
Efficient Multi-Bounce Lightmap Creation Using
GPU Forward Mapping

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Randolf Schärfig

under the supervision of

Prof. Kai Hormann

co-supervised by

Prof. Marc Stamminger

October 2016

Dissertation Committee

Prof. Marc Langheinrich Università della Svizzera Italiana, Switzerland
Prof. Evanthia Papadopoulou Università della Svizzera Italiana, Switzerland

Prof. Marco Tarini Università degli Studi dell’Insubria, Varese, Italy
Prof. Matthias Zwicker Universität Bern, Switzerland

Dissertation accepted on 18 October 2016

Prof. Kai Hormann
Research Advisor

Università della Svizzera Italiana, Switzerland

Prof. Marc Stamminger
Research Co-Advisor

Universität Erlangen, Germany

Prof. Michael Bronstein
PhD Program Director

i

I certify that except where due acknowledgement has been given, the work pre-
sented in this thesis is that of the author alone; the work has not been submitted previ-
ously, in whole or in part, to qualify for any other academic award; and the content of
the thesis is the result of work which has been carried out since the official commence-
ment date of the approved research program.

Randolf Schärfig
Lugano, 18 October 2016

ii

Abstract

Computer graphics can nowadays produce images in realtime that are hard to distin-
guish from photos of a real scene. One of the most important aspects to achieve this
is the interaction of light with materials in the virtual scene. The lighting computation
can be separated in two different parts. The first part is concerned with the direct illu-
mination that is applied to all surfaces lit by a light source; algorithms related to this
have been greatly improved over the last decades and together with the improvements
of the graphics hardware can now produce realistic effects. The second aspect is about
the indirect illumination which describes the multiple reflections of light from each sur-
face. In reality, light that hits a surface is never fully absorbed, but instead reflected
back into the scene. And even this reflected light is then reflected again and again until
its energy is depleted. These multiple reflections make indirect illumination very com-
putationally expensive. The first problem regarding indirect illumination is therefore,
how it can be simplified to compute it faster.

Another question concerning indirect illumination is, where to compute it. It can
either be computed in the fixed image that is created when rendering the scene or it can
be stored in a light map. The drawback of the first approach is, that the results need to
be recomputed for every frame in which the camera changed. The second approach,
on the other hand, is already used for a long time. Once a static scene has been set
up, the lighting situation is computed regardless of the time it takes and the result is
then stored into a light map. This is a texture atlas for the scene in which each surface
point in the virtual scene has exactly one surface point in the 2D texture atlas. When
displaying the scene with this approach, the indirect illumination does not need to be
recomputed, but is simply sampled from the light map.

The main contribution of this thesis is the development of a technique that computes
the indirect illumination solution for a scene at interactive rates and stores the result
into a light atlas for visualizing it. To achieve this, we overcome two main obstacles.

First, we need to be able to quickly project data from any given camera configuration
into the parts of the texture that are currently used for visualizing the 3D scene. Since
our approach for computing and storing indirect illumination requires a huge amount of
these projections, it needs to be as fast as possible. Therefore, we introduce a technique
that does this projection entirely on the graphics card with a single draw call.

Second, the reflections of light into the scene need to be computed quickly. There-

iii

iv

fore, we separate the computation into two steps, one that quickly approximates the
spreading of the light into the scene and a second one that computes the visually smooth
final result using the aforementioned projection technique.

The final technique computes the indirect illumination at interactive rates even for
big scenes. It is furthermore very flexible to let the user choose between high quality
results or fast computations. This allows the method to be used for quickly editing
the lighting situation with high speed previews and then computing the final result in
perfect quality at still interactive rates.

The technique introduced for projecting data into the texture atlas is in itself highly
flexible and also allows for fast painting onto objects and projecting data onto it, con-
sidering all perspective distortions and self-occlusions.

Acknowledgements

First and foremost, I would like thank my advisor Prof. Kai Hormann for his support and
guidance through the PhD-process. I am very grateful for his advice, his constructive
criticism, and his encouragement and sincerity.

Furthermore, I would like to thank my external advisor Prof. Marc Stamminger
from the University of Erlangen for his suggestions, insights and comments about my
research.

I would also like to thank my internal committee members Prof. Evanthia Pa-
padopoulou and Prof. Marc Langheinrich as well as my external committee members
Prof. Marco Tarini and Prof. Matthias Zwicker for reading and evaluating this thesis.

I am also grateful to my colleagues here at USI with whom I had a great working
relationship and many interesting talks. Especially Sandeep Kumar Dey and Dmitry
Anisimov became very close friends during the time I spent here and helped me a lot in
different situations. You guys made my life here very enjoyable even in days and weeks
of extreme stress. I would also like to mention Ämin and Ali for the interesting talks
we had about different topics.

Most certainly, I am indebted to my family, who laid the foundation for all I have
and will accomplish in my life.

And most importantly, thank you Lilla for being part of my life and making me
enjoy every minute of it to the fullest. You always gave me strength to work hard on
this and lifted my spirit with your positive attitude towards everything. You managed
to motivate me even during the hardest times.

v

vi

Contents

Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Research questions . 3

1.2 Contributions . 4

1.3 Outline of the thesis . 5

1.4 Publications . 5

2 Basics of Light and Lighting 7

2.1 Physical properties of light . 7

2.2 Perception of light . 8

2.2.1 High-Dynamic-Range . 9

2.3 Lighting in virtual environments . 10

2.3.1 Diffuse reflection . 11

2.3.2 Specular reflection . 12

2.4 Direct illumination . 14

2.5 Indirect illumination . 15

2.5.1 Basics for implementation . 16

2.6 Classification of indirect illumination techniques 18

2.7 Overview of existing techniques . 20

2.7.1 Non-Interactive approaches . 21

2.7.2 Interactive approaches . 22

2.7.3 Full solution . 26

2.7.4 Current unsolved problems . 26

2.8 Summary . 28

vii

viii Contents

3 Technical Background 29
3.1 Rendering virtual objects and scenes . 29

3.1.1 3D-object descriptions . 31
3.2 Hardware design . 32

3.2.1 Data throughput . 35
3.3 Programming APIs . 36
3.4 Shaders . 37
3.5 Textures . 39

3.5.1 Texturing basics . 40
3.5.2 Mip-mapping and (bi-)linear interpolation 41
3.5.3 Perspective effects . 43

3.6 Creating textures on the fly . 44
3.6.1 Current unsolved problems . 45

3.7 Summary . 46

4 Forward Mapping 47
4.1 Basic idea . 48

4.1.1 Problem description . 49
4.2 Naive approaches . 50
4.3 Our approach . 50
4.4 Implementation details . 52
4.5 Seams . 53
4.6 Solving the seam-problem . 54

4.6.1 Subdividing M . 56
4.6.2 Computational cost . 56

4.7 Summary . 58

5 Mesh Painting 59
5.1 Introduction . 59
5.2 The algorithm . 60

5.2.1 Overview . 62
5.2.2 Initialization . 63
5.2.3 Painting . 64
5.2.4 Seams . 64
5.2.5 Virtual texture coordinates . 67

5.3 Summary . 69

6 Indirect Illumination 71
6.1 Basic idea . 72
6.2 Coarse light distribution . 73

6.2.1 Scene discretization . 74
6.2.2 Initial direct light distribution . 74

ix Contents

6.2.3 Iterative light distribution . 76
6.3 Filling the light atlas . 78

6.3.1 Final shooting step . 78
6.3.2 Handling seams and shadow edges 79
6.3.3 Creating soft shadows . 82

6.4 Accelerating the computation for small changes 85
6.5 Results . 86

6.5.1 Quality . 89
6.5.2 Timings . 90
6.5.3 Recomputation timings . 93
6.5.4 Area lights . 95

6.6 Summary . 96

7 Conclusion 99
7.1 Future work . 101

A Notations and mappings 103

Bibliography 105

Index 111

x Contents

Figures

1.1 Current computer graphics . 2

2.1 Lightspectrum . 8
2.2 Direct vs. indirect illumination . 11
2.3 Incoming light angle . 12
2.4 Material roughness . 13
2.5 Light reflection . 13
2.6 Phong-Shading-Components . 14

3.1 Raytracing vs. rasterization . 30
3.2 Fixed function pipeline . 33
3.3 Hardware Design . 34
3.4 Programmable pipeline . 35
3.5 OpenGL and DirectX timeline . 37
3.6 OpenGL-Pipeline . 38
3.7 Texturing example . 40
3.8 Lightmap example . 41
3.9 Texture composition example . 42
3.10 Mip-mapping and linear filtering . 43
3.11 Perspective effects on textures . 43

4.1 Projection goal . 48
4.2 Forward-Mapping . 49
4.3 Projection example . 51
4.4 Seam example . 53
4.5 Projecting over seams . 54
4.6 No texture coordinate sampling . 55
4.7 Subdivision scheme . 55
4.8 Tessellation example . 56

5.1 Mesh painting process . 61
5.2 Resulting texture atlas . 61

xi

xii Figures

5.3 Brush examples . 62
5.4 Overview of the mesh painting algorithm 66
5.5 Importance of VTC-precision . 67
5.6 VTC computation . 68
5.7 Painted mesh example . 70
5.8 Texture atlas for the mesh in Figure 5.7 . 70

6.1 VPL and sample visualization . 75
6.2 Visualization of light distribution on VPLs 77
6.3 Radiosity projection process . 79
6.4 Seam repair process . 80
6.5 Problem cases . 81
6.6 Tessellation quality comparrison . 83
6.7 Improvement through soft shadows . 83
6.8 Importance of per-pixel shadow computation 84
6.9 Detailed shadow example . 84
6.10 Different number of light bounces . 86
6.11 Example of slight scene changes . 86
6.12 Quality comparison with LuxRender . 87
6.13 Light distribution for the Cornell box with different numbers of VPLs . . 88
6.14 Comparison with texturing applied . 88
6.15 Correctness comparison with LuxRender . 88
6.16 Indirect illumination examples . 89
6.17 Requirements for smooth results . 91
6.18 Recomputation configuration . 92
6.19 Light recomputation configuration . 93
6.20 Single light changed . 94
6.21 Area light effect, created with our technique using 100 VPLs in 0.6 seconds 96

Tables

6.1 Timings . 90
6.2 Timings for recomputation . 94

xiii

xiv Tables

Chapter 1

Introduction

Computer generated images for movies are nowadays often indistinguishable from real
footage. Since there is no time limit for the computation of these scenes, everything is
computed with very high precision to model reality as best as possible. Here the main
focus is on following light rays or photons into the scene, which makes these techniques
slow and computationally expensive.

But also interactive computer graphics has advanced to the point where it is possible
to render scenes, objects, plants and characters in a way that makes the result hard to
distinguish from a photography. All of the effects necessary to produce these results
– e.g. dynamic lighting, subsurface and atmospheric scattering, depth of field, lens
flares, high dynamic range lighting and more – are computed in real-time and react
to current lighting conditions, material properties and other dynamic effects. Even
dynamic reflections on arbitrary rough surfaces can be handled convincingly. Figure 1.1
shows examples from current computer games, rendered in realtime using the above-
mentioned effects.

The techniques used in modern computer games include high detail textures giving
materials a very natural look, tone mapping that helps to make the colors and con-
trast more realistic, and image space reflections. Shaders allow each material to have
entirely different visual appearance and can be used to approximate physical effects
like subsurface scattering, diffuse and specular lighting effects for different BRDFs and
so on. Normal mapping makes low-tessellated surfaces look like they have different
roughness or impurities on them. Due to some simplifications of the physically-based
formulas and the enormous parallel computational power of GPUs all of this can be
handled in realtime and yet it gives incredibly realistic results as Figure 1.1 demon-
strates.

As long as the virtual scene is rendered in the same style making every piece fit into
the whole image, the user is inclined to take it for real. This is an important factor that
makes it different to CG-effects in movies, where the rendered object needs to fit into the
environment captured by the camera, because otherwise the viewer would immediately

1

2

Figure 1.1. The left image shows a realistic looking scene with atmospheric light scatter-
ing from the game Crysis 3 rendered in realtime. The middle image shows screen-space
reflections, while the last image shows a scene from Call of Duty: Advanced Warfare,
demonstrating the realism of scanned human actors rendered in realtime with depth
of field.

and intuitively spot the rendered objects which would destroy the immersion that a
movie is aiming at.

Although all the above-mentioned techniques have been optimized for high speed
computation as well as best possible looks, indirect illumination is still in a very simplis-
tic state. In most cases it is modelled by artists or precomputed and the result is then
used in the dynamic rendering process. This holds even for the Unreal Development
Kit [16], which is considered the most advanced engine currently available. Although
that gives good results, it restricts the rendering to rather static lighting conditions,
while dynamic lights do not affect the scene ambience. Other approaches simplify the
computation, allowing it to be computed at interactive rates, but the light distribution
is very restricted. This approach becomes more and more popular recently and gives
good results in generating a certain ambient, but since it is strictly bound in the num-
ber of possible light bounces, it does not correctly illuminate scenes with complicated
structures lit by only a few light sources. So if the user, for example, opens a door sep-
arating a brightly lit room from a completely dark corridor, the direct light – if any is
directed towards the door – would shine into the corridor and the door frames would
create shadows. But the surrounding of the door would still stay entirely dark. The
effect is even worse when the light inside the room is not directed towards the door.
Then the corridor would stay entirely unchanged no matter if the door is opened or
closed.

Therefore we propose a novel idea for computing indirect illumination that can be
computed very fast and provides very convincing results. It uses a forward mapping
approach that we introduce to create a smooth high-resolution light atlas for the scene.

The light atlas allows us to use this results as long as the lighting computation in
the scene does not change, resulting in very high rendering times. It allows for a fast
recomputation of the lighting in case of only a few lights moving inside the scene.

Our proposed technique aims mainly at static scenes with mostly static light sources,
yet allowing for moving objects and light sources, too. The technique is also highly
scalable allowing to replace the real-time computation of the results by a more time
consuming computation and therefore more precise result.

3 1.1 Research questions

1.1 Research questions

The main goal of this thesis is to create an algorithm that can quickly and precisely
compute the indirect illumination solution for a scene and store the results smoothly
and visually appealing. To achieve this goal, we have to answer two main questions
first:

RQ1: How can indirect illumination be computed efficiently and flexible on the GPU?

RQ2: How can the computation be simplified and speeded up without loss of physical
correctness?

There exist many techniques for handling these questions. Most of them fall into
the categories of being either very fast and improving the overall visual quality of the
computed scene but being not even close to the correct solution, while other methods
compute the full physically-based solution at the cost of hours of computation time.
Now we need to answer the question:

RQ3: How can the data be stored efficiently for visualizing the scene of interest?

To answer this question, I decided to store the lighting solution within the texture
atlas of the scene for which we compute the indirect illumination. This lightmap ap-
proach is already very established, but here we present a physically correct and fast
method to create it. To that end we need to figure out:

RQ4: How to efficiently project data from the scene into its texture atlas?

While texturing is standard nowadays for all kinds of graphical applications, the
mapping of the object into the texture atlas is usually computed once and the texture
is created accordingly. When projecting data from an arbitrary view onto an object, it
will most likely overlap multiple seams. A seam is created by a mesh that is continuous
in 3D, but separated into multiple patches within the texture atlas. That gives rise to
the question:

RQ5: How can we project contiguously from a continuous mesh surface into the differ-
ent related parts of the texture atlas?

When all the above questions are answered we need to ask the final questions:

RQ6: How to compute the illumination and then project the result into the texture
atlas?

RQ7: How to create smooth solution with soft shadows?

4 1.2 Contributions

1.2 Contributions

We present a novel technique that creates visually appealing indirect illumination,
which is flexible enough to switch between high quality results that take a couple of
seconds to compute but can be compared with state-of-the-art results and very fast pre-
views that can be computed in almost realtime. Despite the very low quality of these
previews, they still give a very good approximation of the overall lighting condition
within a scene, thus providing artists with fast feedback during the light editing phase.
The contributions in more detail are:

• We present an approach to project data from the surface of a given scene into
its texture atlas. The technique is very flexible and can be adapted and opti-
mized towards different goals. It is easy to implement into an existing render-
ing engine and takes full advantage of the GPU’s extreme parallel computational
power, making it extremely fast. In contrast to most other techniques, our so-
lution is not fragment-bound and works efficiently for multiple high-resolution
texture atlases.

• To implement the projection technique, the main obstacle to overcome is the
presence of seams on the 3D-mesh and to correctly project the data over them.
In this thesis we present three approaches to handle that without much overhead
in both memory and computational time.

• We present a technique for painting onto a 3D-mesh as a proof of concept of the
above mentioned projection technique.

• Using the above technique in combination with a many-light approach we present
a method that can efficiently compute and store indirect illumination for a given
scene at interactive rates. It is almost entirely implemented on the GPU to guar-
antee the short computational time and computes enough light bounces to come
very close to the real solution for that scene.

• The method can also quickly recompute the entire solution for a scene in case a
single light changes. Since our technique is deterministic in contrast to stochasti-
cal methods like photonmapping, we can simply undo the effect of a single light
and then recompute it with its new configuration. This restricts the computa-
tion to only those parts of the scene, where the change in the lighting situation
actually takes effect.

• The technique is very flexible and can compute physically realistic images with
smooth shadows in seconds as well as previews in realtime. While these previews
have harder shadows and do not look as visually appealing as the results created
by the longer processing, the physical correctness is preserved. This makes the
preview optimal for editing the lighting situation in virtual scenes.

5 1.3 Outline of the thesis

1.3 Outline of the thesis

We start by giving an overview of the general physics of light in Chapter 2. This chapter
also descibes the difference between the computation of direct and indirect illumination
in virtual scenes. We end that chapter with an overview of the state of the art in indirect
illumination computation.

We begin Chapter 3 by describing the history of the graphics hardware as well as the
APIs that allow for programming them. Based on that we show how this led to different
techniques that allow drawing onto or projecting data into the texture atlas of a virtual
object and how these techniques became much more effective with the advancements
in the underlying hardware.

In Chapter 4 we describe the idea of forward mapping that allows us to project data
from screen space into the parts of an objects texture atlas visible on the screen. This
mapping is not fragment-bound since it draws only into the necessary parts of the –
possibly many different – texture atlases. This allows for fast computation of results
even for multiple high-resolution texture atlases.

In Chapter 5 we present an application that uses forward mapping to allow artists
to view a scene or an object on screen and then paint directly into the texture atlases
of this object or scene.

In Chapter 6 we introduce a new approach to compute indirect illumination within
a scene that strongly depends on the forward mapping to create and store the final
results. We explain our multi-light approach for distributing the light and how we
adapted the forward-mapping approach to suit the needs of this application.

We conclude the thesis with Chapter 7 by putting the current work into the context
of the field and by describing how the research questions are answered to achieve the
presented work. We furthermore give an outlook on how the work can be improved
and optimized further.

1.4 Publications

The work presented here led to two publications. The first paper is a proof of concept for
the efficiency of the forward mapping approach, using mesh painting as a demonstra-
tion. The second paper describes our approach to the problem of efficiently computing
and storing indirect illumination results.

• Chapter 5 is based on the forward mapping technique that was presented at the
VMV 2010 conference and published in the proceedings Vision, Modeling & Visu-
alization [47] with the title “Hardware Accelerated 3D Mesh Painting”.

• Chapter 6 is based on the work that was published in the journal Computers and
Graphics [48] with the title “Creating Light Atlases with Multi-bounce Indirect
Illumination”.

6 1.4 Publications

Chapter 2

Basics of Light and Lighting

In this chapter we give an overview of the physics of light and its interaction with objects
in Section 2.1 and the perception of light and color in Section 2.2. With these basics
we then describe to mathematical descriptions that capture this light interaction and
can be used to model lighting in virtual scenes in Section 2.3.

In Section 2.4 we describe different models for direct lighting and then go into de-
tails about indirect illumination and why these two models need to be separated in
Section 2.5. In Section 2.6 we describe the current state of the art in computing global
lighting conditions with close to realtime frame rates and also describe techniques aim-
ing for perfect results, where the computational time is irrelevant.

2.1 Physical properties of light

Let us start by describing how light interacts with surfaces and capturing devices as well
as the human eye. The lighting condition in an arbitrary surrounding is given by the
photons that are created and emitted from any direct light source and are then reflected
and refracted from any surface – and partially even by atmospheric effects like fog –
in the scene. What we perceive visually is the combination of all of these interactions
with the photons that end up in our eye.

With our eyes or any capturing device like e.g. a camera we see the world as a
sum of the photons, that are ultimately reflected into the visual sensor. There the final
image is created as a measurement of the number of photons giving the brightness in
every perceived point and the wavelength giving the color of that point.

The interaction of the photons with the sensor are described in Section 2.2. The
brightness of a point on an object or light source is given by the number of photons
that arrive at the sensor from this given point (for more details see Section 2.2.1) and
is measured in Lumen [Lm].

The color of an object is given by the wavelength of the photons being reflected
by this objects surface properties. Each photon is an electro-magnetic wave with par-

7

8 2.2 Perception of light

Figure 2.1. The lightspectrum going from blue on the left side (short wavelength) to
red on the right side (long wavelength). Note that the visible part is just a small fraction
of the continuous electro-magnetic spectrum.1

ticle properties moving with the speed of light c in a certain direction with a given
wavelength λ related to the photon’s energy E through E = hc

λ , where h is the Planck
constant. The photon’s wavelength is what we perceive as color. The continuous color-
spectrum is depicted in Figure 2.1.

The surface of an object might reflect photons with one wavelength while absorbing
photons with another one. The wavelength of the photons that get reflected, determine
the color of the object (more details about that can be found in Section 2.2 and the
mathematical model that describes the light interaction in Section 2.3).

In the absence of extraordinary strong gravitational forces, a photon will travel on
a ray from its point of origin, until it interacts with the surface of an object, at which
point the direction will change – that is, if the photon does not get absorbed – and it
will travel along the new ray.

2.2 Perception of light

Human eyes perceive light in two different ways. In dark environments the eyes rely on
the rod cells, that react to light around 500 nm wavelength (blue-green). Since all rod
cells react to this same wavelength, they do not allow us to differentiate colors, but due
to the high concentration of Rhodopsin, they enable us to see in dark environments,
since they are around 1000 times more sensitive than the cone cells, that allow us to
perceive colors.

1Image taken from: https://en.wikipedia.org/wiki/Light/media/File:EM_spectrum.svg

https://en.wikipedia.org/wiki/Light/media/File:EM_spectrum.svg

9 2.2 Perception of light

For bright environments the eye possesses three different types of cone cells, one
type for each of the colors red (500-700 nm), green(450-630 nm) and blue (400-500
nm). They use slightly different variations of the molecule Photopsin, that reacts to
different wavelengths. Incoming photons of a certain wavelength therefore create a re-
action in the corresponding cells. The signal created by the three cone cells is then com-
bined by other cells through the step-wise adaptive blending r + g + ((r + b) + (g + b))
into a single color signal that is send to the brain together with a signal encoding the
overall brightness.

In monitors the same composition method is used to create the different colors on
displays. Each pixel has a mask for the three colors red, green and blue which are used
to dim the corresponding portion of the white background illumination. Each mask
is controlled by a byte that sets the amount of light that can pass through that color-
channel with 1 meaning all light can pass and 0 that meaning the mask absorbs all the
amount of the specific color. This way we end up having a 24-bit color range, leading to
224 = 16777216 different colors (Note that it also contains the same color in different
brightness shades).

Since the number of photons define the brightness, the mask does not only control
the color itself, but also the brightness that is perceived, ranging from the brightness of
the background illumination to the amount that can still pass through the color-mask
set to full absorption. In the optimal case this would be completely black, meaning no
photons passed, but due to technical restrictions this value will be higher than that.

2.2.1 High-Dynamic-Range

As mentioned before, the brightness is measured in Lumen, where 1 Lm at a wavelength
of 555 nm is equivalent to a photon rate of 4.11× 1015 photons per second.

Each photon creates a single chemical reaction, triggering a signal to the brain, and
the signal strength is given by the amount of reactions within a given time. Let aside
the color-perception described in Section 2.2 and looking at just one arbitrary receptor-
cell, the brightness that can be perceived is given by the maximum number of signals
that the cell can create in a given time-interval for a single measurement.

Since the brightness varies strongly between bright daylight and a night with noth-
ing but starlight, the human eye adapts to the current brightness level through changes
in the pupil dilation – adapting the number of photons entering the eye – and by chang-
ing the sensitivity of the photo-receptor-cells – changing the signal strength from the
retina to the brain.

Since the human eye is additionally made up of rod and cone cells that operate at
different brightness-levels, the overall visual range is further increased. This extreme
range is called High-Dynamic-Range(HDR) in computer graphics due to the strong con-
trast of the brightness range of the monitor (1:1000) which is now usually labelled as
being Low-Dynamic-Range.

10 2.3 Lighting in virtual environments

Currently the problem is solved by compressing the brightness range of images with
a tone mapping. This technique applies non-linear curves on the input colors to compute
output colors that match the contrast and luminosity as best as possible over the whole
image.

With HDR-monitors becoming widely available, the correct computation of indirect
lighting that illuminates every part of the environment – and be the quantity ever so
small – becomes more and more important. In contrast to the Low-Dynamic-Range
screens, where an approximation of the brightness is enough to give a feeling of realism,
since the image is compressed to 8 bit per color channel with tone-mapping, with HDR-
screens the brightness needs to be computed with high fidelity to achieve the sense of
looking at a realistic scene.

2.3 Lighting in virtual environments

In computer graphics we deal with virtual scenes or objects mainly given as triangular
meshes. Other representations like point-clouds and implicit functions describing the
surface have also been experimented with, but triangle meshes proofed to be the most
efficient (see Chapter 3). To give these scenes and objects a natural look when being
rendered, they need to be correctly lit, since their interaction with light is what we
perceive (see Section 2.2).

To achieve this, we need to understand the physical basis of lighting to compute
these effects in the virtual environments.

As mentioned before, the brightness is given by the number of photons. These
photons originate from a light source (direct light), but might also have bounced off of
surfaces in the scene (indirect illumination, more about this in Section 2.5). Figure 2.2
shows a comparison. The further away we get from any light source (direct or indirect),
the fewer photons we register on the same area. This number falls off with a factor of
1
r2 , where r is the distance to the object, since the photons are distributed on the surface
of the sphere with the radius r, which grows by r2.

Now that we have covered the basics of the light origin, we need to look at the
interaction of the photons with objects. Note that the following three types of inter-
actions describe what can happen to a single photon. In reality one surface can – and
most likely will – show different types of interaction. That is, each photon interacts in
a single random way with the surface, but the probability of the exact interaction of the
photon is given per every material. Furthermore, these probability distribution differs
for every wavelength, leading to this materials reflection coefficients ρ, that describe
the probability distribution for each color:

• Absorption: its energy is transformed into heat and no further interactions can
occur with this photon.

• Translucency: the photon passes right through the object, changing its trajectory
due to the refraction index of the material.

11 2.3 Lighting in virtual environments

Figure 2.2. Difference between direct light (left) and indirect illumination (middle).
The final solution is composed of both parts (right).2

• Reflections: Materials reflect light in different directions with different inten-
sities due to microscopic inter-reflections on rough surfaces and other effects.
Each single reflection follows the law of reflection (specular), but for rough or
weakly translucent surfaces a number of inter-reflections occur leading to diffuse
reflections or subsurface scattering respectively.

– Specular: the photon is reflected along the reflection vector. Details about
this can be found in Section 2.3.2.

– Diffuse: the photon is reflected into a random direction away from the
surface. Details about this are described in Section 2.3.1.

– Subsurface-Scattering: the photon enters the material and gets reflected
many times before leaving the surface in a random direction close to the
entry point.

The interactions that make up most parts for most materials are the diffuse and
specular reflection as well as the absorption of the incoming light. Therefore we look
into this more closely now. We will start with the diffusion term in Section 2.3.1 and
then look into the specular reflection in Section 2.3.2.

2.3.1 Diffuse reflection

The diffuse reflection is created by light being reflected in the top layer of a surface
one or more times. Due to the possibly high amount of inter-reflections, the reflected
light can be assumed to be reflected equally in all directions away from the surface,
although the exact BRDF might be slightly different. To determine the brightness of a
fully diffuse surface it is therefore enough to compute the incoming radiosity, since the
reflected light is in all directions a certain fraction of this value.

We describe the diffusion term now by looking at an exemplary interaction of light
with a plane surface. First we look at a light ray R with a certain width w. The amount
n of photons in the cross-sectional area of this ray is given by the brightness of the light
source from which it originates (see Figure 2.3). For simplicity we ignore the reflection

2Image taken from: https://docs.unrealengine.com/latest/INT/Engine/Rendering/

LightingAndShadows/Lightmass/

https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/Lightmass/
https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/Lightmass/

12 2.3 Lighting in virtual environments

coefficient of the plane material for now and assume that all photons are reflected
diffuse (ρs = 0 and ρd = 1). The perceived brightness of a surface area A is then given
as a fraction of the amount of photons that impact in A.

width

N N

α

width

α

.

A

Figure 2.3. When the light shines perpendicular onto a surface, the lit area has the
same size of the incident light ray (left). If the light hits the surface with an angle α
bigger then zero, the lit area becomes bigger then the with of the light ray. Therefore
the amount of light energy is distributed over a bigger area which makes each point
within this area darker, the bigger the angle α gets.

If the light ray intersects the plane straight from the top, the illuminated area A
has exactly the width w as seen on the left side of Figure 2.3. Therefore all n photons
contained in the cross-section of R impact the area A. If the incident angle α between
the normal N and the light ray R is bigger then 0°, the area will be bigger then w. Using
trigonometry (image on the right side of Figure 2.3), we see that we have a 90° triangle
given by the light ray R. Since the sum of all angles in a triangle sum up to 180° and
we have a 90° angle between R and w, we know that α+ β = 90°. The angle α occurs
also in the triangle where w is adjacent to α.

The lit area A′ is now given as w
cos(α) since it is the hypotenuse of the triangle with

w adjacent to it. Let the number of photons in the cross-section of R be n which leads
to a photon density of n

w . With R having an angle of α with the normal, the photon
density now becomes n

w
cos(α)

= n cos(α) 1
w . Since the width is infinitesimally small and

the number n of photons is set for the light source, we see that the amount of photons
hitting the surface can be computed by multiplying the brightness of the light source
with the cosine of the angle between the normal N of the surface and the light-ray R.

2.3.2 Specular reflection

Perfect specular reflection describes the effect that is given by a mirror. A light ray R hits
a surface with a certain incoming angle γ measured between R and the surface normal
N and are reflected of the surface in the direction with the same angle to the normal

13 2.3 Lighting in virtual environments

in the other direction within the plane created by the vectors R and N (see Figure 2.5
left).

The explanation for that is the electro-magnetic-wave-character of light. When the
light wave hits the object, the Huygens-principal creates a wave-front with the same
angle to the surface, as the incoming angle but in the opposite direction.

Figure 2.4. Here different values for the roughness of a material are shown. With grow-
ing roughness, the reflection coefficients change from high specular and low diffuse to
low specular and high diffuse (from left to right).3

The reflection vector can be computed as R′ = 2〈N , R〉N −R. An approximation for
that is to use the half-vector as suggested by Blinn [3]; it uses the fact, that R

||R|| +
R′

||R′||
will create a vector that is completely aligned with N . If the vector C from the point
to the camera is equal to R′, the reflection is perfect and the camera will receive the
full reflected intensity. If the vector from the point to the camera deviates, the intensity
should decrease. It can be computed as 〈N , (R+ C)〉ρs4 as the brightness given by the
specular reflection. This is 1 for C = R′, while the value quickly decreases the further
C deviates from R′. Computing this is faster and gives results very close to using the
ones computed with the true reflection vector. Figure 2.4 shows examples of different
values for the specularity of an object.

N
N

α α

Figure 2.5. The incident angle is equal to the reflected angle for ideal specular reflec-
tion (left). For different materials the light flux is highest around the reflection vector
and falls off quickly with increasing divergence from it (lenght of blue arrows on the
right).

3Image taken from: https://docs.unrealengine.com/latest/INT/Engine/Rendering/

Materials/PhysicallyBased/

https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/PhysicallyBased/
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/PhysicallyBased/

14 2.4 Direct illumination

2.4 Direct illumination

For efficient rendering we differentiate between direct lighting and indirect illumina-
tion (see Section 2.5) which is visualized in Figure 2.2. Direct lighting – also refereed to
as local illumination – describes the effects created by light being emitted from a direct
light source, hitting at most one surface and then being reflected directly into the cam-
era where they contribute to the color and intensity of a single pixel. In the beginning of
computer graphics, objects were not illuminated at all and were simply assigned a fixed
color. Then simplified lighting models were created, that approximated realistic light-
ing effects fast enough to be computed. The first of these techniques was flat-shading,
where the color of a triangle was determined by the cosine of the angle between its
normal and the light-ray. In 1971 Henri Gouraud [18] improved this by computing the
lighting at every vertex of the triangle and interpolate the resulting colors over the tri-
angles surface. Since this still created artefact when dealing with specular reflections,
Bui Tuong Phong [41] proposed in 1975 to interpolate the normals across the triangles
surface and then compute the lighting per visible pixel with this normals.

These and other techniques are based on the Phong lighting model [41], that takes
into account the self-emitted light of an object, approximates the indirect illumination
by a simple constant color (omnidirectional) and then sums up the effects of all direct
lights in the scene. This is done by splitting them into a diffuse and a specular com-
ponent. It furthermore takes the materials reflection coefficients into account, which
describe how much of the incoming light is absorbed. The whole computation as well
as the reflection coefficients are usually given in the RGB-color-space (see Section 2.2).

Figure 2.6. The different components for Phong-shaded objects. In this shading, the
global lighting situation is simplified to be a constant color.4

Since all lighting computations are based on this equation we describe it in detail
here:

R= E +ρaA+
L
∑

i=0

Ii(ρd Di +ρsSi)V (i) (2.1)

4Image taken from: https://en.wikipedia.org/wiki/Phong_shading/media/File:Phong_

components_version_4.png

https://en.wikipedia.org/wiki/Phong_shading/media/File:Phong_components_version_4.png
https://en.wikipedia.org/wiki/Phong_shading/media/File:Phong_components_version_4.png

15 2.5 Indirect illumination

where R is the color of the current pixel, given as the sum of the self-emitted light
E, the overall ambient color A and the sum over all L light sources with intensities Ii

interacting with this point. The interaction between the light and the surface itself is
separated into a diffuse interaction Di describing the reflection of the light equally in all
directions (see Section 2.3.1) and a specular term Si that describes the light reflection
according to the law of reflection (see Section 2.3.2).

The amount of light reflected from the surface point is a property of the material at
that position and given by the reflection coefficients ρ which are material parameters
given in the RGB-color-model describing which light waves are absorbed and which get
reflected. The parameters are usually given for ambient ρa and diffuse ρd reflections.
The specular reflection coefficient ρs should have the same values across the colors for
dielectric materials since they reflect all wavelength equally, while they are material
color dependent for other materials such as metals.

These terms are evaluated as

Di = 〈Li , N〉 (2.2)

where Li is the normalized vector from the point of interaction to the light source i and
N is the normalized normal at the point of interaction. The specular term is evaluated
as

Si = (〈2〈Li , N〉N − Li , C〉)s (2.3)

with C being the vector from the point of intersection towards the camera. The ex-
ponent s is a surface property describing the shininess of the surface. As mentioned
in Section 2.3.2 this can be simplified by the use of the half vector leading to similar
results. An example that separates the results of the different terms is visualized in
Figure 2.6.

The function V (l, i) describes the visibility of point i from the light source l and de-
termines if the point is shadowed (V (l, i) = 1) or lit (V (l, i) = 0). In modern interactive
visualizers this is determined through shadow mapping, which is hardware accelerated
on all modern 3D-accelerators. Another technique that was quite popular for a while
was to use the stencil-test for shadow-volumes, but shadow mapping has proven to be
superior and is nowadays the standard.

2.5 Indirect illumination

Indirect illumination in contrast to local lighting as described in Section 2.4 describes
the illumination created by light that was reflected off of at least two surfaces. When
light hits a surface, it can be refracted leaving the object at another point than where
it entered the object. Another possibility is that the energy is absorbed by the material
it hit; in this case the photon’s energy is transformed into heat. The third case is, that
the light bounces off the surface either in a random direction (diffuse reflection) or it
is reflected (specular).

16 2.5 Indirect illumination

In real world materials all of the above might happen at once. A good example
for that are thin leafs on a tree. They let a fraction of the light through (refraction),
absorb another part (heat and photo-synthesis) and reflect the rest both diffusely and
specularly.

Even black materials reflect at least a small fraction of the incoming light which
makes indirect illumination hard to handle. This is due to the fact, that light bounces off
of every surface, and though the intensity might have been reduced by a huge amount
due to the reflection-coefficient of the surface material, it will now serve as a weak light
source itself, illuminating objects in its vicinity.

This effect occurs wherever light hits a surface, and every photon is reflected until
it is absorbed. To compute the global lighting means therefore to follow all possible
light paths ad infinitum in contrast to direct illumination, where we just compute the
lighting situation for every visible point on the screen.

In Section 2.5.1 we describe the history and basic idea of global illumination, clas-
sify different approaches to that problem in Section 2.6 and then describe state-of-the-
art ideas in Section 2.7.

2.5.1 Basics for implementation

When the importance of indirect illumination in rendered scenes became obvious, the
first approach of computing it was through the radiosity equation formulated by [5].
The authors’ radiosity method describes an energy equilibrium (see Eq. (2.6)) within
a closed surface assuming that all emissions and reflections are ideal diffuse. The au-
thors further partition the whole scene into a finite number of n small patches. These
patches are associated with a position x i – the center of patch i – and the normal of this
point. With this assumption and simplification they reformulate the rendering equation
introduced by [27] to the following:

Bi = Ei + pi

n
∑

j=0

B j Fi j (2.4)

where Bi is the radiosity of the current patch i (the amount of light leaving), Ei is its
self emission, pi is the percentage of light that gets reflected from patch i and the sum
over all the n patches that make up the environment takes into account the amount of
light reaching the current patch through light that is reflected or emitted from other
patches in the scene. Therefore B j describes the amount of light that leaves the patch j
and the form-factor Fi j describes the geometric relationship between the patches i and
j and therefore the percentage of the light leaving patch j and reaching patch i. The
Fi j for patches with areas Ai and A j is defined as:

Fi j =
1
Ai

cosθi cosθ j

πr2
Vi j (2.5)

17 2.5 Indirect illumination

were the angles θi and θ j in the cosine terms describe the angle between the direct
line between the two patches i and j and the corresponding normal vector for these
patches, and r is the distance between the patch i and patch j.

In case of partial occlusion between two patches the authors suggest to subdivide
them to get a better result. The authors also mention that for a finite area the form-
factor is equivalent to the fraction of a circle covered by the projection of the area first
onto the hemisphere and then orthographically further down onto the circle that is the
basis of this hemisphere. By subdividing the hemisphere into smaller patches itself and
computing the projection of other patches on them and only considering the closest
patch that gets projected to each element, it also takes care of occlusion. The solution
found for these small partitions of the hemisphere – called delta form-factors by the
authors – for one distant patch can then be summed up to get the form-factor between
the current patch and this distant one.

With these form-factors and the initial emission values E = (E1, . . . , En) for all
patches the authors solve the following equation system to receive the final radiosity
B = (B1, . . . , Bn) for all the patches in the scene,

1− p1F11 −p1F12 · · · −p1F1n

−p2F21 1− p2F22 · · · −p2F2n
...

...
. . .

...
−pnFn1 −pnFn2 · · · 1− pnFnn

B1

B2
...

Bn

=

E1

E2
...

En

(2.6)

The authors use scenes made up of polygons that are also used as the patches. After
they have solved the linear equation system and get the radiosity of each patch, they
render the scene using bilinear interpolation on the vertices to get a color out of the
polygons/patches surrounding this vertex. This way the resulting image looks smooth,
since there are no sudden jumps in color or brightness. We described this technique in
much detail, since it introduces many tricks that are standard for computing radiosity
nowadays.

The idea of solving the equation system to compute the final radiance for the scene
is the basis for modern shooting or gathering techniques. These techniques take ad-
vantage of the fact that in the first step of the algorithm only the light sources possess
energy that needs to be projected into the scene, and even in the next few steps there
are some elements that do not contribute to the light distribution because at this stage
they still did not receive any light. The first approach to use this fact was only comput-
ing the lines in the matrix that have a value greater then zero on the right side. Later,
shooting and gathering approaches were introduced and even ported onto the graph-
ics card, as described in the work of [7], for example. Their technique stores for all
patches in the scene the energy that they distribute in a sorted list where elements with
the highest energy come first. Then the elements shoot their energy into the scene in
the given order and are set to have zero energy afterwards. This process permanently
introduces new elements into the list and updates elements that are already stored,

18 2.6 Classification of indirect illumination techniques

since their energy level increases. This way the whole list is processed until the next
element in the list has a radiosity that lies under a certain threshold, which terminates
the computation, since the energy is distributed well enough.

Since the field of indirect illumination is large and diverse, we start this partitioning
the field into smaller sub-fields (e.g. interactive vs. non-interactive) in Section 2.6. This
is important, since the computational cost of indirect illumination is very high, and one
needs to choose between perfect results and real-time computation. For light-editing
a trade-off between these two might also be desirable. The comparison of existing
techniques only makes sense within one of these classes. We then give an overview of
the techniques that are state of the art in each field in Section 2.7, concentrating on
the field of this work being close to real-time computation of the indirect illumination
solution.

2.6 Classification of indirect illumination techniques

Since the beginning of indirect illumination computation, different approaches with
deviating aims were developed for its computation, so we first distinguish between
these varying techniques and create clusters. The first approaches date back into the
1970ies and since then one goal was to make the computation of indirect illumination
ever more precise. As computers got faster and the results for diffuse surfaces led to
good results, the focus shifted from making it more and more realistic to making indirect
illumination computation also faster, since achieving interactive frame rates became
a realistic goal. When the first 3D-accelerators were introduced in 1996 and newer
versions supported hardware-accelerated Transforming & Lighting in 1999, researchers
focused on this goal. The research was now focused on the different path of either
increasing the realism of the results by taking into account more and more physical
interactions of materials with light into account while others the quality and instead
tried to compute visually appealing but not physically correct results in real-time.

If we take a look at the varying techniques that exist today it is convenient to sep-
arate them into different classes. There are techniques that compute indirect illumina-
tion almost in real-time – something around 30 frames per second (FPS). These ideas
make strong simplifications or compute only one or two light bounces to achieve this.
Within this class of techniques another criterion for further distinguishing is the num-
ber of bounces the algorithms can compute. Another class of techniques do not aim
for high framerates and instead aim at increasing the realism of the computed images.
These techniques have to compute all light bounces – meaning they have to follow the
light until its energy falls below a certain threshold.

To simplify the distinction, we concentrate on the class of real-time algorithms.
Most compute only a single bounce of light and the reason for this is twofold: On
the one hand, it might be sufficient in small and simple scenes to just compute one
bounce while computing more would just be a waste of computing time. On the other

19 2.6 Classification of indirect illumination techniques

hand, it is much faster to compute only one inter-reflection, since this is the most time
consuming part of indirect lighting computation after all (even if pre-computed light
transport functions are available).

So for simplicity let’s say we have the following classes:

• Interactive Frame Rates

– One bounce reflections

– Multi bounce reflections

• Non-Interactive Frame Rates

Now that we have partitioned the existing algorithms into these groups, we can also
distinguish between the following main ideas of how to scatter the light:

• Computationally

– Discretizing the scene (Radiosity)

– Many-light approaches

• Statistically

– Ray-tracing

– Photon-mapping

While the computational method via the form-factors is very time consuming, it is also
very precise. It partitions the scene until the discrete parts (patches) are small enough
to give good results. Modern methods also partition the scene depending on the al-
ready computed results and their quality, to only improve the computed results where
necessary, speeding up the computation time considerably. But still, doing the visibility
test between each pair of surfaces is very expensive.

The other idea is to use the Graphics Processing Unit (GPU) to handle this visibility
test via rendering the scene from the current light source’s point of view. This can be
done very efficiently, because it uses the graphics card for its main purpose and the
extreme parallelism is optimally used. But then other problems arise, like for example
getting all necessary data for a distant surface that is interacting with the current one.
One reason for this is that the graphics card does not allow random access to its memory.

Another idea using the GPU is to create new light sources and use the shadow
mapping algorithm implemented in modern graphics cards to do this computation as if
it was done for a direct light source. This gives good results but is still quite expensive.
While both techniques can be used for interactive computation, it is mainly the latter
that is actually used nowadays.

The other two techniques – ray-tracing and photon-mapping – are mainly used for
non-interactive computation of indirect lighting, since they are very precise but also

20 2.7 Overview of existing techniques

computationally expensive. Both methods do not calculate the lighting distribution
based entirely on a physical model but instead use a stochastic approach for scattering
light from every point that has gathered light in a previous step.

Another differentiation that is needed is concerned with the material properties
that are supported. Most techniques do not allow for glossy materials, since the ap-
pearance of the light also depends on the current viewing direction. Other techniques
do compute one bounce (the last one of the indirect lighting computation) to consider
glossy materials. But this almost only holds for interactive techniques, because the non-
interactive techniques can easily take care of this, since the additional computational
cost is irrelevant and negligible.

So if we want to distinguish the different techniques, the most realistic partitioning
is:

• Interactive Frame Rates

– One bounce reflections

glossy reflections

diffuse materials only

– Multi bounce reflections

glossy reflections

diffuse materials only

• Non-Interactive Frame Rates (mainly Photon-mapping or ray-tracing)

– multiple bounces

• Full Solution

– very many bounces

– complex material-light-interaction with

diffuse and glossy reflections

BRDF

subsurface scattering

refraction

2.7 Overview of existing techniques

There are many techniques based on the before mentioned light distribution model. We
will now give an overview of the state-of-the-art techniques. We start with the histor-
ically first implementations and there direct improvements in Section 2.7.1. We then
look at techniques that achieve interactive rates in Section 2.7.2 and finally describe
methods that aim for photo-realistic results in Section 2.7.3.

21 2.7 Overview of existing techniques

2.7.1 Non-Interactive approaches

In this section we discuss techniques that improve the computational time by optimiz-
ing other algorithms through parallelization and/or porting them to the GPU without
achieving real-time-speeds.

The first approach of computing indirect illumination was through the radiosity
equation formulated by Cohen and Greenberg [5]. This radiosity method describes an
energy equilibrium within a closed scene assuming that all emissions and reflections
are ideally diffuse and the light distribution is computed iteratively over the discretized
surface of the scene.

Then shooting and gathering approaches were introduced and even ported on the
graphics card by Coombe et al. [7]. This technique uses the aforementioned approach
for the coarse distribution of light within the scene, followed by a highly precise method
for storing the lighting results, therefore changing the geometry of the scene and cre-
ating a higher tessellation. In our approach we only use the shooting method in the
beginning of the light distribution and then switch to a scene texture atlas for storing
the high resolution results. Therefore, our approach does neither depend on nor does
it change the scene geometry. Szécsi et al. [55] propose to precompute the expensive
integrals needed for indirect illumination for all but one variable, the light position, and
store them in a texture atlas of the scene. During rendering, the radiance of the visi-
ble scene pixels is determined by evaluating this precomputed data for the given light
positions. Although the results look very promising, the amount of memory needed is
rather big, even for scenes without complex occluder configurations. Our technique
can handle complex scenes using only a light atlas, which is required anyway.

Arikan et al.[2] accelerate the final gather step of global illumination algorithms
through approximation of the light transport by decomposing the radiance field near
a surface into separate near- and far-fields which then get approximated differently.
They rely mainly on the assumption that radiance will exhibit low spatial and angular
variation due to distant objects, and that the visibility test between close surfaces can
be reasonably predicted by simple location- and orientation-based heuristics. They
use scattered-data interpolation with spherical harmonics to represent the spatial and
angular variance for the far-field, while the near-field scheme employs an aggressively
simple visibility heuristic.

Other techniques [20, 23] use the extreme parallel capability of modern GPUs to
accelerate ray-tracing approaches. They cluster different light rays according to their
direction and then use the GPU to compute the visibility for all these bundles simulta-
neously. This makes the computation much faster than on the CPU, but still does not
achieve interactive frame rates. Our technique creates similar quality, but in shorter
time.

Luksch at al. [36] propose a technique for computing the light atlas of a scene at
almost interactive speed. They partition the scene into polygons and distribute the
light energy among virtual light sources, one for each polygon. In a final gathering

22 2.7 Overview of existing techniques

step, they render the light atlas and collect the radiosity for each texel from the direct
and virtual light sources. Although this technique is similar to ours, it is limited to two
light bounces and therefore produces results with a lower quality.

2.7.2 Interactive approaches

An important technique considering indirect illumination was introduced by Greger
et al. [19]. Instead of calculating the indirect lighting situation within a given scene,
it rather tries to compute the illumination introduced by the scene on a static object
moving through the scene. That means that the scene lighting needs to be already
computed, for example by the previously described radiosity method. Under the as-
sumption that this is given, the idea behind irradiance volumes (IV) is that instead of
storing the amount of light leaving each surface point within the scene, it rather pre-
computes for certain points in space the incoming light under certain angles. To do
this, the technique first fills the bounding box of the scene with virtual spheres – the
irradiance volumes – that are distributed through the scene in a way that best sam-
ples the underlying geometry and its complexity. Then each sphere samples the space
around with a specific step size, resulting in the projection of the scene around the
sphere on its surface with the pre-computed brightness and color. That means that
every sphere is “lit” by its environment. The authors then store these color values for
every sphere and use them for the objects moving within the scene. Therefore, a mov-
ing object is first associated with the closest irradiance volumes and the object’s surface
color is then computed by taking into account the object’s normals and the distance to
the spheres using bilinear interpolation of the color values determined. This technique
is only able to compute indirect lighting for moving objects within a scene for which
the indirect illumination was already computed. This means that this technique cannot
handle changes of light sources within the scene and is therefore bound to statically lit
environment.

Sloan et al. [52] introduce a technique that extends the idea of IV through pre-
computed radiance transfer (PRT). The authors describe a technique that can handle
the different lighting effects introduced in [19], but also takes into account inter-object
reflection and shadow casting. This is done by a pre-computed spherical harmonic ba-
sis that describes how an object scatters light on itself and the surrounding space. Like
in the previous idea of IV, the lighting environment is assumed to be given and being
infinitely far away, which makes the illumination the computation of a cosine-weighted
integral for each surface point of the object if it is convex. For concave objects the inte-
gral is multiplied by a value that describes visibility along each direction to account for
self-shadowing. The authors pre-compute these values and the integrals and represent
it through spherical harmonics. Through the linearity of this representation the inte-
gral of the light transport function becomes a dot product between the pre-computed
environment light and the pre-computed coefficient vectors that can be handled by the
graphics hardware in real-time. In the same way the technique also handles glossy

23 2.7 Overview of existing techniques

surfaces, inter-reflection, and soft-shadows.

Sloan et al. [53] extend the paper [52] to account for deformable objects in a local
PRT considering the inter-surface reflections and shading of a surface point by nearby
surroundings. This is done by switching from the pre-computed spherical harmonics
basis to the zonal harmonics basis, which allows for fast computations of rotations.
So whenever a part of the object is deformed, the local basis is updated to fit this
deformation. Afterwards the transformed basis is used to compute the resulting lighting
for this object.

Kristensen et al. [29] presented an algorithm that is able to indirectly relight scenes
in real-time. This is achieved by extending the idea of precomputed radiance trans-
fer and introducing the idea of unstructured light clouds to account for local lighting.
The indirect illumination of a static scene is precomputed for a very dense light cloud,
which is then compressed to contain just a small number of lights. While rendering
the scene, its indirect illumination is approximated by interpolating the precomputed
radiosity of the closest lights in the light cloud. This requires a relatively high number
of values stored for every vertex of the scene and can only compute the lighting at these
scene vertices. Therefore, the quality of the resulting image depends strongly on the
tessellation of the scene. The technique gives nice results in static scenes with moving
lights, but it cannot handle scene changes or large moving objects that strongly change
the scene’s lighting situation. Instead, our technique uses a high resolution texture
to store the indirect shadows, which allows us to handle even high frequency lighting
details. Moreover, our technique does not require any further computations once the
light distribution is stored, which in turn reduces the time needed for rendering every
frame.

Another approach was introduced by Walter et al. [57]. The authors suggest an
algorithm that can handle all kinds of light, e.g. environment maps and indirect il-
lumination. The main idea is to simplify huge amounts of light sources by grouping
them together and only to compute the illumination effects for the light sources cre-
ated through this combination process. To speed up this merge and make it as accurate
as possible, the authors introduce a binary light tree combined with a perceptual met-
ric. While the former helps in finding appropriate light clusters, the latter helps to stop
clustering if the introduced error exceeds a certain threshold. This way the rendering
time can be reduced, while at the same time a certain quality for the final result can be
guaranteed. For indirect lighting the authors simply use their algorithm – which they
claim to be able to reduce hundreds of thousands virtual lights to only few hundred
shadow rays – to reduce the expanse in computation. To calculate indirect illumination
they create new virtual light sources wherever a direct light source enlightens a surface
as described in [28].

A technique that reaches interactive results for single-bounce indirect illumination
was introduced by Dachsbacher and Stamminger [9]. The authors use reflective shadow
maps generated from the direct light source and a certain number of pixels in this

24 2.7 Overview of existing techniques

shadow map act as new point light sources to illuminate the scene. This is done in
the screen space of the final scene rendering, using the geometry information of each
visible pixel as well as the information given for all the point light sources. Due to the
nature of this technique it can only compute one-bounce indirect lighting and it does not
compute the visibility. Hence, it cannot create indirect shadows, while our technique
creates such soft shadows naturally. Prutkin et al. [42] suggest to speed up global
illumination through reflective shadow maps by clustering the VPLs and treat them as
single area lights. Lensing and Broll [32] apply reflective shadow maps, but reduce the
number of computations by first clustering visible points, depending on their geometric
properties and then computing only one radiosity value for all similar pixels. Dong et
al. [13] compute indirect illumination through clustered visibility. VPLs are clustered
into area lights and soft-shadow techniques are used to compute the illumination of
visible screen pixels. The above techniques introduce colour bleeding and soft shadows,
but only from those points which are directly illuminated. They are fast because they
use a very low number of VPLs, which in turn might be problematic in situations where
many direct lights illuminate non-overlapping parts of the scene.

Dachsbacher et al. [10] presented the idea of anti-radiance to overcome the costly
visibility test when computing indirect illumination. The authors compute the indirect
lighting by reformulating the rendering equation (2.6) to avoid the term that handles
the visibility within the scene. Instead they distribute the light into the scene as if
every patch is not occluded and then they use a second pass that reverts the energy
propagation onto patches that are occluded by reducing the energy that this patches
received in the first pass by the amount of light blocked.

A technique that combines the idea in [29]with the concept of light-cuts is proposed
by Ritschel et al. [44]. They compute indirect lighting on glossy surfaces by storing
coherent surface shadow maps which allows for fast visibility tests within a scene even
with moving objects. For indirect lighting, the authors use the idea of virtual point lights
and light cuts to compute the illumination distribution within the scene. Although this
technique produces good results, it is useful only in scenes that are nicely illuminated
by a few (one or two) light bounces, while our technique targets at scenes that have
many occlusions and need a high number of light bounces to produce a realistic result.

Lehtinen et al. [31] describe a method for computing indirect illumination that is
decoupled from the underlying geometry, since it only computes and stores the light
transport for randomly scattered points in the scene. For later evaluating other points,
they use scattered data approximation. The authors also define a hierarchy over these
points and store the difference between the current and the next level. This technique
is similar to ours regarding the initial light distribution, but we use a texture atlas for
the final visible result to capture even small lighting details.

A different approach for indirect lighting computation is based on deep frame buffers.
These techniques [17, 40, 22] aim at computing many effects of lighting – reflections,
caustics, multi bounce indirect illumination – in real-time for changing light sources,

25 2.7 Overview of existing techniques

but they rely not only on a static scene, but also on a fixed camera position. The algo-
rithm introduced by [22] computes a deep frame-buffer once the camera is positioned
in the scene. That allows to do all the re-lighting computations in real-time, but the pre-
computation that is necessary to create the deep frame-buffer takes a long time. This
restriction makes the technique useless for interactive applications where the camera
is also moved.

Ritschel et al.[46] describe a technique that uses final gathering performed on the
graphics card. The scene itself is partitioned into many small discs that approximate
its geometry. For the final gather step the authors render the scene into many “micro-
buffers” by traversing a hierarchical point-based representation of it. Each micro-buffer
contains a projective mapping of the scene, and the convolution of the incident light is
computed by summing up the contents of the micro-buffers. One thing to mention here
is that an interactive walk-through of an indirectly lit scene needs a pre-computation
through photon-mapping, since this technique only does the final gathering of the
photon-mapping approach. That means that this technique does not allow indirect
lighting for changing light sources or non-static scenes.

Dong et al. [13] use an approach similar to PRT by clustering different virtual point
lights within the scene together and then using these as Virtual Area Lights as proposed
in [44]. Therefore the number of shadow tests can be reduced drastically allowing for
interactive computation of the indirect lighting.

The technique proposed by McGuire and Luebke [37] uses a photon mapping ap-
proach to compute indirect lighting. The authors describe an algorithm that first uses
the graphics card to distribute initial photons from a light source using the GPU-projection
for the expensive visibility tests. The data is then read back to the CPU where it is pro-
cessed with standard ray-tracing techniques and the results are recorded in an octree
structure that stores the radiance. This data structure is then sent to the graphics card
again for computing the final gathering. While this technique creates a reasonable am-
bience that is adequate for computer games, the results look rather uniform and lack
highly detailed shadow effects, due to the low number of photons and the wide spread
of the corresponding photon-volumes.

An approach that computes double-bounce indirect lighting was introduced by Crassin
et al. [8] and can be seen as an extension of reflective shadow maps. Instead of a
shadow map, this method uses a sparse octree to store the radiosity from direct light
sources. Then the radiosity is gathered for every visible pixel in the final image from this
octree. That makes this technique effectively a double-bounce algorithm with rather
coarse approximations in the gathering and the light distribution. Yet, this algorithm
is able to handle indirect shadows in contrast to reflective shadow maps [9]. Never-
theless, this technique can only handle up to two light bounces, while our technique
distributes the light with multiple bounces until the distribution is physically plausible.

26 2.7 Overview of existing techniques

2.7.3 Full solution

This section handles techniques that aim at perfectly realistic results without consider-
ing short computational times. These techniques are mainly based on following light
deep into the scene in a stochastic manor to approximate a physically based result.

Jensen and Christensen [26] introduce the idea of photon mapping, which is a
stochastic approach to indirect illumination. Algorithms based on photon mapping
shoot energy into the scene, starting at the light sources. Whenever one of the particles
(photons) hits a surface element in the scene, the energy that the photon transports
is stored at this point in a photon map and this surface point is treated as a new light
source: it shoots photons into the scene, which carry the amount of light that is reflected
at this point. After the light distribution is finished, that is, when all new photons carry
an amount of energy below a certain threshold, the photon map is evaluated from the
viewpoint of the camera, giving each surface element a certain brightness that depends
on the radiosity stored in the photon map at this position. While this technique is still
state of the art in terms of quality, the time required for shooting the high amount
of photons that is necessary for good and realistic results is very high. Furthermore,
this method, as well as other stochastic approaches [20, 23, 25], requires a noise filter,
since the results are randomly distributed and therefore scattered points. Our technique
distributes the light in a smooth way that has a lot of similarity with photon mapping,
but it creates results much faster. Due to the different approach in storing the final
result, our technique is also very flexible, allowing the user to trade quality for shorter
rendering times on a wide range. With our technique, previews that give a good and
physically plausible idea of the final scene illumination can be created in the order of
seconds or minutes.

All techniques that use stochastic approaches (e.g. [23, 20, 26, 25]) need a second
pass that takes the noisy – due to the fact that photons or light rays where set randomly
– radiosity values and smoothes them to give the final image a more natural look.
Different techniques have been proposed to efficiently do that, for example the recent
one by Dammertz et al. [12].

2.7.4 Current unsolved problems

So far only few techniques store the computed results (e.g. [23]), and therefore most
of the algorithms have to compute them for every frame again even if the lighting
conditions have not changed between the last frame to the current. Since in realistic
scenes the light sources are static, this is a waste of computational capacity. Other tech-
niques like Imperfect Shadow Maps by [45] store pre-computed results, but still have to
do computationally expensive calculations in every frame. Another drawback of this
technique is that it uses a lot of memory on the graphics card even though the data is
already compressed. Other techniques rely on highly tesselated geometry for good re-
sults, like [39]. Also these techniques compute good results in real-time, but they use

27 2.7 Overview of existing techniques

rather artificial scenes without texture maps. If the tessellation algorithm needed to
compute texture coordinates on the subdivided surfaces instead of just subdividing the
geometry, the computation time would increase again, making it hard to still achieve
real-time framerates. This holds especially, since multi-textured environments are com-
mon nowadays; this means that most if not all vertices of the scene have two or more
different texture coordinates.

Also almost all techniques only concentrate on computing indirect lighting and do
not consider other things necessary for realistic images that are well established in the
field of computer graphics, for example direct lighting with normal-mapping, transpar-
ent objects, etc. That means that these techniques create good results in real-time, but
do not leave enough computational power for computing these effects that are also
important for realistic images.

Another important issue is that most techniques that produce almost photo-realistic
results were only tested for very simple scenes. The walls in the example scenes might
have a lot of detail and there might be highly complex objects within the scenes, but
realistic scenes with many rooms connected by corridors and stairways are missing.
One reason for this is that the light transport can be pre-computed more easily in a
single room. Another important reason is that in a single room the light distribution
becomes very similar between the second iteration and the following, because in step
two almost all surfaces already received light and so the further distributions do not
change much on the visual outcome except the overall brightness. When the rooms
become more complex, this changes and therefore these scenes require (much) more
then only one or two light bounces.

28 2.8 Summary

2.8 Summary

In this chapter we gave an overview of the physics of light and its interaction with
different materials. We also mentioned how the light is perceived by the human eye
and how monitors create different colors. With that we described the basics of the
direct lighting model that is used to illuminate virtual scenes and objects in the field of
computer graphics to then differentiate between direct and indirect illumination of a
scene.

The main part of the chapter then described the beginning of indirect lighting com-
putations and how the field advanced. We introduced three different classes to partition
the big field of related work by the time it takes to compute the solution. This reaches
from realtime techniques to algorithms that compute the full solution.

We furthermore pointed out some of the drawbacks of the existing techniques and
how we overcome that in our own technique.

Chapter 3

Technical Background

In this chapter we describe how virtual scenes can be rendered and how current graph-
ics hardware is designed to speed up this process. We furthermore analyse the ad-
vancements in graphics hardware and talk about how this enabled fast and efficient
techniques in the section of rendering into textures.

We start by giving an overview of how the rendering of 3D-models works in Sec-
tion 3.1 and go into details about the hardware that was developed to efficiently per-
form the required operations in Section 3.2. We then describe the APIs that allow the
programming of the hardware in Section 3.3 and describe shaders in Section 3.4 and
texturing in Section 3.5, since the techniques presented later rely heavily on both tech-
niques and needed to overcome some of the existing pitfalls. We end this chapter with
an overview of techniques used to draw onto 3D-objects and project that data into the
object’s textures atlas in Section 3.6.

3.1 Rendering virtual objects and scenes

A virtual object given in a 3D-description, needs to be projected into a 2D-image on
the camera plane for displaying. In principle there are two mainstream rendering tech-
niques.

One is raytracing (see Figure 3.1 left) that was developed in the late 60’s, in which
a ray is shot from the camera into the scene for every screen pixel. If that ray intersects
an object, the color of the pixel is computed as a combination of the material properties
and all the lightrays that intersect this point on the object’s surface. The light rays are
created from the initial point of intersection and connect it with all the light sources in
the scene. If a light ray intersects another object before reaching the light source, the
original surface point is in the shadow of the light source and therefore no lighting is
computed for it with respect to the currently tested light source. If the light ray is not
intersecting any other object, the lighting computation is done with the light ray and
the ray coming from the pixel that is currently tested, using the lighting computation

29

30 3.1 Rendering virtual objects and scenes

Figure 3.1. Comparison between rasterization (left) and raytracing (right). While ray-
tracing follows a ray from the camera into the scene, rasterization projects each object
onto the screen, where it influences the color, if it passes the depth test. Here the
depth values are symbolized as gray scale values in the raster behind the colors. The
three small lines to the right show the values that each object is writing. In case of an
overlap the closer object writes both the new depth value as well as the color.

introduced in Section 2.4. This technique requires to test every ray against the whole
geometry of the scene and is therefore very computationally expensive.

The second and mostly used technique in realtime graphics is rasterization (see
Figure 3.1 right). Here the object’s coordinates are multiplied by a 4× 4 Modelview-
Projection-Matrix that projects the vertices of the object given in homogeneous 3D-
coordinates – with 1 in the fourth component – into the 2D-coordinates on the screen.
The third component – the depth – is written into the depth-buffer (or z-Buffer), that was
introduced in 1974 independently by Edwin Catmull [4] and Wolfgang Straßer [54].
This buffer contains one depth value for every screen pixel and is essential for the
rendering of 3D-scenes, since it takes care of the occlusion of far objects by objects that
are closer to the camera. When an object is rendered and overlaps parts of the screen,
the overlapped parts of the z-buffer are tested against the depth values computed for
the current object. A pixel is only changed by the newly rendered object, if it has a depth
value that is closer to the camera then the currently stored value in the z-buffer. In that
case the pixel color is changed according to the properties of the current object and the
value in the depth buffer is replaced. This technique does not require any knowledge
about the geometry of the scene when computing a single pixel, but it creates a certain
overhead by possibly rendering a single pixel multiple times, if the objects are not
ordered from front to back. It obviously requires furthermore a buffer in the dimensions
of the screen for storing the depth values. Nowadays this is implemented in every 3D-
accelerator.

31 3.1 Rendering virtual objects and scenes

As mentioned before, in realtime applications like games, the technique used is
rasterization applying the z-Buffer. Here the geometry of the scene does not matter
and the rendering can be done very fast. If speed is not the main focus, but instead the
requirement is a close to real-life image, then raytracing or its successors – e.g. photon-
mapping (see Section 2.7.3) – are used. Since these techniques follow a ray into the
scene for an arbitrary number of reflections and refractions, almost all real world effects
can be captured, including caustics, that are especially hard to handle in rasterization.
Photon-mapping as mentioned before is also able to handle global illumination, but all
this comes at the cost of high computation times.

Note that because of the high speed and fill rate of modern GPUs most effects can
be convincingly approximated or faked. One example for that is reflection. Since real-
time 3D-applications focus on fast changing environments (like for example computer
games), the reflection does not need to be perfect, but should be convincing. To achieve
that, one of the first attempts that was also supported by the graphics hardware was
cube-mapping. When an object is rendered that has full or partial mirroring proper-
ties, the reflection ray was computed for each rendered pixel, but instead of testing this
ray against the real scene geometry to find the color reflected in this surface point, the
reflection ray was used to access a cube surrounding the reflecting object. This cube
has a 2D-texture on each of its six faces, and the intersection point of the ray with the
cube determined both the texture to be sampled as well as the position where to sam-
ple the texture. The textures for the cube could be either predefined images or even
rendered samples from the real scene, that contains the object. This of course is just
an approximation and it fails when a mirroring floor has an object standing right on
top of it. But for most effects it does a convincing job even nowadays. But today other
tricks are mainly used for faking reflections, like Screen-Space-Reflection by McGuire
and Mara [38] or computing the intersection of the reflection vector with a simplified
version of the 3D-scene stored in a 3D-texture as proposed by Crassin et al. [8].

3.1.1 3D-object descriptions

Objects can be given in a number of fashions. One is for example an implicit func-
tion describing the surface of the object. This is sometimes used in raytracing to draw
spheres, since they have a very simple function to describe them. For complex objects,
that is not feasible. In that case the objects can be given as a point cloud/voxels or as
a mesh consisting of polygons.

Nowadays almost all objects are given as triangular meshes for multiple reasons.
Having a fixed geometry shape to render, both hardware and software can be optimized
for this specific type in regard to property interpolation (e.g. color, texture coordinates,
etc.), intersection tests, clipping, and many more. Furthermore triangles are the most
simplistic 3D-shape for approximating 3D-surfaces and they can not be filled incorrectly,
in contrast to rectangles for example, that can form two triangles if two opposing edges
cross. This allows for some simplifications and optimizations in the hardware that fills

32 3.2 Hardware design

the pixels overlapped by the 2D-projection of the triangle. An additional advantage of
triangles is, that the three vertices are entirely connected either clockwise or counter-
clockwise. This fact was used from early on in 3D-acceleration for clipping non-visible
faces.

The clipping orientation can be set to either one of the two. When rendering a mesh
that is guaranteed to have all triangles oriented in one way, when looking at each of
them from atop, then a triangle that switches orientation while being drawn onto the
screen, can safely be discarded, since it is known, that it is viewed from the backside
and will therefore be covered by other triangles of the object, that are actually facing
towards the camera, if we assume all objects to be closed.

3.2 Hardware design

The development taking place in the area of realtime computer graphics is largely made
possible by the advances in the graphics hardware. Everything started in 1961, when
William Fetter created an isometric view of a human to optimize the layout of cockpits
for Boeing and termed it “computer graphics”. Rather simple software techniques for
rendering followed, until in 1981 the company Silicon Graphics International (SGI)
was founded and started to produce graphic terminals in 1982. These machines were
especially designed for this kind of computations and had certain computations directly
hardwired into them. SGI also initiated the graphic programming API OpenGL (see
Section 3.3) which strongly simplified the programming of 3D-visualization tools by
setting an industrial standard for both hard- and software to rely on. In these first
years of computer graphics, the necessary computational power was way to expensive
to be employed outside of industry or universities and was exclusively used in these
fields.

Then in the 1990’s 3D-accelerators like the 3dfx Voodoo were created to be used
as extensions for average personal computers and were available for a reasonable
price (making 3D rendering available for everyone). The card implemented certain
algorithms for 3D-computations in hardware and was meant as an addition to the
regular graphics card. At the end of the 90’ies the 3dfx Voodoo Banshee combined
these two into a single hardware component increasing the fill rate and introducing
the Transform&Lighting-Design (T&L) that implemented and parallelized the basic 3D-
operations in hardware, like the multiplication of 4D-vectors and 4 × 4 matrices and
the computation of the dot-product essential for the shading of 3D-surfaces (see Sec-
tion 2.4). Since the rendering consisted only of a certain amount of steps that were
then repeated for all the primitives that are drawn, this fact was used to design a hard-
ware doing this job with a few necessary things to be setup for the scene to be drawn.
The rest was then just streaming in the mesh data and applying the operations set in
the fixed function pipeline depicted in Figure 3.2.

Note that here an explicit programming was not yet possible, and the developer

33 3.2 Hardware design

was restricted to just setting matrices, textures, materials and other parameters, that
were then used on the primitives being rendered in contrast to the much more flexible
pipeline that allows complex programs to be executed on the input nowadays (compare
Figures 3.2 and 3.4).

CPU Fixed Function Graphic Pipeline

Triangle-Mesh with:
 - vertices
 - colors
 - normals
 -texture-coordinates

 Vertex-Processing
(Transforming & Lighting)

Triangle setup Fragment ProcessingRasterization

Setup - Metrices
- Lightsources

- Depth and
 Stencil functions

Textures

Rendering

BUS

Figure 3.2. The fixed function OpenGL pipeline from the early days of hardware ac-
celeration. The matrices for the transformations, light sources, material parameters and
textures could be set, but the pipeline itself was completely static.

The main purpose of modern 3D-accelerators is to render scenes given as 3D-triangle-
meshes. As mentioned before, this requires to project the objects onto the screen. It fur-
thermore computes the translations, rotations and scaling of the objects. To do that ef-
ficiently, the object vertices are given in homogeneous coordinates as described before.
This way the whole transformation and projection can be done by multiplying each 4D-
vertex with a single 4×4 matrix, usually referred to as the Modelview-Projection-Matrix
(MVP). This matrix is created by iteratively multiplying all the transformation matri-
ces and the projection matrix together once per object and then sending the resulting
matrix to the GPU.

As mentioned before, the main tasks here are 4D-vector and matrix operations,
that are all implemented in hardware. This design is also known as single-instruction-
multiple-data (SIMD), and allows for computing these operations with a single com-
mand, accessing the elements of the target vectors and matrices automatically. Fur-
thermore it allows for using these fixed operations (that are after all equal for all the
vertices, normals, texture coordinates and colors of a given object and in the second
stage for all the created fragments) on all the data for a given object. Therefore the data
can be streamed in as fast as possible, without the need for any explicit load operation
that would be issued by the processor when finishing the operations on one vertex.

The fact that the operations for different vertices (or fragments in the later stage)
are identical and more importantly do not rely on the output of any other data, the
process can be strongly parallelized. Every available processor can work on its data,
output it to the next stage and directly fetch the next data-element in the queue, with-
out having to wait for any other task to finish. While this holds for the processors in

34 3.2 Hardware design

one stage, it does not hold for the interaction between the two stages. Fragments can
only be processed, once a full triangle is computed and rasterized. To speed this up,
graphics cards have an intermediate step that gathers all vertices for a triangle and com-
putes the overlapped region and linearly interpolates the data given at the vertices over
the area of the triangle. Figure 3.3 shows the design of the NVidia-Fermi-architecture
and demonstrates the amount of parallel processors as well as their connection to fast
caches, to minimize the latency introduced by the low accessing speed of random access
memories (see Section 3.2.1).

Figure 3.3. Design and evolution of NVidia GPUs.1

Nowadays graphical processing units (GPUs) are much faster then current CPUs due
to the design of performing many mathematical operations in parallel. Since these op-
erations come from a mainly linear program, the complicated and necessary technology
required in CPUs to keep the pipeline filled, is not necessary in GPUs, since there should
be only few switches in the program path introduced by conditional jumps which were
not even possible in early shaders.

In the beginning, the hardware was providing a fixed function pipeline (see Fig-
ure 3.2), that allowed for the MVP-matrix to be set and the vertices – with some addi-
tional attributes like color, normal and texture coordinates – to be streamed to it. Less
then a decade later this was replaced by a pipeline that consisted of two programmable
parts: the Vertex-Processing and the Fragment-Processing.

1Image taken from: https://developer.nvidia.com/content/life-triangle-nvidias-

logical-pipeline

https://developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline
https://developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline

35 3.2 Hardware design

CPU

Primitives:
 - vertices
 - colors
 - normals
 - texture-coordinates Vertex-Processing Triangle setup Fragment ProcessingRasterization

Setup - Metrices
- Lightsources

- Depth and
 Stencil functions

Textures

Rendering

BUS

 Geometry-Processing

GPU

Programmable Programmable ProgrammableFixed Functionality

Figure 3.4. Later design of the graphics pipeline. Here the different stages are pro-
grammable and much more flexible. Furthermore the primitive type can be changed
in the geometry processing and additional geometry can be created, which can par-
tially help to overcome the bottle neck introduced by the low throughput of random
access memory.

The first stage gets as an input a single vertex with all additional attributes (e.g.
texture coordinates, normal and color) and runs the currently bound vertex program
on this data. It can perform many 4D-mathematical operations with the provided data
(mainly used for computing the lighting). The computed results are then handed down
the pipeline to the fixed function rasterization processors.

The resulting fragments are then handed over to the programmable last stage: the
Fragment-Processing. Here the incoming data is used to access textures and other infor-
mations to combine them into a single color for that fragment. Furthermore the depth
of the fragment can also be changed here or a fragment could be discarded entirely, not
writing any output.

In 2008 the hardware was strongly improved by changing the paradigm from ded-
icated processors for each vertex and fragment processing to an architecture that has
general processors that are assigned to currently available tasks by a scheduler. It
was first introduced by NVidia with their GeForce 8 series. In addition another pro-
grammable stage was introduced into the rendering pipeline, namely the geometry-
processing. This stage takes an input primitive – either point, line or triangle – and out-
puts a certain amount of output primitives. This allows for example to render a number
of particles by sending single points to the GPU and then create billboards around the
input vertices. Another possible application is to refine a given input geometry by tak-
ing an input triangle, subdivide it and change the position of the resulting vertices.
Figure 3.4 shows the graphic pipeline at this stage of the hardware development.

3.2.1 Data throughput

The massive increase in the computational capability of GPUs made it necessary to fur-
ther increase the throughput of the interface between the motherboard and the graphics

36 3.3 Programming APIs

card to keep the GPU busy by providing new data fast enough. While this started with
the ISA-Bus that had a throughput of around 16 MB/s, it was increased with EISA to
around 20 MB/s. Afterwards the PCI was introduced and improved from 133 MB/s in
1993 to 533 MB/s in 2004. Until 2006 existed another standard (AGP) that reached 2.1
GB/s in its final state. But since this state could not be improved anymore due to tech-
nical limitations, the newest standard (PCIe) was introduced in 2003 with 250 MB/s
and is now developed to 6.1 GB/s. But despite the enormous amount of throughput,
it would not be enough to keep the GPU busy, since the data would not come in fast
enough.

For efficient GPU-programming it is therefore necessary to store as much data in
the GPU-RAM as possible. To that end, the producers of GPUs have introduced new
features that allow to store objects to be drawn in the graphics memory as vertex-
buffer-objects (VBOs) and to render them with a single command sent from the CPU,
therefore reducing the necessary communications between CPU and GPU dramatically
compared to the beginning of the 3D-accelerators, when the whole mesh had to be sent
to the GPU one primitive at a time. But even though it is now possible to store most if
not all data in GPU-RAM, the fetching is still quite time-consuming. Although current
GDDR5-RAM does allow a transfer of 20 GB/s, since during the rendering of a scene a
high number of texture-lookups as well as geometry retrieval is required, the memory-
access as well as the communication between CPU and GPU remain the bottleneck in
most situations that occur in graphic programs.

3.3 Programming APIs

The first general API for programming the graphics card and 3D-accelerators was Glide
developed by 3dfx to get computer game developer to make extensive use of their
hardware capabilities. Another standard was OpenGL, that was developed to program
the industrial graphic workstations created by SGI. When the general consumer mar-
ket grew, OpenGL became the general standard for programming 3D-hardware. With
Win95 Microsoft tried to establish their own programming API called DirectX. This is
a more general programming-API but also contains direct3D that supports hardware
accelerated 3D-programming, since it was introduced into DirectX in June 1996.

The development of these two APIs usually follows the advancements of the graph-
ics hardware closely. Nowadays both APIs are fully supported and regularly extended.
A big advantage of OpenGL over Direct3D is the fast development and extensibility.
While DirectX only comes after major changes in a new Version, OpenGL allows for
the use of extensions. That allows GPU-vendors to create new technologies – either
in hardware and/or in software – to be used directly after the release of their drivers.
Therefore developers have directly access to the newest techniques and standards. Fig-
ure 3.5 shows the different development speeds of the two APIs.

Both APIs and the underlying hardware work as state-machines, letting the user

37 3.4 Shaders

set certain parameters and keeping them until explicitly changed. Reasons for that are,
among others, to avoid copying data over the bus, since it is rather slow compared to the
extreme computation speed of the GPU and should be avoided and the synchronization
of the driver running on the CPU and the GPU execution. These reasons also led to the
introduction of many buffer-objects that are permanently stored in the VRAM – given
that there is enough space for them – and are then executed for drawing or accessed
without the need of communication between CPU and GPU.

In the following sections we will have a closer look at the techniques that this work
is mainly based on, give a brief history of their development, showing that until recently,
the idea presented in this work could not have been implemented.

3.4 Shaders

While the first graphics cards allowed for very fast computations of 3D graphics, the
functionality was fixed to the computation of the transformation of objects with the cur-
rent modelview-matrix and performing fixed lighting computations per vertex for a very
limited number of light sources. Each primitive could furthermore only be colored by
a single texture. This changed in 1998 with the introduction of the first ARB-extension
(ARB_Multitexture) that allowed the lookup in multiple textures per fragment. Shortly
afterwards NVidia introduced the NV_Register_Combiners that allowed to do limited
computations with the fetched texel-data and even combine the results from different
textures in a predefined way. For more details about the techniques mentioned here
we refer the reader to the OpenGL specification [49].

True programmability was introduced only with the NVidia-GeForce 3 though, that
introduced the NV_Vertex_Program that allowed the programming of the vertex pro-
cessor, controlling how incoming vertices are transformed and colored. Then ATI in-
troduced the ATI_Fragment_Shader that gave a great deal of flexibility to programming
the resulting color of each fragment.

To make this more standardised, 3D Labs started to reorganize OpenGL into Ver-
sion 2.0 in 2004. The main goal was to introduce a general shader language that was

1992 1993 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

DX 1

DX 2

DX 3 DX 5 DX 6

DX 7

DX 8

GL 1.0 GL 1.1 GL 1.2 GL 1.3

GL 3.1

GL 4.0

DX 10
DX 10.1

DX 11

DX 9.0cDX 9
GL 2.0

GL 2.1 GL 3.0 GL 4.1

GL 1.4

GL 1.5

2013 2014 2015

GL 4.2

GL 4.3 GL 4.4 GL 4.5

DX 12

GL 3.2

Figure 3.5. The timeline shows the major improvements of both OpenGL and DirectX.
While in the beginning even minor changes took long, major versions of both APIs are
released in much shorter succession now, due to the fast development of the underlying
hardware.

38 3.4 Shaders

supported by NVidia as well as ATI. This OpenGL-Shading-Language is a C-Style lan-
guage, that is identical for programming both the vertex and the fragment processing
unit, since the introduction of unified shaders in 2008.

Framebu�er

Vertex Puller

Vertex Shader

Tessellation Control Shader

Tessellation Primitive Gen.

Geometry Shader

Transform Feedback

Rasterization

Fragment Shader

Pixel Assembly

Pixel Operations

Pixel Pack

Per - Fragment Operations

Image Load / Store t/b

Atomic Counter b

Shader Storage b

Texture Fetch t/b

Uniform Block b

Pixel Unpack Bu�er b

Texture Image t

Pixel Pack Bu�er b

Element Array Bu�er b

Draw Indirect Bu�er b

Vertex Bu�er Object b

Transform Feedback
Bu�er b

From Application

From Application

Tessellation Eval . Shader

t – Texture Binding

b – Bu�er Binding

Programmable Stage

Fixed Function Stage

Legend

Figure 3.6. The rendering pipeline of OpenGL as of Version 4.5. Almost all stages
of the pipeline are programmable nowadays. User defined operations can be per-
formed on the vertices of incoming primitives, the primitives can be used to create
new primitives (even of a different kind) and they can be tessellated by the hardware.
Furthermore the final stage of coloring the output of the rendering stage can be defined
by the user.2

With the increased flexibility of the fragment shader, it became more and more rea-
sonable to render an image – for further use as a texture – directly on the graphics card
itself in realtime. The first attempt to efficiently allow this was through the PBuffer in
2000. It allows to render a scene offscreen into a texture and then use it in subsequent
draw calls as a texture. The drawback of this approach is, that it requires time consum-
ing context switches. To overcome that, the Frame-Buffer-Object (FBO) was introduced
and implemented with a very high flexibility in 2008. FBOs allow for rendering into
multiple textures as well as into multiple layers of one texture simultaneously. This
allows for a huge amount of data being processed or generated and stored on the GPU.

Other important techniques that were introduced and allowed for a much higher
flexibility in the programming of the graphics card were NV_Geometry_Shader and
NV_TransformFeedback_Buffer (TFB). The former technique allowed for a shader tak-
ing a standard primitive as input and creating a certain amount (around 32 on current

2Image taken from: https://www.opengl.org/registry/doc/glspec45.core.pdf

https://www.opengl.org/registry/doc/glspec45.core.pdf

39 3.5 Textures

hardware) of new primitives, thus increasing efficiency by allowing to handle more data
than is directly read from VRAM minimizing this bottleneck (see Section 3.2.1) and to
adapt data to certain conditions at runtime allowing for higher flexibility (e.g. comput-
ing LODs depending on the distance to the camera). TFBs allow for arbitrary data to
be computed on the GPU and recorded in VRAM directly. Unlike the FBO-extension,
the TransformFeedback-Buffer allows the storage of arbitrary large data, and has no
restrictions in the amount of data that is to be recorded from a single shader-pass. An-
other difference between FBOs and TFBs is that FBOs are filled by the fragment-shader,
while TFBs are filled by either the vertex- or the geometry-shader (see Figure 3.6).

The last shader for the graphics pipeline that was introduced so far is the Tesselation-
Shader. It is located between the vertex- and the geometry-shader-stage in the graphics
pipeline and can be used to tessellate given primitives with a specified behaviour. It
is more powerful then the geometry shader in that it does not have any restrictions
on the number of created primitives and the tessellation is done automatically by the
hardware. Another shader that was introduced recently is the compute shader that
allows easy usage of the graphics card for general purpose computing is very general
and therefore will not be described here in detail.

While we make extensive use of the previously mentioned techniques and exten-
sions, the tessellation shader and the compute shader are not used within the course
of this thesis and are only mentioned here for completeness and to show the direction
that the improvements of graphic cards is currently taking.

3.5 Textures

When 3D-accelerators were introduced, their main purpose was to do the transforming
and lighting of 3D objects and projecting the result onto a screen for 2D-visualization
but the hardware also allowed for texturing the drawn objects. To that end the pixels
on the screen receive an interpolated texture coordinate which is used to look up the
corresponding data – back then almost entirely colors – from a texture (see Figure 3.7).
The fixed function pipeline back then looked as depicted in Figure 3.2.

From that days until today, rendered scenes often use a texture called light map
first used in the computer game Quake that contains the precomputed lighting situation
within the scene, stored as an image. The final image on screen was then rendered with
the diffuse texture and the light map content added on top of it (see Figure 3.8). In the
beginning of interactive 3D graphics, when even simple lighting was rather expensive,
it was a means to simulate indoor-lighting that was either pre-computed or created by
artists. Nowadays it is still used (like in the Unreal-Engine [16]) to store precomputed
indirect illumination or other static lighting effects.

Efficient rendering into a texture in contrast was problematic and time consuming,
since it required expensive context switches or even copying the data over the bus since
the hardware was not meant to be used in that direction (see Section 3.2).

40 3.5 Textures

With the advancement of the graphics hardware it became more and more flexi-
ble and in 2008 the graphics hardware introduced Frame-Buffer-Objects as rendering
targets. They allow for drawing into a texture and using it for subsequent rendering
without the need of copying back and forth between the CPU- and the GPU-memory or
switching the rendering context, as was the case with the earlier PBuffers.

Furthermore the shaders that allowed to program the GPU since 2001 – starting
with DirectX 9.0 or OpenGL 2.0 (see Section 3.3) – where just improved to Version 3.0
allowing for a much greater flexibility.

This combination of new technologies enables us now to implement an efficient
forward mapping from the current view of a 3D-object on screen into this objects texture
atlas (see Chapter 4).

3.5.1 Texturing basics

When rendering scenes or objects, the surface details are usually added through the use
of textures (see Figure 3.7). Nowadays most applications use many different layers for
each surface, such as diffuse-color textures, specularity textures, normal-maps, light-
maps and many more (see Figure 3.9). This mapping from the texture onto the objects
surface is done through interpolated texture coordinates. These coordinates are given
at the vertices of the mesh – usually by UV-mapping or generic functions – and are
computed for each visible fragment via barycentric coordinates.

When drawing a triangle with a texture, the texels used for each fragment on the

3Model and textures are courtesy of Crytex GmbH

Figure 3.7. A 3D triangle mesh on the left top. Bellow is the same model with a texture.
The UV-Mapping for the texturing is shown on the right overlaying the texture.

41 3.5 Textures

Figure 3.8. A scene using lightmaps to fake complex illumination (left) and the texture
that created the effect (right).

screen, are interpolated or mip-mapped (see Section 3.5.2), so that the resulting ren-
dering appears smooth, independent of the relationship between the resolution of the
target area of the triangle on the screen and the resolution of the area of the image
used as a texture.

3.5.2 Mip-mapping and (bi-)linear interpolation

When rendering a textured object on the screen, the resolution (RT) of the texture
will most likely be different then the resolution (RS) that it covers on the screen. This
leads to the problem that a screen pixel can not be correlated with a unique texel in
the texture image. A screen pixel might either overlap multiple texels, or it may fall
just occupy a small fraction of a texel. This problems need to be addressed to ensure a
smooth and pleasing final image.

If the textured area of the object is smaller on screen, the graphics card will use
mip-mapping for texturing. When using mip-mapping, the graphics card driver creates
for every texture that is loaded, a whole series of images – each one half the size of the
previous – until the smallest images has a resolution of 1× 1. The texturing itself then
uses the image which is closest to the one of the area that is textured on screen.

When rendering a textured triangle that overlaps fewer pixels on the screen then
it has texels, the graphics card chooses the image whose resolution is closest to the
resolution it overlaps on screen. Furthermore it will even choose the two closest images
and linearly interpolate between them when trilinear interpolation is enabled. This way
an object that moves away from the camera – therefore getting smaller and smaller –

42 3.5 Textures

Figure 3.9. A model with just the diffuse color texture (left). Adding a normal-map
(middle) adds more details to it and simulates complex structures that effect the light-
ing. The specular texture changes the behaviour or the reflectiveness of the object.3

will show a smooth and recognizable image and the colors will continuously change,
while the object is fading into the background.

If the textured object instead moves closer to the camera – getting permanently
larger on screen, therefore overlapping more pixels on the screen then the texture pro-
vides – the graphics card uses linear interpolation to access the texture. The linearly
interpolated UV-coordinates used to access the position within the texture, will end up
being between multiple texels. The graphics card will then blend between the colors of
the four neighboring texels using the distance to their centers as weights in the bilinear
interpolation. This effects are visualized in Figure 3.10.

43 3.5 Textures

Mip-mapping Linear interpolation

Screen-pixel

Original Texel

Mipmap Texel

Screen-pixelTexel Original Texel

Screen-pixel

Figure 3.10. The texture (top center) has a certain resolution. When the resolution on
the screen (bottom row) is equal, the texture is simply sampled without changes. If the
object has a smaller resolution on the screen than the original texture, mip-mapping is
applied (left side). If the object on screen has a higher resolution, linear interpolation is
applied, smoothing the color for the screen pixels by interpolating the closest matching
texels (right side).

3.5.3 Perspective effects

Figure 3.11. The camera faces the textured canvas head on (left) and therefore no
distortion occurs. If the camera is placed to look at the canvas from a very steep angle
(right), the perspective deformation is applied to the texture.

Another effect occurring in rendering textured objects is, that the image gets dis-
torted by the viewing angle as visualized in Figure 3.11. This distortion is taken care
of by the GPU by applying a perspective correction when interpolating the texture co-

44 3.6 Creating textures on the fly

ordinates over a given surface. So whenever something is projected from the current
view into the texture atlas of an object, we also have to take care of this perspective
deformation.

3.6 Creating textures on the fly

In this section we give an overview of techniques that allow for drawing onto an object,
storing the data into the object’s texture atlas. We also point out how the advancements
in graphics hardware allows for ever more efficient drawing using the GPU directly.

When looking at the advancements of the graphics hardware, the rendering with
textures had a long history of improvements – mip-maping, bi- and tri-linear interpo-
lation, anisotropic filtering, etc. – but the rendering into textures in realtime became
a topic only around 2000 with the introduction of the rather expensive PBuffer. Only
in 2008 with the introduction of FBOs the programmer had the chance to quickly and
flexibly render into a texture.

This process can also be seen when looking into the state of the art in this area.
Following is a description of techniques that draw onto a mesh and store the result
into a texture atlas of the rendered object. While early techniques required all the
computations and the writing to the texture on the CPU, later attempts utilised the
GPU for its fast computational power. But even these first techniques that ran on the
GPU could not use the efficient framebuffer object, since it was introduced only later.

The first approach to mesh painting was presented by Hanrahan and Haeberli [21].
They simply sample the brush once for each vertex of the mesh and store the sampled
values as vertex colours. This technique was introduced before the rise of textures
and has the disadvantage that the mesh has to be very densely tessellated for visibly
appealing results. A similar approach was later presented by Agrawala et al. [1].

The recent paper by Fu and Chen [15] proposes to draw directly to the mesh trian-
gles and even sub-sample the mesh if it is not sufficiently tessellated for good results.
This approach does not follow the design of modern graphics hardware, which provides
methods for reading such detail from a texture. Other GPU-based techniques sample
the whole texture area, which is very expensive. Although this might work at interac-
tive rates with a small texture atlas, it becomes slower with increasing texture sizes or
more than one image per texture atlas if the mesh is very complex.

Other approaches simply process all texels of the whole texture atlas by drawing all
mesh triangles into the texture atlas and sampling the corresponding screen triangles.
If for some texel the corresponding screen pixel is overlain by the current brush, then
the pixel is set to the colour of the corresponding brush pixel, otherwise the texel is
discarded. This is completely done within the fragment program and therefore quite
expensive since it operates on many pixels that are actually not get drawn to.

Igarashi and Cosgrove [24] follow this idea but introduce an intermediate step for
storing the colour from a painting session in a frame buffer object that covers the whole

45 3.6 Creating textures on the fly

screen. This is sufficient as long as the camera does not change and appears to the user
as if the paint had already been copied into the texture atlas and texture-mapped back
on the mesh surface. But the colour is actually only copied into the texture atlas of
the object (by the method described above) whenever the camera moves. The main
drawback of this approach is that it is bound to screen resolution. When the brush
resolution exceeds the screen resolution, it can therefore not be copied without loss
into the texture atlas, even if the resolution of the latter allows for the brush to be
stored in full resolution.

The technique described by Lefebvre et al [30] is designed to draw on meshes that
do not possess a parameterization. Therefore the paint information is not stored in a
texture atlas but instead in a 3D texture. For painting as well as for rasterization this
method uses an octree which is handled entirely on the GPU to guarantee fast access
to the texture. The advantage is that it does not require any precomputed parameter-
ization into a texture atlas. On the other hand, a 3D texture requires a lot of space in
the graphics card memory. Another drawback of this approach is the limitation of the
maximum texture resolution. This limitation does not apply to our method because it
could easily be extended to work with multiple 2D textures per model, and then the
overall texture resolution would be virtually unlimited.

Another paper that uses the GPU for rendering was presented by Ritschel et al. [43].
They propose to store geometry images in a texture atlas which is then used to render
the object and allows for interactive surface changes by painting on the mesh. But
this paper is restricted to Catmull–Clark subdivision surfaces, because it relies on the
specific connectivity information that is induced by the hierarchy of these surfaces.

3.6.1 Current unsolved problems

The issues with all these approaches is speed. Many of the techniques rely on expensive
computations to ensure that the results are of a high quality. But this reduces the speed
of the technique. When creating a texture atlas for a scene once, this might not be of
much importance, but when the creation needs to be done very often, it becomes a
bottleneck for realtime rendering.

In the following chapters we will consider this problem and devise a technique
that will project data onto the surface of a 3D-object into its texture atlas using the
advancements made in the field of graphics hardware.

46 3.7 Summary

3.7 Summary

In this chapter we gave an overview of the advancements in graphics hardware and
pointed out how the APIs openGL and directX followed this evolution to allow devel-
opers to make use of the hardware. We also described the techniques that are directly
required for the technique introduced in the following chapters in more detail.

We also explained why the early hardware did not allow for an efficient imple-
mentation of that technique. Efficient implementation of this technique become only
recently available through a combination of all the available technology developed for
the graphic cards, most importantly the introduction of framebuffer objects as well as
flexible shaders.

We then gave an overview of older techniques that can be used to paint onto a 3D-
object and project this painting interactions into the texture map of that object. We
furthermore pointed out problems that these techniques are facing.

Chapter 4

Forward Mapping

Texturing is nowadays a common approach to improve the fidelity of 3D-scenes and
objects. The textures are accessed using texture coordinates given for every vertex
of the mesh. When rendering a triangle, these coordinates are interpolated over the
area of the triangle on screen and then used to access the related texture to read the
necessary data for each screen pixel. In this chapter we introduce a flexible approach for
projecting data into the texture atlas of an object from any chosen direction, handling
all the occlusions and projection effects introduced by viewing the object from that
specific view point (Figure 4.1 visualizes this process). This projection can be seen
as a way of drawing into the texture atlas of a given object from a certain view and
projecting the data from the object into its texture. This can be used for painting onto
a mesh (see Chapter 5), but it can also be used in non-trivial applications like storing
the illumination of light sources into a light map (see Chapter 6). To accomplish this
projection, we need to:

• determine the object’s current projection,

• check which texels are currently visible,

• and smoothly project the data into these texels.

Another important goal for using this technique in the creation of a whole texture
map for a virtual object or scene is, to do this projection as fast as possible. Therefore we
design the technique to make excessive use of the GPU, harnessing its extreme parallel
computation power, rasterization and texturing hardware.

As described in Section 3.5, rendering into a texture using the graphics card is only
efficiently possible since the hardware became flexible enough to be programmed and
the introduction of FBOs (see Section 3.3). In this chapter we describe an approach
to use the graphic hardware to update a virtual object’s appearance by projecting data
onto its surface and storing it in this object’s texture atlas. We start by explaining the
overall goal in Section 4.1 and describe general problems that have to be overcome. We

47

48 4.1 Basic idea

Figure 4.1. The top row shows the standard graphic pipeline. It takes a texture (left) and
a model with UV- coordinates (center) and renders the final image. The bottom row
shows the forward mapping idea. We have a mesh and chose data to be projected onto
it (left). We then sample the UV-coordinates (center) and create the appropriate texture
atlas with all the distortions introduced by the given UV-mapping and viewpoint.

then describe naive approaches in Section 4.2 and discuss problems that arises when
using them.

This serves to give a general idea of the overall problem. In Section 4.3 we proceed
by introducing a basic idea that is efficient and fast and can handle the most common
cases and explain it in more detail in Section 4.4. In Section 4.5 we make the idea
robust enough to handle all possible cases.

4.1 Basic idea

Assume there is a virtual 3D-object – with a given image texture in its texture atlas –
visible on the screen. Now data should be projected onto it from the given current view.
After the data is projected into the texture atlas, the rendered object should look the
same on screen even without the data overlapping it, since the projection will take care
of all the perspective corrections and resolution problems (see Sections 3.5.2, 3.5.3 and
Figure 3.11). The method we present here will only change that parts of the object’s
texture atlas that are actually overlapped by data on the screen.

49 4.1 Basic idea

Figure 4.2. The top row shows the standard rendering of a textured 3D-object. On the
left we have the texture atlas A with a simple pattern that is mapped by Φ−1 onto the
3D-object shown in the center. After applying Θ to the object S, it is projected into
the view plane V visible on screen shown on the right side. The bottom row shows
the raw data that is to be projected on the right side. The center shows V with the data
overlapping parts of S. The left side shows the resulting A, after the data is projected
into it via Ψ.

4.1.1 Problem description

Let’s say we have a view of a 3D-scene S, textured with an atlas A, from an arbitrary
angle and then project data given in the projection plane V of the current view. At any
time you want to be able to project the data into the corresponding part of A, that is,
exactly into that section of A that was used to texture the parts of S that are currently
visible on V. Figure 4.2 visualizes this setup.

This mapping Ψ : V → A from the projection plane into the texture atlas depends
on the current camera parameters used to draw the scene onto the screen. It is not
trivial to define this mapping and it would involve a lot of computations to perform it
– like with raytracing for example.

But such a mapping does not easily overcome the problems of the different resolu-
tions RS for the screen and RT the data. So instead we achieve this by separating the
projection Ψ into two independent mappings Φ and Θ so that Ψ = Φ ◦Θ. Here Θ−1 is

50 4.2 Naive approaches

the mapping from the 3D-object into V while Φ is the parametrization of the 3D-object
into A.

We now describe the general idea that we will refer to as forward-mapping for re-
alizing this mapping Ψ : V → A that projects the data, given as an image, into the
2D-texture-atlas A of a given 3D-scene efficiently on the graphics card.

So instead of going entirely from V to A directly, we rather store the data needed
for Ψ into V. Now projecting the data from V becomes a simple look-up of the results
of the previous mapping, containing for every pixel on the screen the target in A, that
is, the texture coordinates sampled for drawing this specific pixel on the screen.

4.2 Naive approaches

The obvious approach for this projection would be to sample every pixel’s UV-coordinate
and draw on the corresponding position in A. This can be easily done by checking for
each pixel, which texture coordinate it uses for rendering and then drawing at this
coordinate in A. This would introduce two problems though:

• In case of RT being higher then RS , only one of the texels that are drawn onto
the same screen pixel would receive a color, while the others would remain un-
touched.

• If RT is lower then RS , all texels will be drawn, but there is no linear interpolation
of the data that is to be projected.

Similar problems would arise if we were to loop over all texels in A and project them
onto the screen for sampling the data that is to be projected. In this case it is guar-
anteed that all texels will receive data, but depending on the relationship between the
resolutions RT and RS , the result in A might be very blocky (if RT > RS), or the re-
sulting projection will be non-continuous, since the texels fetch data too far apart on
screen without interpolating it (if RT < RS). It is worth mentioning here that it is not
reasonable to loop over all texels in the scenario of projecting data from screen, espe-
cially since there might be multiple texture atlases used for big and complex objects. In
that case only few of the texels – the few actually visible on screen – will receive data
but the projection of the texels into the space of the data that is to be projected has to
be done for all the texels, making this very expensive.

4.3 Our approach

We consider the first approach, going from screen space into the texture atlas for per-
formance reasons. To avoid the previously mentioned problems, we project from V into
the texture atlas A using a continuous projection mesh M , therefore touching only the

51 4.3 Our approach

texels of interest. This is especially important for huge scenes having possibly dozens
of texture atlases; looping over all texels in this scenario would be very costly.

To achieve this projection, we first have a look at how the scene is rendered: For
each textured triangle, the fragment on the screen gets the interpolated color from A,
determined by the texture coordinates computed for that fragment.

Since these texture coordinates on screen are required to get the target position
of the projection into A, we store them in an offscreen geometry-buffer G that exactly
overlaps V and has the same resolution as the viewport. Whenever V or an object
within the view moves, we need to refresh the content of G, otherwise it can be reused
for every projection onto the mesh. Therefore this projection technique requires only a
single rendering step – the projection of the data into A – once G is computed.

Processing G per fragment of interest would not be sufficient for a good result
though. Painting all the overlapped texels in A would lead to an uneven drawing, since
the two resolutions – G and the overlapped region in A – will have different resolutions
as mentioned in Section 4.2.

We achieve continuous and smooth results with the acceleration techniques already
implemented in the graphics hardware. We overlap V – or the area of interest which
might be much smaller – with a continuous 2D-triangle mesh M (see Figure 4.3).
Then we use a shader to sample G at the triangle vertices and draw M with these new
coordinates into A. Since vertices that are shared by multiple triangles of M sample
the same coordinate, the resulting projected mesh in A will also be continuous.

Figure 4.3. The image shows V from Figure 4.2 with the data overlapping it (left). It
also visualizes the mesh M that is used for the projection of the data into A in orange.
The overall mapping Ψ is achieved by using the content of G (center), to sample for
every vertex v of M its position within A. The resulting A with the data projected into
it (right) furthermore visualizes the distorted mesh M.

We therefore do not rely on sampling in either of the spaces, to project the data
from V into A, but instead we let the graphics card sample as good as possible in both
via texture sampling and rasterization. To speed up this process, we implement the
projection and the sampling using the graphic hardware’s build-in capabilities. The
mesh M accesses the data that is to be projected via a texture. The projection into A is

52 4.4 Implementation details

done by sampling the texture coordinates tc of the object seen on screen under each of
the vertices vi of mesh M. The sampled tc will then be used to draw M into A using
the graphics cards texturing implementation to store in each texel the closest fitting
data, using mip-mapping or linear interpolation for accessing the texture that contains
the data that is to be projected.

Section 4.4 describes the technique in detail and gives an example of how each
step is implemented. This projection only relies on sampling and no computation is
needed. Furthermore all necessary operations are implemented very efficiently using
the graphics hardware in the way it is intended to by using sampling, rasterization and
vertex transformations.

4.4 Implementation details

After the camera is positioned and V is fixed, we first render the scene into G, which is
implemented as a Frame-Buffer-Object (FBO), which gives us the mappingΘ. Note that
this FBO has 16 bits per color component per pixel instead of the regular 8 bits, since
otherwise the quality would be insufficient. Instead of rendering the object onto the
screen, we use a shader that stores its pixelwise linearly interpolated UV-coordinates
(u, v) for each visible fragment P(x , y) into the red and green channel of G. This render
step effectively performs the first part of the projection Ψ, albeit in the inverse direc-
tion. That is, the scene is projected onto M rather than the other way around (see
Figure 4.3). Note that G has the same resolution as the screen used for displaying the
object.

We then create a uniform 2D triangle mesh M covering V as a VBO and send it to
the graphics card. When projecting data onto the mesh we use the shader to transform
it to the position of interest and simply render it. This drawing of M uses a shader that
samples G at the coordinates (x , y) of each mesh vertex and replaces the latter with
G(x , y) = (u, v), which is the mapping Ψ. Furthermore we also send the original (x , y)
coordinates in V down the pipeline, since this information is needed to sample the data
that we want to project into A. Now every mesh triangle is turned into a triangle in
A – implemented as an FBO – and drawn there. Since each triangle also contains the
texture coordinates (x , y), each texel in A gets the best fitting data since the graphics
hardware is using mip-mapping or linear interpolation on the data, according to the
current relation between the resolutions of the data and the area that it overlaps in A.

Due to the fact, that M is continuous in V, it will also be continuous in A. If multiple
vertices of M sample the same (u, v) and get therefore projected to the same texel in
A, the neighboring triangles of M draw from this point on.

53 4.5 Seams

S G A

Figure 4.4. The scene S as seen in V (left) is identical to the situation in Figure 4.3. The
visualization of the content of G (center) and the texture atlas A (right) show however,
that this objects texture is divided into two independent charts, making A no longer
continuous.

4.5 Seams

What has been described so far works nicely if the target of the projection is itself
continuous. But this can not be guaranteed for the texture atlases of most scenes. In
almost all cases the result of the parametrization creates multiple charts Ci in the texture
domain T . On the surface of the mesh these charts are separated by seams as shown in
Figure 4.4. When trying to project over a seam with the coordinates sampled from G,
the following problem arises: Since the texture is not continuous in T , the vertices of
M are projected into unrelated parts within T , each in the chart that the coordinates
in G were sampled from. Though each individual vertex of the triangle of M is now
in the correct place within A, the resulting triangle covers an unrelated area within A.
Figure 4.5 visualizes the effect.

Sampling G under each vertex works nicely in absence of seams, since it projects
the vertex onto the exact point in A that was used to render it on screen. But it requires
G to contain texture coordinates for all the triangle vertices. This is not guaranteed,
since M can be partially outside the object (see Figure 4.6). In this case one or more of
the vertices of the triangle can not be projected, since no target coordinate is known.
Therefore the projected triangles has one or two correct vertices in A – the ones that
actually sampled texture coordinates – while the other points get the coordinate that is
the result of sampling the background of G.

54 4.6 Solving the seam-problem

Ci

Cjq1

q2

Ci

q0

s

s

q2q2

q1q1

q0q0

A

M i

M j

Q1

Q2Q0

M i

M j
Q1

Q2Q0

S

S

S

Ci

Cj
q1

q2

Ci

Cj

q j
0

s

s j

s i
qi

0

q0q0

q j
1q j
1

q j
2q j
2

qi
1qi
1

qi
2qi
2

A

Figure 4.5. The top row shows the projection as described before. Since the triangle S
overlaps only the part M j of the 3D-mesh that uses the chart C j the projection can be
carried out without problems by just sampling the underlying texture coordinates of
M. The bottom row shows the result of simply using the sampled coordinates on the
left side (resulting in the wrong red triangle), while the right side shows the expected
result.

4.6 Solving the seam-problem

The two previously introduced problems can be solved in different ways that depend
on the main goal of the application. Here we introduce a straight forward approach
that is easy to implement. The solutions is to draw arbitrary close to the seam. This can
be achieved by iteratively refining the projection mesh M until each triangle overlaps
at most two pixels. We implement this using a geometry program and two transform-
feedback-buffers (T1 and T2). To refine the mesh we draw the initial mesh M0 while
the shader tests for each triangle if it overlaps a seam.

To detect that, we update G to contain a chart ID within its blue channel for all vis-
ible pixels of S in A. These chart IDs are computed together with the parameterization
of the mesh and handed over as a third component of the texture coordinates when
rendering S into G.

Note that there could be seams within one chart, where for example the left side and
the right side of the texture mapping meet. This case cannot be handled by the forward-
mapping approach and needs to be identified in a preprocessing step. By splitting
up such a chart into two, therefore creating an additional seem, the problem can be
overcome. This does not interfere with the process of the mapping though, and does
not create any problems during the projection step.

In the refinement step the shader reads these chart IDs from the blue channel of G

55 4.6 Solving the seam-problem

Figure 4.6. Two triangles of the mesh M are partially outside of the target object S.
Only one of the vertices of M would sample a valid UV-coordinate, while the others
would not sample any. This makes a projection of these two triangles impossible. Note
the huge amount of information that is discarded, since the data that is to be projected
is simply getting lost, when these triangles are ignored.

and compares all of them. If even a single one has a different ID than the others, the
triangle needs to be subdivided into smaller ones. The subdivision scheme used by the
shader is visualized in Figure 4.7. It creates four smaller triangles for the original bigger
triangle if a subdivision is necessary while writing the original input triangle otherwise.
Furthermore, triangles that lie entirely outside the mesh are completely discarded. We
chose this subdivision scheme because it ensures that all the triangle vertices lie within
the center of a screen pixel, hence within the center of a texel in G.

Figure 4.7. The triangle that has to be refined overlaying a pixel grid (left side). This
triangle is then subdivided into four new triangles. The new vertices lie again in the
center of a texel of G (right side).

To achieve a good sampling and find every seam, the shader samples G not just at
the triangle vertices, but also at different locations inside the triangle. The number of
sample points within the triangle depends on the current resolution of the mesh. While
the big triangles of the initial mesh M0 need to have a high number of internal sample
points, this number can be decreased for later meshes due to their smaller triangle

56 4.6 Solving the seam-problem

M0 M1 M2 M3

Figure 4.8. We adaptively tessellate the initial mesh by iteratively refining the triangles
that overlap a seam (from left to right).

areas. Since the sampling of textures is rather expensive, this optimization is quite
important.

4.6.1 Subdividing M

Our first approach was implemented by passing the current tessellation level as a pa-
rameter to a single shader. Then within the shader we tried to execute different func-
tions with different numbers of samplings of G. This proved to be impossible however,
since texture accesses have to be fixed at compilation time of the shader. That forced
us to use a multi-shader approach, in which we implemented the different numbers of
samplings in different shaders and then loaded the appropriate shader, when switch-
ing between the render targets T1 and T2 after each refinement step. The iterative
refinement process can be seen in Figure 4.8.

The process of subdividing M starts with rendering the initial mesh M0 into T1. In
each of these rendering steps, the appropriate shader – that is, a shader with a good
number of samples for the current resolution of the smallest triangle in the currently
refined M – checks each triangle and subdivides it if this is necessary. This step is now
repeated by rendering the resulting mesh from the first step (M1) stored in T1 into T2

after selecting the right shader with fewer sample points to refine the mesh further. This
iteration is done f times – always switching T1 and T2 as being the render target in one
step and providing the current subdivision of the triangle mesh in the next – until the
smallest triangles (that is, triangles that have been refined continuously in every step)
overlap exactly two pixels in G. The final mesh M f is now so highly tessellated around
– and only around – the seam (see Figure 4.8), that triangles still overlapping the seam
can be discarded without having strong visible effects in the resulting projection.

4.6.2 Computational cost

In case the whole view V with a resolution of 1024×1024 is overlapped with an initial
triangle mesh of 4× 4× 2 triangles, the tessellation will be sufficient after 8 iterations.

57 4.6 Solving the seam-problem

While this approach leads to acceptable results, it needs multiple iterative steps on
the GPU that need to be started by the CPU. This communication will decrease the
computational speed of the otherwise entirely GPU-based technique. Note that a read-
back into the RAM is not needed, since the contents of transform-feedback-buffers can
be used for drawing by simply defining them as a VBO and using its index for drawing
its content.

Furthermore, the number of triangles that need to be drawn is usually much smaller
than the number of triangles that cover V with a size of 2× 2 pixels, since such a high
resolution is usually only needed for a fraction of V. But since the exact triangle count is
not known in advance, the transform-feedback-buffers need enough space to house the
worst case amount of triangles. This case occurs if every triangle needs a subdivision
in every step.

In cases where a 3D-object or scene has more than just one texture atlas we would
encounter a similar problem like with seams. Also in this case we can not simply use the
sampled UV-coordinates, since they might lie in different atlases. In that case we need
to draw into both related atlases. To handle this, we also store a unique ID for every
chart into the blue channel of G and – in case of multiple atlases for the given scene – we
additionally store the atlas-ID in the alpha channel of G. Writing and sampling these
additional information comes without an additional cost, since the texture fetching
reads all four elements (red, green, blue and alpha) for every access to it regardless.

In the example above that would be 512×512×2= 524288 triangles. Each needs
to store 3 vertices with 3 float (consuming 4 bytes) components for the coordinates,
leading to a memory consumption of 524288× 9× 4 = 18874368 bytes. Although 20
MB are not too much, requesting this amount in the limited GPU-memory should be
avoided.

In the next chapters we introduce other approaches that are more tailored for their
specific applications and are therefore more efficient in projecting data.

In case that the 3D-object has more than one texture atlas, our technique can han-
dle that by checking not just the seam-IDs when refining the brush mesh M, but also
checking for the additional texture-atlas-ID. The drawing itself would require as many
drawcalls to the mesh M, as there are texture atlases used in the scene. Although ge-
ometry programs are able to target more then one FBO at a time, it has to write into
all connected FBOs. So even if we bind all texture atlases for drawing, the restriction
of having to draw to all restricts any optimization here. Note that the filling of the
geometry buffer G has to be done only once in contrast.

58 4.7 Summary

4.7 Summary

In this chapter we introduced a theoretical idea that allows to continuously and smoothly
project data from a given viewpoint for any object into its texture atlas. The data is
stored in exactly the same way, as was visible from the viewpoint when projecting it
downward. Given a reasonable resolution of the texture atlas for the object that is the
target of the projection, no difference will be visible, unless the viewing onto the object
changes, at which point the data will be apparent to be now on the object’s surface, as
is the main purpose of texturing.

We mentioned the problems that are mainly created by different resolutions of the
texture atlas A, the resolution of the projected 3D-scene S and the resolution of the
data that is to be projected. We overcome these by projecting the texture coordinates
of S into an off-screen geometry-buffer G and overlapping the projection plane V with
a continuous triangle mesh M. We then sample G for each vertex of M and render the
triangle into A with these sampled coordinates. This way the graphics card is using the
best possible sampling of both the data that is to be projected, as well as the resolution
of A.

We also mention the problem created by seams when using the above mentioned
technique and introduce an adaptive tessellation as a solution to prevent any visual
artefact in the resulting projection. The tessellation introduced here is done on the
GPU and creates additional triangles only where it is necessary, therefore reducing the
amount of computation needed to draw the resulting mesh M.

The whole technique uses the graphic card in the way it is intended to – that is,
transforming vertices, texturing and linear interpolation of data across triangle surfaces
– by reducing the projection computation to a sampling of an off-screen buffer that
contains the results of this mapping. Another important aspect of this approach is,
that the continuous data in V is projected continuously into A without any unwanted
distortions or holes.

Chapter 5

Mesh Painting

In this chapter we present a new algorithm that uses the Forward-Mapping-Idea intro-
duced in Chapter 4 for interactively painting onto 3D meshes exploiting recent advances
of GPU technology (see Section 3.3).

As the user moves a brush over one or more 3D objects, a selected paint pattern
is projected onto the 3D geometry from the current viewing angle and copied to the
corresponding region in the object’s texture atlas. Both operations are realized on the
GPU, with the advantage that all data resides in the fast GPU memory, which in turn
leads to high frame rates. Here we introduce a better approach for handling seams
allowing to draw arbitrarily close to them in Section 5.2.4

Whenever the brush overlaps two or more patches, this situation is detected and
the paint pattern is copied correctly to the corresponding texture charts. Due to the
forward-mapping idea, the operation of the projection into the texture atlas is reduced
to texture lookups. The performance of this algorithm is independent of the resolution
of both the brush and the objects texture atlas as well as the number of mesh triangles.

5.1 Introduction

A common way of storing data given on the surface of a 3D mesh is to write it to the
object’s texture atlas [35]. And as the texture resolution dictates the sampling density,
current techniques usually fill the texture by sampling the surface values on the mesh
once for each texel [36]. For large textures this can be very expensive and therefore
undesirable, in particular if the data on the mesh surface changes frequently and only
in small areas.

An example of the latter is mesh painting, where the user wants to draw with a
brush onto the surface of a mesh and so its texture atlas must be updated correctly and
at interactive speed. In this situation, a more natural approach is to work the other way
around, that is, to project and copy the brush pattern into the relevant texels.

As mentioned in Chapter 4, the main difficulty of this approach is to correctly deal

59

60 5.2 The algorithm

with texture atlases that contain more than one texture chart (see Section 4.5). In this
situation, the 3D mesh is split into several patches, each with its own texture chart,
which is generally unavoidable for complex meshes, both for topological and practical
reasons regarding parametric distortion [33].

Now, if the projection of the brush B onto the 3D-object S is a contiguous region on
the mesh surface that spans across k ≥ 2 patches Ci , i ∈ 0 . . . k, its projection into A is no
longer contiguous as it lies in different texture charts (see Section 4.5 and Figure 4.5).
Note that the notation changed slightly from Chapter 4. We replace V that described
the whole viewplane with B that denotes a brush that can be – and in most cases is –
much smaller than V.

We handle this situation by mapping the brush into each of the separate texture
charts that correspond to the k patches which intersect with B. In order to realize this
idea, we must enlarge the charts by computing additional virtual texture coordinates
VTC for the mesh vertices near the patch boundaries (see Section 5.2.5). A nice conse-
quence of using enlarged charts is that the texture data is replicated in corresponding
regions near the chart boundaries in the texture atlas, which in turn helps to avoid
texture bleeding if bilinear texture filtering is turned on, leading to texel-reads slightly
outside of the current texture chart. Figures 5.1 and 5.7 show some examples of our
approach.

Our technique is designed to nicely follow the flow of the graphics pipeline and
exploits the capabilities of every unit: vertex processor, geometry processor, rasterizer,
and fragment processor. Once fed with the relevant data, it computes the mapping
Ψ : B→A that projects the brush into the texture atlas, purely on the GPU, without
needing to read any data back from the graphics card, and it requires only a single
drawing step for any painting that is done. Furthermore it does not require the multi-
step adaptive tessellation presented in Section 4.6 that was reducing the computational
speed due to the communication between the GPU and CPU and the necessary synchro-
nization.

As mentioned in Section 4.3 a notable feature of our technique is that it treats the
brush as a contiguous object and does not simply project each single pixel individually
into the texture atlas. The latter approach would create holes in the texture if the
texture has a higher resolution than the brush, but our approach does not suffer from
such sampling artefacts. Moreover, the runtime is independent of the mesh complexity.

5.2 The algorithm

Let us start by fixing the notation used in the description of our algorithm. The given
3D-object-mesh S consists of vertices V ⊂ R3 and triangles T , and usually each ver-
tex v ∈ V has a unique associated texture coordinate u ∈ T in the 2D-texture-atlas
A ⊂ R2. These texture coordinates can be computed with any standard parameteriza-
tion method and we assume them to be given. In our examples, we used the method

61 5.2 The algorithm

Figure 5.1. Overview of our method (from left to right): The first image shows the
3D mesh S that the user wants to paint onto. Note that it is segmented into several
patches as becomes clear from the next image, which shows the content of the geom-
etry buffer G, i.e. the interpolated texture coordinates for S, color-coded in the red and
green components. The third image shows the virtual texture coordinates of triangles
near the seams. The color coding is as for the second image and it can be observed that
they continue the texture coordinates of each patch across the seams into the neigh-
bouring patches. The rightmost image finally shows the result of a painting session;
the corresponding texture atlas is shown in Figure 5.2.

Figure 5.2. A part of the texture atlas used for the rightmost image in Figure 5.1. The
thick black lines show the borders of the texture charts.

of Lévy et al. [33]. They induce the parameterization Φ: S → A, which linearly maps
from each mesh triangle T = [v0, v1, v2] ∈ T to the corresponding texture triangle
t = [u0, u1, u2] ⊂A.

If the mesh is split into k > 1 patches S = S1 ∪ · · · ∪ Sk, each with its own texture
chart Ci , then we occasionally add the chart index i to texture coordinates and triangles

62 5.2 The algorithm

Figure 5.3. A small collection of brushes used for the example in Figure 5.1 and brush
geometry for n= 8 (rightmost image).

in order to emphasize to which chart they belong (e.g., ui ∈ A or t j ⊂ A). Moreover,
any mesh vertex v on the common boundary of a pair of neighbouring patches Si and S j

has two texture coordinates, ui and u j , one in each corresponding chart, and likewise
for the few vertices where three (or even more) patches meet.

The brush B that is used for painting onto the object consists of the brush texture
(a general 2D image) and the brush geometry M, which is a simple regular 2D mesh
with (n + 1)2 brush vertices Q and 2n2 brush triangles M (see Figure 5.3 right). The
brush tessellation n depends on the distance between the camera and the object and is
chosen such that size of the brush triangles is similar to the size of the mesh triangles
in screen space (see Section 5.2.4 for details). Note that this changes only once after
each repositioning of the camera and it does not require an adaptive tessellation of the
mesh every time when a draw stroke is invoked.

More formally, we let the brush be the unit square B = [0, 1]×[0,1] and sample the
brush texture at the given texture coordinates for any point b ∈ B. Moreover, the brush
vertices are distributed on a regular grid over B, i.e. Q = {(i/n, j/n) : 0≤ i, j ≤ n}, and
so the whole brush is covered by brush triangles, B =

⋃

M∈M S.
Now the main goal of our method is to efficiently implement the mappingΨ : B→A

on the graphics card and use it to copy the content of the brush texture into the the
corresponding parts of A as described in Section 4.3. This is done by first projecting
each brush vertex q ∈ Q onto S and then using the given parameterization Φ to deter-
mine the associated texture coordinate q = Ψ(Q) = (Φ ◦Θ)(Q) of the projected point
Θ(Q) ∈ S. Finally, we extend the mapping Ψ from the brush vertices to the brush tri-
angles, i.e. for each brush triangle M = [Q0,Q1,Q2] ∈ M we linearly map the brush
texture to the corresponding triangle m= [q0, q1, q2] in A.

5.2.1 Overview

We distinguish two possible user interactions: either the user changes the camera po-
sition or the viewing angle, or uses the brush to draw onto the mesh. In the first case,
we

• draw the mesh on screen with texturing and lighting turned on, so that the user
sees what he is interacting with;

63 5.2 The algorithm

• draw the object again into the Geometry-Buffer G, which is a FrameBufferOb-
ject (FBO) that stores the interpolated texture coordinates of the mesh (see Sec-
tion 5.2.2);

• adapt the resolution n of M.

On the other hand, when drawing onto the mesh, the user moves a textured brush (see
Figure 5.3) with the mouse over the screen and this texture needs to be copied (or
alpha-blended) into the corresponding regions of the texture atlas, either continuously
(painting) or when the mouse button is pressed (stamping). In order to do so, we

• draw the brush triangles on the screen and texture them with the currently chosen
brush texture to give the user the feedback necessary for drawing onto the object;

• read the corresponding texture coordinates for the brush vertices from G and
draw the brush triangles again, this time into A, using the texture coordinates
retrieved in the previous step (see Section 5.2.3);

• draw the mesh on screen with texturing and lighting turned on (as above) with
the new texture information created in the previous step, so as to give the user
direct feedback of his drawing action. Note that we do not need to re-compute
the contents of G.

Note that all steps can be done at interactive rates and depend neither on the com-
plexity of the mesh (number of vertices and triangles) nor on the resolution of both the
brush texture and A.

5.2.2 Initialization

At the start of the program, both the object S (including texture coordinates) and its
texture atlas A are loaded. Since we need to have write access to the texture on the
graphics card, we store A as an FBO. The texture can either be an existing texture
image or just an empty bitmap, set to a user-specified background color. An important
feature of using an FBO as texture is, that FBOs allow to write negative values, and
hence support additive and subtractive image manipulation.

We further instantiate G as a second FBO, whose resolution is identical to the view
screen V in which the 3D-object is displayed. This G is used to store the interpolated
texture coordinates of the object and it is filled in a second rendering step whenever
the user has changed the camera settings. For each mesh triangle T = [v0, v1, v2] that
is rendered into G, we let the rasterizer linearly interpolate the texture coordinates
u0, u1, u2 of its vertices, and let the fragment program write the interpolated texture
coordinate (u, v) ∈ A into the red and green component of G’s pixels (see Figure 5.1).
If the mesh consists of two or more patches, then we further use the blue component to
store the index of the chart that each triangle belongs to (see Section 5.2.4 for details).

64 5.2 The algorithm

Thus, G provides an efficient evaluation of the parametrization Φ: S → A on the
GPU: for any surface point O ∈ S that is visible from the current camera position and
hence has an associated screen coordinate (x , y) ∈ N2 in V, we can simply get its texture
coordinate Φ(O) by reading it from G at the coordinates (x , y).

5.2.3 Painting

During a painting session, the goal is to quickly transfer the brush texture into the
texture atlas, and this essential part of the program must be as fast as possible, because
it is carried out for every paint stroke. We implement this operation on the GPU by
rendering the brush geometry in the following way.

Whenever a paint event is evoked, each brush vertex Q ∈ Q has a certain screen
coordinate (x , y) that depends on the current position, orientation, and size of the
brush. By associating with Q the surface point O ∈ S that is visible at pixel (x , y) in the
geometry buffer, we effectively define a projection Θ : B→ S for each brush vertex with
π(Q) = O. Note that this merely describes the underlying concept, but does not involve
any computations. The real action happens in the vertex program, where we read G
at (x , y) to retrieve the texture coordinate Φ(O) of the surface point O and replace the
coordinate (x , y) of Q by Φ(O) before sending this brush vertex down the rest of the
graphics pipeline. We additionally send the brush texture coordinate (i/n, j/n) ∈ B
along with the other data, to retrieve the brush color value by sampling the brush
texture for every fragment b that gets drawn into A with the best fitting coordinates.

As Φ(O) = Φ(Θ(Q)) = Ψ(Q), this modification essentially converts each brush tri-
angle M = [Q0,Q1,Q2] into the corresponding texture triangle m= [q0, q1, q2], where
qi = Ψ(Q i). By now rendering this triangle into the FBO that contains the texture atlas
A, with texturing turned on, we effectively copy the brush texture that is given for each
brush triangle M into the correct portion of the texture atlas.

We should emphasize here that the brush triangles form a contiguous cover of the
brush, and so this way of implementing the (piecewise linear) map Ψ : B→ A is guar-
anteed to create a contiguous copy of the brush texture in the texture atlas. I.e., even
if the resolution of the texture atlas is much higher than that of the brush texture, it
does not leave any relevant pixels in A unpainted, as it could happen if we would only
splat the individual brush texture pixels into A.

5.2.4 Seams

While the method explained in the Section 5.2.3 works well if the mesh consists of a
single patch, a slightly more involved process is required for handling multiple patches,
which is the usual situation for any non-trivial mesh. It can then happen that the brush
overlaps two or more patches and so the brush texture must be split and copied into
two or more disjoint regions in the texture atlas. We resolve this problem on the level
of brush triangles.

65 5.2 The algorithm

First of all – as mentioned in Section 5.2.2 – we use G to also store the chart indices
of the visible mesh triangles. So when looking up the texture coordinate q for some
brush vertex Q in the vertex program, we also get the more detailed information that
it belongs to some chart Ci , i.e. q = qi . After the primitive assembly, we then use a
geometry program to check if the current triangle m = [qi

0, q j
1, qk

2] is contained in a
single patch or spans across a seam by comparing the chart indices i, j, k. If they are
all the same then we just proceed as usual (Figure 4.5, top), but if two of them differ,
say i 6= j = k, then rasterizing m as it is would copy the brush texture for this triangle
to the wrong region of the texture atlas (Figure 4.5, bottom left).

Instead, the correct solution in this situation is to create two instances mi = [qi
0, qi

1, qi
2]

and m j = [q j
0, q j

1, q j
2] of m and to render them into the charts Ci and C j , respectively (Fig-

ure 4.5, bottom right). But how do we get the missing texture coordinates q j
0, qi

1, qi
2

for setting up mi and m j?
A straightforward solution is to simply enlarge each patch Si by adding a ring of

triangles to its boundary before computing the corresponding chart Ci . Thus, if Si and
S j are neighbouring patches and T is a triangle in Si with at least one vertex on the
seam, then it gets two corresponding texture triangles t i ⊂Ai and t j ⊂A j . While only
the primary texture triangle t i is used for texturing T when the mesh S is displayed, we
need the secondary t j to provide the missing texture coordinates above. More precisely,
when initializing G, we store the interpolated texture coordinates from t i and the index
i as RGB values as described in Section 5.2.2, but additionally store the interpolated
texture coordinates from t j and the index j as RGB values in a second color attachment
of the FBO of G.

Then, if the brush triangle vertex Q0 is projected into this triangle, Θ(Q0) ∈ T , we
first fetch its primary texture coordinate qi

0 from the G in the vertex program as in
Section 5.2.2. If the geometry program later detects a seam overlap, we look up the
secondary texture coordinate q j

0 in the same way from the second color attachment
of the G in order to correctly set up the triangle m j . Of course, the same strategy
is applied to get the secondary texture coordinates qi

1 and qi
2 of the other two brush

triangle vertices which are needed to specify mi . Note that all this can be realized in
the geometry program with just a single conditional branch and is thus very efficient.
Figure 5.4 gives an overview of the described algorithm.

Near a mesh vertex v where three mesh patches meet, it can even happen that the
vertices of a single brush triangle are mapped into three different texture charts. In this
case, we need to create three instances of m, which in turn requires to store another
secondary set of texture coordinates plus index for all mesh triangles in the one-ring
around v, and we simply use a third color attachment to G for storing and accessing
this data.

Even with this method of texture chart enlargement, it may occur that the sec-
ondary texture coordinates, which are needed to specify the several instances of a
seam-overlapping brush triangle, are not available in G. For example, this can happen

66 5.2 The algorithm

Geometry-Shader

C1 = C2 = C3

C1 = C2else

C1 = C3else

C1 != C2 != C3else

Sampling chart Ids C1,C2 and C3

Sampling virtual
texture coordinates

and the texture coordinates

Sampling brush texture

Texture Atlas

Fragment-Shader

Figure 5.4. Overview of the painting algorithm. The geometry-shader receives the
brush geometry and checks the chart-ids under each of the three triangle vertices.
Depending on the result, it creates up to three triangles (using the sampled VTC) in
the overlapped charts. The fragment-shader then samples the brush texture with the
given texture coordinates of that brush triangle – its the same coordinates for all created
triangles – and draws the result into A with the chosen blending function.

when the brush triangles are relatively big compared to the mesh triangles (in screen
space) and then one of its vertices may end up being projected into a mesh triangle
that is not adjacent to the seam and hence has no secondary texture coordinates in the
neighbouring patch (compare Figure 5.1).

Our solution to this problem is twofold: first, we enlarge the patches not only by a
single ring of triangles, but rather add two or even three rings around the boundary of
each patch; second, we adapt the brush resolution n so that brush triangles and mesh
triangles are of similar size. E.g., if the mesh is far from the camera, we need a high
resolution of the brush, while a brush with two triangles is sufficient if the user has
zoomed very close to the mesh.

67 5.2 The algorithm

Figure 5.5. It is important to calculate the VTC very carefully. If the parametric distor-
tion to both sides of the seam is not compatible, then the painted pattern gets strongly
distorted when mapped back to the mesh (left), otherwise it works out nicely (right).

5.2.5 Virtual texture coordinates

Although the idea of providing secondary texture coordinates by enlarging and param-
eterizing the mesh patches as described in the previous section works conceptually, it
has two major disadvantages:

1. It is often the case that a parameterization is given and can or should not be
changed, for example, when a user wants to modify an already existing texture
atlas.

2. By parameterizing the enlarged patches individually, it can happen that distortion
across a seam edge between patches Si and S j is different in the corresponding
charts Ci and C j , and this can yield a severe texture mismatch on both sides of
the seam when mapping the texture back to the mesh as shown in Figure 5.5.

We overcome both disadvantages by enlarging not the patches, but rather the charts
of a given parameterization (without modifying them) and by taking care of maintain-
ing the same parametric distortion around corresponding chart boundaries. In order to
distinguish the secondary texture coordinates computed by our method from the ones
obtained by simply parameterizing enlarged patches, we call them virtual texture co-
ordinates VTC. While computed differently, VTC are utilized by our method exactly as
explained in the previous section.

Suppose Si and S j are neighbouring patches and that [v1, v2] is one of the
seam edges on their common boundary. Adjacent to this edge are the two
trianglesT1 = [v0, v1, v2] ⊂ Si and T2 = [v3, v2, v1] ⊂ S j , with corresponding texture tri-

68 5.2 The algorithm

(a) (b) (c) (d) (e) (f)

Figure 5.6. From left to right: chart of a mesh patch (a); VTC of neighbouring triangles
with one seam edge (b); initial VTC of remaining vertices in the one-ring (c); result
of optimizing the one-ring (d); initial VTC of vertices in the two-ring (e); result of
optimizing the two-ring (f). Note how the optimization untangles the triangles and
reduces the distortion.

angles t i
1 = [u

i
0, ui

1, ui
2] ⊂ Ci and t i

2 = [u
j
3, u j

2, u j
1] ⊂ C j , according to the given parame-

terization. In order to compute the VTC u j
0 of v0 in C j we

1. rotate T1 about the common edge [v1, v2] so that the rotated vertex ṽ0 and T2 lie
in the same plane;

2. determine the barycentric coordinates of ṽ0 with respect to T2, i.e. we compute
λ1,λ2,λ3 such that ṽ0 =

∑3
k=1λkPk and
∑3

k=1λk = 1;

3. set u j
0 =
∑3

k=1λku j
k.

In this way, the quadrilateral ◊ j = [u
j
0, u j

1, u j
3, u j

2] is an affine image of the quadri-
lateral [ṽ0, v1, v3, v2], and by computing the VTC ui

3 of v3 in Ci analogously, we guar-
antee that the parametric distortions across the two corresponding chart boundaries
[ui

1, ui
2] and [u j

1, u j
2] are compatible. That is, if we copy the brush texture into both

quadrilaterals ◊i = [ui
0, ui

1, ui
3, ui

2] and ◊ j as described in Section 5.2.4 and illustrated
in Figure 4.5, and texture the mesh triangles T1 and T2 with the texture information
stored in t i

1 and t j
2, then these fit perfectly together along the common edge [v1, v2],

because ◊i and ◊ j are just affine images of each other (see Figure 5.5).
While this fixes the VTC for the vertices of all triangles with one edge on a seam

(see Figure 5.6 b), there usually remain a few more vertices in the one-ring around each
patch boundary for which we still need to specify a VTC. For example, if [v0, v1] and
[v1, v2] are two successive seam edges with adjacent triangles [v0, v1, v3] and [v1, v2, v4]
and two triangles [v1, v5, v3], [v1, v4, v5] in between (all in the same patch and on the
same side of the two edges), then the previous algorithms determines VTC u3 and u4

for v3 and v4, but not for v5.
We first initialize this missing VTC by a simple linear interpolation u5 = (u3 + u4)/2,

and similarly if there should be more missing VTC between u3 and u4 (see Figure 5.6 c).
We then minimize the parametric distortion for the affected triangles [v1, v5, v3] and
[v1, v4, v5] by applying a few iterations (10 to 15) of the ARAP method [34] to get an
optimized VTC u5 (see Figure 5.6 d).

69 5.3 Summary

The whole procedure can be repeated to add more rings of VTC to each chart (see
Figure 5.6 e,f), with the only difference, that from the second ring on, all added VTC
can be optimized by the ARAP method, as only the VTC that were computed in the very
first step above are constrained to remain unmodified so as to guarantee compatible
distortion across the seam edges. The only case in which we deviate from this condition
is when some of the initially computed virtual texture triangles overlap each other,
which happens very rarely (less than 1%). Then we include the VTC that cause the
overlap into the ARAP optimization so as to get rid of the overlap.

5.3 Summary

In this chapter we presented a practical implementation of the forward-mapping-idea
presented in Section 4. It demonstrates that the data projection is fast, precise and
without discontinuities even in the presence of seams. The technique smoothly draws
over seams in the mesh by extending the data slightly outside of the current texture
chart so that it can be used without errors when visualizing the object with bilinear
texture interpolation.

The mesh painting algorithm stands out for three reasons: first, the underlying
brush geometry guarantees that the brush texture is copied correctly into the texture
atlas, regardless of the resolution of both the brush and the atlas.

Second, our method nicely handles the problem of seam-overlapping and provides a
simple way of projecting a contiguous area from screen space correctly into the texture
atlas, even if this area spans across several patches and thus needs to be mapped to
several charts at separate locations in the texture atlas.

Third, all steps of our technique are implemented exclusively on the GPU, including
all data access, which avoids expensive read back operations of data into the RAM.
It exploits the natural flow of the graphics pipeline (vertex → geometry → fragment
program) and needs to write only into those pixels of the texture atlas that are affected
in each paint event, instead of testing for all texels whether the corresponding surface
point is below the brush or not.

All this leads to interactive frame rates (more than 60 fps) on a modest Nvidia 9600
GT Mobile graphics card and is basically independent of the mesh complexity (number
of vertices and triangles) and both the size of the brush texture and the texture atlas.

A nice feature of our method is that we can also handle the case where the user
wants to draw onto more than one mesh, each with its own texture atlas. Using the
MultiDrawBuffer-extension of FBOs, we can easily have the texture FBO contain more
than one color buffer, and the fragment program that manages the copying of the brush
texture into the texture atlas can decide into which texture to map, depending on the
mesh which is currently being painted. It receives this information from the geometry
program.

Despite the advantages of our method, it also has two limitations. So far, we do

70 5.3 Summary

Figure 5.7. Two views (top and bottom row) of a mesh that has been painted with our
method. The left side shows the content of the first layer of the TexBuffer, the right side
shows the textured model as displayed to the user.

Figure 5.8. Texture atlas for the mesh in Figure 5.7.

not handle the situation where more than three mesh patches meet in a common mesh
vertex. This could in principle be handled by adding further color attachments to the
G, but would require a much more complex (and slower) geometry program for dis-
tinguishing all the different situations that can occur in the case that a brush triangle
overlaps this common mesh vertex. Moreover, our method of choosing the brush reso-
lution adaptively may fail, if the mesh triangles are very non-uniform in size, so that a
cluster of very small triangles resides next to a very large triangle on opposite sides of a
seam. Then, adding any fixed number of VTC rings around the chart boundaries might
not be enough to ensure that every brush vertex of a seam-overlapping brush triangle
can read the required VTC from G.

Chapter 6

Indirect Illumination

Although indirect illumination is essential for realistically rendering virtual scenes, it
is rarely computed on the fly in interactive computer graphics, due to the expensive
computations that are required. Instead, indirect illumination is usually either precom-
puted or created by artists and stored in a special texture map called light map. This
resembles indirect lighting well enough to improve the visual quality of the scene but
cannot react to changes in the lighting conditions. Although there are techniques that
can be used to illuminate objects in real time by indirect light, they require the indirect
lighting situation of the surrounding scene to be known. An extensive overview of the
state-of-the-art is given in Chapter 2.

Most of these techniques only provide a rough approximation of the global illumi-
nation in order to improve the visual quality of rendered scenes, but they are not able
to react to changes in the lighting situation. Other techniques, that achieve interactive
rates, can approximate indirect illumination in a scene by computing only one or two
light bounces, but this is insufficient for complex scenes, like the one in Figure 6.10,
because it prevents the light to spread out far enough.

In general, most indirect illumination techniques perform the rather costly lighting
computations in every frame instead of storing the results and reusing them for subse-
quent frames, which wastes valuable computational power, in particular if the scene is
static and has little changes in the lighting conditions.

In this chapter we present a novel approach for approximating the indirect illumi-
nation of a virtual scene with multiple light bounces on the GPU and storing it in the
light atlas A of the scene. This approach is not intended to compute direct lighting ef-
fects, which can be generated more efficiently with better quality using other standard
techniques. Furthermore we restrict the computation to purely diffuse surfaces. The
multi-bounce method that we present in this chapter captures the phenomenological
properties of the exact diffuse light distribution with high quality in a couple of sec-
onds up to a few minutes, depending on scene complexity and the desired quality of
the result.

71

72 6.1 Basic idea

We achieve this by splitting the lighting computation into 2 separate parts (see
Section 6.1). In the first step we compute an approximation to the overall light distri-
bution within the scene (see Section 6.2). We then use the results of this computation
to compute the final visible result in high quality (see Section 6.3). Our technique
allows for fast computations of small changes in the lighting conditions by computing
only the changed lighting conditions while reusing the unchanged previous results (see
Section 6.4). In Section 6.5 we give an overview of the visual result.

The main contributions of this technique are:

• approximating a physically correct low-resolution light distribution with multiple
bounces;

• converting the result into a high-resolution light distribution and transferring it
to a light atlas;

• recomputing only necessary parts of the light distribution in case a single direct
light source changes.

6.1 Basic idea

Since many scenes require significantly more than just one or two light bounces to
produce realistically looking results (see Figure 6.10), we separate the basic light dis-
tribution from the gathering of these results into the final visible result.

So on one hand, the light distribution from a light source deep into the scene –
around corners and obstacles – is an important part of giving a realistic appearance to
a scene, but it is hard for an observer to judge the correct light distribution by look-
ing at an image. The aspect of soft shadows created on visible surfaces on the other
hand is very important and can create or destroy the illusion of looking at a real scene
depending on the quality and consistency of the computed results.

Therefore we split the lighting computation into two separate steps with different
goals. The first step concentrates on distributing the light energy roughly but physically
plausible over the scene. To achieve this, we use pre-computed virtual point lights VPLs
similar to the technique described by Lehtinen et al. [31]. In the light distribution these
VPLs are used in a way similarly to patches in classical shooting-gathering approaches
like [6, 7]. As the results computed in this first step are only intermediate and never
visible to the user, an approximation is perfectly fine.

This fist step is a good approximation for the overall light distribution, but does
not give a visually appealing result so far. To achieve that, we introduce a second step,
that creates visually appealing and smooth results, capturing all the phenomenological
effects of soft shadows, brightness gradients and color bleeding. This is implemented
by rendering the lighting of all the VPLs into A which is then used for rendering the

73 6.2 Coarse light distribution

scene with the indirect illumination. Storing the computed lighting results allows us to
reuse it as long as the scene configuration does not change.

In case that only few of the direct lights change at a certain point, we can also undo
their – and only their – previous light contribution in A. This is done by recomputing the
first step for the light in question this time with the negative amount of energy, exactly
undoing the effect that the changed lights had on the scene radiosity. We then compute
their contribution with their new configuration – either a different direction, color,
brightness, etc. – and check for the changes in the VPLs. We finish the computation by
redrawing only these VPLs that changed with the energy that is the difference between
the previous and the current radiosity.

Since we can also render with negative values into A, the final result after these
three computations will contain the correct light solution for the scene, without taking
the unchanged lights into consideration. Note that the light atlas does not store the
direct lighting effects and in all our examples we consider the indirect illumination
only, since the direct lighting can be computed more efficiently with better results using
existing rendering techniques.

The drawing into A is based on the Forward-Mapping-approach introduced in Chap-
ter 4 but needs to be tailored to this specific problem.

Combining these two techniques, we achieve short computation times by distribut-
ing the light only coarsely in step one and get a high quality by switching to a high
resolution rendering in step two when computing the results that are used to finally
display the scene (Section 6.5). Furthermore, the rendering could even be performed
in the background while the user is navigating the scene. That enables an early judge-
ment of the lighting situation and the user can cancel the computation early on and
change the lighting to better fit the intended effect. Using a low number of VPLs for a
rough first decreases the necessary computation time further and still allows for judging
the overall setting of the direct light sources involved.

Our algorithm, which is restricted to diffuse surfaces, computes realistically looking
results for complex scenes. The results are smooth and the render time does not depend
on the number of direct lights, since the initial distribution from these lights take only
a fraction of the overall computation time (see Section 6.5). Possible applications,
where these conditions apply include architectural light design, where most surfaces
are diffuse and quick previews help speeding up the process of placing and configuring
lights.

6.2 Coarse light distribution

We assume that the scene consists of diffuse surfaces and is illuminated by a number
of direct light sources. The goal of the first step of our method is to quickly approxi-
mate the indirect light distribution over the scene in a physically correct manner using
multiple bounces. We achieve this by discretizing the scene with uniformly distributed

74 6.2 Coarse light distribution

VPLs (Section 6.2.1) in a precomputing step, where each VPL represents a small surface
patch. The irradiance per VPL is then determined in two steps, first by distributing the
power from the direct light sources to all VPLs with a standard shooting method [51]
(Section 6.2.2) and then by iteratively distributing the irradiance amongst the VPLs
(Section 6.2.3). The visibility between two patches is determined by using sample
points associated with each VPL to get a more detailed distribution at low costs. The
main part of the algorithm is parallelized and runs on the GPU, but the priority queue,
which is needed for choosing the next VPL during the light distribution stage, is imple-
mented on the CPU.

6.2.1 Scene discretization

We start by uniformly distributing n VPLs V1, . . . , Vn over the scene with the desired
density (see Figure 6.1) and storing the normals N1, . . . , Nn and the reflection coeffi-
cients ρ1, . . . ,ρn of the patches Pj represented by each VPL Vj . The distribution of VPLs
is done in a pre-processing step that divides the scene into almost planar patches. Each
patch is then triangulated with a pre-determined triangle area size, using the triangle
tool [50]. The interior vertices of this triangulation are then used as VPL positions.
This guarantees each VPL to have a certain offset to nearby corners, which could other-
wise lead to artefacts in the light drawing stage. Furthermore, we create sample points
associated to each VPL, where each Vj has m j sample points S jk, k = 1, . . . , m j . The
sample points are generated in the same way as the VPLs, but with higher density. The
latter ensures that we can approximate the area A j of patch Pj by the number of sample
points,

A j ≈ m jC , (6.1)

C =
A
∑n

j=1 m j
,

with A denoting the overall surface area of the scene.

6.2.2 Initial direct light distribution

We now assume that the scene is illuminated by k direct light sources L1, . . . , Lk with
emitting powers Ẽ1, . . . , Ẽk, each represented by a light patch with area Ãi . Note that
we use the tilde accent in this section to distinguish quantities that correspond to the
direct light sources Li from those that belong to the patches Pj , which are represented
by the VPLs Vj . To distribute the light of the Li to the VPLs, we compute the initial
reflected power of Pj as

E j = ρ j

k
∑

i=1

F̃i j Ẽi , j = 1, . . . , n, (6.2)

75 6.2 Coarse light distribution

Figure 6.1. Distribution of VPLs (big dots) and associated sample points (small dots).
In this example, the density of sample points is 30 times higher than the density of
VPLs, so that the patches represented by each VPL become visible. In practice, it is
sufficient to use about 10 sample points per VPL.

where F̃i j denotes the form factor that describes the geometric relationship between Li

and Pj . Under the classical assumption that the patches are small and not too close to
the light sources, it can be approximated by

F̃i j = A j
〈li j , ni〉 · 〈−li j , N j〉

πdi j
2 · si j , (6.3)

where ni is the direction of light source Li , N j is the normal vector of patch Pj , li j is the
normalized light vector from Li to Vj , di j is the distance between Li and Vj , and si j is a
shadow or visibility factor that describes what percentage of the patch represented by
Vj receive light from Li . Note that for point lights the term 〈li j , ni〉 is simply set to one,
since there is no specific light direction.

Equation (6.2) is derived from the standard radiosity equation

B j = ρ j

k
∑

i=1

F̃ ji B̃i , j = 1, . . . , n,

by replacing the emitted radiosities B̃i of the light sources and the reflected radiosities
B j of the patches with the respective powers Ẽi = B̃iÃi and E j = B jA j , and by exploiting
the reciprocity of the form factors, F̃i jÃi = F̃ jiA j .

In order to implement this strategy on the GPU, we store the data in two VBOs.
The patch VBO contains the list of VPLs and stores for each Vj its position in world
coordinates, the normal N j , the number m j of associated sample points, and an offset
o j into the sample VBO. This sample VBO is just the list of sample point positions,

76 6.2 Coarse light distribution

grouped by VPLs, so that the position of S jk can be accessed with the index o j + k. In
addition, we use a transform feedback buffer that contains the incoming radiosities or
irradiances

I j =
B j

ρ j
=

E j

ρ jA j
(6.4)

of the patches Pj and is initialized with zero values. Note that we use the irradiance I j

instead of the power E j or the radiosity B j for efficiency reasons. Dividing both sides
of (6.2) by ρ jA j , we get

I j =
k
∑

i=1

F̃ ′i j Ẽi , j = 1, . . . , n, (6.5)

with the scaled form factor

F̃ ′i j =
F̃i j

A j
=
〈li j , ni〉 · 〈−li j , N j〉

πdi j
2 · si j . (6.6)

The advantage of computing (6.5) instead of (6.2) is that we do not need to access ρ j .
Moreover, we see that I j is independent of the specific light patch areas Ãi . Therefore,
we do not need to specify the actual light patches and can describe each light source
solely by its position, direction, and emitting power.

The direct light distribution is now implemented as a shooting method by iterat-
ing over the Li . For each Li we first render the scene from the light source’s point of
view and store the depth values in the FBO D. We then handle all VPLs in parallel by
processing the patch VBO with a vertex shader. This shader determines the contribu-
tion of Li to I j and accumulates these values in the TFB, thus computing (6.5). While
most terms of the form factor F̃ ′i j in (6.6) can be derived from the information associ-
ated with Li and Vj , the visibility factor needs to be determined on the fly to account
for changes in the scene configuration, like moving objects. To this end, we adapt the
hemicube algorithm [5] and project the sample points S jk of Vj , which are looked up
in the sample VBO, into the scene, by multiplying them with the current modelview-
projection-matrix. We then test the transformed z-components z jk against the values
in D, and compute si j as

si j =
1

m j

m j
∑

k=1

δk, δk =

¨

1, if z jk ≤ depth in D,

0, if z jk > depth in D,

where δk is essentially shadow mapping for each of the sample points.

6.2.3 Iterative light distribution

We finally distribute these initial radiosities iteratively amongst the VPLs with an
adapted version of the classical progressive refinement algorithm [6]. We start by set-
ting for each Vi the unshot irradiance∆Ii to Ii from (6.5) and creating a priority queue

77 6.2 Coarse light distribution

Figure 6.2. Light distribution from the active VPL Vi (green dot) to all other VPLs. The
left image visualizes the VPLs that are occluded as black dots, and the brightness of the
other dots corresponds to the amount of radiosity that each VPL receives from Vi. The
right image shows a close-up to the door on the right, with the sample points (small
dots) in addition to the VPLs. Sample points appear in black or white, depending on
their visibility. Note how the ratio of visible and occluded sample points influences
the brightness of the corresponding VPL.

of VPLs, sorted by the VPLs unshot power ∆Ei . According to (6.1) and (6.4), these
values can be approximated as

∆Ei ≈ ρimi∆IiC , (6.7)

and we compute and update them on the CPU after each shooting step. We then shoot
the unshot irradiance of the first element Vi of the queue into the scene (see Figure 6.2)
by computing

R← ρi F ji∆Ii , (6.8)

∆I j ←∆I j + R,

I j ← I j + R,

for j = 1, . . . , n, set ∆Ii to zero, and update the priority queue. This process is iterated
until the largest∆Ei is smaller than some threshold. Here, the form factor Fi j describes
the percentage of the power exchange from Pi to Pj and can be approximated similar
as above by

Fi j = F ′i jA j , F ′i j =
〈li j , Ni〉 · 〈−li j , N j〉

πdi j
2 · si j ,

where li j is the normalized vector from Vi to Vj and di j is the distance between these
two VPLs. Note that the scaled form factors F ′i j are symmetric in i and j, so that the
right hand side in (6.8) simplifies to

ρi F ji∆Ii = F ′jiρiAi∆Ii = F ′i j∆Ei .

78 6.3 Filling the light atlas

The unshot power∆Ei is taken from the priority queue, and the scaled form factors F ′i j
and the visibility factor si j are computed as in Section 6.2.2 using the sample points S jk

associated with the receiving VPL Vj . The only difference is that we now iterate only
over VPLs and no longer over direct light sources.

As in Section 6.2.2, the whole computation is done in parallel on the GPU and
therefore very fast (see Table 6.1). The CPU is involved only for updating ∆Ei , sorting
the priority queue and selecting the next VPL for distributing its unshot radiosity. Since
the form factors are computed on the fly, we avoid the O(n2) storage overhead.

6.3 Filling the light atlas

After having distributed the radiosity amongst the VPLs, the goal of the second step
of our method is to create a smooth high resolution light distribution and store it in
the light atlas A. We achieve this by shooting the light from each VPL into the scene
and accumulating the irradiance for all texels in A. The main idea of this algorithm
is simple (Section 6.3.1), but special attention needs to be paid to seams and shadow
edges (Section 6.3.2). We then improve both quality and timings by adding a per-texel
soft-shadow algorithm (Section 6.3.3).

6.3.1 Final shooting step

For each texel τ of the light atlas A with coordinates (u, v) we compute its irradiance
as

A(u, v) =
n
∑

i=1

F ′i (u, v)Ei , (6.9)

where F ′i (u, v) is the scaled form factor between Vi and the scene point P(u, v) which
corresponds to the texel τ. As in the first step of the algorithm (Section 6.2) we imple-
ment the computation of the irradiance in (6.9) as a shooting method by looping over
the VPLs and accumulating their contributions in A, but with one important difference
regarding the visibility test.

During the distribution of light amongst the VPLs, the number of light receivers is
relatively small and it is efficient to determine the visibility for each VPL. In this final
step, however, the resolution of the light atlas is usually high, hence testing each texel
for visibility is costly. Therefore, we propose a different strategy for finding the texels
that are visible from the current VPL Vi . We overlap the scene, as seen from Vi , with a
triangle mesh and project each triangle first onto the scene geometry and from there
into A (see Figure 6.3). The projected triangles thus cover exactly that part of A which
contains the texels that receive light from Vi .

In order to implement this strategy on the GPU, we first place a camera at the
position of Vi , looking in the direction of Ni . We then create a uniform 2D triangle
mesh M that covers the camera’s viewport and render the scene into a geometry buffer

79 6.3 Filling the light atlas

Figure 6.3. The light is distributed from a VPL into the scene by first rendering the
scene from the viewpoint of the VPL and overlapping it with a 2D triangle mesh (left).
Each triangle is then projected into the light atlas A (centre), and the light distribution
is computed for all covered texels (right).

G = [T , N , D]with three layers. These layers store the texture coordinates, the normals
with respect to the local coordinate system of Vi , and the distance to the camera of the
underlying scene geometry, respectively. This render step effectively performs the first
part of the projection mentioned above, albeit in the inverse direction. That is, the
scene is projected onto M rather than the other way around. We now draw M using a
vertex shader that samples the texture coordinate buffer T at the coordinates (x , y) of
each mesh vertex and replaces the latter with T (x , y). This turns each mesh triangle
into a triangle in A and completes the projection process. We also sample the normal
buffer N and the distance buffer D at (x , y) and send these values as vertex attributes
further down the pipeline. In the fragment shader we therefore have all the relevant
information for computing and accumulating the contributions F ′i (u, v)Ei of each Vi to
the texel at (u, v), except for the light vector l. Since the light vectors are constant
with respect to the local coordinate systems of the VPLs, we precompute them for each
pixel of a texture with the same resolution as G, sample this texture at (x , y) in the
vertex shader, and introduce this value as an additional vertex attribute. Note that
this procedure automatically resolves the visibility test, because only visible texels are
considered.

In order to correctly distribute the light of the VPL into the whole scene, we would
have to set up the camera with a large opening angle, such that all visible parts of the
scene are covered. But as this induces high distortions in the projection, we consider
instead a hemicube to cover the 180° view from the VPL’s position and use the geometry
shader to replicate each triangle of M five times, once for each side of the hemicube.

6.3.2 Handling seams and shadow edges

The two-step projection process described in the previous section works as long as a
triangle does not straddle a seam or a shadow edge. In these cases, the vertices of the
triangle get projected into different charts in A so that the resulting texture triangle is
wrong (see Figure 6.4).

80 6.3 Filling the light atlas

p1
p2

p3

salta thgilecaps neercs

q2

q3

q1

q1 q2

q3

q1
q2

q3

Figure 6.4. The vertices of a triangle that overlaps a seam (left) get projected to texture
coordinates in different charts of the light atlas. As the charts may be packed arbitrarily,
the resulting texture triangle (dashed) does not cover the correct texels, which in turn
are the ones inside the three black triangles (right). A similar situation occurs at shadow
edges.

To resolve this problem, we propose to replicate and project those triangles into
each chart involved by reconstructing the missing coordinates. So far this requires an
additional layer I in G which stores in each pixel the chart ID of the underlying scene
geometry.

The challenge here is that not all the vertex coordinates of the projected triangles
can be read from the geometry buffer G. For example, in the situation shown in Fig-
ure 6.4, the copy of the mesh triangle S = [Q1,Q2,Q3], which is projected into the first
chart, is missing the vertices q′2 and q′3.

We resolve this problem by using Taylor’s theorem to approximate these missing
vertices as

q′k ≈ q1 +∇T (Q1)(Qk −Q1), k = 2, 3.

However, this approximation is correct only if T varies linearly, but due to the perspec-
tive correction, which is applied to T by the GPU when the scene is rendered into G,
this is not the case. Therefore, we replace the layer T of G with the layer U , which
stores the texture coordinates divided by the homogeneous w-coordinate. We turn off
the perspective correction for this layer and instruct the GPU to also create the layer∇U
with the screen-space derivatives of U . Moreover, we add the layer W , which contains
the reciprocal w-coordinates without perspective correction, and its derivatives ∇W to
G. With these layers at hand, we can now compute the projections qk = T (Qk) of the
mesh vertices Qk as

qk =
U(Qk)
W (Qk)

, k = 1, 2,3, (6.10)

and the missing vertices of the projected triangles as

q′k =
U(Q1) +∇U(Q1)(Qk −Q1)
W (Q1) +∇W (Q1)(Qk −Q1)

, k = 2,3, (6.11)

and similarly for q′′k and q′′′k .

81 6.3 Filling the light atlas

Figure 6.5. It may happen that a triangle of M overlaps parts of the scene (blue) that
belong to charts that are different to the ones corresponding to the triangle vertices.
This can happen, for example, at the corner of a door frame (left) or in the case of two
pillars in front of a wall (right). In these cases, the overlapped texels in the blue chart
do not receive any light.

The multiple projection strategy is implemented with a geometry shader, which
processes the triangles of M in parallel. For each triangle S = [Q1,Q2,Q3] of M,
the shader first samples I to get the chart IDs of the vertices. If the chart IDs are
all identical, then we replace the coordinates Qk with qk in (6.10) and handle the
projected triangle [q1, q2, q3] as described in Section 6.3.1. Otherwise, we create as
many projected triangles as there are different chart IDs and reconstruct the missing
vertices using (6.11). Since these texture triangles also cover parts of the light atlas
outside the corresponding chart (see Figure 6.4), we add a stencil test in the fragment
shader which checks if the fragment is contained in the correct chart and otherwise
discards it.

This stencil test relies on a precomputed version of A. To create this stencil map S,
we render the scene into a texture, using the triangles (u, v) coordinates as targets for
the resulting position. Each triangle is then rasterized with a single color that contains
its chartID in the red-component. To allow drawing slightly over the chart boundaries
for correct sampling results with enabled linear interpolation when rendering the scene,
we extend this map in a second step. This second step checks each texel of the current
map. If the red value is not equal to zero, no change is made. In case that the value is
zero, we check the eight neigboring texels and color it with the ID that was encountered
most often. If this texel is far between charts, it will still remain black, but if it lies on the
outside of the boarder of an existing chart, it will simply take this charts ID value. Since
a good UV-mapping should leave some distance between charts to avoid unwanted color
bleeding, this simple technique is good enough to give an extended S. Note that this
map has to be computed only once and is valid as long as the scene patches do not
change their IDs, which should never happen in a scene that is considered ready for
light configuration.

The stencil test itself is then implemented by accessing this map in the fragment

82 6.3 Filling the light atlas

shader and comparing the sampled value – accessed at the target position in A with
nearest filtering – with the ID sampled from layer I in G. If the values are equal, the
texel is written with the computed brightness, otherwise it gets discarded.

The main reason for implementing this complex repairing technique here instead of
using one of the previously introduced is two-fold. We first tried adaptive tessellation,
which lead to acceptable quality but was too slow due to the continues communication
between the CPU and the GPU (see Section 4.6.2).

Using the precomputed virtual texture coordinates introduced in Chapter 5 is prob-
lematic in the case of scenes with very low tessellation, since here almost each edge is
a border to a chart. Therefore each vertex is incident to at least three different charts.
Therefore implementing this approach here would be too costly in sense of necessary
G layer as well as sampling them for the necessary triangle repairs and extensions.

Although the described technique is very stable, it can lead to artefacts in certain
situations. For example, even if all vertices of a triangle of M lie in the same chart,
the triangle may still overlap a part of the scene which corresponds to a different chart
(see Figure 6.5), and then this part does not receive any light. A similar situation
can occur if the vertices of the triangle lie in different charts. In our experiments we
observed that this happens rarely and does not lead to recognizable artefacts in the
final indirect illumination solution, because of all the other VPLs that contribute light
to the problematic regions. Moreover, the likelihood of such situations can be reduced
by increasing the tessellation of M.

6.3.3 Creating soft shadows

Figure 6.6 shows an example of the overall light distribution computed with the tech-
nique described so far and illustrates that realistic shadows are achieved only if M
consists of a large number of triangles. The reason for this behaviour is explained in
Figure 6.8, where the triangle S = [Q1,Q2,Q3] of M straddles a shadow edge, and Q1

lies on scene object O1, which casts a shadow onto scene object O2 that contains Q2 and
Q3. In this situation, the technique from the previous section creates and distributes
light into the two extrapolated, projected triangles s1 = [q1, q′2, q′3] and s2 = [q′′1 , q2, q3]
in the light atlas A, which correspond to the scene triangles S1 = [Q1,Q′2,Q′3] and
S2 = [Q′′1 ,Q2,Q3]. The first triangle extends the part of S belonging to the shadow
caster O1, and it is clipped to the correct region by the stencil test, because the shadow
edge is also a boundary edge of O1’s chart in A. The second triangle extends the part of
S belonging to the shadow receiver O2 and ranges into the shadow of O1, thus causing
light to spread into a region, which is not supposed to be illuminated. Clearly, this effect
diminishes and becomes negligible if the resolution of M is high so that the projected
triangles are sufficiently small.

However, since the resolution of M has an impact on the overall timing (see Fig-
ure 6.6), we propose to adapt shadow mapping to create realistic shadows even if M

83 6.3 Filling the light atlas

|V |= 3200, |M|= 128, t = 8.5 s

|V |= 3200, |M|= 512, t = 5.1 s

|V |= 3200, |M|= 2048, t = 5.6 s

|V |= 3200, |M|= 8192, t = 8.5 s

Figure 6.6. Light distribution using 3200
VPLs and M with 128, 512, 2048 and
8192 triangles (from top to bottom) for
the projection step. Note that the shadow
of the door appears correct only if the
resolution of M is sufficiently high so that
the projected triangles are small.

|V |= 3200, |M|= 8192, t = 8.5 s

|V |= 3200, |M|= 8192, t = 13.0 s

|V |= 3200, |M|= 512, t = 8.0 s

|V |= 800, |M|= 512, t = 2.4 s

Figure 6.7. Without soft shadows (top), a
high resolution of M is required to cre-
ate the correct shadow effect of the door
(compare Figure 6.6). Using our soft
shadow technique with K = 5 and the
same resolution of M creates a computa-
tional overhead, but this can be counter-
balanced by decreasing the resolution of
M without sacrificing the quality of the
result (centre). Moreover, with soft shad-
ows we achieve the same quality with less
VPLs, which in turn reduces the computa-
tion time (bottom).

84 6.3 Filling the light atlas

p1

p2

p3

p1
O1

O2

Vi

Figure 6.8. The red triangle of M is projected onto two different objects of the scene,
and the part that lies in the blue object is extrapolated into the shadow of the green
object.

Figure 6.9. Light distribution for one VPL with the technique from Section 6.3.2 (left)
and with soft shadows (right). The pictures in the centre show the projection of M with
512 triangles into the scene, where the green parts are illuminated correctly, while the
blue parts are shadowed and receive light incorrectly due to the extrapolation process.

consists only of few triangles. To this end, remember that the fragment shader has ac-
cess to the distance D between the camera and the scene point P(u, v) that corresponds
to the texel at (u, v). Note that for the texels in the extrapolated part of a projected tri-
angle, this value may not be correct. For example, in Figure 6.8, the distance value D
for the texel at q′′1 is not ‖Vi− p′′1‖, but the smaller distance ‖Vi− p1‖. However, we can
use this to our advantage, because it allows us to detect points that lie in the shadow of
another object. All we need to do is to add another layer ∇D to the geometry buffer G,
which contains the derivatives of D, so that the depth value at q′′1 can be approximated
as in (6.11) by the geometry shader. Hence, the texel is shadowed, if the extrapolated
depth value is larger than D.

To further improve the quality, we use the approach of Fernando [14] to create soft
shadows by considering the neighbourhood of P(u, v). This requires us to introduce
the coordinates (x , y) of the mesh vertices as additional vertex attributes, so that the
fragment shader has access to the interpolated coordinates (x̄ , ȳ). We then sample D at
(x̄ , ȳ) and the neighbouring coordinates and compare the values D(x̄ +δx , ȳ +δy) for
δx ,δy ∈ {−K , . . . , K}, where K is the size of the sampling kernel, with the extrapolated
depth value at P(u, v), to find out what percentage of the neighbourhood of P(u, v)
are shadowed. The irradiance value for the current texel is then multiplied with this
percentage before being drawn into the light atlas. Figure 6.9 illustrates this approach
for one VPL, and Figure 6.7 shows the overall effect for the example in Figure 6.6.

85 6.4 Accelerating the computation for small changes

6.4 Accelerating the computation for small changes

Realistic scenes contain many light sources that are mainly static, while only few might
change over time. Our technique allows to quickly recompute the final lighting result
in the case after small changes – e.g. a positional or directional change as well as color
and brightness changes of a light source – by keeping the current lighting result and
only updating the areas affected by the changed lighting condition. The idea behind
this is to undo the effects of the changing light source with its old configuration and
then to recompute the light contribution to the scene with the new setting.

The only additional memory necessary is a variable∆ for each VPL that keeps track
of the difference of the power that each VPL will draw into A between the old and
the new configuration of the currently changing light source Li . Before starting a new
recomputation step for Li , all ∆s are initialized with zero. Once this is done, we apply
the first step of the indirect illumination computation (Section 6.2) for Li only, but
this time with the negative amount of emitted power that was used when previously
computing the lighting results; all other parameters for Li are kept.

Distributing this negative power over all VPLs exactly undoes the effect of Li in its
old configuration. This computed value is now stored in the newly added variable ∆
for all VPLs. Note that all ∆-values should now either be zero, in case Li had no effect
on the VPL, or negative by exactly the value that Li had distributed to that VPL in the
previous lighting solution.

Once we have undone the old contribution, we change Li ’s configuration and com-
pute the first step again, adding the newly computed irradience values to the ones
current stored in∆. After the computation finished, each VPL has stored the difference
between the old and new irradience values that Li distributes in its ∆ variable.

To give an example of the contents of∆ in two extreme cases: If Li is simply turned
off, all∆s contain the negative amount of energy that was drawn into A in Li ’s original
light distribution. In case Li just got brighter, each ∆ contains a slightly higher value
than the one that was previously drawn into A.

After the first step is done and the radiosity changes are computed for all VPLs, we
now draw each VPL with a∆ value above a certain threshold into A as we did before in
step two and update the distributed irradience from this VPL by the value of ∆ during
the following recomputation steps. Since we can also blend negative values into the
FBO containing A, the result is exactly the one we would have computed with the new
light source position. To come back to the example of switching off a certain light, each
VPL would draw exactly the negative amount of radiosity into A as was drawn with a
positive sign in the original configuration, exactly undoing this lights contribution. This
leaves the results from all other light sources unchanged. Details about the potential
speedup of this approach are given in Section 6.5.2.

86 6.5 Results

6.5 Results

All results mentioned in this section feature one spot light source and were computed on
an Intel i5-3350P with 8GB RAM with an NVidia GeForce GTX 680. After first demon-
strating the quality of our technique (Section 6.5.1), we discuss the timings and their
dependence on various parameters (Section 6.5.2), and finally show that our approach
can also be used for simulating the effect of big area lights (Section 6.5.4).

Figure 6.10. Indirect light distribution in-
side a test scene with 1, 2, 5, and 20 light
bounces (from top to bottom) and 1000
VPLs.

Figure 6.11. Indirect light distribution for
the scene from Figure 6.10, with the door
open by 10°, 20°, 90°, and 170° (from top
to bottom).

87 6.5 Results

t = 228 s

|V |= 6400, t = 29 s

t = 1.2 h

|V |= 25600, t = 228 s

Figure 6.12. The top row shows the Sponza scene rendered by LuxRender in about 4
minutes (left) and more than one hour (right). The images below show the results of
our technique with different numbers of VPLs for comparison, and the last row shows
the same results with textures.

88 6.5 Results

|V |= 100, t = 0.4 s |V |= 200, t = 0.9 s |V |= 400, t = 1.2 s |V |= 1600, t = 4.5 s

Figure 6.13. Light distribution for the Cornell box with different numbers of VPLs.

|V |= 1600, t = 4.5 s |V |= 400, t = 1.5 s

Figure 6.14. Light distribution for the scene from Figure 6.10 with different numbers
of VPLs. Using only 400 VPLs (right) creates visible artefacts in the light distribution,
but they are barely noticeable once the scene is rendered with texture.

t = 15 h t = 4.5 s scene configuration

Figure 6.15. Comparison of the results using LuxRender (left) and our technique (mid-
dle) for the corridor scene, with a spot light source and the camera as shown in the
sketch (right).

89 6.5 Results

Figure 6.16. Indirect illumination of the Sponza scene as computed by our technique
with 6400 VPLs and three light bounces in 29 seconds.

Note that all the images in this section are created by applying a tone-mapping to
the results of the computation. This is necessary, since the overall brightness change
between dark and bright areas is too big to be captured in the printed image or when
being displayed on non-HDR-screens that have only 8-bit resolution per color channel.
In interactive applications the visual quality can be further improved by compressing
only the currently visible range of brightness into the LDR-image, which helps to pre-
serve more details in the output.

6.5.1 Quality

Figure 6.10 demonstrates that the ability of our method to distribute light with more
than two bounces significantly helps to create a realistic indirect illumination effect.
Our tests suggest that five light bounces are a good compromise between quality and
speed, and we use this setting in all our examples, unless stated otherwise. Figure 6.11
shows the same test scene, but with the door open at different angles. Note how our
technique captures the lighting effect at the bottom of the door and how light is propa-
gated by multiple bounces into the corridor on the right, even for small opening angles.

While the number of light bounces increases the realism of the result, it is the num-
ber of VPLs, which impacts the visual quality of the result, as shown in Figure 6.13.
Even though the global lighting situation and colour bleeding appear to be correct for
a small number of VPLs, using too few of them can lead to sharp, unnatural shadow
edges and other small artefacts. Both are correctly smoothed out for a sufficiently large
number of VPLs, depending on the scene geometry. In general, the more occluders a
scene contains, the more VPLs are needed to achieve good results, and the same holds
for the situation where light must to be distributed through a small hole or gap (see
Figure 6.17).

Figures 6.14 and 6.12 further show that the number of VPLs can be decreased for
textured scenes, because the texture tends to hide the apparent small artefacts of the

90 6.5 Results

timings
per VPL [ms] for different numbers of VPLs [s]

scene fill D distribute fill G draw A 100 400 1600 6400 25.6k

Corridor 0.0014 0.00011 0.28 5.05 0.70 1.54 4.53 16.98 159.63
Cornell 0.0013 0.00011 0.24 5.02 0.49 1.21 4.57 19.51 128.69
Sponza 0.0025 0.00011 2.10 8.04 — — 7.73 29.15 228.25

Table 6.1. Timings for our test scenes. The left half of the table shows the average
runtime per VPL for filling the depth buffer and distributing the light from one VPL to
another (first step), as well as filling the geometry buffer and drawing into the light atlas
(second step). The right half of the table shows the overall runtime of our algorithm,
where the timing corresponding to the smallest number of VPLs that gives realistic
results is marked in boldface.

indirect light distribution.
Figure 6.15 shows a comparison between our technique and the “ground truth”,

as computed by letting LuxRender’s path tracer run for 15 hours. The results are very
similar, despite the fact that our approximation to the ground truth was computed in
4.5 seconds only. Note that in this example the light reaches the shown part of the scene
only after three light bounces. Therefore, other methods with comparable timings, for
example [9, 8, 44], would generate an entirely black image.

The closest competitor for our algorithm is the method by Luksch et al. [36], which
also computes realistic results at interactive rates, but the advantages of our approach
are threefold. First, we can handle more than two light bounces, which significantly
improves the realism of the rendering result (see Figure 6.10). Second, our light dis-
tribution is decoupled from the scene geometry. This allows us to freely change the
number of VPLs, which in turn gives us more flexibility to choose between speed and
quality. Third, the creation of the light atlas is more efficient in our technique, because
we only address those texels in the light atlas which receive light, instead of looping
over all texels for each VPL.

While the static regularly distributed VPL positions have the advantage of allowing
the recomputation of only changed light sources in contrast to stochastic distributed
results as used in the photon mapper approach as shown in 6.4, it can also lead to
shadow artefacts (see Figure 6.17). The reason for this is that only a small fraction of
the uniformly distributed 400 VPLs is involved in distributing light through the door,
especially when it is open by only 10°.

6.5.2 Timings

The overall runtime of our algorithm depends on a number of parameters: the number
of light bounces and VPLs, the resolutions of the geometry buffer G and the 2D triangle
mesh M, and the scene complexity. The resolution of the light atlas A does not in-

91 6.5 Results

Figure 6.17. Using only 400 VPLs for the scene from Figure 6.11 with the door open
by 10° (top) and 90° (bottom) leads to shadow artefacts (left), and it requires 10000 or
1600 VPLs, respectively, to get visually smooth results (right).

fluence the performance, because we draw only those texels of A which really receive
light and this procedure is not fragment-bound.

The number of light bounces is relevant only for the first step of the algorithm and
affects the runtime linearly. The resolutions of G and M are relevant only for the second
step of the algorithm, and while the timings are almost independent of the resolution
of G, they depend linearly on the resolution of M (see Figure 6.6). In addition, both
steps depend on the number of VPLs, and while the runtime of the first step scales
quadratically in this parameter, the second step depends only linearly on the VPL count.

Figure 6.7 illustrates that our texel-accurate soft shadow technique effectually re-
duces the overall rendering time, because it leads to convincing results even for small
numbers of VPLs and triangle meshes M with low resolution. In order for the soft
shadow technique to be effective, the resolution of G needs to be higher than the res-
olution of M. Our tests suggest that setting the resolution of M to 16× 16× 2 = 512
triangles, the resolution of G to 256× 256, and the kernel size K to 5 is a good com-
promise between quality and speed, and we used these settings in all examples, unless
stated otherwise.

92 6.5 Results

Table 6.1 shows that the average cost of the first step of our algorithm further
depends on the complexity of the scene, because the visibility test requires to ren-
der the whole scene into a depth buffer for each VPL. The cost for the latter ranges
from 0.0014 ms per VPL and per light bounce for the corridor scene in Figures 6.10
and 6.11 and the Cornell box in Figure 6.13 to 0.0026 ms for the Sponza scene in Fig-
ure 6.12. Instead, the time for distributing light from one VPL to another is constant for
all scenes. However, while all other parts affect the overall runtime linearly, this part
has a quadratic influence on the total computational cost. Filling the geometry buffer
G in the second step of our algorithm also depends on the scene geometry. Fortunately,
filling G is not very costly, and so this does not affect the overall runtime significantly.
The latter is mainly determined by drawing the indirect illumination into the light at-
las A, and this part is independent of the scene complexity. An additional overhead is
noticeable in both steps for the Sponza scene, because this scene comes with one light
atlas for each of the three floors of the scene. Overall, the runtime per VPL for the
Sponza scene is about twice as high, compared to the corridor scene and the Cornell
box, and about 16 times as many VPLs are needed to achieve realistic results, because
of the complexity of this scene.

A B C D

Figure 6.18. Sketch of the scene that is used for measuring the timings for the recom-
putation of a single light source. Scene A shows the lights in their starting position and
direction. The next images show the change of each of the light sources at a time until
the final configuration (D) is reached shown in the rightmost image.

The indirect illumination computation presented here can be easily tuned between
very short computation times that lie in the range of seconds to perfect results (com-
parable to that of LuxRender) within a couple of minutes. The fast computation comes
at the price of beautiful and smooth results, but the important thing is, that the results

93 6.5 Results

A B

C D

Figure 6.19. Visual results for the indirect illumination with the configurations A to D.

are never the less physically plausible, giving the user a good idea of the correct light-
ing situation. The high quality setting computes very similar results, but with perfectly
smooth shadow edges. The high quality results are comparable to the ones created by
state-of-the-art path-tracers, but are computed in a fraction of the time.

6.5.3 Recomputation timings

To test the efficiency of the recomputation of indirect illumination after the change
of a single light source, we start with “scene A” shown in Figure 6.18 that contains
three different light sources. We start by computing “scene A” from scratch, that is, no
indirect illumination is computed and we run our algorithm to create the light map for
the scene. To reach the other scene configurations, we only recompute the single light
source that ahs changed from the previous step. From A to B the red light source is
slightly moved away from the end of the corridor and turned by 90°. From B to C we
change the yellow light source to now emit blue light and from C to D we change the
position and rotation of the green light source.

The experiment performed with the scene shown in Figure 6.18 shows that even in
a simple scene the indirect light contribution of different direct light sources overlap

94 6.5 Results

configuration active VPLs distribution [s] drawing [s] overall

scene A 1008 0.356 1.579 1.935
scene B 1008 0.305 1.543 1.848
scene C 1008 0.414 1.546 1.960
scene D 1008 0.400 1.547 1.947

single light source change
A→B 330 0.664 0.553 1.207
B→C 304 0.305 0.530 0.835
C→D 637 0.580 1.074 1.654

all 3 single steps 1271 1.549 2.147 3.696

Table 6.2. Timings for the scene used for the lighting recomputation test (see Fig-
ures 6.18 and 6.19). The rows labelled “scene A” to “scene D” show the data for
computing the indirect illumination in this configuration from scratch. The rows la-
belled “x → y” show the data for computing the result resulting scene y starting from
scene x by just recomputing the indirect illumination that changed from configuration
x to y.

A A, B A,B,C

B, C, D C, D D

Figure 6.20. Results of the indirect illumination computation of the single lights in
their initial configuration (top) and the changes created by setting them to their final
configuration (bottom). Under each image is the scene in which the corresponding
light configuration is active.

95 6.5 Results

only partially. The results in Table 6.2 demonstrate that even in a simple scene like
the one chosen for the experiment, the gain of recomputing a single light source in-
stead of recomputing the whole lighting situation is significant. If in an editing case
the user changes the three light sources one after the other as shown in Figure 6.18
from left to right, the overall time for the computation of the final result would take
7.6 seconds which results from recomputing the indirect illumination for the different
configurations entirely. In case that only the changed lights are recomputed, the over-
all time is instead 3.6 seconds (see last row of Table 6.2). This is the result of drawing
that fraction of the overall VPLs of the scene that have actually changed and drawing
the value that results from subtracting the previously distributed radiosity from the
currently distributed one.

The table shows that during the recomputation, the time for distributing the light
over the VPLs increases by a factor of 2, as is to be expected due to the fact that we
need to first compute the distribution of the light into the scene with a negativ value
from its old configuration and to then recompute the distribution with positive values
for the new configuration of the light source. But since the drawing of the radiosity into
the light atlas is more costly than the light distribution, we achieve an overall reduction
of the computation time that is significant even in this small scene. Note also that the
complete recomputation of the radiosity can be reduced to a single step, if the light
source only changes its color or intensity like in B→C. In this case the involved VPLs
are completely the same and the light distribution can be done with the difference of
the old lighting values and the newly chosen ones.

Applying this to a realistic scene with much more complex geometry and a much
smaller overlap of indirectly illuminated areas for different direct light sources leads to
a drastically shorter computation time. This in turn leads to a faster editing of lighting
situations especially in huge scenes.

6.5.4 Area lights

Our technique for rendering VPLs into the light atlas can also be used to create realistic
area light effects, as shown in Figure 6.21. We first distribute n VPLs uniformly over
the surface of an area light with power E. Then we assign to each VPL the power E/n
and fill the light atlas as explained in Section 6.3. In contrast to simple soft shadow
algorithms, this method also correctly handles the shape of the area light, as well as
the distances between the area light, the shadow caster, and the shadow receiver.

96 6.6 Summary

Figure 6.21. Area light effect, created with our technique using 100 VPLs in 0.6 sec-
onds.

6.6 Summary

In this chapter we introduced a technique for computing light maps at almost interac-
tive rates. We achieved this by separating the computation into a rather unprecise light
distribution into the scene over virtual point lights, that captures the overall lighting
situation correctly. In a second step we actually capture the light, by drawing the gath-
ered radiance from each VPL into the light atlas. This second step is again heavily based
on the idea of Forward-Mapping introduced in Chapter 4. Although the main idea is
the same as in texture painting, a greatly different implementation had to be used due
to the strongly different nature of the problem, e.g. more seams and separations of
data given in screen-space due to geometric factors, as well as the very low tessellation
of the scene geometry.

For the projection of the radiosity we decided to chose a mesh of a fixed tessellation
and instead of just reading the position of triangles in the texture atlas, rather compute
them. This needs a higher number of informations within G, but the result is a fast
computation with smooth results.

Note that we decided to store irradiance instead of radiosity in the light atlas, be-
cause we assume that the multiplication with the diffuse reflection coefficient is com-
puted when the scene is rendered. In particular, this is the correct approach for textured
scenes, where the texture itself provides a pixel-accurate description of the reflection
coefficient.

Apart from the fact that our indirect illumination method handles multiple bounces
and efficiently creates realistic results, it is worth noticing that it is particularly well-

97 6.6 Summary

suited for static scenes. In this situation, the light atlas is computed in a preprocessing
step and can then be used to navigate the scene in real time.

Furthermore, our technique is fast enough to give an artist the possibility to create
the desired overall lightning effect by interactively changing the numbers and positions
of the light sources. In this setting, interactivity can be achieved by reducing the number
of VPLs, and even though the rendering result with too few VPLs may exhibit artefacts,
it still gives the user a realistic preview of how the result will look when a greater
number of VPLs is used. It should even be possible to compute and display the result
progressively with improving quality by increasing the number of VPLs on the fly, but
it remains future work to further explore this idea.

Comparing the computation time and the quality of the results of the light map
created by UDK and our technique – we could imagine this technique being used to
improve the lighting design in architecture as well as in level-design for games by com-
puting physically plausible results and giving almost immediate feedback to the user.
The high quality setting can be used for creating light maps and in combination with
the re-computation approach for small changes might be used in real-time applications,
if the computation time can still be reduced by a little bit (especially considering that
GPUs become faster at an incredible pace).

98 6.6 Summary

Chapter 7

Conclusion

In this thesis we present a novel approach for projecting data into a texture atlas entirely
on the GPU and adapt it for a new method to compute indirect illumination that is very
flexible and computes results that are close to the ground truth.

The first contribution is a novel forward mapping technique that runs entirely on
the GPU and is therefore faster and more efficient than previous techniques in the field.
With this method we answer RQ4, setting the basis for an efficient storing of radiosity.

The difficulty with this technique is foremost the problem of seams. We show three
approaches to overcome the problem of projecting over seams that can all be easily
implemented in the projection framework. All of these approaches are tailored to spe-
cific problems. This in turn demonstrates the flexibility of the projection method, thus
answering RQ5.

With these solutions we decide to store the radiosity directly into a light map, which
answers RQ3. While this is a standard approach for handling different complex effects
in a virtual scene, our goal is to compute it at interactive or even realtime frame rates
with a computed radiosity, that is as close as possible to the ground truth. To achieve
this, we still need to answer how to compute the global illumination and how to store
the radiosity.

We do this by adopting the standard shooting-gathering method and combining
it with a multi-light approach. Both techniques are state of the art and can compute
indirect illumination very precisely and fast. But multi-light approaches do usually not
store the results in a way that can directly be visualized but instead compute the final
result per frame using for example a light-cut approach, answering the first part of RQ6.
With this data available we store it with an efficient projection of the data into the light
atlas using the methods that answer RQ4 and RQ5. Therefore our algorithm does not
require any more computations per frame, once the light atlas is filled, since during
rendering this texture is sampled, which answers the second part of RQ6.

To increase the quality of the results, we choose to adopt one of many soft-shadow
algorithms directly into the projection of the final results into the light map. The exact

99

100

soft-shadow method can be replaced without affecting any other part of the algorithm,
allowing for additional flexibility of our algorithm. This way we also answered RQ7.

The solutions above together form the answer to RQ1. But although the approach
works fine, there is the always present RQ2: How can it be optimized. How can it
be made faster or more realistic or more beautiful or at best all of the above together?
While parts of the answer to this question remain for future work, we already optimized
the approach. The main answer to RQ2 is to create good quality at a lower computa-
tional cost. While our first approach uses a huge number of VPLs to generate smooth
results, answering RQ7 gives both a speedup as well as an increase in the quality. This
is due to the fact, that we can use much fewer VPLs which reduces the computational
time linear in their number, while only increasing the computational time per VPL by a
small fraction necessary for creating the soft shadow effect. The important thing here
is to find a perfect balance between computation time and quality and furthermore
reduce the computation expenses that have only a marginal impact on the resulting
quality.

Conceptually, our technique is somewhat similar to photon mapping. In the first
part, the light is distributed with multiple bounces, but instead of shooting it randomly
in any possible direction, the light exchange is restricted to the fixed VPL positions.
In the second part, this discrete light distribution is extrapolated to the whole scene,
but while a photon mapper requires a rather expensive averaging step, our projection
strategy automatically generates a smooth light distribution in the light atlas. Conse-
quently, our approach is more efficient and can illuminate scenes with high quality in
a fraction of the time that it takes LuxRender, a state-of-the-art path-tracer. All phe-
nomenological effects of the ground truth are present in our result despite the much
shorter computation time.

Another technique that our method is obviously related to, is the idea of the many-
lights-approach. While in the idea of many lights the lights are mainly distributed
stochastically and then clustered, our idea is based on fixed VPLs, which makes that part
much closer to the standard shooting-gathering-approaches. Furthermore, multi-light
approaches compute the final result in each rendered frame, which is rather expensive
even when using light-cut-techniques. Our technique, on the other hand, computes
physically plausible results by carrying out the light distribution long enough and then
only storing the final result once in a smooth and efficient way.

Overall, we present a technique that lies somewhere between the multi-light ap-
proaches and photon-mapper. It is able to compute very high quality physically correct
results with multiple bounces – which most realtime techniques to not compute – in
a fraction of the time that a photon mapper or path tracer would require to achieve
results that are only slightly different from ours.

101 7.1 Future work

7.1 Future work

Although our technique computes results that are close to the ground truth at inter-
active rates, there is still room for improvements. We think that our technique can
still be optimized and extended to reduce the computational time further, eventually
even into the real-time range. Furthermore, the quality of the computation might be
increased far enough to compute the results shown in this thesis with a much smaller
number of VPLs, therefore decreasing computational time and memory consumption.
Additionally, further effects like caustics and specular reflections might be implemented
into the existing framework. Following are a few ideas that look promising for further
investigation.

We choose to pre-compute and distribute the VPLs uniformly instead of creating
randomly distributed VPLs on the fly [13], because we observed that the uniform dis-
tribution leads to smoother shadows and a higher overall rendering quality. Yet it would
be interesting to explore the possibility of distributing the VPLs not uniformly but adap-
tively in the scene. As we show, the uniform distribution has the benefit of allowing
for re-computation of single light changes in a multi-light environment, which is the
most realistic scenario on one hand. But on the other hand, it might result in strong
shadow artefacts in rare cases. One solution could be, to distribute the VPLs during the
computation of the final result in a way that avoids these problems. Another approach
that would still allow for static distribution and should be faster during light editing
would be to analyse the source of the problem in a second pre-computing step, after
the VPLs are uniformly distributed. While this would of course increase the time for
the pre-computation, this would only have to be done once. In this step, additional
VPLs could be created that take care of minimizing or entirely erasing any artefact in
the light distribution later.

Another approach for improving the overall smoothness of the final result could be
to increase the quality of the implemented soft-shadow algorithm. That could be done
in the final rendering shader alone, and would only require to replace the currently
used PCF method with any other technique. The tests done in this thesis show that
there is a lot of potential for an increase of both speed and quality here.

It should furthermore be useful to apply the adaptive tessellation method intro-
duced in Section 4.6.1 in a preprocessing step and store the result as a mesh per VPL.
This might reduce the projection time for some of the VPLs that create huge – due to
perspective distortion – triangles in A that are mainly clipped away by the stencil test.

Our technique could also be extended to render caustics and handle specular sur-
faces by combining it with the idea of caustic triangles [56]. The computation would
then be done just once for the refractors and the caustics would be stored directly in
the light atlas for rendering.

In principle, it would be possible to speed up our approach by clustering the
VPLs [11], so that the light is distributed from a much smaller number of sources.

102 7.1 Future work

This would reduce the number of required rendering passes, but the small number of
clusters would create artefacts as described above, even if soft shadow techniques are
used to smooth out the shadow edges.

Another option for accelerating the first step of our method would be to pre-
compute and store the form factors between VPLs with the visibility factor included.
However, this would restrict the technique to work with static scenes only, whereas the
current approach is flexible enough to also handle moving objects. The implementation
of this approach is therefore strongly dependent on the overall usage of the method. In
case that is light editing in static scenes, the implementation of this pre-computation
will increase the speed significantly.

To allow an even faster feedback to the user during light editing, it might be inter-
esting to implement the computation of the indirect illumination progressively. This
would allow the user to interact with the virtual scene, while the computation is run-
ning in the background. The user would experience the improvements of the lighting
condition mainly in the first few frames, while the later changes only affect the visual
result slightly. With this approach real-time displaying of the results would be possible,
while still giving physically correct results after a short computation time.

Appendix A

Notations and mappings

The following table gives an overview of the mappings and the notations used through-
out this thesis. It contains the symbols and explanations for Chapter 4.

Name abbreviation
3D-Scene S

Texture atlas A
2D-Brush B

Brush-Mesh M
Geometry-Buffer G
Projection view V

Screen-Resolution RS

Data-Resolution (later brush tex-res) RT

Transformfeedback-Buffers T1 and T2

Chart C
Texture-Domain T

Mapping for drawing Ψ : V →A
Splitted mapping Ψ = Φ−1 ◦Θ

Modelview-Projection Θ : S → V
2D-parameterization Φ: S →A

Texture-mapping Φ−1 : A→ S
Data-Projection Π: V →M

103

104

In Chapter 5 the notations are similar to the ones used in Chapter 4, but were up-
dated and extended when it become necessary. The following table gives and overview.

Name abbreviation
3D-Scene S

Texture atlas A
2D-Brush B

Brush-Mesh M
Geometry-Buffer G
Projection view V

All Scene-vertices V
Single triangle vertex v

Number of patches and charts k
Mesh-triangles T

Texture-coordinate u
Brush vertices Q

Brush-Triangles M
Brush-triangles in A m

The following are the notations used in the Chapter 6. We added notations regarding the
indirect illumination computation and updated the symbols for the forward mapping technique
where it had to be adapted to the needs of storing indirect illumination.

Name abbreviation
Brush-Mesh M

Projection view V
All Scene-vertices V

Single triangle vertex v
Number of patches and charts k

Mesh-triangles T
Texture-coordinate u

Brush vertices Q
Brush-triangles M

Brush-triangles in A m
Shadow mapping kernel-size K

Geometry-Buffer G
TexCoord-part of G T

VPL for patch i Vi

Sample point i for patch j S ji

Direct light source i Li

Emitting power of Li Ẽi

Direction of Li ni

Normal of patch i Ni

Formfactor (light i and patch j) F̃i j

Formfactor between patches i and j) Fi j

Area of patch i Ai

Visibility term between i and j si j

Bibliography

[1] Maneesh Agrawala, Andrew C. Beers, and Marc Levoy. 3D painting on scanned surfaces.
In I3D ’95: Proceedings of the 1995 Symposium on Interactive 3D graphics, pages 145–150,
1995.

[2] Okan Arikan, David A. Forsyth, and James F. O’Brien. Fast and detailed approximate global
illumination by irradiance decomposition. ACM Trans. Graph., 24(3):1108–1114, 2005.

[3] James F. Blinn. Models of light reflection for computer synthesized pictures. SIGGRAPH
Comput. Graph., 11(2):192–198, July 1977. ISSN 0097-8930.

[4] Edwin Earl Catmull. A Subdivision Algorithm for Computer Display of Curved Surfaces. PhD
thesis, 1974.

[5] Michael F. Cohen and Donald P. Greenberg. The hemi-cube: a radiosity solution for com-
plex environments. scg, 19(3):31–40, July 1985. Proceedings of SIGGRAPH.

[6] Michael F. Cohen, Shenchang Eric Chen, John R. Wallace, and Donald P. Greenberg. A
progressive refinement approach to fast radiosity image generation. scg, 22(4):75–84,
August 1988. Proceedings of SIGGRAPH.

[7] Greg Coombe, Mark J. Harris, and Anselmo Lastra. Radiosity on graphics hardware. In
Proceedings of Graphics Interface, pages 161–168, London, ON, May 2004.

[8] Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar Eisemann. Inter-
active indirect illumination using voxel cone tracing. cgf, 30(7):1921–1930, September
2011. Proceedings of Pacific Graphics.

[9] Carsten Dachsbacher and Marc Stamminger. Reflective shadow maps. In Proceedings of
the ACM Symposium on Interactive 3D Graphics and Games, pages 203–213, Washington,
D.C., April 2005.

[10] Carsten Dachsbacher, Marc Stamminger, G. Drettakis, and F. Durand. Implicit visibility and
antiradiance for interactive global illumination. volume 26, 2007. SIGGRAPH Procedings.

[11] Carsten Dachsbacher, Jaroslav Kr̂ivanek, Miloŝ Haŝan, Adam Arbree, Bruce Walter, and
Jan Novak. Scalable realistic rendering with many-light methods. volume 33, 2014.

[12] Holger Dammertz, Daniel Sewtz, Johannes Hanika, and Hendrik P. A. Lensch. Edge-
avoiding À-trous wavelet transform for fast global illumination filtering. Proceedings of
the Conference on High Performance Graphics, 2010.

105

106 Bibliography

[13] Zhao Dong, Thorsten Grosch, Tobias Ritschel, Jan Kautz, and Hans-Peter Seidel. Real-
time indirect illumination with clustered visibility. In M. Magnor, B. Rosenhahn, and
H. Theisel, editors, Vision, Modeling & Visualization, pages 211–218. Eurographics Asso-
ciation, November 2009.

[14] Randima Fernando. Percentage-closer soft shadows. In Proceedings of SIGGRAPH,
Sketches, pages #35:1–1, Los Angeles, CA, July 2005.

[15] Yongxiao Fu and Yonghua Chen. Haptic 3D-mesh painting based on dynamic subdivision.
Computer-Aided Design and Applications, 5:131–141, 2008.

[16] Epic Games. Unreal development kit. Technical report, Epic, 2014. URL https://www.

unrealengine.com/what-is-unreal-engine-4.

[17] Reid Gershbein and Pat Hanrahan. A fast relighting engine for interactive cinematic
lighting design. In Proceedings of the 27th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’00, pages 353–358, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

[18] Henri Gouraud. Computer Display of Curved Surfaces. PhD thesis, 1971.

[19] Gene Greger, Peter Shirley, Philip M. Hubbard, and Donald P. Greenberg. The irradiance
volume. IEEE Computer Graphics and Applications, 18:32–43, March 1998.

[20] Toshiya Hachisuka. High-quality global illumination rendering using rasterization. In
Matt Pharr, editor, GPU Gems 2, chapter 38, pages 615–633. Addison-Wesley, 2005.

[21] Pat Hanrahan and Paul Haeberli. Direct WYSIWYG painting and texturing on 3D shapes.
SIGGRAPH Computer Graphics, 24(4):215–223, 1990.

[22] Milos Hasan, Fabio Pellacini, and Kavita Bala. Direct-to-indirect transfer for cinematic
relighting. ACM Trans. Graph., 25(3):1089–1097, 2006.

[23] Jan Hermes, Niklas Henrich, Thorsten Grosch, and Stefan Müller. Global illumination
using parallel global ray-bundles. In Proceedings of Vision, Modeling, and Visualization,
pages 65–72, Siegen, Germany, November 2010.

[24] Takeo Igarashi and Dennis Cosgrove. Adaptive unwrapping for interactive texture paint-
ing. In I3D ’01: Proceedings of the 2001 Symposium on Interactive 3D graphics, pages
209–216, 2001.

[25] Henrik Wann Jensen. Global illumination using photon maps. In Xavier Pueyo and Peter
Schröder, editors, Rendering Techniques ’96, pages 21–30. Springer, 1996.

[26] Henrik Wann Jensen and Niels Jørgen Christensen. Photon maps in bidirectional Monte
Carlo ray tracing of complex objects. cag, 19(2):215–224, March–April 1995.

[27] James T. Kajiya. The rendering equation. ACM Trans. Graph. (Proceedings ACM SIGGRAPH
’86), 20(4):143–150, 1986.

https://www.unrealengine.com/what-is-unreal-engine-4
https://www.unrealengine.com/what-is-unreal-engine-4

107 Bibliography

[28] Alexander Keller. Instant radiosity. In Proceedings of the 24th annual conference on Com-
puter graphics and interactive techniques, SIGGRAPH ’97, pages 49–56, New York, NY, USA,
1997. ACM Press/Addison-Wesley Publishing Co.

[29] Anders W. Kristensen, Tomas Akenine-Möller, and Henrik W. Jensen. Precomputed local
radiance transfer for real-time lighting design. ACM Transactions on Graphics, 24(3):
1208–1215, July 2005. Proceedings of SIGGRAPH.

[30] Sylvain Lefebvre, Samuel Hornus, and Fabrice Neyret. Octree textures on the GPU. In
Matt Pharr, editor, GPU Gems 2, chapter 37, pages 595–613. Addison-Wesley, 2005.

[31] Jaakko Lehtinen, Matthias Zwicker, Emmanuel Turquin, Janne Kontkanen, Frédo Durand,
François X. Sillion, and Timo Aila. A meshless hierarchical representation for light trans-
port. ACM Transactions on Graphics, 27:#37:1–9, August 2008. Proceedings of SIG-
GRAPH.

[32] Philipp Lensing and Wolfgang Broll. Efficient shading of indirect illumination applying
reflective shadow maps. In Proceedings of the ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, I3D ’13, pages 95–102, New York, NY, USA, 2013. ACM.

[33] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérôme Maillot. Least squares conformal
maps for automatic texture atlas generation. ACM Transactions on Graphics, 21(3):362–
371, 2002.

[34] Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and Steven J. Gortler. A local/global
approach to mesh parameterization. Computer Graphics Forum, 27(5):1495–1504, 2008.

[35] Kok-Lim Low. Simulated 3D painting. Technical Report TR01-022, Department of Com-
puter Science, University of North Carolina at Chapel Hill, June 2001.

[36] Christian Luksch, Robert F. Tobler, Ralf Habel, Michael Schwärzler, and Michael Wimmer.
Fast light-map computation with virtual polygon lights. In Proceedings of the ACM Sympo-
sium on Interactive 3D Graphics and Games, pages 87–94, Orlando, FL, March 2013.

[37] Morgan McGuire and David Luebke. Hardware-accelerated global illumination by image
space photon mapping. In Proceedings of High Performance Graphics, pages 77–89, New
Orleans, LA, August 2009.

[38] Morgan McGuire and Michael Mara. Efficient GPU screen-space ray tracing. Journal of
Computer Graphics Techniques (JCGT), 3(4):73–85, December 2014. ISSN 2331-7418.
URL http://jcgt.org/published/0003/04/04/.

[39] Quirin Meyer, C. Eisenacher, Marc Stamminger, and Carsten Dachsbacher. Data-parallel
hierarchical link creation for radiosity. In Proc. EGPGV, pages 65–70, 2009.

[40] Fabio Pellacini, Kiril Vidimce, Aaron Lefohn, Alex Mohr, Mark Leone, and John Warren.
Lpics: a hybrid hardware-accelerated relighting engine for computer cinematography.
ACM Trans. Graph., 24(3):464–470, 2005.

[41] Bui Tuong Phong. Illumination for computer generated pictures. In Graphics and Image
Processing, volume 18, pages 311–317, June 1975.

http://jcgt.org/published/0003/04/04/

108 Bibliography

[42] Roman Prutkin, Anton Kaplanyan, and Carsten Dachsbacher. Reflective shadow map clus-
tering for real-time global illumination. In Eurographics 2012 - Short Papers Proceedings,
pages 9–12, 2012.

[43] Tobias Ritschel, Mario Botsch, and Stefan Müller. Multiresolution GPU mesh painting. In
Eurographics 2006 Short Papers, pages 17–20, September 2006.

[44] Tobias Ritschel, Thorsten Grosch, Jan Kautz, and Hans-Peter Seidel. Interactive global
illumination based on coherent surface shadow maps. In Proceedings of Graphics Interface,
pages 185–192, Windsor, ON, May 2008.

[45] Tobias Ritschel, Thorsten Grosch, Min H. Kim, Hans-Peter Seidel, Carsten Dachsbacher,
and Jan Kautz. Imperfect shadow maps for efficient computation of indirect illumination.
ACM Trans. Graph., 27:129:1–129:8, December 2008.

[46] Tobias Ritschel, Thomas Engelhardt, Thorsten Grosch, Hans-Peter Seidel, Jan Kautz, and
Carsten Dachsbacher. Micro-rendering for scalable, parallel final gathering. ACM Trans.
Graph. (Proc. SIGGRAPH Asia 2009), 28(5), 2009.

[47] Randolf Schärfig and Kai Hormann. Hardware accelerated 3D mesh painting. In R. Koch,
A. Kolb, and C. Rezk-Salama, editors, Vision, Modeling & Visualization, pages 211–218.
Eurographics Association, November 2010.

[48] Randolf Schärfig, Marc Stamminger, and Kai Hormann. Creating light atlases with multi-
bounce indirect illumination. Comput. Graph., 55:97–107, April 2016.

[49] Mark Seagal and Kurt Akeley. The opengl® graphics system: A specification. Technical
report, The Khronos Group Inc, 9450 SW Gemini Drive, 45043 Beaverton, OR 97008-6018
USA, March 2014. URL https://www.opengl.org/registry/doc/glspec44.core.pdf.

[50] Jonathan Richard Shewchuk. Triangle: Engineering a 2D quality mesh generator and de-
launay triangulator. In Ming C. Lin and Dinesh Manocha, editors, Applied Computational
Geometry: Towards Geometric Engineering, volume 1148 of Lecture Notes in Computer Sci-
ence, pages 203–222. Springer, 1996.

[51] François X. Sillion and Claude Puech. Radiosity and Global Illumination. The Morgan
Kaufmann Series in Computer Graphics. Morgan Kaufmann Publishers, 1994.

[52] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radiance transfer for real-
time rendering in dynamic, low-frequency lighting environments. ACM Transactions on
Graphics, 21:527–536, July 2002. Proceedings of SIGGRAPH.

[53] Peter-Pike Sloan, Ben Luna, and John Snyder. Local, deformable precomputed radiance
transfer. ACM Trans. Graph., 24(3):1216–1224, 2005.

[54] Wolfgang Straßer. Schnelle Kurven- und Flächendarstellung auf graphischen Sichtgeräten.
PhD thesis, 1974.

[55] László Szécsi, László Szirmay-Kalos, and Mateu Sbert. Light animation with precomputed
light paths on the GPU. In Proceedings of Graphics Interface, pages 187–194, Quebec City,
QC, June 2006.

https://www.opengl.org/registry/doc/glspec44.core.pdf

109 Bibliography

[56] Tamás Umenhoffer, Gustavo Patow, and László Szirmay-kalos. Caustic triangles on the
gpu. In Proceedings of Computer Graphics International, pages 222–227, Istanbul, Turkey,
June 2008.

[57] Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian, and
Donald P. Greenberg. Lightcuts: A scalable approach to illumination. ACM Trans. Graph.,
24(3):1098–1107, 2005.

110 Bibliography

Index

3D-accelerators, 32

Charts, 53

Depth-buffer, 30
Diffuse Reflection, 11
Direct Illumination, 10, 14
Direct Light Sources, 74
Direct Lighting Techniques, 14

Emitting Power, 74

Form Factor, 75, 77
Forward-Mapping, 50
Fragment-Processing, 34

Geometry-Processing, 35
GPU, 19

High-Dynamic-Range, 9

Indirect Illumination, 10, 15
Irradiance, 76

Light Perception, 8
Lightcolor, 7
Lightmaps, 39

Modelview-Projection-Matrix, 33

Patch, 74
Photon, 7
Projection-Mesh, 50

Rasterization, 30
Raytracing, 29
Reflected Power, 74
Reflection Coefficients, 10, 74
Rendering Techniques, 29
Rendering-Pipeline, 35

Sample Point, 74
Seams, 53
SIMD, 33
Specular Reflection, 12
Stencil Map, 81

T&L, 32
Tone Mapping, 10

Vertex-Processing, 34
Virtual Point Lights, 72, 74
Virtual Texture Coordinates, 67

111

	Contents
	List of Figures
	List of Tables
	Introduction
	Research questions
	Contributions
	Outline of the thesis
	Publications

	Basics of Light and Lighting
	Physical properties of light
	Perception of light
	High-Dynamic-Range

	Lighting in virtual environments
	Diffuse reflection
	Specular reflection

	Direct illumination
	Indirect illumination
	Basics for implementation

	Classification of indirect illumination techniques
	Overview of existing techniques
	Non-Interactive approaches
	Interactive approaches
	Full solution
	Current unsolved problems

	Summary

	Technical Background
	Rendering virtual objects and scenes
	3D-object descriptions

	Hardware design
	Data throughput

	Programming APIs
	Shaders
	Textures
	Texturing basics
	Mip-mapping and (bi-)linear interpolation
	Perspective effects

	Creating textures on the fly
	Current unsolved problems

	Summary

	Forward Mapping
	Basic idea
	Problem description

	Naive approaches
	Our approach
	Implementation details
	Seams
	Solving the seam-problem
	Subdividing M
	Computational cost

	Summary

	Mesh Painting
	Introduction
	The algorithm
	Overview
	Initialization
	Painting
	Seams
	Virtual texture coordinates

	Summary

	Indirect Illumination
	Basic idea
	Coarse light distribution
	Scene discretization
	Initial direct light distribution
	Iterative light distribution

	Filling the light atlas
	Final shooting step
	Handling seams and shadow edges
	Creating soft shadows

	Accelerating the computation for small changes
	Results
	Quality
	Timings
	Recomputation timings
	Area lights

	Summary

	Conclusion
	Future work

	Notations and mappings
	Bibliography
	Index

