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1

CHAPTER 1

INTRODUCTION

1.1 Background: Wireless Sensing Systems

The advance of technology in electronics has enabled us to remotely collect physically mea-

sured information with electric sensors and transform the collected data into knowledge with

software. The network facilities, including ethernet, WiFi, and cellular networks, enable re-

mote access to the data sampled by a sensor. A number of potential applications can perform

such remote data collection for various purposes, including environmental monitoring, in-

dustrial sensing, battlefield awareness, surveillance, forest fire monitoring, wild exploration,

remote diagnosis, and so on. As an example, a group of sensors may be deployed in a forest

to sense the local humidity or detect fire in the surroundings. The data from the sensors can

be wirelessly sent to a nearby station and even further delivered to a remote monitoring center

through computer networks. As another example, equipped with a camera sensor and a radio

transceiver, a robot may enter a hazardous area to conduct searching tasks. An additional

example is in the health care field. A patient may wear a blood pressure sensor and that sen-

sor detects his blood pressure and transmits that value to his smartphone via Bluetooth. The

smartphone further delivers the blood pressure reading to a remote hospital through WiFi

for diagnosis. An electric sensor is usually pre-programmed to detect ambient conditions.

Sensors permeate our life in various forms, e.g., cameras, GPS, thermometers, and blood

pressure sensors. According to its making and use, the type of information detected by the

sensor varies, including but not limited to environmental attributes, states of other equipment

or itself, and conditions of human body. A sensor may sense ambient humidity, record im-

ages and noises of its surroundings, determine its own location, detect the voltage of an active
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circuit, record the heart rate of a patient, and so on. A sensor may be installed indoors, out-

doors, or attached to another object including devices and human. For example, certain large

buildings have a few temperature sensors installed inside; a number of earthquake sensors

may be distributed in the wild; a moving robotic vehicle can integrate a GPS receiver, a radio

transceiver and a camera sensor as part of its circuit board; a smartphone typically comes

with a set of sensors (e.g., an accelerometer); a patient may wear a pulse sensor around his

hand. It is common that a sensor is equipped with wireless capability through either its inte-

grated radio module or its connection to another wireless device. For example, a small-sized

TelosB sensor mote [31] has an internal IEEE 802.15.4 compliant radio and can transmit

wirelessly at rate of 250 kbps. As another example, a Bluetooth-enabled heart rate sensor

may detect a user’s heart rate and sends the data to the user’s smartphone via Bluetooth;

then the smartphone may further deliver the data through WiFi or its cellular network. The

wireless connection of the sensors has brought great convenience and flexibility in the sensor

deployment. As a trend, software is playing an important role in remotely collecting data

with sensors. The hardware facilities involved in the data collection mainly include sensors,

networking devices, storage devices, and computing devices. Normally, these hardware de-

vices execute software instructions and cooperate with one another to automatically perform

the data collection. Most of these devices can either be re-programmed by the owners or

act according to commands received from other re-programmable devices. In a sense, the

hardware is “smart”. Often, these devices behave like a modern computer. They may have

microcontroller/CPU, memory, storage disks, or network chips. The sensors may contain a

software program that commands the sensor on how to detect data and how to send out data.

For example, a TelosB sensor mote [31] has a TI MSP430 microcontroller with 10KB mem-

ory; it can be programmed via its USB interface. The data transmission to the destination is

also normally controlled by software running on the networking devices. The data collected

are usually stored at a center computer server and can be accessed by software applications.

The server may perform an overall control of the data collection via customized software
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programs. Formally, we define a wireless sensing system as a software system that instructs

a set of pre-programmed sensors to collect subject information, then wirelessly transmits the

data to one or more network gateway devices, afterwards delivers the data to one or more

destinations via their associated networks, and finally let software applications access the

data collected onto the destinations. In certain scenarios, a network gateway may integrate

a few sensors into its circuit. In a wireless sensing system, a sensor may be placed indoors,

outdoors, or even attached to another device. The sensor may integrate radio capability into

its circuit or connect to another device that is wireless-enabled. The gateway devices are not

restricted to conventional routers; instead, they can be a smartphone integrating or connected

to the sensor, or a networked computer. The gateway devices are free to choose their net-

works to deliver the data to the final destinations (typically a single destination), possibly

through computer networks or cellular networks. For applications, the data collected onto

the destinations can be accessed by certain software. Figure 1.1 illustrates the data flow of a

wireless sensing system. The data are first obtained by the sensors through a sensing process.

The data are then wirelessly transmitted from the sensors to one or more network gateways.

The gateways further deliver the data to one or more destinations (typically one common des-

tination). The destinations are normally computer servers. After that, software applications

are able to access the data delivered to the destinations.

1.2 Robust Data Collection in Wireless Sensing Systems: Challenges and Solutions

Faults, errors, failures and attacks are not uncommon in a wireless sensing system and they

compromise the effective data collection of a wireless sensing system. As an effort in under-

standing the potential issues in wireless sensing systems, in 2008, the author co-worked with

K. Sha, S. Al-Omariz, etc. on studying the data collected from 13 sensors installed around

the Great Lakes [133]. These sensors were mainly located at the St. Clair River, the Detroit

River and the Lake Winnebago. These sensors detected their battery voltage, the ambient air

temperature and water temperature, the ambient precipitation, as well as the ambient water
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Figure 1.1: The data flow of a wireless sensing system.

level. The data available for our study lasted around one month. The sensors performed

the data sampling once every one or two hours. They transmitted the obtained sensing data

through radio to a satellite once every several hours; the satellite in turn sent the data also

through radio to a central server located in Virginia. Our analysis on the data as well as the

associated log discovered certain errors among the collected data and loss of certain data

during the whole data collection process [133]. The data from some sensors were occasion-

ally out of their valid range or suspected to be likely wrong according to the our domain

expert. Frequent failure occurred at two sensors located at Lake Winnebago: their readings

were dramatically different than the readings from other sensors around the same area. It

was common to see that the data from certain sensors were missing from several hours to a

few days. The analysis on the system log revealed that the data unavailability was caused by

several types of errors either during the network transmission or in the sensor hardware. Gen-

erally, a robust wireless sensing system needs to address a few important issues in order to

accomplish effective data collection. As illustrated in Figure 1.2, the issues may occur at dif-

ferent stages of the data collection. First, the sensors might not produce data correctly when
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Figure 1.2: The potential issues during data collection of a wireless sensing system.

performing data sampling. The data may become unavailable or erroneous. The cause can

be attributed to faults or failures from the sensor hardware and the software running on the

sensors. Second, during the transmission of the data, faults, failures, and attacks might occur.

A robust wireless sensing system should adopt resilient network protocols that can survive

under faults, failures and potential network attacks. Last, when the data collected onto the

destinations are being accessed by software applications, there can be privacy concern. The

collected data may contain certain private information such as personal data. In such case, an

unauthorized software application should not be allowed to access the private data directly.

While the previous research has developed certain techniques to address some of these issues

in wireless sensing systems, there are a few urgent problems left unsolved. In the following,

we will discuss the state-of-the-art on these issues and point out the urgent issues that this

dissertation will address.

1.2.1 Data Faults on the Sensors

The sensors used in a wireless sensing system are usually provided by the hardware man-

ufacturers as commodity products. The manufacturers normally design the circuit and pre-

program the hardware in a way that enables the sensors to meet with certain accuracy require-

ment on the detected attributes and certain fault tolerance requirement. In some sense, the

hardware manufacturers are responsible for making the sensing functionality highly accurate.
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However, as noted in our study of a real-world sensing system [133], in reality, it is not un-

common for the sensors to generate erroneous data. And what’s worse, a malicious sensor

may intentionally report wrong data to compromise the applications, especially in military

applications. Thus, there is a need to detect such erroneous data produced by the sensors.

There has been a trend to employ trust management for wireless sensing systems [7] to de-

tect the sensor malfunction. With trust management, a sensor is assigned a trust value to

reflect its trustworthiness according to its past performance. The trust management is proved

to be effective in improving security [10, 95], supporting decision-making [70, 145], promot-

ing node collaboration [55] and resource sharing [89]. However, to detect erroneous data

produced by a sensor, there are a few important issues with directly applying the existing

research outcomes. First, most trust research focuses on link-level one-hop communication

behaviors, and data integrity is overlooked. Since data collection is the main task of wireless

sensing systems, the importance of data integrity should never be underestimated. Second,

overcomplicated models often render reputation system hard to apply to deployed wireless

sensing systems. Those models may cause too much overhead. Finally, the fair treatment of

new transactions and past behaviors, as adopted in the existing work, suffers various attacks.

To conquer the challenge in detecting erroneous data produced by the sensors, we proposed

a resilient data trustworthiness model, SensorTrust (see Chapter 3). While SensorTrust is

originally designed for a typical type of wireless sensing systems, the idea can be extended to

more generic settings. SensorTrust integrates past history and recent risk to accurately iden-

tify the current trust level. It employs Gaussian model to rate data integrity in a fine-grained

style and a flexible update protocol to adapt to varied context. With acceptable overhead, Sen-

sorTrust proves resilient against varied data faults and attacks targeting the data. While the

responsibility of ensuring highly accurate sensors is normally left to the sensor manufactur-

ers, there is a particular type of sensing function that draws our attention: localization. So far,

due to the algorithm complexity involved in localization, the localization algorithms are left

to the system designers in many cases, especially when the GPS positioning is unavailable or
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unsatisfactory. The location data are important when we consider wireless sensing systems

with mobile sensors. An example application is robotic exploration, where a robot equipped

with a few sensors (e.g., cameras, GPS) and a radio transceiver moves through an area to

explore the land features. In this application, it is desirable to obtain the real-time location of

the robot when it performs the autonomous sensing tasks. Particularly, we studied the local-

ization of small-sized ground robotic vehicles, which have great potential to be deployed in

situations that are either uncomfortable for humans or simply too tedious. Although there ex-

ist various localization schemes for ground robotic vehicles, they often suffer various issues.

These techniques normally utilize GPS, inertial sensors, radio signals, or visual processing.

GPS often becomes inoperable in certain environments such as indoors or in wild forests. As

an alternative, a localization system may use various waves including electromagnetic waves

of various frequency [9, 60, 117, 140, 161]. However, the radio-based positioning requires a

set of external devices to generate or receive radio signal and maintaining such a position-

ing system can be costly and difficult in terms of additional hardware [25, 93, 119], intensive

tuning [99], and environmental management. The vision techniques for mobile robot naviga-

tion [36] generally heavily rely on sophisticated techniques on the recognition of an object or

shape from images and often have restricted spatial and visional requirements. They are rel-

atively costly and difficult to implement or maintain. Additionally, inertial sensors are often

used in positioning or navigation systems to detect movement [54, 76, 80, 92, 132]. Though

the operation of inertial sensors is independent of external features in the environment and

they do not need an external reference, empirically, the inertial sensors are likely to cause

cumulative error. To obtain accurate and highly available location data, we proposed LOBOT

(see Chapter 4), a low-cost, self-contained localization system for the small-sized ground

robotic vehicle. LOBOT provides accurate real-time, three-dimensional positions in both in-

door and outdoor environments. Unlike other localization schemes, LOBOT does not require

external reference facilities, expensive hardware, careful tuning or strict calibration, and is

capable of operating under various indoor and outdoor environments. LOBOT identifies the
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local relative movement through a set of integrated inexpensive sensors and well corrects

the localization drift by infrequent GPS-augmentation. Our empirical experiments in vari-

ous temporal and spatial scales show that LOBOT keeps the positioning error well under an

accepted threshold.

1.2.2 Network Issues During the Data Transmission

Faults, failures, and attacks during the network transmission may prevent the data from being

delivered to the destinations. A major weak link of the chain of data collection lies in the

wireless transmission from a sensor to a network gateway. Generally, wireless networks are

prone to failures and attacks, which is normally addressed by robust network protocols. As far

as wireless sensing systems are concerned, their particular characteristics aggravate the prob-

lems. In many applications, especially in a wild environment, the sensors used are battery-

powered embedded sensors with limited processing capabilities, such as TelosB motes [31].

With a limited radio communication range, many sensors together with their equipped radio

transceivers, comprise a multi-hop wireless ad-hoc network. To send the data to a network

gateway, each sensor usually wirelessly sends data out to one of its neighboring sensors,

which in turn forwards the data to another sensor. The data reach the network gateway via

a multi-hop path through multiple sensors. Such wireless networks consisting of sensors are

defined as wireless sensor networks (WSNs) [120, 170] and the network gateway is usually

also called a base station. Compared to conventional wireless networks, WSNs consisting of

resource-constrained sensors more easily suffer failures and malicious attacks. Most existing

network protocols for these networks either assume the honesty of the nodes and focus on how

to increase the throughput of the network under faults and failures [1], or attempt to exclude

unauthorized participation by encrypting data and authenticating packets [73, 91, 116, 146].

While some of these protocols function well under faults and certain attacks, they can be

easily defeated by a malicious attacker who fakes one or more identities by replaying routing

information. A malicious node can still participate in the network using another valid node’s
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identity by replaying their routing information. The multi-hop routing in WSNs offers little

protection against the identity deception through replaying routing information. To secure

multi-hop routing against adversaries exploiting the replay of routing information, we de-

signed and implemented TARF (see Chapter 5), a robust trust-aware routing framework for

dynamic multi-hop wireless networks consisting of sensor nodes. Without tight time synchro-

nization or known geographic information, TARF provides trustworthy and energy-efficient

route. Most importantly, TARF proves effective against those harmful attacks developed out

of identity deception.

1.2.3 Privacy Protection on the Collected Data

In certain applications of wireless sensing systems, the collected data may contain private

information that is not expected to be directly exposed. An example of these applications

is the self-monitoring and self-management of patient health [83, 97]. In such a wireless

sensing system, users utilize off-the-shelf wireless biomedical sensors to detect their bio-

physical data such as heart rate and the data are sent out to a remote station through their

smartphones [122]. The remote stations may deliver feedback accordingly back to the users.

While such applications can lower the medical cost and facilitate remote diagnoses [49], they

encounter the obstacle of privacy concern [30, 64, 129, 155]. The existing wireless sensing

systems in such areas tend to either not consider privacy protection at all [18,113] or limit the

collected data to its internal use only so as to reduce privacy risks [96,107]. The restriction of

the internal use of data prevents third-party applications from exploring the data and becomes

an obstacle to data sharing. The existing privacy research mainly concerns itself about the

mechanisms to identify and prevent privacy issues [28, 46, 62] and often does not support ar-

bitrary third-party applications. To conquer the challenge in privacy protection, we proposed

Woodward(see Chapter 6), a privacy-preserving wireless sensing system, focusing on health

care applications. Woodward protects the user privacy while allowing for the data sharing

with arbitrary third-party applications. It adopts an innovative anonymization process that
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supports high-precision query and impedes privacy attacks by the overwhelming cost. We

implemented Woodward with a health care application and quantitatively evaluated both the

query precision and privacy protection.

1.3 Objectives

This dissertation aims to provide system support for robust data collection in wireless sensing

systems through addressing a few urgent design issues in existing systems. A wireless sens-

ing system may suffer issues arising at the sensors, during the data transmission, and during

the data access by applications. While wireless sensing systems may resemble conventional

networked systems in many ways, their unique characteristics determine that certain conven-

tional solutions for networked systems may not work well. Considering a wireless sensing

system may be dramatically different than another (depending on their specific applications),

the solutions to each of these issues may vary according to the system structures. With certain

typical system structures in mind, we have developed approaches to resolve those few urgent

problems in the design of wireless sensing systems. However, we would like to emphasize

that similar ideas to our approaches can be employed to address the issues in more generic

settings. Specially, this dissertation will accomplish the following objectives:

1. With hierarchical wireless sensor networks as an example, develop a resilient trust

model to evaluate the trustworthiness of the collected data.

2. Develop a low-cost, self-contained localization system for the small-sized ground robotic

vehicle to obtain accurate location data.

3. Design and implement a robust trust-aware routing framework to secure multi-hop rout-

ing through a set of sensors in wireless sensing systems.

4. With health care as an exemplary application, develop a privacy-preserving wireless

sensing system.
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1.4 Contributions

The main contributions of this dissertation are:

1. We developed a resilient trust model, SensorTrust, to effectively detect faulty data in

wireless sensing systems due to either sensor malfunctioning or malicious attempts to

report false data. SensorTrust evaluates the trustworthiness of the collected data in

wireless sensing systems. While this model is mainly proposed for a certain common

architecture of wireless sensing systems, this approach can be generalized to detect

data trustworthiness in a more generic setting. SensorTrust enables us to accurately

identify the current trust level of the data produced by a sensor. SensorTrust allows us

to consider both past history and recent risk when assessing the data trustworthiness. It

also adapts to dynamic environment.

2. We developed a low-cost, self-contained, accurate localization system (LOBOT) for

small-sized ground robotic vehicles. This localization system enhances the wireless

sensing systems containing mobile sensors by providing more accurate and highly

available location data, with only limited overhead in economic cost and manage-

ment. The hardware devices LOBOT uses are easily-available at low cost. LOBOT

is self-contained in that it virtually requires no external devices or external facility

management and that it needs no prior information. LOBOT does not require external

reference facilities, expensive hardware, careful tuning or strict calibration. Addition-

ally, LOBOT applies to both indoor and outdoor environments and realizes satisfactory

performance. Further, LOBOT maintains low cumulative error.

3. We designed and implemented TARF, a robust trust-aware routing framework, to secure

multi-hop routing through a set of sensors in wireless sensing systems. Though it is

mainly motivated by harmful attackers exploiting the replay of routing information,

TARF can also be used to protect the routing layer from other attacks. TARF requires
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neither tight time synchronization nor known geographic information. Its resilience

and scalability were proved through both extensive simulation and empirical evaluation

with large-scale WSNs. We implemented a ready-to-use TinyOS module of TARF with

low overhead; this TARF module can be integrated into existing routing protocols with

moderate efforts.

4. We developed Woodward, a privacy-preserving wireless sensing system. Though it

focuses on health care applications, the design principle in privacy protection can be

extended to other wireless sensing systems with privacy concern. Woodward protects

the user privacy while allowing arbitrary third-party applications to extract knowledge

from the collected data. The anonymization process adopted by Woodward causes

overwhelming cost to privacy attackers; it also allows arbitrary third-party applications

to perform various query with small under-threshold error.

1.5 Outline

The rest of this dissertation is organized as follows: Chapter 2 reviews the related work; Chap-

ter 3 describes the data trustworthiness model for wireless sensing systems - SensorTrust;

Chapter 4 describes lobot, a low-cost, self-contained localization system for small-sized

ground robotic vehicles; Chapter 5 presents TARF, a trust-aware routing framework to secure

multi-hop routing through a set of sensors in wireless sensing systems; Chapter 6 presents

Woodward, a privacy-preserving wireless sensing system; Chapter 7 concludes this disserta-

tion and describes future directions.
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CHAPTER 2

RELATED WORK

This chapter describes the existing work related to the problems that this dissertation

resolves.

2.1 Data Trustworthiness Modeling for WSNs

Trust has been studied in varied contexts for long. It started as an important topic in social

science. The effects of trust in commerce was analyzed to help build e-commerce systems,

such as eBay [125]. Game theory and reinforcement learning are also used to model the

reputation of sellers in [142]. Additionally, trust management is applied to online knowledge

sharing [37], peer-to-peer systems and ad-hoc networks [14, 27, 34, 45, 70].

A few general models have been proposed for data trust management of WSNs. Ganeri-

wal, Balzano and Srivastava proposed a reputation-based framework for high integrity WSNs

named RFSN [44]. In the RFSN framework, Bayesian formulation is employed to update

reputation metrics with new transaction, density-based outlier detection discovers data out-

liers, and an aging mechanism is used against the sleeper attack. Other trust model study

includes an agent-based trust model by Chen et al. [23], ATRM by Boukerche and Li [11],

and study on the effects of rating algorithms by Liang and Shi [90]. As far as the hierarchical

WSNs are concerned, our SensorTrust is a more suitable model. One essential hypothesis in

RFSN is that reputation satisfies a Beta distribution. However, to our best knowledge, that

hypothesis has not been widely justified yet. In contrast, the Gaussian distribution of data

adopted in SensorTrust is a well-known fact, and our mathematical analysis shows that the

update protocol effectively incorporates long-term reputation and recent risk. Compared to
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the binary rating with outlier detection in many existing work, SensorTrust employs a Gaus-

sian distribution-based fine-grained method to determine the rating and trust level. Also, in

contrast to the aging algorithm used in RFSN, our model utilizes two parameters to gain more

flexibility for different contexts.

2.2 Localization Schemes

The radio-based localization schemes roughly fall into two categories: the range-based solu-

tions and the range-free solutions. Most of these schemes usually require a set of surrounding

anchor nodes with known position information. Maintaining a proper set of surrounding an-

chor nodes is vital to such localization solutions. The range-based schemes discover the

position by first estimating distances or angles among certain nodes and then applying tri-

angulation or multilateration to compute the location. They utilize various range measure-

ments including Received Signal Strength [4, 29, 61, 130, 134, 143, 158, 159, 169], Time of

Arrival [81], Time Difference of Arrival [25,119,131] and Angle of Arrival [6, 21,110, 127].

The range-free localization schemes exploit the proximity information to estimate the loca-

tion of the target [3, 82, 134, 173], The typical examples include Centroid [15], APIT [56],

APS [110], Concave [38] and Self [16].

As another type of popular solutions, Inertial sensors are used in positioning or naviga-

tion systems to detect movement [54, 76, 80, 92, 132]. The accelerometer is often perceived

as an inexpensive solution for localization. Jackson [66] proposed an accelerometer-based

solution for tracking test vehicles on a known stretch of bridge; however, this solution is

subject to cumulative error [66]. Hsu proposed an accelerometer based approach for indoor

tracking [65], where only theoretical simulation is used for the evaluation. Youssef [160] pro-

posed a hybrid GPS-accelerometer-compass scheme that depends mainly on the low-energy

accelerometer and compass sensors. The scheme uses GPS infrequently for synchroniza-

tion. However, Youssef’s work still uses the well-known double integration of acceleration to

calculate travel distance. In that work, the cumulative error is not thoroughly analyzed [160].
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Other localization techniques include probabilistic approaches and distributed localiza-

tion. For example, the extended Kalman filter [32] has been extensively used for information

fusion in robot navigation problems. Fox [41] proposed an active Markov localization for mo-

bile Robots. Thrun [141] proposed a family of probabilistic localization algorithms known

as Monte Carlo Localization for mobile robots. There are also a few distributed localiza-

tion schemes in wireless sensor networks and wireless ad-hoc networks [8, 24, 87, 138]. As

an example, Xiao, Chen, and Zhou [154] proposed a distributed localization system using a

moving beacon.

2.3 Trust Management in Secure Routing

Trust and reputation management has been employed in ad hoc networks to secure rout-

ing protocols [13, 50, 94, 100, 104, 118, 128, 153, 157]. However, those proposed systems

for generic ad hoc networks target relatively powerful hardware platforms such as laptops

and smartphones; they can not be applied to WSNs comprising resource-constrained sensor

nodes.

Regarding WSNs, secure routing solutions based on trust and reputation management

rarely address the “identity theft” exploiting the replay of routing information. A location-

based trust-aware routing solution for large WSNs - ATSR - is proposed in [163]. ATSR in-

corporates a distributed trust model utilizing both direct and indirect trust, geographical infor-

mation as well as authentication to protect the WSNs from packet misforwarding, packet ma-

nipulation and acknowledgements spoofing. Another trust-aware routing protocol for WSNs

is TARP (Trust-Aware Routing Protocol) [126]. TARP exploits nodes’ past routing behavior

and link quality to determine efficient paths. We note that neither ATSR nor TARP offers

protection against the identity deception through replaying routing information. It is gener-

ally hard to protect WSNs from wormhole attacks, sinkhole attacks and Sybil attacks based on

such identity deception. The countermeasures often requires either tight time synchronization

or known geographic information [74]. Additionally, Cao, Hu, Chen, Xu, and Zhou proposed
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a feedback-based secure routing protocol (FBSR) for WSNs [19], with which sensor nodes

incorporate feedback messages included in the MAC layer acknowledgement to avoid net-

work congestion. The feedback message is authenticated with a Keyed One Way Hash Chain

(Keyed-OWHC) to prevent feedback fabrication. FBSR also uses a statistics-based detection

on a base station to discover potentially compromised nodes. Though the authors claimed

that FBSR is resilient against wormhole and Sybil attacks, such resilience is never evaluated

or examined. Additionally, the Keyed-OWHC-based authentication for the feedback message

in each MAC layer acknowledgement causes a major overhead in a multi-hop WSN.

2.4 Privacy Protection in Participatory Sensing Systems

The privacy leakage has arisen as one major concern involved in participatory sensing [30,

64, 129, 155]. The privacy attack comes in various forms. Besides the direct data theft, an

attacker my attempt to identify a user or his activity either explicitly or implicitly by the user’s

usage of the computing hardware or software, such as IP/MAC addresses, usage pattern and

device fingerprinting [42, 51, 77, 112]. The attacker may also attempt to analyze the data

pattern [2, 71, 79], infer the user context [102, 108]

The existing research has explored the privacy protection with diverse approaches. Gen-

erally, these approaches fall into one of the following categories [79]: regulatory rules, pri-

vacy policies, anonymity, and obfuscation. The regulatory rules and privacy policies rely

on administrative regulation and trust relationships. The anonymity-based approaches use

pseudonym and group users to generate ambiguity [40, 75, 135]. Many such approaches are

based on the concept of k-anonymity or its variants [137, 150], where privacy is obtained

when it is unable to distinguish one entity from k-1 other entities. Typical examples occur

in location-based services [47, 52, 101, 172]. Some of these approaches are known as ID ro-

tating [86] and mix networksshmatikov:06,benjamin:06. The obfuscation-based approaches

protect privacy by reducing the data quality [12, 114, 121], initially introduced for location-

based services [39]. This category of approaches are also referred to as “cloaking” in a few
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research projects [26, 53, 62]. To quantify the privacy, the researcher have created different

metrics. The k-anonymity-based approaches use the size of ambiguity set (k) as the level of

privacy [137]. The obfuscation-based approaches may define privacy as the expected magni-

tude of the noise added onto the data or the duration to be able to track the user [39, 62].

Most of the existing participatory sensing systems [33, 96, 107, 174] use the data to serve

only internal applications and thus do not concern themselves with privacy protection. A

recent project, AnonySense [28], built a participatory sensing system to allow any third-party

application to collect data from mobile users. AnonySense protects the user privacy by a mix

network. The mix network allows users to send messages anonymously and mixes enough

messages before reporting to applications. It mainly intends to unlink multiple data records

from the same user. However, unlike our Woodward system, AnonySense does not the privacy

attack based on prior knowledge of a certain user’s record.
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CHAPTER 3

DATA TRUSTWORTHINESS MODELING

We developed a resilient trust model, SensorTrust, to effectively detect faulty data in

wireless sensing systems due to either sensor malfunctioning or malicious attempts to report

false data. SensorTrust evaluates the trustworthiness of the collected data in wireless sensing

systems. While this model is mainly proposed for a certain common architecture of wire-

less sensing systems (hierarchical WSNs), this approach can be generalized to detect data

trustworthiness in a more generic setting. SensorTrust enables us to accurately identify the

current trust level of the data produced by a sensor. SensorTrust allows us to consider both

past history and recent risk when assessing the data trustworthiness. It also adapts to dynamic

environment.

3.1 Introduction

As an important type of wireless sensing systems, wireless sensor networks (WSNs) [120,

170] are ideal candidates for applications to report detected events of interest, such as mili-

tary surveillance and forest fire monitoring. A WSN comprises battery-powered senor nodes

with extremely limited processing capabilities. With a narrow radio communication range, a

sensor node wirelessly sends messages to a base station (network gateway) via a multi-hop

path.

Wireless sensor networks (WSNs) [120,170] are prone to data faults. A sensor node could

report inaccurate data. With the existence of a malicious attacker, the sensor node may even

report forged data. Thus, it is important to evaluate the data integrity in WSNs. One type of

important approaches for resolving data integrity issues in networked systems is trust man-

agement [7]. With trust management, each sensor node in the WSN is assigned a trust value
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to reflect its trustworthiness according to its past performance. Trust management of nodes

is effective in improving security [10, 95], supporting decision-making [70, 145], promoting

node collaboration [55] and resource sharing [89]. However, there are a few important issues

with existing work. First, most trust research focuses on link-level communication behav-

iors, and data integrity is overlooked. Since data collection is the main task of WSNs, the

importance of data integrity should never be underestimated. Second, overcomplicated mod-

els often render reputation system hard to apply to deployed WSNs. Those models may cause

much overhead. Finally, fair treatment of new transactions and past behaviors suffers various

attacks.

In this chapter, we proposed a resilient trust model, SensorTrust, to evaluate data trustwor-

thiness in hierarchical WSNs. In this model, the aggregator maintains trust estimations for

children nodes in terms of data trustworthiness. Unlike previous efforts, our current design of

SensorTrust mainly focuses on data integrity. SensorTrust integrates past history and recent

risk in a real-time way that accurately identifies the current trust level. Our model employs

Gaussian model [69] to rate data integrity in a fine-grained style, and a flexible update proto-

col to adapt to varied context. With acceptable overhead, the SensorTrust model is evaluated

with the real world sensor data from Intel Berkeley Lab and Motelab at Harvard University,

and compared with other approaches. The results indicate great advantage of SensorTrust to

handle faults and attacks.

The rest of this chapter is organized as follows: the detailed mechanism of the SensorTrust

model is depicted in Section 3.2; the evaluation of SensorTrust is given in Section 3.3 sepa-

rately; Section 3.4 summarizes this chapter.

3.2 SensorTrust Model

We proposed SensorTrust to evaluate the data trustworthiness of sensor nodes in hierarchical

WSNs. The hierarchical structure has been widely accepted in designing WSNs because it
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Figure 3.1: A typical hierarchical wireless sensor network.

optimizes network performance [59]. In a hierarchical WSN, each node relays data to its as-

sociated lower-level aggregator, and those aggregators forward received data to their higher-

level parent aggregators, and the forwarding continues until the top layer of the hierarchy, at

which point the data will be sent to the base station. Figure 3.1 shows part of such a hierarchy.

Such a hierarchical structure is easy to implement, and it is known that the hierarchical struc-

ture enables more efficient use of scarce resources, such as energy, frequency spectrum and

bandwidth [20, 58, 136, 144]. Our goal is to establish a trust environment against faults and

attacks targeting the data. Since it is usually beneficial to select reliable nodes as aggregators,

we assume the aggregators are trustable, and let the aggregators evaluate the trustworthiness

of their children nodes as in Section 3.2.1, 3.2.2 and 3.2.3.

3.2.1 Methodology

With SensorTrust, the aggregator maintains trust estimations for children nodes, and we inte-

grate its long-term reputation and short-term risk, and take into consideration both link-level

communication robustness and data integrity (Figure 3.2(a)), with a focus on data integrity.
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In this chapter, regarding communication, we will only consider one-hop link-level commu-

nication rather than multi-hop end-to-end communication. Long-term reputation, also called

conventional reputation, refers to its average performance level in its whole past history, and

short-term risk identifies to which degree its future behavior is associated with its recent

performance. Neither long-term reputation nor short-term risk alone could fully reflect cur-

rent trustworthiness. On the one hand, a single fault could occasionally happen to even a

trustworthy sensor node, but that doesn’t necessarily mean the node is unreliable. That sug-

gests the one-sidedness of short-term risk. On the other hand, long-term reputation treats

the node’s behavior in each transaction equally. But in the real world, a node with good av-

erage performance level might begin to behave negatively during recent transactions. That

could suggest that the sensor starts to malfunction. The well-known sleeper attack [44] is

such a scenario. Therefore, recent performance needs to be viewed differently. Since a node

can behave maliciously regarding either (link-level) wireless communication or data man-

agement, trustworthiness is evaluated from two aspects: communication robustness and data

integrity (Figure 3.2(a)). Most trust research focuses on communication behaviors, and data

integrity is overlooked. Since data collection is the main task of WSNs, the importance of

data integrity should never be underestimated. Because different applications have their own

specific requirements regarding communication trustworthiness and data trustworthiness, we

explore communication trustworthiness and data trustworthiness separately.

Our SensorTrust model uses a SensorTrust value, which is a decimal number in [0, 1], to

represent trustworthiness level. It is denoted as T in this chapter. The higher some node’s

SensorTrust value is, the more trustworthy that node is. Specifically, the SensorTrust value in

terms of communication robustness is the estimated probability of a positive communication

transaction; the SensorTrust value in terms of data integrity is the estimated probability of

integrity of data. At the beginning (before any transaction happens), the aggregator simply

gives its children nodes a SensorTrust value of 0, since no evidence of trustworthiness is
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available. Each time a sensor node interacts with its associated aggregator (or required by the

aggregator to do so), the aggregator evaluates the node’s behavior by giving a rating number

in [0, 1] for this transaction in terms of communication robustness and data integrity respec-

tively. This rating number reflects the aggregator’s opinion of the current transaction: the

higher the rating numbering is, the more positive the aggregator views the sensor node to be.

The rating number together with its latest SensorTrust value will be used by the aggregator

to update the node’s SensorTrust value (Figure 3.2(b)).

3.2.2 Transaction Rating

Our SensorTrust model rates each transaction by assigning a rating number in [0, 1]. We deal

with wireless communication SensorTrust and data SensorTrust separately. In the following,

always use R to denote the rating number for a transaction, and T to denote the SensorTrust

value.

First, though our focus is on data SensorTrust, we still give a simple discussion about

the communication SensorTrust. To rate the transaction between the sensor node and the

aggregator regarding communication, we distinguish between positive communication and

negative communication. Though there exist other communication behaviors that cannot be

simply categorized as positive or negative, we believe it is possible to produce a more concrete

rating algorithm for communication SensorTrust. If the sensor node is responding as well as

expected by the aggregator, i.e. responding in time with the right format, relaying what is

supposed to relay, and so on, then this transaction is regarded as positive communication.

Otherwise, it’s viewed as negative communication. Notice that such rating has nothing to do

with data quality. Even if the sensor node is sending faked data, it can be viewed as positive

communication, as long as the sensor node is behaving well in terms of transmission itself.

To define the rating number, assign rating number R = 1 to positive communication, and

R = 0 to negative communication.
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Now, let’s focus our attention on the data SensorTrust. We want to rate the data integrity

for a sensor node, and unlike various approaches based on outlier detection, the rating is

based on the widely applied Gaussian model [69], with a fine-grained style. The advantage

of using Gaussian model lies in the accuracy of data integrity estimation. As an supplemen-

tary measure, first, the obvious abnormal data over the threshold set up according to domain

experts will be detected, and rated with 0. Before further defining the rating number for a

transaction, we make the following assumption: in the same cluster, the distribution of the

data collected by sensor nodes can be depicted by the well-known Gaussian model, i.e., the

data are Gaussian distributed. Many measurements of physical phenomena can be approxi-

mated, to varying degrees, by the Gaussian distribution. Here the use of the Gaussian model

can be justified by the fact that sensor nodes within the same cluster often get closely related

measurements due to short distance between them. When testing the Intel Lab data and Mote-

lab data ( see Section 3.3 ), we found that, generally speaking, the data distribution is still

well described by Gaussian model, though occasionally irregular tails cause its distribution

to slightly deviate from Gaussian model. We demonstrate that deviation with an example.

Figure 3.3 displays the normal probability plot of 14 temperature values collected from dif-

ferent motes at Motelab. With normal probability plot, the data is plotted against Gaussian

distribution in such a way that the cross makers should form an approximate straight line.

Less departures from this straight line indicate less deviation from normality. As we notice

that the markers with data values within [64, 88] are very close to the line, and the remaining

markers, the so-called tails, depart from the line. The occurrence of such tails is very com-

mon in data distribution from a wide range of context where Gaussian model applied still

achieves satisfactory results. Additionally, according to the transaction rating described later

in this section, data outliers which also brings irregular tails, degrade the SensorTrust of the

reporting node.

Though the distribution of data for multiple physical attributes can be well modeled by

the multi-dimensional Gaussian model, to explain the algorithm in an easier way, we assume
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the data are from a single physical attribute. A natural extension can be developed for multi-

dimensional attributes. Denote X as the random variable of measurements by sensor nodes,

µ as the average value of sampled data received by the aggregator, and σ as the standard

deviation of sampled data. Then we have approximately

X ∼ N(µ, σ), and
X − µ
σ

∼ N(0, 1)

Let P be the probability density function for the standard Gaussian distributionN(0, 1). Then

P ( |d−µ|
σ

) depicts the likelihood forX to take the value around d. Since the probability density

function P reaches its maximum value at 0 (in other words, when d = µ), for normalization

purpose, we define the rating number

R =
P ( |d−µ|

σ
)

P (0)
= e−

(d−µ)2

2σ2

Because the probability density function depicts the likelihood of the occurring of data values,

such a rating scheme gives a fine-grained estimation of data accuracy. Table 3.1 lists the rating

numbers corresponding to the deviation of the data value from the average value µ. As in

Table 3.1, the deviation of 2σ from the average µ leads to a low rating number of 0.135. That

is consistent with the following fact: suppose a random value has the distribution N(µ, σ),

then it falls out of 2σ from µwith a probability 4.6%. Generally speaking, rare events deserve

low trust level, and thus low rating numbers.

Table 3.1: Rating numbers.

|d− µ| 0 0.5σ σ 1.5σ 2σ 3σ
R 1 0.882 0.607 0.325 0.135 0.011

Though valid data range is usually known by domain experts in the field, outlier detection

based on valid range fails to identify those unusually high or unusually low data which are
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still within valid range. The proposed rating scheme identifies those data with low trust level

by assigning low rating numbers.

3.2.3 SensorTrust Value Update

Given the rating number R for the current transaction and the latest SensorTrust value Told,

we want to find out the new SensorTrust value Tnew. Tnew is expected to incorporate both the

sensor node’s long-term reputation and short-term risk. An intuitive way is to use a weighted

average of R and Told as the value of Tnew. That is what is essentially adopted in the aging

mechanism of RFSN [44]. However, that method used against sleeper attacks still suffers

periodic attacks. Suppose we update the SensorTrust value by Tnew = (1 − w) × Told +

w × R, w ∈ (0, 1). We denote such an approach by RFSN-w. Regarding highly sensitive

applications, to resist sleeper attacks during which a node behaves well for a while before

behaving maliciously, w is expected to be relatively big. The reason is, we wish to degrade

such a node’s SensorTrust value as much as possible after behaving negatively, so that it

cannot recover its SensorTrust value easily. When it behaves maliciously, it gets a small-

valued R, and a big w reaches a small Tnew according to Tnew = (1 − w) × Told + w × R.

Unfortunately, a big weight w for the current rating number R leads to the following result: a

malicious node can recover its SensorTrust value fast by behaving positively for a relatively

short time. That is because its past negative behavior can be offset relatively easily due to a

big weight for the current rating number. To solve this problem, we update the SensorTrust

value using two different weights, a relatively big wdegrade ∈ (0, 1) and a relatively small

wupgrade ∈ (0, 1) as follows:

Tnew =

 (1− wdegrade)× Told + wdegrade ×R, if R ≤ Told

(1− wupgrade)× Told + wupgrade ×R, if R > Told

In order to resist the periodic attack, we can choose appropriate wdegrade and wupgrade in such

a way that the evolution of SensorTrust values will be subject to this rule: the SensorTrust
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value is gained slowly, but can be ruined easily by intense negative behaviors. Whenever the

current rating number R is smaller than its latest SensorTrust Told, a relatively big wdegrade

causes SensorTrust values to decrease fast to some level between R and Told, even close

to R if wdegrade is big enough. Whenever the current rating number R is bigger than its

latest SensorTrust value Told, a relatively small wupgrade prevents the SensorTrust value from

increasing fast. Such mechanism is effective against periodic attacks.

The two parameterswdegrade andwupgrade allow flexible application requirements. wdegrade

and wupgrade represent the extent to which upgraded and degraded performance are rewarded

and penalized, respectively. If any fault and compromise is very likely to be associated with a

high risk,wdegrade should be assigned a relatively high value to penalize fault and compromise

relatively heavily; if a few positive transactions cannot constitute evidence of trustworthiness

which requires many more positive transactions, then wupgrade should be assigned a relatively

low value. To help users choose suitable wdegrade and wupgrade, we first observe the following

fact: suppose a node’s current SensorTrust value is 0, after m perfect transactions with rating

number 1, its SensorTrust value will become 1 − (1 − wupgrade)m; suppose a node’s current

SensorTrust value is 1, after n malicious transactions with rating number 0, its SensorTrust

value will become (1 − wdegrade)
n. One possible solution is to let the user empirically de-

cide how many contiguous perfect transactions are expected to happen before upgrading one

node’s SensorTrust value from 0 to 0.8, and how many contiguous malicious transactions

are expected to happen before degrading one node’s SensorTrust value from 1 to 0.2. An-

swers from user can be used to decide the value of wdegrade and wupgrade. Further, the value

of wdegrade can be made context-aware: when negative behaviors happens frequently, raise

wdegrade as more serious penalty. Further study of parameter selection is left to Section 3.2.4.

3.2.4 Mathematical Study of SensorTrust Evolution

Here we study the evolution of the SensorTrust value with a periodic behavior. The study

shows, for a periodic behavior, to ensure the SensorTrust value gradually approaches the
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conventional reputation, it is required that

wupgrade
1 + wupgrade

≤ wdegrade ≤ min{1, wupgrade
1− wupgrade

}

Denote an arbitrary consecutive rating number sequence as R0, R1, R2, ..., Ri, Ri+1, ..., with

corresponding trustworthiness value T0, T1, T2, ..., Ti, Ti+1, .... With the periodic behavior,

the rating number sequence should display a similar periodic pattern. To simplify the prob-

lem, we consider the following scenario: Ri+k×(n+1) = 1, ∀1 ≤ i ≤ n,∀k ≥ 0, and

Rj×(n+1) = 0, ∀j ≥ 1. This is actually the rating sequence for a periodic communication

behavior in which a successful delivery is rated with a rating number 1, and an unsuccess-

ful delivery is rated with a rating number 0. The corresponding conventional reputation is

easily seen to be the successful delivery ratio n
n+1

. The following two claims are considered

equivalent: (1) for such a periodic behavior, the SensorTrust value gradually approaches the

conventional reputation n
n+1

; (2)

∀n ≥ 1, limk−>∞ Tk×(n+1) ≤ n
n+1

and

limk−>∞ Tk×(n+1)−1 ≥ n
n+1

Thus, the actual problem here is to decide when the claim (2) becomes true. We will briefly

go over the major steps.

After some computation,

limk−>∞ Tk×(n+1)

=
(1−wdegrade)×[1−(1−wupgrade)n]
1−(1−wupgrade)n×(1−wdegrade)
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Thus,

lim
k−>∞

Tk×(n+1) ≤
n

n+ 1

after transformation, is equivalent to

wdegrade ≥ 1− n

n+ 1− (1− wupgrade)n

Fortunately, with a bit calculus, we can prove that

n

n+ 1− (1− wupgrade)n

is an increasing function in terms of n. Again, that leads to the following fact:

∀n ≥ 1, wdegrade ≥ 1− n
n+1−(1−wupgrade)n

is equivalent to

wdegrade ≥ wupgrade
1+wupgrade

Therefore,

∀n ≥ 1, limk−>∞ Tk×(n+1) ≤ n
n+1

if and only if

wdegrade ≥ wupgrade
1+wupgrade
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Applying a similar procedure, we can prove that

∀n ≥ 1, limk−>∞ Tk×(n+1)−1 ≥ n
n+1

is equivalent to

wdegrade ≤ wupgrade
1−wupgrade

Therefore, with a periodic behavior, if the SensorTrust value is required to approach the

conventional reputation, then our model requires that

wupgrade
1 + wupgrade

≤ wdegrade ≤
wupgrade

1− wupgrade

Now, we will estimate the amplitude of trustworthiness variation.

limk−>∞(Tk×(n+1)−1 − Tk×(n+1))

= limk−>∞
Tk×(n+1)

1−wbig
− limk−>∞ Tk×(n+1)

=
wbig×[1−(1−wsmall)n]

1−(1−wsmall)n×(1−wbig)

≤ wbig

limk−>∞(Tk×(n+1)−1 − Tk×(n+1)) is an increasing function in terms of wbig, wsmall respec-

tively. Small values of wbig, wsmall lead to small fluctuation of trustworthiness around the

average rating number. On the other hand, real applications may require tuning wsmall to fit

the favored speed to gain a good reputation, and tuning wbig to fit the favored magnitude of

penalty for downgrading performance.

3.3 Evaluation of SensorTrust

In this section, we evaluate SensorTrust with data collected from the Intel Berkeley Research

lab [98] and Motelab [147] at Harvard University. To implement SensorTrust onto the ag-

gregator in a WSN, the aggregator maintains a data table to store the data received from its
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children sensor nodes during the most recent transmission period, and another SensorTrust

table to store current SensorTrust values for children nodes. The data table is updated when-

ever the aggregator receives data, and the SensorTrust table is updated once during each

transmission period. With the transaction rating results, the update protocol only involves

very simple computations. The main cost comes from the storage cost to maintain the two

tables, and the implementation of the rating algorithm. Suppose the cluster of the aggregator

has a size m. Then both the storage cost and the computation cost are Θ(m). With polyno-

mial approximation to the exponential function in the rating algorithm, the total overhead is

still acceptable.

In the Intel lab, humidity, temperature, light and voltage data were collected from 54

sensors deployed around 35 days, sampled once every 31 seconds. Regarding Motelab data,

our uploaded program collected similar data from 14 sensors for 16 hours, sampled once

every 10 seconds.

3.3.1 Evaluation with Intel Lab Data

We analyze the efficacy of SensorTrust in identifying the trustworthiness of sensor nodes at

Intel lab data. Experiments are conducted to compute SensorTrust values of different nodes

with varying wupgrade and wdegrade. The results show that the SensorTrust value integrates

both long-term reputation and short-term risk of wireless communication and data integrity,

and accurately captures the change of trustworthiness. Also, wupgrade andwdegrade are flexible

enough to satisfy specific application requirements.

As a first example, Figure 3.4(a), with a zoom-in view at Figure 3.4(b), depicts the com-

munication SensorTrust and the conventional reputation of mote 1 during [5.55 × 104 ×

31, 5.825 × 104 × 31](seconds). As mentioned in Section 3.2.3, we denote by RFSN-w

the approach which updates the SensorTrust value by Tnew = (1 − w) × Told + w × R,

w ∈ (0, 1). We compute the communication SensorTrust with three sets of parameters:

(1) wupgrade = 0.03, wdegrade = 0.05; (2) RFSN-0.03: wupgrade = wdegrade = 0.03; (3)
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RFSN-0.05: wupgrade = wdegrade = 0.05. Basically, the SensorTrust value is more sen-

sitive to changing behavior than the conventional reputation. The conventional reputation

at time t is the number of successful deliveries from the beginning time 0 till t divided by

the number of all attempted deliveries till t. The conventional reputation in the Figure 3.4

looks almost constant (not actually constant), due to the fact that a relative short-time change

doesn’t much impact the conventional reputation computed since time 0. Actually, the sensor

communication frequently failed for a few hours after the 5.605 × 104-th second. Though

conventional reputation doesn’t even seem to fall down, the SensorTrust values with those

three sets of parameters go down towards 0 fast since the 5.605 × 104-th second. When the

connection is well maintained for a length of time, the SensorTrust values rise, even above

its conventional reputation. Comparing the three SensorTrust series with different param-

eters: RFSN-0.03 and RFSN-0.05 underestimate potential risk before the 5.605 × 104-th

second, due to the fact that the equality of wupgrade and wdegrade causes relatively fast recov-

ery of SensorTrust values from communication failures; In contrast, SensorTrust values with

wupgrade = 0.03, wdegrade = 0.05 tend to better reflect the potential risk while maintaining

a relatively accurate estimate of the sensor’s trust level based on its past performance. As

soon as the failures since the 5.605 × 104-th second are identified, the SensorTrust value is

penalized relatively heavily with wdegrade = 0.05. Though RFSN-0.05 causes the same extent

of penalty, the setting of wupgrade = 0.05 causes overestimate of the SensorTrust values when

the communication is better maintained before the 5.605× 104-th second.

Now we observe how SensorTrust values for physical data evolve through another example.

Take wupgrade = 0.0149 and wdegrade =
wupgrade

1−w2
upgrade

in the following. All the temperature

data series from 54 motes is plotted in Figure 3.5(a), with the highlighted series from mote

4. Mote 4’s temperature SensorTrust is plotted in Figure 3.5(b). It can be easily seen that

when mote 4 temperature data get closer to the average temperature, its SensorTrust value

increases; when mote 4 temperature data start to deviate more from the average temperature,

its SensorTrust value decreases.
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3.3.2 Attack Analysis with Motelab Data

Next we analyze the efficacy of SensorTrust against faulty data and malicious data manipu-

lation. We generate a few common types of faults and attacks against the Motelab data. The

results indicate the resilience of SensorTrust is very good.

The first type is a combination of sleeper attack and stuck-at fault [44]. The sleeper attack is a

scenario wherein a node starts misbehaving after creating a good reputation through positive

behaviors for a certain amount of time. And the stuck-at fault represents a sensor getting stuck

at a wrong data value (sticky value) and remaining there permanently or intermittently. As a

combination, we keep the original accurate data of a mote during a certain amount of time,

and use sticky value to replace the data thereafter. The experiments show that SensorTrust

value typically plummets down from a high level towards 0 once the stuck-at fault occurs. As

an example, we use a sticky temperature value 0 to replace the temperature data after 1000

samples at mote 63. In Figure 3.6(a), the SensorTrust values in terms of temperature data

for all motes are plotted against the time, with the thick red line for mote 63, and blue for

other motes. The mote 63 creates a good trust level for itself during the first 1000 samples.

However, that reputation is quickly destroyed after a few reports of sticky value.

In another type of attack, we generate random data at randomly selected sensor nodes.

Due to the random nature of wild environment, it is not easy to tell random data within a

reasonable range from normal data. The experiments show that the mote generating random

data have much lower SensorTrust values than other motes. As an example, we generate

random temperature data from 0 to 50 degree Celsius at mote 63 As seen in Figure 3.6(b),

mote 63 (thick red line) maintains SensorTrust values no more than 0.3, while other nodes

(blue) gain SensorTrust values of at least 0.8 after the reputation accumulation stage.

The third type of attack is periodic attack. In a periodic attack [168], every time the

attacker successfully achieved a cover reputation T1, he will launch attacks until his trust

value drops to T2. Then he will provide some good services again to re-build his reputation.

It can continue doing so without being detected. The experiments show that with a relatively
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big wdegrade and a relatively small wupgrade, nodes compromised by the periodic attack tend

to have much lower SensorTrust values than others. In the following example of the periodic

attack, mote 63 reports reports sticky value 0 once after correctly reporting data every 10

times. With wupgrade = 0.02 and wdegrade = 0.05, the SensorTrust values of mote 63 are

much lower than those of other motes (see Figure 3.6(c)).

Finally, we generate anomaly data at randomly selected motes. Results show that motes

reporting anomaly data have very low SensorTrust values. As an example, we modify the

temperature data at mote 63 to be 7 degrees higher than the original data. As seen in Figure

3.6(d), the SensorTrust values of mote 63 (thick red line) are always lower than 0.08, while

other motes (blue) gradually gain SensorTrust values of above 0.5 or even much higher.

3.3.3 Investigation of Multiple Malicious Nodes

During the attack analysis experiments with the Motelab data as described in Section 3.3.2,

we note that the number of malicious nodes impacts the performance of SensorTrust. Natu-

rally, the more malicious nodes present in a WSN, the more noise it causes to a data trustwor-

thiness system. When the number of the malicious nodes increases, it poses greater difficulty

to identify those malicious nodes. Another factor impacting SensorTrust is the type of the

attack. With a different type of attack, the performance of SensorTrust usually shows a slight

difference; with more specific domain knowledge about the sensing data, the attackers can

often launch more powerful attacks. While it is not likely to exhaust all the types of attacks,

we present our investigation of the resilience of SensorTrust against multiple malicious nodes

exploiting certain known data range and random data generation. Our investigation indicates

that with most nodes being honest, SensorTrust generally performs well in the presence of

multiple malicious nodes. Its performance starts to show reasonable degradation when a large

portion of the nodes become malicious attackers.

Specifically, in the investigation experiments, we provide a set of Gaussian-distributed

data randomly generated as the original authentic data set. Totally there are 100 nodes, each
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of which reports data once in a time unit, from time 1 through time 1000. At any moment

from time 1 to time 1000, the original data reported by all the nodes are Gaussian-distributed,

with a mean value of 50 and a standard variance of 5. The Gaussian-distributed data are

generated randomly through the Matlab software. Now, as an attack, the first few nodes

start maliciously reporting data from a uniform distribution on the data interval [30, 70]. To

identify the malicious nodes, we will compute the SensorTrust values: any node with an av-

erage SensorTrust value of lower than 0.5 on the time interval [900,1000] will be deemed

as a malicious one. Figure 3.7 illustrates the evolution of SensorTrust for both honest nodes

(upper thin blue lines) and malicious nodes (lower thick red lines). Figure 3.7(a), (b), (c) and

(d) indicate that SensorTrust can distinguish most malicious nodes from honest nodes with

the existence of multiple malicious nodes. Note that the SensorTrust values of the malicious

nodes slightly increase with an increasing number of malicious nodes. The SensorTrust val-

ues of the honest nodes fall into the interval [0.6, 0.8]. With 5, 10 or 20 malicious nodes, the

SensorTrust values of the malicious nodes are usually under 0.5, as shown in Figure 3.7(a),

(b) and (c). However, with 30 malicious nodes, the SensorTrust values of certain malicious

nodes are often around 0.5, as shown in Figure 3.7(d). That implies the greater difficulty

in identifying the malicious nodes since their SensorTrust values seem to build up a more

positive profile.

Experiments with from 1 such malicious node through 60 malicious nodes result in a 0

false positive rate and an reasonably decreasing recall rate. The 0 false positive rate indicates

that SensorTrust generally do not misjudge an honest node in being a malicious one. The

recall rate reflects the percentage of identified malicious nodes among all the malicious nodes.

The recall rate is perfectly 100% until the number of malicious nodes goes beyond 42. The

recall rate drops to around 60% with 54 malicious nodes, and 30% with 60 malicious nodes.

Overall, our experiments show that SensorTrust generally performs well in identifying

the trustworthiness of a node in the presence of multiple malicious nodes. Thus, with low
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SensorTrust values, the malicious nodes are distinguished from the honest nodes. When a sig-

nificant portion of the network consists of malicious nodes, the performance of SensorTrust

starts to degrade.

3.4 Summary

In this chapter, we proposed a resilient trust model, SensorTrust, to evaluate data trustwor-

thiness in hierarchical WSNs. In this model, the aggregator maintains trust estimations for

children nodes. Unlike previous efforts, our current design of SensorTrust mainly focuses on

data integrity, though communication robustness can also be incorporated. With this model,

past history and recent risk are synthesized in a real-time way that accurately identifies the

current trust level. Our model employs the Gaussian model to rate data integrity in a fine-

grained style, and a flexible update protocol to adapt to different applications. With accept-

able overhead, the SensorTrust model is evaluated with the real world sensor data from Intel

Berkeley Lab and Motelab at Harvard University, and compared with other approaches. The

results indicate great advantage of SensorTrust to handle varied faults and attacks.
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Figure 3.2: (a) The SensorTrust model, (b) the update protocol of SensorTrust.
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Figure 3.3: Normality testing with normal probability plot.
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Figure 3.5: (a) temperature data series from all motes (gray) with mote 4 data highlighted (thick red
line), (b) SensorTrust value in terms of temperature data for mote 4.
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Figure 3.6: SensorTrust values for all motes (blue) with a faulty or attacked mote highlighted (thick
red line). Types of faults and attacks: (a) sleeper attack and stuck-at fault, (b) random data generation,
(c) periodic attack, (d)data abnormality.
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Figure 3.7: SensorTrust values for 100 nodes with the first few nodes being malicious. The upper
thin blue lines are for honest nodes while lower thick red lines are for malicious ones. The number of
malicious nodes is: (a) 5, (b) 10, (c) 20, (d)30.
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(a) Recall rate. (b) False positive rate.

Figure 3.8: Identity malicious nodes with a SensorTrust threshold of 0.5: (a) recall rate; (b) false
positive rate (perfectly 0).
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CHAPTER 4

LOCALIZATION OF SMALL-SIZED GROUND ROBOTIC
VEHICLES

We developed a low-cost, self-contained, accurate localization system (LOBOT) for small-

sized ground robotic vehicles. This localization system enhances the wireless sensing sys-

tems containing mobile sensors by providing more accurate and highly available location

data, with only limited overhead in economic cost and management. The hardware devices

LOBOT uses are easily-available at low cost. LOBOT is self-contained in that it virtually

requires no external devices or external facility management and that it needs no prior infor-

mation. LOBOT does not require external reference facilities, expensive hardware, careful

tuning or strict calibration. Additionally, LOBOT applies to both indoor and outdoor envi-

ronments and realizes satisfactory performance. Further, LOBOT maintains low cumulative

error.

4.1 Introduction

Small-sized ground robotic vehicles have great potential to be deployed in situations that are

either uncomfortable for humans or simply too tedious. For example, a robot may become

part of industrial operations, or become part of a senior citizen’s life, or become a tour guide

for an exhibition center. The robot is kept as small as possible to allow access through narrow

passageways such as a tunnel. To fulfill these missions, the robotic vehicle often has to obtain

its accurate localization in real time. Considering the difficulty or impossibility in frequent

calibration or the management of external facilities, it is desirable to have a self-contained

positioning system for the robot: ideally, the localization system should be completely inte-

grated onto the robot instead of requiring external facilities to obtain the position; the system
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should work indoors and outdoors without any human involvement such as manual calibra-

tion or management. Meanwhile, the cost is expected to be as low as possible.

There exist various localization schemes for ground robotic vehicles. These techniques

normally utilize GPS, inertial sensors, radio signals, or visual processing. GPS often be-

comes inoperable in certain environments such as indoors or in wild forests. Additionally,

the GPS operations consume power quickly. As an alternative, a localization system may use

various waves including electromagnetic waves of various frequency (e.g., common WiFi

radio, Ultra-wideband [161], RFID radio [140], Infrared [117]), laser beam [60], and ultra-

sound [9]. The radio-based positioning is among the most popular techniques. This tech-

nology requires a set of external devices to generate or receive radio signal; as the reference

nodes, these external devices should have known positions. The accuracy of the radio-based

positioning strongly depends on the proper calibration of the reference devices and the tar-

get node [148, 149] as well as a friendly radio environment. Maintaining such a positioning

system can be costly and difficult in terms of additional hardware [25, 93, 119], intensive

tuning [99], and environmental management. It is also vulnerable to interference from other

signals, thus affecting the accuracy of positioning.

Another category of solutions is vision techniques for mobile robot navigation [36]. Gen-

erally, these techniques heavily rely on sophisticated techniques on the recognition of an

object or shape from images and often have restricted spatial and visional requirements. The

performance usually strongly depends on the environment in which the robot operates and the

localization suffers frequent failure. Additionally, they may require a known map of the envi-

ronment. Overall, the vision-based positioning is relatively costly and difficult to implement

or maintain.

Additionally, inertial sensors are often used in positioning or navigation systems to de-

tect movement [54,76,80,92,132]. Different than the radio-based and the vision-based tech-

niques, the operation of inertial sensors is independent of external features in the environment
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and they do not need an external reference. The inertial sensors mainly comprise accelerome-

ters and gyroscopes (gyros). An accelerometer measures specific force and a gyroscope mea-

sures angular rate. Many inertial systems often require extremely accurate inertial sensors

to maintain accuracy, which often causes high cost and calibration difficulty. Being widely-

available and inexpensive, the accelerometer is often perceived as a solution for localization.

The accelerometer-based positioning schemes generally use the following formula to derive

distance from a given acceleration a: s(t) =
∫ ∫

a(t)dtdt. In spite of being theoretically well

founded, empirically, the double integral is likely to cause cumulative error. The methods

proposed to correct this error often have not been thoroughly evaluated yet.

To resolve the aforementioned issues, we proposed LOBOT, a low-cost, self-contained lo-

calization system for the small-sized ground robotic vehicle. LOBOT identifies the real-time

localization through a set of self-integrated inexpensive sensors including an accelerometer,

a magnetic field sensor, several motor rotation sensors, and infrequent GPS-augmentation.

It detects local relative position with a combination of the accelerometer, the magnetic field

sensor and the motor rotation sensors. LOBOT infrequently invokes the GPS-augmentation

to assist in identifying global location and correcting drifting errors. LOBOT can be applied

to both indoor and outdoor environments. These extra sensing devices including the GPS

receiver are integrated onto the ground robotic vehicle and only induce a limited cost to the

vehicle. LOBOT does not require any external facilities or prior information and it virtually

needs no effort of external maintenance. LOBOT is free of many common requirements or is-

sues raised in other localization schemes such as radio-based schemes and vision-technique-

based schemes, such as expensive hardware, external reference facilities, careful tuning or

strict calibration, and prior map information. It also has significant improvement in location

precision over the purely-accelerometer-based approach. We developed a prototype of the

LOBOT system and conducted various field evaluation. The empirical results indicate the

satisfactory performance of LOBOT.
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The rest of this chapter is organized as follows: the detailed mechanism of LOBOT is

described in Section 4.2; the implementation and empirical evaluation of LOBOT are given

in Section 4.3; the summary of this chapter is presented in Section 4.4.

4.2 The Design of LOBOT

Local relative positioning

3-axis 
accelerometer 

Magnet field 
sensor

Rotation 
sensor

Infrequent GPS-
augmentation

L O B O T

Figure 4.1: The design of LOBOT.

LOBOT localizes a robotic vehicle with a hybrid approach consisting of infrequent ab-

solute positioning through a GPS receiver and local relative positioning based on a 3D ac-

celerometer, a magnetic field sensor and several motor rotation sensors (Figure 4.1). All

these sensors are installed on the robotic vehicle. The motor rotation sensors are to detect the

rotational movement of the motors and thus infer the travel distance of the robot. An embed-

ded microcontroller inside the robot vehicle takes central control of these sensors and is also

responsible for computing the current absolute position. LOBOT infrequently uses GPS to

obtain an absolute position and utilizes the accelerometer, the magnetic field sensor and the

motor rotation sensors to measure local relative movement since the last known absolution

position through GPS. With the GPS data, correction is performed to reduce the cumulative

error from the local relative positioning component. The infrequent use of GPS reduces the

dependence on the environmental impact, e.g., a small area without GPS signal. As a matter
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of fact, even if GPS is available, LOBOT may still only uses the local relative component over

a short time period instead of GPS because GPS is known to have error of up to 20m while

the local relative component has much lower error over a short time elapse. Additionally, the

infrequent use of GPS saves electric power.

The local relative positioning component measures the instantaneous three-dimensional

moving direction through both the accelerometer and the magnetic field sensor. It also mea-

sures the momentary travel distance for every small amount of time elapse through the rota-

tion sensors attached to the vehicle motors. With the moving direction data together with the

momentary travel distance, we can obtain an estimate of the movement vector. This seem-

ingly straightforward strategy, however, has encountered a few major technical issues that

arise in practical applications. One lies in the distinction between the world reference sys-

tem and the on-board relative reference system. Another factor that impacts the localization

practice is the way the robotic vehicle operates the motors to move. A further complication

comes from the cumulative error.

The overall procedure for LOBOT to decide the position is illustrated by Figure 4.2.

Roughly, the local relative positioning infers the momentary moving orientation (Subsec-

tion 4.2.2) and estimates the momentary travel distance (Subsection 4.2.3), with the aid of

the accelerometer, the magnetic sensor, and the rotation sensors. The local relative position-

ing accumulates these momentary estimates to compute the position of the vehicle at any

time. Over certain time elapse, the infrequent GPS-augmentation is conducted and is used to

perform drift correction (Subsection 4.2.4) so as to obtain better position estimate.

LOBOT is a low-cost, self-contained system. All the necessary hardware devices needed

to perform the positioning are a GPS receiver, a 3D accelerometer, a magnetic field sensor,

and several motor rotation sensors. LOBOT only needs the commodity versions of these

devices that come with moderate precision and low prices. For ease of development, our

prototype uses a GPS receiver, a 3D accelerometer, a magnetic field sensor from an unlocked

HTC Legend smartphone that is sold at no more than $300 at the time of this writing. The
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Figure 4.2: The overall procedure of LOBOT.

motor rotation sensors used in this prototype is obtained from a brand of hobby servo motor

that sells at $20. Given a complete circuit design, the actual cost of manufacturing a micro-

controller chip integrating all these raw sensors (including the GPS receiver) can very likely

be brought down to well under $100 per set. Additionally, all these sensing devices including

the GPS receiver can be well powered by the battery of the HTC legend smartphone. Com-

pared with the intense power needed to drive a robotic vehicle, these sensing devices induce

only limited overhead in the power consumption. Thus, LOBOT is a low-cost system. The

self-containedness of LOBOT is reflected in two aspects: virtually no requirement of exter-

nal devices or external facility management; no prior information needed. All the necessary

devices are attached to the body of the robotic vehicle that we need to localize. Except for

GPS, LOBOT does not require any external devices (e.g., a reference anchor point). The GPS

satellite network is maintained by official organizations and thus the use of a GPS receiver

virtually needs no effort to maintain external facilities. Unlike many positioning schemes

based on vision recognition techniques, LOBOT does not require prior information of the

environment either.

4.2.1 Reference Frames

To determine the current moving orientation, we will first need to make a choice on the

reference frame. The direction is expressed in a coordinate system relative to the reference
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frame chosen. Here we will first briefly cover the definition of the reference frames and their

meanings. We adopt a right-handed orthogonal reference frame, LOBOTFrame{XL, YL, ZL}

as follows: the Y axis is parallel to the magnetic field of the earth and points towards the

magnetic north pole; the Z axis points towards the sky and is parallel to the gravitational

force; the X axis is defined as the outer vector product of a unit vector of Y and that of Z

so that {XL, YL, ZL} defines a right-handed orthogonal reference frame. For the purpose of

measuring relative movement, the choice of the origin does not affect our result and thus we

omit the origin when describing the reference frames. Additionally, we assume that in an

area being explored by the robot the directions of both the gravitational force and the earth’s

magnetic field are constant. As a matter of fact, the gravitational direction rarely changes in

a city-magnitude area. The change of the earth’s magnetic field direction in such an area is

usually also negligible without the existence of another strong magnetic field. If the strength

of another magnetic field is so strong that it causes a noticeable difference on the readings

of the magnetic sensor, LOBOT will switch to the pure GPS-based mode if the GPS service

is available. Thus, we have a well-defined reference frame LOBOTFrame for measuring the

relative movement of the vehicle. Roughly, the X axis is tangential to the ground at the robot’s

current location and points east; the Y axis is tangential to the ground and points north (it is

slightly different than the magnetic north); the Z axis roughly points towards the sky and is

perpendicular to the ground.

Before introducing how to determine the robot’s moving orientation, we first show three

other closely related right-handed orthogonal reference frames. Unlike LOBOTFrame, these

frames change as the robot moves. The first one is the reference frame relative to the rigid

body of the robot, which we name VehicleBodyFrame. VehicleBodyFrame is not a static

frame when the vehicle moves. Specifically, VehicleBodyFrame is a right-handed orthogonal

reference frame {XV , YV , ZV }, described as follows: the Y axis is parallel to the lines con-

necting the centers of a motor and another motor right behind it, and points to the front; the

Z axis points towards the sky and is perpendicular to the surface containing all the centers of
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the motors; the X axis is defined as the outer vector product of a unit vector of the Y axis and

that of the Z axis so that {XV , YV , ZV } defines a right-handed orthogonal reference frame

(the X axis points to the right side of the vehicle).

Another relative reference frame, denoted as AccelerometerBodyFrame, is also a right-

handed orthogonal reference frame {XA, YA, ZA} on which the accelerometer reading is

based. Usually the 3D reading from an accelerometer indicates how the measured accel-

eration is decomposed into these three axis directions. This reference frame is relative to

the circuit board of the accelerometer and is defined by the manufacturer. Two of the axes

are often parallel to the circuit board. Similarly, the last reference frame which we name

as MagneticSensorBodyFrame, is another right-handed orthogonal relative reference frame

{XM , YM , ZM} on which the magnetic sensor reading is based. Note that VehicleBodyFrame,

AccelerometerBodyFrame and MagneticSensorBodyFrame may all change when the vehicle

moves; however, a fixed installation ensures inherent unchanged relations between Vehicle-

BodyFrame and the two latter frames and such relations can be decided during installation.

More Intuitive Description of Reference Frames

We now illustrate the several reference frames used through figures and more intuitive de-

scription. LOBOTFrame is used as the reference frame when deciding the momentary mov-

ing orientation of a ground robotic vehicle. Figure 4.3(a) illustrates the three axes of LOBOT-

Frame: roughly, the X axis roughly points east; the Y axis points towards the magnetic north

pole; the Z axis points outwards into the sky. LOBOTFrame only depends on current earth

orientation and can be regarded as static. VehicleBodyFrame is used to reflect the current

orientation of the rigid body of the robot. VehicleBodyFrame changes as the vehicle moves.

Figure 4.3(b) illustrates the three axes of VehicleBodyFrame: roughly, the X axis points to the

right side of the vehicle; the Z axis points outwards into the sky; the Y axis points towards

the front.
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Figure 4.3: The three axes of (a) LOBOTFrame and VehicleBodyFrame.

AccelerometerBodyFrame and MagneticSensorBodyFrame are the references frames with

which the three-dimensional sensing readings are interpreted from an accelerometer and a

magnetic sensor respectively. These reference frames are defined by the hardware manu-

facturers and reflect the current orientation of the corresponding sensor boards. When these

sensors are attached to a fixed position on a robotic vehicle, AccelerometerBodyFrame and

MagneticSensorBodyFrame change as the vehicle moves. Figure 4.4 illustrates a possible

configuration of the three axes of a sensor board: roughly, the X axis points to the right side

of the sensor board; the Y axis points towards the front; the Z axis points outwards into the

sky;

Table 4.1 summarizes these reference frames and their dependencies.

Table 4.1: Reference frames and their dependencies

Frame Depends on
LOBOTFrame Earth

VehicleBodyFrame Vehicle body orientation
AccelerometerBodyFrame Accelerometer sensor board orientation

MagneticSensorBodyFrame Magnetic sensor board orientation
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Finally, we briefly describe the relationship between each of these reference frames. The

relationship between VehicleBodyFrame ({X̂V , ŶV , ẐV }) and LOBOTFrame ({X̂L, ŶL, ẐL})

basically reflects the current orientation of the vehicle. Specially, we need to express the

three vectors {X̂V , ŶV , ẐV } in terms of the other three vectors {X̂L, ŶL, ẐL}. Then we will

know which direction the vehicle moves towards (on earth), including the slope of the current

ground surface. The relationship between AccelerometerBodyFrame and VehicleBodyFrame

reflects the mounting direction of the accelerometer on the vehicle. There is a similar rela-

tionship between MagneticSensorBodyFrame and VehicleBodyFrame.

4.2.2 Inferring Orientation of Robotic Vehicle

Now we describe how LOBOT infers the current instantaneous moving direction of the

robotic vehicle relative to LOBOTFrame, which is a static frame (relative to the earth). De-

note the unit vectors along the axes of each reference frame (normalized basis vector) as in

Table 4.2. To infer the orientation of the vehicle, it is enough to express {X̂V , ŶV , ẐV } in
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Table 4.2: Reference frames and their normalized basis vectors

Frame Normalized basis vectors

LOBOTFrame {X̂L, ŶL, ẐL}
VehicleBodyFrame {X̂V , ŶV , ẐV }

AccelerometerBodyFrame {X̂A, ŶA, ẐA}
MagneticSensorBodyFrame {X̂M , ŶM , ẐM}

terms of {X̂L, ŶL, ẐL}. Given the gravitational acceleration vector g, then

ẐL = − g

‖g‖
(4.1)

Let the normalized accelerometer reading be (a1, a2, a3) relative to AccelerometerBodyFrame.

Then

ẐL = − g

‖g‖
= a1 · X̂A + a2 · ŶA + a3 · ẐA (4.2)

Similarly, given the normalized reading (m1,m2,m3) from the magnetic sensor, we have

ŶL = m1 · X̂M +m2 · ŶM +m3 · ẐM (4.3)

Let TAV be the transformation matrix between AccelerometerBodyFrame and VehicleBodyFrame,

TMV be the transformation matrix between MagneticSensorBodyFrame and VehicleBodyFrame,

so that

(X̂A, ŶA, ẐA) = (X̂V , ŶV , ẐV ) · TAV (4.4)

(X̂M , ŶM , ẐM) = (X̂V , ŶV , ẐV ) · TMV (4.5)
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Thus, we have the following equations:

ẐL = (a1, a2, a3) · (X̂A, ŶA, ẐA)
′

(4.6)

= (a1, a2, a3) · T
′

AV · (X̂V , ŶV , ẐV )
′

(4.7)

ŶL = (m1,m2,m3) · (X̂M , ŶM , ẐM)
′

(4.8)

= (m1,m2,m3) · T
′

MV · (X̂V , ŶV , ẐV )
′

(4.9)

Now, we are able to construct a special orthogonal matrix as the transformation matrix TLV

between LOBOTFrame and VehicleBodyFrame as follows: the second column vector of TLV

is:

((m1,m2,m3) · T
′

MV )
′
= TMV · (m1,m2,m3)

′
(4.10)

The third column vector is:

((a1, a2, a3) · T
′

AV )
′
= TAV · (a1, a2, a3)

′
(4.11)

The first column vector will be the outer product of the second column vector and the third

column vector. TLV is determined in this way because the unique transformation matrix

between {X̂L, ŶL, ẐL} and {X̂V , ŶV , ẐV } must be an orthogonal matrix with a determinant

1. Consequently, we have constructed the transformation matrix TLV between LOBOTFrame

and VehicleBodyFrame from TAV , TMV , the accelerometer readings and the magnetic sensor

readings, such that

(X̂L, ŶL, ẐL) = (X̂V , ŶV , ẐV ) · TLV (4.12)
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All the above computation involves only a limited number of basic arithmetic operations.

Considering that an orthogonal matrix has its inverse being its transpose, we have

(X̂V , ŶV , ẐV ) = (X̂L, ŶL, ẐL) · T−1LV (4.13)

= (X̂L, ŶL, ẐL) · T ′LV (4.14)

Therefore, we have achieved expressing {X̂V , ŶV , ẐV } in terms of {X̂L, ŶL, ẐL} through

limited algebraic arithmetic operations and thus determined the orientation of the vehicle.

The question whether the robotic vehicle is moving forward or backward can be decided

from the readings (positive or negative) of the rotation sensors.

Note that the above derivation assumes that the readings of the accelerometer reflect the

gravitational force. When the robotic vehicle is moving, the accelerometer measurement

often involves the movement acceleration. However, the movement acceleration for such a

robotic vehicle is usually a very small fraction of the gravitational acceleration. As verified

in our experiments, the effect of movement acceleration is negligible; even if it might show

a considerable value during speeding up and braking, the time elapse in which it occurs is so

short that it almost has no observable effect to localization.

4.2.3 Travel Distance

After inferring the instantaneous orientation of the robotic vehicle, we also need to know the

momentary travel distance so as to compute the momentary relative movement. The rotation

sensor attached to a motor continually measures the rotating angle. Let r be the rotation

sensor reading in degrees, d be the wheel’s diameter, then the travel distance of the wheel’s

movement is r·π·d
360

. In the case of slippage and obstacle, a few recent research projects have

been developed to handle such issues using methods such as sensing modalities and obstacle

avoidance [123].

Another important issue we need to address relates to the way the robotic vehicle operates its
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motors. It is common that a robotic vehicle may make turns or follow a curved path through

adjusting its two sides of motors at different speeds and even in reverse direction. Now, the

question is how to calculate the moving distance given two different rotation sensor readings,

one on each side. First, we observe that any small segment of movement, in a short enough

time, can be perceived as part of a circular movement around a certain origin. This observa-

tion can be made even when the two sides of wheels move in reverse direction. As an extreme

scenario, when the vehicle makes a turn by reversing the two sides of motors at exactly the

same magnitude of speed, the approximating arc has a radius of zero. In mathematical terms,

a local curve, if short enough, can be approximated by a small arc with the same curvature

and tangential at the intersection, as illustrated in Figure 4.5. The curvature reflects how fast

the curve turns at a point and depends on both the first derivative and second derivative of

the curve. Approximating a curve locally with such an approximating arc produces a negli-

gible cumulative difference when computing distance; that is because the approximating arc

locally has almost the same first and second derivatives.

We claim that the travel distance of the robotic vehicle can be approximated by the average

of the two side motor’s travel distance. A motor may rotate either forward or backward; it

rotates forward (backward) in an attempt to move the vehicle forward (backward). Corre-

spondingly, in addition to the absolute distance measured, each reading of rotation sensor

is assigned a sign: positive for forward rotation and negative for backward rotation. When
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Figure 4.6: Travel distance with different-pace motors: (a)same direction; (b)reverse direction.

the two sides’ motors are moving in reverse direction, a positive distance is recorded as one

side’s reading and a negative distance for the other side. The robotic vehicle’s direction is

determined by the resulting average’s sign. First, we discuss the case when the two motors

are moving in the same direction but at different pace. As illustrated in Figure 4.6(a), the

center of the vehicle moves in a arc equally between Motor A’s trace arc and Motor B’s trace

arc. It is straightforward that the center’s arc length is the average of Motor A’s arc length and

Motor B’s. Thus, we just theoretically proved the claim in the case that Motor A and B move

in the same direction but at different pace. Next, we discuss the case that Motor A and B

move in reverse direction. In this case, as shown in Figure 4.6(b), the origin O around which

the whole vehicle almost circularly moves is between the two motors. It is closer to the one

with the smaller absolute pace. A bit straightforward geometry shows that the center’s travel

distance is the average of Motor A’s and B’s, with Motor A and B having different signs. The

sign of the average determines the moving direction of the vehicle center.

4.2.4 Drift Correction

As in many inertial systems, the localization computed through movement direction and

travel distance tends to show drifting effect after a while. Figure 4.7 compares the the trace
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retrieved in one of our outdoor experiments through our local relative positioning and through

GPS. We observe that positioning purely through local relative positioning gradually drifts

from the correct position and finally accumulates large error. Thus, LOBOT needs to apply
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Figure 4.7: Drift in local relative positioning.

drift correction to the localized results by utilizing the absolute position obtained from GPS.

LOBOT requests GPS sampling in an adaptive way that incorporates both location accu-

racy and energy use. The more frequent GPS sampling likely results in better correction of

positioning; but more frequent GPS sampling also means significantly higher cost of power

consumption [111, 175]. Roughly, LOBOT adjust its GPS sampling frequency according to

the magnitude of the cumulative error of the local relative positioning. When the cumulative

error of the local relative positioning between the current GPS sampling and its preceding

GPS sampling increases, LOBOT increases its GPS sampling frequency accordingly; other-

wise, LOBOT reduces its GPS sampling frequency. Specifically, letCErrThd be the tolerant

threshold of the cumulative error of the local relative positioning between two consecutive

GPS samplings; P be the time elapse between the two most recent GPS samplings; CErr

be the cumulative error of the local relative positioning between these two most recent GPS
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samplings. Then the time elapse from the most recent GPS sampling to the next GPS sam-

pling will be P · CErrThd/CErr. In practice, to increase stability, LOBOT adopts a GPS

sampling gap period slightly lower than P · CErrThd/CErr. When the GPS signal is not

available, LOBOT periodically wakes up the GPS receiver to check its availability and then

puts it to sleep.

LOBOT assumes identical distribution of cumulative error among all time periods of

equal length. Let the probability sample space be the setX of all possible localization-related

events, err(X, t) be the random error of local relative positioning at time t, and corr(X, t)

be the correction at time t. corr(X, t) is the difference between the position obtained through

relative positioning and the ground truth. err and corr are both stochastic processes. Let the

time start at 0 (last successful GPS request), end at T(the current GPS reading time); assume

LOBOT performs local relative positioning at time 1, 2, 3..., T − 1, T . Here we analyze the

correction with these simplified assumptions in mind; in fact, our reasoning works with a

more general situation with the same logic. Then corr(X, 0) = 0. We have

corr(X, t) =
t∑
i=0

err(X, i), 0 < t < T (4.15)

According to the maximal-likelihood estimation, an optimal estimate of corr(X, t) is its mean

value

E(corr(X, t)) =
t∑
i=0

E(err(X, i)) (4.16)

= t · E(err(X, 1)) (4.17)

We also have

E(err(X, 1)) = E(corr(X,T ))/T (4.18)
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Therefore, combining the above two equations, we have

E(corr(X, t)) = t · E(err(X, 1)) (4.19)

= t · E(corr(X,T ))/T (4.20)

Again, based on the principle of maximal-likelihood estimation, the mean valueE(corr(X,T ))

has its estimated value being the difference between the current GPS-supplied reading and

the last position obtained through relative positioning. Additionally, an optimal estimate of

the random correction corr(X, t) at time t is t · E(corr(X,T ))/T . Therefore, to correct the

drift at time t, we only need to estimate E(corr(X,T )) and then add t ·E(corr(X,T ))/T to

the original position estimate. E(corr(X,T )) is estimated to be the difference between the

current GPS-supplied reading and the last position obtained through local relative position-

ing.

Finally, it is possible that LOBOT is inactivate first and then becomes active when there is

no GPS signal. In this situation, LOBOT is only able to compute its relative movement until

it receives a GPS signal in the future. Once a GPS sampling is available, it starts to trace back

and restore all the absolute location before that point. If no GPS signal is available, LOBOT

will interpolate one of it absolute position linearly with respect to time and derive the rest

using its recorded relative movement.

4.3 Implementation And Empirical Evaluation

To implement LOBOT, we used a low-cost LEGO MINDSTORM NXT 2.0 vehicle robot [85]

and a moderately priced HTC Legend smart phone [84] as shown in Figure 4.8. The HTC

Legend phone is mounted onto the robot, merely to supply a set of sensors: an accelerometer,

a magnetic sensor and a GPS. In our experiments, the HTC phone is lifted higher to avoid the

magnetic interference from both the robot and the ground. Powered by six AA batteries, this

LEGO NXT robot moves on its two servo motors (one on the left and the other on right). The
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Figure 4.8: The LEGO NXT robot and the HTC Legend phone.

two servo motors can rotate at their own user-specified speeds, either in the same direction or

reverse, providing flexible movement. Their rotating speeds can be changed by user programs

at any moment. The LEGO NXT has a set of built-in rotation sensors to continually measure

the rotating distance of each motor. The HTC Legend phone has an accelerometer (G-sensor),

a magnetic sensor (digital compass) and an internal GPS. Our programs control the motor’s

movement, collect the data from rotation sensors, the accelerometer, the magnetic sensor as

well as GPS.

We performed repeated experiments indoors and outdoors on the main campus of Wayne

State University, scaling from 1m x 1m (meter) areas up to areas of 50m x 50m. The LEGO

robot randomly moves from its minimal speed (the speed of a snail) to its full speed (several

inches per second) and may change its speed and direction every few seconds. It may also

operate its two motors at different pace or reversely to follow curved path and make turns.

These experiments computed the location data on all three axes: x (East), y (North) and

z (upward). Each experiment lasts from 1 minute to 20 minutes. The programmed robot

randomly decided its next movement after every certain amount of time from 5 seconds to 1

minute.

The two approaches, LOBOT and the purely accelerometer-based approach, were both

executed simultaneously during each experiment. The GPS raw data were collected dur-

ing outdoor experiments when applicable. To get the ground truth, we performed manual
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recording of positions in most cases and camera-assisted positioning in small areas. Our

experiments indicate that the purely accelerometer-based approach cannot achieve satisfac-

tory results within the context of localizing a ground robotic vehicle like the LEGO robot

we used. In contrast, LOBOT, with a low-cost setting, realizes relatively accurate position-

ing either indoors or outdoors. Although the pure local relative positioning component of

LOBOT shows the cumulative drifting effect, LOBOT well compensates the drift through the

infrequent GPS-augmentation.

4.3.1 Groud Truth Retrieval

To get the ground truth, we performed both manual measurement and a camera-assisted posi-

tioning approach. We performed manual recording of positions for both indoor and outdoor

experiments of varied scales. For each experiment, from 5 to 20 positions were manually

recorded and the recordings were temporally evenly distributed.

As for the experiments within small areas, to facilitate the information retrieval, we per-

formed a series of camera-assisted positioning to replace the manual measurement as the

ground truth. Such experiments are restricted to those occurring indoors and within a 1m x

1m square coverage. The restriction is out of two considerations: first, it is difficult to deploy

the camera-assisted positioning outdoors; second, for experiments in a relatively large area,

with our approach, the images produced cannot well distinguish a robot from other spots on

the images without further sophisticated (often slow) object recognition techniques. As veri-

fied against the manual recordings, the camera-assisted positioning has an accuracy of within

6cm.

For the camera to detect the location, as in Figure 4.9, we place the robot vehicle on a

small flat area, over which a camera is installed. The camera faces strictly perpendicularly

towards the ground. A small piece of red tag is attached to the center of the robot on the

top, which distinguishes that spot from every other spot. Taking advantage of that fact, our

program continuously collects the latest frame data from the camera at a speed of no less
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than one frame per second and analyzes the frame to retrieve the position of the robot in

the image. It successfully finds the central red spot with at least 95% of the frames. The

occasional failure is due to glaring image shots and illumination change. To map a spot

found in the image back to the original physical position, we only need to scale the image

linearly to certain point when its new scale exactly matches the physical area the camera

actually covers.

Figure 4.9: Camera-based positioning.

4.3.2 Inaccuracy of Sensing Data

Before dipping into the detailed performance analysis, we would like to observe the inaccu-

racy of the received sensing data. The sensing data usually display certain deviation from the

true sensing value due to various issues from the hardware or the software. When such inac-

curacy starts to accumulate, the resulting location might noticeably deviate from the ground

truth. A successful localization system should at least be able to reduce the cumulative errors.

It is noteworthy that the various positioning techniques often differ not by their theoretical

soundness, but by their capability to resist data inaccuracy. The purely accelerometer-based
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positioning approach has its strong theoretical foundation from the Newton’s Second Law of

Motion; however, the position resolved from the acceleration data might quickly deviate from

the ground truth. Admittedly, our LOBOT system is also impacted by the cumulative error

from the rotation sensor, the accelerometer, the magnetic sensor and the GPS. Fortunately, in

the first place, LOBOT tends to have much lower cumulative error than the accelerometer-

based approach; further, after performing the GPS-augmentation, the remnant of the cumula-

tive error is well under an acceptable range, considering the low cost of LOBOT.

Our collected data suggest that all the sensors except GPS are able to capture the small

movement changes. We retrieved a series of raw data from the accelerometer, the magnetic

field sensor, the motor rotation sensor, and the GPS receiver. The data indicate that these

sensors are sensitive to even small movement changes. As examples, we show certain data

in Figure 4.10, Figure 4.11 and Figure 4.12. Figure 4.10 plots the eastern component of the

detected instantaneous orientation based on the magnetic sensor and the accelerometer. When

the robotic vehicle changes movement direction, the computed orientation responds by fast

adjustment. Figure 4.11 shows the y-component of the instantaneous acceleration detected

by the accelerometer when the robotic vehicle randomly adjusts its speed. The acceleration

data quickly captures such speed changes. Figure 4.12 describes the motor rotational distance

over each few milliseconds detected by the rotation sensor when the vehicle randomly switch

between random movement and standing. Though the rotation sensor may produce errors,

the figure roughly matches the actual movement pattern.

While these sensors are capable of capturing instantaneous movement, the accuracy of

the positioning results are strongly impacted by the specific localization approaches being

used. The sensing error varies, depending on the sensors. Generally, the magnetic sensor,

motor rotation sensor, and the accelerometer tend to show small instantaneous sensing error;

the GPS receiver may produce a relative large error in location (Figure 4.13). The very small

instantaneous inaccuracy of the acceleration data could lead to large positioning errors if

the acceleration is used as the exclusive raw data for positioning. That is due to the major



62

quadratic effect in computing the travel distance from the acceleration: S = vt+ 1
2
at2, a being

the acceleration. Even with a perfect instantaneous acceleration, the inaccuracy resulting

from applying that value as estimation for a whole small time interval could be detrimental.
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Figure 4.10: Sensing data: orientation.

While the schemes aforementioned may suffer from the quadratic effect, LOBOT in-

volves only linear computation among the raw data. It tends to accumulate errors much

slower than the accelerometer-based approach. Figure 4.14 compares the resulting location

along the x-axis in one of our experiments among the three approaches: LOBOT, the purely

accelerometer-based approach, and the manual measurement. As reflected by the manual

measurement, the vehicle moves along x-axis back and forth in varied speeds and with con-

stant standing. The location result from LOBOT matches the manual measurement with

very small cumulative errors. However, the purely accelerometer-based approach wrongly

suggests that the vehicle is almost standing all over the time. In spite of the fact that the

acceleromter can capture sensitive movement, the quadratic effect in approximating errors

and sensing errors has developed into a serious location deviation. In another experiment

as described by Figure 4.15, the vehicle stays almost static along the z-axis as suggested by
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Figure 4.11: Sensing data: acceleration.

the manual movement. Similarly, LOBOT successfully detects the standing of the vehicle;

however, the double integration of the erroneous accelerometer data falsely informs the large

movement over time.

Although a single GPS reading can have error of up to three meters in our experiments,

unlike the relative position based on accumulation, the GPS positioning does not accumulate

errors: a previous inaccuracy GPS reading would not affect the current GPS reading. Finally,

when the GPS-augmentation is applied to the drifting outcome of the local relative positioning

component, the resulting location solution is satisfactory.

4.3.3 Evaluation of Local Relative Positioning

LOBOT strongly relies on the low cumulative errors of its local relative positioning com-

ponent. A major portion of the experiments were performed to evaluate the local relative

positioning. Both the manual measurement and the camera-assisted positioning were used to

gain the ground truth. Though most results are from experiments on relatively flat planes (2D

experiments), we also carried out 3D experiments of localizing the robot on surfaces with a
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Figure 4.12: Sensing data: motor rotation.

slope. LOBOT does not favor one dimension over another. As a matter of fact, any two di-

mensions from a 3D experiment can be viewed as a 2D experiment. For that reason, the major

analysis is on the 2D experiments while the 3D experiments exhibit similar characteristics.

Two-Dimensional Experiments

We present the 2D trace of the robot as well as the time series of the movement on each single

dimension. The results show the relatively low cumulative errors of LOBOT and the large

deviation of the purely accelerometer-based approach.

According to our 10 experiments with each running 20 minutes in 12m x 12m areas,

the trace resulting from LOBOT has an accuracy of within 2.5 meters compared to manual

recordings. One such experiment is shown in Figure 4.16. In Figure 4.16, the (x, y) coordi-

nates by LOBOT are relatively close to the manual recordings. In contrast, the accelerometer-

based approach tends to suggest almost “no-movement” on the plane and dramatic movement

on the third dimension (the altitude). As in Figure 4.16, the results from the accelerometer-

based approach falsely “suggest” that the robot moves within a small circle with 1m radius.
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Figure 4.13: Sensing data: GPS.

Since the movement is on flat plane surfaces, LOBOT naturally verifies the limited move-

ment on the third dimension. The altitude from LOBOT is within a range from -0.5m to

0.5m through 20 minutes. One such example is presented in Figure 4.17. In contrast, the

accelerometer-based approach often falsely reports a dramatic movement on the third dimen-

sion. Again as in Figure 4.17, according to that approach, the robot is driving down a steep

slope though it never leaves the flat plane ground. As for such results, it is reasonable to

suspect that the acceleration data on the third dimension might have a constant large negative

deviation from its true zero value and that the deviation could have resulted from an inaccu-

rate gravitational constant or simply the sensing errors. However, the acceleration data on the

third dimension seems to suggest only very small constant deviation of the acceleration data

might exist. The corresponding data for the same previous experiment is extracted and shown

in Figure 4.18. The figure indicates that the acceleration data oscillates around zero. To ex-

plain the dramatic error on the z-value of the accelerometer-based approach, we note that this

approach involves a quadratic expression of the time and thus the time elapse accumulates

such errors very fast.
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Figure 4.14: Time series of x-value

In addition to the trace, the time series of the components of the movement vector on each

dimension also confirms the satisfactory performance of LOBOT’s local relative positioning.

With the same experiment in Figure 4.16, the time series of the x is almost perfectly close

to the ground truth. The time series of y values is plotted in Figure 4.19. The y values of

LOBOT exhibit a deviation of up to 1.75m over 20 minutes. On the other hand, as for the

accelerometer-based approach, the figure displays almost static y values.

Finally, getting the ground truth through the camera-assisted positioning allows better

examination of LOBOT. As found in our experiments, the error of LOBOT generally ac-

cumulates slowly; however, occasionally a relative noticeable transient error occurs due to

accidents such as slippage. Despite the cumulative errors, the trace LOBOT retrieves gen-

erally follows the overall movement trend. As in one experiment (Figure 4.20), the robot

moved for one minute, over which the local relative positioning performs almost perfectly

except when a slippage occurred around the position (-0.07, 0.33). After the slippage, the

trace curve still has a very similar shape as the camera-retrieved ground truth, however, with
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Figure 4.15: Comparisons: z-value

a shifting effect. When such a noticeable error happens, after the GPS-augmentation, the

results can often be adjusted to be relatively close to the ground truth.

Three-Dimensional Experiments

Compared to the 2D experiments, our 3D experiments show similar performance of LOBOT’s

local relative positioning. Admittedly, the deviation from the third dimension adds to the

overall positioning error. However, as for LOBOT, the addition of errors is often comparable

to the errors from the two other dimensions. In its design, LOBOT does not treat the third

dimension different than the other two. In one experiment, the robot climbs up a east-bound

slope of 16.7 degrees. Figure 4.21 shows the (x,z) value pair of LOBOT against the manual

measurement. The x value is the distance projected onto the east and the z value is the height

from the base. The slope computed is almost the same as the one from manual measurement.
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Figure 4.16: Trace comparison of a 2D experiment.

4.3.4 Evaluation of LOBOT with GPS-Augmentation

We performed a few outdoor experiments in GPS-available areas of up to 50m x 50m. To ob-

tain the ground truth, the GPS on the HTC Legend phone is turned on and computes positions

at least once every three seconds. Since the GPS’s (longitude, latitude) data can be locally

viewed as Cartesian coordinates, we mapped the GPS data onto a meter-based distance co-

ordinate through linear regression. The trace produced by LOBOT is compared against the

continuous GPS timestamped trace. The empirical analysis shows that the LOBOT’s local

relative positioning produces an inaccuracy of up to 18m; with one-time GPS-augmentation,

the error is well under 8m. Without the GPS-augmentation, the trace retrieved still has a

similar shape to the ground truth but with a drift. The result of one experiment is illustrated

in Figure 4.22. In Figure 4.22, the thicker red line is the trace produced by the LOBOT with-

out the GPS-augmentation, the small circles are the GPS trace, and the thinner green line is

the trace by LOBOT with the correction from the last GPS-detected position. The one-time

adjustment from the GPS data largely corrects the drift. With the same experiment, we per-

formed a two-time adjustment: first correction based on the GPS data collected in the middle
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Figure 4.17: (x,z) trace comparison.

of the experiment time; the other correction based on the last GPS data. Interestingly, the

two-time adjustment does not seem to suggest much improvement over the one-time adjust-

ment, as shown in Figure 4.23. The main reason is, the GPS measurement itself is known to

have inherent inaccuracy.

4.3.5 Impact of Time Interval Selections

So far, we have assumed that the accelerometer, the magnetic sensor, and the rotation sensors

collect data periodically with a default time interval of 0.085s. Our empirical experiments

indicate that any time interval under 1s would have produced a very close trace with only

slight distortion. When the time interval increases to 2s or greater, the distortion becomes no-

ticeable in certain scenarios that the robot changes its movement pattern at a fast rate. Figure

4.24 shows such distortion of LOBOT’s local relative positioning in one of our experiments.

In Figure 4.24, with an interval of 1.085s, the trace has a slight drift of around 0.2m. When

the time interval increases to 2.085s and 3.085s, the distortion becomes apparent.
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Figure 4.18: Sensing data: acceleration

4.4 Summary

We proposed LOBOT, a low-cost, self-contained, accurate localization system for small-sized

ground robotic vehicles. LOBOT localizes a robotic vehicle with a hybrid approach consist-

ing of infrequent absolute positioning through a GPS receiver and local relative positioning

based on a 3D accelerometer, a magnetic field sensor and several motor rotation sensors.

LOBOT fuses the information from an accelerometer, a magnetic sensor and motor rotation

sensors to infer the movement of the robot through a short time period; then the inferred

movement is corrected with infrequent GPS-augmentation. The hardware devices LOBOT

uses are easily-available at low cost. LOBOT is self-contained in that it virtually requires no

external devices or external facility management and that it needs no prior information. Un-

like other localization schemes such as radio-based solutions, LOBOT does not require exter-

nal reference facilities, expensive hardware, careful tuning or strict calibration. Additionally,

LOBOT applies to both indoor and outdoor environments and realizes satisfactory perfor-

mance. We developed a prototype of LOBOT and conducted extensive field experiments.

The empirical experiments of various temporal and spatial scales with LOBOT verified its
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Figure 4.19: Time series of y-value

accuracy. In contrast to the accelerometer-based approach, LOBOT succeeds in maintaining

low cumulative error. The GPS-augmentation greatly enhances LOBOT’s resilience.
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Figure 4.20: LOBOT trace with cumulative errors.
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Figure 4.21: Three-dimensional experiment.
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Figure 4.22: Outdoor experiments with one-time GPS-augmentation.
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Figure 4.23: Outdoor experiments with two-time GPS-augmentation.
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Figure 4.24: Time interval choices.
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CHAPTER 5

TRUST-AWARE ROUTING FRAMEWORK TO SECURE
MULTIHOP ROUTING

We designed and implemented TARF, a robust trust-aware routing framework, to secure

multi-hop routing through a set of sensors (WSNs) in wireless sensing systems. Though it

is motivated by harmful attackers exploiting the replay of routing information, TARF can

also be used to protect the routing layer from other attacks. TARF requires neither tight

time synchronization nor known geographic information. Its resilience and scalability were

proved through both extensive simulation and empirical evaluation with large-scale WSNs.

We implemented a ready-to-use TinyOS module of TARF with low overhead; this TARF

module can be integrated into existing routing protocols with moderate efforts.

5.1 Introduction

As an important type of wireless sensing systems, wireless sensor networks (WSNs) [120,

170] are ideal candidates for applications to report detected events of interest, such as mili-

tary surveillance and forest fire monitoring. A WSN comprises battery-powered senor nodes

with extremely limited processing capabilities. With a narrow radio communication range, a

sensor node wirelessly sends messages to a base station (network gateway) via a multi-hop

path. However, the multi-hop routing of WSNs often becomes the target of malicious attacks.

An attacker may tamper nodes physically, create traffic collision with seemingly valid trans-

mission, drop or misdirect messages in routes, or jam the communication channel by creating

radio interference [152]. This chapter focuses on the kind of attacks in which adversaries

misdirect network traffic by identity deception through replaying routing information. Based
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on identity deception, the adversary is capable of launching harmful and hard-to-detect at-

tacks against routing, such as selective forwarding, wormhole attacks, sinkhole attacks and

Sybil attacks [74].

As a harmful and easy-to-implement type of attack, a malicious node simply replays all

the outgoing routing packets from a valid node to forge the latter node’s identity; the mali-

cious node then uses this forged identity to participate in the network routing, thus disrupting

the network traffic. Those routing packets, including their original headers, are replayed with-

out any modification. Even if this malicious node cannot directly overhear the valid node’s

wireless transmission, it can collude with other malicious nodes to receive those routing pack-

ets and replay them somewhere far away from the original valid node, which is known as a

wormhole attack [67]. Since a node in a WSN usually relies solely on the packets received

to know about the sender’s identity, replaying routing packets allows the malicious node to

forge the identity of this valid node. After “stealing” that valid identity, this malicious node

is able to misdirect the network traffic. For instance, it may drop packets received, forward

packets to another node not supposed to be in the routing path, or even form a transmission

loop through which packets are passed among a few malicious nodes infinitely. It is often

difficult to know whether a node forwards received packets correctly even with overhearing

techniques [74]. Sinkhole attacks are another kind of attacks that can be launched after steal-

ing a valid identity. In a sinkhole attack, a malicious node may claim itself to be a base station

through replaying all the packets from a real base station [78]. Such a fake base station could

lure more than half the traffic, creating a “black hole”. This same technique can be employed

to conduct another strong form of attack - Sybil attack [109]: through replaying the routing

information of multiple legitimate nodes, an attacker may present multiple identities to the

network. A valid node, if compromised, can also launch all these attacks.

The harm of such malicious attacks based on the technique of replaying routing informa-

tion is further aggravated by the introduction of mobility into WSNs and the hostile network
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condition. Though mobility is introduced into WSNs for efficient data collection and var-

ious applications [5, 43, 57, 88, 156, 162, 167], it greatly increases the chance of interaction

between the honest nodes and the attackers. Additionally, a poor network connection causes

much difficulty in distinguishing between an attacker and a honest node with transient failure.

Without proper protection, WSNs with existing routing protocols can be completely devas-

tated under certain circumstances. In an emergent sensing application through WSNs, saving

the network from being devastated becomes crucial to the success of the application.

Unfortunately, most existing routing protocols for WSNs either assume the honesty of

nodes and focus on energy efficiency [1], or attempt to exclude unauthorized participation by

encrypting data and authenticating packets. Examples of these encryption and authentication

schemes for WSNs include TinySec [73], Spins [116], TinyPK [146], and TinyECC [91].

Admittedly, it is important to consider efficient energy use for battery-powered sensor nodes

and the robustness of routing under topological changes as well as common faults in a wild

environment. However, it is also critical to incorporate security as one of the most impor-

tant goals; meanwhile, even with perfect encryption and authentication, by replaying routing

information, a malicious node can still participate in the network using another valid node’s

identity.

In addition to the cryptographic methods, trust and reputation management has been em-

ployed in generic ad hoc networks and WSNs to secure routing protocols. Basically, a sys-

tem of trust and reputation management assigns each node a trust value according to its past

performance in routing. Then such trust values are used to help decide a secure and effi-

cient route. However, the proposed trust and reputation management systems for generic ad

hoc networks target only relatively powerful hardware platforms such as laptops and smart-

phones [13, 50, 100, 104, 118, 128, 153, 157]. Those systems cannot be applied to WSNs due

to the excessive overhead for resource-constrained sensor nodes powered by batteries. As far

as WSNs are concerned, secure routing solutions based on trust and reputation management

rarely address the identity deception through replaying routing information [126, 163]. The
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countermeasures proposed so far strongly depends on either tight time synchronization or

known geographic information while their effectiveness against attacks exploiting the replay

of routing information has not been examined yet [74].

At this point, to protect WSNs from the harmful attacks exploiting the replay of rout-

ing information, we have designed and implemented a robust trust-aware routing framework,

TARF, to secure routing solutions in wireless sensor networks. Based on the unique charac-

teristics of resource-constrained WSNs, the design of TARF centers on trustworthiness and

energy efficiency. Though TARF can be developed into a complete and independent routing

protocol, the purpose is to allow existing routing protocols to incorporate our implementa-

tion of TARF with moderat effort and thus producing a secure and efficient fully-functional

protocol. Unlike other security measures, TARF requires neither tight time synchronization

nor known geographic information. Most importantly, TARF proves resilient under various

attacks exploiting the replay of routing information, which is not achieved by previous se-

curity protocols. Even under strong attacks such as sinkhole attacks, wormhole attacks as

well as Sybil attacks, and hostile mobile network condition, TARF demonstrates steady im-

provement in network performance. The effectiveness of TARF is verified through extensive

evaluation with simulation and empirical experiments on large-scale WSNs. Finally, we have

implemented a ready-to-use TARF module with low overhead, which as demonstrated can be

integrated into existing routing protocols with ease; the demonstration of a proof-of-concept

mobile target detection program indicates the potential of TARF in WSN applications.

For the rest of this chapter, we start by stating the assumptions and goals of this chapter

and the notations used in Section 5.2. Then we elaborate the design of TARF in Section 5.3,

including the routing procedure as well as the EnergyWatcher and TrustManager compo-

nents. In Section 5.4, we present the simulation results of TARF against various attacks

through replaying routing information in static, mobile and RF-shielding conditions. Sec-

tion 5.5 further presents the implementation of TARF, empirical evaluation at a large sensor
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network and a resilient proof-of-concept mobile target detection application based on TARF.

Finally, Section 5.6 summarizes this chapter.

5.2 Assumptions and Goals

We target secure routing for data collection tasks, which are one of the most fundamental

functions of WSNs. In a data collection task, a sensor node sends sampled data to a remote

base station with the aid of intermediate nodes, as shown in Figure 5.1(a). Though there

could be more than one base station, our routing approach is not affected by the number of

base stations; to simplify our discussion, we will assume that there is only one base station.

It is possible for an adversary to replay all the packets from a base station, possibly through

a wormhole, and thus to forge the identity of the base station. If necessary, the adversary can

spoof the acknowledgement packet of the base station, too. Such identity deception can result

in the following situation: a large amount of packets are attracted to this fake base station and

are never delivered to the real base station (see Figure 5.1(b)). Essentially, an adversary can

forge the identity of any legal node through replaying that node’s outgoing routing packets.

With a forged identity, an attacker may launch a series of other attacks, including packet

dropping, network looping and Sybil attacks. Additionally, this chapter does not address

denial-of-service (DoS) [152] attacks, where an attacker intends to damage the network by

exhausting its resource. For instance, we do not address DoS attacks such as congesting the

network by replaying numerous packets or physically jamming the network.

Further, we assume no data aggregation is involved. Nonetheless, our approach can still

be applied to cluster-based WSNs, where data are aggregated by clusters before being relayed.

In a cluster-based WSN, cluster headers themselves form a sub-network; after certain data

reach a cluster header, the aggregated data will be routed to a base station only through such

a sub-network consisting of cluster headers. Our framework can then be applied to this sub-

network to achieve secure routing for cluster-based WSNs.
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Figure 5.1: Multi-hop routing: (a) normal scenarios; (b) a fake base station attracts traffic.

Additionally, we make certain assumptions regarding the format of packets in TARF. We

assume all data packets and routing packets, including their packet headers, are authenticated;

a packet can be forwarded only after its authenticity is verified. Whether data encryption is

implemented can be decided by the application. We note that a regular sensor node (not a

base station) may not afford a strong authentication mechanism that costs too much compu-

tation overhead, and that an adversary may physically compromise that node and hack the

authentication scheme. Thus, we only require moderate authentication on a sensor node to

add difficulty to the attackers. However, we do require a strong authentication on a base sta-

tion node with a high processing capability; such a requirement is adopted to guarantee that

an adversary is not able to manipulate or forge a broadcast message from the base station

at will. That requirement is crucial to TARF; it is also key to any successful secure rout-

ing protocol. This strong authentication requirement can be achieved by existing broadcast

authentication schemes [22, 116, 124].

Every data packet is assumed to have at least the following fields: the sender id, the

sender sequence number, the next-hop node id (the receiver in this one-hop transmission),

the source id (the node that initiates the data), and the source’s sequence number. We insist

that the source node’s information should be included for the following reasons. First, that
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allows the base station to identify which data packets are initiated but undelivered; Second, a

WSN cannot afford the overhead to transmit all the one-hop information to the base station.

Regarding routing packets, they should have at least the following fields: the source id, the

source’s sequence number, and the next-hop id. In addition, we assume that after receiving

a data packet, a node will send out an acknowledgement packet which may not be authenti-

cated. While strong acknowledgement authentication for each hop may enhance security, it

leads to major computation overhead and network delay considering the multi-hop routing

pattern. Further, any sensor node but a base station could be physically captured, compro-

mised and hacked to reveal its detailed authentication mechanism. Thus security through

acknowledgement authentication cannot be guaranteed. Acknowledgement spoofing may be

exploited by an attacker, admittedly, but TARF is to direct a node a to circumvent an attacker

spoofing acknowledgement based on the trust management.

Next, we present the goals of TARF.

High Throughput Throughput is defined as the ratio of the number of all data packets de-

livered to the base station to the number of all sampled data packets. In our simulation,

throughput at a moment is computed over the period from the beginning time (0) until that

particular moment. Note that single-hop re-transmission may happen, and that duplicate

packets are considered as one packet as far as throughput is concerned. Throughput reflects

how efficiently the network is collecting and delivering data. Here we regard high throughput

as one of our most important goals.

Energy Efficiency Efficient energy use is significant for battery-powered sensor nodes, and

data transmission accounts for a major portion of energy consumption. We evaluate energy

efficiency by the average energy cost to successfully deliver a unit-sized data packet from a

source node to the base station. Note that link-level re-transmission should be given enough

attention when considering energy cost since each re-transmission causes a noticeable in-

crease in energy consumption. If every node in a WSN consumes approximately the same

energy to transmit a unit-sized data packet, we can use another metric hop-per-delivery to
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evaluate energy efficiency. Under that assumption, the energy consumption depends on the

number of hops, i.e. the number of one-hop transmissions occurring. To evaluate how effi-

ciently energy is used, we can measure the average hops per delivery, i.e., the number of all

hops divided by the number of all delivered data packets, abbreviated as hop-per-delivery.

Scalability & Adaptability TARF should work well with WSNs of large magnitude under

highly dynamic contexts. We will examine its scalability through empirical experiments on

Motelab [105], a large-scale WSN testbed (see Section 5.5.3); the adaptability of TARF will

be evaluated through simulation under mobile and hash network conditions (see Section 5.4).

Here we do not include other aspects such as latency, load balance, or fairness. Low

latency, balanced network load, and good fairness requirements can be enforced in specific

routing protocols incorporating TARF.

5.3 Design of TARF

TARF secures the multi-hop routing in WSNs against intruders exploiting the replay of rout-

ing information by evaluating the trustworthiness of neighboring nodes. It identifies such

intruders that misdirect noticeable network traffic by their low trustworthiness and routes

data through paths circumventing those intruders to achieve satisfactory throughput. TARF

is also energy-efficient, highly scalable, and well adaptable. Before introducing the detailed

design, we first introduce several necessary notions here.

Neighbor For a node N , a neighbor (neighboring node) of N is a node that is reachable from

N with one-hop wireless transmission.

Trust level For a node N , the trust level of a neighbor is a decimal number in [0, 1], repre-

senting N ’s opinion of that neighbor’s level of trustworthiness. Specifically, the trust level

of the neighbor is N ’s estimation of the probability that this neighbor correctly delivers data

received to the base station. That trust level is denoted as T in this chapter.
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Energy cost For a node N , the energy cost of a neighbor is the average energy cost to suc-

cessfully deliver a unit-sized data packet with this neighbor as its next-hop node, from N to

the base station. That energy cost is denoted as E in this chapter.

5.3.1 Overview

TARF integrates trustworthiness and energy efficiency in making routing decisions. For a

nodeN to route a data packet to the base station,N only needs to decide to which neighboring

node it should forward the data packet. That chosen neighbor is N ’s next-hop node. Once

the data packet is forwarded to that next-hop node, the remaining task to deliver the data to

the base station is fully delegated to it, and N is totally unaware of what routing decision its

next-hop node makes. To choose its next-hop node, N considers both the trustworthiness and

the energy efficiency of its neighbors. For that, N maintains a neighborhood table with trust

level values and energy cost values for certain known neighbors. It is sometimes necessary to

delete some neighbors’ entries to keep the table size acceptable. The technique of maintaining

a neighborhood table of a moderate size is demonstrated by Woo, Tong and Culler [151];

TARF may employ the same technique.

In TARF, in addition to data packet transmission, there are two types of routing informa-

tion that need to be exchanged: broadcast messages from the base station about undelivered

data packets and energy cost report messages from each node. Neither message needs ac-

knowledgement. A broadcast message from the base station is broadcast to the whole net-

work; each node receiving a fresh broadcast message from the base station will broadcast it

to all its neighbors once. The freshness of a broadcast message is checked through its field of

source sequence number. The other type of exchanged routing information is the energy cost

report message from each node, which is broadcast to only its neighbors once. Additionally,

any node receiving such an energy cost report message will not forward it.

For each node N in a WSN, to maintain such a neighborhood table with trust level val-

ues and energy cost values for certain known neighbors, two components, EnergyWatcher
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and TrustManager, run on the node (Figure 5.2). EnergyWatcher is responsible for recording

the energy cost for each known neighbor, based on N ’s observation of one-hop transmis-

sion to reach its neighbors and the energy cost report from those neighbors. A compromised

node may falsely report an extremely low energy cost to lure its neighbors into selecting this

compromised node as their next-hop node; however, these TARF-enabled neighbors eventu-

ally abandon that compromised next-hop node based on its low trustworthiness as tracked by

TrustManager. TrustManager is responsible for tracking trust level values of neighbors based

on network loop discovery and broadcast messages from the base station about undelivered

data packets. Once N is able to decide its next-hop neighbor according to its neighborhood

table, it sends out its energy report message: it broadcasts to all its neighbors its energy cost

to deliver a packet from the node to the base station. The energy cost is computed as in

Section 5.3.3 by EnergyWatcher. Such an energy cost report also serves as the input of its

receivers’ EnergyWatcher.

Neighborhood 
Table

TrustManager
Base Station 

Broadcast

Energy Cost 
Report

Network Loop 
Discovery

EnergyWatcher

One-hop 
Delivery

Neighbor 
Energy Cost

Neighbor Trust 
Level

Next-hop 
Selection

Energy Cost 
Report

Figure 5.2: Each node selects a next-hop node based on its neighborhood table, and broadcast its
energy cost within its neighborhood. To maintain this neighborhood table, EnergyWatcher and Trust-
Manager on the node keep track of related events (on the left) to record the energy cost and the trust
level values of its neighbors.
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5.3.2 Routing Procedure

TARF, as with many other routing protocols, runs as a periodic service. The length of that

period determines how frequently routing information is exchanged and updated. At the

beginning of each period, the base station broadcasts the information about undelivered data

packets during the past few periods to the whole network once, which triggers the exchange of

routing information in this new period. Whenever a node receives such a broadcast message

from the base station, it knows that the most recent period has ended and a new period has

just started. In this way, no tight time synchronization is required for a node to keep track

of the beginning or ending of a period. During each period, the EnergyWatcher on a node

monitors energy consumption of one-hop transmission to its neighbors and processes energy

cost reports from those neighbors to maintain energy cost entries in its neighborhood table; its

TrustManager also keeps track of network loops and processes broadcast messages from the

base station about undelivered data to maintain trust level entries in its neighborhood table.

To maintain the stability of its routing path, a node may retain the same next-hop node

until the next fresh broadcast message from the base station occurs. Meanwhile, to reduce

traffic, its energy cost report could be configured to not occur again until the next fresh broad-

cast from the base station. If a node does not change its next-hop node selection until the next

broadcast from the base station, that guarantees all paths to be loop-free, as can be deducted

from the procedure of next-hop node selection. However, as noted in our experiments, that

would lead to slow improvement in routing paths. Therefore, we allow a node to change its

next-hop selection in a period when its current next-hop node performs the task of receiving

and delivering data poorly.

Next, we introduce the structure and exchange of routing information as well as how

nodes make routing decisions in TARF.
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Structure and Exchange of Routing Information

A broadcast message from the base station fits into a fixed number of packets; in our imple-

mentation, it fits into one packet. Such a message consists of a few pairs of <the node id of

a source node, an undelivered sequence interval [a, b] with a significant length>. To reduce

overhead, only a few such pairs are selected to be broadcast. The undelivered sequence in-

terval [a, b] is explained as follows: the base station searches the source sequence numbers

received in the past few periods, identifies which source sequence numbers for the source

node with this id are missing, and chooses certain significant interval [a, b] of missing source

sequence numbers as an undelivered sequence interval. For example, the base station may

have all the source sequence numbers for the source node 2 as {109, 110, 111, 150, 151} in

the past two periods. Then [112, 149] is an undelivered sequence interval. Since the base

station is usually connected to a powerful platform such as a desktop, a program can be de-

veloped on that powerful platform to assist in recording all the source sequence numbers and

finding undelivered sequence intervals. The reason for searching over more than one period

is to identify as many undelivered data packets as possible. To illustrate that, consider this

example: suppose the source sequence numbers of delivered data packets from node 2 are {1,

2, 3} for the 1st period and {200, 201, 203} for the 2nd period; then simply searching over

a single period would not discover the undelivered packets unless every node is required to

send a fixed number of data packets over each period.

Accordingly, each node in the network stores a table of <the node id of a source node, a

forwarded sequence interval [a, b] with a significant length> in the past few periods. The data

packets with the source node and the sequence numbers falling in this forwarded sequence

interval [a, b] have already been forwarded by this node. When the node receives a broadcast

message with undelivered sequence intervals, its TrustManager will be able to identify which

data packets forwarded by this node are not delivered to the base station. Considering the

overhead to store such a table, old entries will be deleted once the table is full.
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Once a fresh broadcast message from the base station is received, a node immediately

invalidates all the existing energy cost entries: it is ready to receive a new energy report from

its neighbors and choose its new next-hop node afterwards. Also, it is going to select a node

either after a timeout is reached or after it has received an energy cost report from some

highly trusted candidates with acceptable energy cost. A node immediately broadcasts its

energy cost to its neighbors only after it has selected a new next-hop node. That energy cost

is computed by its EnergyWatcher (see Section 5.3.3). A natural question is which node starts

reporting its energy cost first. For that, note that when the base station is sending a broadcast

message, a side effect is that its neighbors receiving that message will also regard this as

an energy report: the base station needs 0 amount of energy to reach itself. As long as the

original base station is faithful, it will be viewed as a trustworthy candidate by TrustManager

on the neighbors of the base station. Therefore, those neighbors will be the first nodes to

decide their next-hop node, which is the base station; they will start reporting their energy

cost once that decision is made.

Route Selection

Now, we introduce how TARF decides routes in a WSN. Each node N relies on its neighbor-

hood table to select an optimal route, considering both energy consumption and reliability.

TARF makes good efforts in excluding those nodes that misdirect traffic by exploiting the

replay of routing information.

For a node N to select a route for delivering data to the base station, N will select an

optimal next-hop node from its neighbors based on trust level and energy cost and forward the

data to the chosen next-hop node immediately. The neighbors with trust levels below a certain

threshold will be excluded from being considered as candidates. Among the remaining known

neighbors, N will select its next-hop node through evaluating each neighbor b based on a

trade-off between TNb and ENb
TNb

, with ENb and TNb being b’s energy cost and trust level value

in the neighborhood table respectively (see Section 5.3.3, 5.3.4). Basically, ENb reflects the
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energy cost of delivering a packet to the base station from N assuming that all the nodes

in the route are honest; 1
TNb

approximately reflects the number of the needed attempts to

send a packet from N to the base station via multiple hops before such an attempt succeeds,

considering the trust level of b. Thus, ENb
TNb

combines the trustworthiness and energy cost.

However, the metric ENb
TNb

suffers from the fact that an adversary may falsely reports extremely

low energy cost to attract traffic and thus resulting in a low value of ENb
TNb

even with a low

TNb. Therefore, TARF prefers nodes with significantly higher trust values; this preference of

trustworthiness effectively protects the network from an adversary who forges the identity of

an attractive node such as a base station. For deciding the next-hop node, a specific trade-off

between TNb and ENb
TNb

is demonstrated in Figure 5.16 (see Section 5.5.2).

The remaining delivery task is fully delegated to that selected next-hop neighbor, and

N is totally unaware of what routing decision its chosen neighbor is going to make. Next,

the chosen node will repeat what N has done, i.e., delegating the left routing task to its

own chosen next-hop neighbor. In this way, instead of finding out a complete path to the base

station, each node is only responsible for choosing its next-hop node, thus saving considerable

cost in computation and routing information exchange. As an example shown in Figure 5.3,

node a is trying to forward a packet to the base station. After comparing both the trust level

and energy cost among its neighbors 1, 2 and b, a decides that b is the most promising next-

hop node for data delivery and forwards the data packet to b immediately. b is free to make

its own decision for routing the packet to the base station. b decides that its neighbor c is a

better candidate than its neighbor 3. After that, the task is delegated to c, and c continues

to delegate the job to d. Finally, d delivers the packet to the base station. Observe that in

an ideal misbehavior-free environment, all nodes are absolutely faithful, and each node will

choose a neighbor through which the routing path is optimized in terms of energy; thus, an

energy-driven route is achieved.
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Figure 5.3: Routing illustration.

5.3.3 EnergyWatcher

Here we describe how a node N ’s EnergyWatcher computes the energy cost ENb for its

neighbor b in N ’s neighborhood table and how N decides its own energy cost EN . Before

going further, we will clarify some notations. ENb mentioned is the average energy cost of

successfully delivering a unit-sized data packet from N to the base station, with b as N ’s

next-hop node being responsible for the remaining route. Here, one-hop re-transmission may

occur until the acknowledgement is received or the number of re-transmissions reaches a

certain threshold. The cost caused by one-hop re-transmissions should be included when

computing ENb. Suppose N decides that A should be its next-hop node after comparing

energy cost and trust level. Then N ’s energy cost is EN = ENA. Denote EN→b as the

average energy cost of successfully delivering a data packet from N to its neighbor b with

one hop. Note that the re-transmission cost needs to be considered. With the above notations,

it is straightforward to establish the following relation:

ENb = EN→b + Eb
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Since each known neighbor b of N is supposed to broadcast its own energy cost Eb to N ,

to compute ENb, N still needs to know the value EN→b, i.e., the average energy cost of suc-

cessfully delivering a data packet from N to its neighbor b with one hop. For that, assuming

that the endings (being acknowledged or not) of one-hop transmissions from N to b are inde-

pendent with the same probability psucc of being acknowledged, we first compute the average

number of one-hop sendings needed before the acknowledgement is received as follows:

∞∑
i=1

i · psucc · (1− psucc)i−1 =
1

psucc

Denote Eunit as the energy cost for node N to send a unit-sized data packet once regardless

of whether it is received or not. Then we have

ENb =
Eunit
psucc

+ Eb

The remaining job for computing ENb is to get the probability psucc that a one-hop transmis-

sion is acknowledged. Considering the variable wireless connection among wireless sensor

nodes, we do not use the simplistic averaging method to compute psucc. Instead, after each

transmission from N to b, N ’s EnergyWatcher will update psucc based on whether that trans-

mission is acknowledged or not with a weighted averaging technique. We use a binary vari-

able Ack to record the result of current transmission: 1 if an acknowledgement is received;

otherwise, 0. Given Ack and the last probability value of an acknowledged transmission

pold succ, an intuitive way is to use a simply weighted average of Ack and pold succ as the value

of pnew succ. That is what is essentially adopted in the aging mechanism [44]. However, that

method used against sleeper attacks still suffers periodic attacks [164]. To solve this prob-

lem, we update the psucc value using two different weights as in our previous work [164], a
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relatively big wdegrade ∈ (0, 1) and a relatively small wupgrade ∈ (0, 1) as follows:

pnew succ =

 (1− wdegrade)× pold succ + wdegrade × Ack, if Ack = 0

(1− wupgrade)× pold succ + wupgrade × Ack, if Ack = 1

The two parameters wdegrade and wupgrade allow flexible application requirements. wdegrade

and wupgrade represent the extent to which upgraded and degraded performance are rewarded

and penalized, respectively. If any fault and compromise is very likely to be associated with a

high risk,wdegrade should be assigned a relatively high value to penalize fault and compromise

relatively heavily; if a few positive transactions can’t constitute evidence of good connectivity

which requires many more positive transactions, then wupgrade should be assigned a relatively

low value.

5.3.4 TrustManager

A node N ’s TrustManager decides the trust level of each neighbor based on the following

events: discovery of network loops, and broadcast from the base station about undelivered

data packets. For each neighbor b of N , TNb denotes the trust level of b in N ’s neighborhood

table. At the beginning, each neighbor is given a neutral trust level 0.5. After any of those

events occurs, the relevant neighbors’ trust levels are updated.

Note that many existing routing protocols have their own mechanisms to detect routing

loops and to react accordingly [48, 115, 151]. In that case, when integrating TARF into those

protocols with anti-loop mechanisms, TrustManager may solely depend on the broadcast

from the base station to decide the trust level; we adopted such a policy when implementing

TARF later (see Section 5.5). If anti-loop mechanisms are both enforced in the TARF com-

ponent and the routing protocol that integrates TARF, then the resulting hybrid protocol may

overly react towards the discovery of loops. Though sophisticated loop-discovery methods

exist in the currently developed protocols, they often rely on the comparison of specific rout-

ing cost to reject routes likely leading to loops [48]. To minimize the effort to integrate TARF
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and the existing protocol and to reduce the overhead, when an existing routing protocol does

not provide any anti-loop mechanism, we adopt the following mechanism to detect routing

loops. To detect loops, the TrustManager on N reuses the table of <the node id of a source

node, a forwarded sequence interval [a, b] with a significant length> (see Section 5.3.2) in

the past few periods. If N finds that a received data packet is already in that record table,

not only will the packet be discarded, but the TrustManager on N also degrades its next-hop

node’s trust level. If that next-hop node is b, then Told Nb is the latest trust level value of b.

We use a binary variable Loop to record the result of loop discovery: 0 if a loop is received;

1 otherwise. As in the update of energy cost, the new trust level of b is

Tnew Nb =

 (1− wdegrade)× Told Nb + wdegrade × Loop, if Loop = 0

(1− wupgrade)× Told Nb + wupgrade × Loop, if Loop = 1

Once a loop has been detected by N for a few times so that the trust level of the next-hop

node is too low, N will change its next-hop selection; thus, that loop is broken. Though N

cannot tell which node should be held responsible for the occurrence of a loop, degrading its

next-hop node’s trust level gradually leads to the breaking of the loop.

On the other hand, to detect the traffic misdirection by nodes exploiting the replay of

routing information, TrustManager on N compares N’s stored table of <node id of a source

node, forwarded sequence interval [a, b] with a significant length> recorded in the past few

periods with the broadcast messages from the base station about undelivered data. It com-

putes the ratio of the number of successfully delivered packets which are forwarded by this

node to the number of those forwarded data packets, denoted as DeliveryRatio. Then N ’s
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TrustManager updates its next-hop node b’s trust level as follows:

Tnew Nb =



(1− wdegrade)× Told Nb + wdegrade ×DeliveryRatio,

if DeliveryRatio < Told Nb.

(1− wupgrade)× Told Nb + wupgrade ×DeliveryRatio,

if DeliveryRatio >= Told Nb.

Effectiveness of TrustManager against Various Attacks

TrustManager effectively identities the low trustworthiness of various attacks. Once the low

trust levels of an adversary is recognized by TrustManager, the route selection procedure,

according to its preference of trustworthy nodes, enables a valid node to avoid choosing an

adversary as its next-hop node (see Section 5.3.2). The various attacks developed out of

identity deception through replaying routing information, including wormhole attacks, sink-

hole attacks, Sybil attacks and other misforwarding behaviors, all aim to cheat a valid node

into choosing a neighboring attacker as its next-hop node. Though the valid node may be

lured into the trap for a while since the attacker usually appears to be attractive, from the

base broadcast messages, eventually the valid node realizes the data packets forwarded to its

next-hop node is rarely delivered to the base station. Thus the next-hop node is marked as

having a low trust level by TrustManager. A Sybil attack, due to its presence with multiple

fake identities, could take longer for TrustManager to recognize than other attacks.

As an example, suppose an adversary M forges the identity of the base station by replay-

ing all the routing packets from the base station. At first, it is able to deceive its neighbors

into believing that M is a base station; as a result, M may attract a large amount of data

packets, which never reach the base station. However, after the base station broadcasts the

information about those undelivered packets, M ’s neighbors will downgrade M ’s trust level

values in their neighborhood table. Note that M is only capable of replaying but is not ca-

pable of manipulating or generating authenticated broadcast messages, and that M usually

cannot prevent other nodes from receiving a broadcast message from the base station. As
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time elapses, M ’s neighbors will start realizing that M is not trustworthy and will look for

other next-hop candidates that are more reliable. Similarly, ifM forges the identity of another

valid appealing node, M ’s neighbors will gradually realize that M is not reliable.

Additionally, once a valid node identifies a trustworthy honest neighbor as its next-hop

node, it tends to keep that next-hop selection without considering other seemingly attractive

nodes such as a fake base station. That tendency is caused by both the preference to maintain

stable routes and the preference to highly trustable nodes.

5.4 Simulation and Evaluation

To further evaluate the efficacy of TARF in terms of energy efficiency and throughput, we

have developed a reconfigurable emulator of wireless sensor networks on a two-dimensional

plane with Matlab [103]. To effectively simulate a WSN, this emulator uses the object-

oriented technique to construct two classes of objects: WSNMANAGER and NODE, to rep-

resent the whole network and a sensor node. The interaction between nodes are emulated

through event passing. The routing function for a node can be rewritten to adopt different

routing protocols; different maps can also be ported into this simulator. To simulate the

unreliable wireless transmission, the outcome of one-hop packet transmission is decided by

the following model: suppose a node A is wirelessly transmitting a packet to node B, the

probability for B to successfully receive such a packet is assumed to be

1− (min(dist,MAX DIST )/MAX DIST )8,

where dist is the distance from A to B, andMAX DIST is the maximal transmission range.

In our experiments, MAX DIST is defined as 100m; initially, 35 nodes are randomly dis-

tributed within a 300*300 rectangular area as in Figure 5.4(a), and a base station is placed at

the origin [0, 0]. All the nodes have the same power level and the same maximal transmission

range of 100m. For easier reference, we define a virtual time unit as used in our simulation:
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each node samples 6 times in every virtual time unit; the timing gap between every two con-

secutive samplings of the same node is equivalent. Essentially, the virtual time unit can reflect

any length of actual time. We simulate the sensor network in 1440 consecutive virtual time

units. Unless specified otherwise, the length of a period is 1 virtual time unit.

5.4.1 Three Types of Network Topology

Regarding the network topology, we set up three types of network topologies. The first type

is the static-location case under which all nodes stand still and the dynamics of the network

come from the unstable radio and the malicious behaviors. The specific placement of nodes

are shown in Figure 5.4(a).

The second type is a group-motion-with-noise case based on Reference Point Group Mo-

bility (RPGM) model [63, 171]. Basically, the RPGM Model mimics the behavior of a set of

nodes moving in one or more groups: each group moves as a whole according to the trajec-

tory of its logic center in order to perform certain group tasks. Additionally, a random motion

vector is applied to each node. It models various scenarios such as battlefield situations and

recovery scenarios [171]. In the experiments, we use a customized GPGM model as follows:

all nodes fall into two groups (G1 and G2) with nearly equal sizes as indicated in Figure

5.4(a); each group will move around its virtual centroid, with the virtual trajectories of the

two centroids as illustrated in Figure 5.4(b). Specifically, at any moment t (using the virtual

time unit), the virtual position of G1’s centroid is {20*[6*t-sin(6*t)], 20*[6*t+sin(6*t)]}, and

that of G2’s is {20*[6*t+sin(6*t)], 20*[6*t-sin(6*t)]}. The two trajectories coil around each

other, creating abundant opportunities for nodes to interact with one another. We adopt such

coiled trajectories to expose nodes to attackers as well as constantly changing network topol-

ogy, so that we may realize how resilient TARF could be under a hostile environment. To

well mimic the reality, we added a random Gaussian noise with a standard deviation of 20

meters to the trajectories of all nodes. The noise injected further increases the dynamics of
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the network topology. Figure 5.4(c) displays the location of all nodes after 0.5 virtual time

unit.

The last type of dynamic network incorporated in the experiments is the addition of

scattered RF-shielded areas to the aforementioned group-motion-with-noise case. In an RF-

shielded area, any outgoing and incoming radio signal is completely blocked though a node

falling into such an area can still move out of it. In our experiments, specifically, thinking

of the ground as a grid divided into cells of 100m by 100m, an RF-shielded square of 20m

by 20m is placed in each such cell. The distribution of the scattered RF-shielded areas in a

square of 600m by 600m is illustrated in Figure 5.4(d).
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Figure 5.4: (a) initial location of all nodes in two groups-G1 and G2; (b) virtual trajectories of G1
and G2; (c) location of nodes after 0.5 virtual time unit; (d) RF-shielded areas.
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5.4.2 Simulation Results

The performance of TARF is compared to that of a link connectivity-based routing protocol

adapted from what is proposed by Alec Woo, Terence Tong and David Culler [151]. That link

connectivity-based routing protocol is designed for low-power wireless sensor networks un-

der dynamic network topology; experiments indicated its better performance in terms of en-

ergy efficiency and throughput, compared with other protocols based on Shortest-Path, Min-

imum Transmission, Broadcast, and Destination Sequenced Distance Vector (DSDV) [68,

115, 151]. For later convenience, we will simply refer to link connectivity-based routing

protocol as Link-connectivity. Similarly to TARF, with the Link-connectivity protocol, each

node makes its routing decision in a distributed manner; the next-hop node is selected among

its neighborhood table according to an link estimator based on exponentially weighted mov-

ing average (EWMA). In our simulation with the Link-connectivity protocol, the next-hop

selection is also run periodically. As noted in our experiments, the Link-connectivity proto-

col demonstrates strong adaptability into dynamic network conditions. However, as different

than TARF, the Link-connectivity protocol assumes that all nodes are honest.

As we will see from the experimental results, in the presence of misbehaviors, the through-

put in TARF is often much higher than that in Link-connectivity; the hop-per-delivery in the

Link-connectivity protocol is generally at least comparable to that in TARF. For the TARF

protocol in the simulation, unless mentioned otherwise, EnergyWatcher uses the parame-

ters wupgrade = 0.1, wdegrade = 0.2; TrustManager uses the parameters wupgrade = 0.1,

wdegrade = 0.3. For both TARF and Link-connectivity, if not specified otherwise, the period

length is set to 1.

First, we conduct experiments to study the performance of TARF and Link-connectivity

under a misbehavior-free environment; the results show that TARF and Link-connectivity

have comparable performance when there is no adversary. Second, we evaluate TARF under

three common types of attacks: (1) a certain node forges the identity of the based station
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by replaying broadcast messages, also known as the sinkhole attack; (2) a set of nodes col-

ludes to form a forwarding loop; and (3) a set of nodes drops received data packets. These

experiments were conducted in the static case, the group-motion-with-noise case, and the ad-

dition of RF-shielded areas to the group-motion-with-noise case separately. Generally, under

these common attacks, TARF produces a substantial improvement over Link-connectivity in

terms of data collection and energy efficiency. Further, we evaluate TARF under more severe

attacks: multiple moving fake bases and multiple Sybil attackers. As before, the experi-

ments are conducted under all the three types of network topology. Under these two types of

most severe attacks which almost devastates the Link-connectivity protocol, TARF succeeds

in achieving a steady improvement over the Link-connectivity protocol. Finally, we discuss

the choice of the period length and the trust updating scheme. Our experiments reveal that a

shorter period or a faster trust updating scheme may not necessarily benefit TARF.

Comparable Performance in a Misbehavior-Free Environment

Under a misbehavior-free environment, the two protocols have comparable performance in

packet delivery and energy efficiency. Under a misbehavior-free environment, according to

the TARF protocol, a node may still perceive its neighbors as having different trust levels, due

to the fact that the node cannot well distinguish between malicious behavior and failed de-

livery due to environmental effects. However, such misperception of trust, which reflects the

instability of radio transmission, has a limited impact towards the performance of TARF. The

comparability is verified by a few experiments under the three types of network topologies

separately: static location, group-motion-with-noise, and group-motion-with-noise across

RF-shielded areas. Figure 5.5 demonstrates the results from an experiment. Under each

topology, as time elapses, the throughput of the TARF protocol gradually approaches the

throughput of the Link-connectivity protocol. With the static location, after 100 periods, both

TARF and Link-connectivity can achieve a throughput of at least 95% (see Figure 5.5(a)).

Note that during first few periods, the performance of both protocols usually fluctuate much.
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In the simulation, to focus on the long term evolution of the protocols’ performance, we may

omit the first few periods when presenting the graphic results. Our later empirical experi-

ments (see Section 5.5.3, 5.5.4) indicates the significant improvement of TARF over Link-

connectivity in fighting against attacks even during the early stage. As displayed in Figure

5.5(c), with a group motion pattern with noise, the throughput of both protocols goes be-

low 32%. The group-motion-with-noise setting results in a a large portion of packets being

lost due to the fast-changing network connection. Though TARF has a throughput slightly

lower, it gradually catches up. Note that the throughput is calculated over the period from the

beginning to the current moment. TARF does not negatively impact the overall throughput.

Similarly, in the case of group-motion-with-noise across the RF-shielded areas (see Figure

5.5(e)), the throughput from both protocols is greatly impacted by the dynamic network; it

further goes down to no more than 24%. In this case, TARF also gradually approaches Link-

connectivity in throughput. Concerning the energy usage, TARF has a hop-per-delivery that

is at least not higher than that of the Link-connectivity protocol. Some of our simulation

results even show a lower hop-per-delivery for TARF (see Figure 5.5(b)(d)(e)), i.e., better

energy-efficiency. That is because TARF selects routes that either have less hops or need less

retransmission in these experiments.

Resilience under Common Attacks

Now, we evaluate the resilience of TARF under three common types of attacks: (a) a certain

node forges the identity of the based station by replaying broadcast messages; (b) a set of

nodes colludes to form a forwarding loop; and (c) a set of nodes drops received data packets.

Specifically, in our simulation, these three attacks are: (a) a compromised node at the “heart”

of the network becomes a fake base station through replaying the routing information from

the base station (see Figure 5.6(a)); (b) 5 nodes close to the base station collude to form a net-

work loop (see Figure 5.6(b)); (c) 6 nodes drop any data packet received (see Figure 5.6(c)).

The simulation results show that, in the case of a static location, TARF maintains a high
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throughput and a low hop-per-delivery under these attacks, which is generally a tremendous

improvement over the Link-connectivity protocol. In the case of group-motion-with-noise or

crossing RF-shielded areas, compared to the almost devastating impact of these attacks to

the Link-connectivity protocol, TARF shows a steady improvement in packet delivery and

energy-efficiency. Considering the precious value of each data packet under an emergent

sensing mission in a hostile environment, such an improvement can be vital.

Under attack scenario (a) (see Figure 5.6(a)), the fake base station attempts to attract a

significant portion of the network traffic by cheating nearby nodes to believe in its false iden-

tity. With the Link-connectivity protocol, a node cannot distinguish between such a fake base

station and the real base station, which results in at least half network traffic being directed to

the “blackhole”. In addition to the low throughput, the Link-connectivity protocol also shows

relatively low energy efficiency (see Figure 5.7), i.e., a relatively higher hop-per-delivery,

since too many “hops” end up with sending the data finally to the fake base station. However,

with TARF, a significant amount of data packets are delivered with routes circumventing the

fake base. The improvement of TARF over Link-connectivity in throughput is very notice-

able in the static location case: the throughput doubles (see Figure 5.7(a)). In the case of

group motion and crossing the RF-shielded areas, though the fake base station together with

the hostile mobile network condition strongly limit the throughput (see Figure 5.5(c)(e)),

compared with the Link-connectivity protocol, TARF still succeeds in saving a considerable

amount of data packets from being misdirected (see Figure 5.7(c)(e)). Such a considerable

amount of data saved protects the WSN from being devastated; it can be of significant value

in a critical mission based on the data collection task from a WSN. Concerning energy ef-

ficiency, TARF produces a significantly lower hop-per-delivery than Link-connectivity does

(see Figure 5.7(b)(d)(f)). The main reason is that TARF not only selects trustworthy route

paths but also considers energy consumption when making a route decision. Compared with

the hop-per-delivery in a misbehavior-free environment (see Figure 5.5(b)(d)(f)), with the aid

of TARF, the existence of the fake base station only results in a hop-per-delivery that is no
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more than 30% higher. Considering that hop-per-delivery takes into account those hops end-

ing up with directing the packets to the fake base in vain, the energy cost of each successful

route identified by TARF is comparable to that in a misbehavior-free environment.

Under attack scenario (b) (see Figure 5.6(b)), the network loop comprised of 5 compro-

mised nodes close to the base station attempts to cheat nearby node into forwarding packets

into this infinite loop. The compromised nodes inside the loop appear to behave normally

to the outside nodes: they receive packets from the outside and issue acknowledgements;

they forward the received packets immediately to the next node after the reception (but to

its “conspirators”). Luckily enough, in our experiment of the Link-connectivity protocol in

the static location case (see Figure 5.8(a)), a few nearby nodes are able to select route paths

avoiding the loop, thus escaping from such a trap. Note that the preference of route stabil-

ity in the Link-connectivity protocol helps retain those lucky choices. The lucky choices are

the result of the random instability of the radio communication. However, such luck does

not happen in the case of group-motion-with-noise and crossing the RF-shielded areas (see

Figure 5.8(c)(e)): the Link-connectivity protocol suffers the devastation by that loop. The

motion of the network greatly increases the chance of the interaction between the loop and

its nearby regular nodes, so that a great majority of data packets are intercepted by this loop.

Similarly to the scenario of attack (a), TARF achieves a high throughput in the static location

case (see Figure 5.8(a)), and displays a steady improvement in saving the network from being

devastated in the case of group-motion-with-noise and crossing RF-shielded areas (see Fig-

ure 5.8(c)(e)). Despite the 5 nodes close to the base station in the loop being compromised,

TARF manages to find paths with acceptable energy efficiency in the static case (see Figure

5.8(b)). The high hop-per-delivery value (thus low energy efficiency) in the case of group

motion and crossing RF-shielded areas (see Figure 5.8(d)(f)) are mainly caused by the low

throughput.
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Under attack scenario (c) (see Figure 5.6(c)), 6 nodes a bit far away from the base station

drop any data packet received. Like the nodes in a loop, these 6 nodes appears to be nor-

mal nodes in receiving packets and acknowledgement, but do not forward any packet. The

Link-connectivity protocol in this simulation does not provide mechanism to check whether a

packet sent is forwarded by the receiver. Observing the geographic location of these 6 nodes

in the network, they may not pose as much threat to the network as the aforementioned net-

work loop does. Since these 6 nodes are not much attractive, the Link-connectivity protocol

still produces a throughput of at least 90%, a bit lower than TARF (see Figure 5.9(a)). Unlike

the static case, in the case of group-motion-with-noise and crossing RF-shielded areas (see

Figure 5.9(c)(e)), TARF shows relatively great improvement over the Link-connectivity pro-

tocol. That is because the movement of nodes creates a better condition for these 6 nodes to

jeopardize the network; TARF helps the network in recognizing these compromised nodes.

Another impact of the geographic location of these 6 nodes is towards the hop-per-delivery.

As shown in Figure 5.9(b)(d)(e), the hop-per-delivery of the Link-connectivity protocol is

just a bit higher than TARF. The reason for such seemingly “efficient” energy usage for the

Link-connectivity protocol is that the Link-connectivity protocol causes the delivery of a large

amount of packets to be interrupted at these 6 compromised node, thus resulting in seemingly

“short” routing paths.

Resilience of TARF against Multiple Moving Fake Bases

Now we test the resilience of TARF against a strong form of attack where multiple fake base

stations move fast in the network. Specifically, in each of our experiments, 1 to 5 nodes are

compromised and become fake bases, each moving along its closed loop-shaped path with

small random turbulence (see Figure 5.10(a)). During each virtual unit of time, each fake

base finishes a “round trip” along its path. In the case the whole network moves in groups,

each fake base also moves along with its original group in addition to its loop-shaped motion.

Note that these fake bases move in a small “neighborhood” instead of moving across the
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whole network. Such local motion enables the fake bases to be able to acknowledge many

data packets sent to it. Otherwise, if they move across too wide an area, then the incapability

to receive and acknowledge packets directed to it would make their neighbors recognize them

as nodes with poor radio connection; in that case, the Link-connectivity protocol to a certain

degree could circumvent these fake bases. In our experiments with these locally moving

fake bases, we note that though the local movement of these fake bases poses great threat

against the network, depending on the specific location and the movement pattern, it may

not necessarily cause a worse throughput than the static fake bases. We conduct experiments

with 1 fake base, 3 fake bases and 5 fake bases separately. The numbering of the fake bases

is displayed in Figure 5.10(a). Each set of fake bases in our experiments consist of the first

few fake bases.

Overall, in these attacks, TARF shows a steady improvement over the Link-connectivity

in throughput, as shown in Figure 5.11. Generally speaking, the less attackers there are, the

more potential of improvement TARF has. However, our experiments show certain excep-

tion. For example, in one experiment with 5 moving fake bases and a network with static

location, TARF achieves a slightly higher throughput than with 3 moving fake bases (see

Figure 5.11(b)). The performance of TARF is related to the network topology. In the static

case, TARF produces a at least 60% throughput, even with these 5 moving fake bases. In

the case of group-motion-with-noise and crossing the RF-shielded areas, though the space

of improvement is limited due to the hostile network connection, TARF still demonstrates a

steady improvement over the Link-connectivity protocol (see Figure 5.11(c)(d)(e)(f)).

Resilience of TARF against Multiple Sybil Attackers

Now we conduct experiments to test TARF against multiple Sybil attackers. In a Sybil attack,

an adversary presents multiple identities to harm the network. In our experiments, we set

up 1 to 5 Sybil attackers; each set of attacker comprise the first few numbered attackers (see

Figure 5.10(b)). Each attacker uses a single identity in each 3 periods, and then switch to
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another identity in the next 3 periods; it forges the identities of all valid nodes over time.

The reason for a Sybil attacker to keep an identity for 3 periods is to accumulate considerable

“reputation” for that forged identity. Sybil attackers are usually hard to detect. TARF does not

attempt to “physically” identify a Sybil attacker; instead, TARF enables a node to send data

to a promising next-hop identity that has more likelihood to deliver data. Under these Sybil

attacks, the throughput of TARF is compared with that of Link-connectivity. The graphic

results of our experiments are illustrated in Figure 5.12. Similar to the scenario of multiple

moving fake base stations, TARF shows a significant improvement over the Link-connectivity

protocol in throughput in the case of a physically static network (see Figure 5.12(a)(b)). In

the case of group motion and crossing the RF-shielded areas (see Figure 5.12(c)(d)(e)(f)),

TARF achieves a stably increasing throughput over time.

Discussion of TARF: Period Length and Update Speed

Here we discuss the selection of the period length and update speed for TARF. Intuitively, it

appears that a short period and faster update speed of trust might help TARF in identifying

malicious attackers more quickly. However, the downside of adopting a short period or fast

update is that doing so may cause a node to misjudge an honest neighbor as an attacker.

Due to the instability and the randomness of the radio communication, carefulness should be

taken when updating the trust level of a neighbor, especially in a mobile environment. Our

experiments indicate that simply shortening the period length or expediting trust update for

TARF does not necessarily produce positive improvement. In certain cases, that even impairs

the performance.

In addition to TARF, we also conduct experiments using the following variant of TARF

- TARF QUICKDEGRADE: when updating trust with DeliveryRatio, TrustManager (see

Section 5.3.4) adopts a varying value of wdegrade that increases linearly asDeliveryRatio de-

creases. Essentially, when the routing via a neighboring node is performing worse, TARF QUICKDEGRADE
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degrades the trust level of that neighbor in a faster manner than TARF does. In several experi-

ments, we compare the throughput metric of the following protocols: TARF with period being

1 virtual time unit, TARF with period being 0.5 virtual time unit, TARF QUICKDEGRADE

with period being 1, and TARF QUICKDEGRADE with period being 0.5. Basically, we re-

run certain experiments aforementioned now with different protocols. Certain graphic results

are presented in Figure 5.13. Interestingly, TARF QUICKDEGRADE(period=1) and

TARF QUICKDEGRADE(period=0.5) show lower throughput than TARF(period=1) during

several experiments in the following scenarios: one fake base in a physically static network

(Figure 5.13(a)), one fake base in the case of group-motion-with-noise (Figure 5.13(b)), a

network loop of 5 nodes in the case of group-motion-with-noise (Figure 5.13(c)), and one

fake base in the case of crossing the RF-shielded areas (Figure 5.13(d)). This fact indicates

that fast degradation of trust may not always improve the performance and that the parame-

ters involved in trust update should be carefully selected. The indication is also supported by

a few other experiments. Regarding the period length, though TARF(period=0.5) seems to

show a higher throughput than TARF(period=1) in Figure 5.13(a)(c), TARF(period=1) grad-

ually develops a slightly better performance than TARF(period=0.5) in Figure 5.13(b)(d). To

explain, though a shorter period seems to provide a better “real-time” trust estimation of a

route, the distributed routing decision by the individual nodes spoils that benefit: any prema-

ture estimation of the quality of an individual link in a short period may compromise any path

going through that link. Thus, shorter periods does not necessarily bring a higher throughput.

5.5 Implementation and Empirical Evaluation

In order to evaluate TARF in a real-world setting, we implemented the TrustManager com-

ponent on TinyOS 2.x, which can be integrated into the existing routing protocols for WSNs

with moderate effort. Originally, we had implemented TARF as a self-contained routing

protocol [165] on TinyOS 1.x before this second implementation. However, we decided to
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re-design the implementation considering the following factors. First, the first implementa-

tion only supports TinyOS 1.x, which was replaced by TinyOS 2.x; the porting procedure

from TinyOS 1.x to TinyOS 2.x tends to frustrate the developers. Second, rather than de-

veloping a self-contained routing protocol, the second implementation only provides a Trust-

Manager component that can be easily incorporated into the existing protocols for routing

decisions. The detection of routing loops and the corresponding reaction are excluded from

the implementation of TrustManager since many existing protocols, such as Collection Tree

Protocol [48] and the link connectivity-based protocol [151], already provide that feature. As

we worked on the first implementation, we noted that the existing protocols provide many

nice features, such as the analysis of link quality, the loop detection and the routing deci-

sion mainly considering the communication cost. Instead of providing those features, our

implementation focuses on the trust evaluation based on the base broadcast of undelivered in-

formation, and such trust information can be easily reused by other protocols. Finally, instead

of using TinySec [73] exclusively for encryption and authentication as in the first implemen-

tation on TinyOS 1.x, this re-implementation let the developers decide which encryption or

authentication techniques to employ; the encryption and authentication techniques of TARF

may be different than that of the existing protocol.

5.5.1 TrustManager Implementation Details

The TrustManager component in TARF is wrapped into an independent TinyOS configura-

tion named TrustManagerC. TrustManagerC uses a dedicated logic channel for com-

munication and runs as a periodic service with a configurable period, thus not interfering

with the application code. Though it is possible to implement TARF with a period always

synchronized with the routing protocol’s period, that would cause much intrusion into the

source code of the routing protocol. The current TrustManagerC uses a period of 30 sec-

onds; for specific applications, by modifying a certain header file, the period length may be
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re-configured to reflect the sensing frequency, the energy efficiency and trustworthiness re-

quirement. TrustManagerC provides two interfaces (see Figure 5.14), TrustControl

and Record, which are implemented in other modules. The TrustControl interface pro-

vides the commands to enable and disable the trust evaluation, while the Record interface

provides the commands for a root, i.e., a base station, to add delivered message record, for

a non-root node to add forwarded message record, and for a node to retrieve the trust level

of any neighboring node. The implementation on a root node differs from that on a non-root

node: a root node stores the information of messages received (delivered) during the current

period into a record table and broadcast delivery failure record; a non-root node stores the in-

formation of forwarded messages during the current period also in a record table and compute

the trust of its neighbors based on that and the broadcast information. Additionally, to avoid

the problem of possible “gaps” between two continuous periods, for each origin involved,

the broadcast message from a root also includes the corresponding minimal and maximal

sequence number received during the current period. Noting that much implementation over-

head for a root can always be transferred to a more powerful device connected to the root, it

is reasonable to assume that the root would have great capability of processing and storage.

For a root node, the record table keeps the delivered message intervals for up to 100 source

nodes, with up to 20 non-overlapped significant delivered intervals for each individual origin.

Once the table already contains 100 source nodes’ record, it will not enter any record from

another new source node. The table size is decided to be limited so that a root can run TARF

on its own without the aid from a powerful computer connected to it. That consideration

brings convenience for experiments on a remote WSN testbed. It is also viable to remove that

limit and transfer the overhead to the powerful computer connected to the root. A root broad-

casts two types of delivery failure record: at most three packets of significant undelivered

intervals for individual origins and at most two packets of the id’s of the origins without any

record in the current period. For each origin, at most three significant undelivered intervals

are broadcast. For a non-root node, considering the processing and memory usage overhead,
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the record table keeps the forwarded message intervals for up to 20 source nodes, with up to

5 non-overlapped intervals for each individual origin. Our later experiments verify that such

size limit of the table on a non-root node produces a resilient TARF with moderate overhead.

The record table on a node keeps adding entries for new origins until it is full.

Whenever a non-root node receives a fresh trust broadcast message that is not in its cache,

it executes the following action and then posts a task to re-broadcast the message to its neigh-

bors: for each node involved in both its record table and the broadcast message, it computes

the number of the undelivered messages and that of the forwarded messages; concerning the

number of the forwarded messages, a forwarded interval in the record table is counted only if

it overlaps with an undelivered interval; regarding the number of the undelivered messages,

we only count the overlapping part of the undelivered intervals in the broadcast message and

the forwarded intervals. The counting is implemented in this way because the limited mem-

ory leads to the incompleteness of all types of records. These two numbers are then used to

calculate the current delivery ratio, which is later used to update the trust level of the cor-

responding neighbor. After three seconds from the reception of a fresh broadcast message,

the node will assume that all broadcast messages have been received and processed. Then it

starts to compute the trust level for each known neighbor. To protect the radio stack buffer, a

message queue is implemented to store the broadcast messages waiting to be sent; whenever

a sendDone event is fired, the message queue, if not empty, dequeues a message and post

a task to send it. With our current implementation, a valid trust value is an integer between

0 and 100, and any node is assigned an initial trust value of 50. The weigh parameters are:

wupgrade = 0.1, wdegrade = 0.3. The trust table of a non-root node node keeps the trust level

for up to 10 neighbors. Considering that an attacker may present multiple fake id’s, two tech-

niques may be employed. One countermeasure is to increase the size of the trust table to a

reasonable magnitude. The other technique, as currently implemented, evicts entries with a

trust level close to the initial trust of any node. Such eviction policy is to ensure that the trust
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table remembers those neighbors with high trust and low trust; any other neighbor not in this

table is deemed to have the initial trust value of 50.

5.5.2 Incorporation of TARF into Existing Protocols

To demonstrate how this TARF implementation can be integrated into the exiting proto-

cols with moderate effort, we incorporated TARF into a collection tree routing protocol

(CTP) [48]. The CTP protocol is efficient, robust, and reliable in a network with highly

dynamic link topology. It quantifies link quality estimation in order to choose a next-hop

node. The software platform is TinyOS 2.x. Figure 5.15 demonstrates the procedure to per-

form the integration. First, as in every TinyOS program, the TrustControl interface and

the Record interface are wired to the TrustManagerC component properly. Then, call

the TrustControl.start command when a booted event is fired to enable the trust

evaluation; call the Record.addForwarded command for a non-root node to add for-

warded record once a data packet has been forwarded; call the Record.addDelivered

command for a root to add delivered record once a data packet has been received by the

root. Finally, inside the CTP’s task to update the routing path, call the Record.getTrust

command to retrieve the trust level of each next-hop candidate; an algorithm taking trust into

routing consideration is executed to decide the new next-hop neighbor (see Figure 5.16).

Similar to the original CTP’s implementation, the implementation of this new protocol

decides the next-hop neighbor for a node with two steps: Step 1 traverses the neighborhood

table for an optimal candidate for the next hop; Step 2 decides whether to switch from the

current next-hop node to the optimal candidate found. For Step 1, as in the CTP implementa-

tion, a node would not consider those links congested, likely to cause a loop, or having a poor

quality lower than a certain threshold. This new implementation prefers those candidates with

higher trust levels; in certain circumstances, regardless of the link quality, the rules deems a

neighbor with a much higher trust level to be a better candidate (see Figure 5.16). The prefer-

ence of highly trustable candidates is based on the following consideration: on the one hand,



110

it creates the least chance for an adversary to misguide other nodes into a wrong routing path

by forging the identity of an attractive node such as a root; on the other hand, forwarding

data packets to a candidate with a low trust level would result in many unsuccessful link-level

transmission attempts, thus leading to much re-transmission and a potential waste of energy.

When the network throughput becomes low and a node has a list of low-trust neighbors, the

node will exclusively use the trust as the criterion to evaluate those neighbors for routing de-

cisions. As show in Figure 5.16, it uses trust/cost as a criteria only when the candidate has a

trust level above certain threshold. The reason is, the sole trust/cost criteria could be exploited

by an adversary replaying the routing information from a base station and thus pretending to

be an extremely attractive node. As for Step 2, compared to the CTP implementation, we

add two more circumstances when a node decides to switch to the optimal candidate found at

Step 1: that candidate has a higher trust level, or the current next-hop neighbor has a too low

trust level.

This new implementation integrating TARF requires moderate program storage and mem-

ory usage. We implemented a typical TinyOS data collection application, MultihopOscillo-

scope [106], based on this new protocol. The MultihopOscilloscope application, with certain

modified sensing parameters for our later evaluation purpose, periodically makes sensing

samples and sends out the sensed data to a root via multiple routing hops. Originally, Mul-

tihopOscilloscope uses CTP as its routing protocol. Now, we list the ROM size and RAM

size requirement of both implementation of MultihopOscilloscope on non-root Telosb [139]

motes in Table 5.1. The enabling of TARF in MultihopOscilloscope increases the size of

ROM by around 1.3KB and the size of memory by around 1.2KB.

Table 5.1: Size comparison of MultihopOscilloscope implementation

Protocol ROM (bytes) RAM (bytes)
CTP 31164 3579

TARF-enabled CTP 34290 4767
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5.5.3 Empirical Evaluation on Motelab

To evaluate how effective TARF is against deception through replaying routing information in

the real world, we tested the performance of TARF on Motelab [105] at Harvard University.

As a public test bed of wireless sensor networks, at the time of our experiments, totally 184

TMote Sky sensor motes were deployed in the Electrical Engineering and Computer Science

building: approximately 97 nodes functioned properly while the rest were either removed or

disabled. Any of these motes has a 8MHz TI MSP430 processor, 10KB of RAM, 1Mbit of

Flash memory, and a 2.4GHz Chipcon CC2420 radio with an indoor range of approximately

100 meters. These motes are distributed over many rooms at three floors, with two to four

motes in most rooms. In addition to the wireless connectivity among the nodes on each same

floor, there also exists certain wireless connection between nodes from different floors.

We developed a simple data collection application in TinyOS 2.x that sends a data packet

containing an increasing sequence number every five seconds; the data packet is supposed to

be delivered to a base station node (root). This application was executed on 91 functioning

non-root nodes on Motelab. This program does not include any sensing functionality: when-

ever the five-second periodic timer fires, it posts a task to send out a data packet. The absence

of sensing from the program offers the benefit that the experiments would not be impacted

by the processing time for sensing. Also, later experiments show that the setting of sending

every five seconds does not cause congestion to the network. For comparison, we used CTP

and the TARF-enabled CTP implementation as the routing protocols for the data collection

program separately. The TARF-enabled CTP has a TARF period of 30 seconds. The CTP

and the TARF-enabled CTP implemented were wired into the data collection application sep-

arately, and the resulting programs were uploaded onto Motelab. Additionally, we conducted

an attack with five fake base stations that formed a wormhole. Whenever the base station sent

out any packet, three fake base stations which overheard that packet replayed the complete

packet without changing any content including the node id. Other fake base stations overhear-

ing that replayed packet would also replay the same packet. Through replaying the packets
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from the base station, these fake base stations essentially forged the id of the real base station:

a node would recognize those fake base stations as the real base station. Such a wormhole ef-

fectively creates fake base stations even in a remote location. And such a replaying technique

does not require any knowledge on what encryption or authentication techniques have been

possibly adopted by the base station. Note that there is a distinction between such malicious

replay and the forwarding when a well-behaved node receives a broadcast from the base sta-

tion. When a well-behaved node forwards a broadcast packet from the base station, it will

include its own id in the packet so that its receivers will not recognize the forwarder as a base

station. We conducted the first experiment by uploading the program with the CTP protocol

onto 91 motes (not including those 5 selected motes as fake bases in later experiments), and

no attack was involved here. Then, in another experiment, in addition to programming those

91 motes with CTP, we also programmed the five fake base stations so that they stole the id

the base station through replaying. In the last experiment, we programmed those 91 motes

with the TARF-enabled CTP, and programmed the five fake base stations as in the second

experiment. The root is programmed with CTP in the first and second experiments, and with

the TARF-enabled CTP in the last experiment.

Each of our programs run for 30 minutes. As illustrated in Figure 5.17(a), the existence

of the five wormhole attackers greatly degraded the performance of CTP: the number of the

delivered data packets in the case of CTP with the five-node wormhole is no more than 14%

that in the case of CTP without adversaries. The TARF-enabled CTP succeeded in bringing an

immense improvement over CTP in the presence of the five-node wormhole, almost doubling

the throughput. That improvement did not show any sign of slowing down as time elapsed.

The number of nodes from each floor that delivered at least one data packet in each six-minute

sub-period is plotted in Figure 5.17(a), Figure 5.17(b) and Figure 5.17(c) separately. On each

floor, without any adversary, at least 24 CTP nodes were able to find a successful route in

each six minute. However, with the five fake base stations in the wormhole, the number of

CTP nodes that could find a successful route goes down to 9 for the first floor; it decreases
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to no more than 4 for the second floor; as the worst impact, none of the nodes on the third

floor ever found a successful route. A further look at the data showed that all the nine nodes

from the first floor with successful delivery record were all close to the real base station.

On the other hand, the CTP nodes relatively far away from the base station, such as those

on the second and the third floor, had little luck in making good routing decisions. When

TARF was enabled on each node, the nodes close to the wormhole became aware of the fake

base stations; most nodes made correct routing decisions circumventing the attackers. That

improvement can be verified by the fact that the number of the TARF-enabled nodes with

successful delivery record under the threat of the wormhole is close to that of CTP nodes

with no attackers, as shown in Figure 5.17(a), Figure 5.17(b) and Figure 5.17(c).

5.5.4 Application: Mobile Target Detection in the Presence of an Anti-Detection Mecha-

nism

To demonstrate how TARF can be applied in networked sensing systems, we developed a

proof-of-concept resilient application of target detection. This detection application relies

on a deployed wireless sensor network to detect a target that could move, and to deliver the

detection events to a base station via multiple hops with the TARF-enabled CTP protocol.

The detection report collected by the base station is sent to a server for a visualized report.

To simplify the task of detecting the target, in our experiment, the target used is a TelosB

mote that sends out an AM (Active Message) packet every three seconds of a particular type.

A node in this detection application receiving such a type of packet from the target issues a

detection report, which will be sent to the base station with the aforementioned TARF-enabled

CTP protocol.

The experiment is set up within a clear floor space of 90 by 40 inches with 15 TelosB

motes (see Figure 5.18(a)). To make the multi-hop delivery necessary, the transmission power

of all the Telosb motes except two fake base stations in the network is controlled through both

software reduction and attenuator devices, so that the controlled transmission range is within
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30 inches. To add mobility to the target, this target mote is mounted on a LEGO MIND-

STORM NXT 2.0 vehicle robot [85]. The target uses an anti-detection mechanism utilizing

a fake base station close to the real base station and another remote base station close to the

target and mounted on another LEGO vehicle robot. The two fake base stations, operated

with a maximal transmission power and a corresponding transmission range of at least 100

feet, collude to form a wormhole: the fake base station close to the base station replays all

the packets from the base station immediately with a powerful radio; the remote fake base

station, after receiving those packets, immediately replays it again with a powerful radio.

This anti-detection mechanism tricks some network nodes into sending their event reports

into these fake base stations instead of the real base station. Though the fake base station

close to the real base station is capable of cheating the whole network alone by itself with its

powerful radio for a certain amount of time, it can be easily recognized by remote nodes as a

poor next-hop candidate soon by most routing protocols based on link quality: that fake base

station does not acknowledge the packets “sent” to it via a single hop from remote nodes with

a weak radio since it cannot really receive them. Thus, the anti-detection mechanism needs

to create such a wormhole to replay the packets from the base station remotely.

The target node 14 and the fake base station 13 close to it move across the network

along two parallel tracks of 22 inches back and forth (see Figure 5.18(b)); they travel on

each forward or backward path of 22 inches in around 10 minutes. The experiment lasts 30

minutes. For comparison, three nodes 9, 10 and 11 programmed with the CTP protocol are

paired with another three nodes 6, 7 and 8 programmed with the TARF-enabled CTP (see

Figure 5.18(b)); each pair of nodes are physically placed close enough. All the other nodes,

except for the fake base stations and the target node, are programmed with the TARF-enabled

CTP. To fairly compare the performance between CTP and the TARF-enabled CTP, we now

focus on the delivered detection reports originating from these three pairs of nodes: pair (9,

6), (10, 7) and (11, 8). For the timestamp of any detection report from these six nodes, we

plot a corresponding symbol: a purple circle for the nodes with the TARF-enabled CTP; a
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black cross for the CTP nodes. The resulting detection report is visualized in Figure 5.19(a).

Roughly, the TARF nodes report the existence of the target seven times as often as the CTP

nodes do. More specifically, as shown in Figure 5.19(b), in the pair (9, 6), no report from

CTP node 9 is delivered while 46 reports from TARF node 6 is delivered; in the pair (10, 7),

no report from CTP node 10 is delivered while 80 reports from TARF node 7 is delivered;

in the pair (11, 8), 40 reports from CTP node 11 is delivered while 167 reports from TARF

node 8 is delivered. Taking into account the spatial proximity between each pair of nodes, the

TARF-enabled CTP achieves an enormous improvement in target detection over the original

CTP.

The demonstration of our TARF-based target detection application implies the signifi-

cance of adopting a secure routing protocol in certain critical applications. The experimental

results indicate that TARF greatly enhances the security of applications involving multi-hop

data delivery.

5.6 Summary

We have designed and implemented TARF, a robust trust-aware routing framework for WSNs,

to secure multi-hop routing in dynamic WSNs against harmful attackers exploiting the replay

of routing information. TARF focuses on trustworthiness and energy efficiency, which are

vital to the survival of a WSN in a hostile environment. With the idea of trust management,

TARF enables a node to keep track of the trustworthiness of its neighbors and thus to select

a reliable route. Our main contributions are listed as follows. (1) Unlike previous efforts

at secure routing for WSNs, TARF effectively protects WSNs from severe attacks through

replaying routing information; it requires neither tight time synchronization nor known geo-

graphic information. (2) The resilience and scalability of TARF is proved through both ex-

tensive simulation and empirical evaluation with large-scale WSNs; the evaluation involves

both static and mobile settings, hostile network conditions, as well as strong attacks such as
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wormhole attacks and Sybil attacks. (3) We have implemented a ready-to-use TinyOS mod-

ule of TARF with low overhead; as demonstrated in the chapter, this TARF module can be

integrated into existing routing protocols with the moderate effort, thus producing secure and

efficient fully-functional protocols. (4) Finally, we demonstrate a proof-of-concept mobile

target detection application that is built on top of TARF and is resilient in the presence of

an anti-detection mechanism; that indicates the potential of TARF in WSN applications. We

believe that the idea of TARF can also be applied to general ad hoc networks and peer-to-peer

networks to fight against similar attacks.
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Figure 5.5: Under a misbehavior-free environment, TARF and Link-connectivity are comparable in
throughput and hop-per-delivery.
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(a) One fake base (b) A network loop

(c) 6 nodes dropping packets

Figure 5.6: Common attacks (small green squares are regular nodes): (a) a fake base station (black
star); (b) a network loop consisting of 5 nodes (big black squares); (c) 6 nodes dropping packets (big
black squares).
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Figure 5.7: With one fake base, TARF shows higher throughput and lower hop-per-delivery than the
Link-connectivity protocol.
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Figure 5.8: With a network loop, TARF shows higher throughput and lower hop-per-delivery than
the Link-connectivity protocol.
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Figure 5.9: With certain nodes dropping packets, TARF shows higher throughput and lower hop-per-
delivery than the Link-connectivity protocol.
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(a) Motion trace of 5 fake bases (b) 5 Sybil nodes

Figure 5.10: Severe attacks: multiple moving fake base stations and Sybil attackers.
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Figure 5.11: With multiple moving fake bases, TARF displays a steady improvement over the Link-
connectivity protocol in throughput.
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Figure 5.12: With multiple Sybil nodes, TARF demonstrates steady improvement over the Link-
connectivity in throughput.
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Figure 5.13: Quicker update or shorter period for TARF does not necessarily improve throughput.
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configuration TrustManagerC { 
   provides {    
      interface TrustControl; 
      interface Record; 
   } 
   implementation { 
      ........................................... 
   } 
} 

interface Record 
{ 
   //for a root to add delivered record <source node id, source sequence number> 
   command void addDelivered(am_addr_t src, uint8_t seq); 
   //for a non-root node to add forwarded record <source id, source sequence, next-hop id> 
   command void addForwarded(am_addr_t src, uint8_t seq, am_addr_t next); 
   //return the trust level of a node 
   command uint16_t getTrust(am_addr_t id); 
} 

interface TrustControl 
{ 
   //enable trust evaluation 
   command error_t start(); 
  //disable trust evaluation 
   command error_t stop(); 
} 
 

Figure 5.14: TrustManager component.
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event void Boot.booted() { 
   ……………………….. 
   //enable trust evaluation 
   call TrustControl.start(); 
} 
event void SubSend.sendDone(message_t* msg, error_t error) {    
   ………………………………………………........................... 
   //a non-root node records forwarded messages for trust evaluation 
   call Record.addForwarded(call CollectionPacket.getOrigin(msg), call 
CollectionPacket.getSequenceNumber(msg), call  AMPacket.destination(msg)); 
   ………………………………………………........................... 
} 
event message_t* SubReceive.receive(message_t* msg, void* payload, uint8_t len) { 
   ………………………………………………........................... 
   //a root records delivered messages for trust evaluation 
   call Record.addDelivered(call CollectionPacket.getOrigin(msg), call 
CollectionPacket.getSequenceNumber(msg) ); 
   ………………………………………………........................... 
} 
task void updateRouteTask() { 
   ………………………………………………........................... 
   //retrieve the trust level of each next-hop candidate 
   trust=call Record.getTrust(entry->neighbor); 
   // integrate trust and the existing protocol’s cost metric to decide the optimal next-hop 
   ………………………………………………........................... 
} 
 

Figure 5.15: Integration of CTP and TARF (red bigger font).
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//Step 1. traverse the neighborhood table for an optimal candidate for the next hop 
optimal_candidate = NULL 
//the cost of routing via the optimal candidate provided by the existing protocol, initially infinity 
optimal_cost = MAX_COST     
//the trust level of the optimal candidate, initially 0 
optimal_trust = MIN_TRUST 
for each candidate in the neighborhood table 
      if link is congested, or may cause a loop, or does not pass quality threshold 
            continue 
      better =  false 
      if candidate.trust >= optimal_trust && candidate.cost < optimal_cost 
            better = true 
      //prefer trustworthy candidates 
      if candidate.trust >= TRUST_THRESHOLD && optimal_trust < TRUST_THRESHOLD 
            better = true 
      if candidate.trust >= ESSENTIAL_DIFFERENCE_THRESHOLD + optimal_trust 
            better = true 
      //effective when all nodes have low trust due to network change or poor connectivity 
      if candidate.trust >= 3 * optimal_trust / 2 
            better = true 
      //add restriction of trust level requirement  
      if candidate.trust >= TRUST_THRESHOLD && candidate.trust / candidate.cost > 
optimal_trust / optimal_cost 
            better = true  
      if better == true 
            optimal_candidate = candidate 
            optimal_cost = candidate.cost 
            optimal_trust = candidate.trust 
 
//Step 2. decide whether to switch from the current next-hop node to the optimal candidate found: 
if optimal_trust >= currentNextHop.trust                                                                  \ 
 || currentNextHop.trust <= TRUST_THRESHOLD                                                 \ 
 || current link is congested and switching is not likely to cause loops                      \ 
 || optimal_cost + NEXTHOP_SWITCH_THRESHOLD < currentNextHop.cost    \ 
      currentNextHop = optimal_candidate 

Figure 5.16: Routing decision incorporating trust management.



129

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3 x 104

Time in minutes

N
um

be
r o

f d
el

iv
er

ed
 p

ac
ke

ts

 

 

CTP without adversaries
CTP with 5-node wormhole
TARF-enabled CTP with 5-node wormhole

25 25 26 25 25

9 9 9 9 9

26
24

21 20

24

[0min, 6min] [6min,
12min]

[12min,
18min]

[18min,
24min]

[24min,
30min]

Time

N
um

be
r o

f n
od

es
 w

ith
 

de
liv

er
y 

re
co

rd

CTP without adversaries
CTP with 5-node wormhole
TARF-enabled CTP with 5-node wormhole

(a) All three floors (b) First floor
36 36 36 37 36

2 2
4 3 2

36
34

30
33 32

[0min, 6min] [6min,
12min]

[12min,
18min]

[18min,
24min]

[24min,
30min]

Time

N
um

be
r o

f n
od

es
 w

ith
 

de
liv

er
y 

re
co

rd

CTP without adversaries
CTP with 5-node wormhole
TARF-enabled CTP with 5-node wormhole

25 25 25 25 2425 24 23 22 23

0000 0

[0min, 6min] [6min,
12min]

[12min,
18min]

[18min,
24min]

[24min,
30min]

Time

N
um

be
r o

f n
od

es
 w

ith
 

de
liv

er
y 

re
co

rd

CTP without adversaries
CTP with 5-node wormhole
TARF-enabled CTP with 5-node wormhole

(c) Second floor (d) Third floor

Figure 5.17: Empirical comparison of CTP and TARF-enabled CTP on Motelab: (a) number of all
delivered data packets since the beginning; number of nodes on (b) the first floor, (c) the second floor
and (d) the third floor that delivered at least one data packet in sub-periods.

(a) A snapshot of the network. (b) A closer look.

Figure 5.18: Deployment of a TARF-enabled wireless sensor network to detect a moving target under
the umbrella of two fake base stations in a wormhole.
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CHAPTER 6

PRIVACY-PRESERVING PARTICIPATORY SENSING SYSTEM

We developed Woodward, a privacy-preserving wireless sensing system. Though it fo-

cuses on health care applications, the design principle in privacy protection can be extended

to other wireless sensing systems with privacy concern. Woodward protects the user privacy

while allowing arbitrary third-party applications to extract knowledge from the collected data.

The anonymization process adopted by Woodward causes overwhelming cost to privacy at-

tackers; it also allows arbitrary third-party applications to perform various query with small

under-threshold error.

6.1 Introduction

An increasing number of network-enabled computing devices permeate our daily lives. Some

typical network-enabled consumer devices include smartphones, PDAs, and in-vehicle info-

tainment systems. In addition to their network capabilities such as WiFi, GPRS and Blue-

tooth, these devices are often either equipped with internal sensors such as GPS, accelerom-

eters or able to connect to various external sensors including biomedical sensors. This trend

has laid the foundation for participatory sensing, in which daily network-enabled devices,

such as smart phones, are used to “form interactive, participatory sensor networks that en-

able public and professional users to gather, analyze and share local knowledge” [17, 35].

An important category of participatory sensing applications is towards the self-monitoring

and self-management of patient health [83, 97]. With the off-the-shelf wireless biomedical

sensors, a participatory sensing system will be able to collect biophysical data such as heart

rate from the patient and deliver feedback accordingly back to the patient [122]. The data
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collection and the feedback delivery are both performed by software through the computer

networks. Such applications can lower the medical cost and facilitate remote diagnoses [49].

While participatory sensing can bring great benefit in areas such as health care, there is a

rise of concern over privacy leakage [30,64,129,155]. When a user participates in a participa-

tory sensing task, the sensing application could leak his personal information to an adversary.

That would greatly discourage the user’s involvement. Unfortunately, much existing work

on participatory sensing focuses on how to build the software infrastructure to enable appli-

cations [18, 113] and generally does not take privacy into consideration. Meanwhile, certain

participatory sensing systems [96, 107] tend to limit the use of collected data to internally

developed applications only so as to reduce the risk of privacy leakage. The restriction of the

internal use of data prevents third-party applications from exploring the data and becomes an

obstacle to data sharing. Additionally, the existing privacy research mainly concerns itself

about the mechanisms to identify and prevent privacy issues [28, 46, 62] and often does not

support arbitrary third-party applications.

To conquer the challenge, with health care as the main focus area, we proposed Wood-

ward, a privacy-preserving participatory sensing system. Woodward protects the user pri-

vacy and facilitates the data sharing with the third-party applications. It adopts an innovative

anonymization process that allows high-precision query and impedes privacy attacks by over-

whelming cost. We implemented Woodward with a health care application and quantitatively

evaluated the query precision and privacy protection.

The rest of this chapter is organized as follows: we give an overview of the Woodward

system in Section 6.2; the design of the Woodward server is described in Section 6.3; the

implementation of Woodward is given in Section 6.4; the quantitative empirical evaluation is

in Section 6.5; the summary of this chapter is presented in Section 6.6.
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6.2 System Overview

Woodward is a privacy-preserving system to facilitate participatory sensing on network-

enabled computing devices. This system allows arbitrary third-party applications to perform

various query. We use self-monitoring and self-management of patient health as the main

applications to demonstrate the system. As shown in Figure 6.1, in this Woodward system,

a user utilizes his network-enabled device (e.g., smartphone) and a few sensors including

biomedical sensors to collect healthcare-related data and sends them to a central server -

the Woodward server. The sensors are either integrated into the user device or connected

wirelessly (e.g., via Bluetooth). The Woodward server stores the data, validates the data,

anonymizes the data for privacy protection, and interacts with the user and arbitrary third-

party applications. The third-party applications can only access the anonymized data on the

Woodward server and can submit health status feedback for a record accessed to the Wood-

ward server. The Woodward server then delivers the feedback to the designated user. For

other types of applications rather than health care, the information flow is still the same; only

the sensors and the applications are replaced accordingly. Thus, the Woodward system con-

sists of three components (Figure 6.1): the users submitting the data with network-enabled

devices and sensors; arbitrary third-party applications; and the core component - the Wood-

ward server, which is trusted by the users. The third-party applications do not retrieve the

data from the user directly; instead, all the data are sent to the Woodward server and the ap-

plications are only allowed to access the anonymized data from the Woodward server. This

requirement is crucial for privacy protection and data reuse. If a third-party application di-

rectly accesses a user’s original data, the user privacy is hardly guaranteed. Additionally, the

third-party application does not directly deliver its generated feedback to a user because the

application should not know the user’s contact information due to the privacy requirement.

Instead, the application submits the feedback for an anonymized record to the Woodward

server first; the Woodward server then internally maps that anonymous subject of that feed-

back onto its true identity and delivers the feedback to the user.
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Figure 6.1: The design of Woodward.

The application should be aware that the data have gone through the anonymization pro-

cess that adds noise to the original data. The anonymization process guarantees that any

statistical query, including percentile query of any single value, will be highly precise. A

statistical query concerns the statistical features that are based on the probability distribution

of the data. Additionally, and importantly, for common values that occur frequently, the noise

is small; for values that occur rarely, the noise can be large. Note that on the one hand, rare

values, if exposed with only small noise, have a good chance of being traced by attackers

with prior knowledge. On the other hand, with small noise added, it is safe to expose com-

mon values. The density of a neighborhood of a value can be decided either from a published

result from the system or simply from performing a query; the range of the possible noise can

also be determined similarly. Generally, most values fall into moderately densely populated

areas and the anonymized data closely resemble the original data.
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6.3 The Design of the Woodward Server

The Woodward server is designed to store received data, perform data validation, provide

flexible application query interface and user feedback, and protect the user privacy. The

design also aims to provide high-precision query answers and cause only small performance

overhead. Before considering any other issues, we first want to present our approach to

protect the user privacy as it closely relates to the rest of the system.

6.3.1 Privacy Protection at the Woodward Server

To protect the user privacy, we first describe the privacy threat model. The Woodward server

does not present the true identity or contact information of a user to an application and an

attacker will not be able to take advantage of any identity or contact information. However,

based on certain prior knowledge about a particular user, the attacker may attempt to identify

a certain anonymized record owned by that user. For example, the attacker might happen

to know that a user named Alice has an unusually high heart rate of 190 bpm. Then the

attacker might search through all the anonymized data exposed by the Woodward server. If

the data anonymization is not performed properly and only one record has an unusually high

heart rate (though at a different value), the the attacker can decide that that record belongs

to Alice. Thus, this attacker just identified an anonymized record about Alice. If that same

record also contains other information (e.g., age) the attacker is interested in, the attacker

could access that information and start harmful activities against Alice. Therefore, under

this privacy threat model, with prior knowledge of an attribute (or multiple attributes) about

a user, an attacker attempts to link at least one anonymized record to that user and exploit

that record for other private information of the user. For simplicity, the current design of

the anonymization process assumes that an attacker only has the prior knowledge of a single

attribute of a user. But the approach can be generalized to handle attacks based on prior

knowledge of multiple attributes.
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The Woodward server performs the anonymization process on the received data; and the

application query is executed against the anonymized data. The anonymization uses different

schemes according to the types of the data. Our major interest here is the numeric biophysical

data of the user (e.g., heart rate). We will first describe the anonymization for other types of

data. For identity information such as the name and email address, the server maintains a

secret one-to-one mapping that maps each identity into a unique meaningless symbol (e.g.,

a byte string). The mapping is maintained in such a way that it is impossible for a third-

party to reverse the map to find out the original identity corresponding to an anonymized

symbol. The reason that an identity symbol is still needed is that in a conventional entity-

relationship database query often needs to know if two records are associated with the same

user or not. For discrete attributes with only a very small number of possible values, the

value is generally directly exposed to the applications unless the user indicates that the data

should not be exposed; in the latter case, an “unknown” value will replace the original value

for the application query. For an attribute that can only have a very small number of possible

values, there can be a large number of users having each same value; thus, that information is

usually not sensitive and Woodward usually directly exposes a discrete attribute with a very

small set of values unless specified otherwise by the users. For text or binary data, the data

are either completely hidden from the query or exposed to the application query, as specified

by the user. Regarding location data, the Woodward server anonymizes the exact location to

a city-magnitude area. Though it is possible to exploit the existing approaches for location

anonymization [172], for our purpose with health care information, we are satisfied with this

simple scheme.

For the numeric biophysical data of the user, we need to take extra care to perform

anonymization. These data are greatly valued by many applications. But exposing them

directly (even without any explicit identity information) can be exploited by attackers with

certain prior knowledge, as described in our privacy threat model. The Woodward server
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adds noise to the biophysical data and presents the anonymized data to third-party applica-

tions. The anonymization process has a few requirements. First of all, the anonymization

should keep a transformed value as close to its original value as possible while protecting the

privacy; and the overall statistical features of the original and the anonymized data should be

very close to each other. The condition helps maintain the precision of a general statistical

value of the form
∫
S
g(x) · f(x)dx, where x is the random variable of our concern (e.g., heart

rate), f(x) is the probability density function of x, g(x) is the random numeric function the

application is interested in, and S is the measurable set on which the integration is applied.

One indication of this condition is that the probability density function of the anonymized data

will be very close to that of the original data. This condition also indicates that the change of

g(x) is limited after anonymization. Theoretically, the well-known Schwarz’s Inequality [69]

helps establish a loose upper bound on the deviation due to anonymization:

|
∫
S

ψ1(x) · ψ2(x)dx| <=

√∫
S

ψ1(x)2dx ·

√∫
S

ψ2(x)2dx

To see this, let f̃(x) be the probability density function for the anonymized data. Then the

deviation of the statistic is

|
∫
S

g(x) · f̃(x)dx−
∫
S

g(x) · f(x)dx|

= |
∫
S

g(x) · (f̃(x)− f(x))dx|

<=

√∫
S

g(x)2dx ·

√∫
S

(f̃(x)− f(x))2dx

Second, note that the value with a dense neighborhood will only need low random noise for

the anonymization purpose. Within a densely populated area, a small noise can easily confuse

the attacker with many records of similar values. Last, for a value within a sparse neighbor-

hood, a random noise of moderate size should be considered. To frustrate the attacker, such
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a random noise must fulfill the requirement that there should be at least a moderate number

of other data values that can possibly be anonymized to be the same anonymized value.

Figure 6.2 and Figure 6.3 visualize the idea. 10000 random values (original data) are

generated between 50 and 220, based on the normal distribution. The anonymized process is

applied to get the anonymized data. Figure 6.2 shows the histograms of the original data and

the anonymized data. As indicated by Figure 6.2, the original and the anonymized data show
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Figure 6.2: Histograms of original and anonymized data with normal distribution.

similar frequency distribution. Figure 6.3 compares the original data and the anonymized

data more closely. For each pair of (original value, anonymized value), a point is plotted.

For data falling into the intense interval [80, 140] (Figure 6.3), the anonymized values show

very limited deviation from their original values. By contrast, for the sparse data out of that

interval, the difference between the original and the anonymized values can be as large as 60

(Figure 6.3).
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Figure 6.3: Comparison of anonymized data and original data with normal distribution.

6.3.2 Anonymization on Numeric Biophysical Data

Now, we describe our anonymization algorithm for the numeric biophysical data. Assume

the size of the database has been large enough; otherwise, a query against a database with

a few records will not be permitted due to privacy concern. The algorithm first divides the

range of the numeric data into a series of contiguous neighborhood in the form of open or

half-open intervals (−∞, I0), [I0, I1), [I1, I2), [I2, I3), ..., [In,+∞). Each interval contains

a similar number of data values occurrence, with a value of multiple occurrence counted

multiple times; the exceptions happen around those values that occur more than a few times.

we denote that common relative frequency of almost all the neighborhoods (intervals) as

RFNBH, i.e., the ratio of the data occurrence in that neighborhood to the total data occurrence.

Thus, a neighborhood of a small size is denser than a neihgborhood of a greater size. The

larger a neighborhood is, the sparser it is. After the neighborhood division, the anonymization

process is applied to each existing value and incoming value according to the neighborhood

they fall in. Each anonymized value should still fall in the same neighborhood as its original
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neighborhood; it indicates that the difference of cumulative relative frequency between the

original and the anonymized data should not exceed RFNBH - the common relative frequency

of a neighborhood. In other words, the difference between the statistical distribution of the

original and the anonymized data is dominated by RFNBH. The magnitude of the random

noise applied is decided in a way that is on average proportional to the neighborhood size. In

other words, the sparser the neighborhood is, the higher noise is likely to be applied to the

data values there. Importantly, the randomness of the noise applied discourages an attacker

by presenting a whole neighborhood of candidate values to a malicious query targeting a

particular user. There is a trade-off on the value of RFNBH: the smaller RFNBH is, the better

query precision the anonymization maintains and the more privacy risk there is. A specific

algorithm is given in Algorithm 1, with subprocedures in Function 2 and Function 3. Table

6.1 summarizes the notations and samples parameters used.

Table 6.1: Major notations and parameters used with sample values in parentheses.

Symbol Meaning
X An attribute.
x An existing or incoming data value of attribute X.
x̃ An anonymized value of x.
LBOUND(50) the lower bound of the attribute value.
UBOUND(220) the upper bound of the attribute value.
NbhList List of neighborhoods covering the range of attribute X.
TOTAL Total frequency of data occurrences.
RFNBH(0.03) The common relative frequency of the neighborhoods
NZRT(0.5) Ratio of noise magnitude over neighborhood size.
NZCF(0.7) The confidence that noise falls into a major interval.
NZTH(10) Maximal noise threshold.

6.3.3 Other Design Aspects

The Woodward server stores the anonymized data and allows an arbitrary third-party applica-

tion to request database query on the anonymized database. The way how an application can
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Algorithm 1 For a numeric-valued attribute X in a database, anonymize its values.
procedure ANONYMIZE(attribute X)

NbhList=NEIGHBORHOODDIVISION(X);
for each existing/incoming value x of attribute X do

identify its neighborhood [Ileft, Iright) in NbhList;
store x̃=ANONYMIZE(x, [Ileft, Iright));

end for
end procedure

Function 2 Divide the attribute range into a series of contiguous neighborhood and return the
neighborhood list.

function NEIGHBORHOODDIVISION(attribute X)
NbhList={} . List of neighborhoods
Iright = Ileft = LBOUND;
while Ileft < UBOUND do

NumOfData = 0;
while NumOfData< RFNBH ∗ TOTAL AND Iright < UBOUND do

NumOfData += occurrence frequency of Iright;
Iright = min{UBOUND, x|x > Iright};

end while
if Iright < UBOUND then

Add [Ileft, Iright) onto NbhList;
else

Add [Ileft, Iright] onto NbhList;
end if
Ileft = Iright;

end while
return NbhList;

end function

Function 3 Return the anonymized value of x within its neighborhood [Ileft, Iright).
function ANONYMIZE(Data x, [Ileft, Iright))

ALeft = max(x− NZTH, x− NZRT ∗ (x− Ileft));
ARight = min(x+ NZTH, x+ NZRT ∗ (Iright − x));
XFR = relative occurrence frequency of x;
ALeft = x− (x− ALeft)/(100 ∗ XFR + 1);
ARight = x+ (ARight− x)/(100 ∗ XFR + 1);
randomly generate x̃ with probabilistic distribution: NZCF in [ALeft,ARight); 1-NZCF

in [Ileft,ALeft) and [ARight, Iright);
return x̃;

end function
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send its query request mimics the way a user accesses a regular remote database: besides typ-

ical database privilege authorization, no other restriction applies. This gives the application

the maximal freedom.

Regarding the data storage, the Woodward server stores the original and the anonymized

data onto separate storage units. For any new data, an online anonymization is performed;

the original and the anonymized data are then stored separately. For large data, we may use

RAID or even a cluster database with a shared-nothing structure.

For data submitted from an anonymous user, a validation process is performed to protect

the database from pollution by erroneous data. To detect an abnormal value, the value is

checked against the statistical distribution of the existing data. Further, we can take advantage

of the source reputation for data validation. The specific data validation approach can be

found in our previous work [166].

6.4 Implementation

We implemented a complete Woodward system, with health care as the application area. It

includes a user component, a server component and an application component.

We developed a user client program on a HTC Legend Android phone for data collection

and feedback retrieval. As illustrated by Figure 6.4, the Android client program reads the

heart rate wirelessly from a Nonin’s Bluetooth-enabled sensor Avant 4100 worn around the

user’s wrist. In addition to the heart rate, the Android client program also collects location

data with the internal GPS and get user input for a questionnaire about the user information

such as age and email. All the collected data are sent to the Woodward server via WiFi. The

same Android client program also displays the feedback generated by applications once it

is available. The client exchanges messages with the Woodward server using XML. For the

sake of security, all the network communication is protected by Secure Socket Layer (SSL).

The Woodward server we developed stores data sent from the user with MySQL. An

original copy and an anonymized copy are stored in separate databases. The anonymization
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Figure 6.4: The client program on an Android phone.

on a numeric attribute is performed according to Algorithm 1. When the server starts, it first

prepares for the anonymization by performing the neighborhood division. Then, whenever a

new records arrives, the server performs the online anonymization based on the outcome of

the neighborhood division, with a small overhead. The server maintains a secret one-to-one

map between all true user names and their anonymized names. The anonymized names are

generated from a secure random string generator that guarantees universal uniqueness. The

server allows any third-party application to perform read-only access to the anonymized copy

with SQL. It also accepts the feedback an application generates towards a user and delivers

the feedback to the user. The third-party application is not allowed to directly access the

original copy. For the feedback, the application specifies the anonymized name of the user

and the server maps that to the true user.

We created a sample third-party application that informs certain users of potential risk of

cardiovascular disease according to their heart rate readings. Specifically, whenever a user is

found to have a high heart rate of at least 97% percentile among the group of user similar to his

age [72], the application submits such feedback to the Woodward server targeting that user:

“Your heart rate appears to be considerably higher than your peers. That reveals a certain risk

of cardiovascular diseases. If you are interested in more details or need subscription service,

please contact our eHealth group at xxx-xxx-xxxx.”
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6.5 Evaluation of Privacy Protection and Query Accuracy

For the anonymization process applied to a numeric biophysical attribute, we evaluated the

effectiveness of privacy protection and query accuracy. We generated a series of random heart

rate readings between 50bpm and 220bpm and applied the anonymization process according

to Algorithm 1 and the parameters from Table 6.1. The original random data were generated

based on one of the following seven statistical distributions: uniform distribution, binomial

distribution, normal distribution, Poisson distribution, chi-Squared distribution, Weibull dis-

tribution, and exponential distribution. For each distribution, 10,000 random values were

generated as a complete set. Table 6.2 summarizes the statistical characteristics of the orig-

inal random data, including the value range, the average, and the standard deviation. Table

6.3 summarizes the same statistics for the corresponding anonymized data. Regarding the

average and the standard deviation, there are very limited differences between the original

and the anonymized data. Additionally, except for the uniform distribution, the anonymiza-

tion tends to enlarge the range of the data by various sizes. To explain that, note the data

are sparsely distributed at either the left or the right end of the original range, except for the

uniform distribution. According to the anonymization process, the sparse areas tend to get

larger noises. The larger noises at either end of the original range result in the enlarged range

of the anonymized data. That effect is visualized in Figure 6.3: the further a point is away

from the diagonal line in the figure, the larger deviation there is.

Table 6.2: Original random data.

Random data Range Average Std Dev
Uniform distribution 50.02—220.00 135.26 49.12
Binomial distribution 82.00—136.00 110.10 7.39
Normal distribution 50.00—178.56 109.91 20.02
Poisson distribution 85.00—139.00 110.01 7.73

Chi-Squared distribution 51.26—210.28 85.04 18.89
Weibull distribution 55.52—154.27 104.44 15.06

Exponential distribution 50.00—180.93 62.10 12.00
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Table 6.3: Anonymized data.

Anonymized data Range Average Std Dev
Uniform distribution 50.00—219.95 135.30 49.15
Binomial distribution 50.08—219.12 110.29 9.89
Normal distribution 50.15—219.56 109.96 20.58
Poisson distribution 50.18—215.59 109.93 9.36

Chi-Squared distribution 50.05—219.82 85.19 19.71
Weibull distribution 50.10—219.98 104.45 16.16

Exponential distribution 50.00—213.00 62.35 13.36

Despite the differences in the range, overall, the empirical distributions of the original data

and the anonymized data show very limited differences. We have seen the small differences

of the frequency histograms for the normal distribution in Figure 6.2. Additionally, their

empirical cumulative distribution displays an almost perfect match.

The noise (i.e., the difference between an original value and its anonymized value) can

vary, from a small scale to a very large scale. But on average, the noise tends to be small.

Table 6.4 summarizes the magnitude of the noise. Though the noise can range from 0 to 108,

the average noise is no more than 1.4, with its standard deviation less than 5.

Table 6.4: Noise magnitude

Noise magnitude Range Average Std Dev
Uniform distribution 0.00—5.54 1.35 1.10
Binomial distribution 0.00—90.66 0.83 4.75
Normal distribution 0.00—59.63 0.95 2.33
Poisson distribution 0.00—79.57 0.71 3.50

Chi-Squared distribution 0.00—66.17 0.90 2.77
Weibull distribution 0.00—78.49 0.88 3.18

Exponential distribution 0.00—108.13 0.63 3.56

The noise is closely related to the size of the division interval that the original value falls

in. Roughly, the noise tends to be small for short intervals and greater for longer intervals.

Table 6.5 summarizes the length of the division intervals. The length can vary from 0.3 to

116, corresponding to the various densities. The longer the division interval is, the sparser
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the neighborhood is. The noise, on average, is roughly proportional to the length the divi-

sion interval. Table 6.6 summarizes the ratio of noise magnitude to division interval length.

Though that ratio can vary from 0 to 1, generally, its average is from 0.18 to 0.27.

Table 6.5: Length of division intervals used for anonymization

Interval length Range Average Std Dev
Uniform distribution 1.66—5.84 5.00 0.68
Binomial distribution 1.00—93.00 7.08 20.54
Normal distribution 1.43—64.42 5.00 11.15
Poisson distribution 1.00—88.00 7.39 19.99

Chi-Squared distribution 1.11—76.56 5.00 13.10
Weibull distribution 1.09—83.28 5.00 14.47

Exponential distribution 0.34—115.97 5.00 19.80

Table 6.6: Ratio of noise magnitude to division interval length

Noise/division interval Range Average Std Dev
Uniform distribution 0.0000125—0.99 0.27 0.22
Binomial distribution 0.0000038—1.00 0.19 0.26
Normal distribution 0.0000141—0.99 0.26 0.21
Poisson distribution 0.0000036—1.00 0.18 0.25

Chi-Squared distribution 0.0000666—1.00 0.26 0.21
Weibull distribution 0.0000171—0.99 0.27 0.21

Exponential distribution 0.0000066—0.99 0.26 0.21

The percentile query shows that it is moderately accurate to use the anonymized data

for estimating the percentile of an original value. Roughly, the percentile difference should

have 100*RFNBH as its upper threshold, where RFNBH is the common relative frequency

of the neighborhoods. That corresponds to how the anonymization process divides the inter-

vals and adds noise. In the meantime, for discrete-valued numeric data (i.e., integers), the

percentile difference may exceed 100*RFNBH because of the biased noise introduced by the

discreteness. If it is allowed to use non-discrete anonymized values, we may well control the

percentile difference under that upper threshold with the following anonaymization process:
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first apply tiny random noise to the original data, then apply the original anonymization pro-

cess to the data which has absorbed the tiny noise. The reason of applying tiny noise first is to

break the clustering of discrete values and facilitate the splitting of the domain into division

intervals (discrete values tend to cluster onto a few values). Table 6.7 lists the percentile rank

difference between the original data and the anonymized data for each distribution. Except

for the two discrete distribution (binomial distribution and Poisson distribution), the data

of all other distribution has a percentile rank difference between -3 and 3, which matches

100*RFNBH (RFNBH=0.03). Additionally, the latter has a 0 difference on average.

Table 6.7: Percentile query accuracy

Percentile rank difference Range Average Std Dev
Uniform distribution -3—3 0.00 1.06
Binomial distribution -6—4 -1.90 1.49
Normal distribution -3—3 -0.00 1.05
Poisson distribution -7—4 -1.83 1.53

Chi-Squared distribution -3—3 -0.00 1.06
Weibull distribution -3—3 -0.00 1.07

Exponential distribution -3—3 -0.00 1.06

Finally, the experiments show that our anonymization process highly protects the user

privacy and discourages an attacker by the anonymized data. To quantify the efforts that the

attacker needs to maliciously identify a user, for each numeric record, we define the attack

cost as the number of records that falls between the original value and the anonymized value.

Intuitively, the attack cost reflects the minimum number of records to check starting with the

original value and before coming across the anonymized value. The attacker with certain

prior knowledge on a certain user would have to examine through at least all those records

before finding out the corresponding anonymized record. This attack cost is the minimum

cost that impedes the privacy attack and thus a very conservative estimation. The actual cost

can be much higher since an attacker can never be sure of the exact number of records falling

between the original value and the anonymized value. The higher the attack cost is, the better
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our anonymization process protects the privacy. The attack cost for each original value can

vary and is independent of the division interval it falls into. The attack cost roughly reflects

the frequency of data falling into the corresponding division interval. Figure 6.5 illustrates the

attack cost for each value from a normal-distributed data set with 10,000 records. Visually,

the attack cost is independent of where the value lies. A value around the left end (50) can

have as a high attack cost as a value in the middle. Table 6.8 summarizes the statistics of the

attack cost for each distribution. Not only does the attack cost vary a lot, it also has a high

value (86–197) on average. Figure 6.6 illustrates the empirical cumulative distribution of the

attack cost for the normal distribution data. The figure reveals: with a likelihood of 60%,

the attack cost is at least 50; with a likelihood of 33%, the attack cost is at least 100; with a

likelihood of 8%, the attack cost is at least 200.
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Figure 6.5: Attack cost of identifying record from anonymized normal-distributed data with prior
knowledge.
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Table 6.8: Attack cost of identifying record from anonymized data with prior knowledge

Attack cost Range Average Std Dev
Uniform distribution 1—300 87.31 70.80
Binomial distribution 1—530 196.69 140.62
Normal distribution 1—298 86.45 70.32
Poisson distribution 1—671 189.58 141.51

Chi-Squared distribution 1—300 87.67 70.22
Weibull distribution 1—299 88.95 71.37

Exponential distribution 1—299 87.26 70.99
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Figure 6.6: Empirical CDF for attack cost of identifying record from normal-distributed anonymized
data with prior knowledge.

6.6 Summary

We proposed Woodward, a privacy-preserving participatory sensing system, focusing on

health care applications. Unlike the existing participatory sensing systems, Woodward pro-

tects the user privacy while supplying the anonymized data to arbitrary third-party applica-

tions. The innovative anonymization process adopted by Woodward causes overwhelming

cost to privacy attackers; it also allows arbitrary third-party applications to perform various

query with small under-threshold error. These features are not achievable by the existing
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privacy protection schemes. We implemented Woodward with a health care application and

evaluated the query precision and privacy protection quantitatively. In the future, we plan

to generalize the anonymization process to multi-dimensional data so as to further impede

the privacy attacks exploiting prior knowledge of multiple attributes. Additionally, we will

develop versatile applications based on Woodward.
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

7.1 Conclusions

This dissertation studied how to provide system support for robust data collection in wireless

sensing systems through addressing a few urgent design issues in existing systems. A wire-

less sensing system may suffer issues arising at the sensors, during the data transmission,

and during the data access by applications. While wireless sensing systems may resemble

conventional networked systems in many ways, their unique characteristics determine that

certain conventional solutions for networked systems may not work well. With certain typi-

cal system structures, we have developed approaches to resolve those few urgent problems in

the design of wireless sensing systems. Similar ideas to our approaches can be employed to

address the issues in more generic settings.

First, we developed a resilient trust model, SensorTrust, to effectively detect faulty data in

wireless sensing systems due to either sensor malfunctioning or malicious attempts to report

false data. SensorTrust evaluates the trustworthiness of the collected data in wireless sensing

systems. While this model is mainly proposed for a certain common architecture of wireless

sensing systems (hierarchical WSNs) , this approach can be generalized to detect data trust-

worthiness in a more generic setting. In this model, an aggregator maintains trust estimations

for its children nodes. With this model, past history and recent risk are synthesized in a real-

time way that accurately identifies the current trust level. Our model employs the Gaussian

model to rate data integrity in a fine-grained style, and a flexible update protocol to adapt

to different applications. With acceptable overhead, the SensorTrust model was evaluated

with the real world sensor data from Intel Berkeley Lab and Motelab at Harvard University,
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and compared with other approaches. The results indicate great advantage of SensorTrust to

handle varied faults and attacks.

Then, we developed a low-cost, self-contained, accurate localization system (LOBOT) for

small-sized ground robotic vehicles. This localization system enhances the wireless sensing

systems containing mobile sensors by providing more accurate and highly available loca-

tion data, with only limited overhead in economic cost and management. LOBOT local-

izes a robotic vehicle with a hybrid approach consisting of infrequent absolute positioning

through a GPS receiver and local relative positioning based on a 3D accelerometer, a magnetic

field sensor and several motor rotation sensors. LOBOT fuses the information from an ac-

celerometer, a magnetic sensor and motor rotation sensors to infer the movement of the robot

through a short time period; then the inferred movement is corrected with infrequent GPS-

augmentation. The hardware devices LOBOT uses are easily-available at low cost. LOBOT is

self-contained in that it virtually requires no external devices or external facility management

and that it needs no prior information. Unlike other localization schemes such as radio-based

solutions, LOBOT does not require external reference facilities, expensive hardware, care-

ful tuning or strict calibration. Additionally, LOBOT applies to both indoor and outdoor

environments and realizes satisfactory performance. We developed a prototype of LOBOT

and conducted extensive field experiments. The empirical experiments of various temporal

and spatial scales with LOBOT verified its accuracy. In contrast to the accelerometer-based

approach, LOBOT succeeds in maintaining low cumulative error. The GPS-augmentation

greatly enhances LOBOT’s resilience.

Additionally, we designed and implemented TARF, a robust trust-aware routing frame-

work, to secure multi-hop routing through a set of sensors (WSNs) in wireless sensing sys-

tems. Though it is motivated by harmful attackers exploiting the replay of routing informa-

tion, TARF can also be used to protect the routing layer from other attacks. TARF focuses on

trustworthiness and energy efficiency, which are vital to the survival of a WSN in a hostile

environment. With the idea of trust management, TARF enables a node to keep track of the
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trustworthiness of its neighbors and thus to select a reliable route. Unlike previous efforts

at secure routing for WSNs, TARF effectively protects WSNs from severe attacks through

replaying routing information; it requires neither tight time synchronization nor known geo-

graphic information. The resilience and scalability of TARF were proved through both exten-

sive simulation and empirical evaluation with large-scale WSNs; the evaluation involved both

static and mobile settings, hostile network conditions, as well as strong attacks such as worm-

hole attacks and Sybil attacks. We implemented a ready-to-use TinyOS module of TARF with

low overhead; this TARF module can be integrated into existing routing protocols with mod-

erate effort, thus producing secure and efficient fully-functional protocols. Additionally, we

demonstrated a proof-of-concept mobile target detection application that was built on top of

TARF and was resilient in the presence of an anti-detection mechanism; that indicates the

potential of TARF in WSN applications.

Finally, we developed Woodward, a privacy-preserving wireless sensing system. Though

it focuses on health care applications, the design principle in privacy protection can be ex-

tended to other wireless sensing systems with privacy concern. Unlike the existing wireless

sensing systems, Woodward protects the user privacy while allowing arbitrary third-party ap-

plications to extract knowledge from the collected data. The anonymization process adopted

by Woodward causes overwhelming cost to privacy attackers; it also allows arbitrary third-

party applications to perform various query with small under-threshold error. These features

are not achievable by the existing privacy protection schemes. We implemented Woodward

with a health care application and evaluated the query precision and privacy protection quan-

titatively.

7.2 Future Directions

As the future directions, it will be beneficial to study how to extend our approaches to sys-

tematically establish robust data collection for wireless sensing systems.
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First, the data trustworthiness modeling (SensorTrust) in this dissertation is mainly based

on the assumption that the data from one sensor should be consistent with the data from

certain other sensors. Such consistency requirement can be relaxed to be extended to more

generic settings. As one extension, we may consider the consistency among multiple at-

tributes detected by the sensors. It is likely that one attribute is related to another attribute.

If inconsistency is detected among multiple attributes, then the trustworthiness can be down-

graded. We may also consider the temporal consistency within the data from a single sensor.

The temporal evolvement of an attribute reading detected by a sensor often displays certain

patterns, depending on the characteristics of the attribute. Drastic changes in the readings

over a short time often indicate potential sensor malfunction.

Second, the localization of small-sized ground robotic vehicles (LOBOT) can be im-

proved in a few ways. Certain investigation can be conducted to evaluate how other prob-

abilistic inference algorithms such as Kalman filter can help reduce the errors from drifting.

Slippage of the vehicles should also be considered; there are a few existing projects that help

resolve the slippage issue. Additionally, the impact of the magnetic interference on the ac-

curacy of localization can be studied. Further, empirical analysis can be conducted on the

energy overhead of the localization approaches utilizing various sensors.

Third, the trust-aware routing framework we proposed for wireless sensor networks (TARF)

can be applied to other attacks targeting the routing layer. The underlying mechanism of our

proposed approach does not assume that only the attacks exploiting the replay of the routing

information exist. It can also defend against other attacks towards the routing layer prevent-

ing packet delivery. Empirical experiments will be needed to verify the performance. Mean-

while, we did not consider the MAC layer attacks. Existing approaches normally address

those attacks through a combination of defense on both the software and hardware sides;

pure software approaches may not work well.

Last, the anonymization we proposed for the Woodward system can be further improved

in a few ways. The existing research in protecting privacy of location information can be



155

incorporated into Woodward. It is also possible to generalize the anonymization process to

multi-dimensional data so as to further impede the privacy attacks exploiting prior knowledge

of multiple attributes. Additionally, we would like to encourage the development of versatile

applications based on Woodward.
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This dissertation studied how to provide system support for robust data collection in wireless

sensing systems through addressing a few urgent design issues in the existing systems. A

wireless sensing system may suffer issues arising at the sensors, during the data transmis-

sion, and during the data access by applications. Due to the unique characteristics of wireless

sensing systems, certain conventional solutions for networked systems may not work well

with these issues. We developed approaches to resolve these urgent problems in the design

of wireless sensing systems. Specially, we have achieved the following: (1) we developed a

resilient trust model to effectively detect faulty data in wireless sensing systems due to either

sensor malfunctioning or malicious attempts to report false data; (2) we developed a low-cost,

self-contained, accurate localization system for small-sized ground robotic vehicles, which

enhances the wireless sensing systems containing mobile sensors by providing more accurate

and highly available location data, with only limited overhead in economic cost and man-

agement; (3) we designed and implemented a robust trust-aware routing framework to secure

multi-hop routing through a set of sensors in wireless sensing systems; (4) we developed a

privacy-preserving wireless sensing system, which protects the user privacy while allowing

arbitrary third-party applications to extract knowledge from the collected data.
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