17,408 research outputs found

    Calipso: Physics-based Image and Video Editing through CAD Model Proxies

    Get PDF
    We present Calipso, an interactive method for editing images and videos in a physically-coherent manner. Our main idea is to realize physics-based manipulations by running a full physics simulation on proxy geometries given by non-rigidly aligned CAD models. Running these simulations allows us to apply new, unseen forces to move or deform selected objects, change physical parameters such as mass or elasticity, or even add entire new objects that interact with the rest of the underlying scene. In Calipso, the user makes edits directly in 3D; these edits are processed by the simulation and then transfered to the target 2D content using shape-to-image correspondences in a photo-realistic rendering process. To align the CAD models, we introduce an efficient CAD-to-image alignment procedure that jointly minimizes for rigid and non-rigid alignment while preserving the high-level structure of the input shape. Moreover, the user can choose to exploit image flow to estimate scene motion, producing coherent physical behavior with ambient dynamics. We demonstrate Calipso's physics-based editing on a wide range of examples producing myriad physical behavior while preserving geometric and visual consistency.Comment: 11 page

    Developing Guidelines for Two-Dimensional Model Review and Acceptance

    Get PDF
    Two independent modelers ran two hydraulic models, SRH-2D and HEC-RAS 2D. The models were applied to the Lakina River (MP 44 McCarthy Road) and to Quartz Creek (MP 0.7 Quartz Creek Road), which approximately represent straight and bend flow conditions, respectively. We compared the results, including water depth, depth averaged velocity, and bed shear stress, from the two models for both modelers. We found that the extent and density of survey data were insufficient for Quartz Creek. Neither model was calibrated due to the lack of basic field data (i.e., discharge, water surface elevation, and sediment characteristics). Consequently, we were unable to draw any conclusion about the accuracy of the models. Concerning the time step and the equations used (simplified or full) to solve the momentum equation in the HEC-RAS 2D model, we found that the minimum time step allowed by the model must be used if the diffusion wave equation is used in the simulations. A greater time step can be used if the full momentum equation is used in the simulations. We developed a set of guidelines for reviewing model results, and developed and provided a two-day training workshop on the two models for ADOT&PF hydraulic engineers

    Image processing mini manual

    Get PDF
    The intent is to provide an introduction to the image processing capabilities available at the Langley Research Center (LaRC) Central Scientific Computing Complex (CSCC). Various image processing software components are described. Information is given concerning the use of these components in the Data Visualization and Animation Laboratory at LaRC

    DepthCut: Improved Depth Edge Estimation Using Multiple Unreliable Channels

    Get PDF
    In the context of scene understanding, a variety of methods exists to estimate different information channels from mono or stereo images, including disparity, depth, and normals. Although several advances have been reported in the recent years for these tasks, the estimated information is often imprecise particularly near depth discontinuities or creases. Studies have however shown that precisely such depth edges carry critical cues for the perception of shape, and play important roles in tasks like depth-based segmentation or foreground selection. Unfortunately, the currently extracted channels often carry conflicting signals, making it difficult for subsequent applications to effectively use them. In this paper, we focus on the problem of obtaining high-precision depth edges (i.e., depth contours and creases) by jointly analyzing such unreliable information channels. We propose DepthCut, a data-driven fusion of the channels using a convolutional neural network trained on a large dataset with known depth. The resulting depth edges can be used for segmentation, decomposing a scene into depth layers with relatively flat depth, or improving the accuracy of the depth estimate near depth edges by constraining its gradients to agree with these edges. Quantitatively, we compare against 15 variants of baselines and demonstrate that our depth edges result in an improved segmentation performance and an improved depth estimate near depth edges compared to data-agnostic channel fusion. Qualitatively, we demonstrate that the depth edges result in superior segmentation and depth orderings.Comment: 12 page
    corecore