133 research outputs found

    Hardware-supported cloth rendering

    Get PDF
    Many computer graphics applications involve rendering humans and their natural surroundings, which inevitably requires displaying textiles. To accurately resemble the appearance of e.g. clothing or furniture, reflection models are needed which are capable of modeling the highly complex reflection effects exhibited by textiles. This thesis focuses on generating realistic high quality images of textiles by developing suitable reflection models and introducing algorithms for illumination computation of cloth surfaces. As efficiency is essential for illumination computation, we additionally place great importance on exploiting graphics hardware to achieve high frame rates. To this end, we present a variety of hardware-accelerated methods to compute the illumination in textile micro geometry. We begin by showing how indirect illumination and shadows can be efficiently accounted for in heightfields, parametric surfaces, and triangle meshes. Using these methods, we can considerably speed up the computation of data structures like tabular bidirectional reflectance distribution functions (BRDFs) and bidirectional texture functions (BTFs), and also efficiently illuminate heightfield geometry and bump maps. Furthermore, we develop two shading models, which account for all important reflection properties exhibited by textiles. While the first model is suited for rendering textiles with general micro geometry, the second, based on volumetric textures, is specially tailored for rendering knitwear. To apply the second model e.g. to the triangle mesh of a garment, we finally introduce a new rendering algorithm for displaying semi-transparent volumetric textures at high interactive rates.Eine Vielzahl von Anwendungen in der Computergraphik schließen auch die Darstellung von Menschen und deren natürlicher Umgebung ein, was zwangsläufig auch die Darstellung von Textilien erfordert. Um beispielsweise das Aussehen von Bekleidung oder Möbeln genau zu erfassen, werden Reflexionsmodelle benötigt, die in der Lage sind, die hochkomplexen Reflexionseffekte von Textilien zu berücksichtigen. Der Schwerpunkt dieser Dissertation liegt in der Generierung qualitativ hochwertiger Bilder von Textilien, was wir durch die Entwicklung geeigneter Reflexionsmodelle und von Algorithmen zur Beleuchtungsberechnung an Stoffoberflächen ermöglichen. Da Effizienz essentiell für die Beleuchtungsberechnung ist, nutzen wir die Möglichkeiten von Graphikhardware aus, um hohe Bildwiederholraten zu erzielen. Hierfür legen wir eine Vielzahl von hardware-beschleunigten Methoden zur Beleuchtungsberechnung der Mikrogeometrie von Textilien vor. Zuerst zeigen wir, wie indirekte Beleuchtung und Schatten effizient in Höhenfeldern, parametrischen Flächen und Dreiecksnetzen berücksichtigt werden können. Mit Hilfe dieser Methoden kann die Berechnung von Datenstrukturen wie tabellarischer bidirectional reflectance distribution functions (BRDFs) und bidirectional texture functions (BTFs) erheblich beschleunigt, sowie die Beleuchtung von Höhenfeld-Geometrie und Bumpmaps effizient errechnet werden.Weiterhin entwickeln wir zwei Reflexionsmodelle, welche alle wichtigen Reflexionseigenschaften berücksichtigen, die Textilien aufweisen. Während das erste Modell sich zur Darstellung von Textilien mit allgemeiner Mikrogeometrie eignet, ist das zweite, welches auf volumetrischen Texturen basiert, speziell auf die Darstellung von Strickwaren zugeschnitten. Um das zweite Modell z.B. auf das Dreiecksnetz eines Bekleidungsstückes anzuwenden führen wir einen neuen Renderingalgorithmus für die Darstellung von semi-transparenten volumetrischen Texturen mit hohen Bildwiederholraten ein

    Efficient multi-bounce lightmap creation using GPU forward mapping

    Get PDF
    Computer graphics can nowadays produce images in realtime that are hard to distinguish from photos of a real scene. One of the most important aspects to achieve this is the interaction of light with materials in the virtual scene. The lighting computation can be separated in two different parts. The first part is concerned with the direct illumination that is applied to all surfaces lit by a light source; algorithms related to this have been greatly improved over the last decades and together with the improvements of the graphics hardware can now produce realistic effects. The second aspect is about the indirect illumination which describes the multiple reflections of light from each surface. In reality, light that hits a surface is never fully absorbed, but instead reflected back into the scene. And even this reflected light is then reflected again and again until its energy is depleted. These multiple reflections make indirect illumination very computationally expensive. The first problem regarding indirect illumination is therefore, how it can be simplified to compute it faster. Another question concerning indirect illumination is, where to compute it. It can either be computed in the fixed image that is created when rendering the scene or it can be stored in a light map. The drawback of the first approach is, that the results need to be recomputed for every frame in which the camera changed. The second approach, on the other hand, is already used for a long time. Once a static scene has been set up, the lighting situation is computed regardless of the time it takes and the result is then stored into a light map. This is a texture atlas for the scene in which each surface point in the virtual scene has exactly one surface point in the 2D texture atlas. When displaying the scene with this approach, the indirect illumination does not need to be recomputed, but is simply sampled from the light map. The main contribution of this thesis is the development of a technique that computes the indirect illumination solution for a scene at interactive rates and stores the result into a light atlas for visualizing it. To achieve this, we overcome two main obstacles. First, we need to be able to quickly project data from any given camera configuration into the parts of the texture that are currently used for visualizing the 3D scene. Since our approach for computing and storing indirect illumination requires a huge amount of these projections, it needs to be as fast as possible. Therefore, we introduce a technique that does this projection entirely on the graphics card with a single draw call. Second, the reflections of light into the scene need to be computed quickly. Therefore, we separate the computation into two steps, one that quickly approximates the spreading of the light into the scene and a second one that computes the visually smooth final result using the aforementioned projection technique. The final technique computes the indirect illumination at interactive rates even for big scenes. It is furthermore very flexible to let the user choose between high quality results or fast computations. This allows the method to be used for quickly editing the lighting situation with high speed previews and then computing the final result in perfect quality at still interactive rates. The technique introduced for projecting data into the texture atlas is in itself highly flexible and also allows for fast painting onto objects and projecting data onto it, considering all perspective distortions and self-occlusions

    Towards Predictive Rendering in Virtual Reality

    Get PDF
    The strive for generating predictive images, i.e., images representing radiometrically correct renditions of reality, has been a longstanding problem in computer graphics. The exactness of such images is extremely important for Virtual Reality applications like Virtual Prototyping, where users need to make decisions impacting large investments based on the simulated images. Unfortunately, generation of predictive imagery is still an unsolved problem due to manifold reasons, especially if real-time restrictions apply. First, existing scenes used for rendering are not modeled accurately enough to create predictive images. Second, even with huge computational efforts existing rendering algorithms are not able to produce radiometrically correct images. Third, current display devices need to convert rendered images into some low-dimensional color space, which prohibits display of radiometrically correct images. Overcoming these limitations is the focus of current state-of-the-art research. This thesis also contributes to this task. First, it briefly introduces the necessary background and identifies the steps required for real-time predictive image generation. Then, existing techniques targeting these steps are presented and their limitations are pointed out. To solve some of the remaining problems, novel techniques are proposed. They cover various steps in the predictive image generation process, ranging from accurate scene modeling over efficient data representation to high-quality, real-time rendering. A special focus of this thesis lays on real-time generation of predictive images using bidirectional texture functions (BTFs), i.e., very accurate representations for spatially varying surface materials. The techniques proposed by this thesis enable efficient handling of BTFs by compressing the huge amount of data contained in this material representation, applying them to geometric surfaces using texture and BTF synthesis techniques, and rendering BTF covered objects in real-time. Further approaches proposed in this thesis target inclusion of real-time global illumination effects or more efficient rendering using novel level-of-detail representations for geometric objects. Finally, this thesis assesses the rendering quality achievable with BTF materials, indicating a significant increase in realism but also confirming the remainder of problems to be solved to achieve truly predictive image generation

    Capturing and Reconstructing the Appearance of Complex {3D} Scenes

    No full text
    In this thesis, we present our research on new acquisition methods for reflectance properties of real-world objects. Specifically, we first show a method for acquiring spatially varying densities in volumes of translucent, gaseous material with just a single image. This makes the method applicable to constantly changing phenomena like smoke without the use of high-speed camera equipment. Furthermore, we investigated how two well known techniques -- synthetic aperture confocal imaging and algorithmic descattering -- can be combined to help looking through a translucent medium like fog or murky water. We show that the depth at which we can still see an object embedded in the scattering medium is increased. In a related publication, we show how polarization and descattering based on phase-shifting can be combined for efficient 3D~scanning of translucent objects. Normally, subsurface scattering hinders the range estimation by offsetting the peak intensity beneath the surface away from the point of incidence. With our method, the subsurface scattering is reduced to a minimum and therefore reliable 3D~scanning is made possible. Finally, we present a system which recovers surface geometry, reflectance properties of opaque objects, and prevailing lighting conditions at the time of image capture from just a small number of input photographs. While there exist previous approaches to recover reflectance properties, our system is the first to work on images taken under almost arbitrary, changing lighting conditions. This enables us to use images we took from a community photo collection website

    Two-dimensional beam tracing from visibility diagrams for real-time acoustic rendering

    Get PDF
    We present an extension of the fast beam-tracing method presented in the work of Antonacci et al. (2008) for the simulation of acoustic propagation in reverberant environments that accounts for diffraction and diffusion. More specifically, we show how visibility maps are suitable for modeling propagation phenomena more complex than specular reflections. We also show how the beam-tree lookup for path tracing can be entirely performed on visibility maps as well. We then contextualize such method to the two different cases of channel (point-to-point) rendering using a headset, and the rendering of a wave field based on arrays of speakers. Finally, we provide some experimental results and comparisons with real data to show the effectiveness and the accuracy of the approach in simulating the soundfield in an environment

    Realistic Visualization of Animated Virtual Cloth

    Get PDF
    Photo-realistic rendering of real-world objects is a broad research area with applications in various different areas, such as computer generated films, entertainment, e-commerce and so on. Within photo-realistic rendering, the rendering of cloth is a subarea which involves many important aspects, ranging from material surface reflection properties and macroscopic self-shadowing to animation sequence generation and compression. In this thesis, besides an introduction to the topic plus a broad overview of related work, different methods to handle major aspects of cloth rendering are described. Material surface reflection properties play an important part to reproduce the look & feel of materials, that is, to identify a material only by looking at it. The BTF (bidirectional texture function), as a function of viewing and illumination direction, is an appropriate representation of reflection properties. It captures effects caused by the mesostructure of a surface, like roughness, self-shadowing, occlusion, inter-reflections, subsurface scattering and color bleeding. Unfortunately a BTF data set of a material consists of hundreds to thousands of images, which exceeds current memory size of personal computers by far. This work describes the first usable method to efficiently compress and decompress a BTF data for rendering at interactive to real-time frame rates. It is based on PCA (principal component analysis) of the BTF data set. While preserving the important visual aspects of the BTF, the achieved compression rates allow the storage of several different data sets in main memory of consumer hardware, while maintaining a high rendering quality. Correct handling of complex illumination conditions plays another key role for the realistic appearance of cloth. Therefore, an upgrade of the BTF compression and rendering algorithm is described, which allows the support of distant direct HDR (high-dynamic-range) illumination stored in environment maps. To further enhance the appearance, macroscopic self-shadowing has to be taken into account. For the visualization of folds and the life-like 3D impression, these kind of shadows are absolutely necessary. This work describes two methods to compute these shadows. The first is seamlessly integrated into the illumination part of the rendering algorithm and optimized for static meshes. Furthermore, another method is proposed, which allows the handling of dynamic objects. It uses hardware-accelerated occlusion queries for the visibility determination. In contrast to other algorithms, the presented algorithm, despite its simplicity, is fast and produces less artifacts than other methods. As a plus, it incorporates changeable distant direct high-dynamic-range illumination. The human perception system is the main target of any computer graphics application and can also be treated as part of the rendering pipeline. Therefore, optimization of the rendering itself can be achieved by analyzing human perception of certain visual aspects in the image. As a part of this thesis, an experiment is introduced that evaluates human shadow perception to speedup shadow rendering and provides optimization approaches. Another subarea of cloth visualization in computer graphics is the animation of the cloth and avatars for presentations. This work also describes two new methods for automatic generation and compression of animation sequences. The first method to generate completely new, customizable animation sequences, is based on the concept of finding similarities in animation frames of a given basis sequence. Identifying these similarities allows jumps within the basis sequence to generate endless new sequences. Transmission of any animated 3D data over bandwidth-limited channels, like extended networks or to less powerful clients requires efficient compression schemes. The second method included in this thesis in the animation field is a geometry data compression scheme. Similar to the BTF compression, it uses PCA in combination with clustering algorithms to segment similar moving parts of the animated objects to achieve high compression rates in combination with a very exact reconstruction quality.Realistische Visualisierung von animierter virtueller Kleidung Das photorealistisches Rendering realer Gegenstände ist ein weites Forschungsfeld und hat Anwendungen in vielen Bereichen. Dazu zählen Computer generierte Filme (CGI), die Unterhaltungsindustrie und E-Commerce. Innerhalb dieses Forschungsbereiches ist das Rendern von photorealistischer Kleidung ein wichtiger Bestandteil. Hier reichen die wichtigen Aspekte, die es zu berücksichtigen gilt, von optischen Materialeigenschaften über makroskopische Selbstabschattung bis zur Animationsgenerierung und -kompression. In dieser Arbeit wird, neben der Einführung in das Thema, ein weiter Überblick über ähnlich gelagerte Arbeiten gegeben. Der Schwerpunkt der Arbeit liegt auf den wichtigen Aspekten der virtuellen Kleidungsvisualisierung, die oben beschrieben wurden. Die optischen Reflektionseigenschaften von Materialoberflächen spielen eine wichtige Rolle, um das so genannte look & feel von Materialien zu charakterisieren. Hierbei kann ein Material vom Nutzer identifiziert werden, ohne dass er es direkt anfassen muss. Die BTF (bidirektionale Texturfunktion)ist eine Funktion die abhängig von der Blick- und Beleuchtungsrichtung ist. Daher ist sie eine angemessene Repräsentation von Reflektionseigenschaften. Sie enthält Effekte wie Rauheit, Selbstabschattungen, Verdeckungen, Interreflektionen, Streuung und Farbbluten, die durch die Mesostruktur der Oberfläche hervorgerufen werden. Leider besteht ein BTF Datensatz eines Materials aus hunderten oder tausenden von Bildern und sprengt damit herkömmliche Hauptspeicher in Computern bei weitem. Diese Arbeit beschreibt die erste praktikable Methode, um BTF Daten effizient zu komprimieren, zu speichern und für Echtzeitanwendungen zum Visualisieren wieder zu dekomprimieren. Die Methode basiert auf der Principal Component Analysis (PCA), die Daten nach Signifikanz ordnet. Während die PCA die entscheidenen visuellen Aspekte der BTF erhält, können mit ihrer Hilfe Kompressionsraten erzielt werden, die es erlauben mehrere BTF Materialien im Hauptspeicher eines Consumer PC zu verwalten. Dies erlaubt ein High-Quality Rendering. Korrektes Verwenden von komplexen Beleuchtungssituationen spielt eine weitere, wichtige Rolle, um Kleidung realistisch erscheinen zu lassen. Daher wird zudem eine Erweiterung des BTF Kompressions- und Renderingalgorithmuses erläutert, die den Einsatz von High-Dynamic Range (HDR) Beleuchtung erlaubt, die in environment maps gespeichert wird. Um die realistische Erscheinung der Kleidung weiter zu unterstützen, muss die makroskopische Selbstabschattung integriert werden. Für die Visualisierung von Falten und den lebensechten 3D Eindruck ist diese Art von Schatten absolut notwendig. Diese Arbeit beschreibt daher auch zwei Methoden, diese Schatten schnell und effizient zu berechnen. Die erste ist nahtlos in den Beleuchtungspart des obigen BTF Renderingalgorithmuses integriert und für statische Geometrien optimiert. Die zweite Methode behandelt dynamische Objekte. Dazu werden hardwarebeschleunigte Occlusion Queries verwendet, um die Sichtbarkeitsberechnung durchzuführen. Diese Methode ist einerseits simpel und leicht zu implementieren, anderseits ist sie schnell und produziert weniger Artefakte, als vergleichbare Methoden. Zusätzlich ist die Verwendung von veränderbarer, entfernter HDR Beleuchtung integriert. Das menschliche Wahrnehmungssystem ist das eigentliche Ziel jeglicher Anwendung in der Computergrafik und kann daher selbst als Teil einer erweiterten Rendering Pipeline gesehen werden. Daher kann das Rendering selbst optimiert werden, wenn man die menschliche Wahrnehmung verschiedener visueller Aspekte der berechneten Bilder analysiert. Teil der vorliegenden Arbeit ist die Beschreibung eines Experimentes, das menschliche Schattenwahrnehmung untersucht, um das Rendern der Schatten zu beschleunigen. Ein weiteres Teilgebiet der Kleidungsvisualisierung in der Computergrafik ist die Animation der Kleidung und von Avataren für Präsentationen. Diese Arbeit beschreibt zwei neue Methoden auf diesem Teilgebiet. Einmal ein Algorithmus, der für die automatische Generierung neuer Animationssequenzen verwendet werden kann und zum anderen einen Kompressionsalgorithmus für eben diese Sequenzen. Die automatische Generierung von völlig neuen, anpassbaren Animationen basiert auf dem Konzept der Ähnlichkeitssuche. Hierbei werden die einzelnen Schritte von gegebenen Basisanimationen auf Ähnlichkeiten hin untersucht, die zum Beispiel die Geschwindigkeiten einzelner Objektteile sein können. Die Identifizierung dieser Ähnlichkeiten erlaubt dann Sprünge innerhalb der Basissequenz, die dazu benutzt werden können, endlose, neue Sequenzen zu erzeugen. Die Übertragung von animierten 3D Daten über bandbreitenlimitierte Kanäle wie ausgedehnte Netzwerke, Mobilfunk oder zu sogenannten thin clients erfordert eine effiziente Komprimierung. Die zweite, in dieser Arbeit vorgestellte Methode, ist ein Kompressionsschema für Geometriedaten. Ähnlich wie bei der Kompression von BTF Daten wird die PCA in Verbindung mit Clustering benutzt, um die animierte Geometrie zu analysieren und in sich ähnlich bewegende Teile zu segmentieren. Diese erkannten Segmente lassen sich dann hoch komprimieren. Der Algorithmus arbeitet automatisch und erlaubt zudem eine sehr exakte Rekonstruktionsqualität nach der Dekomprimierung

    Visually pleasing real-time global illumination rendering for fully-dynamic scenes

    Get PDF
    Global illumination (GI) rendering plays a crucial role in the photo-realistic rendering of virtual scenes. With the rapid development of graphics hardware, GI has become increasingly attractive even for real-time applications nowadays. However, the computation of physically-correct global illumination is time-consuming and cannot achieve real-time, or even interactive performance. Although the realtime GI is possible using a solution based on precomputation, such a solution cannot deal with fully-dynamic scenes. This dissertation focuses on solving these problems by introducing visually pleasing real-time global illumination rendering for fully-dynamic scenes. To this end, we develop a set of novel algorithms and techniques for rendering global illumination effects using the graphics hardware. All these algorithms not only result in real-time or interactive performance, but also generate comparable quality to the previous works in off-line rendering. First, we present a novel implicit visibility technique to circumvent expensive visibility queries in hierarchical radiosity by evaluating the visibility implicitly. Thereafter, we focus on rendering visually plausible soft shadows, which is the most important GI effect caused by the visibility determination. Based on the pre-filtering shadowmapping theory, wesuccessively propose two real-time soft shadow mapping methods: "convolution soft shadow mapping" (CSSM) and "variance soft shadow mapping" (VSSM). Furthermore, we successfully apply our CSSM method in computing the shadow effects for indirect lighting. Finally, to explore the GI rendering in participating media, we investigate a novel technique to interactively render volume caustics in the single-scattering participating media.Das Rendern globaler Beleuchtung ist für die fotorealistische Darstellung virtueller Szenen von entscheidender Bedeutung. Dank der rapiden Entwicklung der Grafik-Hardware wird die globale Beleuchtung heutzutage sogar für Echtzeitanwendungen immer attraktiver. Trotz allem ist die Berechnung physikalisch korrekter globaler Beleuchtung zeitintensiv und interaktive Laufzeiten können mit "standard Hardware" noch nicht erzielt werden. Obwohl das Rendering auf der Grundlage von Vorberechnungen in Echtzeit möglich ist, kann ein solcher Ansatz nicht auf voll-dynamische Szenen angewendet werden. Diese Dissertation zielt darauf ab, das Problem der globalen Beleuchtungsberechnung durch Einführung von neuen Techniken für voll-dynamische Szenen in Echtzeit zu lösen. Dazu stellen wir eine Reihe neuer Algorithmen vor, die die Effekte der globaler Beleuchtung auf der Grafik-Hardware berechnen. All diese Algorithmen erzielen nicht nur Echtzeit bzw. interaktive Laufzeiten sondern liefern auch eine Qualität, die mit bisherigen offline Methoden vergleichbar ist. Zunächst präsentieren wir eine neue Technik zur Berechnung impliziter Sichtbarkeit, die aufwändige Sichbarkeitstests in hierarchischen Radiosity-Datenstrukturen vermeidet. Anschliessend stellen wir eine Methode vor, die weiche Schatten, ein wichtiger Effekt für die globale Beleuchtung, in Echtzeit berechnet. Auf der Grundlage der Theorie über vorgefilterten Schattenwurf, zeigen wir nacheinander zwei Echtzeitmethoden zur Berechnung weicher Schattenwürfe: "Convolution Soft Shadow Mapping" (CSSM) und "Variance Soft Shadow Mapping" (VSSM). Darüber hinaus wenden wir unsere CSSM-Methode auch erfolgreich auf den Schatteneffekt in der indirekten Beleuchtung an. Abschliessend präsentieren wir eine neue Methode zum interaktiven Rendern von Volumen-Kaustiken in einfach streuenden, halbtransparenten Medien

    Perceptually-motivated, interactive rendering and editing of global illumination

    Get PDF
    This thesis proposes several new perceptually-motivated techniques to synthesize, edit and enhance depiction of three-dimensional virtual scenes. Finding algorithms that fit the perceptually economic middle ground between artistic depiction and full physical simulation is the challenge taken in this work. First, we will present three interactive global illumination rendering approaches that are inspired by perception to efficiently depict important light transport. Those methods have in common to compute global illumination in large and fully dynamic scenes allowing for light, geometry, and material changes at interactive or real-time rates. Further, this thesis proposes a tool to edit reflections, that allows to bend physical laws to match artistic goals by exploiting perception. Finally, this work contributes a post-processing operator that depicts high contrast scenes in the same way as artists do, by simulating it "seen'; through a dynamic virtual human eye in real-time.Diese Arbeit stellt eine Anzahl von Algorithmen zur Synthese, Bearbeitung und verbesserten Darstellung von virtuellen drei-dimensionalen Szenen vor. Die Herausforderung liegt dabei in der Suche nach Ausgewogenheit zwischen korrekter physikalischer Berechnung und der künstlerischen, durch die Gesetze der menschlichen Wahrnehmung motivierten Praxis. Zunächst werden drei Verfahren zur Bild-Synthese mit globaler Beleuchtung vorgestellt, deren Gemeinsamkeit in der effizienten Handhabung großer und dynamischer virtueller Szenen liegt, in denen sich Geometrie, Materialen und Licht frei verändern lassen. Darauffolgend wird ein Werkzeug zum Editieren von Reflektionen in virtuellen Szenen das die menschliche Wahrnehmung ausnutzt um künstlerische Vorgaben umzusetzen, vorgestellt. Die Arbeit schließt mit einem Filter am Ende der Verarbeitungskette, der den wahrgenommen Kontrast in einem Bild erhöht, indem er die Entstehung von Glanzeffekten im menschlichen Auge nachbildet

    Semi-transparent textures based on opaque and transparent texels augmented with a thickness

    Full text link
    Le rendu en temps réel repose sur des compromis entre la performance et le réalisme. Un de ces compromis est de représenter des matériaux plus minces tels que les tissus comme étant infiniment minces pour économiser mémoire et temps de rendu. Par contre, cette perte de dimension prive la surface de propriétés essentielles à certains effets visuels. Dans ce mémoire, nous présentons une méthode pour simuler les effets de l’épaisseur sur des surfaces semi-transparentes en utilisant des textures composées de texels opaques et transparents. Nous analysons les trous formés par les texels transparents et nous conservons de l’information sur les contours des trous dans une structure hiérarchique compatible avec la méthode de filtrage de textures par MIP map. Nous dérivons des équations représentant la proportion de lumière passant dans un trou avec des murs intérieurs en fonction de l’angle incident des rayons de lumière. Nous combinons ces équations avec l’information conservée pour calculer un terme de transparence à différents niveaux de détail en temps réel.Real-time rendering is built upon compromises between performance and realism. One such compromise is to represent thinner materials like textile as infinitely thin in order to save on memory and rendering time. However, this loss of dimension robs the surface of properties key to some visual effects. In this thesis, we present a method to simulate the effects of thickness on semi-transparent surfaces using textures consisting of opaque and transparent texels. We analyze holes formed by transparent texels and store information about the contours of the holes in a hierarchical structure compatible with the filtering method of MIP mapping. We derive equations representing the proportion of light passing through a hole as a function of the incident angle of light. The proportions of texel top, texel side wall, and hole are computed accurately. We combine these equations with the information stored to compute a transparency term at different levels of detail in real time
    • …
    corecore