In the context of scene understanding, a variety of methods exists to
estimate different information channels from mono or stereo images, including
disparity, depth, and normals. Although several advances have been reported in
the recent years for these tasks, the estimated information is often imprecise
particularly near depth discontinuities or creases. Studies have however shown
that precisely such depth edges carry critical cues for the perception of
shape, and play important roles in tasks like depth-based segmentation or
foreground selection. Unfortunately, the currently extracted channels often
carry conflicting signals, making it difficult for subsequent applications to
effectively use them. In this paper, we focus on the problem of obtaining
high-precision depth edges (i.e., depth contours and creases) by jointly
analyzing such unreliable information channels. We propose DepthCut, a
data-driven fusion of the channels using a convolutional neural network trained
on a large dataset with known depth. The resulting depth edges can be used for
segmentation, decomposing a scene into depth layers with relatively flat depth,
or improving the accuracy of the depth estimate near depth edges by
constraining its gradients to agree with these edges. Quantitatively, we
compare against 15 variants of baselines and demonstrate that our depth edges
result in an improved segmentation performance and an improved depth estimate
near depth edges compared to data-agnostic channel fusion. Qualitatively, we
demonstrate that the depth edges result in superior segmentation and depth
orderings.Comment: 12 page