2,180 research outputs found

    Web Data Extraction, Applications and Techniques: A Survey

    Full text link
    Web Data Extraction is an important problem that has been studied by means of different scientific tools and in a broad range of applications. Many approaches to extracting data from the Web have been designed to solve specific problems and operate in ad-hoc domains. Other approaches, instead, heavily reuse techniques and algorithms developed in the field of Information Extraction. This survey aims at providing a structured and comprehensive overview of the literature in the field of Web Data Extraction. We provided a simple classification framework in which existing Web Data Extraction applications are grouped into two main classes, namely applications at the Enterprise level and at the Social Web level. At the Enterprise level, Web Data Extraction techniques emerge as a key tool to perform data analysis in Business and Competitive Intelligence systems as well as for business process re-engineering. At the Social Web level, Web Data Extraction techniques allow to gather a large amount of structured data continuously generated and disseminated by Web 2.0, Social Media and Online Social Network users and this offers unprecedented opportunities to analyze human behavior at a very large scale. We discuss also the potential of cross-fertilization, i.e., on the possibility of re-using Web Data Extraction techniques originally designed to work in a given domain, in other domains.Comment: Knowledge-based System

    Using Feature Selection Methods to Discover Common Users’ Preferences for Online Recommender Systems

    Get PDF
    Recommender systems have taken over user’s choice to choose the items/services they want from online markets, where lots of merchandise is traded. Collaborative filtering-based recommender systems uses user opinions and preferences. Determination of commonly used attributes that influence preferences used for prediction and subsequent recommendation of unknown or new items to users is a significant objective while developing recommender engines.  In conventional systems, study of user behavior to know their dis/like over items would be carried-out. In this paper, presents feature selection methods to mine such preferences through selection of high influencing attributes of the items. In machine learning, feature selection is used as a data pre-processing method but extended its use on this work to achieve two objectives; removal of redundant, uninformative features and for selecting formative, relevant features based on the response variable. The latter objective, was suggested to identify and determine the frequent and shared features that would be preferred mostly by marketplace online users as they express their preferences. The dataset used for experimentation and determination was synthetic dataset.  The Jupyter Notebook™ using python was used to run the experiments. Results showed that given a number of formative features, there were those selected, with high influence to the response variable. Evidence showed that different feature selection methods resulted with different feature scores, and intrinsic method had the best overall results with 85% model accuracy. Selected features were used as frequently preferred attributes that influence users’ preferences

    Using Feature Selection Methods to Discover Common Users’ Preferences for Online Recommender Systems

    Get PDF
    Recommender systems have taken over user’s choice to choose the items/services they want from online markets, where lots of merchandise is traded. Collaborative filtering-based recommender systems uses user opinions and preferences. Determination of commonly used attributes that influence preferences used for prediction and subsequent recommendation of unknown or new items to users is a significant objective while developing recommender engines.  In conventional systems, study of user behavior to know their dis/like over items would be carried-out. In this paper, presents feature selection methods to mine such preferences through selection of high influencing attributes of the items. In machine learning, feature selection is used as a data pre-processing method but extended its use on this work to achieve two objectives; removal of redundant, uninformative features and for selecting formative, relevant features based on the response variable. The latter objective, was suggested to identify and determine the frequent and shared features that would be preferred mostly by marketplace online users as they express their preferences. The dataset used for experimentation and determination was synthetic dataset.  The Jupyter Notebook™ using python was used to run the experiments. Results showed that given a number of formative features, there were those selected, with high influence to the response variable. Evidence showed that different feature selection methods resulted with different feature scores, and intrinsic method had the best overall results with 85% model accuracy. Selected features were used as frequently preferred attributes that influence users’ preferences

    Predictive User Modeling with Actionable Attributes

    Get PDF
    Different machine learning techniques have been proposed and used for modeling individual and group user needs, interests and preferences. In the traditional predictive modeling instances are described by observable variables, called attributes. The goal is to learn a model for predicting the target variable for unseen instances. For example, for marketing purposes a company consider profiling a new user based on her observed web browsing behavior, referral keywords or other relevant information. In many real world applications the values of some attributes are not only observable, but can be actively decided by a decision maker. Furthermore, in some of such applications the decision maker is interested not only to generate accurate predictions, but to maximize the probability of the desired outcome. For example, a direct marketing manager can choose which type of a special offer to send to a client (actionable attribute), hoping that the right choice will result in a positive response with a higher probability. We study how to learn to choose the value of an actionable attribute in order to maximize the probability of a desired outcome in predictive modeling. We emphasize that not all instances are equally sensitive to changes in actions. Accurate choice of an action is critical for those instances, which are on the borderline (e.g. users who do not have a strong opinion one way or the other). We formulate three supervised learning approaches for learning to select the value of an actionable attribute at an instance level. We also introduce a focused training procedure which puts more emphasis on the situations where varying the action is the most likely to take the effect. The proof of concept experimental validation on two real-world case studies in web analytics and e-learning domains highlights the potential of the proposed approaches

    Automated user modeling for personalized digital libraries

    Get PDF
    Digital libraries (DL) have become one of the most typical ways of accessing any kind of digitalized information. Due to this key role, users welcome any improvements on the services they receive from digital libraries. One trend used to improve digital services is through personalization. Up to now, the most common approach for personalization in digital libraries has been user-driven. Nevertheless, the design of efficient personalized services has to be done, at least in part, in an automatic way. In this context, machine learning techniques automate the process of constructing user models. This paper proposes a new approach to construct digital libraries that satisfy user’s necessity for information: Adaptive Digital Libraries, libraries that automatically learn user preferences and goals and personalize their interaction using this information

    Multi-dimensional clustering in user profiling

    Get PDF
    User profiling has attracted an enormous number of technological methods and applications. With the increasing amount of products and services, user profiling has created opportunities to catch the attention of the user as well as achieving high user satisfaction. To provide the user what she/he wants, when and how, depends largely on understanding them. The user profile is the representation of the user and holds the information about the user. These profiles are the outcome of the user profiling. Personalization is the adaptation of the services to meet the user’s needs and expectations. Therefore, the knowledge about the user leads to a personalized user experience. In user profiling applications the major challenge is to build and handle user profiles. In the literature there are two main user profiling methods, collaborative and the content-based. Apart from these traditional profiling methods, a number of classification and clustering algorithms have been used to classify user related information to create user profiles. However, the profiling, achieved through these works, is lacking in terms of accuracy. This is because, all information within the profile has the same influence during the profiling even though some are irrelevant user information. In this thesis, a primary aim is to provide an insight into the concept of user profiling. For this purpose a comprehensive background study of the literature was conducted and summarized in this thesis. Furthermore, existing user profiling methods as well as the classification and clustering algorithms were investigated. Being one of the objectives of this study, the use of these algorithms for user profiling was examined. A number of classification and clustering algorithms, such as Bayesian Networks (BN) and Decision Trees (DTs) have been simulated using user profiles and their classification accuracy performances were evaluated. Additionally, a novel clustering algorithm for the user profiling, namely Multi-Dimensional Clustering (MDC), has been proposed. The MDC is a modified version of the Instance Based Learner (IBL) algorithm. In IBL every feature has an equal effect on the classification regardless of their relevance. MDC differs from the IBL by assigning weights to feature values to distinguish the effect of the features on clustering. Existing feature weighing methods, for instance Cross Category Feature (CCF), has also been investigated. In this thesis, three feature value weighting methods have been proposed for the MDC. These methods are; MDC weight method by Cross Clustering (MDC-CC), MDC weight method by Balanced Clustering (MDC-BC) and MDC weight method by changing the Lower-limit to Zero (MDC-LZ). All of these weighted MDC algorithms have been tested and evaluated. Additional simulations were carried out with existing weighted and non-weighted IBL algorithms (i.e. K-Star and Locally Weighted Learning (LWL)) in order to demonstrate the performance of the proposed methods. Furthermore, a real life scenario is implemented to show how the MDC can be used for the user profiling to improve personalized service provisioning in mobile environments. The experiments presented in this thesis were conducted by using user profile datasets that reflect the user’s personal information, preferences and interests. The simulations with existing classification and clustering algorithms (e.g. Bayesian Networks (BN), Naïve Bayesian (NB), Lazy learning of Bayesian Rules (LBR), Iterative Dichotomister 3 (Id3)) were performed on the WEKA (version 3.5.7) machine learning platform. WEKA serves as a workbench to work with a collection of popular learning schemes implemented in JAVA. In addition, the MDC-CC, MDC-BC and MDC-LZ have been implemented on NetBeans IDE 6.1 Beta as a JAVA application and MATLAB. Finally, the real life scenario is implemented as a Java Mobile Application (Java ME) on NetBeans IDE 7.1. All simulation results were evaluated based on the error rate and accuracy
    • …
    corecore