9 research outputs found

    Introductory Chapter: Technology and Orthotics and Prosthetics

    Get PDF

    Online Assessment of Human-Robot Interaction for Hybrid Control of Walking

    Get PDF
    Restoration of walking ability of Spinal Cord Injury subjects can be achieved by different approaches, as the use of robotic exoskeletons or electrical stimulation of the user’s muscles. The combined (hybrid) approach has the potential to provide a solution to the drawback of each approach. Specific challenges must be addressed with specific sensory systems and control strategies. In this paper we present a system and a procedure to estimate muscle fatigue from online physical interaction assessment to provide hybrid control of walking, regarding the performances of the muscles under stimulation

    Control of robot-assisted gait trainer using hybrid proportional integral derivative and iterative learning control

    Get PDF
    An inexpensive exoskeleton of the lower limb was designed and developed in this study. It can be used as a gait trainer for persons with lower limb problems. It plays an essential role in lower limb rehabilitation and aid for patients, and it can help them improve their physical condition. This paper proposes a hybrid controller for regulating the lower limb exoskeleton of a robot-assisted gait trainer that uses a proportional integral and derivative (PID) controller combined with an iterative learning controller (ILC). The direct current motors at the hip and knee joints are controlled by a microcontroller that uses a preset pattern for the trajectories. It can learn how to monitor a trajectory. If the trajectory or load is changed, it will be able to follow the change. The experiment showed that the PID controller had the smallest overshoot, and settling time, and was responsible for system stability. Even if there are occasional interruptions, the tracking performance improves with the ILC

    Technologies and combination therapies for enhancing movement training for people with a disability

    Get PDF
    There has been a dramatic increase over the last decade in research on technologies for enhancing movement training and exercise for people with a disability. This paper reviews some of the recent developments in this area, using examples from a National Science Foundation initiated study of mobility research projects in Europe to illustrate important themes and key directions for future research. This paper also reviews several recent studies aimed at combining movement training with plasticity or regeneration therapies, again drawing in part from European research examples. Such combination therapies will likely involve complex interactions with motor training that must be understood in order to achieve the goal of eliminating severe motor impairment

    Studio dell'interazione tra Sistema Muscoloscheletrico Umano e Dispositivi di Assistenza Robotici

    Get PDF
    In the latest years, robotic technologies have been increasingly introduced in rehabilitation with the main purpose of reducing the costs and speeding up the recovery process of patients. However, most of the commercial devices impose a pre-programmed trajectory to the limbs of the patients, who therefore behave in a passive way. Another current major limitation is the inability to accurately evaluate the dynamics of the interaction between the patient and the robotic device. This interaction plays a central role in the mutual modulation of human and robot system behavior with respect of their standalone behavior. In particular, the prediction of the interaction can provide useful information to better design the exoskeleton as well as the rehabilitation treatment. This thesis presents my proposed solution for the development of a simulator able to dynamically simulate at the same time the actuated robot device, the human body, and their emerging physical interaction during the movement cooperation. The main idea behind this solution is to decompose the main system in different levels. I called the proposed solution Multi-Level modeling approach, which is the main topic of this thesis. I proposed the following decomposition: Human, Robot, and Boundary Level. The levels are integrated into a whole system in which each of them addresses specific challenges. The Human Level represents the subject who is wearing, for example, an exoskeleton for the lower limbs. To reach a symbiotic collaboration between the subject and the exoskeleton, the proposed approach has to include the subject's intentions and efforts. Moreover, user's internal transformations provide important information about the internal dynamic parameters modulation due to the external device. The Robot Level consists of the wearable robot system which supports the movements. Our proposed approach includes models of both device mechanics and control strategies. This allows to test different control strategies and find the one that better fits each specific patient's needs and characteristics. The last level is the Boundary Level, which has the main objective to model the human-robot mechanical power transfer, including also the non-idealities (such as dissipative forces), in order to accurately estimate interactions. Challenges emerged during the development of the simulator system were faced, investigating different solutions, and selecting and validating the most promising one. First, I selected a common software platform, able to simultaneously reproduce the dynamic behavior of the three levels. The common software platform allows to build a quite flexible system where different solution could be evaluated simply modifying model parameters. Among different available software, OpenSim was selected because it is well known and used for the dynamic study of human movement. Although OpenSim was well tested in biomechanics, it required a further evaluation as simulator for Robot and Boudary Levels. Performed tests and their motivations are reported in this work. Human internal dynamics parameters are modulated by the influence of the external device. I proposed to monitor this variation, taking into consideration the neural drive sent to the muscles. This can be done by measuring the muscles' electromyographic (EMG) signals, which are the electrical potential generated by muscle cells when they are activated, prior to muscle contraction. These signals can be used as input for a physiologically accurate human musculoskeletal model, to calculate the subject contribution to the movement. As the relation between EMGs and the generated muscle forces and joint moments is not linear, the neuromusculoskeletal model is indeed needed to replicate step-by-step all the internal transformations which occur from the excitation of the muscle to the joint movement. Estimation of the emerging interaction, during the human-robot cooperation, can be performed through an interaction model which is basically a set of contact models. Due to the specific rehabilitation purpose of our work, this contact model needs special attention. I introduced and validated a procedure to calibrate the contact models to improve the accuracy of the estimated interaction forces. One of the problems of using EMG signals is that, in order to acquire them in a non-invasive way, surface electrodes must be used; however, this means that the collected data quality is quite susceptible to the electrodes placements and decay, and to electric and magnetic interferences. In many contexts, such as home rehabilitation, this could be a limitation. An alternative solution to avoid the direct EMG measurement is presented in this work. The idea is that for some repetitive tasks, which are most interesting for rehabilitation, it is possible to substitute the direct data collection with a subject specific model of EMGs. The objective of this work is to provide an effective approach to estimate the emerging interaction during the human-robot movement cooperation. The Multi-Level Modeling approach, presented in this thesis, decomposes this complex problem allowing to find all the required components to realize a whole system able to reach this objective

    Design and Evaluation of a Knee-Extension-Assist

    Get PDF
    Quadriceps muscle weakness is a condition that can result from a wide variety of causes, from diseases like polio and multiple sclerosis to injuries of the head and spine. Individuals with weakened quadriceps often have difficulty supplying the knee-extension moments required during common mobility tasks. Existing powered orthoses that provide an assistive knee-extension moment are large and heavy, with power supplies that generally last less than two hours. A new device that provides a knee-extension-assist moment was designed to aid an individual with quadriceps muscle weakness to stand up from a seated position, sit from a standing position, and walk up and down an inclined surface. The knee-extension-assist (KEA) was designed as a modular component to be incorporated into existing knee-ankle-foot-orthoses (KAFO). The KEA consists of three springs that are compressed, as the knee is flexed under bodyweight, by cables that wrap around a sheave at the knee. The KEA returns the stored energy from knee flexion as an extension moment during knee extension. During swing or other non-weight bearing activities, the device is disengaged from the KAFO by decoupling the sheave from the KAFO knee joint, allowing free knee joint motion. A prototype was built and mechanically tested to determine KEA behaviour during loading and extension and to ensure proper KEA function. For biomechanical evaluation, able-bodied subjects used the prototype KEA while performing sit-to-stand, stand-to-sit, ramp ascent, and ramp descent tasks. The KEA facilitated sitting and standing, providing an average of 53 % of the required extension moment for the two participants, which allowed one participant to reduce quadriceps usage by 38 % and the other to perform sit-to-stand in a slower and more controlled manner that was not possible without the KEA. KEA use during ramp gait caused an overall increase in quadriceps activation by 76 %, on average, with use. Future efforts will be made to modify the design to improve functionality, especially for ramp gait, and to reduce device size and weight

    Nuevas estrategias para la interacción y la movilidad de niños con parálisis cerebral según un modelo convergente

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en 2013Esta tesis doctoral presenta la concepción, la implementación y la validación de nuevas estrategias para la interacción y la movilidad de niños con parálisis cerebral (PC) y síndromes afines, todo ello siguiendo un modelo convergente. Inicialmente, se plantea el desarrollo de un vehículo robótico para promover las aptitudes físicas y cognitivas a través de experiencias de movilidad. Pese a la versatilidad del vehículo, muchos de estos niños presentan limitaciones neuromotoras graves, que le impiden interactuar con la consola de conducción del vehículo en las diferentes modalidades. Por ello, para mejorar la accesibilidad del vehículo, no basta dotar a éste de diferentes modos de conducción y de mando, sino que de forma complementaria, se propone una nueva interfaz persona-máquina que potencie la actividad voluntaria y reduzca los efectos de los movimientos involuntarios. La motivación de este trabajo se basa en que la autonomía de locomoción es esencial para el desarrollo perceptivo, motor y social en los primeros años de vida. La revisión del estado del arte de los dispositivos de apoyo a la movilidad para personas con PC, muestra que pocos de ellos tienen como objetivo potenciar el desarrollo integral de la persona. Por otro lado, la interacción entre la máquina y el usuario con PC resulta un factor crítico. Un estudio bibliográfico de las interfaces persona-computador para usuarios con PC mostró que, aunque existen diversas soluciones, la usabilidad de las interfaces decrece drásticamente cuando existen afectaciones motoras graves, que dificultan el control voluntario. De acuerdo a estas consideraciones, se han detectado las siguientes necesidades: Mejorar la interacción del niño con su entorno físico y social a través de experiencias de movilidad como medio esencial del desarrollo integral del niño. Caracterizar las limitaciones de control causadas por las alteraciones de postura y movimiento de estos colectivos. Facilitar la interacción entre el niño y el dispositivo de apoyo a través de estrategias de filtrado del movimiento involuntario. En este contexto, las principales aportaciones científicas han sido: Propuesta de un modelo conceptual para formalizar la aplicación de las tecnologías de apoyo a personas con PC. El modelo define tres tipos de dispositivos de apoyo: general, personal y de entorno que han de interactuar de forma convergente para aproximar el dispositivo al usuario, y ambos, al entorno. Diseño y construcción de un nuevo vehículo robótico preindustrial como dispositivo de apoyo al desarrollo integral de los niños con PC. Diseño y evaluación de un algoritmo para estimación precisa y fiable de distancias a obstáculos empleando sensores ultrasónicos, para apoyar al niño en la conducción del vehículo. Desarrollo de una herramienta para la captura y el análisis del ejercicio de conducción para la objetivación del proceso terapéutico. Diseño y construcción de una nueva interfaz persona-máquina basada en tecnología inercial. Caracterización de la postura y del movimiento alterados de las personas con PC en el control del dispositivo inercial mediante el registro y el análisis de parámetros relacionados con estas alteraciones y la definición de métricas para su objetivación. Diseño y validación de una estrategia eficaz de filtrado para la reducción del efecto del movimiento involuntario en el control de la interfaz inercial. Validación funcional de la interfaz inercial como dispositivo de entrada al computador para su uso en aplicaciones diversas. Validación funcional de la interfaz inercial como dispositivo específico para la conducción del vehículo. Implementación práctica y validación del modelo conceptual de interacción convergente propuesto. Las soluciones y métodos planteados han sido validados de manera experimental con personas con PC. El criterio de selección de los participantes ha incluido a personas con graves dificultades para acceder a interfaces convencionales e incluso avanzadas. Los resultados obtenidos muestran que se han obtenido mejoras funcionales altamente positivas, que son expuestas en la memoria. El vehículo se ha mostrado como una herramienta eficaz para motivar al niño a interactuar con su entorno. La interfaz inercial ha demostrado ser un canal de interacción adecuado para estas personas, tanto para el acceso al computador como para la conducción del vehículo. Con todo, el resultado más significativo de esta tesis doctoral ha sido la creación de los dispositivos de apoyo (vehículo e interfaz) según un modelo de tecnología convergente de apoyo, con lo que se pretende aportar mayor autonomía y calidad de vida a las personas con PC

    State of the Art in Neurotechnologies for Assistance and Rehabilitation in Spain: Fundamental Technologies

    Get PDF
    [EN] Neurotechnologies are those technologies aimed to study the nervous system, or to improve its function. These technologies expand the range of treatments for rehabilitating damaged functions and provide new healthcare solutions for the functions that have been lost. This paper reviews the rehabilitation and assistance neurotechnologies, mainly for motor disorders, it introduces a taxonomy that facilitates the systematic review, and it shows recent progresses made in Spain in the investigation, development, and application of their fundamental technologies.[ES] Las neurotecnologías son aquellas tecnologías dirigidas al estudio del sistema nervioso o a mejorar su función. Estas tecnologías permiten extender el rango de tratamientos disponibles para la rehabilitación de funciones dañadas y proporcionan nuevas soluciones asistenciales para las funciones perdidas. En este artículo se revisan las neurotecnologías de asistencia y rehabilitación, en trastornos motores principalmente, se introduce una taxonomía que facilita su revisión sistemática, y se proporciona una visión global de los avances logrados en la investigación, desarrollo y aplicación en España de aquellas de sus tecnologías más básicas.Los autores quieren agradecer el apoyo de NEUROTEC – Red Temática de Investigación en Neurotecnologías para la Asistencia y la Rehabilitación (DPI2015-69098-REDT), financiada por Ministerio de Economía y Competitividad.Barrios, LJ.; Hornero, R.; Pérez-Turiel, J.; Pons, JL.; Vidal, J.; Azorín, JM. (2017). Estado del Arte en Neurotecnologías para la Asistencia y la Rehabilitación en España: Tecnologías Fundamentales. Revista Iberoamericana de Automática e Informática industrial. 14(4):346-354. https://doi.org/10.1016/j.riai.2017.06.003346354144Alonso, J.F., Mañanas, M.A., Romero, S., Rojas-Martínez, M., Riba, J., 2012. Cross-conditional entropy and coherence analysis on pharmaco-EEG changes induced by alprazolam, Psychopharmacology, 221(3):397-406. DOI: 10.1007/s00213-011-2587-7Alonso, J.F., Romero, S., Mañanas, M.A., Alcalá, M, Antonijoan, R.M., Giménez, S., 2016. Acute sleep deprivation induces a local increase on brain transfer information in the frontal cortex in a context of widespread decrease, Sensors, 16(4). pii: E540. DOI: 10.3390/s16040540Angulo Sherman, I. N., Rodríguez Ugarte, M., Iáñez Martínez, E., Azorín Poveda, J. M., 2016. Efecto en la clasificación de imaginación motora a partir del EEG al aplicar tDCS en la corteza motora y el cerebelo. En: Libro de Actas CASEIB 2016. XXXIV Congreso Anual de la Sociedad Española de Ingeniería Biomédica. Valencia, 23 al 25 de noviembre de 2016, 249-252.Antelis, J.M., Montesano, L., Ramos-Murguialday, A., Birbaumer, N., Minguez, J., 2017. Decoding Upper Limb Movement Attempt from EEG Measurements of the Contralesional Motor Cortex in Chronic Stroke Patients. IEEE Transactions on Biomedical Engineering 64(1), 99 - 111.Antonakakis, M., Dimitriadis, S.I., Zervakis, M., Micheloyannis, S., Rezaie, R., Babajani-Feremi, A., Zouridakis, G., & Papanicolaou, A.C., 2016. Altered cross-frequency coupling in resting-state MEG after mild traumatic brain injury. Int. Journal of Psychophysiology, 102, 1-11.Badesa, F. J., Morales, R., Garcia-Aracil, N. M., Sabater, J. M., Zollo, L., Papaleo, E., & Guglielmelli, E. 2016. Dynamic Adaptive System for Robot-Assisted Motion Rehabilitation. IEEE Syst. Journal, 10(3), 984-991.Barrios, L.J., del Castillo, M.D., Serrano, J.I., Pons, J.L., 2012. A review of fMRI as a tool for enhancing EEG-based brain-machine interfaces. Applied Bionics and Biomechanics 9 (2), 125-133. DOI: 10.3233/ABB2012-0066Barrios, L.J., Minguillón, J., Perales, F.J., Ron-Angevin, R., Solé-Casals, J., Mañanas, M.A., 2017. Estado del Arte en Neurotecnologías para la Asistencia y la Rehabilitación en España: Tecnologías Auxiliares, Trasferencia Tecnológica y Aplicación Clínica. Revista Iberoamericana de Automática e Informática Industrial RIAI. (En este mismo número).Barroso, F., Torricelli, D., Bravo-Esteban, E., Taylor, J., Gomez-Soriano, J., Santos, C., Moreno, J., Pons, J.L., Muscle synergies in cycling after incomplete spinal cord injury: correlation with clinical measures of motor function and spasticity, Frontiers in Human Neuroscience, Vol. 9, article 706, 2016. DOI: 10.3389/fnhum.2015.00706.Benito, J., Kumru, H., Murillo, N., Costa, U., Medina, J., Tormos, J.M., Pascual-Leone, A., Vidal, J., 2012. Motor and gait improvement in patients with incomplete spinal cord injury induced by high-frequency repetitive transcranial magnetic stimulation. Top. Spinal Cord Inj. Rehabil. 18, 106-112. DOI:10.1310/sci1802-106Borau Duran, A., 2004. Presentation, development and validation of Barcelona technique in the application of implantable electric stimulators of anterior sacral roots (sars) for the control of sphincter's dysfunction in spinal cord patients. Universitat Politècnica de Catalunya.Bortole, M., Venkatakrishnan, A., Zhu, F., Moreno, J.C., Francisco, G.E., Pons, J.L. and Contreras-Vidal, J.L., The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study, Journal of NeuroEngineering and Rehabilitation 2015, 12:54. DOI: 10.1186/s12984- 015-0048-y.Cabib, C., Ortega, O., Kumru, H., Palomeras, E., Vilardell, N., AlvarezBerdugo, D., Muriana, D., Rofes, L., Terré, R., Mearin, F., Clavé, P., 2016. Neurorehabilitation strategies for poststroke oropharyngeal dysphagia: from compensation to the recovery of swallowing function. Ann. N. Y. Acad. Sci. 1380, 121-138. DOI:10.1111/nyas.13135Claros, M.J., Soto, R., Gordillo, J.L., Pons, J.L. and Contreras-Vidal, J.L., Robotic Assistance of Human Motion using Active-backdrivability on a Geared Electromagnetic Motor, Int J Adv Robot Syst, 2016, 13:40. DOI: 10.5772/62331.Corralejo, R., Hornero, R., Alvarez, D., 2011. Feature selection using a genetic algorithm in a motor imagery-based Brain Computer Interface. En 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 7703-7706. DOI: 10.1109/IEMBS.2011.6091898Corralejo, R., Nicolas-Alonso L.F., Álvarez D., Hornero, R., 2014. A P300- based brain-computer interface aimed at operating electronic devices at home for severely disabled people. Medical and Biological Engineering and Computing, 52(10), 861-872. DOI: 10.1007/s11517-014-1191-5Costa, A., Iáñez, E., Úbeda, A., Hortal, E., Del Ama, A., Gil, A.M., Azorin, J.M., 2016. Decoding the attentional demands of gait through EEG gamma band features. PLoS One 11(4), e0154136, 1 - 21.Cullell, A., Moreno, J.C., Pons, J.L., Dynamic simulation of the behavior of an orthosis for knee and ankle functional compensation during gait, Gait and Posture, Vol. 26, SP-31 (2007).Da Silva-Sauer L., Valero-Aguayo L., Velasco-Álvarez F., Ron-Angevin R., 2013. Psychological variables in the control of brain-computer interfaces. Psicothema 23(4), 745-751. Da Silva-Sauer, L., Valero-Aguayo, L., de la Torre-Luque, A., Ron-Angevin, R., Varona-Moya, S., 2016. Concentration on performance with P300- based BCI systems: A matter of interface features. Applied Ergonomics 52, 325-332. DOI: 10.1016/j.apergo.2015.08.002de los Reyes-Guzmán, A., Dimbwadyo-Terrer, I., Pérez-Nombela, S., Monasterio-Huelin, F., Torricelli, D., Pons, J.L. and Gil-Agudo, A., 2016. Novel kinematic indices for quantifying upper limb ability and dexterity after cervical spinal cord injury, Med Biol Eng Comput, August 2016. DOI: 10.1007/s11517-016-1555-0del Ama, A.J., Gil-Agudo, A., Bravo-Esteban, E., Pérez-Nombela, S., Pons, J.L., Moreno, J.C., 2014. Hybrid therapy of walking with Kinesis overground robot for persons with incomplete spinal cord injury: A feasibility study, Robotics and Autonomous Systems. DOI: 10.1016/j.robot.2014.10.014DiGiovine, C. P., Bresler, M. I., Bahr, P. A., 2014. A Historical Overview of Rehabilitation Engineering. Proceedings of the Annual Conference of the Rehabilitation Engineering and Assistive Technology Society of North America. Indianapolis, USA, June 11-15, 2014.Dosen, S., Muceli, S., Dideriksen, J.L., Romero, J.P., Rocon, E., Pons, J.L., Farina, D., Online Tremor Suppression using Electromyography and Low Level Electrical Stimulation, IEEE Trans. on Neural Systems and Rehabilitation Engineering 2014. DOI: 10.1109/TNSRE.2014.2328296Duñabeitia, J.A., Ivaz, L., & Casaponsa, A., 2016. Developmental changes associated with cross-language similarity in bilingual children. Journal of Cognitive Psychology, 28:1, 16-31.Escudero J., Sanei S., Jarchi D., Abásolo D., Hornero R., 2011. Regional coherence evaluation in mild cognitive impairment and Alzheimer's disease based on adaptively extracted magnetoencephalogram rhythms. Physiological Measurement, 32, 1163-1180.Fernández, A., Zuluaga, P., Abásolo, D., Gómez, C., Serra, A., Méndez, M. A., Hornero, R., 2012. Brain oscillatory complexity across the life span. Clinical neurophysiology, 123 (11), 2154-2162.Fernández-Rodríguez, A., Velasco-Álvarez, F., Ron-Angevin, R., 2016. Review of real brain-controlled wheelchairs. Journal of Neural Engineering 13(6). DOI: 10.1088/1741-2560/13/6/061001Fraile, J. C., Pérez-Turiel, J., Baeyens, E., Viñas, P., Alonso, R., Cuadrado, A., Nieto, F., 2016. E2Rebot: A robotic platform for upper limb rehabilitation in patients with neuromotor disability. Advances in Mechanical Engineering, 8(8), 1-13. DOI: 10.1177/1687814016659050Fraile, J.C., Pérez-Turiel, J., Viñas, P., Alonso, R., Cuadrado, A., Ayuso, L., García-Bravo, F., Nieto, F., Mihai, L., 2015. Control of the E2REBOT Platform for Upper Limb Rehabilitation in Patients with Neuromotor Impairment, Robot 2015: Second Iberian Robotics Conference, Volume 418 of the series Advances in Intelligent Systems and Computing, 303- 314. DOI 10.1007/978-3-319-27149-1_24Frizera, A., Ceres, R., Pons, J.L., 2011. Filtrado Adaptativo de Componentes Involuntarias en Marcha Asistida por Andador para Detección de Intenciones. Revista Iberoamericana de Automática e Informática Industrial RIAI, 8, 71-80.Gallego, J.A., Rocon, E., Belda, J.M., Pons, J.L., A Neuroprosthesis for Tremor Management through the Control of Muscle Co-contraction, Journal of NeuroEngineering and Rehabilitation 2013, 10:36.Gómez, C., Olde Dubbelink, K.T., Stam, C.J., Abásolo, D., Berendse, H.W., Hornero, R., 2011. Complexity analysis of resting-state MEG activity in early-stage Parkinson's disease patients. Annals of Biomedical Engineering, 39(12), 2935-2944. DOI: 10.1007/s10439-011-0416-0Gómez, C., Pérez-Macías, J. M., Poza, J., Fernández, A., Hornero, R., 2013. Spectral changes in spontaneous MEG activity across the lifespan. Journal of neural engineering, 10 (6), 066006.Gomez-Pilar, J., Martín-Santiago, O., Suazo, V., Azua, S. R., Haidar, M. K., Gallardo, R., Poza, J., Hornero, R., Molina, V., 2016. Association between electroencephalographic modulation, psychotic-like experiences and cognitive performance in the general population. Psychiatry and clinical neurosciences.Gonzalez-Moreno A., Aurtenetxe S., Lopez-Garcia M.E., del Pozo F., Maestu F., Nevado A., 2014. Signal-to-noise ratio of the MEG signal after preprocessing. J. Neurosci. Methods. 222:56-61.Guerrero, C. R., Fraile, J. C., Pérez-Turiel, J., Farina, P. R., 2011. Robot biocooperativo con modulación háptica para tareas de neurorehabilitación de los miembros superiores. Revista Iberoamericana de Automática e Informática Industrial RIAI, 8(2), 63-70. DOI: 10.4995/RIAI.2011.02.09Guerrero, C. R., Marinero, J. C. F., Turiel, J. P., Muñoz, V., 2013. Using "human state aware" robots to enhance physical human-robot interaction in a cooperative scenario. Computer methods and programs in biomedicine, 112(2), 250-259. DOI: 10.1016 / j.cmpb.2013.02.003Guerrero, C. R., Marinero, J. F., Turiel, J. P., Farina, P. R., 2010. Bio cooperative robotic platform for motor function recovery of the upper limb after stroke. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 4472-4475. DOI: 10.1109/IEMBS.2010.5626052Guillaume D; A Van HAvenbergh; Michael Vloeberghs; Joan Vidal; Geir Roeste. A clinical study of intrathecal baclofen using a programmable pump for intractable spasticity. Arch Phys Med Rehabil. 86, pp. 2165 - 2171. 2005.Gunduz, A., Kumru, H., Pascual-Leone, A., 2014. Outcomes in spasticity after repetitive transcranial magnetic and transcranial direct current stimulations. Neural Regen. Res. 9, 712-718. DOI:10.4103/1673- 5374.131574Hansen, L.B., Macizo, P., Duñabeitia, J.A., Saldaña, D., Carreiras, M., Fuentes, L.J., & Bajo, M.T., 2016. Emergent bilingualism and Working Memory development in school aged children. Lang. Learn., 66(2), 51-75.Hayashibe, M., Guiraud, D., Pons, J.L. and Farina, D., Biosignal processing and computational methods to enhance sensory motor neuroprosthetics, Front. Neurosci. DOI: 10.3389/fnins.2015.004344Hortal, E., Planelles, D., Costa, A., Iáñez, E., Úbeda, A., Azorín, J. M., Fernández, E., 2015a. SVM-based Brain-Machine Interface based on four mental tasks for controlling a robot arm. Neurocomp. 151(1), 116 - 121.Hortal, E., Planelles, D., Resquín, F., Climent, J.M., Azorin, J.M., Pons, J.L, 2015b. Using a brain-machine interface to control a hybrid upper limb exoskeleton during rehabilitation of patients with neurological conditions. Journal of NeuroEngineering and Rehabilitation 12(92), 1-16. DOI: 10.1186/s12984-015-0082-9Hortal, E., Úbeda, A., Iáñez, E., Azorín, J.M., 2014. Control of a 2 DoF Robot Using a Brain-Machine Interface. Computer Methods and Programs in Biomedicine 116(2), 169-176.Hortal, E., Ubeda, A., Iañez, E., Azorin, J.M., Fernandez, E., 2016. EEGbased Detection of Starting and Stopping During Gait Cycle. International Journal of Neural Systems 26(7): 1650029, 1-13.Ibáñez, J., Serrano, J.I., del Castillo, M.D., Minguez, J., Pons, J.L., 2015. Predictive classification of self-paced upper-limb analytical movements with EEG, Medical & Biological Engineering & Computing. DOI: 10.1007/s11517-015-1311-xKoutsou, A., Moreno, J.C., del Ama, A.J., Rocon, E., Pons, J.L., Advances in Selective Activation of Muscles for Non-invasive Motor Neuroprostheses, Journal of NeuroEngineering and Rehabilitation, 2016, 13:56. DOI: 10.1186/s12984-016-0165-2Kumru, H., Benito-Penalva, J., Valls-Sole, J., Murillo, N., Tormos, J.M., Flores, C., Vidal, J., 2016. Placebo-controlled study of rTMS combined with Lokomat(®) gait training for treatment in subjects with motor incomplete spinal cord injury. Exp. Brain Res. 234, 3447-3455. DOI:10.1007/s00221-016-4739-9Kumru, H., Murillo, N., Samso, J.V., Valls-Sole, J., Edwards, D., Pelayo, R., Valero-Cabre, A., Tormos, J.M., Pascual-Leone, A., 2010. Reduction of spasticity with repetitive transcranial magnetic stimulation in patients with spinal cord injury. Neurorehabil. Neural Repair 24, 435-441. DOI:10.1177/1545968309356095Lagoda, C., Moreno, J.C., Pons, J.L., Human-robot interfaces in exoskeletons for gait training after stroke: State of the art and challenges, Applied Bionics and Biomechanics 2012. DOI: 10.3233/ABB-2012-0056Lambrecht, S., Gallego, J.A., Rocon, E., Pons, J.L., Automatic real-time monitoring and assessment of tremor parameters in the upper limb from orientation data, Front. Neurosci., 8: 221 (July, 24th, 2014). DOI: 10.3389/fnins.2014.00221Lambrecht, S., Nogueira, S.L., Bortole, M., Siqueira A.A.G., Terra, M.H., Rocon, E., Pons, J.L., Inertial sensor error reduction through calibration and sensor fusión, Sensors 2016, 16, 235. DOI: 10.3390/s16020235López M. E., Cuesta P., Garcés P., Castellanos P.N., Aurtenetxe S., Bajo R., Marcos A., Delgado M.L., Montejo P., López-Pantoja J.L., Maestú F., Fernandez A., 2014. MEG spectral analysis in subtypes of mild cognitive impairment. Age (Dordr). 36(3):9624.Lopez-Gordo, M. A., Grima Murcia, M. D., Padilla P., Pelayo, F., Fernandez, E., 2016a. Asynchronous Detection of Trials Onset from Raw EEG Signals. International Journal of Neural Systems, 26 (7), 1-11.Lopez-Gordo, M. A., Padilla P., Pelayo Valle, F., 2016b. A proposal for biosynchronized transmission of EEG/ERP data. Eurasip Journal on Wireless Communications and Networking, 54 (1), 1-12.Lopez-Gordo, M. A., Padilla P., Pelayo, F., Fernandez, E., 2015. Asynchronous EEG/ERP acquisition for EEG teleservices. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9107, 296-304.Lopez-Gordo, M. A., Pelayo, F., Prieto, A., Fernandez, E., 2012. An auditory brain-computer interface with accuracy prediction. International Journal of Neural Systems, 22 (3), 1-14.Lopez-Gordo, M. A., Prieto, A., Pelayo, F., Morillas, C., 2011a. Customized stimulation enhances performance of independent binary SSVEP-BCIs. Clinical Neurophysiology, 122 (1), 128-133.Lopez-Gordo, M. A., Ron-Angevin, R., Pelayo Valle, F., 2011b. Auditory brain-computer interfaces for complete locked-in patients. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6691 LNCS (PART 1), 378-385.Lubeiro, A., Gomez-Pilar, J., Martín, O., Palomino, A., Fernández, M., González-Pinto, A., Poza, J., Hornero, R., Molina, V., 2015. Variation at NRG1 genotype related to modulation of small-world properties of the functional cortical network. European archives of psychiatry and clinical neuroscience, 1-8, Aceptado (no publicado).Martin, P.I., Treglia, E., Naeser, M.A., Ho, M.D., Baker, E.H., Martin, E.G., Bashir, S., Pascual-Leone, A., 2014. Language improvements after TMS plus modified CILT: Pilot, open-protocol study with two, chronic nonfluent aphasia cases. Restor. Neurol. Neurosci. 32, 483-505. DOI:10.3233/RNN-130365Martínez-Cagigal, V., Gomez-Pilar J., Álvarez D., Hornero, R., 2016. An Asynchronous P300-Based Brain-Computer Interface Web Browser for Severely Disabled People. IEEE Transactions on Neural Systems and Rehabilitation Engineering, Aceptado (no publicado). DOI: 10.1109/TNSRE.2016.2623381Martínez-Cagigal, V., Núñez, P., Hornero, R., 2017. Spectral Regression Kernel Discriminant Analysis for P300 Speller Based Brain-Computer Interfaces. En Converging Clinical and Eng. Research on Neurorehab. II. Springer, 789-793. DOI: 10.1007/978-3-319-46669-9-129.Martínez-Zarzuela, M., Gómez, C., Díaz-Pernas, F. J., Fernández, A., Hornero, R., 2013. Cross-approximate entropy parallel computation on GPUs for biomedical signal analysis. Application to MEG recordings. Computer methods and programs in biomedicine, 112 (1), 189-199.Migliorelli, C, Alonso, J.F., Romero, S., Mañanas, M.A., Nowak, R., Russi, A. 2016. Influence of Metallic Artifact Filtering on MEG Signals for Source Localization during Interictal Epileptiform Activity. Journal of Neural Engineering 13 (2): 26029. DOI:10.1088/1741-2560/13/2/026029Migliorelli, C, Alonso, J.F., Romero, S., Mañanas, M.A., Nowak, R., Russi, A. 2017. Visual Detection of High Frequency Oscillations in MEG. In, 769-73. Springer International Publishing. DOI: 10.1007/978-3-319- 46669-9_126.Minguillon, J., Lopez-Gordo, M. A., Pelayo, F., 2016a. Detection of attention in multi-talker scenarios: A fuzzy approach. Expert Systems with Applications, 64 (DEC), 261-268.Minguillon, J., Lopez-Gordo, M. A., Pelayo, F., 2016b. Stress assessment by prefrontal relative gamma. Frontiers in Computational Neuroscience, 10 (SEP), 101.Minguillon, J., Lopez-Gordo, M. A., Pelayo, F., 2017. Trends in EEG-BCI for daily-life: Requirements for artifact removal. Biomedical Signal Processing and Control, 31 (JAN), 407-418. DOI: 10.1016/j.bspc.2016.09.005Moreno, J.C., Brunetti, F., Rocon, E., Pons, J.L., Immediate effects of a controllable knee ankle foot orthosis for functional compensation of gait in patients with proximal leg weakness, Medical Biological Engineering & Computing., 46-1, pp. 43-53, 2008.Moreno, J.C., Brunetti, F.J., Cullell, A., Forner-Cordero, A., Pons, J.L., Simulation of knee function during gait with an orthosis by means of two springs of different stiffnesses, Gait and Posture, Vol. 21, pp. S140 (2005).Moreno, J.C., Rocon, E., Ruiz, A.F., Brunetti, F., Pons, J.L., Design and implementation of an inertial measurement unit for control of artificial limbs: application on leg orthoses, Sensors and Actuators B, 118, pp. 333- 337 (2006).Nicolas-Alonso, L.F., Corralejo R., Gomez-Pilar J., Álvarez D., Hornero R., 2015. Adaptive semi-supervised classification to reduce intersession nonstationarity in multiclass motor imagery-based brain-computer interfaces. Neurocomputing, 159, 186-196. DOI: 10.1016/j.neucom.2015.02.005Opisso, E., Borau, A., Rijkhoff, N.J.M., 2011. Urethral sphincter EMGcontrolled dorsal penile/clitoral nerve stimulation to treat neurogenic detrusor overactivity. J. Neural Eng. 8, 036001. DOI:10.1088/1741- 2560/8/3/036001Opisso, E., Borau, A., Rijkhoff, N.J.M., 2013. Subject-controlled stimulation of dorsal genital nerve to treat neurogenic detrusor overactivity at home. Neurourol. Urodyn. 32, 1004-1009. DOI:10.1002/nau.22359Pérez-Nombela, S., Barroso, F., Torricelli, D., de los Reyes-Guzmán, A., del Ama-Espinosa, A.J., Gomez-Soriano, J., Pons, J.L., and Gil-Agudo, A., Modular control of gait after Incomplete Spinal Cord Injury: differences between sides, Spinal Cord, (28 June 2016). DOI: 10.1038/sc.2016.99Piazza, S., Gomez-Soriano, J., Bravo-Esteban, E, Torrecelli, D., Avíla-Martín, G., Galan-Arriero, I, Pons, J.L.; Taylor, J., Maintenance of cutaneomuscular neuronal excitability after leg-cycling predicts lower limb muscle strength after incomplete spinal cord injury, Clinical Neurophysiology 127 (2016) 2402-2409. DOI: 10.1016/j.clinph.2016.03.007Pons, J.L., Rehabilitation Exoskeletal Robotics, IEEE Engineering in Medicine and Biology Magazine, 29-3, pp. 57-63, 2010.Rajasekaran, V., Aranda, J., Casals, A., Pons, J.L, 2014. An adaptive control str
    corecore