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Visualization of Tensor Fields in Mechanics
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Abstract
Tensors are used to describe complex physical processes in many applications. Examples include the distribution of stresses in
technical materials, acting forces during seismic events, or remodeling of biological tissues. While tensors encode such complex
information mathematically precisely, the semantic interpretation of a tensor is challenging. Visualization can be beneficial
here and is frequently used by domain experts. Typical strategies include the use of glyphs, color plots, lines, and isosurfaces.
However, data complexity is nowadays accompanied by the sheer amount of data produced by large-scale simulations and
adds another level of obstruction between user and data. Given the limitations of traditional methods, and the extra cognitive
effort of simple methods, more advanced tensor field visualization approaches have been the focus of this work. This survey
aims to provide an overview of recent research results with a strong application-oriented focus, targeting applications based
on continuum mechanics, namely the fields of structural, bio-, and geomechanics. As such, the survey is complementing and
extending previously published surveys. Its utility is twofold: (i) It serves as basis for the visualization community to get an
overview of recent visualization techniques. (ii) It emphasizes and explains the necessity for further research for visualizations
in this context.

Keywords: scientific visualization, visualization

1. Introduction

Tensors are one of the fundamental data types taught in basic visu-
alization classes and appear in many application areas because they
provide a generic concept for multiple physical theories. Thereby,
their physical interpretation and their mathematical properties are
versatile, e.g., they can appear as descriptors for multilinear rela-
tions of different order, as derivatives of vector fields, or describe
anisotropic material properties. Hence, even more than for scalar or
vector fields, visualization methods for tensors of higher-order are
most frequently developed for specific settings. Some of them are
easily transferable, while others are not.

Thus, tensor field visualization comprises several different per-
spectives: (i) the mathematical definitions and properties, (ii) visual-

ization concepts ranging from general-purpose to specific methods,
and (iii) the application-specific context including the semantics of
the tensors and typical related research questions. In this survey,
tensor field visualization is discussed from all these perspectives
with a strong emphasis on the application in structural mechanics,
biomechanics, and geomechanics, which also distinguishes it from
previous related surveys. All these areas are based on the same con-
cepts of continuum physics and are correspondingly closely inter-
connected. This survey highlights the usefulness of tensor analysis
as well as the need for novel visualization methods in these areas.
It shows their commonalities and their essential differences. This
work is restricted to tensors of order two and higher since tensors of
order zero (scalars) and one (vectors) have been covered frequently.
The most prevalent second-order tensors in the considered fields
are stress, strain, and orientation distribution tensors. However, also
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tensors of higher-order, like elasticity, play an essential role. Since
tensors can also be interpreted as a set of representative scalar and
vector fields, for example, eigenvectors, eigenvalues, or other in-
variants, the survey also touches on the visualization of multivariate
data. Concerning biomechanics, diffusion tensor imaging (DTI), or
high angular resolution diffusion imaging (HARDI) is not discussed
because they are summarized in their own surveys, and they focus
on other questions than the ones coming from continuum physics.

The structure of the survey reflects the different perspectives on
tensor visualization. First, the creation of the survey, the applica-
tion areas with their common visualization techniques used by do-
main experts, and common research questions are described. A table
gives an overview of the covered techniques, theories, and applica-
tions. The mathematical background, necessary to understand the
most commonly used tensors and their properties in the applications,
is introduced in Section 3. Sections 4 to 9 summarize techniques
that are categorized as glyphs, geometry- or texture-based methods,
topological feature visualizations, or multivariate data techniques.
Section 10 captures specific challenges related to tensor visualiza-
tion and the differences between the application areas as well as
discusses open questions. It also entails a brief description of pos-
sible future research directions regarding the reviewed paper base
(see Table 1). Finally, Section 11 gives a short conclusion. To sum
up, the main contributions of the survey are:

• Summary of visualization methods used in structure-, bio-, and
geomechanical applications,

• Analysis of the recent development in tensor field visualization,
and

• Identification of underrepresented areas.

Scope

Tensor visualization appears in many application areas. Conse-
quently, there already exist related surveys, and some overlap is
inevitable. The closest related survey on tensor visualization was
written by Kratz et al. [KASH13]. A survey about tensors in image
processing and computer vision [CnMMM*09] also covers many of
the basic tensor visualizationmethods. Since these two surveys, a lot
happened in the area, and novel trends in the field emerged, which
is summarized in our work (see Section 11). Nevertheless, this sur-
vey contains all information to understand the presented methods,
which means that some key works covered by previous surveys are
also included.

In terms of surveys with a different focus but shared points of in-
terest, there exists a report on topological visualization [HLH*16]
that also touches on tensor field topology. A survey about visualiza-
tion in material science [HS17] deals with a similar application area
but does not focus on tensor fields. The most recent survey on the
visualization of tensor fields by Bi et al. [BYDS19] is restricted to
streamline and glyph-based methods focusing on DTI data.

The targeted audience of this survey are experts in visualization
looking for a summary of new works, those who search challenging
questions to work on, and beginners in the field who want to get
an overview of recent tensor visualizations in structural mechanics,
bio-, or geomechanics.

Procedure of writing this report

The paper collection process started with the choice of the lead-
ing visualization conferences and journals: The IEEE Visualiza-
tion Conference (IEEE Vis), the EuroVis conference, the IEEE Pa-
cific Visualization Symposium (PacificVis), the IEEE Transactions
on Visualization and Computer Graphics (TVCG), and the Com-
puter Graphics Forum (CGF). Since our report constitutes a fol-
low up to the state-of-the-art report [KASH13], all papers published
in these conferences and journals since 2013 and many papers of
domain-specific conferences and journals were reviewed. All papers
containing any of the following keywords: Tensor, Matrix, Stress,
Strain,Multilinear,Multivariate, orMultidimensional in their meta-
data or content have been further inspected.

From the papers published in the IEEE TVCG (IEEE Vis) since
2013 (incl.) (2327 publications), 367 publications were marked as
possibly relevant. From the 432 publications at PacificVis since
2013 (incl.), 90 publications remained. In CGF almost 2000 papers
were published, and 371 papers were issued at EuroVis since 2013
(incl.). Filtering this set lead to 1264 of the 2000 publications. For
visualization methods of tensors in biomechanics, about 200 pub-
lications from the Visual Computing for Biomedicine conference
(VCBM) during the last 13 years have been investigated. The num-
ber of hits for the above keywords was below 5. Each of the remain-
ing publications has then been worked through and rated according
to its relevance. Simultaneously, a graph has been designed with pa-
pers as nodes and citations as edges. In a second phase, this graph
has been gradually expanded with the references or citations of the
first extraction round papers. Thus, also domain-specific works and
those from other conferences and publishers found their way into
the paper pool. This process was repeated again and again, result-
ing in a set of papers that hopefully gets close to completeness for
publications related to the visualization community and gives a rep-
resentative selection in the application areas. In the end, the graph
hadmore than 3550 nodes where about 3240weremarked as not rel-
evant or not accessible (due to missing access licenses). About 300
papers were marked as interesting, e.g., they contain for this survey
relevant keywords, the application matches or the visualization can
perhaps be carried over to the treated applications, in the first review.
About a third of the papers have been presented and discussed for
relevance in a sub-group of the survey authors. This lead to about
120 remaining papers for this report coming from the graph. Each
relevant paper has also been summarized in a few sentences to distill
the survey’s final content.

During this analysis, it has been recognized that, even though
most of the common tensors in all applications share their physical
meaning, the structure of the fields and the visualization approaches
differ a lot.

2. Application Domains from a Visualization Perspective

The following section describes the selected application areas:
structural mechanics, bio-, and geomechanics. In all these domains
we find applications dealing with designing and understanding ma-
terial properties, designing structures, and understanding the behav-
ior of structures and materials under load. Data is collected or gen-
erated by simulations, imaging, observations, and experiments.
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The intention of this section is not to provide an exhaustive
overview but to highlight exemplary areas, which have been in the
focus of visualization applications. It also summarizes visualiza-
tion practices in the communities, mainly basic methods, e.g., plot-
ting and coloring of surfaces. Most simulation tools, for example,
Abaqus [HKS98], NX (Siemens) [Sie20], and ANSYS Mechani-
cal [SNY18], in structural engineering, provide some visualizations.
Also, analysis tools, like Paraview [Aya15], or self-written tools us-
ing, for example, MatLab [HH00], are used. In the field of biome-
chanics, one can find a larger variety of more specialized visualiza-
tion tools often developed in individual research projects.

2.1. Structural mechanics

Structural mechanics is a field of applied mechanics. It is concerned
with the computation of deformations, forces, stresses, and strains
within a solid material or structure [Dog00, Hol00]. A typical goal
is the design of efficient load-bearing structures facilitating novel
lightweight material. An essential step thereby is the evaluation of
the structure’s performance in terms of strength, flexibility, or re-
sponses to loads. Important quantities for such analysis are stress
and strain tensors which in conjunction with a chosen failure model
give insight into the structure’s properties. Tensors are also used
to describe material properties, e.g., the fiber orientation tensor for
fiber-reinforced material. In this context data from numerical simu-
lations are prevalent, however, also experiments and imaging gen-
erate large amounts of multivariate data including tensor fields as
essential entities. Within the broad field of structural mechanics, we
will focus on three topics related to the design of functional parts: (i)
Stress tensor analysis of load-bearing structures, (ii) Fiber orienta-
tion tensor describing complex materials, and (iii) Tensor compar-
ison for structure topology and shape optimization. Visualization
plays an important role in understanding the stress distribution in
its relation to the material and geometry. Specifically it addresses
the following topics:

• Designing components by visualizing force paths in materials,
• Comparing and evaluating different failure models for complex
materials,

• Comparing performance metrics for different design options,
• Optimizing processes, and
• Detecting and analyzing critical areas in components.

Stress tensor analysis of load bearing structures – The analysis
of critical areas during the design of load-bearing structures based
on finite element simulations is a common task. Different models
describe yield, damage, or material failure using scalar metrics de-
rived from the stress tensor and the material properties. Yield crite-
ria can be represented as surfaces in the space spanned by, e.g., the
principal stresses (see Figure 1). Inside this yield surface, the mate-
rial exhibits a (visco)elastic behavior, which becomes (visco)plastic
upon reaching the yield surface. Diagrams, color plots, or isosur-
faces are usually used to highlight critical areas in the structure (e.g.,
[ZMD19]). Figure 2 shows a rendering of the von Mises stress, a
scalar metric used as yield criterion for isotropic and ductile metal.

Fiber orientation tensor describing complex materials – This
application scenario is concerned with the analysis of properties
of anisotropic composite materials, e.g., fiber-reinforced polymers,

Figure 1: Yield surface in the principal stresses spanned by the
three eigenvalues σi of the stress tensor. Points inside the surface
represent an elastic state of the material, points on the surface in-
dicate plastic behavior, and points outside the surface are not per-
mitted.

Figure 2: A typical visualization of the distribution of the vonMises
stress generated with the software Abaqus [HKS98].

which play an increasing role in high-tech industrial products
[Slo11]. The properties of such materials are largely determined
by specific topics, like the fiber orientation and length distribution
[FL96]. One approach to predict the fiber distribution is the simula-
tion of the injection molding process. Deriving material properties
from the fiber orientation is a complex task, and a careful evalua-
tion of the simulation results is essential [DT06, ZSS15]. Another
source enabling the reconstruction of fiber orientation distributions
is found in three-dimensional X-ray computed tomography (X-CT)
[MPB*14]. The results are highly resolved three-dimensional imag-
ing data. Extracting the relevant characteristics, e.g., the orientation
tensors, requires advanced image analysis and visualization.

Tensor comparison for structure optimization – Designing
optimal components is often an iterative process governed by
computer-aided simulations. Optimization goals involve saving re-
sources, like energy, weight, material, or time, while retaining the
component’s strength and load-bearing properties. An example is
the design of light-weight structures that optimally support the load
transfer in a component [SSK*14]. The comparison of design op-
tions, like geometry, material, and operating conditions, requires ef-
ficient methods to explore the correlation of design parameters and
key performance metrics. Examples are the optimization of shell el-
ements using rib layouts for lighter components [LZY*17] and the
design of volumetric Michell Trusses [AJL*19].
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2.2. Biomechanics

Biological tissues are in the center of most biomechanic applica-
tions. In general, these are anisotropic materials with a complex in-
ternal structure as in trabecular bone or fibrous constituents in car-
diovascular tissues, etc. [NK13]. Biomechanics tries to understand
the structure-composition-function relationships of the tissue (e.g.,
[GNK12]). Mechanobiology aims at understanding mechanisms of
how the tissues adapt their composition and structure in response
to mechanical and biophysical cues in a process called remodeling
[AAC*19]. This knowledge is exploited to create biological substi-
tutes in a process called tissue engineering [TNCK13]. This survey
focuses on applications related to (i) bone architecture, (ii) cardio-
vascular tissues, (iii) cell structures, and (iv) fluid-structure interac-
tion. Thereby as well the anisotropic tissues as the functional loads
are expressed by tensors. Interesting data arises not only from sim-
ulations but also from diverse imaging methods. Visualizations can
help to answer questions concerned with

• Relationships between bones (structure tensors) and function
(stress tensors),

• Remodelling of soft tissues in response to loading, e.g., changes
in structure, composition, and properties, and

• Fluid (wall shear stress)-structure interaction in, e.g., cardiovas-
cular or respiratory systems.

Function and structure of bones, relation between structural
and mechanical tensors – Bone architecture is known to be highly
adapted to the mechanical loads experienced by the tissue [Wol93].
This link is so consistent that it even allows engineers to reverse the
locomotion of animals that have been extinct for millions of years
based on preserved trabecular bone structures [BHC*19]. To under-
stand this anisotropic structure-function relationship, computational
and experimental methods are used, resulting in data including ten-
sors of various orders. Direct visualization of derived scalar fields
can be found in related publications in the domain. E.g., to visualize
the anisotropic stiffness of artificial lattice materials mimicking dif-
ferent types of bone Kang et al.[KDL*20] plotted effective elastic
modulus surfaces in a three-dimensional space spanned by the lat-
tices’ unit cell axes. A similar approachwas used to visualize fourth-
order stiffness tensors derived from fourth-order structure tensors in
[MSP16].

Fiber orientation tensor in cardiovascular tissues –The human
heart has a complex geometry and structure with strongly varying
muscle fiber orientations. Fiber structure distributions can be de-
rived from experimental measurements (e.g., [WK14]). The most
common visualization of fibrous or filamentous structures in the do-
main are hedgehogs representing their dominant alignment [NK13,
KNB13, GM09]. To simplify the representation of the heart and im-
prove the comparability, a standardized segmentation of the left ven-
tricle has been introduced [CWD*02], which is frequently applied
in visualizations [SCK*16]. Combined visualization of collagen
fiber density and morphology was visualized in [HWS*19] using
color plots and glyphs to illustrate the collagen network alignment
characteristics.

Tensors describing the spatial organization of cells – The spa-
tial organization of cells or nuclei with implications for tissue and
tumor characterization can be described by structure tensors derived

Figure 3: Visualization of remodeling stress fiber network in a cell
(cytoskeleton). The plot displays orientation and activation level
(vector) of the stress fiber and the local variance (color) (image from
[RDMM12]).

from images [ZFD*14]. They are often visualized as a field of el-
lipsoids. Also, computational models are used to study the dynamic
remodeling of the cytoskeleton in response to mechanical signals
[RDMM12]. In particular, the simulated polymerization and de-
polymerization of stress fibers are visualized using colored vector
plots encoding their activation level and orientation (see Figure 3).

Interaction of fluid-induced wall shear stress with tissue
structures – The interaction of blood with vessel walls is an-
other example of adapting tissues to mechanical loads. E.g., patient-
specific mechanobiological frameworks are used to simulate the
fluid-structure interaction and the growth of intracranial aneurysms.
Often the results are visualized using surface coloring. In some
cases, also vectorial hedgehog plots and streamlines used to illus-
trate the aneurism flow field can be found [TNKW20].

2.3. Geomechanics

In brief, geomechanics deals with the mechanics of soil and rock
on a large variety of scales ranging from millimeters, e.g., the
grain scale, up to the continental scale. Thereby, one goal is to
understand the mechanical behavior of geo- materials under a wide
range of conditions, e.g., considering drilling, building pipelines or
bridges, accessing geo-reservoirs, or exploiting geological barriers.
On a small scale, properties can be derived from experiments
where the microstructure is captured by X-CT. From the images,
deformations, strain, and arrangements of the constituting particles
under controlled loading conditions can be calculated. On large
scales, similar information can be estimated from seismic events,
remote sensing, or other suitable methods. The derived results are
an essential input for further simulations. Thereby, tensorial data is
generated from simulations, observations, or experiments. Relevant
tensors include the fabric tensors describing the orientation of par-
ticles or voids, elasticity tensors, deformation gradients, and stress
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and strain tensors. Visualization and data analysis in geo- mechanics
dealing with the above materials address a wide range of topics:

• Understanding of processes and prevailing conditions in the sub-
surface related to seismic moment tensors,

• Investigation, prediction, and effects of seismic events, and risk
assessment in the context of geohazards,

• Localization and exploitation of reservoirs containing various re-
sources (materials or energy), and

• Evaluating the properties of geomaterials from imaging.

Seismic moment tensor – During seismic events (earthquakes,
landslides, or explosions), elastic strain energy is released and prop-
agates or dissipates as seismic waves, heating, or fracture propaga-
tion along faults. Seismic waves can be recorded by seismometers
even at a great distance, providing valuable information about the
structure in the interior of the earth and the source of the event.
In evaluating recorded data, the moment tensor plays a central role
[Gil71]. It describes force couples acting on points on a fault and
represents the moments generated by the seismic event according
to a point source model. The moment tensor depends on the source
and the fault. Its components are obtained from nine sets of so-called
vector couples. The data sets generated are, in general, sparse and
often incomplete, limited to a few locations along faults. Moment
tensors are commonly visualized using plots [KR70, HPR89, TT12]
or glyphs [Cro04] and are, e.g., used to investigate earthquakes.

Multi-variate data from tectonic simulations – Besides seis-
mic observations of the earth, 3D models to simulate and visual-
ize flows within the earth’s mantle are developed. Such simulations
contribute to understanding the earth’s interior in time and length
scales ranging from atomic size to the globe. This includes the sim-
ulation of earthquakes and the earth’s crust’s response [KHvdH99].
Other examples are numerical simulations investigating the visco-
plastic flow of tectonic plates responsible for the plate deformations
at subduction zones. Thereby, geological observations are used as
constraints [RGBN14]. Many of these applications also involve ten-
sor fields, e.g., postseismic stresses at faults.

Imaging of geomaterial – The scales knowledge derived from
imaging is coupled with simulations for geological predictions.
Imaging techniques are used to characterize the structure of ge-
omaterial, estimate its physical properties, and finally understand
the appearance of microcracks and voids. An example is the use
of X-CT to quantify fabric in a polymer-bonded frictional granular
material. Analyzing its constituents’ relative orientation, described
by fabric tensors, allows for a systematical structure characteriza-
tion [SJCT20]. Such knowledge can then be exploited in numerical
simulations, e.g., to assess the stability of dams [RBM20] or waste
reservoirs [MGV*17, RBR*20].

2.4. Classification of the reviewed papers

Table 1 illustrates the used techniques and tensors grouped by the
three different application domains. For each of the domains, the
rows specify the common tensor types. Works without a specific
application were sorted into the row Universal. The columns rep-
resent the visualization methods, e.g., Glyphs, Textures, and Line-
based methods, or concepts, like Attribute spacemethods orHybrid

methods, combining multiple basic visualization methods. The In-
troduction to column includes fundamental works, not necessarily
including visualization. The table emphasizes where the recent re-
search focus was and which areas could be interesting to explore in
the future.

The references’ color emphasizes if the corresponding paper has
been published inside a visualization related conference or journal
(red), or if it was published in an application-specific journal or con-
ference (green). To give a complete overview, we added the papers
discussed in the survey by Kratz et al. [KASH13] (blue).

3. Fundamentals

3.1. Tensor algebra

Mathematical concepts play a key role in data visualization. Hotz
et al. [HBGW20] summarized mathematical concepts of the visual-
ization literature and provided a taxonomy, especially for visualiza-
tion beginners. However, not only the underlying mathematics but
also the application-specific meaning of the data is essential when
designing a useful (tensor) visualization. Both aspects will be cov-
ered in this section. Note that some operations introduced in this
section are only defined for tensors of order two.

3.1.1. Tensor definition

The definition of a tensor also includes the specification of the un-
derlying space. Therefore, let V be a real vector space. The dual
space V ∗ is given by the set of all linear maps φ : V → R. The el-
ements of the vector space V are called contravariant, these of the
dual space V ∗ covariant. An element of the set

V ⊗ · · · ⊗V︸ ︷︷ ︸
r-times

⊗V ∗ ⊗ · · · ⊗V ∗︸ ︷︷ ︸
s-times

(1)

is defined as a tensor. Thereby, V1 ⊗V2 is the tensor product of the
vector spaces V1 and V2. The number q = r + s is called order of
the tensors. The dimension n of a tensor is given by the dimension
of the vector space V . The algebra of tensors of the vector space
Equation (1) together with the tensor product as multiplication is
called tensor algebra.

We use bold lower characters, like a, b, and c, to describe tensors
of order one, bold upper characters, like A,B, and C, to describe
tensors of order two, bold upper curved letters, like A, B, and C, to
describe tensors of order three, upper curved font, likeA,B, and C,
to describe tensors of order four, and double upper line letters, like
A,B, and C, for general tensors.

In most cases, an orthonormal basis is assumed, so there will be
no distinction between co- and contravariant tensors. A tensor can
also be defined as amultilinearmapT of the q n-dimensional vectors
v to the real numbers

T : (Vn)q → R. (2)

A tensor of order zero can be represented as a scalar, a tensor of order
one as a vector, a tensor of order two as a matrix, and a higher-order
tensor as an array of q dimensions.
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A tensor field is a mapping that assigns a tensor to each position
in a domain.

3.1.2. General definitions

An often used tensor operation is the tensor product or outer product
of a qth-order tensor A and a rth-order tensor B. It results in the
(q+ r)th-order tensor C as follows

Ci1...iq j1... jr = A ⊗ B = AB = Ai1...iqB j1... jr . (3)

The notation Ai1...iqB j1 ... jr is called Einstein notation. Thereby, the
tensor is characterized by its coefficients. Another tensor operation
is the tensor contraction. There is, for example, the single contrac-
tion

Ci1i2 ...iq−1 j2... jr = A · B =
n∑

k=1

Ai1...iq−1kBk j2... jr (4)

or the double contraction

Ci1i2 ...iq−2 j3... jr = A : B =
n∑

k=1

n∑
l=1

Ai1i2...iq−2klBkl j3... jr . (5)

A tensor contraction is characterized by the number of indices that
are summed.

To simplify the notation, the Einstein summation convention is
used in many cases. The contraction of two tensors is simplified by
representing it without the sigma sign. Two tensors, represented by a
single coefficient, are summarized about the coefficients that appear
in both index sets

n∑
k=1

n∑
l=1

Ai1i2...iq−2klBkl j3... jr = Ai1i2 ...iq−2klBkl j3... jr . (6)

An important value is the trace of a tensor. For a general qth-
order n-dimensional tensor there exists more than one trace. Some
literature uses the trace as the summation about the first and second
index

tr (T) = tr1,2(T) = Tssi3 ...iq . (7)

The definition of a totally symmetric tensor T with index set A is
given by

TA = Tπ (A) (8)

where π (·) describes the permutation of a set. The totally symmetric
part of a qth-order tensor T is defined by

s(T) = 1

q!

∑
π (A)

Tπ (A). (9)

Then, the asymmetric part a(T) can be defined by

a(T) = T − s(T). (10)

Based on these definitions, Backus [Bac70] defined a deviator as a
traceless, totally symmetric tensor. Next to the total symmetry, there
are other types of symmetry. A fourth-order tensor T , for example,
can have the major symmetry

Ti jkl = Tkli j (11)

or the minor symmetry

Ti jkl = Tjikl = Ti jlk. (12)

There are other types of symmetry, but these are the important ones
for this survey.

Many tensor definitions are only defined for tensors of order two.
One way to generalize them for tensors of higher-order is to map the
tensor onto one of order two. A fourth-order three-dimensional ten-
sor with minor symmetries has 21 independent components. Thus,
it can be represented in a 6× 6 matrix. One such mapping is given
by the so-called Voigt mapping

CV =

⎛
⎜⎜⎜⎜⎜⎜⎝

C1111 C1122 C1133 C1123 C1113 C1112

C2211 C2222 C2233 C2223 C2213 C2212

C3311 C3322 C3333 C3323 C3313 C3312

C2311 C2322 C2333 C2323 C2313 C2312

C1311 C1322 C1333 C1323 C1313 C1312

C1211 C1222 C1233 C1223 C1213 C1212

⎞
⎟⎟⎟⎟⎟⎟⎠

. (13)

The matrix (13) has the advantage that it directly contains the coeffi-
cients of the original tensor. However, it does not preserve the tensor
norm and is, therefore, no tensor itself. Another mapping is more
common in the theoretical mechanics’ community and is called the
Kelvin mapping or Mandel notation. It preserves tensor properties
by transforming the fourth-order three-dimensional tensor with mi-
nor symmetries into a second-order six-dimensional tensor with the
following coordinate matrix

CK =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C1111 C1122 C1133

√
2C1123

√
2C1113

√
2C1112

C2211 C2222 C2233

√
2C2223

√
2C2213

√
2C2212

C3311 C3322 C3333

√
2C3323

√
2C3313

√
2C3312√
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⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.(14)

3.1.3. Second-order tensor definitions

Themostly used tensors are second-order three-dimensional tensors
T. For which we note some common definitions.

An interesting value is the so-called tensor norm which is given
by a transformation that maps the tensor to a scalar. The second-
order tensor norm is given by

|T| =
√
T : T. (15)

To describe a symmetric tensor, the so-called invariant space can be
used. An invariant is a scalar function

β : Sym(R3 ⊗ R
3) → R (16)

that is invariant to the operations of rotation of R3. The invariant
space, i.e., the space of all invariants, of a second-order symmetric
three-dimensional tensor is three-dimensional and is spanned, e.g.,
by the three eigenvalues.

3.2. Tensor decomposition

One of the big challenges in tensor visualization is the multitude
of values and the variety of information that can be derived from a
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tensor. In general, not all this information can be visualized at once.
One way to approach this challenge is to decompose the tensor into
independent parts and analyze them separately. For example, the
analysis of a vector field and a symmetric, second-order tensor is
easier than the visualization of a second-order asymmetric tensor.

Different tensor decomposition methods can be used. A common
method is to decompose a tensor T of arbitrary-order in its totally
symmetric and its asymmetric part

T = S + A, (17)

where S is the totally symmetric part Equation (9) and A the asym-
metric part Equation (10) of T.

3.2.1. Second-order tensor decomposition

Many of the tensor decomposition methods are only defined for
second-order tensors because they are the most often analyzed ones.
Hence, let T be a second-order tensor.

The polar decomposition is one example of a tensor decompo-
sition. Therefore, T is split into the pure rotation Q and the pure
stretch S

T = Q · S. (18)

The spectral decomposition is another example. Thereby, the
symmetric n-dimensional tensor T will be represented by its eigen-
vectors γi and eigenvalues λi

T = ���T =
n∑
i=1

λiγiγ
T
i , (19)

with � = diag(λ1, . . . , λn) and � = (γ1, . . . , γn).

3.2.2. Fourth-order tensor decomposition

Next to the second-order tensor decompositions, there are also
methods to decompose other tensors, like fourth-order tensors. To
compute a polar decomposition of a three-dimensional fourth-order
tensor with major- and minor symmetries, Neeman et al. [NBJ*08]
used the Kelvin mapping (see Equation (14)) and performed a
polar decomposition on the resulting tensor of order two in six
dimensions.

The spectral decomposition of a fourth-order n-dimensional ten-
sor T with major- and minor symmetries is given by

T =
n∑
i=1

λiMi ⊗ Mi, (20)

where λi are the eigenvalues andMi the second-order eigentensors
of T .

The deviatoric decomposition of the fourth-order tensor with mi-
nor and major symmetries is given by Zou et al. [ZTL13] (see also
Hergl et al. [HNS20])

C = D + 6s(ID)+ 3s(IId)+ ϕ(D̂)+ 1

2
ϕ(Id̂), (21)

where D, D, D̂, d and d̂ are deviators, s(·) describes the sym-
metrization, and ϕ is an isomorphism between symmetric second-
order tensors and asymmetric fourth-order tensors.

3.3. Tensors in structural mechanics, bio-, and geomechanics

Physical phenomena in engineered structures, biological tissues,
and the geosphere are commonly described by physical fields us-
ing the methods of continuum physics [Wri08, Dog00, Hol00]. The
principal constituents of such theories are largely identical between
these fields of observation:

• Differential geometry is used to describe geometric aspects of the
problem, such as changing positions of particles themselves or
the relative changes of positions between neighboring particles.
This leads to vector-valued quantities, like displacements and ve-
locities describing positional changes, as well as tensor-valued
quantities such as deformation gradients, strain tensors, etc. de-
scribing rotations and deformations.

• Balance relations are established for conservation quantities such
as mass, linear and angular momentum, energy, charge, etc.,
which are scalar and vector-valued quantities. The action of
vector-valued quantities along oriented area elements again leads
to the introduction of second-order tensors, such as stress tensors
, which describe the mechanical loads the material is subjected
to.

• Because the number of equations provided by differential geom-
etry and the balance relations is not sufficient to solve for all un-
knowns, certain quantities need to be linked by constitutive rela-
tions. In contrast to the former two aspects generally considered to
be universally valid, the constitutive relations describe material-
and problem-specific features. An example is the heat conduc-
tivity, linking temperature gradients and heat fluxes. As both are
vector-valued, the linear mapping between the two is generally
a second-order tensor. Similarly, to describe the relationship be-
tween the amount of deformation a material undergoes and the
resulting mechanical forces inside the material, the stiffness ten-
sor linearly maps a strain increment into a stress increment and
can thus be recognized as a fourth-order tensor.

It can be seen that in all application areas, similar tensorial quan-
tities or physical objects appear. Of course, the specific constitutive
relations will differ between disciplines because the human heart
muscle responds to mechanical loading in a different manner than a
porous sandstone layer several kilometers below the earth’s surface.
However, in both casesmeasurements or numerical simulations gen-
erate tensors describing stress, strain, or material properties, which
need to be visualized.

Similar statements can be made when distributions of certain
properties need to be described: whether the bedding plane of sed-
imentary rock, the collagen fiber-reinforcement of a tendon, or a
technical fiber-reinforced composite material are of interest — in
all cases, objects such as fourth-order stiffness tensors or second-
order structure tensors can be used to describe material anisotropy.

Consequently, scientific visualization faces similar challenges in
structural mechanics as it does in bio- or geomechanics.
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4. Tensor Visualizations

Visualizations are probably the fastest way to understand the huge
amount of information encoded by tensors. In the following sec-
tions, recent tensor visualization methods are presented and cate-
gorized according to their type, if they are glyphs (see Section 5),
geometry-based (see Section 6), texture-based (see Section 7), of
topological nature (see Section 8), or if they show multivariate data
(see Section 9).

5. Tensor Glyphs

Glyphs are probably the most common way to visualize tensors
across all discussed application areas. They are used to visualize
single tensors in selected positions as well as the combination of
different tensors. In many cases, they are combined with other visu-
alization methods.

Glyphs are geometrical objects that depict information of the data
by geometric or optical properties, like shape, size, color, trans-
parency, or texture. Glyph visualization is a local method to describe
data. In accordance with Kratz et al. [KAH14] the questions ‘Which
information to chose?’ and ‘How to map the information onto ge-
ometry?’ are important for glyph design. The glyphs can be used,
for example, for debugging, to evaluate data quality, to visualize an
overview, or to probe for single data points. They also promote the
idea that relevant tensor invariants should play a role when design-
ing an application-specific glyph. Generally, a glyph should be easy
to understand and faithfully represent the information included in
the data. This is no trivial task because data can contain much in-
formation. The following specifications of Schultz and Kindlmann
[SK10] can be used as guidance during the tensor glyph design
process:

• Preservation of symmetry,
• Continuity,
• Disambiguity, and
• Invariance under scaling and eigenplane projection.

Furthermore, the placement is significant for the perception of
information from a glyph. Ward [War02] described two differenti-
ating placement strategies: On the one hand, the ‘data-driven glyph
placement’ means using the data to specify or compute location pa-
rameters. He further subdivides this strategy into a raw data and de-
rived data strategy. The other strategy called ‘structure-driven glyph
placement’ makes assumptions about a relationship between data
points. In context with tensor field visualization, several methods
for dense glyph placement strategies have been introduced [KW06,
FHHJ08, KASH13].

The visualization method is used to structure the latter visualiza-
tion method chapter. But there is no unique classification of the dif-
ferent glyph design to specific used visualization methods. Through
the huge number of glyph designs, no classification would make it
difficult to get an overview about the designs. Glyphs are specific
to the application, and the tensor type, therefore, not always trans-
ferable. Hence, this section is structured by tensor types. Following
this, the applicableness of different glyph designs for specific appli-
cations could be worth to evaluate in a separate work.

Figure 4: Visualization of the principal directions of stress tensors
using stereographic projections (image from [YVAB18]).

5.1. Stress (and Strain) tensors

Stress and the mathematically equal strain tensor are frequently vi-
sualized using glyphs in all applications. Thereby, the most com-
mon type is the ellipse in two and the ellipsoid in three dimensions,
even though they have strong limitations, including perceptional
issues, and they fail to distinguish positive and negative stresses.
Variants dealing with these issues have been developed, e.g., su-
perquadric glyphs [SK10]. They are generally applicable to all sym-
metric second-order tensors. Patel and Laidlaw [PL20] evaluated
some glyph-based visualizations for stress tensors, including the
original superquadric glyphs and a new colored version specifically
designed for stress tensors to enhance the perception of the principal
directions. More variants of stress tensor glyphs, including Haber
glyphs, Reynolds glyphs, HWY glyphs, quadric surfaces, plane-in-
a-box glyphs, and the superquadric glyphs are summarized in the
survey by Kratz et al. [KASH13].

In structural mechanics, simulations typically generate dense
stress and strain fields. Stress visualizations are used for analyzing
the simulation results but also for the analysis of the simulation pro-
cess itself. E.g., to evaluate different time-stepping schemes, Mohr
et al. [MBH*08] identified regions exhibiting large variances to dis-
play the intrinsic qualities of the data and the algorithm’s numerical
behavior. The comparison overlays ellipsoidal glyphs differentiat-
ing between negative and positive stress.

The stress tensor in geomechanics is typically extracted by mo-
ment tensor inversion and is visualized by plotting its principal
stresses on a disk with a stereographic (lower hemisphere) projec-
tion [Vav14]. For example, Boyd [Boy18] and Yu et al. [YVAB18]
used inversion and visualization for geothermal reservoirs (see Fig-
ure 4). Most visualization techniques are derived from moment ten-
sor analysis, which are described in an own Section 5.3.

In biomechanics, glyphs are also used for the representation of
stresses and strains. Selskog et al. [SBWK01] visualized the my-
ocardial strain-rate tensors derived from phase-contrast MRI us-
ing ellipsoidal glyphs. For the visualization of the residual stress
tensor in soft tissues and deformations due to cutting, Wu et al.
[WBWD12] defined a two-dimensional glyph. It is displayed on the
skin of the human body to illustrate the effect of small round inci-
sions. The glyph encodes the major principal direction, expected
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tissue behavior, and the magnitude of the residual stress component
in the direction of the cutting surface normal.

5.2. Stress gradients

Not only stresses but also its changes are relevant when analyz-
ing material performance. It can influence the stability limit of a
technical component, as pointed out by Zobel et al. [ZSS17]. They
introduced visualizations of tensor gradients including the stress
gradient. The gradient was visualized by two super-positioned
distinct-colored ellipsoids, one indicating the average change of all
stress vectors and the other showing an actual stress tensor. They
also included a second approach utilizing the envelope of Reynolds
glyphs encoding the eigenvalue sign by color.

5.3. Moment tensor

In geomechanics, one single moment tensor describes a single seis-
mic (or acoustic) event resulting in sparse but multifaceted data.
Hence, they are predestined for a visualization using glyphs. Often
the glyphs are designed to jointly visualize many aspects of these
seismic events, which mark them as highly advanced. The tensor
itself and its glyphs are not well known to the visualization com-
munity. Almost all moment tensor visualization methods have been
published in the geomechanical community. We summarize some
of these glyphs common in geomechanics in the following because
they show an interesting way of visualizing data.

Le Gonedic et al. [LGSWN14] introduced the simplest glyph to
visualize the moment tensor. Their glyph is a sphere shown in a
three-dimensional space and colored according to the type of the
seismic event at its location. Neeman [Nee04] introduced a glyph to
visualize components of the moment tensor simulating an oil flow.
It is a small plane oriented along the fracture plane spanned by the
two dominant eigenvectors and scaled by the magnitude of the shear
stresses. Baig et al. [BUM*12] visualized the fracture planes of the
moment tensor, which marks the orientation of gaps inside the rock.
They used so-called penny-shaped glyphs, which are circles used to
visualize the orientation of the fracture planes. Color encodes the
type of seismic events as opening or closing of a fracture or shear
event. A more complex glyph by Cladouhos et al. [CUS*15] dis-
plays microseismic events during the stimulation of a fracture net-
work. It connects arrows, indicating maximal and minimal principal
stresses, and a sphere, indicating volume gain or loss. Another ex-
ample is the glyph by Leaney et al. [LYC*14], where a wireframe
of a sphere is used for the volume change and two shifted cylin-
ders for the orientation of the fracture plane. Cylinders’ thickness
describes the opening or closing of the fracture. Using these com-
ponents, more information, like the opening angle or the amount
of shearing, can be visualized. Chapman and Leaney [CL12] intro-
duced a glyph based on a new moment-tensor decomposition for
seismic events in anisotropic media. A sphere represents the volume
change of a fracture and color distinguishes the sign related gains
and losses. Like one of Saturn’s rings, a disc represents the frac-
ture plane. An arrow shows the displacement discontinuity, which
describes the propagation of the fracture.

Figure 5: Visualization of multiple seismic events during the De-
nali Fault earthquake in 2002 using beach ball glyphs (image from
[LH07]).

One of the most frequently used glyphs in geomechanical papers
are beach balls [Cro04]. Beach balls are lower-hemisphere stereo-
graphic projections showing two black and twowhite quadrants (see
Figure 5). The glyph encodes the directions of the three orthogonal
pressure (P), tension (T), and null vectors (N) of a moment tensor.
According to Cronin [Cro04] they allow for a fast interpretation
of the represented moment tensors by scientists. Additional infor-
mation can be encoded into the size and the color of a beach ball
[Boy18, GD11, ZYZ*19, WGSC18, LH07, DP08]. They also have
been extended by other geometric primitives, e.g., arrows to enhance
the perception of pressure and tension vectors [UBG*12, UBGB10].
Additional ellipses emphasize the orientation of the fractures col-
ored due to their opening or closing characteristic [LYC*14].

Willemann [Wil93] clustered moment tensors of different events,
and visualized them as separate beach balls. Alvizuri et al.
[ASKT18] used them in combination with the lune and rectangle
plot of Tape and Tape [TT12, TT15] to visualize all characterizing
properties of a seismic event.

Furthermore, moment tensor analysis and visualization are used
to investigate the stress and the structure of rock as they also affect
the orientation of the emerging cracks [FKGR03]. For example, Liu
et al. [LLP*18] investigated the behavior of granite and sandstone
under compression using moment tensor analysis. They used simple
glyphs consisting of a small disc, which are oriented orthogonal to
the normal of the fracture surface, and arrows visualizing the direc-
tion the fracture evolves in.

5.4. Orientation and alignment tensors

Another tensor often visualized by glyphs is the orientation ten-
sor. The (fiber) orientation tensor describes the distribution and the
frequency of bidirectional unit vectors per infinitesimal small area.
It is relevant to describe microscopic anisotropic structures of the
material. Zobel et al. [ZSS15] combined the stress and this fiber
orientation tensor to construct a new glyph to indicate failure in
a fiber-reinforced polymer component. Superquadrics visualize the
fiber orientation tensor and color distinguishes non-critical, critical,
and fatal regions. It was combined with a cone based on the stress,
where the alignment of these objects provides failure indication for
a given region.
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Figure 6: Comparison of X-CT data with its simulation. a) showing
the whole component domain and the zoomed-in area, with b) tensor
similarity as heat map, and c) an overlay of superpositioned fiber
orientation superquadric glyphs (image from [WAS*18]).

Visualizing fiber orientation is also interesting for yhe recon-
struction and processing, e.g., of X-CT images. Various frameworks
to extract fibers and their orientation exist [WAL*14, BHA*15,
BWW*17]. Weissenböck et al. [WAS*18] introduced an interactive
framework for comparing X-CT data with other X-CT data or simu-
lations of fiber-reinforced polymers. They calculated three similar-
ity measures for the fiber orientation tensor: the degree of orienta-
tion, the angle between themain directions, and the component-wise
tensor similarity. They are visualized as heat maps to show the corre-
lations. Superpositioned superquadric glyphs are used for a detailed
comparison (see Figure 6).

Another method to describe the symmetries of a material is by
using Orientation Distribution Functions (ODF), which can also
be tensors of higher-order. Moakher and Basser [MB15] presented
ODFs of different orders and their related tensors in closed-form ex-
pressions for all ranks, especially for rank one to four. Besides the
basic mathematics, ODFs of a specific anisotropy type, as well as
axiallysymmetric ODFs, were discussed.

Arisen from the special case of Nematic Liquid Crystals (NLC),
describing an intermediate phase between the liquid and solid
phase of specific materials, a superellipsoid glyph design for their
molecule alignment was presented [JKM06]. The, therefore, de-
scribed NLC alignment tensor is similar to the fiber orientation ten-
sor. Thismethod can further be used for any real symmetric traceless
tensor. Later, Jankun-Kelly et al. [JKLSI10] evaluated four differ-
ent tensor glyphs: boxes, ellipsoids, cylinders, and superquadrics.
They analyzed which of them are the best to encode tensorial vari-
ables of the NLC alignment tensor, like the orientation, uniaxiality,
and biaxiality. In the end, they conducted that superquadrics are less
error-prone than the other glyphs.

To assess the anisotropic structure of bio-materials, DTI is also
used especially in context with the myocardium, the heart muscle.
Thereby the diffusion tensor provides an approximation of the ori-
entation distribution of the muscle fibers. Often ellipses or ellip-
soids are overlaid over the imaging data [GDMS*15, LNY*18]. One
also sees hedgehog-like visualizations plotting lines or vectors in
the major eigenvector direction [GYLG20]. Ennis et al. [EKH*04]
demonstrated the use of superquadric glyphs to visualize fiber
orientation.

Figure 7: Glyph design for general second-order tensor glyphs.
These glyphs represent different tensors with their respective
eigenvalues shown in their real and complex plane (image from
[GRT17]).

Figure 8: Decomposing the stiffness tensor by a spectral decom-
position allows visualizing the rotation part and the stretch part by
Reynold’s glyphs. The figure illustrates different stress modes (im-
age from [NBJ*08]).
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5.5. Asymmetric second-order tensors

Seltzer and Kindlmann [SK16] designed a new tensor glyph ex-
panding the class of generic tensor glyphs to asymmetric second-
order tensors in two dimensions. For the three-dimensional do-
main, Gerrits et al. [GRT17] presented a glyph design for general
second-order tensors, which especially includes the visualization
of two-dimensional tensors. It uses color coding, defining positive
and negative eigenvalues, as well as counter- and clockwise swirling
behavior in terms of imaginary parts of the eigenvalues. Addition-
ally, the shape defines the signs of the real eigenvalue parts. A so-
called eigenstick is used for vanishing eigenvalues, to display the
related eigenvector. Figure 7 shows the glyph design for various sets
of eigenvalues.

5.6. Stiffness tensors

The stiffness tensor is the most frequently visualized higherorder
tensor. With all the symmetries described in Section 3.3, the stiff-
ness tensor has 21 independent coefficients. As they depend on the
local coordinate system, they are hard to interpret even for experi-
enced engineers.

For visualization, the focus is at first on the tensor decomposition,
to make the tensor more accessible. Neeman et al. [NBJ*08] trans-
ferred the polar decomposition to the stiffness tensor. The eigenten-
sor to the minor eigenvalue of the resulting stretch part is visualized
with a Reynold’s glyph (see Figure 8). In their context, the smallest
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eigenvalue describes the most fragile property and, therefore, the
most important information. In contrast, Kriz et al. [KYHR05] an-
alyzed the stiffness tensor by calculating the plane waves. They vi-
sualized the resulting shapes by deforming a sphere by these waves.

Although it is not the focus of the engineering community to vi-
sualize the stiffness tensor when analyzing, there exist some basic
visualizations. Helbig [Hel15] analyzed the stiffness tensor by per-
forming a spectral decomposition using the Kelvin mapping. Each
eigenstrain is represented as a cube. Therefore, the eigenvectors of
the eigenstrain define the coordinate system. Arrows on the faces
of the cube, scaled by the eigenvalues of the eigenstrain, represent
compression. Böhlke and Brüggemann [BB01] described a gener-
alization of the Bulk- and Young’s modulus depicted in two ways:
A stereographic projection onto a sphere surface and a glyph en-
veloping every direction, given by the Young’s modulus in the con-
sidered direction. An application of this glyph is given by Böhlke
and Lobos [BL14]. The consequence for the elasticity modulus is
represented in a glyph describing the modulus in each direction at
one point. Jianping et al. [JFK*15] simulate anisotropic materials
by assuming the anisotropy type and the local coordinate system.
With the deformation gradient, the new alignment is computed by
deforming the normals of the symmetry planes of the assumed ma-
terial. Themethod is tested by representing the deformation with the
help of line segments. Backus [Bac70] gave a derivation of the devi-
atoric decomposition and represented the deviators of the stiffness
tensor by fivemultipole set presentations (one set of normalized vec-
tors for each deviator). Based on the deviatoric decomposition, Zou
et al. [ZTL13] calculated a characteristic function. It equals zero if
the normal in this place is a mirror plane normal. This mapping is
represented on the unit disk to identify the anisotropy types. Also,
based on the deviatoric decomposition, Hergl et al. [HNKS19] de-
signed a glyph to present the anisotropy types and the symmetries
of the described material. The symmetries of the deviators describe
the symmetries of the stiffness tensor and give information about the
anisotropy type of the described material. The base of the glyph is a
set of tubes representing the symmetry plane normals. A sphere in
the center of the tubes gives information about the anisotropy rate.

5.7. Uncertainty tensors

Whenever ensembles of tensor fields are analyzed, uncertainty
becomes an important aspect and increases the complexity even
further. Abbasloo et al. [AWHS15] proposed one of the first
frameworks dealing with the uncertainty of symmetric second-order
tensors. They provide different levels of detail for the visualization
of tensor covariance. Next to an overview of the variance, details
about specific variabilities, like shape and orientation, are shown.
The principal modes were translated into six eigentensors with re-
spective eigenvalues. The two most extreme cases of each eigen-
mode were displayed using superquadric glyphs of complementary
color. In the context with Diffusion MRI, Schultz et al. [SSSSW13]
developed a new glyph (called HiFiVE) to illustrate the uncertainty
in fiber orientations. It is based on the estimation and decomposition
of the fiber distribution into the main direction and a non-negative
residual. The most recent work by Gerrits et al. [GRT19] visualized
the uncertainty tensor as a set of mean and covariance tensors. They
used standard glyph designs for the mean tensor (see Figure 9) and

Figure 9: Uncertainty glyph using superquadric (left) and the
glyph from Gerrits et al. [GRT17] (right) as base for an indefinite
mean tensor (image from [GRT19]).

Figure 10: Stress alignment inside a pavilion as a basis for load
optimized Michell Trusses (image from [AJL*19]).

a translucent hull to encode the uncertainty as a surface with an off-
set by its directional magnitude. The glyphs help to find differing
regions for all processed fields, where the assumption of a Gaussian
normal distribution holds [KGG*20].

6. Geometry-based Methods for Tensor Fields

Local methods, such as glyphs, provide detailed information about
single tensors. However, local methods quickly suffer from cogni-
tive overload, visual clutter, and occlusion. Besides that, they fail to
provide a more continuous view of the structure of a tensor field.
Geometry-based methods are used to encode more global informa-
tion about field attributes.

Tensor lines – Dickinson [Dic89] introduced tensor lines, also
known as principal stress lines or fiber tracks. They follow eigen-
vector directions and are a generalization of streamlines to second-
order tensor fields. For each eigenvector field, there is one family of
tensor lines. Since eigenvectors do not point in a direction, the terms
forward and backward do not have a semantic meaning. Therefore,
they are usually integrated back and forth from the seed point.

In structural mechanics, stress tensor lines can represent major
load paths and have been used to guide geometry optimization of
mechanical components [KSZ*14, SKZ*15, WAWS17, KLC16].
Volumetric Michell Trusses, structures following the maximum
strain, have been designed using a similar concept [AJL*19]. Sim-
ple glyphs and stress tensor lines are used for their representation
(see Figure 10).

Tensor lines are also applied in biomechanical applications. In
context with the orientation distribution or diffusion tensors, they
are interpreted as major fiber or structure direction of the mate-
rial. Especially in the context of visualizing the tissue of the my-
ocardium, they are used to visualize the muscle fiber structure
[GDMS*15, LNY*18, DSB*19]. Wu et al. [WBWD12] presented
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Figure 11: Beams are used to visualize the stresses in a three-
dimensional femur (image from [WWW20]).

an interactive method to compute and visualize patient-specific
residual stress in soft tissues, which is, among others, visualized
using tensor lines.

Hyperstreamlines – Hyperstreamlines [DH92, DH93] are an ex-
tension of tensor lines. Either elliptical or cross-shaped tubes are
used instead of lines. The major eigenvector again gives the tube’s
direction. Its elliptical cross-section or cross-shape is defined by the
intermediate and minor eigenvectors. Sometimes also, color is used
to encode a selected eigenvalue.

Tensor Spines – As a modification of hyperstreamlines, Kret-
zschmar et al. [KGSS20] introduced tensor spines. Instead of ellip-
tical cross-sections, a circular tube and two perpendicular surfaces
are combined. They are based on the relation between the traced
eigenvalue-eigenvector pair and the remaining pairs. They suit espe-
cially indefinite symmetric second-order tensor fields and help iden-
tifying points where the maximum of absolute eigenvalues swaps
between major and minor.

Stress nets – Stress nets give a sparse overview of the stress/shear
directions in a given two-dimensional field [WB05]. An approx-
imately uniform grid is deformed and aligned according to the
stress/shear directions. The sparsity of the method leaves space for
the visualization of additional attributes, e.g., using color according
to a derived scalar field, such as the eigenvalues or other invariants.

Globally conforming lattice – Wang et al. [WWW20] intro-
duced a globally conforming lattice for two- and three-dimensional
stress tensor fields. They used beam elements that follow the prin-
cipal stresses, as depicted in Figure 11. Additionally, color encodes
the magnitude of compression or tension. The size of the beam ele-
ments is scaled according to anisotropy.

Hyperstreamsurfaces – Jeremić et al. [JSF*02] introduced an-
other extension to hyperstreamlines, the hyperstreamsurfaces. They
used a set of points on open (or closed) curves to construct a set
of tensor lines, which are then connected using polygons to form
the hyperstreamsurfaces.

Figure 12: The intersection of the interactor (red shaded box, right
and middle panel) and the mesh, which is transferred from the do-
main (left) to the invariant space (mid and right), defines the fiber
surface, rendered in the domain (image from [RBN*19]).

Deformed geometry – To understand general, second-order ten-
sor fields, Boring and Pang [BP98] presented a deformation-based
technique to visualize the impact of a field on planar surfaces. The
method has also been extended to volume objects, like spheres or
grids, using volume deformation methods. [ZP02].

Fiber Surfaces – Fiber surfaces are an extension of isosurfaces
to a two- [CGT*15], three- [RBN*19], or n-dimensional codomain
[BRP*20]. Like isosurfaces, they show regions inside the domain
where specific isovalues appear, however, considering combinations
of isovalues from the different attributes in the codomain that are
visualized simultaneously (see Figure 12). They share the property
of separating the domain if they split the range.

7. Texture-based Methods for Tensor Fields

Another approach are texture-based methods, giving an overview of
a tensor field on slices, surfaces, or in a few examples also in three
dimensions. Most of the methods in this area are based on the classi-
cal Line Integral Convolution (LIC) method for vector fields, which
has been extended to tensor fields. Furthermore, they are typically
combined with geometry-based methods.

HyperLIC – HyperLIC generates a texture by filtering a noise
texture using a two-dimensional convolution filter [ZP03a]. The fil-
ter is a geometric primitive defined by the tensor placed over each
location and blurs the texture using all eigenvector fields. The filter
does not take the sign of the eigenvalue into account and thus is es-
pecially suitable for positive definite tensors. Therefore, HyperLIC
highlights the anisotropic properties in a tensor field.

Fabric-like visualization, tensor LIC – Fabriclike visualization
of tensor field data on arbitrary surfaces [HFH*04, HFH*06] fo-
cuses on the two principal directions of the tensor projected onto the
surface. The free parameters of the noise texture are used to encode
the scalar invariants of the tensor. An image-space variant[EHHS12]
supports a fast computation of the texture. The method has been ap-
plied in multiple application contexts, including the visualization
of stresses for the geomechanical simulation of subduction zones
[HFH*05].

Tensor LIC combination with brushing and linking – Kratz
et al. [KSZ*14] proposed an approach by visualizing principal

© 2021 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



148 C. Hergl et al. / Visualization of Tensor Fields in Mechanics

Figure 13: LIC on a lever brake, giving engineers a visual guide
for possible stress aligned stiffener (image from [KSZ*14]).

stresses on a cutting plane. Their tool came with a brushing and
linking framework combined with LIC to show force paths (see Fig-
ure 13). Based on them, the engineers brought internal ribs into the
previously defined design space. The small changes improved the
overall stiffness and durability by a lower material use.

LIC combination with streamsurfaces – Song et al. [SLZZ15]
presented a comprehensive method for encoding all three eigenvec-
tor fields of stress and strain tensor fields by combining LIC and
streamsurfaces. They used sparse noise imaging instead of white
noise to support effective visualization.

Tensor lines with isocontours – In order to facilitate the us-
age of tensor lines for engineers, Moldenhauer [Mol18] presented
a programming-free approach for the calculation of tensor lines on
surfaces. Therefore, he used the thermal conduction analysis by set-
ting the principal heat conductor directions to the eigenvectors of
a tensor field. The results of the analysis are different isocontours
indicating tensor lines.

Textures from anisotropic Voronoi tessellations – Kratz et al.
[KASH13] proposed textures generated from anisotropic Voronoi
tessellations of boundary surfaces. The orientation and shape of the
Voronoi cells are determined by a tensor field given on a surface.
Textures, e.g., have been applied to imitate the structure of endothe-
lial cells of a blood vessel based on the wall shear stress resulting
from the blood flow. A texture resembling this is mapped into the
anisotropic Voronoi cells.

Textures from topology – Two-dimensional tensor field topol-
ogy generates a segmentation of the domain in regions of similar
tensor behavior, whose properties are encoded by texture parame-
ters [ASKH12]. This approach supports the generation of a large
variety of textures, e.g., stripe patterns, fabric, knitting, or basket-
work patterns.

Photon distribution – Zheng and Pang [ZP03b] presented an ap-
proach utilizing parallel light rays that were deformed by the tensor
field. This method can produce results similar to hyperstreamlines
[DH93]. In addition, they presented the so-called photon distribu-
tion. Here, a prism that produces different rays of different wave-
lengths out of a single ray is used. Lastly, they introduced the lens
simulation, which uses a given image and shows the projected and
deformed images from different viewpoints.

Bußler et al. [BES15] presented a similar approach for real-world
polariscope analysis to further extend the correlation of tensor fields

Figure 14: Photoelasticity raycasting applied to a lever brake, sim-
ulating a polariscope analysis (image from [BES15]).

and light. They integrated the photoelasticity into a raycasting al-
gorithm, in order that the tensor field refracts incoming light. Pho-
toelasticity is based on the stress-optic law and provides the possi-
bility of showing the stress distribution, especially around material
discontinuities. While real-world experiments are limited to trans-
parent materials, the proposed visualization method can provide the
stress distribution inside arbitrary domains by assuming a translu-
cent hull (see Figure 14).

Three-dimensional textures – In context with the visualization
of the strain-rate tensors from the human heart muscle obtained from
Phase Contrast Magnetic Resonance Imaging (PC-MRI), Sigfrids-
son et al. [SEHW02] proposed a volumetric texture visualization.
The texture results from a noise field by applying adaptive high-
pass filtering in direction with minor eigenvalues (similar to LIC).
Thereby, the filters do not respect the sign of the eigenvalues. Zhang
et al. [ZDL*11] synthesized solid textures using two-dimensional
exemplars that locally agree with a tensor field derived from user
sketched curves.

8. Topological Tensor Field Analysis

According to Heine et al. [HLH*16], topology-based visualizations
can be summarized as follows:

‘Topology-based visualization uses topological concepts to de-

scribe, reduce, or organize data in order to be used in visualiza-

tion. Typical topological concepts are, e.g., topological space,
cell complex, homotopy equivalence, homology, connectedness,

quotient space. Typical visualization uses are, e.g., to highlight

data subsets, to provide a structural overview, or to guide inter-
active exploration.’

Central elements of topological analysis for the two-dimensional
case are degenerate points (alias critical points) and separatrices di-
viding areas of different behavior. As most topological concepts,
tensor field topology provides a global field analysis.

The theory was originally developed by Delmarcelle and Hes-
selink [DH94] for symmetric second-order tensor fields of dimen-
sion two and later dimension three by Hesselink et al. [HLL97].
Therefore, they mainly generalize the concepts from vector field
topology. Until now, this is still the only setting where a more or
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less complete theory exists. Since then, much effort was applied to
extend the scope to higher-orders and the two-dimensional asym-
metric case. Despite the significant advances over the last years,
there are still many fundamental questions open, and the use of
these methods in real-world applications is still in its infancy. Ad-
ditionally, there is almost no work on higher-order tensor topol-
ogy. However, Schultz [Sch11] presented some first steps towards a
generalization.

8.1. Two-dimensional symmetric second-order tensor fields

In the two-dimensional symmetric case, topology defines a segmen-
tation of the domain in regions of uniform tensor line behavior. The
segmentation is given by a topological skeleton built from degener-
ate points and separatrices, connecting these points [DH94]. Degen-
erate points are points where both eigenvalues are the same. Besides
the detection of degenerate points, the question of the features’ in-
terpretation is an often mentioned problem. Zhang et al. [ZGZ17]
showed the first approaches to analyze the tensor topology in an en-
gineering application. In their work, they applied some simulations
to find a correlation between tensor properties of the stress tensor
and the degenerate points. Gao [Gao18] made similar calculations
and came to similar results.

8.2. Three-dimensional symmetric second-order tensor fields

In the three-dimensional symmetric case, different types of degen-
erate features, defined by the multiplicity of the eigenvalues, ex-
ist. If two eigenvalues are equal and the third one differs, the point
is a double degenerate point, and if all eigenvalues are the same,
the point is called a triple degenerate point (alias isolated point).
Besides the multiplicity, tensors are characterized by their shape
[WPG*97]. Assuming sorted eigenvalues λ1 ≥ λ2 ≥ λ3, a tensor is
linear if λ1 > λ2 � λ3, or planar if λ1 � λ2 > λ3 is valid. A ten-
sor is called neutral if the intermediate eigenvalue is the average
of the major eigenvalue and the minor eigenvalue, and it is called
isotropic if λ1 = λ2 = λ3 applies. There is no well-defined anal-
ogy to separatrices in three dimensions. However, Tricoche et al.
[THBG12] presented an alternative to separatrices in the two- and
three-dimensional case. Therefore, they applied Lagrangian coher-
ent structures based on the finite-time Lyapunov exponent to eigen-
vector tensor field topology.

Three-dimensional tensor field topology was first investigated by
Zheng et al. [ZP04, ZPP05]. They showed that double degenerate
points form lines in general. The extraction of those lines is nu-
merically challenging and has been identified as one of the main
problems. After this first work, there was not much activity in fur-
ther developing three-dimensional tensor topology until recently the
number of related publications increased.

Palacios et al. [PYW*13, PYW*16] introduced feature surfaces
complementing degenerate lines. These are neutral surfaces, sepa-
rating linear and planar tensors, and traceless surfaces, separating
tensors with positive and negative trace. An important contribution
towards a three-dimensional tensor field topology is the work on lin-
ear tensor fields by Zhang et al. [ZTZ15], which is a precondition
for dealing with more general fields. They prove that under the as-

sumption of structurally stable conditions, there are at least one and
at most four degenerate curves, ending at infinity. In a follow up
work, they also give an estimate of the maximum number of transi-
tion points on degenerate curves, where the tensor behavior switches
from linear to planar [ZRSZ18]. Additionally, they show the exis-
tence of degenerate loops and intersections of degenerate loops of
the same type. Even with these advances, Zhang and Zhang [ZZ15]
summarized many remaining challenges and grouped them in three
classes:

• Fundamental concept developments: Semantic parameterization
of tensors for three-dimensional tensor fields similar to the two-
dimensional case; Controlled simplification of tensor field topol-
ogy based on a three-dimensional index theory; Relation of three-
dimensional tensor fields and their projections.

• Algorithmic challenges: Stable and efficient extraction and clas-
sification of degenerate curves and feature surfaces.

• Interpretation in physical applications: Impact of triple degener-
ate points, wedges, trisectors, and transition points.

Roy et al. [RKZZ19] targeted the problem of a robust extrac-
tion of degenerate lines. They proposed an algorithm based on a
novel parameterization of the degenerate curves and neutral sur-
faces, resulting in a more robust and efficient computation. This ex-
traction method is based on the fact that degenerate points of three-
dimensional linear tensor fields are diffeomorphic to ellipses and
neutral points are diffeomorphic to the real projective space with a
handle attached. To demonstrate the advantages, they applied their
techniques to simulation data from solid mechanics. Together with
their approach, Qu et al. [QRZZ20] developed a new approach for
the seamless extraction of mode surfaces based on the work of Pala-
cios et al. [PYW*16]. These surfaces are a generalization of degen-
erated curves and neutral surfaces. The core of the approach is their
novel topological analysis ofmode surfaces. They applied it to stress
tensor fields from solidmechanics in order to optimize them for their
pressure behavior.

Zobel and Scheuermann [ZS18] introduced a different perspec-
tive on topological features in tensor analysis. They define so-called
extreme points of the tensor field as points where the gradient of the
invariant map has a lower rank. This leads to extremal lines in two-
dimensional domains and extremal surfaces in three-dimensional
domains. The extremal point set contains the degenerate points and
can, therefore, be seen as an extension.

Oster et al. [ORT18] introduced another topological line, the ten-
sor core line. They adapted vortex core methods from flow fields to
tensor fields by using the eigenvectors. This core line functions as
an axis indicate swirling behavior around it.

Tensor fields are well suited to describe textures for three-
dimensional objects and tensor field topology has also been used
in this context. Palacios et al. [PMC*16, PRK*17] presented an in-
teractive three-dimensional tensor field design system that allows to
locally edit the topology of the three-dimensional tensor field. Roy
et al. [RKG*17] introduced an interactive design and visualization
system for the Branched Covering Space (BCS) of a manifold sur-
face to review the topological structure. This system offers users
the opportunity to intuitively explore the properties of BCSs using
various visualization and mesh deformation techniques.
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8.3. Topology simplification

Topological simplification is a key property when applying topo-
logical analysis in real-world applications. Since the introduction
of tensor field topology, there has been significant work in this di-
rection, for example, see Tricoche [Tri02] and Auer [Aue13]. Since
Kratz et al. [KASH13] already discussed their work, we refer to their
survey for more details.

More recently, Wang and Hotz [WH17] presented a measure for
the stability of degenerate points in relation to small disturbances of
the field. Themeasurement is based on the concept of robustness and
well group theory. By extending this concept to two-dimensional
symmetric second-order tensor fields, a basis for hierarchical-based
tensor field topology simplification was created. Jankowai et al.
[JWH19] extended this work by presenting a computational pipeline
for generating a hierarchical set of degenerate points, indicating
their likelihood to cancel at field perturbation.

8.4. Combinatorial line field topology

In recent work, Lewiner et al. [LNPT17] and Novello et al.
[NPTL20] opened a novel perspective on the topic of two-
dimensional line field topology. Based on the concepts by Forman
[For98] on discrete vector fields, they introduced a topological ap-
proach for the decomposition of discrete line fields. They also intro-
duced a topologically consistent cancellation of critical elements.
Since line fields show a strong relation to eigenvector fields this
could also open new possibilities for tensor field topology.

8.5. Two-dimensional asymmetric second-order tensor fields

For asymmetric tensor fields, the structure is more versatile than
for symmetric tensor fields and the theory is less developed. Typ-
ically, asymmetric tensors are decomposed in their symmetric and
asymmetric part, which are then treated separately. Another way is
to consider the two-dimensional, asymmetric tensor as a whole and
decompose the domain based on its eigenvalues in two parts: The
real part, where the tensor has two real eigenvalues and shear dom-
inates, and the complex part, where the tensor has a pair of complex
conjugate eigenvalues and rotation dominates. Different from the
symmetric case, the eigenvectors in the real part are not necessarily
orthogonal to each other. In complex domains, no real eigenvectors
exist, however, continuous extensions of eigenvectors have been in-
troduced. One example are the dual eigenvectors by Zheng and Pang
[ZP05] that are used to define a topological structure in the complex
parts of asymmetric tensor fields. Palke et al. [PLC*11] defined a
reparameterization of the tensors leading to the notions of an eigen-
value manifold and an eigenvector manifold. A nice feature of this
parameterization is that it carries the physical meaning of the tensor
components and thus can be directly used for effective visualiza-
tions. One example is the illustrative visualization of tensor fields
by Auer et al. [AKK*13].

Building on the tensor parameterization, Lin et al. [LYLZ12] de-
fined two topological graphs for two-dimensional asymmetric ten-
sor fields: an eigenvector graph and an eigenvalue graph. The graphs
are based on a segmentation of the domain with respect to the tensor
type derived from a partitioning of the eigenvalue and eigenvector

Figure 15: Diesel engine - eigenvalue graph of the gradient ten-
sor (left), eigenvalue graph after simplification (right) (image from
[KRZ*19]).

manifold. The eigenvector graph considers two distinguishing fea-
tures forming four types of regions divided into real or complex re-
gions and clockwise or counterclockwise rotational flow. The eigen-
value graph uses five types of regions: positive isotropic scaling,
negative isotropic scaling, counterclockwise rotation, clockwise ro-
tation, and anisotropic stretching. The nodes of the graphs are built
from the resulting feature regions and the edges describe their ad-
jacency relations. Khan et al. [KRZ*19] provide a novel multiscale
topological analysis framework for asymmetric tensor fields on sur-
faces based on these concepts of eigenvalue and eigenvector graphs.
An example can be found in Figure 15, where the eigenvalue graph
of a diesel engine is shown.

9. Tensor as Multivariate Entity

In some applications, tensors are not treated as one entity but rather
as a set of scalars and vectors. The scalars are typically tensor invari-
ants, e.g., eigenvalues, and their related directions. Which of these
attributes are relevant is application-specific as it depends on the
tensor’s semantic. The attributes span an attribute space which itself
can be considered as multifield and typical multifield visualization
techniques may be applied [KH13]. The following section aims to
give a brief overview of such methods that have previously been
employed within tensor visualization, as a comprehensive literature
review of multivariate data visualization would far exceed the scope
of this survey.

Volume Rendering – Kindlmann et al. [KWH00] introduced Di-
rect Volume Rendering (DVR) of diffusion tensor data considering
more than one scalar tensor invariant. They define a transfer func-
tion within the barycentric space of isotropy, linear anisotropy, and
planar anisotropy. Barycentric (opacity) transfer functions assign an
opacity value to each location inside this shape space. The transfer
function can then be sampled by calculating the barycentric coor-
dinates for every tensor, assigning the corresponding opacity value
to that voxel. Fuchs and Hjelmervik [FH15] used an approach to
directly visualize mechanical stress in the three-dimensional space
using interactive DVR.

Dick et al. [DGBW10] developed a volumetric visualization of
stress tensors for implant design. They combine tensor lines for
the major eigenvector and the minor eigenvector fields with volume
rendering. Therefore, they introduced a color mapping that distin-
guishes between compressive and tensile forces.
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Attribute space interaction and analysis – There have been
other efforts to combine directional and scalar information using hy-
brid rendering. For an interactive exploration of tensor data, Kratz
et al. [KMH11] proposed to link feature space plots with three-
dimensional hybrid visualizations. They used the invariant space
as a basis. Brushing and linking techniques are used to select fea-
tures of interest for a hybrid visualization. Thereby, volume render-
ing serves as context and glyphs and tensor lines are used to add
more details. The work by Jankowai et al. [JSJ*20] extended this
work using hierarchical attribute space clustering, treemaps, and
glyph based legends for interaction. Another approach to investigate
attribute spaces are fiber surfaces [CGT*15, RBN*19, BRS*19,
RBR*20, BRP*20] (see Section 6).

Attribute space clustering has also been applied by Dobrec et al.
[DLL11] for interactive visual analysis of volumetric data. The user
interacts with an abstract cluster tree to assign material properties
to the clusters, thus highlighting attributes of interest. Additional at-
tribute space clustering approaches have been demonstrated by Cay
et al. [CNCO17] and Wang et al. [WZL*12].

In context with attribute space representations of tensor fields,
Massood and Hotz [MH19] presented an accurate derivation of the
contour spectrum for tensor invariants with quadratic behavior com-
puted from two-dimensional piece-wise linear tensor fields.

Feature-based analysis – An alternative to explorative interac-
tion with the attribute space is the targeted formulation and querying
of features. Feature level-sets offer a framework wherein the user
can define a feature through geometries in attribute space [JH18].
These geometries, called traits, are the image of the feature level-
sets in attribute space. A distance field, describing the distance to
the closest trait, is then projected back into the domain, where a
simple DVR approach or marching cubes can be used to visualize
the corresponding feature level-sets.

Heat Kernel Signature (HKS) offers a different approach to fea-
ture definition. HKS is typically used as a shape descriptor for sur-
faces, albeit not restricted to surfaces but valid for arbitrary Rieman-
nian manifolds. It assigns a time-dependent function of the form
[0,∞) → R to every point on the surface, thusly allowing a com-
parison of the surface for different time steps. Zobel et al. [ZRH14]
first applied the concept to positive definite tensor fields and later
extended their work to indefinite tensors, such as the stress tensor
[ZRH15]. They achieved this by using three different mappings ap-
plied to the eigenvalues of tensors, without changing the eigenvec-
tors. The HKS method is sensitive to the derivative of the tensor.
Thus, it encodes more information than other methods. The time
parameter supports a level of detail analysis.

Pattern matching – Hlawitschka et al. [HES04] defined the
Fourier transform, convolution, and correlation for second-order
tensor fields. Additionally, they presented pattern matching based
on that work and since the convolution theorem holds, they stated
the availability of Fast Fourier transform algorithms for efficient
calculations.

Bujack andHagen [BH17] defined rotation invariant moments for
tensors of any order in two and three dimensions. These invariant
moments allow defining patterns of interest and the employment of
pattern matching techniques to query the data.

Figure 16: Multivariate visualization of an oil reservoir showing
the permeability tensor as well as the rock type and the porosity
(image from [RMH*18]).

Tensors as part of a multifield – Tensors also occur alongside
with other fields in a multifield setting. An example from geol-
ogy is the investigation of the structure and the permeability of
rock [BDLG15] or the estimation of the most suitable locations
of wells for carbohydrate reservoirs [RMH*18]. The permeability
tensor appears in conjunction with other geological attributes, like
rock type (categorical data), porosity (scalar data), and oil satura-
tion (scalar data) (see Figure 16). In Rocha’s work, the data is vi-
sualized by combining layered colored surfaces and glyphs while
applying illustrative effects or using their so-called decal-mapping
techniques [RASS17]. This technique maps two-dimensional tex-
ture quads onto arbitrarily curved surfaces without the well-known
problems of clipping or detachment of these glyphs.

Rocha et al. [RSA*18] continued their work on multivariate vi-
sualization techniques for geological problems and invented a new
lens technique. They used these lenses to superimpose the shown
data on the surface with other attributes, like detail on-demand vi-
sualizations. The interactive placement, attribute selection, and the
customizability of the size of their lenses facilitates the analysis of
the relation between the vast amount of attributes.

Wünsche et al. [WY03, WLY04] developed a visualization
framework to improve the understanding of cardiac mechanics.
Their framework utilizes glyphs, hyperstreamlines, isosurfaces,
textures, and color-coding to analyze myocardial strain and dis-
placements embedded in a schematic drawing of a heart. Chitiboi
et al. [CA17] and Sheharyar et al. [SCK*16] represented a review
of current approaches for the visualization of magnetic resonance
imaging of myocardial strain. Most visualizations facilitate the
conventional AHA bulls-eye plot to generate a two-dimensional
map of the left ventricle [CWD*02]. Strain, deformation, and other
parameters are visualized on this map using color, arrows, or glyphs.
Takayama et al. [TIHN07] designed a sketch-based interface for
modeling a myocardial volumetric fiber orientation field. The re-
sulting line field is used as input for reliable simulations of the heart.
Teixeira et al. [TNKW20] developed an integrative mechanobio-
logical framework for modeling intracranial aneurysm stability and
growth. They combined visualizations of the aneurysm geometry,
streamlines representing the flow, and color for derived scalars from
the wall properties as fiber directions, displacements, and strain.
Walton et al. [WBT*14] proposed a multilayered visualization con-
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cept for time-varying multifields derived from Cardiovascular Mag-
netic Resonance (CMR) imaging data. The data includes a motion
vector field, strain tensors for each time step, and multiple other at-
tributes, e.g., density and voxel classification. They visualized these
attributes using a color or encoded them into multivariate glyphs.

10. Observations and Insights

Table 1 summarizes the appearance of tensors and their visualiza-
tions in the discussed application areas. Therefore, it can be seen
that some of the tensors, like the stress or the strain tensor, are rel-
evant in multiple areas. Thus, the application areas share some of
their challenges and visualization methods. Other tensors, like the
moment tensor, are application-specific and require specialized vi-
sualization methods. The table also shows, that most visualizations
are designed for a specific tensor type, and since the survey of Kratz
et al. [KASH13] still most methods in all three areas are glyph-
based.

A relatively new, slowly developing topic since 2013 is the use of
tensor topology visualization in practice. First publications in this
direction are encouraging and give hope for more real-world appli-
cations of tensor topology. All together, increasing activity in fun-
damental research is observable. Thereby, a remaining challenging
question is the controlled simplification of tensor fields, especially
in three dimensions.

It is apparent that papers using complex visualizations are mostly
published in the visualization community. In the domain, experts
mainly use simple visualization methods, like isosurfaces and color
mapping. One exception is the visualization of the moment tensor.
A large set of more or less complex glyphs have been introduced
in the domain and are commonly used. This development is hardly
acknowledged by the visualization community, where only one pa-
per exists that visualizes the moment tensor. In biomechanics also a
greater variety of complex visualization techniques are used in the
domain. However, these are mostly basic methods combined in an
application-specific way. Looking into papers from the visualiza-
tion community in general, not many papers focus on geomechani-
cal problems. Even if some of the appearing tensors, like the stress
and strain tensor, are the same as in the other discussed domains,
only a few works are discussing geomechanical applications. Many
more papers in the visualization community deal with applications
from structural mechanics and biomechanics. In structural mechan-
ics, visualizations of the stress and the strain tensor are prevalent.
Other tensors are commonly visualized by glyphs.

The dominance of stress and strain tensors could be related to the
fact that they are relatively simple, symmetric, second-order, and
well understood. They appear in many areas of application. In con-
trast, higher-order tensors are not well understood. No basic decom-
positions exist, and a clear intuition is missing. Only a few tensors,
like the stiffness tensor, are visualized in someworks since 2013, but
we could not find papers focusing on visualizations of higher-order
tensors with geomechanical examples. It is unclear whether higher-
order tensors are not significant for geomechanical applications or
if these tensors are just not visualized. Gradients are also rarely vi-
sualized even though they are obviously of interest, e.g., the pre-
dominant stresses at a specific point have a bearing on the failure

of components as well as the distribution of stress in different di-
rections. The field of asymmetric second-order tensors was hardly
touched since Kratz et al. [KASH13] except by a few theoretical
visualization papers. Asymmetric tensors are, in general, decom-
posed into their symmetric and antisymmetric parts and analyzed
separately. The deformation gradient tensor may have potential ap-
plications in all areas of mechanics. Additionally, it is noticeable
that most of the used data sets are from simulations or imaging be-
cause the direct measuring of most tensors is difficult. An exception
are the moment tensor data sets, which are acquired by the inver-
sion of received seismic waves, but these measurements are sparse
in space and time.

Section 2 described the different areas of the application domains
discussed in this survey. It can be seen that the abstract questions in
mechanical engineering, bio-, and geomechanics are very similar.
Their foci are on the detection of critical areas and the analysis of a
material’s responce to external influences. Even if the materials are
different, the considered tensors are the same. In mechanical engi-
neering, the synthesis of anisotropic materials and their application
for technical purposes is in the foreground. In contrast, bio- and ge-
omechanics are more concerned with identifying the structure and
properties of natural material. A specific challenge with biomateri-
als, e.g., soft tissues and muscles, is their dynamical behavior with
largely changing geometry, for example, the heart.

As a consequence of unknown properties of materials or loading
conditions, uncertainty in simulation models and their parameteri-
zation becomes a dominant issue in model-based decision making.
There are some papers published since the survey of Kratz et al.
[KASH13], which visualize uncertainty tensors to analyze the dis-
tribution in tensor ensembles. However, these works are restricted
to unimodal distributions of tensor ensembles, liable to a Gaussian
distribution. There exist no publications looking at multimodal dis-
tributions and other distributions so far. Uncertainty quantification
and visualization still provide many challenging questions.

Another interesting aspect is that of spatial and temporal scale.
Geological processes are evolving over geological time and are in-
fluenced by processes on scales ranging from microscopic proper-
ties to tectonic plates. In biological material, scales are ranging from
themolecular level up to organs. Analyses bridging these scales con-
stitute a challenge for visualization finding the right abstraction lev-
els, particularly since the scales may be beyond human intuition.

Not often discussed visualizations, in general, are comparative
visualizations. They are neither used for different material models
nor different visualization designs. By now, this is done in most
cases by juxtaposition, i.e., comparing two separate visualizations
side by side.

A general observation is that many of the methods developed in
the visualization community are not well-known by the domain ex-
perts. One reason might be that domain experts have no access to
such methods since they are not provided by common visualization
frameworks, like ParaView. Another reason might be a missing tra-
dition in using advanced visualizations. In any case, all three fields
considered in this survey provide a large potential for novel visual-
ization research. Thereby, an increased effort in reaching out to the
domain scientists is necessary.
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10.1. Future work and open questions

These discussed results lead to some open questions and accord-
ingly to starting points for future research:

• There are some underrepresented tensors types, like higher-order,
uncertainty, ensembles, or gradients. For their analysis and visu-
alization, it would be interesting to investigate the transferability
of methods from other application areas.

• For the visualization of higher-order tensors, to reach more appli-
cations would be interesting. A major challenge is to find ways to
encode all the tensor information in an intuitive way.

• Visualization of uncertainty inside the data and the used models
is an important, however strongly underrepresented, topic.

• Considering tensor topology, there is still a lot of fundamental
research to do, with respect to improving extraction methods for
the three-dimensional case and developing generic simplification
strategies. Furthermore, real-world applications are still missing.
A major task is to relate topological features with the driving
questions in the applications.

• There are some domains that have not been discovered by the
visualization community, e.g., the moment tensor, although visu-
alization is commonly used in the domain. A major hurdle here
is the communication barrier due to the domain language.

• The implementation of existing methods into well-known visual-
ization frameworks to bring them more into the range of scien-
tists. This entails an expansion of existing methods to more com-
plex domains, geometries, and data structures.

11. Conclusion

A résumé about the tensor visualizations in three selected applica-
tion areas: mechanical engineering, bio-, and geomechanics is given
by this survey. It is structured in three main sections. At first, a de-
scription of the applications, followed by a summary of the mathe-
matical foundations, and the visualization methods, grouped by the
type of visualization. In the end, the gained insights about the visu-
alizations in relation to the application domains are given.

Going back to the purpose of this survey as formulated in Sec-
tion 1: (a) Highlight the usefulness and applicability of tensor anal-
ysis within the three fields.This is obvious regarding the vast amount
of papers with successful applications. However, one can also ob-
serve that these papers are mostly published inside the visualization
community. Domain-specific publications often do not use these
techniques and rather use simple or their own techniques. (b) The
accent of the essential differences in-between them. Even though
the three fields have common grounds, the used visualization tech-
niques are mostly restricted to one application area and only some
techniques are used across the domains.

Summarizing the findings of this survey, it can be said, there exist
only a few general generic methods to visualize tensors. Many visu-
alization methods are mainly used in a specific context, like beach
balls for moment tensors, even though they might also be interest-
ing for other applications or for visualization experts, to show how
others attempt to process tensor data into images. Simple methods
as glyph representations are the most prevalent technique in all dis-
cussed domains. This could be an indication that glyphs are more in-

tuitive. There seems to be some skepticism towards more advanced
methods, like volume rendering, exploration, or attribute space vi-
sualization methods. Often such methods are not very well known
in the user’s domains. Here, we probably need more outreach and
promotion, not only to the domain scientists but also to the visual-
ization tool makers. There are also many remaining challenges in
the field, ranging from fundamental to applied questions. As a clos-
ing remark, we encourage any visualization researchers approach-
ing new applications in tensor visualization, to also look into other
domains and inspect their approaches with respect to transferability.
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Physically based methods for tensor field visualization. In IEEE
Visualization 2004 (11 2004), pp. 123–130.

[HFH*05] Hotz I., Feng L., Hamann B., Manaker D., Con-
jeepuram N., Kellogg L. H., Billen M. I.: Exploring tensor

© 2021 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



156 C. Hergl et al. / Visualization of Tensor Fields in Mechanics

fields using a fabric like texture on arbitrary surfaces. In AGU
Fall Meeting San Francisco, CA, USA (2005).

[HFH*06] Hotz I., Feng L., Hagen H., Hamann B., Joy K.: Ten-
sor field visualization using a metric interpretation. In Visualiza-
tion and Processing of Tensor Fields. Springer, 2006, pp. 269–
281.

[HH00] Higham D. J., Higham N. J.: MATLAB Guide. Citeseer,
2000.

[HKS98] Hibbett, Karlsson, Sorensen: ABAQUS/standard: User’s
Manual, vol. 1. Hibbitt, Karlsson & Sorensen, 1998.

[HLH*16] Heine C., Leitte H., Hlawitschka M., Iuricich F.,
De Floriani L., Scheuermann G., Hagen H., Garth C.: A
Survey of topology-based methods in visualization. Computer
Graphics Forum 35, 3 (2016), 643–667.

[HLL97] Hesselink L., Levy Y., Lavin Y.: The topology of sym-
metric, second-order 3D tensor fields. IEEE Transactions on Vi-
sualization and Computer Graphics 3, 1 (1997), 1–11.

[HNKS19] Hergl C., Nagel T., Kolditz O., Scheuermann G.:
Visualization of symmetries in fourth-order stiffness tensors. In
2019 IEEE Visualization Conference (VIS) (2019), IEEE, pp.
291–295.

[HNS20] Hergl C., Nagel T., ScheuermannG.: An introduction
to the deviatoric tensor decomposition in three dimensions and its
multipole representation.

[Hol00] Holzapfel G.: Nonlinear Solid Mechanics, Vol. 24.
Chichester, New York, 2000.

[HPR89] Hudson J., Pearce R., Rogers R.: Source type plot
for inversion of the moment tensor. Journal of Geophysical Re-
search: Solid Earth 94, B1 (1989), 765–774.

[HS17] Heinzl C., Stappen S.: STAR: visual computing in mate-
rials science. Computer Graphics Forum 36, 3 (2017), 647–666.

[HWS*19] Hasaballa A. I., Wang V. Y., Sands G. B., Wilson
A. J., Young A. A., LeGrice I. J., NashM. P.: Microstructurally
motivated constitutive modeling of heart failure mechanics. Bio-
physical Journal 117, 12 (Dec 2019), 2273–2286.

[JFK*15] Jianping C., Feng L., Kemao Q., Tsui L. Y., Soon S.
H.: Simulation and visualization of deformation with anisotropic
materials. In 2015 19th International Conference on Information
Visualisation (2015), IEEE, pp. 392–402.

[JH18] Jankowai J., Hotz I.: Feature level-sets: generalizing iso-
surfaces to multi-variate data. IEEE Transactions on Visualiza-
tion and Computer Graphics (2018), 1–1.

[JKLSI10] Jankun-Kelly T., Lanka Y., Swan II J.: An evalua-
tion of glyph perception for real symmetric traceless tensor prop-
erties. Computer Graphics Forum 29, 3 (2010), 1133–1142.

[JKM06] Jankun-Kelly T.,MehtaK.: Superellipsoid-based, real
symmetric traceless tensor glyphs motivated by nematic liquid

crystal alignment visualization. IEEE Transactions on Visualiza-
tion and Computer Graphics 12, 5 (2006), 1197–1204.
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