1,561 research outputs found

    Data Science, Data Visualization, and Digital Twins

    Get PDF
    Real-time, web-based, and interactive visualisations are proven to be outstanding methodologies and tools in numerous fields when knowledge in sophisticated data science and visualisation techniques is available. The rationale for this is because modern data science analytical approaches like machine/deep learning or artificial intelligence, as well as digital twinning, promise to give data insights, enable informed decision-making, and facilitate rich interactions among stakeholders.The benefits of data visualisation, data science, and digital twinning technologies motivate this book, which exhibits and presents numerous developed and advanced data science and visualisation approaches. Chapters cover such topics as deep learning techniques, web and dashboard-based visualisations during the COVID pandemic, 3D modelling of trees for mobile communications, digital twinning in the mining industry, data science libraries, and potential areas of future data science development

    Quantification of uncertainty of geometallurgical variables for mine planning optimisation

    Get PDF
    Interest in geometallurgy has increased significantly over the past 15 years or so because of the benefits it brings to mine planning and operation. Its use and integration into design, planning and operation is becoming increasingly critical especially in the context of declining ore grades and increasing mining and processing costs. This thesis, comprising four papers, offers methodologies and methods to quantify geometallurgical uncertainty and enrich the block model with geometallurgical variables, which contribute to improved optimisation of mining operations. This enhanced block model is termed a geometallurgical block model. Bootstrapped non-linear regression models by projection pursuit were built to predict grindability indices and recovery, and quantify model uncertainty. These models are useful for populating the geometallurgical block model with response attributes. New multi-objective optimisation formulations for block caving mining were formulated and solved by a meta-heuristics solver focussing on maximising the project revenue and, at the same time, minimising several risk measures. A novel clustering method, which is able to use both continuous and categorical attributes and incorporate expert knowledge, was also developed for geometallurgical domaining which characterises the deposit according to its metallurgical response. The concept of geometallurgical dilution was formulated and used for optimising production scheduling in an open-pit case study.Thesis (Ph.D.) (Research by Publication) -- University of Adelaide, School of Civil, Environmental and Mining Engineering, 201

    A Fast and Scalable System to Visualize Contour Gradient from Spatio-temporal Data

    Get PDF
    Changes in geological processes that span over the years may often go unnoticed due to their inherent noise and variability. Natural phenomena such as riverbank erosion, and climate change in general, is invisible to humans unless appropriate measures are taken to analyze the underlying data. Visualization helps geological sciences to generate scientific insights into such long-term geological events. Commonly used approaches such as side-by-side contour plots and spaghetti plots do not provide a clear idea about the historical spatial trends. To overcome this challenge, we propose an image-gradient based approach called ContourDiff. ContourDiff overlays gradient vector over contour plots to analyze the trends of change across spatial regions and temporal domain. Our approach first aggregates for each location, its value differences from the neighboring points over the temporal domain, and then creates a vector field representing the prominent changes. Finally, it overlays the vectors (differential trends) along the contour paths, revealing the differential trends that the contour lines (isolines) experienced over time. We designed an interface, where users can interact with the generated visualization to reveal changes and trends in geospatial data. We evaluated our system using real-life datasets, consisting of millions of data points, where the visualizations were generated in less than a minute in a single-threaded execution. We show the potential of the system in detecting subtle changes from almost identical images, describe implementation challenges, speed-up techniques, and scope for improvements. Our experimental results reveal that ContourDiff can reliably visualize the differential trends, and provide a new way to explore the change pattern in spatiotemporal data. The expert evaluation of our system using real-life WRF (Weather Research and Forecasting) model output reveals the potential of our technique to generate useful insights on the spatio-temporal trends of geospatial variables

    Visual Techniques for Geological Fieldwork Using Mobile Devices

    Get PDF
    Visual techniques in general and 3D visualisation in particular have seen considerable adoption within the last 30 years in the geosciences and geology. Techniques such as volume visualisation, for analysing subsurface processes, and photo-coloured LiDAR point-based rendering, to digitally explore rock exposures at the earth’s surface, were applied within geology as one of the first adopting branches of science. A large amount of digital, geological surface- and volume data is nowadays available to desktop-based workflows for geological applications such as hydrocarbon reservoir exploration, groundwater modelling, CO2 sequestration and, in the future, geothermal energy planning. On the other hand, the analysis and data collection during fieldwork has yet to embrace this ”digital revolution”: sedimentary logs, geological maps and stratigraphic sketches are still captured in each geologist’s individual fieldbook, and physical rocks samples are still transported to the lab for subsequent analysis. Is this still necessary, or are there extended digital means of data collection and exploration in the field ? Are modern digital interpretation techniques accurate and intuitive enough to relevantly support fieldwork in geology and other geoscience disciplines ? This dissertation aims to address these questions and, by doing so, close the technological gap between geological fieldwork and office workflows in geology. The emergence of mobile devices and their vast array of physical sensors, combined with touch-based user interfaces, high-resolution screens and digital cameras provide a possible digital platform that can be used by field geologists. Their ubiquitous availability increases the chances to adopt digital workflows in the field without additional, expensive equipment. The use of 3D data on mobile devices in the field is furthered by the availability of 3D digital outcrop models and the increasing ease of their acquisition. This dissertation assesses the prospects of adopting 3D visual techniques and mobile devices within field geology. The research of this dissertation uses previously acquired and processed digital outcrop models in the form of textured surfaces from optical remote sensing and photogrammetry. The scientific papers in this thesis present visual techniques and algorithms to map outcrop photographs in the field directly onto the surface models. Automatic mapping allows the projection of photo interpretations of stratigraphy and sedimentary facies on the 3D textured surface while providing the domain expert with simple-touse, intuitive tools for the photo interpretation itself. The developed visual approach, combining insight from all across the computer sciences dealing with visual information, merits into the mobile device Geological Registration and Interpretation Toolset (GRIT) app, which is assessed on an outcrop analogue study of the Saltwick Formation exposed at Whitby, North Yorkshire, UK. Although being applicable to a diversity of study scenarios within petroleum geology and the geosciences, the particular target application of the visual techniques is to easily provide field-based outcrop interpretations for subsequent construction of training images for multiple point statistics reservoir modelling, as envisaged within the VOM2MPS project. Despite the success and applicability of the visual approach, numerous drawbacks and probable future extensions are discussed in the thesis based on the conducted studies. Apart from elaborating on more obvious limitations originating from the use of mobile devices and their limited computing capabilities and sensor accuracies, a major contribution of this thesis is the careful analysis of conceptual drawbacks of established procedures in modelling, representing, constructing and disseminating the available surface geometry. A more mathematically-accurate geometric description of the underlying algebraic surfaces yields improvements and future applications unaddressed within the literature of geology and the computational geosciences to this date. Also, future extensions to the visual techniques proposed in this thesis allow for expanded analysis, 3D exploration and improved geological subsurface modelling in general.publishedVersio

    Applications of Time-lapse Imagery for Monitoring and Illustrating Ecological Dynamics in a Water-stressed System

    Get PDF
    Understanding and perceiving the natural world is a key part of management, policy, conservation, and inevitably for our future. Increased demand on natural resources has heightened the importance of documenting ecosystem changes, and knowledge-sharing to foster awareness. The advancement of digital technologies has improved the efficiency of passive monitoring, connectivity among systems, and expanded the potential for innovative and communicative approaches. From technological progression, time-lapse imagery has emerged a valuable tool to capture and depict natural systems. I sought to enhance our understanding of a water-stressed system by analyzing imagery, in addition to integrating images with data visualization to illustrate the complexity of a river basin in central Nebraska. Image analysis was used to quantify wetland water inundation and vegetation phenology. These measurements from visible changes were combined with less visible data from additional passive monitoring to examine the relationship between vegetation phenology and bat activity, as well as wetland inundation and water quality. Moreover, time-lapse data sequences were constructed by integrating time-lapse imagery with data visualization in an interactive digital framework to examine the applications for communicating social-ecological dynamics. Findings suggest vegetation phenology was differentially associated with seasonal bat activity, possibly related to migratory versus resident life history strategies. In regards to examining wetland hydrology, water inundation was found to be correlated with nitrate, dissolved oxygen, and DEA, and negatively correlated with water temperature, indicating the importance of understanding water levels. AEM-RDA analysis identified several significant temporal patterns occurring with the wetland as well as the river site. Similarities between river and wetland patterns were suggestive of regional conditions driving fluctuations, while discrepancies were indicative of structural, biological, and local differences within individual sites. In examining communicative applications, time-lapse data sequences depicted a range of ecological dynamics while linking visible and invisible occurrences. The framework shows potential to offer a tangible context with explanatory content to aid in understanding environmental changes that are often too subtle to see or beyond the temporal scale of unaided human observation. Overall, cumulative findings suggest time-lapse imagery is of dual utility and has high potential for collecting data and illustrating ecological dynamics. Advisor: Craig R. Alle

    An Information Theory-Based Approach to Assessing Spatial Patterns in Complex Systems

    Get PDF
    Given the intensity and frequency of environmental change, the linked and cross-scale nature of social-ecological systems, and the proliferation of big data, methods that can help synthesize complex system behavior over a geographical area are of great value. Fisher information evaluates order in data and has been established as a robust and effective tool for capturing changes in system dynamics, including the detection of regimes and regime shifts. The methods developed to compute Fisher information can accommodate multivariate data of various types and requires no a priori decisions about system drivers, making it a unique and powerful tool. However, the approach has primarily been used to evaluate temporal patterns. In its sole application to spatial data, Fisher information successfully detected regimes in terrestrial and aquatic systems over transects. Although the selection of adjacently positioned sampling stations provided a natural means of ordering the data, such an approach limits the types of questions that can be answered in a spatial context. Here, we expand the approach to develop a method for more fully capturing spatial dynamics. The results reflect changes in the index that correspond with geographical patterns and demonstrate the utility of the method in uncovering hidden spatial trends in complex systems

    Applications of Time-lapse Imagery for Monitoring and Illustrating Ecological Dynamics in a Water-stressed System

    Get PDF
    Understanding and perceiving the natural world is a key part of management, policy, conservation, and inevitably for our future. Increased demand on natural resources has heightened the importance of documenting ecosystem changes, and knowledge-sharing to foster awareness. The advancement of digital technologies has improved the efficiency of passive monitoring, connectivity among systems, and expanded the potential for innovative and communicative approaches. From technological progression, time-lapse imagery has emerged a valuable tool to capture and depict natural systems. I sought to enhance our understanding of a water-stressed system by analyzing imagery, in addition to integrating images with data visualization to illustrate the complexity of a river basin in central Nebraska. Image analysis was used to quantify wetland water inundation and vegetation phenology. These measurements from visible changes were combined with less visible data from additional passive monitoring to examine the relationship between vegetation phenology and bat activity, as well as wetland inundation and water quality. Moreover, time-lapse data sequences were constructed by integrating time-lapse imagery with data visualization in an interactive digital framework to examine the applications for communicating social-ecological dynamics. Findings suggest vegetation phenology was differentially associated with seasonal bat activity, possibly related to migratory versus resident life history strategies. In regards to examining wetland hydrology, water inundation was found to be correlated with nitrate, dissolved oxygen, and DEA, and negatively correlated with water temperature, indicating the importance of understanding water levels. AEM-RDA analysis identified several significant temporal patterns occurring with the wetland as well as the river site. Similarities between river and wetland patterns were suggestive of regional conditions driving fluctuations, while discrepancies were indicative of structural, biological, and local differences within individual sites. In examining communicative applications, time-lapse data sequences depicted a range of ecological dynamics while linking visible and invisible occurrences. The framework shows potential to offer a tangible context with explanatory content to aid in understanding environmental changes that are often too subtle to see or beyond the temporal scale of unaided human observation. Overall, cumulative findings suggest time-lapse imagery is of dual utility and has high potential for collecting data and illustrating ecological dynamics. Advisor: Craig R. Alle

    Identification of patterns for space-time event networks

    Get PDF
    This paper provides new tools for analyzing spatio-temporal event networks. We build time series of directed event networks for a set of spatial distances, and based on scan-statistics, the spatial distance that generates the strongest change of event network connections is chosen. In addition, we propose an empirical random network event generator to detect significant motifs throughout time. This generator preserves the spatial configuration but randomizes the order of the occurrence of events. To prevent the large number of links from masking the count of motifs, we propose using standardized counts of motifs at each time slot. Our methodology is able to detect interaction radius in space, build time series of networks, and describe changes in its topology over time, by means of identification of different types of motifs that allows for the understanding of the spatio-temporal dynamics of the phenomena. We illustrate our methodology by analyzing thefts occurred in Medellín (Colombia) between the years 2003 and 2015.Work supported by Red de Violencia y Criminalidad - Universidad Nacional Abierta y a Distancia UNAD, Bogotá Colombia and Universidad Nacional de Colombia sede Bogotá
    corecore