cution. For example, the micro-component framework supports virtual actions using

virtual micro-components, providing functionality similar to virtual functions in a

conventional object-oriented programming language.

This section describes the execution model and key design features of the micro-

component framework. This includes a description of the three types of micro-

components: simple micro-components to execute regular blocks of instructions and

to interact with slow hardware devices, virtual micro-components to allow for dy-

namic selection of the simple micro-components based on agent information, and

group micro-components to control the execution order of other micro-components.

4.2.1 Simple Micro-components

Simple micro-components implement straightforward code execution inside micro-

protocols. They provide actions containing sequences of instructions that can then

be composed using the virtual and group micro-components described later.

There are two types of simple micro-components: single (one-phase) and split-

phase (two-phase) micro-components. Single micro-components are executed atomi-

cally by calling the user-provided function run(). Note that as part of the execution

of this function, a single-phase micro-component may also request later execution of

other micro-components.

Split micro-components, in contrast, have one execution stage that is atomic

with respect to other micro-components and one that runs at a later time asyn-

chronously (e.g. from inside an interrupt handler). They are used mainly for in-

teracting with slow hardware devices, similar to the split-phase event abstraction

provided by TinyOS [48]. The first phase of a split-phase micro-component atomi-

42

Chapter 4. Implementing Agent-Based WSN Software

cally runs the user-provided run() function. The micro-component ties exectuion of

its second phase, which runs the user-provided runDone() function, to the firing of

a system event, for example an interrupt generated by a hardware device. Note that

this function may run in the middle of the execution of another micro-component,

and can schedule the later execution of another micro-component.

A split-phase component that sends a data packet wirelessly to a neighbor node,

for example, starts transmission when the first phase of the micro-component is

executed. It also ties its a second phase to the event associated with the hardware

interrupt at the end of the transmission. A different but useful split-phase event

occurs when a timer is fired to execute a timed action. The timer request is the first

phase, and the second phase is launched automatically when the timer expires to

execute the desired action.

4.2.2 Virtual Micro-components

Virtual micro-components provide micro-component functionality that is special-

ized by the agent executing the micro-component. In particular, virtual micro-

components include user-provided functions to select the agent to run the micro-

component, and to choose between one or more simple micro-components to execute

based on the agent selected. Virtual micro-components are used to implement virtual

actions from the micro-protocol architecture in the micro-component framework.

The structure used to select a micro-component implementation from an agent is

called the Virtual Action Structure (VAS). The VAS is a hierarchical structure with

information about an evolutionary game that integrates with the micro-component

framework. It provides a search mechanism to select simple micro-components dy-

namically, while the simple micro-components provide the actual executable code for

particular agent running in the virtual micro-component.

43

Chapter 4. Implementing Agent-Based WSN Software

Every agent in the micro-component framework has four values associated with it:

game, species, strategies, and strategy value, that specify the specific agent, strategy,

and parameter value of the agent. Each game has a unique id to differentiate itself

from other games running in the same application. Similarly, each agent is a member

of some species or type, allowing multiple agent types in a game, as discussed in

Chapter 3. Finally, the strategy and strategy value express the details of the network

parameters represented by the agent.

Each of these values correspond to four levels in the VAS hierarchy so that agent

execution can be specialized based on each these values. Figure 4.3 illustrates the

basic VAS structure.

Figure 4.3: Structure of the micro-component framework Virtual Action Structure
for selecting the micro-component to use based on the agent associated with the
micro-component. The lowest level of the tree contains the micro-component ID of
the appropriate micro-component to execute.

44

Chapter 4. Implementing Agent-Based WSN Software

4.2.3 Group Micro-components

Group micro-components aggregate and control the execution and sequencing of

other micro-components, and are used to implement micro-protocols in the micro-

component framework. A group micro-component contains a sequence of micro-

components. By default, these micro-components are executed sequentially. How-

ever, micro-components in a group micro-component can modify group execution or-

der by invoking a provided control flow function that sets the next micro-component

in the group to run. This allows group micro-components to implement complex

control flow between micro-components, including conditional execution and loops.

4.3 Micro-component Framework Example

To understand how the control flow of a micro-protocol works in this framework,

consider the example in Figure 4.4. This micro-protocol is a simplified version of the

receive process in the WSN communication example described in Section 1.2.

Figure 4.4: Micro-protocol Execution Example

When the wireless receiver of a node receives a packet from the network, the oper-

ating system fires an interrupt to process it, and the corresponding interrupt handler

schedules the execution of the group micro-component that implements the Beacon

Receive micro-protocol, passing the packet to process as an argument. This micro-

component then executes a sequence of micro-components to process this packet,

starting with the first micro-component, Receive Message in Figure 4.4. The Re-

45

Chapter 4. Implementing Agent-Based WSN Software

ceive Message micro-component executes packet format verifications and enqueues

the packet into the protocol queue for later processing.

Next, the Demultiplex Message micro-component in Figure 4.4 runs. It examines

the type of message received, data or beacon, and changes the control flow of the

group micro-component based on this value by making function calls to the group

micro-component that contains it.

Assume that the next micro-component executed is the Advertising Game vir-

tual micro-component. Before running this micro-component, the system calls a

user-provided function to obtain the location and information about the agents par-

ticipating in the game, and then consults the VAS to pick the appropriate micro-

component to run based on the agent. Note that this micro-component may change

the set of available agents in the node as part of its implementation of the advertis-

ing game. After running the correct micro-component, the system calls the Update

Neighbor micro-component to update the routing table with information coming in

the packet.

4.4 Framework Implementation Details

While the micro-component framework is conceptually relatively simple, implement-

ing it in the NesC language in TinyOS was non-trivial because of limitations of this

environment. This section describes key internal features and implementation details

of the micro-component framework. This includes how micro-components are imple-

mented in TinyOS, and details of how individual micro-components are scheduled to

handle load balancing and congestion control.

46

Chapter 4. Implementing Agent-Based WSN Software

4.4.1 Micro-component Implementation

All micro-components implement the NesC interface MicroComponent shown in Fig-

ure 4.5 for simple micro-components, with virtual and group micro-components hav-

ing extended versions of this interface for additional functionality. In addition, each

micro-component has a queue of requests for it to handle, and each micro-component

is associated with a schedulable TinyOS task.

interface MicroComponent {

command error_t run(position,element);

command id_t getMicroComponentId();

command type_t getMicroComponentType();

command id_t getRunningId(element);

command id_t getParentId();

command error_t enqueueTask(runStack, element);

command void setParentId(parentId);

command void changeParentDecision(runStack, decision);

}

Figure 4.5: MicroComponent Interface source code

In Figure 4.5, the function run(...) receives two parameters. Position is

used by group micro-components to indicate the initial micro-component to exe-

cute (see Section 4.2.3), and element is a parameter passed to the component.

This function is run by the TinyOS task associated with the component when it

is scheduled. The functions of the form getXXX() get information about the state

of the component, and the function enqueueTask(...) enqueues more elements

to be processed by the micro-component. The functions setParentId(...), and

changeParentDecision(...) enable explicit control flow changes when the micro-

component is executed inside a group micro-component.

47

Chapter 4. Implementing Agent-Based WSN Software

Split micro-components implement the same basic interface, but execute the

user provided functions in a slightly different way. Specifically, the function runDone

provided by the user is executed when the operating system signals the second-phase

of the event.

Virtual micro-components behave like virtual functions in languages such as

C++, but they inspect the strategies of the acting agents at run-time to select the

correct function according to the strategy value of the agents, as opposed to using

a Virtual Method Table. Virtual micro-components use the VirtualTrait interface

shown in Figure 4.6 to obtain information about the relevant agent at run-time. The

parameter element in all these functions contains the agent to execute the action,

and the functions getXXX(...) extract the required strategy values from the agent

to select the corresponding micro-component.

interface VirtualTrait{

event evo_game_unique_t getGameUniqueId(element);

event species_id_t getSpeciesId(element);

event trait_id_t getTraitId(element);

event trait_value_t getTraitValueId(element);

}

Figure 4.6: VirtualTrait Interface source code

Group micro-components extend the basic micro-component functionality

with the MicroComponentGroup interface shown in Figure 4.7. This interface pro-

vides a function add(...) to add elements to the group, and a few getXXX(...)

functions to retrieve information about the members.

48

Chapter 4. Implementing Agent-Based WSN Software

interface MicroComponentGroup{

command error_t add(microComponentId);

command group_data_t * getData();

command id_t getIdFromPosition(position);

command position_t getPositionFromId(microComponentId);

}

Figure 4.7: MicroComponentGroup Interface source code

4.4.2 Micro-component Scheduling and Execution

Micro-components are scheduled and executed using a modified version of the task

construct provided by TinyOS. The basic TinyOS task abstraction handles generic

scheduling, but enhancements to the task abstraction support additional framework

functionality.

TinyOS Task Model . The TinyOS execution model is based on deferred run-to-

completion tasks, split-phase operations, and interrupt handlers. Tasks are deferred

lightweight procedure calls, and they are the basic concurrency mechanism in TinyOS

[48]. Tasks do not receive parameters, and can be posted at any time. Posted tasks

are executed later, one at a time, by the operating system scheduler. A TinyOS

component can not post multiple copies of the same task to run, but an already

started task may re-post itself. Tasks are declared with the task keyword and posted

for later execution with the post keyword, as shown in the following example:

task void myTask() {

// task code

}

49

Chapter 4. Implementing Agent-Based WSN Software

event void Boot.booted() {

call Timer.startPeriodic(1024);

post myTask();

}

TinyOS Task Enhancements . The MicroComponentTask interface is our ex-

tended version of TinyOS tasks supporting micro-components. The extensions in-

clude:

• Support to receive a generic parameter when calling the task.

• Support to enqueue several requests to one task, each request with a possibly

different parameter.

• Extended support for split-phase events.

• Automatic re-posting of the task when there are additional elements in the

request queue.

• Automatic scheduling of the next task when the current one is running inside

a group micro-component.

• Support to change the normal control flow of a group micro-component from

user-provided code.

• Provision to release resources in case of errors if the task is running inside a

group micro-component.

• A back-off mechanism to deal with internal congestion problems when the

request queues are full.

50

Chapter 4. Implementing Agent-Based WSN Software

Figure 4.8 shows the two interfaces supporting the extended task features. The

Interface MicroComponentTask enables posting of extended tasks, and the inter-

face MicroComponentTaskEvents provides the slots for user-defined functionality

through five event functions. run() and runDone(...) implement the first and sec-

ond phase of the micro-components, respectively. For one-phase micro-components,

the runDone(...) function is executed before leaving the component, while for split-

phase micro-components the function is executed when the system fires the second

phase. The functions getElement(), setElement(...), and freeElement(...)

change of the generic parameter sent to the task.

interface MicroComponentTask{

event bool isRunning();

event void postTask();

}

interface MicroComponentTaskEvents{

command void postNextTask(error);

command stack_t * getRunStack();

event error_t run();

event void runDone(error, element);

event void setElement(element);

event void * getElement();

event void freeElement(element);

}

Figure 4.8: MicroComponentTask Interface source code

Micro-component Congestion Control . Micro-components can suffer con-

gestion or overload problems if many requests are posted to them at once. This

can happen when the queue of a slow micro-component is full and its predecessor

51

Chapter 4. Implementing Agent-Based WSN Software

micro-component is trying to post an additional request. For example, the micro-

component to transmit a wireless message is inherently slow, while the previous

micro-component that prepares a message for transmission is comparatively faster.

To deal with this situation, we implemented a back-off timing mechanism avail-

able at each micro-component. If a micro-component tries to post a request to one

that whose queue of requests is full, the current micro-component enters a timer

to delay the next post. At that timeout, the next task is re-posted. If the post

fails again, the process is repeated with an exponential back-off that multiplies the

previous timer length by two. This process is repeated until a maximum wait of

512 milliseconds is reached. After that, the micro-component keeps trying using the

same wait time value until a successful post happens.

4.5 Summary

The micro-protocol architecture explained in this chapter enables creation and opti-

mization of agent-based WSN applications. A WSN application is divided in several

network functions represented by micro-protocols. Each micro-protocol is composed

of a sequence of actions that can be optimized with the help of agents, and each

action is implemented with a micro-component. The micro-component framework

also described in this chapter supports the implementation of this architecture on

modern sensor network nodes running TinyOS.

52

Chapter 5

Evolutionary Collection Protocol

This chapter describes the Evolutionary Collection Protocol (ECP), a routing pro-

tocol for WSNs we designed to test our agent-based approach and implemented with

the micro-component framework. ECP is a collection protocol for WSNs. As de-

scribed in Section 2.1.1, a collection protocol takes information collected from the

physical world using sensor devices and relays the sensor readings towards a central

base station or server using multi-hop wireless communication [33].

ECP is an agent-based version of the Collection Tree Protocol (CTP) [28], a

protocol used to collect information in WSNs and send it towards one or more main

locations. It is a best-effort, multi-hop delivery protocol where some nodes advertise

themselves as root nodes, and the other nodes collect information and send it to

some root node. CTP is described in more detail in Chapter 2.

The rest of this chapter is organized as follows: Section 5.1 provides an overview

of the protocol. Section 5.2 describes the micro-protocols and actions of the routing

engine in ECP. Section 5.3 describes a simple example ECP executioun. Following

this, Section 5.4 describes the structure of the agents used to implement the routing

and Section 5.5 describes the agent interactions and structure of the evolutionary

53

Chapter 5. Evolutionary Collection Protocol

games in the protocol.

5.1 ECP Overview

ECP is a collection protocol for WSNs with features to improve power management

and node connectivity in the presence of faults. It does this using an adaptive system

for communicating and monitoring the network nodes built with the agent-based

approach described in this dissertation.

The protocol is composed of two parts, a routing engine and a forwarding en-

gine. The routing engine creates and updates the routing table for each node, and

periodically advertises connection information to the neighborhood to find a path

towards some root node. The forwarding engine sends data packets towards a root

node using the routes maintained by the routing engine.

We selected the routing engine to test the agent-based implementation using the

micro-protocol architecture because it has several interesting elements to optimize.

In addition, routing is challenging in a faulty environment. Because of this, this

chapter focuses on describing the routing engine of ECP.

5.1.1 Basic Features

ECP is a protocol used to collect information from the environment. Some nodes

sample data and send it to locations called root nodes that receive and summarize

the collected values in some way.

Routes to root nodes are created by sharing local information between neighbor

nodes, specifically the link quality between each pair of nodes. The link quality is

defined as the number of received packets divided by the total number of packets

54

Chapter 5. Evolutionary Collection Protocol

transmitted between two nodes during a short time period.

Nodes also share a cumulative value or cost to reach a root node called ETX, like

in CTP described in Chapter 2. The ETX for a root node is always zero, and the

ETX between two directly communicating neighbor nodes is a value derived from

their link quality. The cumulative ETX for a node B is the sum of the ETX from

B to its best neighbor A, i.e. the neighbor with smallest cumulative ETX, plus the

cumulative ETX of A to the root. ETX is used to make routing decisions for data

packets in the network.

5.1.2 ECP Enhancements

In the current implementation, most ECP enhancements over CTP focus on the rout-

ing engine. The new features aim to optimize the number beacons sent to minimize

power consumption and improve node connectivity in the presence of faults.

ECP optimizes the number of beacons sent with an adaptive beacon mechanism.

That mechanism works by assigning an agent to send the next beacon, with the agent

parameter controlling the time when the beacon is sent. In general, more beacons per

unit time are required when the link between two neighbor nodes is being calculated,

but the number of beacons can be reduced after the network link costs are already

calculated. The original CTP uses trickle-timers [47] with exponential increase as the

adaptation strategy. ECP relies on the game rules and the random selection of agents

to execute the advertising function and adapt to changes in network conditions.

ECP improves node connectivity by having agents to monitor connections with

neighbor nodes. ECP assign agents to monitor individual routing tables entries, and

the node advertising operations get partially synchronized when agents coming with

beacon packets and agents monitoring failures agree on the timing and the timeouts

of the process.

55

Chapter 5. Evolutionary Collection Protocol

5.2 ECP Routing Engine

The routing engine executes the advertising process in ECP. This module updates

the routing tables to find a path towards a root node. The engine is implemented

using the micro-protocol architecture, and is composed of three micro-protocols:

• Beacon Advertising. This micro-protocol periodically advertises a node to

the network using beacon packets with information about the cost (ETX) to

reach some root node.

• Beacon Receive. This micro-protocol is executed each time a beacon packet

is received. It updates the routing table with information in the beacon packet.

• Neighbor Check Fault. This micro-protocol periodically monitors connected

neighbors, waiting for beacons from the neighbors and detecting timeouts of

routes in the routing tables.

5.2.1 Beacon Advertising

The Beacon Advertising micro-protocol starts the advertising process at each node.

It is composed of the three actions shown in Figure 5.1.

Figure 5.1: ECP beacon advertising micro-protocol

The Beacon Timing action waits some time before sending the next beacon

packet. It is implemented with a virtual and split-phase micro-component exe-

cuted by an agent. The agent executing the action is located in a structure called

56

Chapter 5. Evolutionary Collection Protocol

ecp_mote_t. This structure contains information about the node and its location in

the network.

typedef struct {

state_t state;

statistics_t statistics;

shell_t playerShell;

} ecp_mote_t;

Figure 5.2: ECP Mote structure

Figure 5.2 shows the ecp_mote_t structure. The field state has information

about the node state used to fill the beacon packets. The field statistics contains

information about the cost of the best located neighbor, and this information is used

to advertise the node to other neighbors. The playerShell field contains the agent

preparing the next beacon packet.

The Beacon Setup and Message Transmit actions in Figure 5.1 are not subject to

optimization, and there is no agent involved in their execution. Beacon Setup is im-

plemented as a single micro-component to fill the beacon packet data structure, and

Message Transmit is implemented with a split-phase micro-component that actually

transmits the message using the wireless transmitter.

5.2.2 Beacon Receive

The Beacon Receive micro-protocol updates the routing table of the node every time a

beacon packet is received. A routing table in ECP is an array containing information

about directly-connected or 1-hop-distance neighbor nodes. The maximum table size

is 15 entries for the current implementation of the protocol. The information for each

entry is represented by the structure ecp_neighbor_t in Figure 5.3.

57

Chapter 5. Evolutionary Collection Protocol

typedef struct {

mote_id_t id;

state_t state;

time_info_t timeInfo;

statistics_t statistics;

shell_t playerShell;

} ecp_neighbor_t;

Figure 5.3: Routing table entry structure in ECP

The structure provides an id for each neighbor node, some bits with state in-

formation about the neighbor, a timeInfo timer to monitor the connection with the

neighbor, statistics with information to support agent decisions, and playerShell

to store the agent monitoring the corresponding neighbor node.

The Beacon Receive micro-protocol is shown in Figure 5.4. It is executed every

time a beacon packet is received from a new or current neighbor node with infor-

mation to update the routing table. The Filter Rules action executes sanity checks

for the received packet, and can also be used to implement filtering and firewalling

operations on received messages. Enqueue Message and Dequeue Message implement

conventional message queue processing to speed up the reception of packets at the

receiver. The Pick Message Type action demultiplexes the processing flow for mes-

sages. The Neighbor Update action inspects the routing table to add an entry if the

beacon is coming from a new neighbor node. None of these actions are associated

with agents for optimization.

The Advertising Game action evaluates the performance of the agents. It defines

the game between the agent coming in the beacon and the agent monitoring the

corresponding neighbor node in the routing table. This action defines how agents

survive or die, according to the specific rules of the game. Section 5.5.3 describes

the general structure of the game, and Chapters 6 and 7 describe different game rule

58

Chapter 5. Evolutionary Collection Protocol

Figure 5.4: ECP beacon receive micro-protocol

implementations and results for those games.

Finally, actions Update Neighbor and Update Mote update the routing table

entries and the state of the node according to the information inside the beacon

packet.

5.2.3 Neighbor Check Fault

The Neighbor Check Fault micro-protocol periodically checks for timeouts with

neighbors and disables the corresponding entries from the routing table when re-

quired. Figure 5.5 shows the micro-protocol components.

Figure 5.5: ECP check fault micro-protocol

The Check Fault Timing action sets a timer with the period of the check. The

current implementation of the protocol uses a fixed value of half the length of the

59

Chapter 5. Evolutionary Collection Protocol

smallest time for beacon advertising strategies for this timer. The Neighborhood

Clean action does the actual check and disables the neighbors with due timeouts.

After disabling a neighbor entry, the agent monitoring that entry is returned to the

selection room of the node.

5.3 ECP Execution Example

To understand the high-level processing of packets using the micro-protocol archi-

tecture in ECP, consider a basic test application that simply starts ECP running.

That application defines an EcpC component in the NesC language to start running

the protocol.

The steps executed by the EcpC component during the boot process of a sensor

node to start the protocol operation are:

1. Initialize the wireless transmitter.

2. Create an initial population of agents.

3. Initalize an empty routing table for the protocol.

4. Initialize protocol state variables.

5. Run the Beacon Advertising Micro-protocol.

6. Run the Neighbor Check Fault Micro-protocol.

After the Beacon Advertising and Neighbor Check Fault micro-protocols start

running, no other additional function calls are required to keep the routing engine

running; the automatic run features provided by the micro-component framework

periodically executes all the actions contained in the micro-protocols to update the

routing tables and check for connectivity.

60

Chapter 5. Evolutionary Collection Protocol

5.4 Agents in ECP

ECP uses one type of agent to optimize the routing engine processes. Agents of

the routing engine are called advertisers because they are in charge the advertising

operations of the node

5.4.1 Structure of Agents

Agents in ECP have a compact and efficient definition to keep the amount of memory

they use small. The current implementation of the protocol allocates a maximum

number of 100 agents per node with a total size per agent of 5 bytes. This value is

small enough to store on agent inside a beacon or data packet, and a fully occupied

node requires only 500 bytes for its population.

Advertisers agents have a data structure containing the following fields:

• Id: a numeric identifier for the type of agent; this field is 3 bits in size, and

provides the capability to extend the system with more types of agents in the

future.

• Reserved: a field for future use, this field is 5 bits size.

• Strategy set: a 32-bit array representing the strategy set of the agent. This

32-bit variable is split in several bit-fields to represent individual strategies.

5.4.2 Advertiser Strategies and Interactions

Advertisers optimize the routing engine. They also check for node connectivity by

monitoring the links with neighbors of the routing table. Advertisers have the fol-

lowing strategies:

61

Chapter 5. Evolutionary Collection Protocol

• Beacon Timing Value is the strategy defining how much time the agent

will wait before sending a beacon packet. The current implementation maps

fixed time intervals to a corresponding binary value for the strategy, with time

intervals ranging from 200 milliseconds to 5.3 minutes.

• Energy Saving Time Threshold is the strategy defining the randomization

to be applied to the beacon time value. This strategy helps to prevent collisions

of packets sent simultaneously. The current implementation assigns a range

between 10% to 80% of the beacon time value of the agent.

Advertisers participate in the following actions of the routing engine:

• Beacon Timing: The advertiser located at the advertising location of the

node generates the time to send the next beacon packet.

• Advertising game: The advertiser arriving at a node with a beacon packet

plays a game with the advertiser monitoring the neighbor to determine who

survive and who die.

• Update Neighbor: The advertiser arriving at a node updates the correspond-

ing entry of the routing table.

• Update Mote: The advertiser arriving at a node with a beacon packet updates

the node information.

5.5 Interactions in ECP

Agent interactions in ECP are defined according to the types of interactions de-

scribed for the agent-based approach in Chapter 3. This section describes general

characteristics of interactions in ECP, and later chapters describe specific interactions

implemented and evaluated in game variants.

62

Chapter 5. Evolutionary Collection Protocol

5.5.1 Agent Creation

Agent creation occurs every time a new agent or replica of an existing agent is

generated as a consequence of other interactions. It can also happen when there are

no available agents to execute a network function. A special case happens when a

node is booted and an initial population of agents is created to start node operations.

In all cases, the function used to generate the strategies of the new agent depends

on the rules defined for the specific game. The following is a description of the cases

when a new agent is created in ECP.

No available agents in the selection room. A new agent is generated when

one is requested to execute a network function, such as monitoring a routing table

entry or sending a beacon packet, but there are no available agents in the node to

execute the function. This case includes the generation of an initial population of

agents to start node operation, and according to the game rules. The specific function

used to generate the strategies of the new agent is game dependent, for example it

can be a function generating random values for the strategies.

Replication by wireless transmission. This is a natural replication mech-

anism in ECP, and it is possible because of the wireless communication available

between nodes. Every time a beacon packet is transmitted using broadcast com-

munication, the neighbor nodes in the range of transmission receive a copy of the

beacon, and consequently a replica of the agent contained inside the original packet.

Replication in place. In some cases, a game can define rules to create a new

agent following the selection of another agent from the existing population. We

present an example of this replication in Chapter 7. The specific function used to

generate the strategies of the new agent is again game dependent.

63

Chapter 5. Evolutionary Collection Protocol

5.5.2 Agent Selection

Agent selection in ECP happens before executing a micro-component which is subject

to optimization and requires an agent to execute the action. Examples are the

selection of an agent to send a beacon packet, or the selection of an agent to monitor

an entry of the routing table. Selection criteria may vary, for example, selecting an

agent randomly from the existing population, or using some criteria to preferentially

select an agent from the existing population. The specific selection process used is

also game dependent.

5.5.3 Agent Competitions

Agent competitions in ECP enable evaluation of how well different agent strategies

are doing. Agent competitions have specific definitions depending on the game imple-

mented. In the ECP routing engine, the advertising game requires two parameters,

namely the time interval between consecutive beacon packets sent from one node,

and the link quality between two communicating nodes.

We divide the time between successive beacon packets into two time intervals, the

deny (D) and the accept (A) interval. These intervals classify how fast or slow the

packets are coming from the source node. The deny interval represents a period in

which beacons may be arriving too quickly. The accept interval represents a period

in which the node desires new information from the neighbor. Figure 5.6 contains a

representation of the timing parameters used in the games.

Agent competitions also consider how fresh (F) or stale (S) the link quality of an

update between two nodes is by defining a minimum threshold value for the change

in this link quality compared to previous information collected for the communicat-

ing nodes. If the link quality changes more than the threshold, the information is

64

Chapter 5. Evolutionary Collection Protocol

Figure 5.6: Beacon Time Parameters of ECP Games

considered fresh, but if the change in link quality is smaller than the threshold, the

incoming information is considered stale.

ECP competition rules state which agents survive a competition considering the

combinations of Deny/Accept interval and Fresh/Stale information. For each of the

parameter combinations shown in Table 5.1, we have three possible kill actions for

the agents participating in the game, namely kill the agent already existing (E) in the

neighbor node receiving a beacon, kill the agent incoming (I) into the neighbor node,

and kill none (N) of the agents by returning them to the selection room. Chapter 6

describes the specific values for the competition rules we evaluated.

Fresh Stale
Accept FA SA
Deny FD SD

Table 5.1: Parameters for Advertising Game in ECP

We identified the games by the value of the two parameters and by their kill

rules, for example SA:N means if the beacon comes with Stale information during

the Accept time interval, kill None of the agents. We use this notation in Chapters

6 and 7 to provide an easier way to identify the games.

65

Chapter 5. Evolutionary Collection Protocol

5.6 Summary

This chapter presented ECP, a collection protocol for WSNs implemented using

the agent-based approach described in Chapter 3. ECP inherited its main features

from CTP, another network protocol designed for WSNs that is part of the TinyOS

operating system. ECP includes enhancements to improve power management and

node connectivity in the presence of faults using an agent-based approach supported

by evolutionary games.

ECP is composed of a routing engine to create the network communication paths,

and a forwarding engine to send the data collected inside the network towards main

locations or root nodes. We selected the routing engine to implement and test our

agent-based approach.

ECP uses advertiser agents to optimize the routing engine. The game interactions

in ECP define operations for creation, selection, and competition between agents that

evaluate the performance of different strategies.

66

Chapter 6

ECP Game Structure

This chapter examines the behavior of an evolutionary version of the game structure

and rules in the ECP routing engine described in Chapter 5. First, we study a

set of basic games to understand the impact of different rules on the behavior of

ECP games. This evaluation focuses on power consumption and node connectivity

in the presence of failures. We tested the basic games and analyzed their behavior

running primarily in faulty environments; results for the behavior of these games in

failure-free environments are presented in Appendix A.

Our analysis of these results identifies a small subset of rules that are viable for

ECP as well as minor flaw in the design of the basic setup of the original game. Based

on this, we study an improved game structure, the aligned games, and evaluate the

remaining subset of rules in the context of this game to find the rules most appropriate

for ECP in our test environment.

In the remainder of this chapter, Section 6.1 explain the methodology we used to

design the tests and Sections 6.2 and 6.3 follow with a description of the basic games

and the results of their evaluation. Sections 6.4 and 6.5 then describe the aligned

games and the results of our evaluation of these games. Section 6.6 summarizes our

67

Chapter 6. ECP Game Structure

results.

6.1 Methodology

This section describes the methodology used to evaluate ECP games. The ECP

application we created to test the games was executed in a simulated environment

covering multiple game configurations, a network topology, and environmental con-

ditions.

6.1.1 Evaluation Metrics

We considered two metrics to measure power consumption and node connectivity in

the presence of faults:

• Total number of beacons sent. We use the total number of beacons sent for

for an entire simulation to evaluate power consumption of a game, as packet

transmission is extremely costly in WSNs. Lower values correspond to im-

proved power consumption.

• Number of timeouts. We use how many times an entry of the routing table

timed out to measure node connectivity. Lower values correspond to improved

connectivity.

In addition, we also collected the average beacon time and population dynamics

of the agents for analysis purposes. Examining the average beacon time per node

allows us to analyze how beacon time adapts to changes in network conditions. The

population dynamics show how the different strategies make progress over time for

different game rules and network conditions.

68

Chapter 6. ECP Game Structure

To measure statistical significance of the results we used one-way Analysis of

Variance (ANOVA). We compared when different games behave statistically simi-

larly; our null hypothesis is that the behavior of the games is the same, meaning that

changing the rules of the games make no difference in the results. We reject the null

hypothesis based on a 95% confidence interval (p ≤ 0.05).

6.1.2 Network Scenarios

We considered several network scenarios for the test application. Two elements make

up the scenarios, the network topology and the environmental conditions.

• Network topology defines the number of nodes in the network and their

spatial distribution.

• Environmental conditions specifies the network parameters, particularly

relating to communication and node failures.

We defined a network topology with 9 nodes distributed in a 3x3 mesh and 4

meters between neighbor nodes to test our approach. In addition to the network

topology, we selected three environmental conditions in which to run the tests:

• Failure-free environment, an environment with no faults in the network.

• Simple-fault environment, an environment with two node crash/reboot

faults, each at different locations of the network and at different times.

• Periodic-fault environment, an environment with a node crash/reboot fault

at the center node in the mesh every 10 minutes.

69

Chapter 6. ECP Game Structure

The failure-free environment provided an initial reference environment to test and

compare all the games, and results for the failure-free environment are presented for

reference in Appendix A. This chapter focuses on the faulty environments because

our thesis is specifically related to network performance in the presence of faults.

6.1.3 Simulation Configuration

Tests were run using the TinyOS Simulator (TOSSIM) [49] for TinyOS 2.1. We

simulated each game/environment for a 180 minute simulation 50 times, with a new

random number seed for each simulation and node for each run. We use full logs of

the events in the run to collect data for evaluation and analysis.

The wireless environment for simulation was defined using the features available

in TOSSIM. Table 6.1 shows the values required to define the channel and the radio.

Channel parameters define the gain at which other nodes receive a signal when a node

transmits. Radio parameters produce variations in communication. The channel

model is based on the Log-Normal Shadowing Path Loss Model and the parameters

are Path Loss Exponent, Shadowing Standard Deviation, DO and PL(D0). Radio

parameters are Noise Floor, White Gaussian Noise, S11, S12, S21, S22. The last four

values are hardware specific to the Micaz hardware platform used for the tests.

Topology Environment definition Asymmetry Level
(channel params) (radio params)

Mesh Path Loss Exp=4.7 Noise Floor=-105.0
Shadowing Std Dev=3.2 S11=0, S12=-1,

D0=1.0, PLD0=55.4 S21=-1, S22=0
WGN=4

Table 6.1: Wireless Environment Setup for Simulation

70

Chapter 6. ECP Game Structure

6.2 Basic Game Description

The basic games are a fully evolutionary approach to optimizing the routing engine of

ECP. These games aim to improve power consumption and node connectivity in the

presence of failures by adjusting the time between beacon packets, and monitoring

the communication between neighbor nodes. To adjust the timing of beacon packets,

each node advertises periodically some information to reach a root node, and also

exchanges information about the link quality with all its neighbors.

The basic games create and update the routing tables for all the network nodes

using a population of agents that interact using the game rules defined later in this

section, and the two parameters described in Section 5.5.3:

• Beacon Time Interval: the total wait time before sending the next beacon.

• Accept Interval Size: the size of the accept interval. This value is given as

a percentage of the beacon time interval.

The rest of this section describes agent creation, selection, and competition for

basic games.

6.2.1 Agent Creation and Selection

The creation of agents in basic games is done by randomly assigning values to the

strategies of new agents. When a node starts running, an initial random population

of agents is generated. After that, new agents are created randomly if there are no

agents available in the population.

The selection process of agents from the selection room to execute a network

function is also random. When a node needs to send a beacon packet, it selects an

71

Chapter 6. ECP Game Structure

agent randomly, and the time to send the beacon is set according to the beacon time

strategy of the selected agent. A similar process is executed to assign agents for

monitoring incoming beacon packets in the routing table.

6.2.2 Agent Competitions

Competitions occur at the receiver node when a beacon packet is received. The

agent arriving with the beacon and the agent monitoring the incoming beacon play

the game. The rules for the competition are defined in terms of the timing of the

receiver agent, and the change in the quality of the link between the nodes, as

explained in Section 5.5.3.

We defined nine sets of rules for basic games that consider different options for the

survival of the agents. We defined a fixed rule of kill incoming (I) for the Stale/Deny

(SD) combination of parameters and a fixed rule of kill none (N) for the combination

Fresh/Accept for all basic games.

Game Stale/Accept Fresh/Deny
B/SA:N/FD:E Kill None Kill Existing
B/SA:I/FD:E Kill Incoming Kill Existing
B/SA:E/FD:E Kill Existing Kill Existing
B/SA:N/FD:I Kill None Kill Incoming
B/SA:I/FD:I Kill Incoming Kill Incoming
B/SA:E/FD:I Kill Existing Kill Incoming
B/SA:N/FD:N Kill None Kill None
B/SA:I/FD:N Kill Incoming Kill None
B/SA:E/FD:N Kill Existing Kill None

Table 6.2: ECP Basic Games Rules

Table 6.2 presents the rule variants we evaluated. We used the same notation

explained in Section 5.5.3 to identify the games, for example the name B/SA:N/FD:E

72

Chapter 6. ECP Game Structure

represents the Basic game where the Stale/Accept rule is Kill None, and the rule

for Fresh/Deny is Kill Existing. The first row of the table defines the game rules

according to ECP parameters excluding the parameter values we assigned a fixed

rule. The internal table entries show the actual rule applied to the agents.

6.3 Basic Game Results

This section presents the results of the basic games in the simple-fault environment.

We discuss the results based one-way analysis of variance, and we also analyze the

network behavior and how agent interactions produce it. Appendix A includes ad-

ditional data on the behavior of the basic games in the failure-free environment.

6.3.1 Results

The results for the simple-fault environment are presented in Table 6.3. This ta-

ble shows the average total number of beacon packets sent during a simulation for

each basic game, and the total number of timeouts detected according to the agents

monitoring the routing tables.

The number of timeouts for all the basic games is high, about 2 timeouts per

minute for the best case. This problem is not well addressed in these games, because

their is no clear mechanism defined to synchronize the timing of the agents at both

sides of the connection, and this generates high rates of timeouts.

ANOVA results over the nine basic games show that the games are not the

same either for the number of beacons sent (p=0.0000) or the number of timeouts

(p=0.00000). We then discarded the games that never kill an agent for Stale/Accept

(B/SA:N/FD:*) because they show a high number of beacons sent and high number

73

Chapter 6. ECP Game Structure

Game Beacons Sent Timeouts
(Avg ± StdDev) (Avg ± StdDev)

B/SA:N/FD:E 13418 ± 19084 4168 ± 4462
B/SA:I/FD:E 510 ± 59 336 ± 47
B/SA:E/FD:E 513 ± 57 332 ± 47
B/SA:N/FD:I 18422 ± 21909 4655 ± 4588
B/SA:I/FD:I 518 ± 35 339 ± 43
B/SA:E/FD:I 517 ± 36 336 ± 47
B/SA:N/FD:N 7051 ± 3294 1303 ± 723
B/SA:I/FD:N 604 ± 142 319 ± 45
B/SA:E/FD:N 601 ± 172 321 ± 53

Table 6.3: Basic Game Results - Simple-fault Environment

of timeouts.

We then applied ANOVA to the six remaining games, namely B/SA:I/FD:* and

B/SA:E/FD:*, that kill some agent in Stale/Accept. These games are also different

for the number of beacons sent (p=0.00000), but we cannot reject the null hypothesis

that the games are identical for the number of timeouts (p=0.17050).

Next, we compared these six games in pairs, specifically games differing on the

agent they kill for Stale/Accept (for example, B/SA:I/FD:E with B/SA:E/FD:E). In

all cases, we could not reject the null hypothesis for beacons sent (p ≥ 0.76258) and

number of timeouts (p ≥ 0.69159). Based on this, we chose to kept one game of each

pair, the three games killing the Incoming agent for Stale/Accept (B/SA:I/FD:*).

6.3.2 Analysis

Results for basic games running in the simple-fault environment can be better un-

derstood when we consider the population dynamics produced by the interactions of

the agents. Figure 6.1 shows the average population dynamics generated by a game

74

Chapter 6. ECP Game Structure

not killing any agent for Stale/Accept (B/SA:N/FD:E) and a game killing the In-

coming agent (B/SA:I/FD:E). These two plots are representative of the population

dynamics found in basic games.

Figure 6.1: Basic Game Population Dynamics - Faulty Environment

From Figure 6.1 (a) we can see the population dynamics for the game not killing

any agent is not stable between runs because several different strategies evolve in

different runs, most of them with small beacon time values. In practice, not killing

any agent with Stale/Accept favors agents with small beacon times, because there

is no penalty for sending quickly. Such strategies reproduce very quickly, and slower

agents are killed while faster agents replicate and populate the node.

Figure 6.1 (b) shows a game killing the Incoming agent. In this case, the pop-

ulation dynamics are stable between runs because the game penalizes fast agents

bringing stale information. Fast strategies make progress at the beginning of the

simulation when setting up the routing tables with fresh information. After that,

they start being killed by the slower agents that make progress if the network condi-

tions stay the same. They can also make progress again if network conditions change

like in the faults shown in the Figure 6.1 (b).

Figure 6.2 shows the behavior for average beacon time. After the first crash at

75

Chapter 6. ECP Game Structure

minute 45, the beacon time decreases a few minutes after the event. In this case, the

crashed node is not in a central position in the network, so fast agents coming in the

replacement node take some time to spread over the network. For the second crash

at minute 90, the reaction is faster. This happens because the node is at a central

position in the network, and fast agents in the replacement node have more options

to spread and update the network quickly.

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 B
ea

co
n

T
im

e
(s

ec
s)

Simulation Time (min)

Average Beacon Time - Basic Games
Parameters: topoMnode9dist4envFasymN, fault1.

B/SA:N/FD:E
B/SA:I/FD:E

Figure 6.2: Average Beacon Time for B/SA:N/FD:E and B/SA:I/FD:E - Simple-
fault Environment

6.4 Aligned Game Description

We designed the aligned games to address the connectivity issues found in basic

games, specifically to reduce the number of timeouts when monitoring neighbor

nodes. Aligned games have similar components to the basic games, namely random

creation and selection, the same strategies with deny and accept intervals, and the

fresh/stale parameter to evaluate changes in the link quality between nodes. How-

ever they modify the rules to attempt to synchronize agent actions and to reduce the

number of timeouts in the routing tables.

76

Chapter 6. ECP Game Structure

Changes compared to the basic game. The aligned game examines how long

an agent waited at the sender before transmitting the beacon, instead of simply

considering when the beacon arrived at the receiver as in the basic games. This

process also attempts to removes random timing introduced by the network from the

game’s comparison. It also favors agents when both the sender and receiver agents

agree on the appropriate beacon time.

Figure 6.3: Aligned Game Beacon Time Strategy for ECP

Compared to the basic games, the aligned games have three different time inter-

vals, deny, accept, and timeout. When an incoming beacon arrives, it is placed into

one of these intervals by using the beacon time in the arriving beacon as an offset

from time 0 in the receiving beacon. As in the basic game, beacons sent very quickly

are placed into the deny interval and beacons sent less quickly are placed into the

accept interval. Beacons that were sent very slowly, however, are placed into a new

timeout interval.

Rules in the aligned games. For the aligned games, we considered the three

remaining basic games from Section 6.3, those that killing the Incoming agent during

the Stale/Accept interval, as shown on Table 6.4. We also added fixed rules for the

timeout interval. In particular, Stale/Timeout always kills the incoming agent and

Fresh/Timeout always kills the existing agent.

77

Chapter 6. ECP Game Structure

Game Stale/Accept Fresh/Deny
A/SA:I/FD:E Kill Incoming Kill Existing
A/SA:I/FD:I Kill Incoming Kill Incoming
A/SA:I/FD:N Kill Incoming Kill None

Table 6.4: ECP Aligned Games Rules

6.5 Aligned Game Results

6.5.1 Results

The results for the aligned game running in a faulty environment are shown in Tables

6.5 and 6.6 for simple-fault and periodic-fault environments respectively. ANOVA

tests for these three games show that they are statistically different (p=0.00000) for

the number of beacons sent and the number of timeouts. Comparing the games in

pairs, the game that does not kill any agent for Fresh/Deny (A/SA:I/FD:N) is differ-

ent (p=0.0000) from the other two in the number of beacons sent and the timeouts.

However, we can not reject the null hypothesis (p ≥ 0.45509) when comparing the

games that kill either agent for Fresh/Deny (A/SA:I/FD:I and A/SA:I/FD:E).

From the table in terms of power, we can also see the game not killing any agent

for Fresh/Deny generated between 35% and 40% less packets than the other two

games that kill some of the agents, but there are more packets sent with the aligned

games when compared with the basic games in Section 6.3.

Node connectivity improves in terms of the number of timeouts in the game not

killing any agent for Fresh/Deny (A/SA:I/FD:N). It is about 35% fewer timeouts

than basic games. The game not killing agents for Fresh/Deny also generated 37%

less timeouts than the other tested aligned games.

78

Chapter 6. ECP Game Structure

Game Beacons Sent Timeouts
(Avg ± StdDev) (Avg ± StdDev)

A/SA:I/FD:E 1071 ± 92 251 ± 33
A/SA:I/FD:I 1068 ± 62 256 ± 30
A/SA:I/FD:N 785 ± 83 212 ± 25

B/SA:I/FD:E 510 ± 59 336 ± 47
B/SA:I/FD:I 518 ± 35 339 ± 43
B/SA:I/FD:N 604 ± 142 319 ± 45

Table 6.5: Aligned Game Results - Simple-fault Environment

Game Beacons Sent Timeouts
(Avg ± StdDev) (Avg ± StdDev)

A/SA:I/FD:E 1162 ± 66 489 ± 47
A/SA:I/FD:I 1160 ± 75 491 ± 49
A/SA:I/FD:N 700 ± 63 310 ± 42

Table 6.6: Aligned Game Results - Periodic-fault Environment

6.5.2 Analysis

Figure 6.4 shows the population dynamics for game A/SA:I/FD:E and A/SA:I/FD:N

running in the simple-fault environment. Figure 6.4 (b) shows that the game that

does not kill agents bringing fresh information (A/SA:I/FD:N) favors faster changes

in link quality, and the slow agents make progress faster after link qualities have been

updated. This produces larger beacon times, and results in a population with larger

beacon times compared to the other aligned games, such as the population dynamics

shown in Figure 6.4 (a) for game A/SA:I/FD:E.

The population dynamics for the game killing no agents for Fresh/Deny (game

A/SA:I/FD:N) in an environment with periodic faults, as shown in Figure 6.5 are

similar. The fast agents make progress after node reboots for a short time, but the

slow agents dominate after that.

79

Chapter 6. ECP Game Structure

Figure 6.4: Aligned Game Population Dynamics - Simple-fault Environment

Figure 6.5: Aligned Game Population Dynamics - Periodic-fault Environment

The described population dynamics produces average beacon times shown in

Figures 6.6 and 6.7 for simple-fault and periodic-fault environments, respectively.

Overall, the aligned game that does not kill any agent that brings fresh infor-

mation (A/SA:I/FD:N) has a larger population of agents containing longer beacon

times, but retains a smaller population of agents with shorter beacon times to update

link quality during network changes.

80

Chapter 6. ECP Game Structure

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 B
ea

co
n

T
im

e
(s

ec
s)

Simulation Time (min)

Average Beacon Time - Aligned Games
Parameters: topoMnode9dist4envFasymN, fault1.

A/SA:I/FD:E
A/SA:I/FD:I

A/SA:I/FD:N

Figure 6.6: Average Beacon Time for Aligned Games - Simple-fault Environment

6.6 Summary

This chapter evaluated the performance of different variants of an evolutionary game

that optimizes beacon transmission time in ECP. The results show that different

game rules can result in dramatically different routing protocol behavior, including

ones that behave very poorly and others that correctly control beacon transmission

speeds in the presense of faults to maintain connectivity and minimize power con-

sumption. In addition, our results demonstrate the importance of taking into account

asynchrony introduced by the network in game design, and that games that do not

penalize overly aggressive beacon transmission behave poorly.

81

Chapter 6. ECP Game Structure

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 B
ea

co
n

T
im

e
(s

ec
s)

Simulation Time (min)

Average Beacon Time - Aligned Games
Parameters: topoMnode9dist4envFasymN, fault.

A/SA:I/FD:E
A/SA:I/FD:I

A/SA:I/FD:N

Figure 6.7: Average Beacon Time for Aligned Games - Periodic-fault Environment

82

Chapter 7

ECP Rule-based Game

Comparison

In this chapter we compare the best evolutionary game from Chapter 6 with a game

that use heuristics to set beacon time and detect timeouts. In addition, we also

compare these games with games that use hybrid approaches that attempt to use

designed heuristics to bias the behavior of evolutionary approaches. Together, these

approaches allow us to evaluate the thesis statement put forth in Chapter 1.

In the remainder of this chapter, Section 7.1 presents an ECP variant that uses a

fixed rule that examines network state to generate the specific agent to use to control

beacon sending and timeout detection. While this approach is implemented in the

context of ECP and our agent-based approach, it is a non-evolutionary approach

because it does not use the existing population when selecting an agent. We then

compare the performance of this rule-based approach with the best evolutionary game

from Chapter 6. Section 7.2 then presents hybrid games that attempt to combine the

advantages of the rule-based approach with those of the evolutionary approach by

biasing the creation or selection of agents from the overall population, and present

83

Chapter 7. ECP Rule-based Game Comparison

the results of these games. Finally, Section 7.3 summarizes the results from this

chapter with a specific focus on the overall thesis of the dissertation.

7.1 A Rule-based ECP Variant

To compare the evolutionary approach in Chapter 6 with a non-evolutionary ap-

proach, we created a simple rule-based variant of ECP that uses a fixed rule to

generate agent strategies when agents are needed, instead of creating and selecting

agents randomly. As a result, the population of agents in the system does not affect

system behavior. We compare the performance of the ECP variant with that of the

best evolutionary ECP variant from Chapter 6 to test the thesis statement.

7.1.1 Agent Generation

The goal of the rule-based game is to speed up the response to changes in network

operating conditions. We used a rule that picks beacon intervals based on the change

in link quality. In particular, it uses small beacon intervals if the change in link quality

is large, and large beacon intervals if link quality is stable. The specific values used

are shown in Table 7.1.

These rules provide high-quality routing on a failure-free network, as shown in

Table 7.2. They do this by sending many more beacon packets than the evolutionary

variants of ECP presented in Chapter 6, and therefore use much more power.

Finally, we note that the rules chosen in this case are only one possible set of

rules. It would be possible to design a different set of rules specialized to a particular

topology or failure environment. In this case, we chose rules based on our experience

with wireless sensor networks that we believed would work well for comparison with

84

Chapter 7. ECP Rule-based Game Comparison

Link Quality Change Beacon Time (secs)
≤ 3 320
4–7 160
8–13 80
14–21 4
22–31 2
32–43 1
44–57 0.5
> 57 0.2

Table 7.1: Beacon times for given link quality changes in the rule-based ECP variant

Game Beacons Sent Timeouts
(Avg ± StdDev) (Avg ± StdDev)

Rule-based 2956 ± 4942 38 ± 14

Aligned 902 ± 96 248 ± 37

Table 7.2: Rule-based ECP Results - Failure-free Environment

evolutionary approaches.

7.1.2 Comparison with Evolutionary ECP

To evaluate our thesis, we compare the performance of the rule-based ECP variant

with the game with the best evolutionary version of ECP from Chapter 6 in the

presence of failures. In particular, we compare versus the ECP variant that uses an

aligned game, that kills the incoming agent in the Stale/Accept case and keeps both

agents in Fresh/Deny case (game A/SA:I/FD:N).

We evaluated this game and the rule-based ECP variant in simple-fault and

periodic-fault environments using the same methodology as the previous chapter.

Tables 7.3 and 7.4 present the results of this comparison.

85

Chapter 7. ECP Rule-based Game Comparison

Game Beacons Sent Timeouts
(Avg ± StdDev) (Avg ± StdDev)

Rule-based 8345 ± 10081 232 ± 37

Evolutionary 785 ± 83 212 ± 25

Table 7.3: Rule-based ECP vs. Evolutionary ECP - Simple-fault Environment

Game Beacons Sent Timeouts
(Avg ± StdDev) (Avg ± StdDev)

Rule-based 28061 ± 46168 398 ± 73

Evolutionary 700 ± 63 310 ± 42

Table 7.4: Rule-based ECP vs. Evolutionary ECP - Periodic Fault Results

In the simple fault environment, the rule-based ECP variant sends more than

an order of magnitude more beacons than the evolutionary version of ECP (p =

0.00000), but still results in more routing timeouts (p = 0.00242). In the periodic

fault case, the rule-based system performs even worse, sending 40 times as many

beacon packets and a greater number of routing timeouts (p = 0.00000).

7.1.3 Analysis

Figures 7.1 and 7.2 show the population dynamics for the rule-based and evolutionary

variants of ECP in both faulty environments tested. Similarly, Figures 7.3 and 7.4

show how average beacon times change for these two ECP variants.

In general, the rule-based approach uses shorter beacon times as the system starts

up, resulting in more beacons sent but fewer timeouts than the evolutionary approach

prior to the occurrence of failures in the simple failure case. On the other hand,

the rule-based approach appears to be much more aggressive than the evolutionary

approach in sending beacons when faults occur. However, these added beacons do

86

Chapter 7. ECP Rule-based Game Comparison

Figure 7.1: Rule-based ECP Variant Population Dynamics - Simple-fault Environ-
ment

not appear to reduce the number of timeouts that occur and only increase the power

consumption of the protocol.

7.2 Hybrid Game Description

In addition to purely evolutionary and purely rule-based approaches, we also ex-

amined two hybrid approaches that combine aspects of each. In particular, these

approaches use the rules of the rule-based game to influence the behavior of the

evolutionary ECP variant by biasing agent creation and selection while still allowing

the agent population to control network behavior. They do this by injecting new

rule-derived agents into the general node population whenever an agent leaves the

node. This biases the population with agents the rules believe will be helpful based

on network conditions. Note that these agents still compete with existing agents in

the system, including those created randomly at system startup.

For these variants, we used the optimized aligned game for agent competitions

that was evaluated in Chapter 6 and used for comparison in the previous section

87

Chapter 7. ECP Rule-based Game Comparison

Figure 7.2: Rule-based ECP Variant Dynamics - Periodic-fault Environment

(A/SA:I/FD:N). The two hybrid approaches differ from the purely evolutionary ap-

proach in the following way:

Rule-based creation. This approach uses the rules defined in Section 7.1 to create

new agents that are added to the node selection room when an agent leaves

the node as part of packet transmission. Agents created at node startup are

still created randomly.

Randomized Rule-based Creation. This approach uses the rules defined in Sec-

tion 7.1 to create new agents, but selects randomly from the categories near

those chosen by rule to bias the created agent. For values in the middle of the

range, the value chosen by rule is used 50% of the time, and the values one

category above or below are used 25% of the time. For values at the end of the

range (maximum or minimum categories), the value chosen by rule is used 50%

of the time, the next category over is used 35% of the time, and the category

two away from the maximum is used 15% of the time.

88

Chapter 7. ECP Rule-based Game Comparison

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 B
ea

co
n

T
im

e
(s

ec
s)

Simulation Time (min)

Average Beacon Time - Aligned Games
Parameters: topoMnode9dist4envFasymN, fault1.

rule-based
aligned

Figure 7.3: Rule-based Game Beacon Time - Simple-fault Environment

7.2.1 Results

Tables 7.5 and 7.6 show the results for hybrid games running in simple-fault and

periodic-fault environments. In general, the hybrid games send fewer beacons than

the rule-based ECP variant but still significantly more than the purely evolution-

ary version of ECP. In addition, the hybrid games have significantly more routing

timeouts than either the purely rule-based or evolutionary approaches, and are out-

performed in all cases by those approaches.

Game Beacons Sent Timeouts
(Avg ± StdDev) (Avg ± StdDev)

Rule-based Creation 6983 ± 5733 588 ± 129
Randomized Rule-based Creation 4571 ± 4375 1297 ± 977

Rule-based ECP 8345 ± 10081 232 ± 37
Evolutionary ECP 785 ± 83 212 ± 25

Table 7.5: Hybrid Game Results - Simple-fault Environment

89

Chapter 7. ECP Rule-based Game Comparison

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 B
ea

co
n

T
im

e
(s

ec
s)

Simulation Time (min)

Average Beacon Time - Aligned Games
Parameters: topoMnode9dist4envFasymN, fault.

rule-based
aligned

Figure 7.4: Rule-based Game Beacon Time - Periodic-fault Environment

Game Beacons Sent Timeouts
(Avg ± StdDev) (Avg ± StdDev)

Rule-based Creation 7636 ± 4673 1076 ± 163
Randomized Rule-based Creation 4062 ± 4110 1775 ± 929

Rule-based ECP 28061 ± 46168 398 ± 73
Evolutionary ECP 700 ± 63 310 ± 42

Table 7.6: Hybrid Game Results - Periodic Fault Results

7.3 Summary

The results in this chapter demonstrate that the power consumption and node con-

nectivity in WSNs in the presence of failures can be improved by implementing

routing protocols as evolutionary games. Specifically, they show that the evolution-

ary approach outperforms a specific non-evolutionary approach that works well in

failure-free networks because the evolutionary approach can adapt successfully to the

faulty environment. While other rule-based approaches could be specially optimized

to work well in the presence of failure, our results demonstrate the viability of an

evolutionary approach to constructing WSN routing protocols. Finally, additional

90

Chapter 7. ECP Rule-based Game Comparison

results examining the viability of hybrid evolutionary/rule-based approaches were

not promising.

91

Chapter 8

Conclusions and Future Work

8.1 Conclusions

This dissertation presented an agent-based approach to building and optimizing WSN

communication in dynamic and faulty environments. In this approach, a population

of agents executes the network functions, and interacts with other agents and the en-

vironment. Repeated agent interactions produce an evolutionary game where agents

having the fittest strategies survive over time to optimize network parameters. This

dissertation also presented a software framework to create WSN applications us-

ing the agent-based approach and overcome important programming challenges in

WSNs.

The specific thesis evaluated in this dissertation was

Power consumption and node connectivity of WSN can be improved in

the presence of failures by implementing routing protocols as evolutionary

games

To evaluate this thesis, we designed and implemented an agent-based communication

92

Chapter 8. Conclusions and Future Work

protocol for wireless sensor networks, ECP. ECP is a collection protocol for WSN

that uses an agent-based evolutionary game approach to optimize the rate at which

beacons are sent. We evaluated the efficacy of ECP in the presence of failures using

a WSN simulator and measuring the number of beacon packets sent and beacon

timeouts between nodes. We compared different variants of ECP with a strictly

rule-based non-evolutionary approach.

Our results confirm the hypothesis we proposed. After experiments to determine

the appropriate game structure, the resulting evolutionary game performs better in

the presense of failures than a similar routing protocol whose behavior is controlled

by predetermined rules. While other rule-based approaches could be customized to

perform as well or potentially better than this evolutionary approach in this or other

specific scenarios, this demonstrates the general viability of this approach.

8.2 Future Work

This dissertation describes a solution to create and optimize WSN applications that

can be expanded in different directions. The design of the solution considered

several perspectives, i.e., the agent-based model, the evolutionary games, and the

biologically-inspired ideas, and provides multiple directions for improvement. For

example, future work could consider additional integration with the operating sys-

tem, improvements to the micro-component framework, definition of games with

several types of agents, or creation of agents with more complex structures. This

section contains discusses discussion some of these directions.

93

Chapter 8. Conclusions and Future Work

8.2.1 Operating System Integration

Some operating system modules such as the timer manager, the link estimator, and

low-level drivers for sensor devices and the wireless transmitter are good candidates

for optimization using an agent-based approach. For example, the wireless trans-

mitter could directly optimize transmission power to provide additional control over

communication quality, fault tolerance, and power consumption.

8.2.2 Micro-component Framework Extensions

The micro-component framework provides the tools to execute agent actions concur-

rently inside the nodes. Two future extensions related to this functionality, concur-

rent micro-components and dynamic micro-protocols, are good directions for future

work.

Concurrent micro-components. The current version of the framework allows

for concurrency between micro-components. Having concurrency inside some micro-

components, specifically concurrency for split-phase timers, would allow for more

efficient processing of timed events, and new ways to implement agent actions. For

example, ECP could check for disconnected neighbors using independent timers for

agents located in the routing table, instead running a duty cycle to periodically check

for disconnections.

Dynamic micro-protocols. A group micro-component is composed of an array

of micro-components that can be modified at run-time. The current implementation

provides functions to modify the group of micro-components composing a micro-

protocol, but this can only be done if there are no running instances of the micro-

protocol. Enabling additions and deletions of micro-components while the group

micro-component is executing would enable more dynamic micro-protocols designs

94

Chapter 8. Conclusions and Future Work

and implementations.

8.2.3 Complex Evolutionary Games

This dissertation optimized the ECP routing engine, and other components such as

the forwarding engine and some internal components of the protocol are directions

for future work. For example, a full implementation of ECP could include multiple

types of agents that optimize other portions of ECP, for example agents and evolu-

tionary games to optimize the forwarding engine. The new games could also consider

interactions between several types of agents having different sets of strategies.

8.2.4 Extensions Based on Biological Concepts

Biological and ecological systems inspired some decisions shown in this dissertation.

An idea presented as future work is the creation of more complex agent structures,

such as defining higher-level agents composed of two or more of the agents we pre-

sented here. This idea could enable more complex agents and agent behavior, and

support for more optimizing more complex network systems.

95

Appendix A

ECP Variant Behavior in

Failure-Free Environments

In addition to an evaluation of the various evolutionary games in faulty environ-

ment, described in Chapter 6, we also evaluated their performance in a failure-free

environment for completeness. This appendix presents includes the results of this

evaluation for reference purposes. All tests were run using the methodology described

in Chapter 6.

96

Appendix A. ECP Variant Behavior in Failure-Free Environments

Game Beacons Sent Timeouts
(Avg ± StdDev) (Avg ± StdDev)

B/SA:N/FD:E 18351 ± 21374 4379 ± 4820
B/SA:I/FD:E 488 ± 43 296 ± 40
B/SA:E/FD:E 496 ± 35 293 ± 36
B/SA:N/FD:I 17416 ± 19324 3883 ± 3224
B/SA:I/FD:I 488 ± 41 291 ± 45
B/SA:E/FD:I 483 ± 45 292 ± 33
B/SA:N/FD:N 6223 ± 1827 934 ± 583
B/SA:I/FD:N 559 ± 141 280 ± 37
B/SA:E/FD:N 588 ± 194 287 ± 53

Table A.1: Basic Game Results - Failure-free Environment

Figure A.1: Basic Game Population Dynamics - Failure-free Environment

Game Beacons Sent Timeouts
(Avg ± StdDev) (Avg ± StdDev)

A/SA:I/FD:E 1123 ± 65 289 ± 32
A/SA:I/FD:I 1123 ± 80 301 ± 46
A/SA:I/FD:N 902 ± 96 248 ± 37

Table A.2: Aligned Game Results - Failure-free Environment

97

Appendix A. ECP Variant Behavior in Failure-Free Environments

Figure A.2: Average Beacon Time for Games B/SA:N/FD:E, B/SA:N/FD:N and
B/SA:I/FD:N - Failure-free Environment

Figure A.3: Aligned Game Population Dynamics - Failure-free Environment

Game Beacons Sent Timeouts
(Avg ± StdDev) (Avg ± StdDev)

Rule-based 2956 ± 4942 38 ± 14
Rule-based Creation 5614 ± 4418 492 ± 91

Randomized Rule-based Creation 3452 ± 3282 931 ± 802

Table A.3: Rule-based and Hybrid Game Results - Failure-free Environment

98

Appendix A. ECP Variant Behavior in Failure-Free Environments

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 B
ea

co
n

T
im

e
(s

ec
s)

Simulation Time (min)

Average Beacon Time - Aligned Games
Parameters: topoMnode9dist4envFasymN, normal.

A/SA:I/FD:E
A/SA:I/FD:I

A/SA:I/FD:N

Figure A.4: Average Beacon Time for Aligned Games - Failure-free Environment

Figure A.5: Rule-based and Hybrid Game Population Dynamics - Failure-free Envi-
ronment

99

Appendix A. ECP Variant Behavior in Failure-Free Environments

Figure A.6: Average Beacon Time for Rule-based and Hybrid Games - Failure-free
Environment

100

References

[1] P. Agnihotri and P. Nuggehalli. Enhancing sensor network lifetime using inter-
active communication. ISIT, 2007.

[2] I. Akyildiz, Y. Sankarasubramaniam, W. Su, and E. Cayirci. A survey on sensor
networks. IEEE Communication Magazine, 40(8):102–114, August 2002.

[3] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor
networks: A survey. Computer Networks, December 2001.

[4] S. Al-Omari, J. Du, and W. Shi. Score: A sensor core framework for cross-layer
design. QShine, August 2006.

[5] E. Altman, R. ElAzouzi, Y. Hayel, and H. Tembine. An evolutionary game ap-
proach for the design of congestion control protocols in wireless networks. Model-
ing and Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops,
April 2008.

[6] M. Asim, H. Mokhtar, and M. Merabti. A fault management architecture for
wireless sensor networks. Wireless Communication and Mobile Computing Con-
ference, August 2008.

[7] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on Depend-
able and Secure Computing, 1:11–33, January 2004.

[8] M. Bahrepour, N. Meratnia, and P. Havinga. Automatic fire detection: A
survey from wireless sensor network perspective. Technical report, University of
Twente, 2008.

[9] L. Bernardo, R. Oliveira, R. Tiago, and P. Pinto. A fire monitoring applica-
tion for scattered wireless sensor networks. Wireless Information Networks and
Systems, July 2007.

101

References

[10] P. Boonma, P. Champrasert, and J. Suzuki. A biologically inspired architecture
for self-managing sensor networks. Sensor and Ad Hoc Communications and
Networks, 2006.

[11] P. Boonma, P. Champrasert, and J. Suzuki. BiSNET: A biologically-inspired
architecture for wireless sensor networks. IEEE International Conference on
Autonomic and Autonomous Systems, 2006.

[12] P. Boonma and J. Suzuki. BiSNET: A biologically-inspired middleware archi-
tecture for self-managing wireless sensor networks. Computer Networks, 2007.

[13] P. Bourquin. Adaptive sampling for sensor networks. Swiss Federal Institute of
Technology Zurich, 2005.

[14] D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks.
WSNA, September 2002.

[15] P. G. Bridges, G. T. Wong, M. Hiltunen, R. D. Schlichting, and M. J. Barrick.
A configurable and extensible transport protocol. IEEE/ACM Transactions on
Networking, 15(6):1254–1265, 2007.

[16] M. Britton, V. Shum, L. Sacks, and H. Haddadi. A biologically-inspired ap-
proach to designing wireless sensor networks. Proceedings of EWSN 2005: 2nd
European Workshop on Wireless Sensor Networks, February 2005.

[17] I. Carreras, I. Chlamtac, H. Woesner, and C. Kiraly. Bionets: Bio-inspired next
generation networks. IFIP International Federation for Information Processing,
2005.

[18] A. Cerpa, E. Jeremy, D. Estrin, L. Girod, M. Hamilton, and J. Zhao. Habitat
monitoring: Application driver for wireless communication technology. SIG-
COMM, April 2001.

[19] C. Charalambous and S. Cui. A biologically inspired networking model for
wireless sensor networks. IEEE Network, May/June 2010.

[20] Z. Che-Aron, W. Al-Khateeb, and F. Anwar. The enhanced fault-tolerant
AODV routing protocol for wireless sensor network. 2nd International Con-
ference on Computer Research and Development, 2010.

[21] D. Cook and S. Das, editors. Smart Environments: Technologies, Protocols, and
Applications. John Wiley & Sons Ltd, 2004.

102

References

[22] P. Corke, T. Wark, R. Jurdak, W. Hu, P. Valencia, and D. Moore. Environ-
mental wireless sensor networks. Proceedings of the IEEE, 98(11), November
2010.

[23] G. Crosby and N. Pissinou. Evolution of cooperation in multi-class wireless
sensor networks. 32nd IEEE Conference on Local Computer Networks, 2007.

[24] C. Darwin. On the Origin of Species. John Murray, United Kingdom, 1859.

[25] A. Dunkels, F. Osterlind, and Z. He. An adaptive communication architecture
for wireless sensor networks. Proceedings of SenSys, November 2007.

[26] A. E. Eiben and J. Smith. Introduction to Evolutionary Computing. Springer-
Verlag, 2003.

[27] D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence. John Wiley & Sons Ltd, 3rd edition, 2005.

[28] R. Fonseca, O. Gnawali, K. Jamieson, S. Kim, P. Levis, and A. Woo. The
collection tree protocol (CTP), Feb 2007.

[29] C. W. Fox, D. A. Roff, and D. J. Fairbairn, editors. Evolutionary Ecology:
Concepts and Case Studies. Oxford University Press, New York, NY, United
States, 2001.

[30] L. J. Garcia, A. L. Sandoval, A. Trivino, and C. Barenco. Routing protocols in
wireless sensor networks. Sensors, 98:8399–8421, 2009.

[31] O. Gnawali, R. Fonseca, K. Jamieson, and P. Levis. CTP: Robust and efficient
collection through control and data plane integration. Technical Report SING-
08-02, 2008.

[32] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection tree
protocol. Technical Report SING-09-01, 2009.

[33] O. Gnawali, P. Levis, R. Fonseca, K. Jamieson, and D. Moss. CTP: Collection
tree protocol, July 2011.

[34] L. Guo and Q. Tang. An improved routing protocol in WSN with hybrid ge-
netic algorithm. 2nd International Conference on Network Security, Wireless
Communication and Trusted Computing, 2:289–292, April 2010.

[35] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient com-
munication protocol for wireless microsensor networks. Proceeding of the Thirty
Third Hawaii International Conference on System Sciences, 8, January 2000.

103

References

[36] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. An application-specific
protocol architecture for wireless microsensor networks. Transactions on Wire-
less Communications, 1(4), October 2002.

[37] M. Hiltunen, R. Schlichting, X. Han, M. Cardozo, and R. Das. Real-time de-
pendable channels: Customizing QoS attributes for distributed systems. IEEE
Transactions on Parallel and Distributed Systems, 10(6):600–612, June 1999.

[38] J. Hofbauer and K. Sigmund. Evolutionary Games and Population Dynamics.
Cambridge University Press, 2002.

[39] A. Husseini, A. Zeid, S. Onel, and S. Kamarthi. An agent-based modeling and
control of wireless sensor networks. Intelligent Engineering Systems through
Artificial Neural Networks, 20, 2010.

[40] N. Hutchinson and L. Peterson. The x-kernel: An architecture for implementing
network protocols. IEEE Transactions on Software Engineering, 17(1):64–76,
1991.

[41] C. Intanagonwiwat, G. Ramesh, and D. Estrin. Directed diffusion: A scalable
and robust communication paradign for wireless sensor networks. Proceedings
ACM MobiCom, August 2000.

[42] C. Intanagonwiwat, G. Ramesh, D. Estrin, J. Heidemann, and F. Silva. Di-
rected diffusion for wireless sensor networking. IEEE/ACM Transactions on
Networking, 11(1), February 2003.

[43] H. Karl and A. Willig. Protocols and Architectures for Wireless Sensor Networks.
John Wiley & Sons Ltd, Hoboken, New Jersey, 2007.

[44] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and M. Turon.
Health monitoring of civil infrastructures using wireless sensor networks. IPSN,
April 2007.

[45] A. W. Krings and Z. S. Ma. Fault-models in wireless communication: Towards
survivable ad hoc networks. Idaho National Lab, 2008.

[46] A. Lachenmann, P. J. Marron, D. Minder, and K. Rothermel. Meeting lifetime
goals with energy levels. Proceedings of SenSys, 2007.

[47] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko. The trickle algorithm.
Internet Engineering Task Force, RFC6206, March 2011.

[48] P. Levis and D. Gay. TinyOS Programming. Cambridge University Press, New
York, NY, United States, 2009.

104

References

[49] P. Levis and N. Lee. TOSSIM: A simulator for tinyos networks. September
2003.

[50] J. Lin, X. Xiong, A. Vasilakos, G. Chen, and W. Guo. Evolutionary game-
based data aggregation model for wireless sensor networks. IET Communication,
5(12):1691–1697, 2011.

[51] Z. S. Ma and A. W. Krings. Bio-robustness and fault tolerance: A new perspec-
tive on reliable, survivable and evolvable network systems. Aerospace Confer-
ence, March 2008.

[52] Z. S. Ma and A. W. Krings. Dynamic hybrid fault models and the applications
to wireless sensor networks (wsns). In Proceedings of the 11th International Sym-
posium on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
MSWiM ’08, pages 100–108, New York, NY, USA, 2008. ACM.

[53] Z. S. Ma and A. W. Krings. Dynamic hybrid fault modeling and extended evo-
lutionary game theory for reliability, survivability and fault tolerance analyses.
IEEE Transactions on Reliability, 60(1):180–196, 2011.

[54] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless
sensor networks for habitat monitoring. Wireless Sensor Network Applications,
September 2002.

[55] P. J. Mayhew. Discovering Evolutionary Ecology: Bringing Together Ecology
and Evolution. Oxford University Press, New York, NY, United States, 2009.

[56] J. Maynard Smith. Evolution and the Theory of Games. Cambridge University
Press, Cambridge, New York, 1982.

[57] MEMSIC. Memsic web site, 2012.

[58] S. Misra et al., editors. Guide to Wireless Sensor Networks. Computer Com-
munications. Springer, 2009.

[59] R. W. Morrison. Designing Evolutionary Algorithms for Dynamic Environments.
Natural Computing Series. Springer, 2004.

[60] L. Mottola. Programming Wireless Sensor Networks: From Physical to Log-
ical Neighborhoods. PhD thesis, Dipartamento di Elettronica e Informazione,
Politecnico di Milano, 2008.

[61] L. Mottola and G. P. Picco. Programming wireless sensor networks: Funda-
mental concepts and state of the art. ACM Computing Surveys, 43(3), April
2011.

105

References

[62] M. Nakamura, A. Sakurai, and J. Nakamura. Distributed environment control
using wireless sensor/actuator networks for lighting applications. Sensors, (9),
2009.

[63] J. Paek, K. Chintalapudi, G. Ramesh, J. Caffrey, and S. Masri. A wireless sensor
network for structural health monitoring performance and experience. Embeded
Networked Sensors, May 2005.

[64] L. Paradis and Q. Han. A survey of fault management in wireless sensor net-
works. Journal Network System Management, 15(2):171–190, 2007.

[65] N. S. Patil and P. Patil. Data aggregation in wireless sensor network. Conference
on Computational Intelligence and Computing Research, 2010.

[66] M. A. Perillo and W. B. Heinzelman. Wireless sensor network protocols. Tech-
nical report, University of Rochester, Dept. of Electrical and Computer Engi-
neering, 2006.

[67] C. Perkins, E. Belding-Royer, and S. Das. Ad-hoc on-demand distance vector
routing (AODV). RFC 3561, July 2003.

[68] S. F. Pileggi, C. E. Palau, and M. Esteve. An adaptive and flexible fault toler-
ance mechanism designed on multi-behavior agents for wireless sensor/actuator
network. International Conference on Sensor Technologies and Applications,
2007.

[69] V. Ponnusamy and A. Abdullah. Biologically-inspired (botany) mobile agent
based self-healing wireless sensor network. Sixth International Conference on
Intelligent Environments, 2010.

[70] D. Puccinelli and M. Haenggi. Wireless sensor networks: Applications and
challenges of ubiquitous sensing. Circuits and Systems, 3rd quarter, 2005.

[71] S. Salim, M. Javed, and A. H. Akbar. A mobile agent-based architecture for
fault-tolerance in wireless sensor networks. Communication Networks and Ser-
vices Research Conference, 2010.

[72] K. Sha, J. Du, and W. Shi. WEAR: A balanced, fault-tolerant energy-aware
routing protocol in wsns. International Journal of Sensor Networks, 1(3/4),
2006.

[73] S. K. Shing, M. Singh, and D. Singh. Routing protocols in wireless sensor
networks - a survey. International Journal of Computer Science & Engineering
Survey, 1(2), November 2010.

106

References

[74] R. Szewczyk, A. Mainwaring, J. Anderson, and D. Culler. An analysis of a large
scale habitat monitoring application. Proceedings of SenSys, November 2004.

[75] J. K. Taneja. Design, deployment, and analysis of sustainable sensor networks
for environmental monitoring. Master’s thesis, University of California, Berke-
ley, December 2007.

[76] T. L. Vincent and J. S. Brown. Stability in an evolutionary game. Theoretical
Population Biology, (26):408–427, 1984.

[77] T. L. Vincent and J. S. Brown. Evolutionary Game Theory, Natural Selection
and Darwinian Dynamics. Cambridge University Press, New York, NY, United
States, 2005.

[78] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fidelity and
yield in a volcano monitoring sensor network. Operating Systems Design and
Implementation, 2006.

[79] D. Westneat and C. W. Fox, editors. Evolutionary Behavioral Ecology. Oxford
University Press, 2010.

[80] Wikipedia. Evolution - http://en.wikipedia.org/wiki/evolution, April 2012.

[81] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of reliable
multihop routing in sensor networks. In Proceedings of SenSys, pages 14–27.
ACM Press, 2003.

[82] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed energy conservation
for ad hoc routing. In Proceedings of the ACM/IEEE International Conference
on Mobile Computing and Networking, pages 70–84, July 2001.

[83] Y. Yu, G. Ramesh, and D. Estrin. Geographical and energy-aware routing: A
recursive data dissemination protocol for wireless sensor networks. Technical
Report UCLA/CSD-TR-01-0023, UCLA Computer Science Department, May
2001.

[84] J. Zhang, W. Li, Z. Yin, S. Liu, and X. Guo. Forest fire detection system based
on wireless sensor network. Industrial Electronics and Applications, 2009.

107

	University of New Mexico
	UNM Digital Repository
	12-1-2012

	Fault-tolerant wireless sensor networks using evolutionary games
	Ricardo Villalon
	Recommended Citation

	tmp.1469198166.pdf.HlgVj

