
The Role of Classifiers in Feature 
Selection: Number vs Nature

A Thesis submitted for the degree of Doctor of Philosophy by

Kyriacos Andrews Chrysostomou

 

School of Information Systems, Computing and Mathematics

Brunel University

October 2008

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/335657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




The Role of Classifiers in Feature Selection: Number vs Nature                                                 Abstract 

Abstract

Wrapper feature selection approaches are widely used to select  a small  subset of 
relevant features from a dataset. However, Wrappers suffer from the fact that they 
only use a single classifier when selecting the features. The problem of using a single 
classifier is that each classifier is of a different nature and will have its own biases. 
This means that each classifier will select different feature subsets. To address this 
problem, this thesis aims to investigate the effects of using different classifiers for 
Wrapper feature selection.  More specifically,  it  aims to investigate  the effects  of 
using different number of classifiers and classifiers of different nature. 

This aim is achieved by proposing a new data mining method called Wrapper-based 
Decision  Trees  (WDT).  The  WDT  method  has  the  ability  to  combine  multiple 
classifiers from four different families, including Bayesian Network, Decision Tree, 
Nearest  Neighbour  and  Support  Vector  Machine,  to  select  relevant  features  and 
visualise  the  relationships  among  the  selected  features  using  decision  trees. 
Specifically, the WDT method is applied to investigate three research questions of 
this thesis: (1) the effects of number of classifiers on feature selection results; (2) the 
effects of nature of classifiers on feature selection results; and (3) which of the two 
(i.e.,  number  or  nature  of  classifiers)  has  more  of  an  effect  on  feature  selection 
results.  Two  types  of  user  preference  datasets  derived  from  Human-Computer 
Interaction (HCI) are  used with WDT to assist  in answering these three research 
questions. 

The results from the investigation revealed that the number of classifiers and nature 
of classifiers greatly affect feature selection results. In terms of number of classifiers, 
the results showed that few classifiers selected many relevant features whereas many 
classifiers selected few relevant features. In addition, it was found that using three 
classifiers resulted in highly accurate feature subsets. In terms of nature of classifiers, 
it  was  showed  that  Decision  Tree,  Bayesian  Network  and  Nearest  Neighbour 
classifiers caused signficant differences in both the number of features selected and 
the accuracy levels of the features. A comparison of results regarding number of 
classifiers and nature of classifiers revealed that the former has more of an effect on 
feature selection than the latter. 

The thesis makes contributions to three communities: data mining, feature selection, 
and HCI. For the data mining community, this thesis proposes a new method called 
WDT  which  integrates  the  use  of  multiple  classifiers  for  feature  selection  and 
decision trees to effectively select and visualise the most relevant features within a 
dataset. For the feature selection community, the results of this thesis have showed 
that the number of classifiers and nature of classifiers can truly affect the feature 
selection process. The results and suggestions based on the results can provide useful 
insight about classifiers when performing feature selection. For the HCI community, 
this  thesis  has showed the usefulness of  feature selection for  identifying a  small 
number of highly relevant features for determining the preferences of different users.
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Chapter 1 – Introduction

1.1  Thesis Context

This thesis presents interdisciplinary work which integrates several areas of research, 

namely data mining, feature selection and Human-Computer Interaction (HCI). This 

section briefly introduces each of these research areas.

Data mining encompasses techniques from a number of fields, including information 

technology, statistical analyses, and mathematical science (Bohen et al., 2003). Data 

mining techniques can help analyse, understand and visualise large amounts of data 

stored in databases, data warehouses or other data repositories (Li and Shue, 2004). 

This means that data mining techniques have the ability to handle large datasets, 

which consist of hundreds or thousands of features. The sheer number of features 

present in such datasets often causes problems for data miners because some of the 

features  may  be  irrelevant  to  the  data  mining  techniques  used.  Such  irrelevant 

features can harm the quality of the results obtained from data mining techniques 

(Bhavani, Rani and Bapi, 2008) and in turn reduce the chances of identifying useful 

knowledge from the  dataset.  A way of  dealing  with  irrelevant  features  is  to  use 

feature selection. 

Feature selection is widely used for selecting the most relevant subset of features 

from datasets according to some predefined criterion (Sima and Dougherty, 2008). 

Feature  selection  thus  focuses  only  on  the  relevant  features  in  the  dataset  by 

removing any irrelevant features. There are many benefits associated with removing 

irrelevant features, some of which include reducing the amount of data (i.e., features) 

so that the data are easier to handle when performing data mining and being able to 

reveal  the  relevancies  within  the  data  (Czekaj,  Wu  and  Walczak,  2008).  These 

attractive benefits have led researchers to use feature selection for many different 

types of tasks, one of which is identifying relevant features from datasets belonging 

to HCI. This is mainly because of the inherent fuzziness of HCI datasets typically 

caused by users being unsure of their preferences (Frias-Martinez, 2007).

The area of HCI looks at the way in which different users interact with various Web-

based  systems  (Frias-Martinez,  et  al.,  2007).  Popular  examples  of  this  involve 
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looking at the interactions and preferences of different users with regards to Web-

based learning systems and search engines. By examining users’ preferences of such 

systems, we can gain a better understanding of users’ needs. In the context of HCI, 

such understanding can help us develop Web-based systems that can accommodate 

users’ preferences and needs.

The rest of this chapter gives an overview of the areas under investigation in this 

thesis.  First,  Section  1.2  defines  the  problem  to  be  investigated.  Subsequently, 

Section 1.3 outlines the aim and research questions of the thesis. Section 1.4 then 

presents a description of the contributions of this thesis and finally Section 1.5 details 

the structure of the thesis.

1.2  Motivation of Thesis

As previously mentioned, feature selection is a useful data mining tool for selecting 

sets  of  relevant  features  from  datasets.  Currently,  feature  selection  is  typically 

performed by two types of feature selection methods, Filters and Wrappers (Kohavi, 

1995b; Kohavi and John, 1997). A Filter method evaluates the relevance of features 

according to some discriminating criterion that looks at the general characteristics of 

the data (Bhavani, Rani and Bapi, 2008). The results from such a method are usually 

a ranked list of features, where the features at the top of the list are relevant and the 

features at the bottom of the list are not so relevant or totally irrelevant. A Wrapper, 

however, evaluates the relevance of features by using a classifier and selects only the 

most relevant subset of features (Ng, et al., 2008). Therefore, the results obtained 

from a Wrapper are different to that of a Filter because it actually selects a subset of 

the most relevant features rather than list all features in order of relevance (Huang, 

Yang, and Chuang, 2008). 

Many researchers have used both Filters and Wrappers for the purpose of feature 

selection.  Interestingly,  it  has  been  shown  that  Wrappers  often  give  superior 

performance (in terms of classification accuracy) than Filters (e.g., Inza, et al, 2004; 

Ruiz,  et  al,  2006;  Zheng  and  Zhang,  2008).  Although  Wrappers  provide  better 

performance, they tend to use only one classifier to select the relevant features. The 

problem with using a single classifier is that each classifier is of a different nature 

and will have its own biases. Classifiers that possess different nature and biases may 
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have a different effect on feature selection. For example, classifiers with one type of 

bias may be more (or less) suited to selecting relevant features from a dataset than 

classifiers with another type of bias. This may be due to the fact that the biases made 

by  one  of  the  classifiers  match  (or  do  not  match)  the  underlying  biases  and 

characteristics of the dataset used. This may subsequently lead to different feature 

subsets being selected by the classifiers. In fact, each classifier may select a different 

feature subset which may contain diverse numbers of features and lead to varying 

levels of classification accuracy. 

This problem associated with using a single classifier motivates the use of multiple 

classifiers for feature selection. However, little is known about the effects of using 

multiple  classifiers  for  feature  selection,  especially  the  effects  of  using  different 

numbers of classifiers and using classifiers with a different nature. On the one hand, 

different numbers of classifiers may affect feature selection results. The reason for 

this may lie within the level of agreement among the classifiers. If a low number of 

classifiers are used for feature selection, then it is likely that the level of agreement 

among them will be high. High agreement among classifiers may subsequently result 

in  more  relevant  features  being  selected  and  differences  in  accuracy  levels.  If, 

however, a high number of classifiers are used for feature selection then the level of 

agreement will probably be low because more classifiers are required to agree on the 

relevance of a feature. This in turn may lead to fewer relevant features being selected 

and different levels of accuracy. This ultimately shows that varying the number of 

classifiers may influence the number of features selected and the accuracy levels of 

the features.

On the other hand, classifiers of a different nature may also lead to different feature 

selection results.  This  is  because a  classifier  with a  different  nature will  possess 

different biases.  For example,  consider the biases of  classifiers  belonging to two 

widely used classifier families, namely Bayesian Network and Nearest Neighbour. 

Classifiers of the Bayesian Network family typically aim to find features that have 

high  conditional  probability  values  when  building  a  graphical  network  structure 

(Gammerman, 1997). However, classifiers of the Nearest Neighbour family aim to 

find  features  that  are  deemed  the  closest  by  a  predefined  distance  metric.  This 

example shows that classifiers which have different biases are highly likely to select 

3
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different  features.  In  this  way,  they  may select  different  number  of  features  and 

features that lead to different levels of classification accuracy. 

In summary, the number of classifiers and nature of classifiers are two issues that 

may affect the way in which features are selected. The thesis will therefore set out to 

investigate the effects of these two issues on feature selection. 

1.3  Research Questions of Thesis

The aim of the thesis is to investigate the effects of using multiple classifiers on 

feature selection, namely the number of classifiers and nature of classifiers. More 

specifically, the following three research questions will be investigated in order to 

achieve the aim of this thesis. They are as follows: 

1. To what extent does the number of classifiers used influence the number of 

features selected and the accuracy levels of the features (RQ1); 

2. To what extent does the  nature of classifiers used influence the number of 

features selected and the accuracy levels of the features (RQ2); and 

3. Which of the two issues (i.e., number of classifiers or nature of classifiers) 

has a greater effect on feature selection (RQ3). 

In  order  to  help answer the three research questions  mentioned above,  the thesis 

proposes a novel data mining method called Wrapper-based Decision Trees (WDT). 

The WDT method combines multiple classifiers with Wrappers for feature selection 

and also visualises the feature selected by using decision tree classifiers. The WDT 

method thus provides two benefits. First, it  can overcome the problem of using a 

single classifier with existing Wrappers since it uses several classifiers for feature 

selection. This means that it can reduce the biases associated with using individual 

classifiers so that sets of mutually agreed and unbiased features are selected. Second, 

WDT can be used with various numbers of classifiers and classifiers of a different 

nature to perform the feature selection. This means it can help us better understand 

how the number and nature of classifiers influence feature selection results. 

4
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To assist in uncovering the effects of number and nature of classifiers, the proposed 

WDT method is used in conjunction with: a) two different classifier arrangements 

approaches and b) two different types of user preference datasets. With regards to the 

former, classifiers are combined in two different approaches, namely same-type and 

mixed-type approaches. The same-type approach involves using different numbers of 

classifiers  that  have  a  similar  nature  whereas  the  mixed-type  approach  involves 

combining different  numbers of classifiers  that  have a  different  nature.  By using 

these two approaches,  we will  be able  to provide a complete  picture of how the 

number and nature of classifiers influence feature selection results. 

With regards to the latter, the two chosen datasets, which are derived from the area of 

HCI, consist of users’ preferences of 1) search engines and 2) Web-based learning 

systems. Such datasets were chosen because they are typically of a fuzzy nature (Tai 

and Chen, 2006; Castellano, et al., 2007) and may possess irrelevant features that 

need to be removed by feature selection.  Removing irrelevant features from HCI 

datasets through feature selection offers great benefits to experts in the field. In fact, 

HCI experts will be equipped with a new type of tool which can not only assist them 

in reducing the fuzzy nature of these datasets but can subsequently help them better 

understand  the  preferences  of  different  users.  The  use  of  such  a  tool  therefore 

presents a new approach to analysing HCI datasets.

1.4  Contributions of Thesis

The  investigation  presented  in  this  thesis  makes  contributions  to  three  different 

communities,  including  the  communities  of  Data  Mining,  Feature  Selection,  and 

HCI. These contributions are described below. 

• With regards to the  Data Mining community, this thesis proposes a novel 

method called Wrapper-based Decision Trees (WDT), which integrates the 

use of multiple classifiers to perform feature selection and decision trees to 

effectively visualise the most relevant features within a dataset. This method 

has been shown in the thesis to select accurate sets of relevant features and 

help gain insight into the relevancies present within the datasets used.
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• With regards to the  Feature Selection community,  this  thesis  employs the 

WDT method to  investigate  the  role  of  the number  of  classifiers  and the 

nature of classifiers in feature selection.  The results  showed that different 

numbers of classifiers and classifiers of a certain nature play a significant role 

in influencing the feature selection results. Suggestions based on these results 

are  also  given,  which  may  assist  feature  selection  experts  in  choosing 

classifiers  suitable  to  particular  feature  selection  tasks,  i.e.,  choosing 

classifiers that lead to compact feature subsets or classifiers that lead to high 

levels of classification accuracy. 

• With regards to the  HCI community, the WDT method was able to select 

highly relevant feature subsets from datasets consisting of users’ preferences 

of  search engines and Web-based learning systems. These highly relevant 

feature subsets can prove very useful in the context of HCI because they may 

contain  features  that  help  differentiate  the  search  engine  preferences  and 

Web-based learning preferences of different users. Such features can be used 

by HCI experts to develop search engines and Web-based learning systems 

that better accommodate the preferences of different users. Considering the 

needs of users in such a novel way presents a new milestone in HCI research. 

1.5  Thesis Structure

Following on from this chapter, Chapter 2 provides a detailed overview of the state-

of-the-art of feature selection and reviews current works on the two main feature 

selection methods: Filters and Wrappers. The benefits and limitations of each method 

are also examined within this chapter.  

Chapter 3 presents a detailed description of a novel method called Wrapper-based 

Decision  Trees,  or  WDT,  which  combines  multiple  classifiers  to  select  relevant 

features  and  visualises  the  relationships  among  selected  features  through  use  of 

decision trees. In this thesis, Bayesian Network, Decision Tree, Nearest Neighbour 

and  Support  Vector  Machine  are  classifiers  used  with  WDT  to  do  the  feature 

selection. Since the WDT method combines several different classifiers for feature 

selection, it is used in this thesis to investigate the role of the number and nature of 

classifiers which will help answer the research questions presented in the previous 
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section.  More  specifically,  the  WDT  method  makes  use  of  two  types  of  user 

preference datasets, where one includes user preferences of search engines (UP1) and 

the  other  includes  user  preferences  of  Web-based  learning  systems  (UP2).  In 

addition,  WDT  uses  the  same-type  and  mixed-type  classifier  arrangement 

approaches, which combine classifiers in a different manner. Details of both datasets 

and classifier arrangement approaches are also provided in this chapter.

Chapter 4 presents the results obtained using the WDT method with both datasets 

and the first of the two classifier arrangement approaches: the same-type approach. 

The results show that the number of classifiers plays a significant role in feature 

selection since few classifiers select higher number of relevant features and many 

classifiers  select  lower  number  of  features.  Furthermore,  it  is  found  that  using 

Decision Tree classifiers  leads to higher number of features and higher levels  of 

accuracy than other types of classifiers. The chapter also examines the combinations 

of classifiers which build decision trees with the highest accuracy levels for both 

UP1 and UP2 datasets. Small subsets of the most relevant features are extracted from 

the decision trees which help determine the preferences of different users.

Chapter 5 presents the results using WDT with the mixed-type approach. Once again, 

the results  show that  reducing the number  of  classifiers  increases the number  of 

features  selected  and  increasing  the  classifiers  results  in  a  decrease  in  relevant 

features. Interestingly, classifiers belonging to the Bayesian Network and Nearest 

Neighbour families influence the number of features selected and the accuracy levels 

generated for UP1 and UP2. Finally, a close examination of the decision trees with 

the  highest  accuracy  levels  in  both  datasets  is  carried  out.  Additional  relevant 

features  are  obtained  from  these  decision  trees  which  in  turn  prove  useful  in 

distinguishing the preferences of the users from each dataset. 

Chapter 6 compares the results obtained from the previous two chapters. This chapter 

therefore  compares  the  results  from  the  WDT  method  using  the  same-type  and 

mixed-type  approach.  This  is  to  provide a  complete  overview of  the  role  of  the 

number of classifiers and nature of classifiers in feature selection. In terms of number 

of  classifiers,  the  comparison  reveals  two  issues:  (1)  few classifiers  select  more 

relevant features and many classifiers select few features irrespective of nature of 
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classifiers  used  and  (2)  combinations  comprising  three  classifiers  select  feature 

subsets  that  lead  to  the  highest  levels  of  accuracy  irrespective  of  the  nature  of 

classifiers used. These two issues help answer the first research question of the thesis 

(RQ1). In terms of the nature of classifiers, the comparison reveals that the nature of 

classifiers is stronger in different contexts. On the one hand, Decision Tree classifiers 

influence feature selection results only when combined and used together. On the 

other hand, Bayesian Network and Nearest Neighbour classifiers influence feature 

selection  only  when  combined  with  classifiers  from other  families.  Such  results 

provide answers to the second research question of the thesis (RQ2). Based on the 

answers to the first and second research questions, it is shown that the number of 

classifiers has more of an influence on feature selection results than the nature of 

classifiers  used,  which  answers  the  third  research  question  of  the  thesis  (RQ3). 

Suggestions based on the comparison in this chapter are also presented, which show 

suitable  (and  not  so  suitable)  numbers  of  classifiers  and nature  of  classifiers  for 

feature selection.

Finally, Chapter 7 presents the key findings of the thesis with regards to the role of 

number and nature of classifiers in feature selection. The chapter then outlines some 

limitations of the thesis and finally describes some ideas for future work based on the 

limitations identified.
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Chapter 2 – Feature Selection: The State-of-the-Art 

2.1  Introduction

Data mining is the process of extracting valuable information from large amounts of 

data  (Hand, Mannila  and  Smyth, 2001). One of the most widely used data mining 

approaches is classification.  Classification requires each instance in a dataset to be 

assigned a label. The purpose of classification is to predict the class label of a new 

instance  using  a  set  of  already  labelled  data  instances  (Szpunar-Huk,  2006). 

However, datasets with irrelevant features (i.e., features which do not contribute to 

the  prediction  of  class  labels)  may  cause  some  problems  for  classification.  The 

classification performance can be deteriorated by such irrelevant features so there is 

a need to remove irrelevant and redundant features from datasets (Blum and Langley, 

1997). A widely used way of removing such features is known as feature selection. 

Feature selection is used to limit the effects of irrelevant features by seeking only the 

relevant subset from the original features (de Souza, Matwin and Kapkowicz, 2006). 

By reducing  the  number  of  irrelevant  features  in  this  manner,  the  time  taken  to 

perform classification can be greatly reduced and the reduced dataset is easier  to 

handle,  which  often  leads  to  more  accurate  classification  results  (Guyon  and 

Elisseeff, 2003; Yang and Olafsson, 2006). 

In general, there are two main methods for performing feature selection. The first is 

the Filter method. Filters usually rely on the underlying characteristics of the dataset 

and a statistical criterion to rank features according to their relevance. Those which 

are  ranked  top  will  be  most  relevant  and  those  ranked  bottom  will  be  of  least 

relevance (Huang and Chow, 2007). The second method is Wrappers. Unlike Filters, 

Wrappers use classifiers  to  select  relevant  features.  They use the performance of 

classifiers  to  decide  which  features  are  relevant  (shown  by  high  classifier 

performance) and which are not so relevant (shown by low classifier performance) 

(Huang, et al, 2007). 

In  summary,  Filters  and  Wrappers  are  two  of  the  most  commonly  used  feature 

selection methods. As such, this chapter will provide a review of the state-of-the-art 

of  both of these methods.  In order to provide a foundation to both methods,  the 
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chapter will start by giving a brief introduction to feature selection in Section 2.2. 

Subsequently,  Section  2.3  will  explain  how feature  selection  is  performed using 

Filters  and  also  provides  examples  of  some  of  the  most  commonly  used  Filter 

methods.  The main limitations  of  Filters  will  also be outlined.  Following this,  a 

detailed explanation of Wrapper feature selection methods will be given in Section 

2.4. Since Wrappers use classifiers to perform the feature selection, the chapter will 

then give brief details on four of the most popularly used classifier families, namely, 

Bayesian  Networks  (Section  2.4.1),  Decision  Trees  (Section  2.4.2),  Nearest 

Neighbour (Section 2.4.3) and Support Vector Machines (Section 2.4.4), and how 

they have been used with the Wrapper. The limitations of Wrappers will also be 

detailed in Section 2.4.5. The limitations will include the amount of time Wrappers 

take to perform feature selection, the accuracy of features selected by Wrappers, and 

the use of a single classifier to do the feature selection. 

2.2  The Basics of Feature Selection 

Typically,  feature  selection  can  be  formally  defined  in  the  following  manner. 

Suppose F is the given set of original features with cardinality n (where n symbolises 

the number of features in set F), and F  is the selected feature subset with cardinality 

n  (where n  symbolises the number of features in set F ), then F F⊆ . Also, let J(

F ) be the selection criterion for selecting feature set  F . We assume that a higher 

value of  J indicates a better feature subset. Thus, the goal is to maximise J( ). The 

problem of feature selection is to find a subset of features F F⊆  such that,

,
( ) max ( )

Z F Z n
J F J Z

⊆ =
=

Deriving a feature subset that maximises  J( ) typically consists of four key steps 

namely,  search  direction,  search  strategy,  feature  subset  evaluation  and  stopping 

criterion (Huan and Lei, 2005). In brief, search direction defines the point at which 

the search for the most relevant subset will begin. Complementary to the direction of 

the search  is  the  search  strategy.  The  search  strategy  outlines  the  way in  which 

feature subsets are searched within the feature space.  Each of the feature subsets 

found is then evaluated according to some evaluation criteria. Finally, a stopping 
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criterion is chosen and used for halting the search through feature subsets. Further 

details on each of these four key steps are given in the next sections.

1)  Search Direction

Intuitively,  the  first  issue  that  needs  to  be  considered  when  performing  feature 

selection is  the point  at  which to  start  searching for  the  most  relevant  subset  of 

features. Deciding on the point to start the search also requires one to decide the 

direction  of  the search.  For  example,  a  search  may begin  at  the  point  where  no 

features are involved and then successively add more. In this case, the direction of 

the  search  is  said  to  proceed  forward  through  the  search  space.  Conversely,  the 

search can begin with all features and successively remove the less relevant ones. In 

this case, the search proceeds backward through the search space. Another way is to 

begin at a point somewhere in the middle moving outwards from this point. This is 

sometimes referred to as a bi-directional search because it can search forwards and 

backwards through all the features in the dataset. 

2)  Search Strategy

When the direction of the search has been decided, the search strategy (also known 

as  the  organisation  of  the  search)  must  also  be  considered.  Typically,  search 

strategies  can  be  classed  as  either  exhaustive or  heuristic.  An exhaustive  search 

systematically examines all possible subsets of features and selects the ‘best’ (i.e., 

optimal) subset of features relevant to the classification task.  Such a search strategy 

guarantees to find the optimal feature subset. Some classic examples of exhaustive 

search techniques are branch-and-bound, beam search (which is a variant of branch-

and-bound), depth-first and breadth-first (Chen, 2003; Dash and Liu, 2003; Tso and 

Gu, 2004). Although such approaches often give optimal solutions, the numbers of 

possible subsets that need to be examined are exponential therefore making this form 

of search impractical for large datasets. 

On the other hand, a more feasible and practical approach is a heuristic search. This 

type of search is often simpler as it does not consider all possible feature subsets. 

Instead, such a search only considers feature subsets that are very close to being the 

‘best’  subset of features.  The two most  popularly used heuristic  search strategies 

include the forward selection search and the backward elimination search (Aha and 
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Bankert,  1996;  Kohavi  and  John,  1997).  Both  of  these  strategies  consider  local 

changes to the feature subsets during the search for the most relevant subset, where a 

local change is simply the addition or deletion of a single feature from the subset. 

When additions to the feature subset are considered the search strategy is known as 

forward selection. However, when deletions from the feature subset are considered 

the search strategy is referred to as backward elimination. 

3)  Feature Subset Evaluation

Irrespective of the search direction and strategy chosen, each selected feature subset 

needs to be evaluated according to some criteria. This is so that the feature subset 

with the highest accuracy can be identified. Typically, there are two main criteria for 

evaluating feature subsets (John, Kohavi and Pfleger, 1994). The first one functions 

independently  of  the  classifier  relying  on  statistical  metrics  and  the  general 

characteristics of the data to evaluate the relevance of feature subsets. In this case, 

the result is usually a ranked list of the features according to their relevance to the 

classification task. This criterion is widely known as the Filter. The second criterion, 

referred to as the Wrapper, is very different to the Filter. This is because the Wrapper 

requires a classifier to be used for feature selection. The Wrapper conducts the search 

for the most relevant feature subset using the classifier itself as part of the evaluation 

function.  In  other  words,  the  Wrapper  uses  the  performance  of  the  classifier  to 

determine how relevant the feature subsets are. Features which lead to high classifier 

performance will make up the final feature subset.

4)  Stopping Criterion

Finally, some criteria must be chosen for stopping the search through feature subsets. 

When dealing with Filters, a commonly used stopping criterion is the ordering of the 

features  according  to  some relevancy score  (usually  a  statistical  measure).  Once 

ordered,  the features with the highest relevance scores are chosen for use with a 

classifier. When using Wrappers, one might stop adding or removing features when 

there is no improvement to the accuracy of the current feature subset. Alternatively, 

the Wrapper might continue to adjust the feature subset (i.e., add or remove features 

from the subset) as long as the accuracy does not degrade past a certain value. 
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The aforementioned sections have outlined the four basic steps required to perform 

feature selection. Generally, there are two main methods that use these elements to 

perform feature selection: Filters and Wrappers. The difference between these two 

methods mainly lies within the way in which they evaluate the relevance of feature 

subsets. The former evaluates relevance of features without a classifier whereas the 

latter uses a classifier to evaluate the value of features (Hanczar, et al.,  2003). A 

detailed explanation of both Filters and Wrappers is given in the next sections.

2.3  Filter Methods

Filter methods typically  assess the relevance of features by looking at the intrinsic 

properties of the data and employing some statistical measure (Li, Xie and Goh, in 

press). Essentially, Filter methods begin by choosing a search strategy and deciding 

the direction of the search in order to start looking for the relevant features in the 

dataset. Then, each of the features in the dataset will be assigned a relevance score 

(either high or low), as calculated by a statistical measure (Liu and Yu, 2005). The 

features  will  then  be  ordered  according  to  their  relevance  score.  In  some cases, 

however,  features  with  high  relevance  scores  will  be  selected  and  low  scoring 

features will be discarded (Sayes, Inza, and  Larrañaga, 2007). Finally, the selected 

features which have high relevance scores are presented as input to the classifier. 

This process which describes the way in which Filters perform feature selection is 

shown in Figure 2.1.

Figure 2.1. The Process of Filter Feature selection

In general, there are two types of Filter methods, namely univariate and multivariate 

(Zhu, Ong and Dash, 2007). The univariate filter methods consider each feature in 

the dataset  separately when identifying relevant features whereas the multivariate 
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methods consider the interactions among different features in the dataset. Figure 2.2 

shows some common examples of both univariate and multivariate filter methods. 

Detailed explanations of these examples and their applications for feature selection 

are given in the following sections.

Figure 2.2. Some Examples of Filter Methods

2.3.1  Univariate Filter Methods

Univariate  methods  are  probably  the  most  popularly  used  Filter  methods  for 

performing  feature  selection  (Sayes,  Inza,  and  Larrañaga,  2007).  Basically, 

univariate methods use statistical measures to determine the relevance of features in 

the  dataset.  More  specifically,  such  Filter  methods  calculate  the  statistical 

significance of each individual feature (using the measure) with regards to the target 

variable. Features with high significance are considered to be highly relevant to the 

target variable whereas features with low significance are considered to be of low 

relevance. In addition, features which do not have any significance with the target 

variable are regarded as totally irrelevant. 

Many examples  of  univariate  methods  carry  out  feature  selection  in  the  manner 

described  above.  Among  them,  methods  that  use  information  measures,  such  as 

Information Gain (Quinlan, 1993) and Mutual Information (Battiti, 1994), and other 
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statistical measures, such as χ2 also known as Chi-Square (Chan and Wong, 1991) are 

most commonly used. 

1)  Methods with Information Measures

The information measures typically used with univariate Filters include Information 

Gain and Mutual Information. The Information Gain measure looks at the amount of 

information a feature (or more than one feature) contributes to predicting each class 

value of the target variable (Lee and Lee, 2006).  To help determine the amount of 

information contributed by each feature, the entropy value is also calculated for each 

one with respect to the target variable (Yu and Liu, 2004). A feature with a high 

entropy value is considered to be relevant whereas a feature with a low entropy value 

is  seen  as  less  relevant.  The  Mutual  Information  measure,  on  the  other  hand, 

investigates the amount of uncertainty a feature (or more than one feature) possesses 

in  relation  to  the  target  variable  (Mladenic  and  Grobelnik,  2003).  The  level  of 

uncertainty for each feature is determined by looking at dependencies between the 

features (Liu,  et  al.,  in press).  The features which are highly dependent on other 

features signify a high level of uncertainty and are thus discarded. This leaves the 

features which are only dependent on the target variable. Typically, Filter methods, 

which adopt information measures such as these described, aim to select features 

which contribute  the most information and discard those features which promote 

uncertainty (Li, Xie and Goh, in press). In this way, the features selected by such 

Filter  methods  will  be  highly  relevant  to  the  target  variable.  Examples  of  Filter 

methods that employ information measures namely Information Gain and Mutual 

Information are given in the next few pages.

In  terms  of  Information  Gain,  Pazzani  and  Billsus  (1997)  incorporated  this 

information measure into their  Syskill  & Webert  system, which rates Web pages 

based on the preferences of users and makes recommendations to users in the form of 

what  pages they may be interested in.  The measure was used in  their  system to 

identify the most informative words (i.e., those that occur most often) in Web pages 

rated interesting by users. These words were then classified using Bayesian classifier. 

The result from this classifier is a recommendation to the user in the form a Web 

page.  It  was shown that the system was able  to make accurate recommendations 

based on the words selected by Information Gain measure. In addition, Liu, Li and 
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Wong (2002) used the Information Gain measure for the purpose of identifying a set 

of the most important genes for diagnosing different forms of cancer. The measure 

was used with two types of cancer datasets, namely the acute leukaemia dataset and 

the ovarian cancer dataset, each of which consist of more than one thousand genes 

(i.e.,  features). The results showed that Information Gain was able to identify 13 

important and relevant genes from the acute dataset and 20 genes from the ovarian 

cancer  dataset.  These  features  were  then  classified  using  an  array  of  different 

classifiers, including the C4.5 decision tree classifier and Support Vector Machine. 

The classification accuracies generated by these classifiers using identified features 

were shown to be much higher  than those generated using all  of  features  in  the 

datasets.

In terms of Mutual Information, Prabowo and Thelwall (2006) used this measure to 

detect  significant  topics  in  online  news  story  documents  and  Web  blogs.  The 

significant topics within these two applications are those which consist of frequently 

occurring words. This measure was used to rank all words according to how many 

times they appear in the applications. Those which appear many times are assigned a 

high  significance  value  while  those  which  appear  few times  are  assigned a  low 

significance value. It was found that the Mutual Information measure helped identify 

a small number of the most significant words from Web blogs and news stories, 

which generated high classification accuracies.  Furthermore,  Blanco et  al.  (2005) 

used the Mutual Information measure for the purpose of bioinformatics. The authors 

used this measure to predict the survival rate of cirrhotic patients (i.e., patients with 

liver disease) after having the TIPS liver disease treatment. The measure was used to 

select  a  small  number  of  relevant  features  from the  patient  dataset.  The relevant 

features were then used with a Bayesian network classifier to make the predictions. 

The  predictions  made  by  the  classifier  using  the  identified  features  were  highly 

accurate and proved useful to physicians for better understanding the effectiveness of 

TIPS treatment. 

2)  Methods with Statistical Measures 

Statistical  measures  such  as  Chi-Square  can  also  be  used  to  do  Filter  feature 

selection. The Chi-Square method considers one feature at a time. The method then 

evaluates  the  relevance  of  the  feature  by  computing  the  value  of  the  chi-square 
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statistic with respect to the target variable. A feature which has a higher chi-square 

value is considered more relevant to the target variable, whereas a feature with a 

lower value is regarded as being less relevant. This is repeated for every feature in 

the dataset.  In  general,  the Chi-Square method has  been used to  perform feature 

selection in many areas. Some areas in which this method has been widely used also 

include Web text mining and bioinformatics. In terms of the former, Fan, Gordon 

and  Pathak  (2005)  looked  at  the  automatic  identification  of  users’  interests  and 

preferences based on a set  of  sign i f i c a n t  key w o r d s  from  thei r  past  Web  page  hist o r y  

of  news story documents. In i t i a l l y ,  the  Chi-Square measure was used to determine 

the significance of each keyword used by the users. All keywords were then ranked 

based on their significances, where the  sign i f i c a n t  keyw o r d s  were  those  w i t h  high  

stat is t i ca l  values  and  ins i gn i f i c a n t  keyw o r d s  had  low  values.  The  key w o r d s  that  had  

high  stat is t i c a l  values  were  used  to  determ i n e  the  users’  inte res ts  and  pre fe ren ces  of  

news story documents. Th is  approach  used  by  the  autho rs  was  shown  to  be  more  

robus t  and  accu ra te  than  the  approach  w i t h o u t  the  Chi-Square Fi l te r  metho d.  

In terms of the latter, Sartore et al, (2008) recently employed the Chi-Square method 

to identify features that would help in predicting the likelihood of a tumour evolving 

into cancer. The Chi-Square was used with a dataset comprised of several features 

describing the characteristics of patients with cancerous and non cancerous tumours. 

From the large number of features present in the patient dataset, Chi-Square method 

was able to select three features that were responsible for predicting the chances of a 

tumour  turning  into  cancer.  These  features  were  found  to  generate  higher 

classification  accuracy  compared  to  the  accuracy  generated  using  all  features  in 

dataset.

2.3.2  Multivariate Filter Methods

The  Filter  methods  described  in  the  previous  section  consider  each  feature 

independently when searching for the set of most relevant features. This can be a 

problem if  there  are  some features  in  the dataset  which are  more relevant  when 

considered  together.  This  problem  can  be  reduced  by  using  multivariate  filter 

methods. These types of methods are able to determine the significance of features 

by  considering  the  interactions  between  more  than  one  feature.  There  are  many 

examples of multivariate filter methods, the most common ones being Relief (Kira 
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and Rendell, 1992), FOCUS (Almuallim and Dietterich, 1991) and Correlation-based 

Feature Selection (Hall, 2000).

The aim of the Relief method is to assign a relevance weight (i.e., score) to each 

feature in the dataset. Each feature’s weight reflects its ability to distinguish among 

the class values of the target variable. A feature will be assigned a high weight if it is 

able  to  differentiate  between  different  class  values  but  not  differentiate  among 

identical class values (Zheng and Zhang, 2008). Features are then ranked according 

to their weight and those that exceed a user-specified weight threshold (which is 

usually high) are selected to form the final feature subset. An example where the 

Relief method has been used to perform feature selection can be found in Ruan et al, 

(2006). In this example, the authors use the Relief method to analyse gene expression 

data. The Relief method was used to identify a set of the most informative genes that 

would  help  in  diagnosing  different  types  of  cancerous  tumours  like  lung  and 

pancreas. The Relief method identified several sets of such genes for the different 

types of tumours, which were then presented as input to the Support Vector Machine 

classifier. The selected set of genes led to higher classification accuracies compared 

to that of all genes being used. More importantly, the selected genes were shown to 

provide useful insight into the identification of cancerous tumours. 

Another  multivariate  filter  method  is  FOCUS.  The  FOCUS method  conducts  an 

exhaustive search of all feature subsets until it finds the smallest set of features that 

consistently labels the instances within the entire dataset. This means that FOCUS 

looks for features that can successfully divide the instances in the dataset into the 

number of classes of the target variable. Due to the fact that an exhaustive search is 

carried out by FOCUS, it is more likely to find accurate feature subsets from data. 

Many researchers are aware of this fact and have used FOCUS to perform feature 

selection  for  different  tasks.  As  an  example,  Wittmann  and  Ruhland  (1999)  use 

feature selection and the Neuro-fuzzy system classifier (which combines the benefits 

of neural networks and fuzzy set theory) to predict the likelihood of people replying 

to emails regarding financial promotions at banks. In terms of the feature selection, 

the FOCUS method was used  to  remove the  irrelevant  features  and  identify  the 

relevant features in the dataset. This process managed to reduce the dataset from 28 

features  to  13 features,  i.e.,  13 relevant  features  were  selected.   In  terms of  the 
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classifier,  the  selected  relevant  features  were  fed  as  input  to  the  Neuro-fuzzy 

classifier  to  generate  rules that  would help make the predictions.  The rules were 

found to generate high levels of classification accuracy, which led the authors to 

conclude that feature selection techniques, such as FOCUS, are of high relevance to 

any type of data mining task since they can help improve classification results.

Correlation-based Feature Selection (CBFS) is the other commonly used multivariate 

filter  method.  Basically,  the  CBFS  uses  a  slight  variation  of  the  Pearson’s 

Correlation coefficient to measure the relevance of individual features with regards 

to the target variable and also the relevance of features in relation to other features in 

the dataset (Hall and Smith, 1997). Features that have high relevance with the target 

variable but low relevance with other features are chosen to form the final feature 

subset (Hall, 2000). In other words, CBFS is useful for identifying and discarding 

feature  correlations  which  can  often  be  redundant  and  irrelevant  to  the  target 

variable. This usefulness of CBFS has led data miners to use it for a variety of tasks, 

such as gene expression data analysis. More specifically, Wang, et al (2005) adopted 

the CBFS method to identify relevant features from gene expression data, namely 

acute leukaemia data and B-cell lymphoma data, in order to find the genes that cause 

these diseases (i.e., leukaemia and B-cell lymphoma). From the many thousands of 

genes present in these two datasets, CBFS was able to select a very small subset of 

relevant features. As an example, consider the B-cell lymphoma data which had 4026 

features. The CBFS method found 25 relevant features from this dataset. The CBFS 

was not only able to reduce the size of the dataset by selecting the relevant ones but 

was also able to produce high accuracy levels using the selected relevant features. 

2.3.4  Advantages and Disadvantages

In general, Filter methods have been widely used for many different feature selection 

tasks. The main reason for their wide use lies within the amount of time they take to 

perform  the  feature  selection.  Filter  methods  have  the  advantage  of  identifying 

relevant features relatively fast (Torres, Saad and Moore, 2007). In fact, they are able 

to  identify  relevant  features  faster  than  other  feature  selection  methods.  This  is 

because  they  determine  the  relevance  of  features  independently  of  the  classifier 

intended for use and as a result need to perform feature selection only once. This is 

beneficial  especially  if  datasets  consist  of  thousands  of  features,  like  gene  data. 
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Although  Filter  methods  can  select  relevant  features  faster  than  other  feature 

selection methods, they also have some disadvantages. 

First, features found to be relevant by Filters, especially univariate methods, may in 

fact be redundant features. As previously explained, univariate methods consider the 

significance of each feature independently from the rest of the features (Huang, Cai 

and Xu, 2007). In this way, there may be several features with the same significance 

level. Such features are classed as being redundant since they add no extra value to 

the feature selection task.  This means that some of these features can be removed 

without affecting the accuracy of the feature subset. In addition, it means that Filter 

methods may select more features than what is really required, which may turn out to 

be useless to the feature selection (Koller and Sahami, 1996; Mak and Kung, 2008). 

The second disadvantage also relates to  univariate  filter  methods.  The univariate 

Filters do not take into account the effects of combinations of features. This can limit 

the number of relevant features found because some features, which may be of low 

relevance or irrelevant, may end up being highly relevant in the presence of other 

features. For example, a feature with low significance may become very useful when 

combined with another feature that has low significance. In contrast, features which 

have high significance on their own may actually turn out to be of low significance 

when considered with other features. Disregarding feature interactions such as these 

can  affect  the  features  selected  and  in  turn  affect  the  classification  accuracies 

generated by the features. The third and final limitation applies to both univariate and 

multivariate filter methods. Both of these types of Filter methods suffer from the fact 

that they ignore the classifier when selecting the relevant features (Zhu, Ong and 

Dash, 2007). In this way, the features selected by Filters may not match the classifier 

intended for use. As a result, Filters may miss out features highly relevant to the 

classifier, which may subsequently lead to low classification accuracies. 

A way of dealing with these three disadvantages is to use another type of feature 

selection method, namely the Wrapper method. The reason for using the Wrapper is 

two fold.  First,  the Wrapper method considers different  combinations of features 

when searching  for  the  most  relevant  set  of  features.  This  means  that  Wrappers 

consider the interactions among features in the dataset, rather than considering the 

features individually. This means that there is less chance of selecting redundant (or 
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irrelevant)  features.  This  overcomes the first  and second disadvantages  of  Filters 

previously mentioned. Second,  the Wrapper  uses  classifiers  to  select  the relevant 

features. In this way, features selected by Wrappers will match the classifier intended 

for use, which can help increase classification accuracies (Li and Guo, 2008). This 

can therefore help overcome the third and final disadvantage of Filters. The Wrapper 

method seems to have many advantages in comparison to Filter methods. A deeper 

explanation of the Wrapper methods and their benefits is given in the next section.

2.4  Wrapper Method

The  Wrapper  uses  a  classifier  as  the  evaluation  criterion  for  maximising  J(  ). 

Basically, the Wrapper uses the classifier as a black box. The classifier is repeatedly 

run on the dataset using various subsets of the original features. These feature subsets 

are found through the use of a search strategy. The classifier’s performance and some 

accuracy  estimation  method,  like  cross  validation,  are  then  used  to  evaluate  the 

accuracy of each subset  (John, Kohavi and Pfleger, 1994). The feature subset with 

the highest accuracy is chosen as the final set on which to run the classifier. 

Figure 2.3. The Process of Wrapper Feature Selection

To have a better understanding of the Wrapper method, we use a Bayesian Network 

classifier  as  an  example  to  explain  the  aforementioned  process.  The  Bayesian 

Network  classifier initially seeks and generates different feature subsets with some 

search strategy, one of which is forward selection. The forward selection strategy 

begins with no features and successively adds more features that are deemed relevant 

by the Bayesian Network classifier. In this way, interactions among the features can 

be considered.  The feature subsets found using this strategy may then be evaluated 

Original 
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using the Bayesian Network’s performance and 10-fold cross validation, where the 

subset with the highest accuracy is determined as the most relevant. This relevant 

subset is subsequently fed as input to the Bayesian Network classifier.  The entire 

procedure for performing wrapper feature selection is illustrated in Figure 2.3. 

In  the  above example,  the  Wrapper  method was  used  with  a  Bayesian  Network 

classifier. However, the Wrapper can be used with any type of classifier. Four types 

of classifiers most commonly used with the Wrapper to perform feature selection 

include: Bayesian Networks, Decision Trees, Nearest Neighbour and Support Vector 

Machines.  These types of  classifiers  have been used to perform Wrapper  feature 

selection  in  different  research  areas.  Three  areas  which  have  received  a  lot  of 

attention include Web mining,  financial  analysis and bioinformatics. Examples of 

how the aforementioned types of classifiers  have been used with the Wrapper to 

perform feature selection in these three areas are presented in the following sections.

2.4.1  Bayesian Networks

Bayesian  Networks  (BN)  are  probabilistic  classifiers  used  to  model  data  (Pearl, 

1988).  BN are  directed  acyclic  graphs  consisting  of  links  between  nodes  which 

represent features in a particular domain. Links are directed from a parent node (the 

target variable) to a child node (a feature in the dataset), and with each node there is 

an associated set of conditional probability distributions which describe how relevant 

it is with regards to the target variable and other nodes (Chen and Liginlal, 2007). In 

this way, BN classifiers have the ability to identify relationships between the nodes 

(features) in the graph structure. These attractive properties of BN classifiers have 

led  several  researchers  to  use  them with  the  Wrapper  to  select  relevant  feature 

subsets.  The BN classifiers have been used to select  feature subsets mainly from 

bioinformatics data, notably gene expression data. 

For example,  Vinciotti et al. (2006) use a well known BN classifier called Naïve 

Bayes (Langley and Sage, 1994) with the Wrapper to select a subset of the most 

relevant genes from gene data that help diagnose cancer. The Naïve Bayes classifier 

was used with a simulated annealing search strategy, which reduces the chances of 

selecting less relevant gene subsets, on two gene datasets, including Prostate cancer 

dataset (N=1410 genes) and B-cell lymphoma cancer dataset (N=584 genes). This 
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feature selection approach was able to select a considerably small number of relevant 

genes  from  Prostate  (approximately  25  genes)  and  from  B-cell  lymphoma 

(approximately 30 genes) datasets. These genes were found to generate very high 

accuracy levels and also strengthened biologists’ understanding of the relationships 

between  the  relevant  genes  and  the  cancers  investigated.  Abraham,  Simha  and 

Iyengar  (2007)  also  used  the  Naïve  Bayes  classifier  with  the  Wrapper  to  select 

relevant genes from gene data. In fact, the authors used this classifier and the forward 

search  strategy  with  the  Wrapper  to  select  relevant  genes  from  17  well  known 

bioinformatics datasets.  Experimental  results  using these datasets showed that the 

Wrapper with Naïve Bayes was able to select small number of relevant genes that led 

to classification accuracies higher than that of using the Naive Bayes classifier with 

all features.

2.4.2  Decision Trees

Decision  trees  (DT)  are  widely  used  to  perform  the  task  of  classification  and 

prediction (Mitchell, 1997; Polat and Güneş, 2006). The goal of DT is to uncover 

relationships  by subdividing instances within data  (Chien,  et  al.,  2007).  DT split 

instances in the data based on the values of one or more features. The splitting of 

instances  typically  relies  on  some  criteria,  which  determine  the  relevance  of 

instances and features with respect to the target variable (Chang, 2007). Once the 

splitting of the data reaches some predefined level, the classifier outputs a graphical 

representation of  the splitting process in the form of  a  hierarchical tree structure 

(White and Sutcliffe, 2006). This tree structure built by DT helps visualise relevant 

features in the data as well as relationships among the relevant features. Due to this 

issue, many have used DT to identify a small number of the most relevant features 

within different datasets.  More specifically,  relevant features have been identified 

from datasets collected from the field of bioinformatics and the Web.

With regards to bioinformatics, Li, et al (2004) use a decision tree that employs the 

gini splitting criteria,  typically referred to as Classification and Regression Trees 

(Breiman, et al,  1984), with the Wrapper method to select small number of most 

relevant genes for predicting cancer. Relevant features were selected from two well 

established  cancer  datasets,  including  the  colon  cancer  (N=2000  genes)  and 

leukaemia (N=7070 genes) dataset.  The Wrapper method was able to identify 20 
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highly relevant genes from the colon dataset and 23 highly relevant genes from the 

leukaemia dataset.  The relevant genes selected from both datasets were shown to 

generate higher classification accuracy levels than the accuracy generated using all 

genes.  With  regards  to  the  Web,  Stein  et  al.  (2005)  used  the  well  known C4.5 

decision tree (Quinlan, 1993) with the Wrapper method to search for a subset of 

relevant features that would help determine the likelihood of a hacker attack on the 

Web. The search for the subset of relevant features was facilitated using a Genetic 

Algorithm. Experimental results using the Wrapper with decision tree method and a 

dataset comprised of different types of Web attacks showed that the method was able 

to select a small number of relevant features from the dataset. These relevant features 

were then classified using the C4.5 classifier. Results clearly showed that features 

selected by decision tree led to higher accuracies than using all features with the 

decision  tree.  The  selected  features  also  helped  identify  the  key  characteristics 

associated with Web attacks.

2.4.3  Nearest Neighbour

Nearest  Neighbour  (NN)  is  probably  the  simplest  instance-based  classifier  for 

carrying  out  classification  tasks  (Angiulli  and  Folino,  2007).  The  main  premise 

behind NN is to classify a new instance  x by finding the closest  instance(s) to  x 

according to some distance metric (usually the Euclidean metric) and assign it to the 

same class as the closest  instance.  The most common type of NN is the Nearest 

Neighbour  Classifier  (NNC)  since  it  uses  only  the  single  closest  instance  for 

determining the class of x. An extension of NNC is the k-Nearest Neighbour (KNN) 

which uses more than one instance (k)  for identifying the class value of  x (Bell, 

Guan, and Bi, 2005; Huang, et al., 2007). NN family classifiers, like NNC and KNN, 

have been applied to many domains of research to do feature selection (Džeroski and 

Ženko, 2004). For example, Somol, et al. (2005) used the NNC classifier and the 

forward sequential  floating  search strategy with the  Wrapper  method in  order  to 

identify a set of relevant features that would assist in deciding whether or not to grant 

a loan to customers of a bank. The method was applied to two established financial 

datasets, including the German credit (N=20 features) and Australian credit (N=14 

features) datasets. The relevant features selected from these datasets, which ranged 

from 5 to 10 features for both datasets, were found to yield higher classification 
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accuracies than using the full set of features and also facilitated the bank’s decision 

making process for granting loans. 

Another example can be found in Cornforth, et al (2004). In this example, the authors 

use the KNN classifier with the Wrapper and 10-fold cross validation for the purpose 

of determining the likelihood of individuals developing diabetes based on their heart 

rate. The KNN with the Wrapper was applied to a dataset comprising of 30 features 

which describe the characteristics of patients with and without diabetes. From this 

dataset,  the Wrapper method was able to select a feature subset that consisted of 

seven relevant features. These features were classified using the KNN. The results 

showed  that  the  selected  relevant  features:  1)  generated  higher  classification 

accuracies  than  all  30  features  and  2)  accurately  determined  the  chances  of 

individuals developing diabetes. 

2.4.4  Support Vector Machines

Support Vector Machines (SVM) are powerful classification techniques originally 

derived from Statistical Learning Theory (Cortes and Vapnik, 1995; Vapnik, 2000). 

The primary idea of SVM is to find an optimal partition (known as a hyperplane) that 

clearly separates the members and non-members of a given class in relation to the 

target variable (Stitson et al., 1996; Barakat and Bradley, 2007). This approach is 

typically used when the members of the target variable are linearly separable. In 

other words, the target variable has two class values. However, when there are more 

than two class values (i.e., non-linear target variable), it can be difficult to find a 

hyperplane to classify the data. SVM overcomes this difficulty by performing a non-

linear mapping of the original feature space into a new feature space, usually with a 

higher  dimension,  so  that  the  data  are  linearly  separable  (Gammerman,  1998; 

Saunders et al., 2000). This mapping is accomplished through the use of kernels, 

such as the polynomial and radial basis function kernels (Chen and Hsieh, 2006).

The SVM can therefore handle both linearly separable and non-linearly separable 

classification problems. This means that SVM can handle both simple (linear) and 

complex  (non-linear)  classification  problems.  Due  to  this  issue,  SVM have been 

successfully used to select relevant features from different types of datasets in order 

to facilitate the task of classification. One type of dataset that has been used with 
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SVM is gene dataset.  Chiu, Chen, and Lin (2008) used the Wrapper with a greedy 

search  strategy  and  the  SVM  classifier  to  select  a  small  number  of  the  most 

informative (i.e., relevant) genes for diagnosing breast cancer and the time it takes 

for the cancer to spread around the human body. This feature selection approach was 

applied  to  a  breast  cancer  dataset  comprised  of  403  genes  (features),  and  was 

subsequently able to select 44 genes that were most informative to the task of breast 

cancer classification. This subset of genes was able to produce better classification 

results compared to using all genes in the dataset. The genes were additionally found 

to help in the diagnosis of breast cancer.

The SVM has  also  been  used  to  select  features  from datasets  consisting  of  text 

content from Web pages. In fact, Abbasi, Chen, and Salem (2008) used the Wrapper 

method and the SVM with a Genetic Algorithm search strategy to analyse the text 

content  of  an  English  (N=12881  features)  and  Arabic  (N=13811  features)  Web 

forum. In fact, the method was used to identify a small number of features (in the 

form of words and sentences) from these forum Webpages that would prove relevant 

in determining the type of content (i.e.,  positive or negative information) present 

within the forums. The method was able to select a subset of 508 relevant features 

from English forum and a subset of 338 features from the Arabic forum Webpage. 

These relevant features were found to improve the classification accuracy compared 

to using the original set of features. The relevant features were also shown by the 

authors  to  be very useful  for  analysing the complex contents  of Webpage forum 

documents.

2.4.5  Advantages and Disadvantages

As shown by the above examples,  Wrapper  methods have the ability to  uncover 

small subsets of the most accurate features from different types of datasets. Many 

have also shown that the Wrappers are able to select more accurate feature subsets 

than the Filter methods which were previously outlined (Huang, Yang, and Chuang, 

2008;  Li and Guo, 2008). As a result, the Wrapper is typically regarded as being 

better than Filters for finding accurate feature subsets. The Wrapper method is able 

to  find  accurate  feature  subsets,  but  it  has  some  disadvantages.  The  main 

disadvantages of the Wrapper are three fold: 1) the large amounts of time needed to 

perform feature selection, 2) the accuracy levels of selected feature subsets, and 3) 
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the  use  of  a  single  classifier  for  selecting  the  relevant  features.  These  three 

disadvantages may affect the way in which Wrappers select relevant features. Due to 

this issue, we will explain each disadvantage in depth and also present works that 

have attempted to overcome these disadvantages of the Wrapper.

1)  Amount of Time

The main criticism of the Wrapper approach is the amount of time needed to perform 

feature selection (Chrysostomou, et al, 2008). Typically, the Wrapper will require 

considerably more time to examine feature subsets compared to Filters and any other 

feature selection approaches. This is because of two issues. The first issue concerns 

the use of a classifier. By using a classifier, more time is needed in examining each 

potential feature subset searched in the feature space. The second issue regards the 

use of cross validation. In general, cross validation is used in conjunction with the 

classifier  to  determine  the  level  of  accuracy  of  feature  subsets.  When  both  the 

classifier  and  cross  validation  are  used  together,  the  Wrapper  runs  prohibitively 

slowly. These drawbacks have led researchers to investigate ways of reducing the 

time of the Wrapper method. 

As stated above, the classifier is one of the main reasons why the Wrapper performs 

slower than other feature selection approaches. To alleviate the effects of using a 

classifier, Caruana and Freitag (1994) developed a new method for speeding up the 

Wrapper approach when specifically used with decision tree classifiers. The method 

functions by  reducing the number of decision trees grown during feature selection. 

This  reduction is  done by keeping a  record of  all  the features that  were used to 

construct the trees. By keeping such a record, less time is needed to analyse the 

features  used  in  tree  formation.  In  addition  to  two  well  known  decision  tree 

classifiers,  ID3  and  C4.5, five  different  search  strategies  were  used  to  test  the 

effectiveness  of  the  method,  including  forward  selection,  backward  elimination, 

forward stepwise selection, backward stepwise elimination, and backward stepwise 

elimination-SLASH,  which  is  a  bi-directional  version  of  backward  stepwise 

elimination. Empirical analysis revealed that, irrespective of the search strategy and 

decision tree classifier used, the time taken to perform feature selection decreased. 

27



The Role of Classifiers in Feature Selection: Number vs Nature                                                    Chapter 2 

Furthermore, Kohavi and Sommerfield (1995) introduced the concept of ‘compound’ 

operators in an attempt to make the Wrapper perform in less time. The purpose of 

using compound operators is to direct the search strategy more quickly toward the 

most  relevant  features.  In  this  way,  the  classifier  will  need  to  spend  less  time 

evaluating all the features. Experiments using the compound operators were carried 

out  using  two  classifiers:  ID3  and  Naïve  Bayes.  Results  showed  a  significant 

decrease  in  the  amount  of  time needed to  perform feature  selection  when either 

classifier  was  used.  Improvements  in  classification  accuracy  for  ID3  and  Naïve 

Bayes were also found when compound operators were implemented.

Besides the classifiers, cross validation is another factor that can decrease the speed 

at  which  the  Wrapper  performs  feature  selection.  A  strategy  for  reducing  the 

Wrapper’s  time  complexity  when  used  in  conjunction  with  cross  validation  was 

presented by Moore  and Lee (1994). The strategy reduces the number of instances 

used during the evaluation stage of feature selection so the cost of fully evaluating 

each feature subset is also decreased. They showed that the new strategy successfully 

reduced the number of feature subsets evaluated during feature selection. This led to 

a drop in the amount of time needed to perform Wrapper feature selection. It was 

also found that the reliability of the chosen feature subset was unaffected by the fall 

in the number of instances.

Hashemi (2005) also investigated the effects of reducing the number of instances 

used for feature selection. Hashemi presented a new Wrapper approach that performs 

feature selection roughly 75 times faster than traditional Wrapper approaches. The 

new Wrapper approach does this by using an algorithm called  Atypical Sequential 

Removing (ASR). The ASR algorithm finds and removes those instances in the data, 

which  do  not  influence  classifier  performance.  By  decreasing  the  number  of 

instances, the process of feature selection can be sped up as there will be less data to 

deal with. Experiments were carried out using the proposed wrapper approach with 

different classifiers, including Support Vector Machine (SVM), k-Nearest Neighbour 

and C4.5. Overall, findings showed that although the accuracy of some classifiers did 

not improve when compared to the use of all instances, the new Wrapper method 

performed much faster. 
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2)  Level of Accuracy

The previous  section  has  shown that  it  is  possible  to  reduce  the  time needed to 

perform Wrapper  feature  selection.  Although  time  complexity  is  a  major  issue, 

especially when many features and instances are involved, the accuracy of the chosen 

feature subset is also very important. The idea of accuracy and time is interrelated 

because improving one may affect the other. Numerous studies have investigated this 

relationship by using evolutionary search strategies called Genetic Algorithms (GA) 

(e.g., Ni and Liu, 2004) because GA possess powerful search capabilities (Sikora and 

Piramuthu, 2007).  Rhitoff,  et  al.  (2002) is an example of works using GA. They 

incorporate GA with the Wrapper method to form a feature selection technique that 

avoids a suboptimal solution without sacrificing much in speed. Specifically, the GA 

Wrapper  uses  SVM as  the  classifier  when  performing  feature  selection.  Results 

showed that  accuracy significantly improved when compared to  using no feature 

selection. Their approach was also tested against the well known sequential forward 

selection Wrapper with similar findings. 

Another framework combining the uses of GA and feature selection approaches can 

be  found  in  Sikora  and  Piramuthu  (2007).  This  framework  uses  GA  with  the 

Hausdorff  distance  measure  for  Wrapper  feature  selection.  Experimental  results 

comparing this framework to a GA-based Wrapper approach without the Hausdorff 

distance  measure  showed  that  it  provided  superior  performance.  The  GA  and 

Hausdorff  Wrapper  feature  selection  approach  was  not  only  able  to  improve 

classification accuracy by about 10% but was also able to reduce the amount of time 

by 60%.  This shows that the accuracy of the Wrapper can increase even when it 

performs feature selection at a faster rate. 

Furthermore, Ruiz et al. (2006) developed a new gene selection method called Best 

Incremental  Ranked Subset (BIRS) based on the Wrapper approach. The method 

aims to improve classification accuracy of cancer data without affecting the time 

taken to do the feature selection. BIRS does this by first ranking the genes. A small 

subset of genes with the highest rank is then fed as input to the Wrapper. The method 

was tested using three different classifiers, i.e., Naïve Bayes, Nearest Neighbour-IB1, 

and C4.5, on four DNA microarray datasets. Experimental results on these datasets 

showed that BIRS was a very fast feature selection approach when compared to a 
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Wrapper  that  uses  all  the  genes.  In  addition,  BIRS  was  found  to  produce  good 

classification accuracy. 

3)  Single Classifier

The other limitation of Wrappers relates to the use of a single classifier. Wrappers 

make  use  of  a  single  classifier  when  selecting  relevant  features.  Using  a  single 

classifier can be a problem because each classifier is different, which means that they 

will  possess  different  biases  and  assumptions.  Table  2.1  shows  the  biases  and 

assumptions of the four commonly used classifiers previously described. From this 

table, it can be seen that different classifiers have different biases and assumptions 

which make them focus on different features when doing feature selection.

Type of Classifier Assumption of Classifier Bias of Classifier
Bayesian Networks (BN) Assume conditional independence 

in that each feature in the dataset is 
independent of all other features. 

To  focus  on  features  that 
maximise/minimise some scoring 
metric when building the network 
structure

Decision Trees (DT) Assume that features and instances 
in  the  dataset  fulfil  the  splitting 
criterion used by the classifier

To  focus  on  those  features  that 
satisfy the criterion used to build 
the decision tree

Nearest Neighbour (NN) Assume  distance  among  features 
and instances in dataset according 
to a predefined distance measure

To  focus  on  features  and 
instances  that  are  deemed  the 
‘closest’ by the imposed distance 
measure

Support Vector Machines 
(SVM)

Assume that the dataset follows the 
Identical  and  Independent 
Distribution (I.I.D)

To focus on the features that lie 
on  the  classification  boundary, 
which best separates the dataset

Table 2.1. Biases and Assumptions of Different Classifiers 

As such, classifiers with different biases and assumptions may differ in the amount 

of  time  they  take  to  perform feature  selection  and  may also  select  features  that 

generate different levels of accuracy. In terms of the amount of time, a classifier that 

is considered to be theoretically complex may take longer to select relevant features 

than a  classifier  which is  regarded as  theoretically  simple.  For  example,  using a 

Wrapper with a complex classifier, such as Support Vector Machine, may take more 

time to identify the relevant features than a Wrapper with a simpler classifier, like 

Nearest  Neighbour.  In  terms  of  accuracy,  classifiers  with  different  biases  and 

assumptions will most probably select different features (see Table 2.1). The fact that 
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they select different features may mean that they will generate different levels of 

accuracy. Collectively, this shows that using different classifiers with the Wrapper 

may  significantly  affect  both  the  time  taken  to  do  the  feature  selection  and  the 

accuracy  levels  of  selected  features.  This  therefore  suggests  that  the  choice  of  a 

classifier plays an important role in feature selection.

A possible way of addressing this important limitation of using a single classifier is 

to use more than one classifier. It may be worthwhile using several different types of 

classifiers with the Wrapper to perform feature selection. By using several different 

classifiers for feature selection, the biases of individual classifiers can be reduced, 

which  in  turn can  lead  to  the selection  of  mutually  agreed and unbiased  sets  of 

relevant  features.  Such  unbiased  sets  of  features  may  subsequently  lead  to  high 

classification  accuracies.  In  addition,  using  multiple  classifiers  will  result  in  the 

assumptions made by the classifiers to be considered during the feature selection. In 

other words, using multiple classifiers may help select features that lead to higher 

levels  of  accuracies  than  features  selected  by  single  classifiers.  In  general,  few 

attempts  have  been  made to  address  the  problem of  using  a  single  classifier.  In 

addition,  there is  little work to address this  problem through the use of multiple 

classifiers.  This therefore leaves a gap in Wrapper feature selection research that 

needs to be investigated. 

2.5  Conclusions

This chapter gave a brief introduction to the notion of feature selection. Moreover, 

this  chapter reviewed the state-of-the-art  of two commonly used feature selection 

methods, namely Filters and Wrappers. The former methods do not use classifiers 

but  instead  use statistics  and  the  general  characteristics  of  the  data  to  determine 

relevant features. The latter methods, however, rely on classifiers to select the most 

relevant  sets  of  features.  This  means  that  Filters  are  classifier-independent  and 

Wrappers are classifier-dependent. Many studies have shown that Wrappers perform 

better  than Filters  in the sense that they are able to  select  more accurate  feature 

subsets. Wrapper methods are useful,  but they suffer from some problems. Three 

problems were mentioned in this chapter, the most important one being the fact that 

Wrappers use a single classifier to select the relevant features. This is because each 

classifier is different and using different classifiers may result in different features 
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being  selected.  In  fact,  different  features  may  be  selected  that  lead  to  different 

accuracy levels. 

As previously mentioned in this chapter, a possible way of overcoming this problem 

may  be  to  use  multiple  classifiers  with  the  Wrapper  for  feature  selection.  By 

considering  several  different  classifiers  when  doing  feature  selection,  mutually 

agreed and unbiased sets of relevant  features that lead to high accuracies can be 

found.  Since  this  approach  may  enhance  the  performance  of  the  Wrapper  and 

improve its chances of identifying highly relevant features, the next chapter describes 

and  explains  a  novel  data  mining  method  called  Wrapper-based  Decision  Trees 

(WDT). The WDT method is novel in that it combines multiple classifiers with the 

Wrapper to select relevant features and also has the added benefit of visualising the 

relationships between the selected features using decision trees. Consequently, the 

WDT method may be the first step in filling in the gap in Wrapper feature selection 

research.
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Chapter 3 – Wrapper-based Decision Trees (WDT)

3.1  Introduction

The previous chapter gave a review of the two main methods for performing feature 

selection. The two main methods include: Filters and Wrappers. The former relies on 

the characteristics of the data and some statistical  criterion to  determine relevant 

features, whereas the latter uses a classifier to identify the subset of most relevant 

features.  The  former  are  therefore  classifier-independent  whereas  the  latter  are 

classifier-dependent. Among these two feature selection methods, Wrappers usually 

select feature subsets that are of greater relevance to the target variable and in turn 

provide  better  classification  performance  (Talavera,  2005;  Ruiz,  Riquelme,  and 

Aguilar-Ruiz, 2006).

However,  as  pointed  out  in  the  previous  chapter,  Wrapper  methods  possess  a 

limitation in that  they only use a  single classifier  when selecting a subset of the 

relevant features. The limitation with using a single classifier is that each classifier is 

of a different nature and will have its own biases. To better understand differences in 

classifiers, Table 3.1 presents the nature and biases of classifiers belonging to four of 

the most  popular  classifier  families  which were detailed in  the previous chapter, 

including  Bayesian  Networks,  Decision  Trees,  Nearest  Neighbour,  and  Support 

Vector  Machines.  Table  2.1,  which  was  previously  presented  in  Chapter  2, 

additionally shows that these four classifier families make different assumptions on 

the  data  used.  As  shown in  both  Table  2.1  and  Table  3.1,  different  families  of 

classifiers use a different approach and focus on different aspects when handling the 

data. Due to these differences, each classifier will select a different feature subset 

which  may  contain  different  features  and  may  also  lead  to  different  levels  of 

classification accuracy. In other words, using a single classifier for feature selection 

may affect the feature selection outputs. 
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Table 3.1. Nature and Biases of Different Classifiers

The fact that different classifiers may lead to different feature subsets suggests that 

there  is  a  need  to  consider  combining  several  different  classifiers  for  feature 

selection. By combining multiple classifiers, the biases of each individual classifier 

can be reduced by deriving a consensus from the features selected by these different 

classifiers. In addition, the assumptions made by each classifier are also taken into 

account  when selecting  the consensus  features.  Based  on  this  idea  of  combining 

multiple classifiers, a new data mining method called Wrapper-based Decision Trees 

(WDT) is proposed in this chapter. The WDT method (Chrysostomou, Chen, and 

Liu, in press a) combines two data mining techniques, namely feature selection and 

classification.  In  the  case  of  feature  selection,  Consensus  Feature  Selection 

(Chrysostomou, Chen, and Liu, in press b), which uses multiple classifiers with the 

Wrapper  approach  to  generate  a  mutually  agreed  and  unbiased  set  of  relevant 

features, is used. In the case of classification, decision trees are adopted to visualise 

the relationships among the selected relevant features. 

This chapter is organised as follows. It will start in Section 3.2 by giving a detailed 

explanation  of  the  WDT  method  and  its  two  elements,  i.e.,  consensus  feature 

Family Classifiers Nature Bias
Bayesian 
Networks 
(BN)

Bayesian Network 
Classifier (BNC)
Naïve Bayes (NB)

Average-One 
Dependence Estimators 

(AODE)

To use conditional 
probability distributions 
to identify the 
relationship between a 
feature and a targeted 
variable.

To focus on features 
that maximise or 
minimise some scoring 
metric when building 
the network structure.

Decision 
Trees 
(DT)

C4.5
Classification And 

Regression Tree (CART)
CN2

To use a hierarchical 
structure to represent 
the most informative 
features.

To focus on those 
features that satisfy the 
criterion used to build 
the decision tree.

Nearest 
Neighbour 
(NN)

Nearest Neighbour
 (NNC)

k-Nearest Neighbour
 (KNN)

K*

To use a distance metric 
to select the closest 
instance(s).

To focus on features 
and instances that are 
deemed the ‘closest’ by 
the imposed distance 
measure.

Support 
Vector 
Machines
(SVM)

Support Vector Machine 
and Polynomial Kernel  

(SVMpoly)
Support Vector Machine 

and Radial Basis  
Function Kernel  

(SVMrbf)

To follow the statistical 
learning theory to find 
the best division that 
separates the different 
categories of a dataset.

To focus on the 
features that lie on the 
classification 
boundary, which best 
separates the dataset. 
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selection and decision tree classification. The pseudocode for the WDT method will 

also  be  given  in  order  to  better  understand  how  the  method  identifies  relevant 

features  using  multiple  classifiers  (Section  3.3).  Since  the  WDT  method  uses 

multiple  classifiers  for  feature selection,  choosing suitable  classifiers  becomes an 

important  issue.  More  specifically,  Section  3.4  explains  the  importance  of  the 

number  and  nature  of  classifiers  when  dealing  with  multiple  classifiers,  with  an 

emphasis on how these two issues will be investigated in this thesis.

3.2  Wrapper-based Decision Trees (WDT)

As previously stated, WDT makes use of two elements: consensus feature selection 

and decision tree construction. A simple diagram illustrating these two elements is 

shown  in  Figure  3.1.  Both  of  these  elements  will  be  explained  in  detail  in  the 

following sections. We begin by explaining the idea of consensus feature selection in 

Section 3.2.1 and then progress to explain the use of decision trees to visualise the 

interactions  among  the  features  selected  by  consensus  feature  selection  (Section 

3.2.2).

Figure 3.1. Elements of WDT

3.2.1  Consensus Feature Selection

The WDT method combines multiple classifiers to help reduce the effects of biases 

of individual classifiers. The combining of classifiers is done by consensus feature 

selection (CFS). CFS (Chrysostomou, Chen, and Liu, in press b) can be used with 

different types of classifiers. In this thesis, classifiers from four different classifier 

families  are  used,  namely  Bayesian  Networks  (BN)  (Friedman,  Geiger  and 

Wrapper-based Decision Trees (WDT)

Consensus Feature 

Decision Tree Construction
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Goldszmidt, 1997), Decision Trees (DT) (Benbrahim and Bensaid, 2000), Nearest 

Neighbour  (NN)  (Cover  and  Hart,  1967)  and  Support  Vector  Machines  (SVM) 

(Cristianini  and  Shawe-Taylor,  2000).  These  classifier  families  were  shown 

previously in Table 3.1 and were also mentioned in Chapter 2. These four classifier 

families were chosen because of their different nature and biases (see Table 3.1). The 

advantage of combining such different classifiers for feature selection is that we will 

be able to generate a single feature set that contains features selected by each of the 

classifiers used in CFS.  

To illustrate how the aforementioned classifiers perform feature selection in CFS, the 

SVM classifier will be used as an example. In this example, the SVM classifier is 

used to select  relevant  features from any given dataset  comprised of a  total  of  x 

features.  Relevant  features will  be selected from these  x features for  a particular 

target variable. Initially, the SVM uses all data (i.e.,  all  x features) as input. The 

classifier is then executed to identify the subset of relevant features from x in relation 

to the target variable (predictor) by using a search strategy, which outlines the way in 

which  feature  subsets  are  searched  within  the  entire  set  of  features.  There  are 

different search strategies that can be used,  but they basically fall  into two main 

categories:  exhaustive  strategies  and  heuristic  strategies.  An  exhaustive  search 

systematically examines all possible subsets and selects the ‘best’ subset of relevant 

features.  Some classic examples of exhaustive search techniques are branch-and-

bound (Chen, 2003), depth-first (Dash and Liu, 2003) and breadth-first (Tso and Gu, 

2004).  Exhaustive  strategies  often  find  the  most  relevant  subsets  of  features  but 

become very  difficult  to  use  when  the  number  of  features  increases.  Instead  of 

exhaustive search, a more feasible approach to use may be a heuristic search because 

it does not consider every possible combination of features in the dataset.  In this 

way, a heuristic strategy selects subsets of features that are as close as possible to 

being the ‘best’ subset of features. Common examples of heuristic strategies include 

forward strategy (Kittler, 1978) and backward strategy (Marill and Green, 1963).

Among these strategies, the forward search strategy, which belongs to the heuristic 

search family, was chosen for use in CFS. The forward search strategy guides the 

classifier in a forward manner so that few features are initially used and then more 

are continuously added to form the feature subsets. The forward search strategy has 
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two key benefits worth mentioning. The first benefit of the forward strategy is that it 

is able to select a relevant subset of features without taking large amounts of time to 

perform feature selection (Kohavi and John, 1997).  This is  particularly important 

because Wrappers usually perform feature selection very slowly. The second, and 

probably the most important benefit, is that a forward search strategy can help filter 

out redundant features (i.e., features that are dependent on the other features, and as 

such, provide no further information about the target variable). Since the forward 

search  strategy starts  with  no features  and gradually  adds  features,  dependencies 

between selected features will be easily detected and therefore not be included in the 

final  subset  of  chosen  features  (Langley  and  Sage,  1994).  Excluding  redundant 

features  from the chosen feature  subset  in  this  manner  can dramatically  increase 

relevance of the feature subset, and consequently increase the classification accuracy.

Once the feature subsets have been identified by the forward search strategy, they are 

evaluated according to an accuracy estimation technique. In this work,  k-fold cross 

validation was used as the accuracy estimation technique because it is most popularly 

used to evaluate the relevance of features selected by Wrappers (John, et al, 1994). 

Typically, k-fold cross validation involves splitting the training (i.e., input) data into 

k approximately equally sized partitions. The chosen classifier is then run  k  times 

using k-1 partitions as the training set and the remaining partition as the test set. The 

accuracy results from each of the k runs are then averaged to produce the estimated 

accuracy.  In this thesis,  k was chosen to be 10 because this  value of  k has been 

widely used when applying cross validation to different data mining tasks (Sboner, et 

al, 2003; Williams, Zander and Armitage, 2006; Pirooznia, et al, 2008). At the end of 

this cross validation procedure, each of the features will be assigned a value, which 

indicates the number of times they were chosen by 10-fold cross validation. This 

value is the output of the process of feature selection, which reveals the level of the 

relevance of this feature (outcome variable). For example, a feature that was assigned 

the value 10 by SVM implies that this feature was included in all 10 times/samples of 

the cross validation procedure. This also implies that this feature is highly relevant to 

the target variable. 

The selected sets of relevant features will then form a matrix where each row will 

represent a feature contained in the dataset and each column will present the different 
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classifiers used. The contents of the matrix include the ranked values of each feature 

by each classifier, ranging from 0 (indicating that the feature was not selected) to 10 

(indicating the feature was always selected through cross validation). In general, the 

main purpose of the matrix is to find agreement between features selected by the 

classifiers. In this case, the agreement can be calculated using different combination 

strategies. These can include calculating the maximum value of a feature’s rank, the 

minimum value,  the sum, the mean, and the median (Kittler,  1998; Kittler  et  al, 

1998). Among these strategies, both the mean and median seemed suitable for CFS 

because the  results  of  each classifier  can be within the  range  of  0  to  10,  which 

corresponds to the nature of 10-fold cross validation (i.e., the accuracy estimation 

technique used). 

However,  Kittler  et  al  (1998)  indicated  that  an  outlier  present  in  the  data  can 

seriously distort the result of the mean strategy. To better understand how the outlier 

affects  the  mean  results,  consider  a  feature  which  has  three  relevance  levels 

associated with it (as determined by three different classifiers). In the event that two 

of the relevance values are 0 (i.e., the feature was regarded as irrelevant by two of the 

classifiers) and the third relevance value is 10, the resulting mean for the feature will 

be reasonably high; the mean will be 3.33. The mean of this feature shows that it is 

of reasonable relevance to the target variable, where in fact it is probably irrelevant 

to  the  target  variable  since  two  out  of  the  three  classifiers  considered  it  to  be 

irrelevant. In other words, the outlier, which is the highest relevance level of 10, may 

lead to incorrect results. 

As a more robust approach to handling the presence of outliers, Kittler et al advised 

the use of the median combination strategy. In order to see how the median strategy 

can handle outliers, we consult the abovementioned example. In the example, one 

classifier assigned highest relevance value to the feature (i.e., 10) while the other two 

classifiers did not assign a relevance value (i.e., 0). The median of the feature will 

therefore be 0,  indicating that the feature is  irrelevant to the target variable.  The 

median strategy can therefore give us a better idea of the relevance of features as 

determined by the classifiers. In their work, Kittler et al also showed that the results 

of different classifiers combined using the median strategy generally led to better 

classification  performance  than  the  results  from the  other  classifier  combination 
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strategies. Due to such evidence, the median strategy is employed to combine results 

from the multiple classifiers used.

To have a better understanding of the way in which the median strategy is used to 

combine classifiers in CFS, Table 3.2 shows a very simple example of what the final 

matrix would look like if three classifiers were used to select relevant features from a 

dataset comprised of five features. From this table, we can see that each feature has 

three values associated with it, which represents the results from the three classifiers. 

In addition, the table shows the median values for each feature, which corresponds to 

the final relevance value of each feature. In this example, Feature 2 and Feature 3 are 

irrelevant  since the relevance values for these features are 0.  On the other hand, 

Feature 1, Feature 4 and Feature 5 are relevant. However, they each have a different 

level of relevance. Feature 1 and Feature 5 are quite relevant whereas Feature 4 is the 

most relevant out of all features because it has the highest possible relevance level of 

10. 

Classifier 1 Classifier 2 Classifier 3 Relevance 
Level 

(Median)
Feature 1 2 1 10 2
Feature 2 2 0 0 0
Feature 3 0 1 0 0
Feature 4 10 10 8 10
Feature 5 7 2 5 5

Table 3.2. Example of Classifier Combination Matrix

In order to obtain an entire set of relevant features, CFS not only takes into account 

features  with  high  relevance,  but  also  includes  those  with  low  relevance.  More 

specifically,  all  features  that  have  a  median  value  of  1  or  more  are  chosen  and 

included in the final set of relevant features. 

3.2.2  Differences Between CFS and Other Classifier Combination Strategies 

As explained in the previous section, CFS, which is the first element of the WDT 

method,  combines  multiple  classifiers  for  feature  selection  using  the  median 

combination  strategy.  However,  the  median  combination  strategy  is  one  way  of 

combining the results from classifiers. There are other combination strategies that 

have been widely used to combine classifier outputs, namely bagging, boosting, and 

model averaging. These well-known combination strategies are quite different to that 
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of  the  median  strategy.  In  order  to  better  understand how these  three  additional 

combination strategies differ from the one used in CFS, a brief description of each 

strategy is given in the next few pages. 

Bagging (also known as Bootstrap Aggregating) involves selecting a set of instances 

randomly drawn (with the chance of replacement) from the original set of instances 

(Breiman,  1996).  In  this  way,  some instances may appear  more than once while 

others may not appear at all. These newly formed sets of instances, also known as 

bootstraps, are then used as input to a classifier, which will generate some level of 

accuracy. This process can be repeated as many times as required in order to seek the 

highest accuracy level from the classifier. Boosting, on the other hand, deals with all 

instances present in the dataset. All instances are fed as input to a single classifier, 

which performs classification using these instances. The output of the classifier is 

then  used  as  input  to  another  classifier,  which  is  identical  to  the  first  classifier 

originally used (Schapire, 1990). This input-output classifier process can be repeated 

many times, where each time different weights are assigned to different instances 

according to the number of times they were used by the classifiers. The outcome of 

this  process  is  therefore  a  set  of  classifiers,  each  of  which  produces  a  different 

classification result (depending on the instances they used). The results from these 

classifiers are then combined through voting to create a composite classifier (Freund, 

1995). Model averaging is another means of combining the results from a classifier. 

In this case, a classifier is executed several times on the same dataset using different 

input parameters (Yeung, Bumgarner, and Raftery, 2005; Gibbons, et al, 2008). As 

such, several classification models will be produced. Model averaging considers all 

these classification models in a weighted manner, where the weights are determined 

using  a  criterion,  and  selects  the  model  which  will  provide  better  classification 

performance (Selen, et al., 2004).

Bagging, boosting and model averaging are useful classifier combination strategies. 

However,  these  strategies  share  two  common  limitations.  The  first  common 

limitation of these strategies is that they combine the results of the classifiers by 

using the instances in the datasets rather than the features of the dataset.  In fact, 

bagging uses different subsets of instances selected at random from the dataset, feeds 

these subsets to several classifiers and combines the results of the classifiers until the 
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desired  level  of  accuracy  is  reached.  Furthermore,  boosting  uses  the  subset  of 

instances  with  the  highest  weights  when  performing  classification  with  the 

classifiers. In model averaging, only the set of instances used in the model which 

provides  best  performance are  used.  The fact  that  all  three strategies rely on the 

instances  to  combine  classifier  results  means  that  they  somewhat  disregard  the 

features in the datasets. In essence, the strategies place less emphasis on identifying 

the (relevant) features in the datasets. Disregarding relevant features in the dataset 

can  in  turn  affect  the  classification  accuracies  generated.  On  the  other  hand, 

combinations strategies that combine classifier outputs based on the features in the 

dataset, like the median strategy, may be better suited to the feature selection process 

and may subsequently help increase classification accuracies. The second common 

limitation  of  these  strategies  is  that  they  use  a  single  (type  of)  classifier.  More 

specifically,  bagging  and  boosting  run  a  single  classifier  on  several  different 

partitions of the dataset to produce different results while model averaging executes a 

single classifier several times, each time altering the classifier’s input parameters. 

The disadvantage  of  using  a  single  classifier  is  that  each  classifier  has  different 

biases, as explained in previous section. On the other hand, using several different 

classifiers can reduce the biases of each individual classifier. This is another reason 

why the  median  combination  strategy,  which  can  accommodate  several  different 

classifiers, was used to combine classifier outputs in CFS. 

3.2.3  Decision Tree Construction 

Decision  tree  construction  is  the  second  element  of  the  WDT  method.  The 

relationships  among  the  features  selected  by  CFS  (i.e.,  those  features  with  a 

relevance value of 1 or more) are visualised with a decision tree. The reason for 

choosing the decision tree to classify the selected relevant features is two fold. First, 

we will be able to determine the classification accuracies of feature subsets, i.e., how 

relevant the features are to the target variable. Second, the decision tree presents the 

final classification result  in the form of a hierarchical structure.  This hierarchical 

structure can help understand the relationships among features in datasets (Polat and 

Güneş, 2009). In addition, the constructed tree structure enables the most relevant 

feature(s) to be located at the top of the tree and the least relevant feature(s) to be 

located  at  the  bottom  of  the  tree  (Chien  et  al.,  2007).   This  will  improve  our 

understanding of how features with different relevance interact with one another.
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The decision tree employed in WDT to identify relationships among relevant features 

and determine accuracy levels of the features is  C4.5 (Quinlan,  1993).  The C4.5 

classifier is probably the most widely known and used decision tree classifier in data 

mining literature (Lu and Chen, 2009; Polat and Güneş, 2009). In fact, C4.5 has been 

successfully used to visualise relationships in datasets belonging to different data 

mining  applications,  including  1)  Web-based  learning,  2)  bioinformatics,  and  3) 

finance.  In terms of the first  application,  Cristian and Dan (2006) used the C4.5 

decision tree,  and classification rules extracted from the decision tree formed, to 

analyse student’s activity and their behaviour on a Web-based learning system. In 

terms of the second application, Ture, Tokatli, and Kurt (2009) used decision tree, 

including the C4.5 classifier,  on bioinformatics  data  to  determine the survival  of 

breast cancer patients based on their symptoms. Their symptoms were visualised in 

tree  structures,  each of  which led to  a  set  of  classification rules  to  help identify 

factors affecting the survival of patients. Finally, Florez-Lopez (2007) used the C4.5 

decision tree classifier  to tackle the problem of calculating credit  risk ratings for 

different  financial  insurance  companies.  The  C4.5  classifier  was  able  to  select  a 

relevant set of features from the financial data used and also show the relationships 

between the relevant features.

The aforementioned works demonstrated that the decision tree, especially the C4.5, 

is a very useful tool for identifying the relationships among relevant features in data. 

The C4.5 classifier is thus used in WDT to highlight relationships among the features 

selected by CFS.

3.3  Psuedocode of WDT

As detailed in the previous sections, the WDT method integrates the use of CFS and 

decision tree construction, with the aim of identifying a set of consensus features 

from a number of classifiers and visualising relationships between these consensus 

features.  WDT selects relevant features with a consensus approach that looks for a 

consensus across several different classifiers. In this way, the consensus approach 

helps  reduce  the  biases  associated  with  each  individual  classifier  used  so  that 

unbiased  sets  of  relevant  features  can  be  identified.  These  features  are  further 
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analysed  through  decision  tree  classifiers,  which  is  used  to  uncover  hidden 

relationships among the selected features. 

1. Input: Dataset (data), Target Variable (tv), Classifiers c(j) where (j=1,2…r), 2. threshold m_threshold
3. Output: List of consensus features Flist(i) where (i=1,2…s),  Decision Tree tree
4.
5. Begin
6. Flist(i) = {}
7. m_threshold = 1
8. k = 10 
9.
10. //Consensus Feature Selection 
11. For n = 1 to k
12. For j = 1 to r
13. Set target variable of c(j) to tv
14. Perform wrapper feature selection using forward search on data
15. Train c(j) using k-n data folds of data
16. Test c(j) with current n data fold of data
17. Assign each feature f (excluding tv) a rank 0~10,
18. indicating level of relevance
19. End_For
20. End_For
21. For i = 1 to s
22. For each feature f in data (excluding tv) compute median
23. If median(f) is ≥ m_threshold
24. then add f to Flist(i)
25. Else
26. get the next feature
27. End_If
28. End_For
29. //Decision Tree Construction
30. Use Flist(i) as set of input features
31. Set target variable of decision tree to tv
32. Build and Display tree
33. End_For
34. End

Figure 3.2. Pseudo Algorithm of Wrapper-based Decision Trees (WDT)

To clearly  explain  the  process  of  WDT,  Figure  3.2  presents  a  description  of  its 

pseudo algorithm. The algorithm initially takes as input the entire dataset of instances 

and features, the target variable, any number of classifiers, and the median threshold 

value used to determine the consensus relevant features [Line 1-2]. After this, the list 

of consensus features is set to an empty list [Line 6]. The median threshold value is 

set to 1 [Line 7] and the value of k to be used for cross validation is initialised to 10 

[Line 8]. Once all inputs and parameters are set, the algorithm performs two main 

steps:  (1)  Consensus  Feature  Selection  and  (2)  Decision  Tree  Construction.  In 

Consensus  Feature  Selection,  different  classifiers  are  used  for  Wrapper  feature 

selection [Lines 11-20]. Firstly, the target variable is set for each classifier [Line 13]. 
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Using different cross validation partitions (folds) of the dataset, each classifier (c(j)) 

generates  a  ranked subset  of  features  in  a  forward  manner  through the  Wrapper 

approach [Lines 14-16]. Each feature in the subset will have an associated level of 

relevance (between 0 and 10),  which indicates how relevant the feature is  to the 

target variable [Lines 17-18]. The ranked subsets from the (c(j)) classifiers are then 

used to form different classifier combinations using the median combination strategy. 

In this way, different lists of consensus features (Flist(i)) are identified  [Lines 21-

28]. Each consensus feature found with respect to the target variable will also have 

an associated level of relevance (i.e., the median value). In the event the associated 

level  of  relevance  is  greater  than  or  equal  to  the set  m_threshold,  the  feature  is 

considered to be relevant.  The relevant  feature subsets with regards to the target 

variable are then used as input  into the decision tree classifier [Lines 29-30]. The 

target variable of the decision tree classifier is also set (tv) [Line 31]. Finally, the 

decision tree classifier is executed to build and display a decision tree (tree) for each 

of the consensus feature subsets [Lines 32-34]. 

Both  steps  of  the  WDT  algorithm  explained  and  shown  in  Figure  3.2  were 

implemented  using  two  software  environments:  (1)  Waikato  Environment  for 

Knowledge Analysis (WEKA) v3.4.11 and (2) MATLAB v7.1. With regards to the 

step of Consensus Feature Selection, the WEKA environment was initially used to 

perform Wrapper  feature  selection  with  any number  of  the  individual  classifiers 

previously shown in Table 3.1. The features selected by the classifiers were then 

combined using the MATLAB environment. More precisely, MATLAB was used to 

form the matrix that included all features selected by the classifiers used. The median 

value  was  then  calculated  for  each  feature  to  determine  the  relevant  consensus 

features. The consensus features were then presented as input to the C4.5 classifier in 

WEKA in  order  to  build  the  decision  trees  (Decision  Tree  Construction  step  of 

WDT).  

3.4  Effects of Using Multiple Classifiers

As  detailed  in  the  previous  section,  the  novelty  of  the  WDT  lies  within  the 

combination of different types of classifiers for feature selection in order to generate 

unbiased relevant  features and the use of  decision trees  to  discover  relationships 
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among several  of  the  selected  features.  However,  different  classifiers  for  feature 

selection  may  result  in  different  features  being  selected.  In  fact,  the  number  of 

combined  classifiers  and  the  nature  of  classifiers  combined  may  influence  the 

relevant features selected. Regarding the former, more than one classifier can be used 

to perform the feature selection in WDT. Thus, varying the number of classifiers 

used may result  in  a  decrease or  an  increase  in  the  number  of  relevant  features 

selected. Regarding the latter, there are many different types of classifiers that can be 

used, each with its own advantages and disadvantages. The fact that each classifier 

has its own unique characteristics means that it  has the ability to select  different 

features.  As  such,  the  nature  of  a  classifier  has  the  potential  of  influencing  the 

features selected. In summary, the number and nature of classifiers are two issues 

that  may  influence  the  outputs  of  feature  selection.  To  better  understand  the 

influences of the number and nature of classifiers, the WDT method will be used 

throughout  this  thesis  in  conjunction  with  two  different  classifier  arrangement 

approaches and two types of datasets. 

3.4.1  Classifier Arrangement Approaches

This  thesis  will  use  two  different  classifier  arrangement  approaches  with  WDT, 

namely the same-type approach and the mixed-type approach. On the one hand, the 

same-type approach combines classifiers from same family and uses them with WDT 

to select the relevant features. On the other hand, the mixed-type approach combines 

classifiers  that  are  from different  families  to  select  features.  In  both  approaches, 

different numbers of classifiers are combined. By using these two approaches, we 

will  be able to:  1) investigate the influences of each of the classifier  families on 

feature selection results, which will give us a better idea as to how each classifier 

family  performs feature  selection  and which ones  are  less  or  more  suitable  than 

others  (same-type),  and  2)  investigate  how classifiers  from the  different  families 

interact with one another and how their interaction influences the feature selection 

(mixed-type). In this way, both approaches will help us obtain a complete picture of 

the influences of number and nature of classifiers on feature selection. In addition to 

these approaches, WDT is used with two types of datasets. Thorough details on these 

two datasets are provided in the following section.

44



The Role of Classifiers in Feature Selection: Number vs Nature                                               Chapter 3

3.4.2  Datasets

The WDT method is used with two different types of datasets, each of which belong 

to the area of HCI and include the preferences of different users. The reason why 

such user  preference datasets  were chosen for  use in  this  thesis  lies  within their 

nature. The nature of user preference datasets is different to that of other types of 

datasets.  Datasets  comprised  of  user  preferences  typically  include  a  degree  of 

fuzziness. This fuzziness comes from the fact that users may be uncertain of what 

they like or dislike, i.e., what they prefer. The presence of fuzziness can lead to noise 

within the data and such noisy data may be irrelevant to identify users’ preferences. 

In  other  words,  the  data  may  include  irrelevant  features.  In  order  to  accurately 

distinguish  between  the  preferences  of  different  users,  such  noise  and  irrelevant 

features  must  be  removed  from  the  data.  A  way  of  removing  such  noise  and 

irrelevant features from the data is to use a feature selection method, such as WDT. 

This  explains  why  such  datasets  were  chosen  in  this  thesis  to  investigate  the 

influences of number and nature of classifiers.

A detailed description of both user preference datasets is given in the next few pages.

1)  Dataset Description of UP1

The first  dataset  includes  users’  preferences  of  search  engine  interface  elements 

(Chen, 2000).  The  users were required to  perform some searching and browsing 

tasks using the popular Google and Yahoo search engines, and then provide their 

preferences of the search engines. The preferences of 120 users were collected using 

a  questionnaire  with  90  statements,  each  of  which  had  five  possible  answers, 

including  ‘very  unimportant’;  ‘unimportant’;  ‘neutral’;  ‘important’;  and  ‘very 

important’.  In  addition  to  their  preferences,  the  questionnaire  collected  some 

personal  details  from  the  users,  including  their  gender,  cognitive  style,  level  of 

computer experience,  and level of Internet  experience.  These personal  details are 

typically referred to as human factors (Treu, 1994; Frias-Martinez, et al, 2007). Each 

of these four human factors is shown in Table 3.3. These four human factors are 

popularly examined within user preference datasets. This is because much research 

has shown that gender (Ford and Miller, 1996; Roy and Chi, 2003), cognitive styles 
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(Chen  and  Macredie,  2004;  Ford,  Miller  and  Moss,  2005),  level  of  computer 

experience  (Lazander,  et  al.,  2000;  Mitchell,  et  al.,  2005),  and  level  of  Internet 

experience  (Liaw and Huang,  2006;  Castañeda,  Muñoz-Leiva,  and  Luque,  2007) 

significantly influence users’ preferences. 

Human Factor (Target Variable) Description 
Gender Male 

Female
Cognitive Style Field Independent

Field Dependent
Intermediate

Level of Internet Experience Little 
Average
Good 
Excellent

Level of Computer Experience Little 
Average
Good 
Excellent

Table 3.3. Description of the Human Factors / Target Variables

The users’ preferences and their human factors mentioned previously constitute to 

the number of features and target variables of the dataset, respectively. As such, the 

dataset  consists  of  90  features,  which  represent  the  users’  responses  to  the  90 

questions in the questionnaire, and four potential target variables, which represent the 

four types of human factors. In addition, the number of instances in the dataset is 

120, which corresponds to the number of users that answered the questionnaire. In 

summary, the user preference dataset includes 120 instances, 90 features, and four 

possible target variables. This user preference dataset will be referred to as UP1 from 

this point forward in the thesis.

2)  Dataset Description of UP2

The second dataset used with WDT consists of users’ preferences of a Web-based 

learning system (Chen and Macredie, 2004). The Web-based learning system aims to 

teach students how to use the Hyper Text Markup Language (HTML). Users were 

then required to  document  their  preferences  of  the system using a  questionnaire. 

More specifically, 65 users supplied their preferences using a questionnaire with 20 

statements,  each  of  which  had  five  possible  answers,  including  ‘strongly  agree’; 

‘agree’; ‘neutral’; ‘disagree’; and ‘strongly disagree’. In addition to their preferences, 

users were also required to supply some of their personal details. In fact, users had to 

provide  their  gender,  cognitive  style  and  their  level  of  computer  and  Internet 
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experience.  These  personal  details  (i.e.,  human  factors)  were  identical  to  those 

collected in UP1 and shown in Table 3.3. 

In summary, users’ preferences of the Web-based learning system and their personal 

details make up the input features and target variables of this dataset, respectively. 

The dataset will thus have 65 instances, which correspond to number of users that 

used the system and 20 features, which correspond to the preferences of the users. In 

addition,  the  dataset  includes  four  possible  target  variables,  each  of  which 

corresponds to the users’  human factors.  This dataset  will  be referred to as UP2 

dataset hereafter.

3)  Determining Target Variables of Datasets

As described  in  the  previous  subsections,  both  the  UP1  and  UP2  datasets  each 

include  four  possible  target  variables.  Since  a  dataset  may only  have  one  target 

variable when doing classification and feature selection, it is necessary to identify a 

suitable  target  variable.  In  order  to  determine  the  target  variable,  we  use  the 

classifiers  from each  of  the  families  previously  mentioned  and  each  of  the  four 

human factors presented in Table 3.3 to select relevant features from UP1 and UP2. 

The human factor that leads to the highest number of features will be chosen as the 

target variable of the dataset  and used with WDT. This is  because with a higher 

number  of  features  the search strategy used in  the WDT method will  be able  to 

evaluate and examine a larger number of feature subsets. Such a larger number of 

feature  subsets  can  facilitate  us  to  investigate  how  the  number  and  nature  of 

classifiers influence the results of feature selection. 

The  number  of  relevant  features  selected  by  each  individual  classifier  for  each 

human factor of both UP1 and UP2 datasets is shown in Table 3.4. In this table, we 

also present the mean number of features selected for each of the human factors. 

According to the mean number of features selected, we found different results for 

UP1 and UP2. In terms of UP1, we found that the classifiers selected the highest 

mean number of features when Computer Experience was the target variable. Due to 

the fact that Computer Experience led to the highest number of features, it will be 

chosen and used as the target variable of UP1 from here onwards. In terms of UP2, 

we found that  the classifiers  selected the highest  mean number of features when 
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Cognitive Style was the target variable. As such, Cognitive Style will be used as the 

target variable of the UP2 dataset from this point forward. 
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BN Family Classifiers DT Family Classifiers NN Family Classifiers SVM Family 
Classifiers

UP1 BNC NB AODE C4.5 CART CN2 NNC KNN K* SVMpoly SVMrbf

Mean
no. of 

features 
selected

Gender 8 20 24 28 20 19 20 19 19 21 17 19.31
Cognitive 
Style

15 2 2 1 2 1 2 6 1 3 5 3.63

Internet
Experience

9 9 4 6 4 4 5 11 4 15 20 8.27

Computer
Experience

9 19 26 32 27 18 18 22 21 21 22 21.36

UP2

Gender 4 7 7 9 9 7 6 9 7 10 8 7.58
Cognitive 
Style

3 6 8 8 10 8 4 14 5 11 13 8.40

Internet
Experience

4 3 2 3 4 3 3 4 3 2 1 2.91

Computer
Experience

6 6 5 2 4 3 4 6 4 6 12 5.27

Table 3.4. Number of Features Selected by Individual Classifiers for Each Human Factor
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The results from Table 3.4 showed that the UP1 and UP2 datasets have different target 

variables. In addition, it was shown that these two datasets have different number of 

input instances and features. A summary of the number of input instances, input features 

and target variables for these two datasets is shown in Table 3.5. 

No. of Instances No. of Features Target Variable

UP1 120 90

Users’ Level of Computer 
Experience

(little; average; good; 
excellent)

UP2 65 20
Users’ Cognitive Style

(Field Independent; Field 
Dependent; Intermediate)

Table 3.5. Summary of Characteristics of UP1 and UP2 Datasets

3.5  Conclusion

Wrapper feature selection approaches use a single classifier to select the subset of most 

relevant features. However, there is a problem with using a single classifier to do the 

feature selection. The problem is that each classifier is different because it will be of a 

different nature and possess different biases. This means that each classifier will select a 

different subset of relevant features. In order to overcome this problem of using a single 

classifier, this chapter proposed the Wrapper-based Decision Trees (WDT) method. The 

WDT method is a novel data mining method that merges consensus feature selection 

and decision tree construction. The novelty of the WDT lies within its ability to obtain a 

consensus among several  different  classifiers  in  order  to reduce the biases of  using 

single classifier so that an unbiased and mutually agreed set of relevant features are 

selected, and also construct decision trees to visualise and highlight the most important 

relationships between the selected features. 

Since the WDT method combines multiple classifiers, the selection of classifiers for use 

with the method is crucial.  In fact,  the number of classifiers used and the nature of 

classifiers used may play a significant role in influencing the feature selection results. 

These two issues are very important and will be investigated using WDT throughout the 
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rest of the thesis. In addition to WDT, these two issues will be investigated using: 1) 

two approaches that consider different classifier arrangements and 2) two different types 

of datasets. The two arrangement approaches used are termed same-type approach and 

mixed-type approach. The same-type approach involves combining classifiers from the 

same family to do the feature selection with WDT. The mixed-type approach, however, 

involves combining classifiers from different families. These two approaches will help 

us fully understand the role of number and nature of classifiers in feature selection. 

Along with these approaches, two types of user preference datasets (UP1 and UP2) 

derived from field of HCI are used. Such datasets were chosen because of the high level 

of uncertainty associated with the users’ preferences, which can often lead to noise and 

irrelevant features in the data, and thus are suitable for use with WDT method. The 

WDT method along with the classifier approaches and datasets,  which make up the 

entire  process  involved  in  investigating  role  of  number  and  nature  of  classifiers  in 

feature selection, are illustrated in Figure 3.3.  

Figure 3.3. Summary of Entire Process of Thesis Investigation

The next chapter uses the entire process shown in Figure 3.3 to begin investigating the 

role of number of and nature of classifiers in feature selection. The chapter will employ 

the  WDT  method  with  both  datasets  in  addition  to  the  first  of  the  two  classifier 

arrangement approaches mentioned; the same-type approach.
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Chapter 4 – The Combinations of Same-Type Classifiers

4.1  Introduction

A novel  data  mining  method termed Wrapper-based  Decision  Trees,  or  WDT,  was 

described in the previous chapter. The novelty of the WDT method lies within its ability 

to  integrate  the  use  of  the  Wrapper  feature  selection  approach  and  decision  tree 

classifiers. The WDT combines multiple classifiers to select relevant sets of features 

with the Wrapper and visualises the selected relevant features by constructing decision 

trees. The purpose of combining multiple classifiers for feature selection is to reduce the 

biases of each individual classifier.  However, as already discussed in Chapter 3, the 

selection of classifiers can affect the feature selection results. In particular, the number 

of  classifiers  used  and  the  nature  of  classifiers  used  may  influence  the  number  of 

relevant features selected and also the accuracy levels of the selected features. In terms 

of number of classifiers,  decreasing or increasing the number of classifiers  used for 

feature selection may have effects  on the  number  of  features  selected.  Varying  the 

number of classifiers used may also have an effect on the accuracies of the features, i.e., 

how relevant the features are. In terms of nature of classifiers, there are many different 

types  of  classifiers,  each of  which has  its  own assumption and bias.  The bias  of  a 

classifier may lead to differences in the number of features selected and also variations 

in the accuracies of features. As such, the nature of a classifier also has the potential of 

influencing the features selected. 

The number of classifiers and the nature of classifiers are thus two important issues that 

may affect the way in which features are selected. In this thesis, the effects of both 

number and nature of classifiers are investigated using two different approaches. The 

first approach is the same-type approach and the second approach is the mixed-type 

approach.  With  regards  to  the  former  approach,  classifiers  belonging  to  the  same 

classifier family (i.e., classifiers that have the same nature) are combined with the WDT 

method. For example, classifiers belonging to the DT family may be combined together 

to form such combinations. With regards to the latter approach, classifiers belonging to 

different  classifier  families  (i.e.,  classifiers  that  have different  nature)  are  combined 
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with the WDT method. For example, classifiers belonging to DT family and classifiers 

belonging  to  BN family  may be  combined together  to  form such combinations.  In 

addition,  these  approaches  also  make  use  of  different  numbers  of  classifiers.  This 

implies that both the number and nature of classifiers can be investigated by these two 

approaches.

This  chapter  will  address  the  same-type approach.  The  same-type approach will  be 

examined with the two different types of datasets that were described in the previous 

chapter. The two chosen datasets are derived from the field of HCI, where one dataset 

comprises of users preferences of Web search engines and the other dataset comprises 

of  users’  preferences  of  a  Web-based  learning  system.  The  former  dataset  will  be 

referred to as UP1 hereafter  whereas the latter  will  be referred to as UP2. We will 

present the results from each dataset in terms of the number of features selected by the 

same-type combinations and the accuracy levels of the selected features. Decision trees 

formed using the features selected from these datasets will also be examined in order to 

better understand the relationships between the selected relevant features. 

The  chapter  is  organised  as  follows.  It  will  start  in  Section  4.2  by  giving  a  brief 

description of what classifiers are used to select the relevant features and how these 

classifiers are combined with WDT. Subsequently, Section 4.3 presents the results from 

same-type  combinations  regarding  the  number  of  relevant  features  selected  and the 

accuracy levels generated by the selected features. Relationships between the number of 

features  selected  and  the  accuracy  levels  generated  by  combinations  will  also  be 

presented. Finally, Section 4.4 presents an analysis of the decision trees with the highest 

levels of accuracies for both UP1 and UP2 datasets. 

4.2  Same-type Classifier Combinations

As described in the previous section, this chapter investigates the influences of both 

number and nature of classifiers using the same-type approach. The same-type approach 

involves combining various classifiers that belong to the same classifier family. In this 

thesis, the same-type combinations use classifiers from four different families, namely 

the Bayesian Network (BN) family,  Decision Tree (DT) family,  Nearest  Neighbour 
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(NN)  family,  and  Support  Vector  Machine  (SVM)  family.  More  precisely,  three 

classifiers from the BN, DT and NN families are used to do the feature selection with 

WDT, and one classifier is used from the SVM family. The chosen SVM classifier will 

be  used  with  two  different  kernels,  namely  the  polynomial  kernel  and  radial  basis 

function kernel (Vapnik, 1998). In this way, features in the datasets that relate to both 

linear aspects and non-linear aspects can be identified. All chosen classifiers belonging 

to the BN, DT, NN, and SVM families are summarised in Table 4.1. 

BN Family DT Family NN Family SVM
Family

Bayesian Network Classifier 
(BNC)

(Friedman, Geiger and 
Goldszmidt, 1997)

C4.5
(Quinlan, 

1993)

Nearest Neighbour 
Classifier (NNC)
(Dasarthy, 1991)

Naïve Bayes (NB)
(Langley and Sage, 1994)

CART
(Breiman et 
al., 1984)

k-Nearest Neighbor (KNN)
(Cover and Hart, 1967)

Average One Dependence 
Estimator (AODE)

(Webb, Boughton, and Wang, 
2002)

CN2 (Clark 
and Niblett, 

1989)

K* 
(Cleary and Trigg, 1995)

SVM with 
Polynomial and 

Radial Basis 
Function
Kernel 

(Vapnik, 1995; 
1998)

Table 4.1. Classifiers Belonging to Each Classifier Family

The classifiers shown in Table 4.1 were chosen for two main reasons. First, previous 

studies have shown that classifiers from these four families are suitable for analysing a 

variety of datasets, especially user preference datasets.  For example,  Kritikou, et  al. 

(2008) developed an e-Learning system that utilised the BNC, which belongs to BN 

family,  to  capture  users’  preferences  and  overall  behaviour  of  the  system.  The 

developed system was capable of adapting to each user’s specific preferences. Liu and 

Kešelj  (2007)  proposed a  method that  used the C4.5 DT classifier  to  automatically 

classify  users’  Web navigation patterns  and preferences  to  help predict  which  Web 

pages are  more likely to be accessed next  by users.  In addition,  Jian,  Jian,  and Jin 

(2005) developed an e-Commerce recommender system that used KNN, which belongs 

to  the  NN family,  to  automatically  recommend  new products  whose  characteristics 

match customers’  preferences and interests.  Finally,  Bo and Luo (2007)  proposed a 

personalised Web information recommendation algorithm that uses the SVM classifier. 

The algorithm was able to identify users’ preferences and apply these preferences to a 

personalised information recommendation service so as to suit the information needs of 

54



The Role of Classifiers in Feature Selection: Number vs Nature                                                    Chapter 4

different users.  Second, the chosen classifiers  are probably the most  popularly  used 

classifiers for representing the nature and biases of the four different classifier families 

shown  in  the  table.  Using  classifiers  from these  different  families  will  help  select 

different  features  that  can  then  be  combined  with  WDT to  see  their  influences  on 

feature selection results. 

The classifiers mentioned shown in Table 4.1 were combined to analyse both UP1 and 

UP2 datasets. The classifiers were combined using an exhaustive approach so that each 

classifier was used with every other classifier within a same family. This exhaustive 

approach led to the construction of 2-classifier same-type combinations (e.g., BNC+NB, 

BNC+SVMpoly,  BNC+SVMrbf),  3-classifier  same-type  combinations  (e.g., 

BNC+NB+AODE, BN+NB+SVMpoly, BN+NB+SVMrbf), and 4-classifier same-type 

combinations (e.g., BNC+NB+AODE+SVMpoly and BNC+NB+AODE+SVMrbf). As 

shown in these examples, the SVM classifier is included in the combinations. The SVM 

classifier was included in the same-type combinations mainly because it is well known 

for  its  highly  accurate  performance  and  excellent  generalisation  ability  on  many 

different types of datasets (Chen and Hsieh, 2006; Barakat and Bradley, 2007). In this 

way, we cannot only investigate the influences of same-type combinations on feature 

selection,  but  also we can see if  the inclusion and exclusion of  the SVM classifier 

influences the feature selection results of the combinations. 

In total,  54 same-type classifier  combinations were formed in the manner described 

above, including 27 for 2-classifiers (9 without SVM, 9 with SVMpoly, and 9 with 

SVMrbf), 21 for 3-classifiers (3 without SVM, 9 with SVMpoly, and 9 with SVMrbf), 

and 6 for 4-classifiers (3 with SVMpoly, and 3 with SVMrbf).  These 54 same-type 

combinations  will  be  used  to  select  relevant  features  from both  the  UP1  and  UP2 

datasets. The features selected by the combinations will subsequently be used to build 

decision  trees  to  visualise  the  interactions  between  features  and  determine  the 

classification accuracies of the selected features. The classification accuracies will give 

an indication of how relevant each of the different sets of features is in relation to the 

target  variable.  In  this  case,  high  classification  accuracy  implies  that  the  selected 
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features  are  very relevant  to  the  target  variable  whereas low classification accuracy 

implies that the features are not so relevant. 

The analysis of the number of relevant features selected by the same-type combinations 

and their associated classification accuracies for both UP1 and UP2 datasets are carried 

out in the next section.

4.3  Results from UP1 and UP2 Datasets

In terms of the UP1 dataset, the combinations employed the users’ level of computer 

experience  as  the  target  variable  and  their  responses  to  the  90  questions  of  the 

questionnaire as the input features. In terms of the UP2 dataset, the same combinations 

adopted the user’s cognitive style as the target variable and their responses to the 20 

questions regarding the Web-based learning as input features. These two datasets used 

different target variables because they were previously shown (in Chapter 3) to select 

highest number of relevant features from the dataset. The fact that they selected higher 

number of features compared to other possible target variables increases the likelihood 

of identifying features that are of highest relevance to the target variable.

The number of relevant features chosen by each classifier combination, as shown in 

parentheses next to each combination, and the classification accuracies generated using 

the selected relevant features for both UP1 and UP2 are shown in Table 4.2 and Table 

4.3 respectively. Each of the tables presents the classification accuracies generated by 

the same-type combinations from the lowest accuracies, which appear on the left side of 

the tables, to the highest accuracies, which appear on the right side of the tables. This 

helps identify the same-type classifier combinations which are least suitable and most 

suitable for identifying relevant feature subsets. 

The mean number of features selected by the 2-classifier, 3-classifier and 4-classifier 

combinations and the mean accuracy levels generated by these combinations for the 

datasets are also shown in Table 4.4. In particular, Table 4.4 includes: 1) mean number 

of features selected and accuracies generated by combinations without SVM classifiers, 

2) mean number of features selected and accuracies generated by combinations with 
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SVMpoly,  3)  mean  number  of  features  selected  and  accuracies  generated  by 

combinations with SVMrbf, and 4) the overall number of features selected and overall 

accuracies generated by the 2-classifier, 3-classifier and 4-classifier combinations. This 

table will help us determine how combinations with and without the SVM classifier 

influence feature selection results in UP1 and UP2 datasets.
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Same-type Classifier Combinations for UP1 Dataset
Lowest Accuracies between 

72.50 to 78.33%
(N=8)

Intermediate Accuracies between 80 to 84.17%
(N=33)

Highest Accuracies between 
85 to 88.33%

(N=13)
2-classifier BNC+NB (12)

BNC+SVMpoly (14)
BNC+SVMrbf (17)
NB+SVMrbf (17)
KNN+K* (14)
KNN+SVMpoly (12)
KNN+SVMrbf (13)

BNC+AODE (18)
NB+SVMpoly (17)
AODE+SVMpoly (22)
AODE+SVMrbf (21)
C4.5+CART (22)
C4.5+CN2 (22)
CART+CN2 (22)
C4.5+SVMpoly (22)
C4.5+SVMrbf (23)

CART+SVMpoly (18)
CART+SVMrbf (18)
CN2+SVMpoly (20)
CN2+SVMrbf (21)
NNC+K* (13)
K*+SVMpoly (17)
K*+SVMrbf (18)

NB+AODE (20)
NNC+KNN (10)
NNC+SVMrbf (12)
NNC+SVMpoly (15)

3-classifier KNN+K*+SVMrbf (19) BNC+NB+SVMrbf (15)
BNC+AODE+SVMpoly (16)
BNC+AODE+SVMrbf (16)
NB+AODE+SVMpoly (23)
NB+AODE+SVMrbf (25)
C4.5+CART+SVMrbf (18)
C4.5+CN2+SVMpoly (20)
C4.5+CN2+SVMrbf (19)
CART+CN2+SVMrbf (16)

NNC+KNN+SVMpoly (13)
NNC+KNN+SVMrbf (14)
KNN+K*+SVMpoly (18)

BNC+NB+AODE (10)
BNC+NB+SVMpoly (13)
C4.5+CART+CN2 (18)
C4.5+CART+SVMpoly (18)
CART+CN2+SVMpoly (15)
NNC+KNN+K* (17)
NNC+K*+SVMpoly (16)
NNC+K*+SVMrbf (17)

4-classifier - BNC+NB+AODE+SVMpoly (10)
BNC+NB+AODE+SVMrbf (11)
C4.5+CART+CN2+SVMrbf (15)
NNC+KNN+K*+SVMpoly (11)
NNC+KNN+K*+SVMrbf (11)

C4.5+CART+CN2+SVMpoly (13)

Table 4.2. No. of Features Selected by Same-type Combinations and Associated Classification Accuracy Levels for UP1 Dataset.
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Same-type Classifier Combinations for UP2 Dataset
Lowest Accuracies of
90.77% and 92.31%

(N=12)

Intermediate Accuracies of 93.85% and 95.38%
(N=40)

Highest Accuracies of 96.92%
(N=2)

2-classifier BNC+SVMpoly (5)
BNC+SVMrbf (7)
AODE+SVMrbf (8)
CART+SVMrbf (10)
NNC+SVMrbf (6)
K*+SVMrbf (6)

BNC+NB (3) 
BNC+AODE (4)
NB+AODE (3)
NB+SVMpoly (4)
NB+SVMrbf (9)
AODE+SVMpoly (4)
C4.5+SVMrbf (9)
C4.5+CART (10)
C4.5+CN2 (6)
C4.5+SVMpoly (7)
CART+CN2 (10)

CART+SVMpoly (8)
CN2+SVMpoly (6)
CN2+SVMrbf (10)
NNC+KNN (10)
NNC+K* (2)
NNC+SVMpoly (5)
KNN+K* (10)
KNN+SVMpoly (14)
KNN+SVMrbf (16)
K*+SVMpoly (4)

-

3-classifier BNC+NB+SVMrbf (5)
C4.5+CART+SVMrbf (10)
C4.5+CN2+SVMrbf (8)
NNC+KNN+SVMrbf (12)
KNN+K*+SVMrbf (11)

BNC+NB+SVMpoly (3)
BNC+NB+AODE (3)
BNC+AODE+SVMpoly (3)
BNC+AODE+SVMrbf (5)
NB+AODE+SVMpoly (4)
NB+AODE+SVMrbf (8)
C4.5+CART+CN2 (7)
C4.5+CART+SVMpoly (9)
C4.5+CN2+SVMpoly (6)

CART+CN2+SVMpoly 
(8)
CART+CN2+SVMrbf (9)
NNC+KNN+SVMpoly (8)
NNC+K*+SVMrbf (3)
KNN+K*+SVMpoly (8)

NNC+KNN+K* (4)
NNC+K*+SVMpoly (4)

4-classifier NNC+KNN+K*+SVMrbf (4) BNC+NB+AODE+SVMpoly (3)
BNC+NB+AODE+SVMrbf (2)
C4.5+CART+CN2+SVMrbf (9)

C4.5+CART+CN2+SVMpoly (7)
NNC+KNN+K*+SVMpoly (4)

-

Table 4.3. No. of Features Selected by Same-type Combinations and Associated Classification Accuracy Levels for UP2 Dataset.
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Mean Number of Features & Mean Accuracy Levels for UP1
Combinations  
Without SVM

Combinations 
With SVMpoly

Combinations 
With SVMrbf

Overall

2-classifier 17.29 81.57 17 81.09 18.11 80.65 17.41 81.08
3-classifier 16.21 86.94 15.94 84.26 17.67 81.57 16.33 83.50
4-classifier - - 11.33 84.17 12.33 80.28 11.83 82.22

Mean Number of Features & Mean Accuracy Levels for UP2
Combinations  
Without SVM

Combinations 
With SVMpoly

Combinations 
With SVMrbf

Overall

2-classifier 6.46 94.42 6.33 94.81 7.33 92.48 7.26 93.94
3-classifier 5.73 95.18 5.41 95.89 7.88 93.34 6.57 94.36
4-classifier - - 4.67 94.87 5 93 4.83 94.10
Table 4.4. Mean No. of Features selected and Mean Accuracy Levels for 

UP1 and UP2

An  initial  inspection  of  the  results  presented  in  Tables  4.2,  4.3  and  4.4  shows 

differences among combinations with SVMpoly and combinations with SVMrbf. It 

was found that  using combinations with SVMrbf resulted in slightly higher  mean 

numbers of relevant features being selected compared to  using combinations with 

SVMpoly.  This  was  found  in  both  UP1  and  UP2  datasets.  This  implies  that 

combinations with SVMrbf helped identify more features overall than combinations 

with SVMpoly, irrespective of the dataset used. An explanation for this finding may 

have to do with the nature of the polynomial and radial basis function kernels. The 

SVM classifier  with the polynomial  kernel  seeks  to  identify  linear  aspects  within 

datasets whereas the SVM with the radial basis function seeks non-linear in addition 

to linear aspects (Cristianini and Shawe-Taylor, 2000). Such a difference may explain 

why combinations which used the radial basis function kernel were able to identify a 

higher number of features. It may be that combinations comprised of SVM with radial 

basis function kernel were able to identify more features because they were able to 

select features that related to both non-linear and linear aspects in the data, rather than 

just linear aspects.

Furthermore,  it  was  found  in  both  UP1  and  UP2  that  using  combinations  with 

SVMrbf  resulted  in  significantly  lower  mean  classification  accuracies  than  using 

combinations  with  SVMpoly.  This  means that  the  same-type  combinations  which 

used SVMrbf generated lower  levels  of  accuracies than combinations which used 

SVMpoly.  This  finding  suggests  that  the  former  selected  features  that  were  less 

relevant  with  respect  to  the  target  variable  than the  latter.  The  reason for  such a 

finding  may  lie  within  the  features  selected  by  the  kernels  used  by  SVM.  As 
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previously  mentioned,  the  SVMpoly  seeks  to  identify  features  relating  to  linear 

aspects within datasets whereas the SVMrbf mainly seeks features relating to non-

linear aspects. It may have been the case that the features selected by SVMrbf, which 

related to non-linear aspects, were of little relevance or totally irrelevant to the target 

variables of the datasets. Selecting such irrelevant features may lead to low levels of 

accuracy,  and  may  therefore  explain  why  SVMrbf  led  to  lower  accuracies  than 

SVMpoly. 

Since combinations with SVMrbf selected features that led to lower accuracy levels 

than combinations with SVMpoly, the rest of this chapter will disregard the results 

from  combinations  with  SVMrbf  and  instead  focus  on  the  results  from  the 

combinations with SVMpoly. The rest of this chapter will thus focus on the results 

from the same-type combinations including those combinations with the SVMpoly 

classifier for both UP1 and UP2 datasets. 

4.3.1  Number of Relevant Features

This  subsection  presents  the  results  of  the  influences  of  number  and  nature  of 

classifiers on the number of relevant features selected by the same-type combinations 

from  the  UP1  and  UP2  datasets.  Three  key  results  were  found  regarding  these 

datasets, each of which is described in the following pages.

1)  2-classifier Combinations Select More Relevant Features Than 3-classifier and  

4-classifier Combinations

On  close  examination  of  Table  4.2,  Table  4.3  and  Table  4.4,  it  seems  that 

combinations with few classifiers selected more relevant features than combinations 

with many classifiers. More specifically, the 2-classifier combinations identified more 

relevant features than the 3-classifier and 4-classifier combinations. In order to see 

this  more  clearly,  we  analyse  the  mean  number  of  features  selected  by  these 

combinations for both datasets. In terms of UP1 dataset, the mean number of features 

selected by 2-classifier combinations (17.11) was higher than the mean number of 

features  selected  by  3-classifier  (16.42)  and  4-classifier  combinations  (11.33).  In 

terms  of  UP2  dataset,  the  mean  number  of  features  selected  by  2-classifier 

combinations (6.28) was also found to be higher than the mean number of features 

selected  by  3-classifier  (5.67)  and  4-classifier  combinations  (4.67).  In  addition  to 
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mean number of features selected, a further analysis was carried out to identify further 

differences in the number of features selected by the classifier  combinations.  The 

further analysis involved ranking the number of features selected by the classifier 

combinations from highest number (top half) to lowest number (bottom half). In this 

way, we will be able to see which combinations selected higher and lower number of 

features.  The number  of classifier  combinations that  appeared in  the top half  and 

bottom half of the ranking for UP1 and UP2 is shown in Table 4.5.

Combinations No. of combinations in top 
half of ranking (N=17)

No. of combinations in bottom 
half of ranking (N=16)

UP1 UP2 UP1 UP2
2-classifier 11 10 7 8
3-classifier 6 5 6 7
4-classifier - 1 3 2

Table 4.5. No. of Combinations that Appear in Top Half and Bottom Half of Ranking 
of Number of Features Selected for UP1 and UP2

The  results  from Table  4.5  show that  nearly  all  of  the  2-classifier  combinations 

appeared in the top half of the ranking for both UP1 and UP2 datasets. However, in 

general, 3-classifier and 4-classifier combinations appeared in the bottom half of the 

ranking. These results show that 2-classifier combinations were able to select a higher 

number of relevant features than 3-classifier and 4-classifier combinations. A possible 

explanation for differences in number of features selected may lie within the fact that 

the median strategy was used to combine the results from the different classifiers. The 

median strategy computes the middle value for a given set of values. In this study, the 

median  was  calculated  for  every  feature  selected  by  each  combination.  To better 

understand  the  way  in  which  the  median  strategy  was  used,  the  BNC+C4.5  2-

classifier combination will be used as an example for explanation. For a feature,  f, 

BNC may show a relevance value of 2, while C4.5 may not find the feature relevant 

(i.e.,  0 is  assigned).  In this  example,  the median of  f will  be 1.  This feature will 

therefore be classified as a relevant feature because any feature with a median of 1 or 

more is considered relevant by WDT. 

This example shows that features with low relevance levels have the ability of being 

classed as relevant, which, in turn, results in more relevant features being identified. 

On the other hand, using three or four classifiers results in fewer relevant features 

being  identified.  This  may  be  due  to  the  fact  that  each  feature  will  have  more 
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relevance values. When using 3-classifier combinations each feature will have three 

associated relevance values. For a feature to be regarded as relevant, at least two of 

the three relevance values must be 1 or more so that the resulting median is above 1. 

This same concept also applies to 4-classifier combinations, but with the exception 

that three out of the four relevance values for each feature must be 1 or more for a 

feature to be considered as relevant. Overall, this shows that fewer relevant features 

can be identified when more than two classifiers are used because more classifiers are 

required to (mutually) agree on a particular feature. In other words, the number of 

classifiers  used  for  feature  selection  influences  the  number  of  relevant  features 

selected from both datasets. 

2) Combinations With DT Family Classifiers Select More Relevant Features Than 

Other Combinations.

The number of relevant features selected by the same-type combinations was also 

influenced by combinations with classifiers from the DT family. Combinations that 

included  DT  family  classifiers  selected  more  relevant  features  overall  than 

combinations with classifiers from the other families. This finding was observed in 

both UP1 and UP2 datasets. In order to see this finding more clearly, we consider the 

mean  number  of  relevant  features  selected  by  combinations  that  include  each 

classifier family for the UP1 and UP2 datasets. The mean number of features selected 

by each classifier family is shown in Table 4.6.

Mean number of  
features selected

Combinations 
with BN family 

classifiers

Combinations 
with DT family 

classifiers

Combinations 
with NN family 

classifiers
UP1 UP2 UP1 UP2 UP1 UP2

2-classifier 
combinations

17.17 3.83 21 7.50 13.17 7.50

3-classifier 
combinations

15.50 3.50 17.67 7.50 10.67 6

4-classifier 
combinations

10 3 13 7 11 4

Table 4.6. Mean Number of Features Selected by Different Classifier Families

In general, Table 4.6 shows that combinations with DT family classifiers selected a 

higher  number  of  relevant  features  than  combinations  with  BN  and  NN  family 

classifiers.  In  addition  to  this  table,  a  further  analysis  was  conducted  with  both 

datasets  in  order  to  better  understand  the  differences  in  the  number  of  relevant 
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features selected by each classifier family. For each of the classifier families, i.e., BN, 

DT and NN family, we analyse the number of combinations that selected features 

above the total mean number of features and number of combinations that selected 

features below the total mean number of features. The total mean number of features 

for UP1 is 16.33 and the total mean number of features for UP2 is 5.91. Furthermore, 

we take into account the number of combinations that appeared in the top half (i.e., 

those that selected a high number of features) and bottom half (i.e., those that selected 

a low number of features) of the ranked list, where the ranked list represents number 

of features selected by all combinations sorted from highest to lowest. The results 

from this analysis are shown in Table 4.7.

No. of 
combinations 

above total mean 
number of 

features

No. of 
combinations 

below total mean 
number  of 

features

No. of 
combinations 
that appear in 

top half of 
ranked list

No. of 
combinations 
that appear in 
bottom half of 

ranked list
UP1 UP2 UP1 UP2 UP1 UP2 UP1 UP2

Combinations 
with DT 
Classifiers 
(N=11)

9 10 2 1 9 11 2 -

Combinations 
with BN 
Classifiers 
(N=11)

5 - 6 11 5 - 6 11

Combinations 
with NN 
Classifiers 
(N=11)

4 5 7 6 3 5 8 6

Table 4.7. Comparison of DT Family, BN Family and NN Family Combinations

The results from Table 4.7 show that nearly all of the combinations with DT family 

classifiers selected number of features much higher than the total mean number of 

features selected, and appeared in the top half of the ranked list.  Once again, this 

shows that combinations with classifiers from the DT family were able to identify 

more relevant features than combinations with BN and NN family classifiers. The 

reason why classifiers belonging to the DT family identified more relevant features 

than classifiers belonging to the BN and NN families may have to do with the nature 

of these three types of classifiers. On the one hand, the nature of BN classifiers allows 

them to identify relationships between features which are  typically  presented in  a 

graphical network structure (Grossman and Domingos, 2004). However, the number 

of relationships, and thus the number of features, identified may be affected by the 
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amount of prior knowledge available about the actual features in the dataset. In the 

event that prior knowledge is available, the number of relationships and the number of 

features selected may increase because there are more details concerning the features 

and the interactions among the features. On the contrary, the number of features may 

decrease when no or little prior knowledge is available. In essence, this means that 

prior knowledge may influence the number of features used in the network structure 

and  thus  the  number  of  features  selected  by  BN  family  classifiers  (Niculescu, 

Mitchell, and Rao, 2006). 

On the other hand, the nature of classifiers belonging to the NN family allows them to 

determine relevant features by using some distance metric, where the most relevant 

features  are  those  that  are  deemed  the  closest  by  distance  metric.  However,  the 

number of most relevant features identified greatly depends on a small  number of 

features called neighbours (Ghosh, 2006). This is because the number of neighbours 

employed represents number of features used to determine the most relevant (i.e., 

closest) features. For example, using few neighbours may lead to fewer features being 

selected whereas more neighbours may result in more features being identified. Thus, 

using an inappropriate number of neighbours may lead to fewer features identified 

(Han and Kamber, 2006).

Conversely, the nature of DT classifiers is very different to the nature of BN and NN 

classifiers  described  above.  Basically,  DT  classifiers  use  a  statistical  measure  to 

determine the relevance of features, where the most relevant features are those with 

the highest statistical relevance values (Nikovski and Kulev, 2006). More importantly, 

the nature of DT classifiers does not require them to have prior knowledge about the 

features  in  the  data  (like  BN classifiers)  and  does  not  require  them to  rely  on  a 

predetermined  number  of  neighbours  for  finding  the  relevant  features  (like  NN 

classifiers). The fact that DT classifiers do not need to deal with such issues, which 

can considerably decrease number  of  features  selected  suggests  that  combinations 

with DT classifiers are more likely to identify a higher number of relevant features 

than combinations comprising BN and NN classifiers. This may thus explain why the 

combinations with DT classifiers selected more relevant features than combinations 

with BN and NN classifiers.
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3)  Combinations with SVM Classifier Select Lower Number of Features

Closely examining the results from UP1 and UP2 revealed another interesting finding 

with respect to combinations comprised of the SVM classifier. In total, there were 21 

same-type combinations that included the SVM classifier. The results from UP1 show 

that 11 of these 21 combinations selected number of features lower than the total 

mean  number  of  relevant  features  selected  from  UP1,  and  the  same  number  of 

combinations appeared in the bottom half  of the ranking.  These results from UP1 

show that combinations with SVM selected a low number of features. The results 

from UP2 also show similar finding. The results from UP2 show that 12 of the 21 

combinations selected fewer features compared to the total mean number of features. 

In addition, 12 of the 21 combinations with SVM appeared in the bottom half of the 

ranking.  A closer  look at  Table 4.4,  which presents the mean number of features 

selected by combinations with and without SVM classifier in both UP1 and UP2, also 

corroborates the fact fewer features were selected by combinations with SVM. 

The findings from UP1 and UP2 suggest that including the SVM classifier in same-

type combinations somewhat reduces the number of relevant features selected. The 

cause  for  this  may  lie  within  the  nature  of  classifiers  used  in  the  same-type 

combinations.  Same-type combinations predominantly include classifiers  from one 

classifier family. This means that these classifiers will have very similar biases and 

thus select very similar features. However, when classifiers with the same biases are 

combined with the SVM classifier the results may be different. This is because the 

SVM classifier belongs to a very different classifier family and thus has very different 

biases (Wu, Huang and Meng, 2008). Because of these differences, there may be less 

agreement  among  the  SVM  classifier  and  the  other  family  of  classifiers.  Lower 

agreement among the classifiers may result in fewer relevant features being selected, 

which may therefore explain why combinations with SVM selected fewer features 

than combinations without the SVM.

In summary, the abovementioned results have shown that the number of classifiers 

and nature of classifiers influence the number of relevant features identified by same-
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type  combinations.  More  specifically,  it  was  found  that  combinations  with  few 

classifiers are able to identify a higher number of relevant features than combinations 

with many classifiers. In addition, the results also showed that combinations with DT 

family classifiers selected a higher number of features than combinations with other 

classifier  families.  The number  and nature of  classifiers  thus influence number of 

features selected. The next section determines the effects of the number and nature of 

classifiers on the classification accuracies of the selected features.

4.3.2  Accuracy Levels of Relevant Features 

This section presents the results regarding the influences of number and nature of 

classifiers on the classification accuracies. Analysis of the accuracies from both UP1 

and UP2 datasets revealed several findings, each of which will be explained. 

1)  3-classifier Combinations Generate Highest Classification Accuracies

The results from both UP1 and UP2 dataset revealed that 3-classifier combinations 

were  able  to  generate  accuracies  much  higher  than  the  majority  of  the  other 

combinations. In terms of the UP1 dataset, 3-classifier combinations were found to 

generate a mean accuracy level (84.93%) higher than the mean accuracy levels of 2-

classifier  (81.30%)  and  4-classifier  (84.16%)  combinations.  In  terms  of  the  UP2 

dataset, the mean accuracy level of 3-classifier combinations (95.38%) was also found 

to be higher than the mean accuracy levels of 2-classifier (94.69%) and 4-classifier 

(94.87%) combinations. 

A further analysis of the accuracies from the UP1 and UP2 datasets was additionally 

carried  out  so  as  to  obtain  a  better  understanding  of  the  accuracies  from the  3-

classifier  combinations.  The analysis for UP1 dataset revealed that 9 of the 12 3-

classifier combinations generated accuracies higher than total mean accuracy of all 

same-type combinations,  which was found to be 82.88%. In addition,  ranking the 

accuracies of all combinations from highest (top) to lowest (bottom) showed that 9 of 

the 12 combinations were in the top half of the ranking. The analysis for the UP2 

dataset uncovered that 10 of the 12 3-classifier combinations generated accuracies 

higher than the total mean accuracy of all combinations used with UP2 (94.95%), and 

the same number of combinations were also found to be in the top half of the accuracy 
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ranking. The aforementioned findings suggest that 3-classifier combinations were able 

to produce higher accuracy levels than other combinations. In other words, features 

selected by the 3-classifier combinations are more relevant in relation to the target 

variable than the other classifier combinations. 

2)  Combinations with DT Family Classifiers Show a Higher Level of Classification  

Accuracy 

It was found in both UP1 and UP2 datasets that combinations with the DT family 

classifiers generally led to higher accuracies than those with classifiers from BN and 

NN families. A further analysis of accuracies generated by each family of classifiers 

was carried out to show any differences. The results of this analysis are shown in 

Table 4.8.

Mean accuracies 
generated by 

combinations with 
BN Family Classifiers

Mean accuracies 
generated by 

combinations with 
DT family classifiers

Mean accuracies 
generated by 

combinations with 
NN family classifiers

UP1 UP2 UP1 UP2 UP1 UP2
2-classifier 
combinations

80.55 94.36 82.22 94.87 81.11 94.87

3-classifier 
combinations

84.80 94.99 85.83 95.38 84.17 95.38

4-classifier 
combinations

83.33 93.85 85 95.38 84.17 95.38

Table 4.8. Classification Accuracies Generated by Each Classifier Family

In terms of UP1, Table 4.8 shows that 3-classifier combinations that made use of DT 

family classifiers generated higher accuracies than combinations with the other family 

classifiers. It also shows that combinations with DT family classifiers selected feature 

subsets that were more relevant with respect to the target variable. In terms of UP2, 

the  results  from  Table  4.8  show  a  very  interesting  finding.  It  is  shown  that 

combinations with DT family classifiers and combinations with NN family classifiers 

generated higher accuracies than combinations with BN family classifiers. In fact, the 

accuracies  generated  by  combinations  with  DT  classifiers  were  identical  to  the 

accuracies of combinations with NN classifiers.  

The reason why combinations with these two classifier families generated identical 

levels of accuracies may lie within similarities in their nature. Classifiers belonging to 

the DT family and NN family determine relevant features in a rather similar manner. 
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On the one hand, DT family classifiers determine the relevance of features according 

to the feature’s position in the decision tree. For example, the feature that appears at 

the root (top) of the tree is deemed the most relevant to the target variable, while those 

on subsequent (lower) levels are deemed less relevant. On the other hand, NN family 

classifiers determine the relevance of the features according to distance, where the 

most relevant feature will be closest and the least relevant feature will be furthest 

away. This suggests that DT family classifiers and NN family classifiers use a fairly 

similar approach to determine the relevance of features. In this way, the two classifier 

families may select similar features that have similar levels of relevance. Selecting 

similar features with comparable relevance levels may lead to very similar levels of 

accuracy being generated, and may therefore explain why combinations with the DT 

and  NN  family  classifiers  were  able  to  select  features  which  generated  identical 

accuracy levels. 

In summary, the results from both UP1 and UP2 datasets showed a common result, 

which was that  combinations with DT family classifiers  generated accuracies that 

were in most cases higher than the other combinations. A possible explanation for this 

result  may  lie  within  the  nature  of  DT  classifiers.  DT  classifiers  are  sometimes 

regarded  as  another  type  of  feature  selection  method  called  ‘embedded  methods’ 

(Guyon and Elisseeff,  2003).  Basically,  embedded methods like DT classifiers are 

able to perform feature selection (Perner and Apte, 2004; Sugumaran, Muralidharan, 

and Ramachandran, 2007). This means that DT classifiers have the ability to select 

relevant features on their own. To be precise, DT classifiers use 1) a search strategy to 

search for potentially relevant  features and 2) the splitting criterion they typically 

utilise  in  order  to  determine the relevance of  features.  The relevant  features (i.e., 

features that satisfy the splitting criterion) are then used by the classifier to form a 

hierarchical tree structure, which helps with the classification of the data. Including 

classifiers  with these abilities in WDT combinations suggests that they will  select 

relevant features at two different stages. In the first stage, features are selected by the 

individual  DT  classifiers  and  in  the  second  stage  features  are  selected  by 

combinations comprised of the DT classifiers. In this manner, only the features that 

are selected at both of these stages will form the final feature subset, which is very 

likely to include features of high relevance.  Uncovering highly relevant features with 

respect to the target variable increases the likelihood of obtaining higher classification 
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accuracies. This may thus explain why combinations with DT family classifiers on the 

whole generated higher accuracy levels than other combinations. 

3)  Combinations with SVM Classifier Generate Different Accuracy Levels for UP1  

and UP2 

An  interesting  finding  was  found  in  the  UP1  and  UP2  datasets  regarding 

combinations with the SVM classifier. According to the results from UP1, 11 of the 

21 combinations with SVM generated accuracies lower than the total mean accuracy 

level. The same number of combinations was also found in the bottom half of the 

ranked accuracy  list.  The  results  from UP1 suggest  that  combinations  with  SVM 

classifier  generally led to low levels  of accuracy.  However,  the results  from UP2 

show  a  different  aspect.  The  results  from  UP2  show  that  14  of  the  21  SVM 

combinations generated accuracies higher than the total mean accuracy of all same-

type combinations, and the same number of combinations appeared in the top half of 

the ranked accuracy list. The results from UP2 suggest that combinations with SVM 

generated high levels of accuracy. 

The results from UP1 and UP2 regarding influences of SVM classifier on accuracy 

levels are rather different. On the one hand, the results from UP1 are not clear enough 

to demonstrate the influences of SVM classifier on accuracy levels. This was shown 

by the fact that the number of combinations above/below total mean accuracy level 

and number of combinations in top/bottom half of accuracy ranking are practically 

equal. On the other hand, the results from UP2 clearly show how combinations with 

SVM influence the accuracy levels  generated.  This  difference in clarity  of  results 

from UP1  and  UP2  was  also  found  in  the  previous  section  (Section  4.3.1).  The 

previous section found that combinations with SVM classifier led to fewer relevant 

features being selected. However, results from UP2 showed the effect of SVM on 

number of features selected clearer than the results of UP1. 

The rationale behind such differences may have to do with the size of the feature 

subsets  selected  from  UP1  and  UP2.  On  the  one  hand,  same-type  combinations 

selected  large  feature  subsets  (i.e.,  feature  subsets  that  contain  a  high  number  of 

features)  from  the  UP1  dataset.  When  dealing  with  large  feature  subsets,  the 

influences of nature of classifiers on feature selection results may not be so clear 

because the presence of many features may mask the true influences of the classifier. 
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In the case of UP1, the influences of nature of SVM may have been masked by the 

high number  of  features selected.  On the other  hand,  the same-type combinations 

selected  small  feature  subsets  (i.e.,  feature  subsets  that  contain  a  low number  of 

features)  from UP2.  When small  feature subsets  are  considered,  the  influences  of 

nature of classifiers may be clearer because there are fewer features present to hide 

the effects of a particular classifier. As such, the influence of nature of SVM classifier 

on accuracy levels may be more apparent when small feature subsets are selected. 

This may help explain the different findings obtained from the UP1 and UP2 datasets.

4.3.3  Relationships Between Number of Features Selected and Accuracy Levels 
of Features

The  two  abovementioned  sections  have  shown  that  the  number  and  nature  of 

classifiers used in same-type combinations influence the number of relevant features 

selected (Section 4.3.1) as well as the accuracy levels of selected features (Section 

4.3.2).  When  considered  individually,  the  number  of  features  selected  and  the 

accuracy levels of features show some interesting findings. However, little is known 

about the relationships that may exist between the number of features selected and the 

accuracy levels  of  the features.  In  this  vein,  this  section considers the number  of 

features selected by each same-type combination and the associated accuracy levels. 

Accuracy Levels Generated By Combinations 
Lowest Intermediate Highest

2-classifier 13 18.10 15
3-classifier - 18 12.71
4-classifier - 10.50 13
Total 13 46.60 30.71
Table 4.9. Number of Features Selected for Classification Accuracies in UP1

Accuracy Levels Generated By Combinations
Lowest Intermediate Highest

2-classifier 5 6.50 -
3-classifier - 6 4
4-classifier - 4.70 -
Total 5 17.20 4
Table 4.10. Number of Features Selected for Classification Accuracies in UP2

To identify potential relationships between these two issues, two tables are used. The 

first  one,  Table  4.9,  shows  the  mean  number  of  relevant  features  selected  by 

combinations which generated lowest, intermediate and highest accuracy levels for 

UP1 dataset.  The  second one,  Table  4.10,  presents  the  mean number  of  relevant 
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features selected by combinations which generated lowest, intermediate and highest 

accuracy levels for UP2 dataset. By using these two tables, we will be able to see how 

the number of features selected changes as the accuracy levels change, or vice versa. 

A close examination of both tables reveals a common finding among UP1 and UP2. 

The finding relates to the fact that combinations which generated the lowest levels of 

accuracies were found to select a low number of features. In addition, it was also 

found that combinations which generated the highest accuracy levels selected a low 

number of relevant features. However, combinations which generated intermediate 

accuracy  levels  (i.e.,  accuracies  between  the  lowest  and  highest  accuracies)  were 

found  to  select  a  higher  number  of  relevant  features  than  combinations  which 

generated lowest and highest accuracies. 

A plausible explanation for such findings may lie within the relevance of features 

within the selected feature subsets. On the one hand, combinations which generated 

lowest accuracy levels may have missed out some highly relevant features. In this 

way, they will mainly include features that are of little relevance or possibly irrelevant 

features.  The  fact  that  such  combinations  excluded  highly  relevant  features  may 

explain  why  a  lower  number  of  features  were  selected.  On  the  other  hand, 

combinations which generated highest accuracy levels may include highly relevant 

features. This means that there will be mainly highly relevant features but very few 

irrelevant features in selected subsets.  The fact  that combinations mainly included 

highly  relevant  features  may  explain  why  fewer  features  were  selected  by  such 

combinations. Combinations which generated intermediate accuracies, however, may 

include a mixture of highly relevant features and features that are of little relevance to 

the target variable. This may explain why their accuracies were neither too low nor 

too high. More importantly, this may explain why a higher number of features were 

selected by combinations which generated intermediate accuracies.

These results from UP1 and UP2 suggest that the number of relevant features selected 

is to some extent determined by the level of accuracy generated. On the one hand, 

combinations which generate the lowest or highest accuracies are more likely to select 

small feature subsets. On the other hand, combinations which generate accuracies in 

between the lowest accuracies and highest accuracies are more likely to select large 

feature subsets. In general, these findings imply that the number of relevant features 
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selected by combinations has some relationships with the accuracy levels  that the 

selected features generated.  Such findings  therefore improve our understanding of 

relationships between the number of features selected by the combinations and how 

accurate these features are in relation to the target variable. 

In  summary,  the results  obtained in  this  section have shown that  the number  and 

nature  of  classifiers  used  significantly  influence  the  number  of  relevant  features 

selected in addition to the accuracy levels of selected features. We have also found 

relationships between the number of features selected and the accuracy levels of the 

features, which improves our understanding of the selected feature subsets. The next 

section moves on to determine the relationships between the selected relevant features 

by examining the decision trees of same-type combinations with the highest accuracy 

levels. 

4.4  Visualising Features with Decision Trees

The previous section looked at the influences of number and nature of classifiers on 

feature selection results. The influences of these two issues were examined using the 

same-type combinations.  Each of  the same-type combinations were used to select 

relevant sets of features from the UP1 and UP2 datasets, which were then used to 

build decision trees. Each decision tree had an associated level of accuracy which 

indicates how relevant the feature sets used to build the trees are in relation to the 

target variable. In this section, the decision trees with the highest level of accuracies 

will be analysed. Analysing decision trees with the highest accuracy will help uncover 

the most relevant relationships between selected feature sets and the target variable. 

First, we present the decision tree with the highest accuracy for the UP1 dataset and 

then present the decision trees with the highest accuracies for the UP2 dataset.

4.4.1  Decision Tree of UP1 Dataset

1) Analysis of Features Selected by DT Family Combination

The C4.5+CART+CN2 DT family combination was found to generate a decision tree 

with the highest level of classification accuracy (i.e., 88.33%) from UP1. The fact that 

this combination led to the highest accuracy implies that it selects features that are 

most  relevant  to  the  target  variable.  This  section  presents  the  relevant  features 

selected by this combination. The relevant features selected by this combination are 
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shown in Table 4.11. Each of the features presented in Table 4.11 has an associated 

level of relevance shown in parenthesis. This relevance value indicates how relevant a 

feature is to the target variable, i.e., computer experience. As an example, consider 

features  ‘Q13’ and ‘Q14’.  Although both features  were  selected by this  classifier 

combination,  they  differ  in  their  relevance  to  computer  experience.  In  the 

combination, ‘Q13’ is selected with a relevance value of 1, while ‘Q14’ is selected 

with a relevance value of 10. These relevance values indicate that ‘Q14’ is much more 

relevant to determining users’ level of computer experience than ‘Q13’. 

Selected Features and Their Relevance Values
C4.5+CART+CN2 
(DT Family 
Combination)

Q4(1),  Q11(1), Q13(1), Q14(10),  Q15(2),  Q21(3), Q29(2), Q30(2), 
Q31(6),  Q32(1),  Q33(2),  Q38(1),  Q48(3), Q49(1),  Q56(2),  Q58(1), 
Q66(1),  Q76(1).  

Table 4.11. Features Selected by C4.5+CART+CN2

A close look at the features reveals ‘The results are presented by the levels of the 

relevance’ (Q14) and ‘There are not too many types of icons’ (Q31) to be the most 

relevant feature and the second most relevant feature respectively. As such, these two 

features, especially Q14 because it is assigned the highest relevance value, can be said 

to play important roles in distinguishing the class values of the target variable (i.e., 

determining a user’ level of computer experience). These two relevant features, in 

addition to the other relevant features selected by the DT family combination, were 

used to construct the decision tree. The constructed decisions tree is presented and 

explained in the following section.

2) Constructed Decision Tree

As shown in Figure 4.1, the decision tree formed comprises of three levels. The first 

level indicates the most important feature typically known as the root node while the 

remaining levels indicate other relevant features. This means that features found in 

levels two and three are not as relevant as the feature found in the first level. The 

decision tree also includes the number of users in the dataset that follow each level of 

computer experience (see the key of the decision tree for description of each level). 

For example, D (4), which can be found on the far left of the second level of the 

decision tree in Figure 4.1, signifies that 4 users who found Q31 strongly unimportant 

and found Q30 strongly unimportant had excellent level of computer experience.
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Analysing the decision tree in Figure 4.1 reveals two interesting issues, which are 

explained in the following pages.
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Figure 4.1. Decision Tree for C4.5+CART+CN2 Classifier Combination

Decision Tree Key
Users’ Preferences Level of Computer Experience
1 = Very Unimportant
2 = Unimportant
3 = Neutral
4 = Important
5 = Very Important

A = Little 
B = Average
C = Good 
D = Excellent 
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The first issue relates to the root node of the decision tree. In the decision tree, Q31 is 

the root node. This means that Q31 is considered as the most important feature by the 

decision tree classifier.  Interestingly, this finding is somewhat different to what was 

found from the features selected by the C4.5+CART+CN2 combination. Analysing the 

features selected by this combination showed that Q14 was more relevant than Q31 

since it had a much higher level of relevance (see Table 4.11). To further explore the 

differences among the relevance of Q31 and Q14, a deep analysis was carried out with 

the help of the ANalysis  Of VAriance (ANOVA).  The ANOVA, which is  a useful 

method for analysing the statistical significances among three or more items, is applied 

to examine the significances of Q31 and Q14 in relation to the target variable (Miller 

and  Neill,  2008).  The  result  from  ANOVA  showed  that  both  Q14  and  Q31  are 

significant. However, the significance of Q14 is p<.005 while the significance of Q31 is 

p<.001. This shows that the significance of the latter is higher than the former. The 

analysis  carried  out  here  is  based  on  statistical  significances.  On  the  other  hand, 

decision  tree  classifiers  also  use  statistical  measures  such  as  the  information  gain 

measure to determine the most relevant and least relevant features and their positions in 

the tree (Perner and Apte, 2004; Larrañaga et al., 2006). In this case, the decision tree 

classifier  may have also deemed Q31 to  be statistically  more relevant  to  the target 

variable  than  Q14.  This  may  therefore  explain  why  Q31  is  the  root  node  of  each 

decision tree and Q14 is found in the lower levels of the decision trees.

The  second  issue  relates  to  the  features  used  to  form  the  decision  tree.  On  close 

examination  of  the  decision  tree,  three  features  were  found  to  differentiate  the 

preferences of users with low levels of computer experience and those with high levels 

of computer experience. The three features included: Q31, Q14, and Q48. In terms of 

Q31, this particular feature appears as the root node in the decision tree. This means that 

Q31 is a very important feature in relation to computer experience. The reason why the 

other  two  features  are  relevant  lies  within  the  fact  that  these  features  have  a  high 

number  of  users  associated with them (as  shown in parenthesis  in  each leaf  of  the 

decision tree). The implications of these three features for determining users’ level of 

computer experience are further explained in the following pages.
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Q31: There are not too many types of icons 

Figure 4.1 shows that all users with little computer experience and the majority of users 

with average computer experience found this feature unimportant or very unimportant. 

On  the  other  hand,  the  majority  of  participants  with  good  and  excellent  levels  of 

computer experience consider it important or very important. A possible explanation for 

these findings is that users with low levels of computer experience tend to have limited 

amount of knowledge so they may not be familiar with all the functionalities of search 

engines and may not know how to select suitable functionalities for their tasks. Thus, 

presenting  a  large  selection  of  icons  can  enable  them  to  easily  identify  various 

functionalities provided by the search engines and help them to choose the most suitable 

functionalities for their tasks. 

Q14: The results are presented by the levels of the relevance

Many of the users with high levels of computer experience found this feature important 

while users with low levels of computer experience considered this feature unimportant. 

A possible interpretation for this may lie within the users’ familiarisation with different 

search engines. Users with higher levels of computer experience are more likely to have 

used different types of search engines before. The wide use of search engines makes 

them more accustomed to using this function than those with less computer experience. 

This  finding  is  also  consistent  to  that  shown  by  Brand-Gruwel,  Wopereis,  and 

Vermetten (2005) who found that users with high levels of computer experience had a 

tendency to use the relevance levels of search results to make a judgement.  

Q48: Error messages let you know the cause of the problem 

The majority of users with low levels of computer experience considered this feature 

important.  In  contrast,  many  of  the  users  with  high  levels  of  computer  experience 

considered it unimportant. When searching the Web for information, users with low 

levels  of  computer  experience  are  more  prone  to  making  mistakes,  for  example, 

misspelling search terms. This is because such users possess only a limited amount of 

system  knowledge  when  compared  to  individuals  with  higher  levels  of  experience 

(Chen,  Fan  and  Macredie,  2006).  As  such,  it  will  be  likely  that  users  with  less 
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experience  will  encounter  more  problems  when  searching  the  Web.  Such  users, 

therefore, preferred the idea of all errors being clearly explained. In this way, they will 

be able to interpret what they did to cause the errors. Once they know the nature of the 

errors, they can more easily and quickly find solutions. 

The abovementioned findings from the three features suggest that users with low levels 

of computer experience had very different preferences to search engines compared to 

users with high levels of computer experience. Such features can be used to differentiate 

between the preferences of users with different levels of computer experience and in 

turn may be used to better understand how users with different computer experience 

locate information through search engines. 

4.4.2  Decision Tree(s) of UP2 Dataset

1)  Analysis of Features Selected by NN Family Combinations

Analysing the accuracies generated by all same-type combinations for the UP2 dataset 

showed  that  two  NN  family  combinations,  namely  NNC+K*+KNN  and 

NNC+K*+SVM, both generated the highest accuracy level, which was 96.92%. A deep 

analysis  of  these  two  combinations  shows  that  both  combinations  select  the  same 

relevant features. The relevant features selected by these two combinations, and their 

associated relevance values, are: Q6(1), Q9(10), Q18(10), and Q19(1).  By looking at 

the relevance values of the features, we also see that the relevance values of the features 

selected  were  identical  between  these  two  types  of  combinations.  A  plausible 

explanation for why both of these combinations selected exactly the same features with 

identical relevance values may lie within the classifiers used in the combinations. 

The combinations have two classifiers in common which are NNC and K*. However, 

the combinations differ in the third classifier used. The first combination uses the KNN 

classifier  while  the  second  combination  uses  the  SVM classifier.  The  fact  that  the 

combinations generated highest accuracies even though they included these different 

classifiers  may  suggest  that  these  classifiers  have  some  similarities.  These  two 

classifiers may be similar in the way they select relevant features. The KNN classifier 
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belongs to the NN family. NN family classifiers such as KNN use distance to determine 

which are most relevant (i.e., closest) and which are least relevant (i.e., furthest) to the 

target  variable.  The  SVM  classifier,  which  belongs  to  the  SVM  family,  also  uses 

distance to determine relevant features. Basically, SVM classifiers look at the distance 

of each feature in accordance to the hyperplane found, which best separates the values 

of the target variable. Features closest to the hyperplane will typically be regarded as 

highly relevant whereas features furthest away from the hyperplane will be regarded as 

not so relevant. In summary, the fact that  KNN and SVM classifiers select relevant 

features in a similar manner may help explain why the two NN family combinations, 

which  included  these  different  classifiers,  selected  identical  features  with  identical 

relevance values. 

A closer  look at  the  relevance  values  of  the  features  selected  by  the two classifier 

combinations shows that ‘It is hard to use the back/forward buttons’ (Q9) and  ‘It is 

easy to find a route for a specific task with the index’ (Q18) were assigned the highest 

relevance level of 10 by both combinations. This suggests that Q9 and Q18 are the most 

relevant features among the selected features with respect to the target variable. In other 

words, Q9 and Q18 are highly relevant to determining users’ cognitive styles. In order 

to further examine the relevance of all selected features, including that of Q9 and Q18, 

and their relationships with the target variable, the next section looks at the decision 

trees constructed by the two classifier combinations. 

2)  Constructed Decision Trees

In  addition  to  selecting  identical  relevant  features,  the  NNC+K*+KNN  and 

NNC+K*+SVM combinations also formed identical decision trees (Figure 4.2). This is 

the reason why only one decision tree is presented as opposed to two. As illustrated in 

Figure 4.2, the decision tree has two levels where the first level includes a single feature 

that is the root node. In addition, each decision tree also includes the number of users in 

the dataset that follow each type of cognitive style (see the key of the decision tree for 

description of each type). For example, FI (21), which appears on the far left of the 

second  level,  means  that  the  21  users  who  strongly  disagreed  with  Q9  were  Field 
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Independent.  An analysis  of  the  decision  tree  displayed in  Figure 4.2 reveals  some 

interesting findings, which are explained further down the page. 

Figure 4.2. Decision Tree for NNC+KNN+K* and NNC+K*+SVMpoly Combinations

An interesting finding relates to the features used in this decision tree. The decision tree 

makes use of three features namely, Q9, Q18, and Q19. On the other hand, Q6 was not 

included in the construction of the decision tree. The fact that Q6 was not included in 

the tree but Q19 was is rather surprising because both of these features were found to 

have identical relevance values of 1. In order to better understand the relevance of Q6 

and Q19 in relation to the target variable, the ANOVA method was used. The result 

from ANOVA showed that both Q6 and Q19 are significant. However, the significance 

of  Q19 (F=11.88,  p<.001)  is  slightly  higher  than  the  significance  of  Q6  (F=7.769, 

p<.005). This means that Q19 is statistically more relevant to the target variable than 

Q6, which may explain why the DT classifier used Q19, instead of Q6 when building 

the tree. 

Decision Tree Key
Users’ Preferences Cognitive Style
1 = Strongly Disagree 
2 = Disagree
3 = Neutral
4 = Agree
5 = Strongly Agree

FI = Field Independent 
I = Intermediate
FD =  Field Dependent

Q9

Q19

1 2 3 4 5

32 4

FI (21) Q18I (15) FD (3)

FD (4) FD (2) I (4)

32 5

FD (4)FD (8) FI (4)
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The second interesting finding relates to the three features,  i.e.,  Q9, Q18, and Q19, 

included in the decision tree. The implications of these features for determining users’ 

cognitive style are discussed over the next few pages.

Q9: It is hard to use the back/forward buttons

In terms of ‘It  is hard to use the back/forward buttons’ (Q9),  this particular feature 

appeared as the root node of all decision trees. This implies that Q9 is the most relevant 

feature with regards to users’ cognitive style. This feature was also found to be highly 

relevant feature by both of the classifier combinations. To see how users with different 

cognitive styles preferred this feature, we carry out a deep analysis of the decision tree. 

In general, the decisions trees showed that nearly all of the Field Independent (FI) and 

Intermediate (I) users strongly disagreed and disagreed with this feature, respectively, 

while majority of Field Dependent (FD) users agreed or strongly agreed with it. The 

reason for this different preference may be because FI users like to work on their own 

(Witkin et al, 1977) and find their own route on the Web (Liu and Reed, 1995). As a 

result,  FI  users  may  prefer  to  freely  navigate  the  Web-based  learning  system.  The 

back/forward buttons are navigation tools that may help FI users to do this. In contrast, 

FD  users  easily  get  disorientated  (Chen  and  Macredie,  2004)  so  the  back/forward 

buttons, which enable free and unguided navigation, may let them feel lost and are not 

very suitable for them.

Q18: It is easy to find a route for a specific task with the index

The other feature in the decision trees is ‘It is easy to find a route for a specific task with 

the index’ (Q18). This particular feature was also found to be a highly relevant feature 

among  the  combinations,  which  suggests  that  Q18  may  play  an  important  role  in 

identifying a user’s cognitive style. Studying the decision tree in Figure 4.2 confirms the 

importance of Q18. It was found that some FI users strongly agreed with this feature 

whereas quite a few FD users disagreed with it.  This finding is in line with those of 

Ford and Chen (2000) who also found that FI users prefer using the index to locate a 

particular item. FI users prefer using the index because it provides them with a break 

down of all the information in the system. In this way, they will be able to easily find 
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specific information. On the other hand, FD users are individuals who prefer the system 

to provide them with a holistic view all the information so the index, which provides 

specific information may not be suitable to them. This may therefore explain why FI 

users and FD users had different preferences regarding the index.

Q19: This tutorial can be used sufficiently well without any instructions

In  terms of  Q19,  some Intermediate  users  were  found to  agree  with  this  particular 

feature while some FD users were found to disagree with this feature. This shows that 

Intermediate users could use the tutorial without the help of any instructions, whereas 

FD found the tutorial difficult to use without a set of instructions presented to them. 

This  may  have  to  do  with  the  type  of  approach  Intermediate  and  FD  users  adopt 

(Witkin, et al, 1977; Chen, 2002). Typically, Intermediate users exhibit some traits from 

both FI and FD users. In the case of Q19, Intermediate users exhibited traits of FI users. 

This is because FI users use an active approach in that they prefer to roam the system 

independently,  use  their  own  initiative  to  find  the  most  relevant  information  for 

completing a task, and thus complete the task without any instructions or guidance. This 

may explain why Intermediate users were able to use the tutorial without the help of any 

instructions. On the other hand, FD users adopt a passive approach, which means that 

they rely on guidance or instructions provided by the system so that they can complete 

their task. As such, they may find it rather difficult to use the system without some 

instructions. 

The  aforementioned  results  showed  that  Q9,  Q18  and  Q19  are  very  important  for 

determining users’  cognitive styles. These features may therefore play a key role in 

understanding  how  users  with  different  cognitive  styles  prefer  using  Web-based 

learning systems. In this way, Web-based learning systems can be designed to integrate 

these features in order to satisfy the needs of users with different cognitive styles.

4.4.3   Decision  Trees  with  Highest  Accuracies  Formed by DT and NN Family 
Classifiers

The previous section presented the decision trees with the highest accuracies for both 

the  UP1  and  UP2  datasets.  For  the  UP1  dataset,  it  was  found  that  a  combination 
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comprised of DT family classifiers produced the decision tree with the highest accuracy. 

For the UP2 dataset it was found that two combinations mainly comprised of NN family 

classifiers produced decision trees with the highest accuracy level. This suggests that 

combinations with DT classifiers and combinations with NN family classifiers are able 

to select features that form decision trees with the highest levels of accuracy. The reason 

why combinations with these two classifier families were able to produce decision trees 

with  the  highest  accuracy  may  relate  to  similarities  in  their  nature.  As  previously 

mentioned in Section 4.3.2, DT family classifiers determine relevant features according 

to their position in the tree. Features that appear at the top of the tree are considered as 

the most relevant while features towards the bottom of the hierarchical tree structure are 

considered the least relevant. The NN family classifiers determine the relevant features 

by considering their distance. The closest features (according to some distance metric) 

are regarded as the most relevant while features that are furthest away are regarded as 

the least relevant. This shows that DT classifier and NN family classifiers determine the 

relevant features in a similar manner. The fact that DT and NN families are similar may 

help explain why classifiers from these particular families were able to build decision 

trees with the highest accuracies. 

However, the DT and NN families generated trees with highest accuracies in different 

datasets. The DT family combinations generated highest accuracies using UP1 dataset 

whereas NN family combination generated highest accuracies using UP2 dataset. The 

root of such a finding may lie within their ability to identify relevant features in datasets 

of different sizes. On the one hand, the UP1 dataset is a large dataset in that it consists 

of a large number of features. DT family classifiers may be more likely to determine 

highly relevant features within large datasets. This may be to do with the nature of DT 

classifiers.  Typically,  DT  classifiers  use  feature  selection  themselves  to  search  for 

features with the highest discrimination ability since these features are most relevant to 

the target  variable  (Guyon and Elisseeff,  2003).  The possibility  of  identifying such 

features  increases  when  there  are  many  features  in  the  dataset  as  there  is  a  wider 

selection of features from which DT classifiers can choose from. Once identified, these 

highly relevant features are used to build a hierarchical tree structure, which shows the 

relationships between the relevant features and the target variable of the dataset. Since 
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the tree structure is built using features highly relevant to the target variable then the 

tree  will  most  probably generated high  accuracy  levels.  This  may explain  why DT 

family classifiers built decision trees with high accuracy levels for UP1, which consists 

of many features.

On the other hand, the UP2 dataset is a small  dataset  in that it  consists  of a small 

number of features. NN family classifiers may be more suited to small datasets. This is 

because  NN family  classifiers  will  only  need  to  calculate  the distances  among few 

features in order to differentiate between the relevant (i.e., closest) and irrelevant (i.e., 

furthest) features. The fact that NN family classifiers will have to handle distances of 

fewer features may make it easier for them to differentiate the relevant features from the 

irrelevant features. In this way, the NN family classifiers will be able to identity the 

features most relevant to the target variable. Using most relevant features to build the 

decision trees may lead to high accuracy levels. This may therefore explain why NN 

family classifiers built decision trees that generated highest accuracies in UP2.

In summary, the DT family and NN family classifiers were found to build decision trees 

with  the  highest  accuracies.  This  was  attributed  to  similarities  among  these  two 

classifier families. The similarities among these two classifier families may also suggest 

that such families are quite useful for selecting features that lead to decision trees with 

the highest accuracy levels. In other words, the nature of such classifier families enables 

them to form most accurate decision trees. Such decision trees can be used to identify 

the most relevant features and the most relevant relationships between features, which 

in this case can be used to improve our understanding of the preferences of different 

users.

4.5  Conclusions 

This  chapter  investigated  the  influences  of  the  number  and  nature  of  classifiers  on 

feature  selection  results  using  the  same-type  approach.  The  results  from  this 

investigation revealed that the number and nature of classifiers significantly influence 

the number of features selected and the accuracy levels of these features.
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In terms of the number of features selected, both datasets showed that combinations 

with  few  classifiers  (i.e.,  2  classifiers)  selected  many  relevant  features  whereas 

combinations  with  many  classifiers  (i.e.,  3  and  4  classifiers)  selected  few  relevant 

features. In addition, it  was found that the number of features identified was further 

influenced by the use of certain classifiers. More specifically, combinations with DT 

family classifiers were found to select a higher number of relevant features from both 

UP1 and UP2 datasets in comparison to the other classifier families. In terms of the 

accuracies  of  selected features,  our  results  revealed that  combinations  comprised  of 

three classifiers selected features which led to the highest classification accuracies in 

comparison to the other combinations. This was found in both UP1 and UP2 datasets. 

This indicates that features selected by 3-classifier combinations are of higher relevance 

to the target variable than features selected by other classifier combinations. However, 

the  accuracy  levels  of  3-classifier  combinations  and  many  of  the  other  classifier 

combinations  were  influenced  by  the  DT  family  classifiers.  It  was  found  that 

combinations with DT family classifiers generated higher accuracies than combinations 

with classifiers from the other families. This suggests that combinations with DT family 

classifiers  significantly  influence  number  of  features  as  well  as  the  accuracies  of 

features from UP1 and UP2. In fact, DT family classifiers seem to be able to select 

large, yet precise, feature subsets. These findings suggest that the nature of classifiers 

belonging to DT family is more influential than the nature of other classifier families 

used, which provides us with a better understanding of the importance and usefulness of 

this classifier family for feature selection.  

In summary, the results from this chapter show that the number and nature of classifiers 

used influence feature selection results.  However, the influences of these two issues 

were examined using the same-type approach. The same-type approach is one of the 

two  approaches  required  to  fully  examine  the  influences  of  number  and  nature  of 

classifiers.  The  other  approach  is  the  mixed-type  approach.  The  following  chapter 

therefore uses the mixed-type approach to investigate  the influences  of  number and 

nature of classifiers on the number of features selected and the accuracy levels of the 

selected  features.  By  using  the  mixed-type  approach,  we  will  be  able  to  obtain  a 
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complete  picture  of  the  influences  of  number  and  nature  of  classifiers  on  feature 

selection.
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Chapter 5 – The Combinations of Mixed-Type Classifiers

5.1  Introduction

The number of classifiers and the nature of classifiers are two important issues that can 

influence feature selection results namely the number of relevant features selected and 

the accuracy levels of the features. These two issues are investigated in this thesis using 

two approaches, including the same-type approach and the mixed-type approach. The 

former approach was investigated in the previous chapter (Chapter 4) while the latter 

approach will be examined in this chapter. Likewise, the mixed-type approach will be 

examined using the two datasets (i.e., UP1 and UP2) that were used in the previous 

chapter.  The  results  from  the  mixed-type  approach  for  both  of  these  datasets  are 

presented in this chapter. 

The  chapter  is  organised  as  follows.  Section  5.2  gives  a  brief  description  of  what 

classifiers  are  used  to  form the  mixed-type  combinations  for  selecting  the  relevant 

features from the datasets.  Subsequently, Section 5.3 presents the results from mixed-

type combinations regarding influences on number of features selected and the accuracy 

levels generated by selected features. It then moves on to identify relationships between 

the number of features selected by combinations and the accuracies that they generated. 

Finally, a deep analysis of decision trees with highest accuracies is conducted in Section 

5.4 to identify relevant relationships between selected features. 

5.2  Mixed-type Classifier Combinations

The mixed-type approach involves combining classifiers with different types of nature. 

The  mixed-type  combinations  are  formed  using  the  same  classifiers  and  classifier 

families (i.e., BN family, DT family, NN family and SVM family) used in the previous 

chapter.  The  classifiers  were  combined  using  an  exhaustive  approach  so  that  each 

classifier was used with every other classifier with a different nature. This led to the 

construction  of  2-classifier  mixed-type  combinations  (e.g.,  BNC+C4.5, 

BNC+SVMpoly,  BNC+SVMrbf),  3-classifier  mixed-type  combinations  (e.g., 

BNC+C4.5+KNN, BN+C4.5+SVMpoly,  BN+C4.5+SVMrbf),  and 4-classifier  mixed-
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type  combinations  where  all  the  four  families  of  classifiers  were  combined  (e.g., 

BNC+C4.5+KNN+SVMpoly and BNC+C4.5+KNN+SVMrbf). The SVM classifier is 

used  within  the  mixed-type  combinations  with  a  different  kernel.  For  example,  the 

BNC+SVMpoly combination uses the BNC classifier and the SVM classifier with the 

polynomial kernel (SVMpoly). On the other hand, the BNC+SVMrbf combination uses 

the features selected by the BNC classifier and the SVM classifier with the radial basis 

function kernel (SVMrbf). 

In  total,  180  mixed-type  classifier  combinations  were  formed,  including  45  for  2-

classifiers (27 without SVM, 9 with SVMpoly, and 9 with SVMrbf), 81 for 3-classifiers 

(27 without SVM, 27 with SVMpoly, and 27 with SVMrbf), and 54 for 4-classifiers (27 

with SVMpoly, and 27 with SVMrbf). These 180 mixed-type combinations will be used 

to select relevant features from each dataset. The features selected by the combinations 

will subsequently be used to build decision trees in order to identify the relationships 

between the features and determine the classification accuracies of the selected features. 

The classification accuracies will help determine how relevant each feature is in relation 

to  the  target  variable,  where  a  high  accuracy  indicates  high  relevance  and  a  low 

accuracy indicates low relevance. 

5.3  Results from UP1 and UP2 Datasets

The  mixed-type  classifier  combinations  also  use  the  UP1  and  UP2  datasets  to 

investigate the influences of number and nature of classifiers on number of features 

selected and accuracy levels. From the UP1 dataset, the mixed-type combinations will 

use the users’ level of computer experience as the target variable and 90 input features. 

From the UP2 dataset, the combinations will use the user’s cognitive style as the target 

variable and 20 input features. The results regarding the number of relevant features 

chosen  by  each  mixed-type  combination  and  the  classification  accuracies  generated 

using the selected relevant features for UP1 and UP2 are shown in Table 5.1 and Table 

5.2 respectively. These two tables organise the mixed-type combinations according to 

their  classification accuracies.  The combinations which produce low accuracy levels 

appear on the left side in the table whereas combinations which produce high accuracies 

appear on the right side. By organising the combinations in this manner, we can easily 
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and quickly discover those combinations which are less accurate and more accurate. 

Furthermore, each of the mixed-type combinations presented in the tables includes the 

number  of  features  that  they  selected.  The  number  of  features  selected  by  each 

combination is shown in parenthesis to the right of each combination. 

In addition to Table 5.1 and Table 5.2, we present Table 5.3 to show the mean number 

of features selected by the 2-classifier, 3-classifier and 4-classifier combinations and the 

mean accuracy levels generated by the combinations for both UP1 and UP2. In fact, 

Table 5.3 includes the mean number of features selected and accuracies generated by 

combinations without SVM classifiers, mean number of features selected and accuracies 

generated  by  combinations  with  SVMpoly,  mean  number  of  features  selected  and 

accuracies generated by combinations with SVMrbf, and the overall number of features 

selected and overall accuracies generated by the combinations. This table can help us 

easily compare the number of features selected and the accuracy levels generated by the 

different types of classifier combinations.
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Mixed-type Classifier Combinations
Lowest accuracies between 

72.50 to 79.17%
(N=28)

Intermediate Accuracies between 80 to 85%
(N=116)

Highest accuracies between 
85.83 to 90.83%

(N=35)
2-classifier BNC+C4.5 (18)

BNC+CART (15)
BNC+K* (14)
BNC+SVMpoly (14)
BNC+SVMrbf (18)
NB+CART (19)
NB+SVMrbf (23)
KNN+SVMpoly (12)

BNC+CN2 (17)
BNC+NNC (9)
BNC+KNN (13)
NB+C4.5 (22)
NB+CN2 (17)
NB+KNN (12)
NB+K* (20)
NB+SVMpoly (18)
AODE+CN2 (23)
AODE+K* (19)
AODE+SVMpoly (22)
AODE+SVMrbf (24)
C4.5+NNC (16)
C4.5+KNN (18)
C4.5+K* (21)
C4.5+SVMpoly (21)
C4.5+SVMrbf (25)

CART+NNC (18)
CART+KNN (16)
CART+K* (19)
CART+SVMpoly (18)
CART+SVMrbf (21)
CN2+NNC (17)
CN2+KNN (15)
CN2+K* (19)
CN2+SVMpoly (20)
CN2+SVMrbf (22)
NNC+SVMpoly (12)
NNC+SVMrbf (16)
KNN+SVMrbf (15)
K*+SVMpoly (18)
K*+SVMrbf (20)

NB+C4.5 (23)
NB+CART (23)
NB+NNC (15)
AODE+NNC (18)
AODE+KNN (16)
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3-classifier BNC+CN2+NNC (7)
BNC+CART+KNN (11)
BNC+CN2+KNN (5)
BNC+CART+SVMpoly (13)
BNC+CART+SVMrbf (15)
BNC+CN2+SVMpoly (6)
BNC+CN2+SVMrbf (9)
BNC+K*+SVMrbf (15)
AODE+CN2+K* (18)
AODE+KNN+SVMrbf (18)

BNC+C4.5+NNC (14)
BNC+C4.5+KNN (12)
BNC+C4.5+K* (14)
BNC+CART+K* (12)
BNC+CN2+K* (8)
BNC+C4.5+SVMpoly (13)
BNC+C4.5+SVMrbf (17)
BNC+NNC+SVMpoly (9)
BNC+NNC+SVMrbf (9)
BNC+KNN+SVMpoly (10)
BNC+KNN+SVMrbf (11)
BNC+K*+SVMpoly (14)
NB+C4.5+NNC (15)
NB+C4.5+KNN (16)
NB+CART+KNN (16)
NB+CN2+KNN (12)
NB+C4.5+K* (18)
NB+C4.5+SVMpoly (19)
NB+C4.5+SVMrbf (20)
NB+CART+SVMrbf (21)
NB+CN2+SVMrbf (14)
NB+NNC+SVMpoly (15)
NB+NNC+SVMrbf (16)
NB+KNN+SVMpoly (17)
NB+KNN+SVMrbf  (19)
NB+K*+SVMpoly (17)
NB+K*+SVMrbf (20)
AODE+C4.5+SVMpoly (21)

AODE+C4.5+SVMrbf (23)
AODE+CART+SVMpoly (22)
AODE+CART+SVMrbf (23)
AODE+CN2+SVMpoly (21)
AODE+C4.5+NNC (17)
AODE+CART+NNC (20)
AODE+CN2+NNC (14)
AODE+C4.5+KNN (17)
AODE+CN2+KNN (14)
AODE+CN2+SVMrbf (22)
AODE+NNC+SVMrbf (17)
AODE+KNN+SVMpoly (18)
AODE+K*+SVMpoly (23)
AODE+K*+SVMrbf (24)
C4.5+NNC+SVMrbf (18)
C4.5+KNN+SVMpoly (17)
C4.5+KNN+SVMrbf (17)
CART+NNC+SVMpoly (17)
CART+NNC+SVMrbf (20)
CART+KNN+SVMpoly (16)
CART+KNN+SVMrbf (18)
CN2+NNC+SVMpoly (14)
CN2+NNC+SVMrbf (15)
CN2+KNN+SVMpoly (13)
CN2+KNN+SVMrbf (14)
CN2+K*+SVMpoly (18)
CN2+K*+SVMrbf (20)

BNC+CART+NNC (11)
NB+CART+NNC (15)
NB+CN2+NNC (13)
NB+CART+K* (19)
NB+CN2+K* (17)
NB+CART+SVMpoly (19)
NB+CN2+SVMpoly (12)
AODE+CART+KNN (18)
AODE+C4.5+K* (20)
AODE+CART+K* (20)
AODE+NNC+SVMpoly (16)
C4.5+NNC+SVMpoly (17)
C4.5+K*+SVMpoly (16)
C4.5+K*+SVMrbf (18)
CART+K*+SVMpoly (21)
CART+K*+SVMrbf (24)

4-classifier BNC+CN2+NNC+SVMpoly (8)
BNC+CN2+NNC+SVMrbf (9)
BNC+CART+K*+SVMpoly (13)
BNC+CART+K*+SVMrbf  (15)
BNC+CN2+K*+SVMpoly (9)
BNC+CN2+K*+SVMrbf (10)
NB+C4.5+KNN+SVMrbf (15)
NB+CART+K*+SVMpoly (16)
NB+CART+K*+SVMrbf (18)
AODE+CN2+K*+SVMrbf (14)

BNC+CART+NNC+SVMpoly (12)
BNC+CART+NNC+SVMrbf (13)
BNC+C4.5+KNN+SVMpoly (9)
BNC+C4.5+KNN+SVMrbf (10)
BNC+CART+KNN+SVMpoly (10)
BNC+CART+KNN+SVMrbf (13)
BNC+CN2+KNN+SVMpoly (5)
BNC+CN2+KNN+SVMrbf (6)
BNC+C4.5+K*+SVMpoly (11)
BNC+C4.5+K*+SVMrbf (12)
NB+CART+NNC+SVMpoly (13)
NB+CART+NNC+SVMrbf (14)
NB+CN2+NNC+SVMrbf (15)
NB+C4.5+KNN+SVMpoly (13)
NB+CART+KNN+SVMrbf (14)
NB+CN2+KNN+SVMpoly (9)

NB+CN2+KNN+SVMrbf (9)
NB+C4.5+K*+SVMpoly (13)
NB+C4.5+K*+SVMrbf (14)
NB+CN2+K*+SVMpoly (15)
NB+CN2+K*+SVMrbf (18)
AODE+CART+NNC+SVMpoly (13)
AODE+CART+NNC+SVMrbf (14)
AODE+CN2+KNN+SVMpoly (10)
AODE+CN2+KNN+SVMrbf (11)
AODE+C4.5+K*+SVMpoly (14)
AODE+C4.5+K*+SVMrbf (16)
AODE+CART+K*+SVMpoly (14)
AODE+CART+K*+SVMrbf (17)
AODE+CN2+K*+SVMpoly (11)

BNC+C4.5+NNC+SVMpoly (9)
BNC+C4.5+NNC+SVMrbf (10)
NB+C4.5+NNC+SVMpoly (13)
NB+C4.5+NNC+SVMrbf (13)
NB+CN2+NNC+SVMpoly (13)
NB+CART+KNN+SVMpoly (13)
AODE+C4.5+NNC+SVMpoly (12)
AODE+C4.5+NNC+SVMrbf (14)
AODE+CN2+NNC+SVMpoly (13)
AODE+CN2+NNC+SVMrbf (15)
AODE+C4.5+KNN+SVMpoly (11)
AODE+C4.5+KNN+SVMrbf (12)
AODE+CART+KNN+SVMpoly (12)
AODE+CART+KNN+SVMrbf (14)

Table 5.1. No. of Features Selected by Mixed-type Combinations and Associated Classification Accuracy Levels for UP1 Dataset.
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Mixed-type Classifier Combinations
Lowest Accuracies of 
90.77% and 92.31%

(N=35)

Intermediate Accuracies of 93.85% and 95.38%
(N=136)

Highest Accuracies of 96.92%
 (N=9)

2-classifier BNC+CART (8)
BNC+KNN (10)
BNC+SVMpoly (5)
BNC+SVMrbf (8)
NB+KNN (12)
AODE+KNN (11)
AODE+SVMrbf (7)
CART+SVMrbf (10)
CART+KNN (15)
CART+K* (7)
NNC+SVMrbf (6)
K*+SVMrbf (6) 

BNC+C4.5 (4)
BNC+CN2 (6)
BNC+NNC (3)
BNC+K* (3)
NB+CART (9)
NB+C4.5 (5)
NB+CN2 (6)
NB+NNC (3)
NB+K* (3)
NB+SVMpoly (4)
NB+SVMrbf (9)
AODE+C4.5 (5)
AODE+CART (8)
AODE+K* (3)
AODE+CN2 (6)
AODE+NNC (3)
AODE+SVMpoly (4)

C4.5+KNN (12)
C4.5+NNC (4)
C4.5+K* (4)
C4.5+SVMpoly (7)
C4.5+SVMrbf (9)
CART+NNC (8)
CART+SVMpoly (8)
CN2+KNN (12)
CN2+SVMrbf (10)
CN2+NNC (5)
CN2+K* (6)
CN2+SVMpoly (6)
NNC+SVMpoly (5)
KNN+SVMpoly (14)
KNN+SVMrbf (16)
K*+SVMpoly (4)

-
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3-classifier BNC+CART+SVMrbf (9)
BNC+KNN+SVMrbf (11)
NB+KNN+SVMrbf  (11)
NB+C4.5+SVMrbf (8)
AODE+C4.5+SVMrbf (8)
AODE+KNN+SVMrbf (13)
AODE+K*+SVMrbf (5)
C4.5+K*+SVMrbf (5)
C4.5+NNC+SVMrbf (7)
C4.5+KNN+SVMrbf (13)
CART+KNN+SVMrbf (13)
CART+K*+SVMrbf (8)
CN2+KNN+SVMrbf (13)

BNC+CART+KNN (9)
BNC+CART+K* (2)
BNC+C4.5+SVMrbf (7)
BNC+C4.5+NNC (4)
BNC+CART+NNC (4)
BNC+CN2+NNC (4)
BNC+C4.5+KNN (7)
BNC+CN2+KNN (6)
BNC+CN2+K* (4)
BNC+C4.5+SVMpoly (4)
BNC+CART+SVMpoly (7)
BNC+CN2+SVMrbf (6)
BNC+NNC+SVMrbf (4)
BNC+KNN+SVMpoly (9)
BNC+K*+SVMpoly (2)
BNC+K*+SVMrbf (3)
NB+CART+KNN (8)
NB+CN2+NNC (4)
NB+C4.5+KNN (8)
NB+CN2+KNN (7)
NB+C4.5+K* (4)
NB+CART+K* (5)
NB+CN2+K* (5)
NB+C4.5+SVMpoly (5)
NB+CART+SVMrbf (10)
NB+CART+SVMpoly (8)
NB+CN2+SVMpoly (6)
NB+CN2+SVMrbf (7)
NB+NNC+SVMpoly (6)
NB+NNC+SVMrbf (7)

NB+KNN+SVMpoly (9)
NB+K*+SVMpoly (4)
NB+K*+SVMrbf (5)
AODE+CART+KNN (10)
AODE+CART+K* (5)
AODE+C4.5+SVMpoly (5)
AODE+CART+SVMpoly (8)
AODE+CART+SVMrbf (10)
AODE+CN2+SVMrbf (9)
AODE+NNC+SVMrbf (6)
AODE+KNN+SVMpoly (11)
AODE+CN2+NNC (5)
AODE+C4.5+KNN (8)
AODE+CN2+KNN (10)
AODE+CN2+K* (5)
AODE+CN2+SVMpoly (5)
AODE+NNC+SVMpoly (4)
AODE+K*+SVMpoly (4)
C4.5+KNN+SVMpoly (12)
C4.5+K*+SVMpoly (3)
CART+NNC+SVMpoly (7)
CART+K*+SVMpoly (7)
CART+NNC+SVMrbf (9)
CART+KNN+SVMpoly (11)
CN2+K*+SVMrbf (5)
CN2+NNC+SVMpoly (5)
CN2+NNC+SVMrbf (6)
CN2+KNN+SVMpoly (10)
CN2+K*+SVMpoly (5)

BNC+C4.5+K* (4)
BNC+CN2+SVMpoly (5)
BNC+NNC+SVMpoly (4)
NB+C4.5+NNC (4)
NB+CART+NNC (6)
AODE+C4.5+NNC (5)
AODE+CART+NNC (5)
AODE+C4.5+K* (6)
C4.5+NNC+SVMpoly (4)
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4-classifier BNC+CART+KNN+SVMrbf (10)
NB+C4.5+KNN+SVMrbf (10)
NB+CART+KNN+SVMrbf (11)
AODE+CN2+NNC+SVMrbf (3)
AODE+C4.5+KNN+SVMrbf (9)
AODE+CART+KNN+SVMrbf (11)
AODE+CN2+KNN+SVMrbf (10)
AODE+C4.5+K*+SVMrbf (3)
AODE+CART+K*+SVMrbf (5)
AODE+CN2+K*+SVMrbf (3)

BNC+C4.5+NNC+SVMrbf (2)
BNC+CART+NNC+SVMrbf (4)
BNC+C4.5+NNC+SVMpoly (3)
BNC+CART+NNC+SVMpoly (5)
BNC+CN2+NNC+SVMpoly (3)
BNC+CART+KNN+SVMpoly (7)
BNC+CN2+KNN+SVMpoly (6)
BNC+CN2+NNC+SVMrbf (2)
BNC+C4.5+KNN+SVMpoly (5)
BNC+C4.5+KNN+SVMrbf (8)
BNC+CN2+KNN+SVMrbf (9)
BNC+C4.5+K*+SVMpoly (2)
BNC+CART+K*+SVMpoly (3)
BNC+CN2+K*+SVMpoly (2)
BNC+C4.5+K*+SVMrbf (2)
BNC+CART+K*+SVMrbf  (4)
BNC+CN2+K*+SVMrbf (3)
NB+C4.5+NNC+SVMpoly (3)
NB+CART+NNC+SVMpoly (5)
NB+CN2+NNC+SVMpoly (3)
NB+C4.5+NNC+SVMrbf (4)
NB+CART+NNC+SVMrbf (7)

NB+CN2+NNC+SVMrbf (4)
NB+CART+KNN+SVMpoly (7)
NB+CN2+KNN+SVMrbf (10)
NB+C4.5+K*+SVMpoly (3)
NB+C4.5+K*+SVMrbf (3)
NB+CART+K*+SVMrbf (6)
NB+C4.5+KNN+SVMpoly (6)
NB+CN2+KNN+SVMpoly (7)
NB+CART+K*+SVMpoly (4)
NB+CN2+K*+SVMpoly (3)
NB+CN2+K*+SVMrbf (4)
AODE+C4.5+NNC+SVMrbf (4)
AODE+CART+NNC+SVMrbf (6)
AODE+CN2+NNC+SVMpoly (3)
AODE+C4.5+KNN+SVMpoly (9)
AODE+CART+KNN+SVMpoly (11)
AODE+CN2+K*+SVMpoly (4)
AODE+C4.5+NNC+SVMpoly (3)
AODE+CART+NNC+SVMpoly (5)
AODE+CN2+KNN+SVMpoly (5)
AODE+C4.5+K*+SVMpoly (3)
AODE+CART+K*+SVMpoly (4)

-

Table 5.2. No. of Features Selected by Mixed-type Combinations and Associated Classification Accuracy Levels for UP2 Dataset.
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Mean Number of Features & Mean Accuracy Levels for UP1
Combinations  
Without SVM

Combinations 
With SVMpoly

Combinations 
With SVMrbf

Overall

2-classifier 17.22 82.20 17.41 81.48 20.22 80.83 17.93 81.78
3-classifier 15.56 83.95 16.10 83.36 17.81 82.03 16.16 83.12
4-classifier - - 11.63 83.06 13.14 81.97 12.38 82.52

Mean Number of Features & Mean Accuracy Levels for UP2
Combinations  
Without SVM

Combinations 
With SVMpoly

Combinations 
With SVMrbf

Overall

2-classifier 6.70 94.19 6.33 94.36 9 92.82 7.10 93.97
3-classifier 5.70 95.44 6.30 95.15 8.07 93.16 6.70 94.59
4-classifier - - 4.30 94.81 5.81 93.45 5.20 94.13

Table 5.3. Mean No. of Features selected and Mean Accuracy Levels 
for UP1 and UP2

An initial examination of Tables 5.1, 5.2 and 5.3 reveals a common finding, which 

relates  to  the  number  of  features  selected  and  the  accuracy  levels  generated  by 

combinations  with  SVMpoly  and  combinations  with  SVMrbf.  It  was  found  that 

combinations  with  SVMrbf  selected  a  higher  number  of  relevant  features  than 

combinations with SVMpoly. This subsequently meant that higher mean numbers of 

relevant  features  were  obtained  by  the  different  classifier  combinations  when 

combinations with SVMrbf were used. In addition, it was found in both UP1 and UP2 

that combinations with SVMrbf usually generated significantly lower classification 

accuracies than the accuracies of combinations with SVMpoly. This meant that lower 

mean accuracies were observed when combinations with SVMrbf were used. The fact 

that combinations with SVMrbf generated lower accuracies than combinations with 

SVMpoly for both datasets suggests that the former selected less relevant features 

with respect to the target variable than those of the latter. 

These findings tie in with those of the same-type combinations. Findings from the 

same-type  combinations  also  showed  that  combinations  with  SVMrbf  resulted  in 

more  features  being  selected  but  lower  accuracies  being  generated.  The  findings 

suggest that the polynomial kernel may be more suitable to analyse such types of 

datasets  when  used  with  the  SVM classifier.  Consequently,  SVMrbf  will  not  be 

considered in the rest of this chapter.

5.3.1  Number of Relevant Features

This  subsection  presents  the  results  of  the  influences  of  number  and  nature  of 

classifiers  on  the  number  of  relevant  features  selected  by  the  mixed-type 
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combinations from the UP1 and UP2 datasets. The results revealed three key results 

regarding  the  number  of  features  selected  from  these  datasets,  each  of  which  is 

described in subsequent pages.

1)  Few Classifiers Select More Relevant Features and Many Classifiers Select Few  
Relevant Features

A close look at the results from UP1 and UP2 shows that mixed-type combinations 

comprised of few classifiers selected a higher number of relevant features than mixed-

type  combinations  with  many  classifiers.  More  specifically,  the  2-classifier 

combinations identified more relevant features than the 3-classifier and 4-classifier 

combinations. In terms of the UP1 dataset, we found that the mean number of features 

selected by 2-classifier combinations (17.36) was significantly higher than the mean 

number  of  features  selected  by  3-classifier  (15.31)  and  4-classifier  combinations 

(11.63).  In terms of the UP2 dataset,  the mean number of features selected by 2-

classifier combinations (6.53) was also found to be higher than the mean number of 

features selected by 3-classifier (5.94) and 4-classifier combinations (4.30). A close 

examination of the number of features selected by the 2-classifier, 3-classifier and 4-

classifier combinations was also carried out to better understand differences among 

the combinations. The examination involved identifying the number (i.e., frequency) 

of  2-classifier,  3-classifier  and  4-classifier  combinations  that  selected  number  of 

features above and below total mean number of features for each dataset. The total 

mean number of features for UP1 is 16.33 and total mean number of features for UP2 

is 5.76. The results from this examination for UP1 and UP2 are presented in Figure 

5.1 and Figure 5.2, respectively.

In  general,  the results  from the  two figures  showed that  many of  the  2-classifier 

combinations selected number of features above total mean number of features while 

few  were  below  total  mean  number  of  features.  This  suggests  that  2-classifier 

combinations  generally  selected a  high number  of  relevant  features.  On the other 

hand, we found that there  are  more 3-classifier  and 4-classifier  combinations that 

selected number of features below total mean but fewer combinations of this type that 

were  above  the  total  mean.  This  suggests  that  3-classifier  and  4-classifier 

combinations generally selected a low number of relevant features. The results from 
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these two figures support the fact that few classifiers select more relevant features and 

many classifiers select few relevant features.

Number of combinations above and below total mean number of 
features selected for UP1
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Figure 5.1. Number of Relevant Features Selected by Mixed-type Combinations for 
UP1

Number of combinations above and below total mean number of 
features selected for UP2
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Figure 5.2. Number of Relevant Features Selected by Mixed-type Combinations for 
UP2

These findings suggest that using few classifiers for feature selection can lead to more 

relevant features being selected, whereas using many classifiers can often lead to few 

relevant features being selected. This finding may be attributed to the median strategy 

used to combine the classifiers. It was found that combining few classifiers with this 

strategy enabled more features to be selected because few classifiers were needed to 

agree on the relevance of a particular feature. More specifically, if few classifiers are 

used then it is easier for the classifiers to agree on a feature because there are few 

relevance  values  to  consider,  which  will  result  in  more  features  being  selected. 
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However, combining many classifiers may make it slightly harder for the classifiers to 

agree on a particular feature because there are more relevance values to consider for 

each feature. This may subsequently result in fewer relevant features being selected. 

2) Combinations  with  BN  Family  Classifiers  Influence  Number  of  Relevant 
Features Selected from UP1

In general, the results from the UP1 dataset show that combinations with BN family 

classifiers influence the number of relevant features selected. To better understand the 

influences on number of features, we examined the number of features selected by 

combinations with the different classifier families (Figure 5.3). A comparison of the 

number of features selected by the different classifier families shows that many of the 

combinations with BN family classifiers selected low number of relevant features. In 

fact, there are more combinations with BN family classifiers in number groups ‘5 to 

10’ and ‘11 to 15’ than combinations with classifiers from the other families. Please 

note that we do not consider the results from combinations with SVM classifier since 

these combinations generally selected lowest number of features across all number 

groups. On the other hand, few combinations with BN family classifiers selected a 

high  number  of  features,  as  shown  by  the  fact  there  were  generally  fewer 

combinations with BN family classifiers in number groups ‘16 to 20’ and ‘21 to 25’ 

than combinations with classifiers from the other families. The differences in number 

of features selected as shown in this figure suggest that BN family classifiers have 

some influence on the number of features identified. 
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Figure 5.3. Number of Relevant Features Selected by Combinations with Different 
Classifier Families for UP1

An  analysis  of  combinations  with  BN  family  classifiers,  namely  BNC,  NB  and 

AODE, is also carried out to determine how these classifiers influence the number of 

features  selected.  It  was  found  that  combinations  with  each  of  these  classifiers 

selected different numbers of features. On the one hand, we found that combinations 

with BNC selected the lowest number of relevant features. In fact, 29 out of the 31 

combinations  with  BNC selected  feature  subsets  that  contained  lower  number  of 

features than the total mean number of relevant features selected by all mixed-type 

combinations (which was found to be 15). Moreover, ranking the number of features 

selected by all mixed-type combinations from the highest number (top half) to lowest 

number (bottom half) also showed that 28 of the BNC combinations appeared in the 

bottom half of the ranking. On the other hand, combinations with either the NB or 

AODE classifiers identified the highest number of relevant features. This was shown 

by that fact that 20 of the 31 combinations with NB classifier selected feature subsets 

that contained a higher number of features than the total mean number of relevant 

features. Similarly, 20 of the 31 combinations with AODE also selected number of 

features higher than the total mean number of features. In addition, it was found that 

17 of the NB combinations and 20 of the AODE combinations appeared in the top 

half of the ranking.
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An  explanation  for  such  differences  in  the  number  of  selected  features  may  be 

attributed to the nature of BN classifiers. Basically, the nature of classifiers from the 

BN family typically requires them to calculate the conditional probabilities of features 

in the dataset in order to find those features with the highest conditional probability 

values. This is because features with the highest conditional probabilities will be more 

relevant with respect to the target variable (Liao, et  al,  2006). However, each BN 

classifier determines the conditional probability values of features in a different way. 

On the  one  hand,  the  NB and AODE classifiers  simply  calculate  the  conditional 

probabilities of each feature in relation to the target variable (and one other feature in 

the case of AODE). The features with the highest probabilities are then selected and 

used by the classifiers. 

On the other hand, the BNC employs a more complex approach for determining the 

conditional  probability values of  features and finding those features that  are  most 

relevant.  The  BNC  typically  employs  a  heuristic  search  strategy  (i.e.,  simulated 

annealing) as a way of searching through all the features in the dataset (Grossman and 

Domingos, 2004). The classifier also incorporates a scoring metric (i.e.,  Minimum 

Description Length) which judges the quality of the features selected by the search. 

The scoring metric works by penalising the classifier if features with low conditional 

probabilities (Wong, Lam, and Leung, 1999; Vinciotti, et al., 2006) or features that 

have complex interactions with other features are selected during the search. The fact 

that the scoring metric can penalise the classifier during the search suggests that fewer 

features may be found from the search and used by the BNC. As such, few features 

may be selected by the BNC during feature selection. This may therefore explain why 

combinations with BNC selected fewer relevant features than combinations with NB 

or AODE.

3)   Combinations  with  NN  Family  Classifiers  Influence  Number  of  Relevant  
Features Selected from UP2

In  the  UP2  dataset,  it  was  found  that  combinations  with  NN  family  classifiers 

influenced  the  number  of  relevant  features  selected.  Figure  5.4  illustrates  the 

influences of such combinations. This figure presents the number of relevant features 

selected  by  combinations  with  BN,  DT,  NN  and  SVM  classifiers.  A  close 

examination of this figure shows that, in general, there are more combinations with 
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NN family classifiers in number groups ‘0 to 2’, ‘3 to 5’, ‘9 to 11’, ‘12 to 14’ and ‘15 

to 17’ than combinations with BN, DT and SVM family classifiers. This means that 

combinations with NN family classifiers selected many feature subsets comprised of 

low number of features but also selected many feature subsets comprised of high 

number of features. This shows that NN family classifiers caused differences in the 

number of features selected, which may suggest that combinations with NN family 

classifiers have some influence on the number of relevant features selected. In order 

to identify how combinations with classifiers from the NN family, including NNC, 

KNN and K*, influence the number of features selected, we perform a deep analysis 

of such combinations.
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Figure 5.4. Number of Relevant Features Selected by Combinations with Different 
Classifier Families for UP2

The results  from the deep analysis  revealed differences in the number of features 

selected  by  combinations  with  the  three  NN family  classifiers.  It  was  found  that 

combinations with NNC and K* selected very low numbers of features from the UP2 

dataset. In terms of the combinations with these classifiers, it was uncovered that 28 

out of the 31 combinations with NNC and 27 out of the 31 combinations with K* 

classifier  selected feature subsets that had lower number of features than the total 

mean number of relevant features selected by all mixed-type combinations, which was 

found to be 5.76. Furthermore, the ranking of the number of features selected by all 

combinations showed that 28 of the 54 NN family combinations that appeared in the 
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bottom half  of ranking included NNC and 26 of  the 54 NN family combinations 

included the K* classifier. However, combinations with the KNN classifier selected 

very high numbers of features. In terms of the combinations with this classifier, it was 

found that 28 of the 31 KNN combinations selected number of features much higher 

than the total mean number of relevant features. In addition, we found that 30 of the 

38 NN family combinations that appeared in the top half of ranking included the KNN 

classifier.

The reason why combinations with the NNC and K* classifiers selected lower number 

of features than combinations with KNN may lie within the number of neighbours 

employed by NN family classifiers to identify the relevant features. Basically, the NN 

family classifiers  determine relevant features by using some distance metric  (e.g., 

Euclidean distance), where the most relevant features are those that are deemed the 

closest  by  the  distance  metric  and  the  least  relevant  are  those  with  the  furthest 

distance (Chrysostomou, Chen, and Liu, in press b). However, the number of most 

relevant features identified greatly depends on a small number of features known as 

neighbours  (Han  and  Kamber,  2006).  This  is  because  the  number  of  neighbours 

employed represents number of features used to determine the most relevant (i.e., 

closest) features. If few neighbours are employed by a NN family classifier then there 

is  a  high  likelihood  that  fewer  relevant  features  will  be  selected  because  fewer 

features will be used to determine the relevant features. On the other hand, using more 

neighbours can help select a higher number of relevant features. 

The number of neighbours employed usually depends on the classifier used. In terms 

of the NNC and K* classifiers, these two classifiers typically employ a very small 

number  of  neighbours,  e.g.,  one  or  two  neighbours,  when  determining  relevant 

features. On the other hand, the KNN classifier usually employs a larger number of 

neighbours when identifying the relevant features. Since the KNN classifier used a 

higher number of neighbours for feature selection than that of NNC and K*, it was 

able to select a higher number of features. This may help explain why combinations 

with  the  KNN  classifier  resulted  in  more  relevant  features  being  selected  than 

combinations with NNC and K* classifier. 

The abovementioned results have shown that the number of classifiers and nature of 

classifiers  influence  the  number  of  relevant  features  identified  by  mixed-type 
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combinations.  It  was  found  that  combinations  with  few  classifiers  were  able  to 

identify a higher number of relevant features than combinations with many classifiers. 

In addition, the results showed that nature of BN family classifiers and NN family 

classifiers led to differences in the number of features selected from the UP1 and UP2 

dataset, respectively. The number and nature of classifiers thus influence number of 

features selected. The next section determines the effects of the number and nature of 

classifiers on the classification accuracies of selected features.

5.3.2  Accuracy Levels of Relevant Features 

In this section, we determine the influences of number and nature of classifiers on the 

classification  accuracies  generated  using  the  features  identified  by  the mixed-type 

classifier combinations. Analysis of the accuracies from both UP1 and UP2 datasets 

revealed several findings. These findings are detailed in the following pages. 

1)  3-classifier Combinations Generate Highest Classification Accuracies

The  classification  accuracies  generated  by  all  mixed-type  combinations  were 

examined. It was found in both UP1 and UP2 datasets that 3-classifier combinations 

were  able  to  generate  accuracies  much  higher  than  the  majority  of  the  other 

combinations. With respect to the UP1 dataset, 3-classifier combinations were found 

to generate a mean accuracy level (83.75%) higher than the mean accuracy levels of 

2-classifier (82.01%) and 4-classifier (82.50%) combinations. With respect to the UP2 

dataset, the mean accuracy level of 3-classifier combinations (95.37%) was also found 

to be higher than the mean accuracy levels of 2-classifier (94.27%) and 4-classifier 

(94.81%) combinations. 

The accuracies of combinations, including those of 3-classifier combinations, for both 

UP1 (Figure 5.5) and UP2 (Figure 5.6) are also visualised to help see differences in 

the accuracies generated. More specifically, Figures 5.5 and 5.6 show the number of 

classifier combinations that generated accuracy levels higher and lower than the total 

mean accuracy level for the UP1 and UP2 datasets. The total mean accuracy level of 

UP1 is 83% and the total mean accuracy level of UP2 is 94.90%. The two figures 

show that the majority of 3-classifier combinations generated accuracy levels above 

the total mean accuracy while few generated accuracies below total mean accuracy. In 

addition,  the  figures  also  show that  there  are  generally  fewer  2-classifier  and  4-
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classifier  combinations  above  the  total  mean  accuracy  levels  but  more  of  such 

combinations below the total mean accuracy level. The findings from these figures 

suggest  that  majority  of  3-classifier  combinations  generated  high  classification 

accuracies. More importantly, it also suggests that 3-classifier combinations generated 

accuracies  higher  than  the  accuracies  generated  by  2-classifier  and  4-classifier 

combinations. 

Number of combinations above and below total mean accuracy level 
generated for UP1

0

5

10

15

20

25

30

35

40

Above Total Mean Below Total Mean

Above/Below Total Mean Accuracy Level

Frequency
2-classifier
3-classifier
4-classifier

Figure 5.5. Classification Accuracies Generated by 2-Classifier, 3-Classifier, and 4-
Classifier Combinations for UP1

Number of combinations above and below total mean accuracy level 
generated for UP2

0
5

10
15
20

25
30
35

40
45

Above Total Mean Below Total Mean

Above/Below Total Mean Accuracy Level

Fr
eq

ue
nc

y 2-classifier
3-classifier
4-classifier

Figure 5.6. Classification Accuracies Generated by 2-Classifier, 3-Classifier, and 4-
Classifier Combinations for UP2

In order to gain a  better  understanding of the accuracies generated by 3-classifier 

combinations, we carry out a deep analysis of the accuracies obtained from the UP1 

and UP2 datasets. The analysis involved ranking the accuracies of all combinations 

from highest (top) to lowest (bottom) for both datasets. In terms of UP1, the analysis 
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showed that 34 of the 59 combinations in the top half of the ranking were in fact 3-

classifier combinations. In terms of UP2, the analysis uncovered that 41 out of the 54 

3-classifier combinations were in the top half of the accuracy ranking. All in all, the 

findings from UP1 and UP2 datasets showed that 3-classifier combinations were able 

to  produce  higher  accuracy  levels  than  other  combinations.  This  suggests  that  3-

classifier combinations are more suited to selecting most accurate feature subsets than 

2-classifier and 4-classifier combinations.  

1)  The Nature of BN Classifier Family Influences Level of Accuracy For UP1

An  analysis  of  combinations  with  BN  family  classifiers,  namely  BNC,  NB  and 

AODE, was carried out to determine the influences of these classifiers. On the one 

hand, it was found that mixed-type classifier combinations with BNC generated the 

lowest levels of accuracy. More specifically, 25 out of the 31 combinations with BNC 

generated accuracies lower than the total mean accuracy of entire set of mixed-type 

combinations (i.e., 83%). Furthermore, it was found that 25 of the BNC combinations 

appeared in the bottom half of the accuracy ranking. On the other hand, we found that 

classifier combinations with the NB and AODE classifier generated the higher levels 

of accuracy. In detail, 20 of the 31 combinations with NB generated accuracies higher 

than the total mean accuracy. Similarly, 21 of the 31 combinations with AODE also 

produced accuracies higher than the total  mean accuracy level.  In addition, it  was 

found that 19 of the NB combinations and 21 of the AODE combinations appeared in 

the top half of the accuracy ranking. According to these findings, features selected by 

combinations  with  BNC are  less  accurate  with  respect  to  the target  variable  than 

features selected by combinations with NB or AODE. 

A possible explanation for such differences in accuracies may have to do with the 

number of features considered by BN family classifiers when building the network 

structures. The purpose of network structures is to show relationships among features 

in the dataset (Su and Zhang, 2006). In general, the number of features used to form 

the  structures  depends  on  the  degree  to  which  the  conditional  independence 

assumption of BN classifiers is enforced. A higher number of features used suggest 

that this assumption is weakly supported by the classifier while a lower number of 

features suggest that it  is strongly supported by the classifier.  In terms of the BN 

family classifiers used in the mixed-type combinations, the BNC usually considers a 
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large number of features when identifying relationships due to the fact that it weakly 

supports conditional independence among features. On the other hand, classifiers like 

NB and AODE consider a limited number of features in relation to the target variable 

because  they  strongly  enforce  the  conditional  independence.  Because  of  these 

differences, the BNC may allow the network structure to grow without any stringent 

bounds since many features are involved in the structure building process, whereas 

the NB and AODE classifiers may impose some restrictions on the structure (Jiang, et 

al., 2007). Allowing a network to grow relatively unrestricted, as in the case of the 

BNC, may lead to overfitting of the data where the network structure includes features 

that are of little relevance to the target variable. Including such features may cause the 

BNC to have poor classifier performance and thus produce lower accuracy levels. 

This may explain why features selected by combinations with BNC generated low 

accuracies in comparison to combinations with NB or AODE. 

Overall,  BN family  classifiers  were  found  to  significantly  influence  the  accuracy 

levels  of selected features.  In addition,  Section 5.3.1 also showed that BN family 

classifiers  influence  the  number  of  relevant  features  selected.  In  summary,  these 

findings suggest that the nature of BN family classifiers has substantial effects on the 

number of features selected and the accuracy levels of features. Such findings may be 

useful in choosing suitable classifiers for feature selection. On the one hand, one may 

want to avoid using the BNC since it leads to few features and these features are less 

relevant to the target variable. On the other hand, one may want to adopt the AODE or 

NB classifiers because these classifiers are able to select many features that are highly 

relevant to the target variable.

1)  The Nature of NN Classifier Family Influences Level of Accuracy For UP2

A deep examination of combinations with each of the NN family classifiers revealed 

some interesting results. On the one hand, the results showed that combinations with 

the NNC or K* classifiers generally produced high accuracy levels. This was shown 

by the fact that 28 of the 31 combinations with NNC and 20 of the 31 combinations 

with K* produced classification accuracies above the total mean accuracy level. The 

ranking of all accuracies also showed that 24 of the NNC combinations and 19 of the 

K* combinations appeared in top half of ranking. On the other hand, results showed 

that combinations with the KNN classifier generated low accuracy levels. In fact, 17 
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of the 31 KNN combinations selected features that led to accuracies below the total 

mean accuracy and 19 of the 31 KNN combinations were found in the bottom half of 

ranking.

These findings suggest that combinations with NNC, K*, and KNN selected feature 

subsets  that  led  to  different  levels  of  accuracy.  The  differences  found  may  be 

attributed to the nature of these three classifiers. The NNC classifies a new unknown 

instance n by looking at the features and class value of the single closest instance to n 

(i.e., the single nearest neighbour to n is used). The K* classifies n by looking at the 

features of a small  number of instances closest  to  n,  i.e.,  it  may use two or three 

closest neighbours. In contrast, the KNN classifies  n by looking at the features and 

class values of several closest instances, i.e., several neighbours are used. In other 

words, the NNC and K* classifiers usually make use of a small number of neighbours 

when determining the class of  n while the KNN classifiers makes use of a larger 

number of neighbours. However, using a large number of neighbours for establishing 

the class of n, as done by KNN, may lead to some problems. 

In  general,  using  a  large  number  of  neighbours  may  make  it  more  difficult  to 

determine and assign a class value to n compared to using the single closest neighbour 

or  even  a  very  small  number  of  neighbours.  This  is  because  there  will  be  more 

competition among the neighbours when deciding on the class value of n. As a result 

of more competition, it is possible that the wrong class value may be assigned to  n 

(Larose, 2005). Assigning the wrong class value may cause the classifier to have poor 

performance, which may subsequently cause the classifier to miss out features that are 

highly relevant to the target variable. This in turn may lead to feature subsets that 

contain features of low relevance and that generate low accuracy levels. This may 

explain why features selected by combinations with KNN generated lower accuracy 

levels in comparison to combinations with NNC and combinations with K*. 

The above finding shows that the number of neighbours employed by NN family 

classifiers influence the accuracy levels of selected features. Interestingly, the number 

of neighbours used by these classifiers was also found to affect the number of features 

selected (Section 5.3.1). The findings from these two sections suggest that the number 

of neighbours used for each NN family classifier may affect the way in which features 
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are selected. Thus, it may be worthwhile using different numbers of neighbours with 

each NN family classifier. In this way, we can improve the chances of finding subsets 

that include features most relevant to the target variable.

5.3.3   The  Influences  of  BN  Family  and  NN  Family  Classifiers  on  Feature 
Selection

The  results  from  the  previous  two  sections  found  that  certain  classifier  families 

influenced  the  feature  selection  results  of  UP1  and  UP2.  More  specifically, 

combinations  with  BN  family  classifiers  were  found  to  influence  the  number  of 

relevant features and their accuracy levels of the UP1 dataset.  On the other hand, 

combinations with NN family classifiers influenced the number of relevant features 

and their associated accuracies of the UP2 dataset. A plausible explanation for why 

these two classifier families influenced the feature selection results may lie within the 

way they consider each feature during feature selection. 

Classifiers belonging to the BN family usually assign a weight to each feature so as to 

determine  the  relevance  of  each  feature.  The  weights  of  features  are  typically 

provided in the form of prior knowledge, which is provided by experts in the field 

(Castelo and Siebes, 2000). Prior knowledge can be used to determine those features 

that are more relevant than the others. For example, features with high weights are 

seen as very relevant features while features with low weight values are seen as less 

relevant  with  respect  to  the  target  variable.  However,  prior  knowledge  about  the 

features is not always available. In this thesis, no prior knowledge was available about 

the features in both UP1 and UP2 datasets, except the data themselves. In the event 

that little or no prior knowledge is available, the BN family classifiers assign each 

feature the same weight (Jiang, et al., 2007). As a result, each feature is considered 

equally relevant to the target variable.  Classifiers from the NN family also assign 

weights to each feature in the dataset so as to distinguish the most relevant features 

from the least relevant features. This is usually done by considering the distance of 

the features. Those features which are closest are assigned a high weight and those 

features that are further are assigned a low weight. When no feature weighting is used, 

as done by the NN family classifiers used in this thesis, the classifiers consider each 

feature to be equally relevant to the target variable (Ghosh, 2006). 
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The NN family classifiers and BN family classifiers used in this thesis treated every 

feature with equal relevance, i.e., each feature was assigned equal probability. When 

features are treated equally then every feature has a chance of being selected. This 

may mean that the BN and NN classifier families offer each feature a similar chance 

of  being  selected  which  may  result  in  similar  effects  on  feature  selection.  Such 

similarities among the BN and NN family classifiers may help explain why they were 

both  found  to  influence  feature  selection  results  of  the  mixed-type  combinations. 

However, the influences of classifiers belonging to these two families were apparent 

in different datasets. On the one hand, BN family classifiers influenced results of UP1 

dataset. On the other hand, NN family classifiers influenced results of UP2 dataset. 

In terms of BN family classifiers, there are two possible reasons that may explain 

such findings. The first reason relates to the fact that BN classifiers typically look for 

features with the highest probability values since these features are most relevant to 

the target variable. The possibility of identifying such features increases when there 

are many features in the dataset as there is a wider selection of features from which to 

choose from. Once identified, these features are used to build a graphical network 

structure, which shows how these features are related to the target variable. It is this 

network structure which shows the relevancies within the dataset and thus determines 

the number of features that are selected and the accuracy levels generated by BN 

family classifiers. As such, influences of BN family classifiers on feature selection 

may be  more  obvious when network structures are  built  from datasets  with large 

number of features. This may explain why BN family classifiers influenced feature 

selection results of UP1, which includes a large number of features. 

The second reason relates to the conditional independence assumption typically made 

by  BN family  classifiers.  Basically,  BN classifiers  assume that  features  within  a 

dataset  are  conditionally  independent  of  one  another,  i.e.,  two  features  are 

independent given another feature (Ling and Zhang, 2002). If features in a dataset do 

not satisfy this conditional independence assumption then BN family classifiers may 

perform poorly and thus may not cause differences in feature selection results.  If, 

however,  some  or  all  features  are  conditionally  independent  then  BN  family 

classifiers  are  more  likely  to  provide  good  performance  and  in  turn  show  their 

influences on feature selection results. The fact that BN family classifiers influenced 
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feature selection results of UP1 may possibly suggest that features within this dataset 

were  conditionally  independent  and  thus  satisfied  the  assumption  made  by  BN 

classifiers. Hence, this is another reason why BN family classifiers influenced feature 

selection results of UP1 dataset.

In terms of NN family classifiers, a possible reason for the finding may have to do 

with the feature space of dataset. These types of classifiers usually consider the entire 

feature  space  of  the  dataset  (i.e.,  number  of  features  in  dataset)  to  perform 

classification and determine relevant features. In addition, NN family classifiers must 

also compute the distances of all features and instances in the dataset so as to find 

which are relevant (i.e., closest) and which are not so relevant (i.e., furthest away). 

When the feature space of the dataset is large, the distances among the features may 

be very diverse which may make relevant and irrelevant features more difficult to 

distinguish.  However,  when  the  feature  space  of  dataset  is  small,  NN  family 

classifiers will have to compute and handle the distances of fewer features. A small 

feature  space  may  therefore  enable  NN  family  classifiers  to  clearly  distinguish 

relevant features from irrelevant features. With this ability, NN family classifiers can 

show  their  influences  on  feature  selection  results.  In  other  words,  NN  family 

classifiers  may be able  to  show their  influences on feature selection more clearly 

when there are few features present in dataset. This may explain why NN classifiers 

influenced  feature  selection  results  of  UP2  dataset,  which  has  small  number  of 

features. 

5.3.4  Relationships Among Number of Features Selected and Accuracy Levels 
Generated

The mixed-type combinations  have been shown in the  previous sections to  select 

different  numbers  of  features  and  generate  different  levels  of  accuracies.  In  this 

section,  we  study  the  potential  relationships  between  the  number  of  features  and 

accuracy levels of the combinations. To uncover such potential relationships we use 

two tables to present the number of features selected by the mixed-type combinations 

and the accuracies that these features generated. On the one hand, Table 5.4 shows the 

mean  number  of  relevant  features  selected  by  mixed-type  combinations  which 

generated lowest, intermediate and highest accuracy levels for UP1 dataset. On the 

other hand, Table 5.5 shows the mean number of relevant features selected by mixed-
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type combinations which generated lowest, intermediate and highest accuracy levels 

for the UP2 dataset. 

Accuracy Levels
Lowest Intermediate Highest

2-classifier 15.33 17.52 19
3-classifier 10 15.70 16.71
4-classifier 11.50 11.73 12
Total 36.83 44.95 47.71
Table 5.4. Number of Features Selected and Accuracy Levels of Features for 

UP1 Dataset

Accuracy Levels
Lowest Intermediate Highest

2-classifier 9.71 5.86 -
3-classifier 8 6.38 4.78
4-classifier - 4.59 -
Total 17.71 16.38 4.78
Table 5.5. Number of Features Selected and Accuracy Levels of Features for 

UP2 Dataset

Table  5.4  shows a  positive  relationship  between number  of  features  selected  and 

accuracy levels.  However,  Table 5.5  shows a  different  aspect.  Table  5.5  shows a 

negative  relationship  between  the  number  of  features  selected  and  their  accuracy 

levels. A plausible explanation for such a difference may lie within the classifiers 

used in the combinations. In terms of the UP1 dataset, it was previously found that 

BN  family  classifiers  influenced  both  the  number  of  features  selected  by 

combinations and the accuracy levels of the features. In fact, BNC was found to select 

low number of features and generate low accuracy levels whereas the NB and AODE 

classifiers were found to select high number of features and generate high accuracies. 

A close examination of Table 5.4 and Table 5.1, which presents the results from UP1, 

shows that the majority of combinations which selected low number of features with 

low  accuracies  included  the  BNC.  Conversely,  we  found  that  majority  of 

combinations which selected a high number of features and generated high accuracies 

included the NB and AODE classifiers. The differences among combinations with 

BNC, NB and AODE may help explain why we found a positive relationship between 

number of features selected and their associated accuracy levels for UP1.

In terms of the UP2 dataset, results from the previous sections showed that NN family 

classifiers  influenced  the  number  of  features  selected  and  the  accuracies  of  the 

features. The NNC and K* classifiers were found to select few features but generate 
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high accuracy levels. On the other hand, KNN classifier was found to select a high 

number of features but generate low accuracy levels. Examining Table 5.5 and the 

results shown in Table 5.2, uncovered that many of the combinations which selected 

high number of features and generated low accuracies included the KNN classifier. 

Moreover, it was found that many of the combinations which selected low number of 

features and led to high accuracy levels included either the NNC or K* classifiers. 

Differences  among the  combinations  with  these  classifiers  may help  explain  why 

Table 5.5 shows a negative relationship between the number of features selected from 

UP2 and their associated accuracy levels. 

These findings from Tables 5.4 and 5.5 seem to suggest that the classifiers used in the 

mixed-type  combinations  have  some  influences  on  the  relationships  between  the 

number  of  features  and  accuracy  levels  of  each  feature  subset  selected.  More 

specifically, BN family classifiers were found to influence the relationships of UP1 

while  NN  family  classifiers  were  found  to  influence  relationships  of  UP2.  An 

explanation  for  these  differences  may  lie  within  the  ability  of  such  classifiers  to 

influence  feature  selection  results.  As  previously  explained  in  Section  5.3.3,  the 

influences of BN family classifiers on feature selection were more obvious in the UP1 

dataset.  Due  to  this  issue,  classifiers  belonging  to  the  BN  family  may  also  be 

responsible for influencing the relationships among features selected from the UP1 

dataset. On the other hand, the influences of NN family classifiers were found to be 

clearer in the UP2 dataset, which may explain why NN family classifiers also caused 

differences in the relationships observed within this dataset.

The results obtained so far in this section have shown that the number and nature of 

classifiers used in mixed-type combinations greatly influence the number of relevant 

features  selected  in  addition  to  the  accuracy  levels  of  selected  features.  More 

interestingly, we have found that the nature of BN and NN family classifiers influence 

these two issues. 

5.4  Visualising Features with Decision Trees

This section examines the decision trees of combinations with the highest accuracy 

levels. Decision trees with the highest accuracy levels are most likely to include the 

most relevant features with respect to the target variable. Analysing decision trees 
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with the highest accuracy levels will thus help uncover the most relevant features and 

the  most  relevant  relationships  between  the  features  and  the  target  variable.  The 

analysis  of  decision  trees  in  this  section  is  divided  into  two parts.  The  first  part 

analyses the decision tree with the highest accuracy from the UP1 dataset. The second 

part analyses the decision trees with the highest accuracies from the UP2 dataset.

5.4.1  Decision Tree(s) of UP1 Dataset

1) Analysis of Features Selected by NB+CN2+K* Classifier Combination

The  results  from  the  UP1  dataset  showed  that  the  NB+CN2+K*  classifier 

combination  generated  the  decision  tree  with  the  highest  level  of  classification 

accuracy (90.83) among all mixed-type combinations. The fact that this combination 

led  to  the  highest  accuracy  implies  that  it  selected  features  that  are  of  highest 

relevance  to  the  target  variable.  In  this  section,  we  present  the  relevant  features 

selected by this combination. The relevant features selected by this combination are 

shown in Table 5.6. Each of the features presented in Table 5.6 has an associated level 

of  relevance  shown in  parenthesis.  This  relevance  value  indicates  how relevant  a 

feature  is  to  the  target  variable,  i.e.,  users’  level  of  computer  experience.  As  an 

example, consider features ‘Q14’ and ‘Q15’. Although both features were selected by 

this classifier combination, they differ in their relevance to determining users’ level of 

computer experience. One the one hand, ‘Q14’ is selected with a relevance value of 

10. On the other hand, ‘Q15’ is selected with a relevance value of 1. These relevance 

values  indicate  that  ‘Q14’  is  much  more  relevant  to  determining  users’  level  of 

computer experience than ‘Q15’.

Selected Features and Their Relevance Values
NB+CN2+K*
Classifier 
Combination

Q1 (1),  Q3 (1),  Q14 (10),  Q15 (1),  Q23 (1),  Q24 (2),  Q28 (1), Q29 (2), 
Q31 (8),  Q33 (2),  Q38 (1),  Q42 (1),  Q48 (1),  Q56(5),  Q58 (2),  Q63 (1), 
Q70 (1).  
Table 5.6. Features Selected by NB+CN2+K*

A closer look at the features and relevance values in Table 5.6 shows that ‘The results 

are presented by the levels of the relevance’ (Q14), ‘There are not too many types of 

icons’  (Q31)  and  ‘The  options  that  are  used  less  frequently  are  located  in  less-

convenient positions’ (Q56) are particularly relevant. This suggests that these three 

features are highly relevant with respect to the target variable (i.e., users’ level of 

computer experience). The three relevant features, in addition to the other relevant 
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features  selected  by  the  NB+CN2+K*  combination,  were  used  to  construct  the 

decision tree. The constructed decision tree is illustrated and explained in the next few 

pages.

2) Constructed Decision Tree

This  section  presents  the  decision  tree  formed  using  features  selected  by  the 

NB+CN2+K*  combination,  which  is  in  Figure  5.7.  The  decision  tree  formed 

comprises of three levels where the first level indicates the most important feature 

(the  root  node)  while  the  remaining  levels  indicate  other  important  features.  The 

decision tree shown in Figure 5.7 also includes the number of users that follow each 

level of computer experience (see the key of the decision tree). For example, B (2), 

which can be found on the far left of the second level of the decision tree in Figure 

5.7,  signifies  that  2  users  who  found  Q31  strongly  unimportant  and  found  Q15 

strongly  unimportant  had  average  level  of  computer  experience.  Examining  the 

decision tree in Figure 5.7 reveals two interesting issues, which are detailed over the 

next few pages.
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Figure 5.7. Decision Tree for NB+CN2+K* Classifier Combination

Decision Tree Key
Users’ Preferences Level of Computer Experience
1 = Very Unimportant
2 = Unimportant
3 = Neutral
4 = Important
5 = Very Important
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C = Good 
D = Excellent 
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The first issue found from Figure 5.7 relates to the root node of the decision tree. The 

figure clearly shows that Q31 is the root node of the decision tree, which implies that 

this feature is considered as the most important feature by the decision tree classifier. 

Interestingly,  this  finding  is  different  to  those  found  when considering  the  features 

selected by the NB+CN2+K* combination. As previously shown in Table 5.6, Q14 was 

found to be the most relevant feature among all selected features because it had the 

highest relevance level whereas Q31 was the second most relevant feature. This shows 

that Q14 was more relevant than Q31. The reason why Q31 was chosen as the root node 

of the tree, instead of Q14, may have to do with the statistical significances of these 

features. As previously stated in Chapter 4, Q31 had a higher statistical significance 

than Q14. This means that Q31 was statistically more relevant than Q14 with regards to 

target variable. Interestingly, decision tree classifiers also use and rely on the statistical 

significances of features to determine the positions of features when building the tree. 

The  fact  that  Q31  had  a  higher  significance  than  Q14  suggests  that  it  would  be 

positioned higher up in the tree. This may therefore explain why Q31 is the root node of 

the decision tree and Q14 is found in the lower level of the decision tree.

The second issue relates to some of the features used in the decision tree. On close 

examination of the decision tree, four features stand out from the rest because they were 

found to differentiate the preferences of users with low levels of computer experience 

and those with high levels of computer experience. The four features included: Q31, 

Q14, Q48, and Q56. The first of the four features, Q31, is a very important feature with 

regards to users’ level of computer experience because it is the root node of the decision 

tree. The other three features are important because they have a high number of users 

associated with them as shown in parenthesis in the decision tree. The implications of 

these four features for determining users’ level of computer experience are explained in 

detail in Table 5.7.
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Feature Findings from Decision Tree  Explanation of Findings
Q31 - There are not too many types 
of icons (root node)

All users with little computer experience and 
many  of  the  users  with  average  computer 
experience found this feature unimportant or 
very  unimportant.  However,  the  majority  of 
users  with  good  and  excellent  levels  of 
computer experience considered it  important 
or very important.

Users  with  low  levels  of  computer  experience  typically  possess  less 
knowledge than users with high levels of computer experience. In addition, 
users with low levels of computer experience would not have used many 
search engines in the past. Due to their limited knowledge and inexperience 
regarding search engines,  users  with low levels of  computer  experience 
may not be familiar with all the functionalities provided by search engines. 
Thus, providing such users with a large selection of icons can enable them 
to  easily  and  quickly  differentiate  between  the  various  functionalities 
provided by the search engines. 

Q14 -  The  results  are  presented  by 
the levels of the relevance

The majority of the users with high levels of 
computer  experience  found  this  feature 
important  while  users  with  low  levels  of 
computer  experience  considered  this  feature 
unimportant.

The findings regarding this feature suggest that users with higher levels of 
computer  experience  preferred  search  results  to  be  presented  by  the 
relevance levels in order to determine the most important from the least 
important result. The reason for this preference may lie within users past 
experience  with  search  engines.  Users  with  higher  levels  of  computer 
experience are more likely to have used different types of search engines 
before. The fact that they have used search engines before may make them 
more familiar with using functions provided by search engines, especially 
the ordering of search results, than those with less computer experience. 

Q48 - Error messages let you know 
the cause of the problems

A large number of  users with low levels  of 
computer  experience  considered  this  feature 
important. In contrast, a large number of users 
with  high  levels  of  computer  experience 
considered it unimportant.

As abovementioned, users with less computer experience possess limited 
amount of knowledge compared to users with more computer experience. 
As such, users with less computer experience are more likely to make more 
errors when searching for information online. These users thus preferred 
the search engine to clearly explain the errors that they made. Explaining 
errors  will  help  such  users  better  understand  the  reasons  for  the  errors 
occurring. By better understanding the errors, users will be able to rectify 
the errors by finding solutions. 

Q56 - The options that are used less 
frequently  are  located  in  less-
convenient positions

Users  with  less  computer  experience 
considered this feature unimportant and those 
with  more  computer  experience  found  it 
important and very important.

Generally speaking, individuals with low levels of computer experience do 
not  possess  enough knowledge to determine the most  effective way for 
completing some tasks.  As such, they may consider that all  options are 
equally used, which may explain why such users did not prefer options to 
be in different positions. On the contrary, individuals with higher levels of 
computer experience possess the relevant knowledge necessary to identify 
which  options  are  of  most  relevance.  In  this  way,  they  can  focus their 
attention on using a small subset of the most relevant options to complete 
their searching tasks. 

Table 5.7. Findings Relating to Q31, Q14, Q48 and Q56 Features from Decision Tree
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5.4.2  Decision Tree(s) of UP2 Dataset

1)  Analysis of Features Selected by Classifier Combinations

In  this  section,  we present the features selected by the classifier  combinations which 

generated the highest accuracies among all mixed-type combinations for UP2. In total, 

there  were  nine  combinations  which  generated  the  highest  accuracy  of  96.92%.  The 

combinations are shown in Table 5.8. 

Feature selected by combinations
Q2 Q5 Q6 Q9 Q1

1
Q13 Q16 Q1

8
Q1
9

Q20

CC1 BNC+C4.5+K* (10) (1) (10) (1)
CC2 NB+C4.5+NNC (1) (10) (10) (1)
CC3 NB+CART+NNC (1) (1) (10) (1) (3) (1)
CC4 AODE+C4.5+NNC (10) (1) (1) (10) (1)
CC5 AODE+CART+NNC (1) (10) (1) (10) (1)
CC6 AODE+C4.5+K* (10) (1) (1) (10) (1) (1)
CC7 BNC+CN2+SVMpoly (1) (10) (1) (7) (2)
CC8 BNC+NNC+SVMpoly (1) (10) (9) (1)
CC9 C4.5+NNC+SVMpoly (1) (10) (10) (1)

Table 5.8. Features Selected by Classifier Combinations with Highest Accuracy

A close look at these combinations reveals an interesting finding. The finding relates to 

the  fact  that  the  combinations  have  some similarities.  The  similarities  lie  within  the 

presence of some common classifiers across the combinations. An examination of the 

classifiers used in each combination revealed that six of the nine combinations included 

the  NNC which  belongs  to  the  NN classifier  family.  Combinations  with  NNC were 

previously shown in Section 5.3.2 to select features that generated very high levels of 

accuracy.  In  addition,  we  found  that  two  of  the  nine  combinations  included  the  K* 

classifier, which also belongs to the NN family. Combinations with this classifier were 

also found to  generate  very  high levels  of  accuracy in  Section  5.3.2.  The  remaining 

combination did not include NNC or K* but included another classifier worth noting. The 

classifier  was  SVMpoly  which  belongs  to  the  SVM  family.  The  reason  why  this 

combination with SVMpoly generated high accuracy may be attributed to its similarities 

with NN family classifiers. 
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As previously stated, NN family classifiers and SVM family classifiers are somewhat 

similar in that they rely on distances to determine the relevance of a feature. As such, 

they may select similar features which may subsequently lead to similar accuracy levels. 

These similarities may therefore explain why the combination with SVM generated same 

high accuracy like those of combinations with NNC and K*. In addition, the similarities 

between NN family (i.e., NNC and K*) and SVM family (i.e., SVMpoly) may also help 

explain why combinations which included these particular classifiers generated identical 

accuracy levels. 

The relevant features selected by these nine combinations are also shown in Table 5.8. 

Each  of  the  relevant  features  presented  in  this  table  has  a  relevance  value  which  is 

indicated  through use  of  parenthesis.  Examining the  relevance values  of  the selected 

features reveals that majority of the features have low relevance values, i.e., relevance of 

1. In other words, most of the features selected are of little relevance to the target variable 

(i.e., users’ cognitive style). However, Q9 and Q18 show different relevance values. It 

was found that ‘It is hard to use the back/forward buttons’ (Q9) was assigned the highest 

relevance level of 10 by all nine 3-classifier combinations. This suggests that Q9 is the 

most relevant feature with respect to the target variable. Furthermore, the table shows that 

‘It is easy to find a route for a specific task with the index’ (Q18) was the second most 

relevant feature with a relevance value that varied from 3 to 10. It is also worth noting 

that these two features were selected by all of the nine combinations. In summary, these 

findings suggest that Q9 and Q18 are highly relevant to determining a user’s cognitive 

style. In order to further examine the relevance of all selected features, including that of 

Q9 and Q18, and their relationships with the target variable, the next section looks at the 

decision trees constructed by the nine classifier combinations. 

2)  Constructed Decision Trees

The decision trees formed using the features shown in Table 5.8 are shown in Figure 5.8 

and Figure 5.9. All decision trees have two levels where the first level includes a single 

feature that is the root node. In addition, each decision tree includes the number of users 

in the dataset that follow each type of cognitive style (see the key of Figure 5.8 for more 
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details on types of cognitive style). For example, consider the decision tree in Figure 5.8. 

In this decision tree, FD (3), which appears on the far right of the second level, means 

that  the  3  users  who strongly  agreed  with  Q9 were  Field  Dependent.  Analysing  the 

decision trees shown in Figures 5.8 and 5.9 reveals several interesting findings. These 

findings are outlined on the following pages.

Figure 5.8. Decision Tree for CC1, CC4, CC6 and CC7 Combinations

Figure 5.9. Decision Tree for CC2, CC3, CC5, CC8 and CC9 Combinations

Decision Tree Key
Users’ Preferences Cognitive Style
1 = Strongly Disagree 
2 = Disagree
3 = Neutral
4 = Agree
5 = Strongly Agree

FI = Field Independent 
I = Intermediate
FD =  Field Dependent

Q9

Q13

1 2 3 4 5

43 5

FI (21) Q18I (16) FD (3)

I (3) FD (4) FD (2)

32 5

FD (5)FD (7) FI (4)

Q9

Q19

1 2 3 4 5

32 4

FI (21) Q18I (15) FD (3)

FD (4) FD (2) I (4)

32 5

FD (4)FD (8) FI (4)
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The most interesting finding relates to the construction of identical trees. A holistic view 

of all decision trees generated by the classifier combinations revealed that some of the 

combinations formed identical decision trees. On the one hand, the CC1, CC4, CC6, and 

CC7 combinations selected features that led to identical decision trees. On the other hand, 

the  CC2,  CC3,  CC5,  CC8  and  CC9  combinations  selected  features  that  also  led  to 

identical decision trees. This is why only two decision trees are presented as opposed to 

nine. A plausible reason why half of the combinations led to one tree while the other half 

built  another  tree  may  have  to  do  with  the  features  selected  by  the  classifier 

combinations. 

A deep examination of the features selected by the nine classifier combinations revealed 

an interesting finding. The interesting finding related to Q13. On the one hand, the CC1, 

CC4, CC6, and CC7 combinations were found to select many features including Q13. 

These combinations led to the tree shown in Figure 5.8, which included Q13. On the 

other hand, the CC2, CC3, CC5, CC8 and CC9 combinations were found to select many 

features but not Q13. These combinations led to the tree shown in Figure 5.9, which 

excluded Q13.  In essence, the combinations which selected Q13 produced one identical 

tree while the combinations which did not select Q13 produced another identical tree. A 

possible explanation as to why some combinations selected Q13 and other combinations 

did  not  select  this  feature  may  lie  within  the  individual  classifiers  used  in  the 

combinations. A close examination of the features selected by the individual classifiers 

used in the combinations was conducted. The examination revealed differences among 

the features selected by classifiers from each classifier family. 

In terms of the BN classifier family, the BNC and AODE were found to select many 

features including Q13, but NB classifier did not select this feature. In terms of the DT 

family, the C4.5 and CN2 classifiers selected Q13 but CART did not select it. However, 

NN family classifiers, namely NNC and K* did not select Q13 although KNN was found 

to select Q13. The SVMpoly was also a classifier that did not select Q13. The fact that 

individual classifiers differed in the features they selected, especially Q13, may explain 
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why some combinations did and did not select Q13 when building the trees. On the one 

hand, combinations comprised mainly of classifiers that selected Q13 (i.e., BNC, AODE, 

C4.5, CN2 and KNN) were more than likely to select Q13 and in turn use it to build the 

decision tree. On the other hand, combinations comprised mainly of classifiers that did 

not  select  Q13 (i.e.,  NB, CART, NNC, K* and SVMpoly) were more than likely to 

exclude Q13 from the decision tree building process. This may therefore explain why the 

combinations produced decision trees with different features.

As previously mentioned, combinations which selected Q13 were found to build one tree 

which included Q9, Q18 and Q13 (Figure 5.8). However, combinations that did not select 

Q13 were found to build another tree which included Q9, Q18 and Q19 (Figure 5.9). 

Interestingly,  all  nine of the combinations selected Q19. The fact  that  Q13 was used 

instead of Q19 for building the tree shown in Figure 5.8 may suggest that Q13 may be 

more relevant to the target variable than Q19. In order to further examine the significance 

of these two features, the ANOVA method was used. The output of ANOVA showed that 

the  significance  of  Q13  (F=21.31,  p<.001)  is  higher  than  the  significance  of  Q19 

(F=11.88,  p<.005).  This  means  that  Q13  is  statistically  more  relevant  to  the  target 

variable than Q19. The fact that Q13 is more relevant than Q19 may explain why it was 

used in the decision tree building process.

The fact that classifier combinations were found to produce identical trees even though 

they selected different features suggests that the combinations were able to uncover a 

small subset of features that can help in identifying a user’s cognitive style. In the case of 

the decision trees constructed by the combinations, the small subset of features comprises 

Q9, Q13, Q18 and Q19 because these features were the only features used to form the 

decision trees. A deep analysis of these four features is carried out so as to establish how 

they can help determine users’ cognitive style. The results from this analysis are depicted 

in the next few pages.

The first and most important feature is ‘It is hard to use the back/forward buttons’ (Q9). 

This is  because Q9 was the root  node of all  the decision trees.  This implies  that  all 

decision  trees  deemed Q9 the  most  relevant  feature  with  regards  to  users’  cognitive 
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styles. Results from decision trees showed that nearly all of the Field Independent (FI) 

and  Intermediate  (I)  users  strongly  disagreed  and  disagreed  with  this  feature, 

respectively, while majority of Field Dependent (FD) users agreed or strongly agreed 

with  it.  A  possible  explanation  for  such  different  preferences  may  lie  within  the 

tendencies of users to navigate through the Web-based learning systems. On the one 

hand, users who follow the FI cognitive style typically prefer finding their own path or 

route when performing a particular task on the Web (Chen and Macredie, 2004). In this 

way, FI users would be more accustomed to using tools that can help them find a suitable 

path. Web-based learning systems include many different tools but an example of a tool 

that may help users find their own path through the tutorial is back/forward buttons. Such 

tools allow users to control where they have been and where they will go to next. This 

may explain why FI users preferred the back/forward tool. On the other hand, FD users 

prefer a guided approach. This means that such users prefer the system to find a path for 

them. As such, tools like back/forward buttons, which provide users with an opportunity 

to find a path, may not have appealed to FD users.

Another feature that appears in all identical decision trees is ‘It is easy to find a route for 

a specific task with the index’ (Q18). Interestingly, this feature was also found to be a 

common feature among all nine of the classifier combinations (as shown in Table 5.8) 

and was regarded as the second most relevant feature by the combinations. Examining 

Q18 within the decision trees uncovered that some FI users strongly agreed with this 

feature  whereas  several  FD  users  disagreed  with  it.  On  the  one  hand,  FI  users  are 

individuals who prefer to work on their own and use their own initiative to find and 

complete a task. As such, they may prefer to freely navigate the system and jump from 

one point to another within the system in order to find a suitable route for a particular 

task. The index is a tool that can provide FI users with such freedom to navigate through 

the system (Liu and Reed, 1995). This may explain why FI users preferred using the 

index tool. On the other hand, FD users rely on guidance from the system in order to find 

a suitable route for a task. More specifically, they may prefer to be guided in a structured 

manner so that they will be able to find a route for a task. The fact that FD users prefer to 

be guided by the system may help explain why they did not prefer using the index tool.  
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The remaining two features, namely ‘I was confused which options I wanted, because it 

provided too many choices’ (Q13) and ‘This tutorial can be used sufficiently well without 

any instructions’ (Q19), were previously found to be relevant features for determining 

users’  cognitive  style.  However,  users  with  different  cognitive  styles  responded 

differently to these features. With regards to Q13, the tree in Figure 5.8 showed that users 

who responded to this feature were mainly FD users. Many of the FD users either agreed 

or strongly agreed with Q13. This shows that FD users were confused with the options 

provided to them because there were too many to choose from. This may have to do with 

the fact  that  FD users rely on the system to provide them with guidance in order to 

successfully complete some task (Wang, Hawk, and Tenopir, 2000). By relying on the 

system for some guidance, FD users expect to be shown and given the options that they 

need to complete the task. In the event that too many options or all of the options are 

presented to them, they will find it difficult to choose the one(s) that can help them with 

their task. This may therefore explain why FD users were confused when many options 

were provided to them by the tutorial. 

With regards to Q19, a few Intermediate users were found to agree with this particular 

feature while a notable number of FD users were found to disagree with this feature. The 

results regarding Q19 suggest that users with different cognitive styles showed different 

attitudes to use of instructions. On the one hand, Intermediate users had little difficulties 

in using the tutorial without instructions. On the other hand, FD users had some trouble 

using the tutorial without instructions. The reason for this difference in preferences may 

have to do with the amount of guidance required by individuals. Intermediate users have 

the ability to combine the characteristics of both FI and FD cognitive styles. In this case, 

however,  Intermediate  users  may have  exhibited  more  of  the  characteristics  from FI 

users. This is because users who follow the FI cognitive style are more likely to work on 

their own and actively find their own way around the system, thus avoiding the need to 

rely on guidance from the system (i.e., tutorial) to find what they are looking for. This 

shows  that  Intermediate  users  would  have  used  the  system without  the  help  of  any 

guidance, i.e., instructions. FD users, on the other hand, usually rely on external guidance 

to complete a task or locate a particular item in the system. In this case, external guidance 
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is guidance provided by the system. The fact that FD users prefer to be guided by the 

system  may  help  explain  why  they  found  it  difficult  to  use  the  system  without 

instructions. 

5.5  Conclusions 

In  this  chapter,  the  mixed-type  approach,  and  the  corresponding  mixed-type 

combinations,  along  with  the  UP1  and  UP2  datasets  were  used  to  identify  how the 

number  and  nature  of  classifiers  influenced the  number  of  features  selected  and  the 

accuracy levels of the features. The mixed-type approach revealed some very interesting 

results.

With respect to the number of features selected, the mixed-type approach showed that 2-

classifier combinations selected many relevant features and 3-classifier and 4-classifier 

combinations selected few relevant features. This therefore shows that combining few 

classifiers results in large feature subsets being selected but combining many classifiers 

results in small feature subsets. The reason for this difference in number of features was 

attributed to the strategy used to combine the classifiers. Furthermore, the results from 

mixed-type showed that the number of features identified was also influenced by the use 

of certain classifiers. In detail, BN family classifiers influenced the number of relevant 

features selected from the UP1 dataset while NN family classifiers influenced the number 

of relevant features selected from UP2 dataset. With respect to accuracy levels of selected 

features, the results from both UP1 and UP2 showed that combinations comprising three 

classifiers  selected  features  which  led  to  the  highest  classification  accuracies  in 

comparison  to  the  other  classifier  combinations.  The  accuracies  of  3-classifier 

combinations and the accuracies of the other combinations, however, were found to be 

influenced by the BN family classifiers (UP1) and NN family classifiers (UP2). Such 

findings suggest that the nature of classifiers belonging to the BN and NN family led to 

greater differences in feature selection than the nature of other classifier families used. 

Similarities between these two classifier families were used to explain the reason why 

they caused differences in number of features selected and the accuracy levels generated.
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Subsequently,  this  chapter  examined  relationships  between  the  number  of  features 

selected by mixed-type combinations and the accuracy levels that they generated. This 

was done for both UP1 and UP2 datasets. The results from UP1 showed there to be a 

positive relationship between number of features and accuracy levels of features. On the 

other hand, the results of UP2 showed there to be a negative relationship between these 

two issues. The reason for such different relationships lied within the classifiers that were 

used  in  the  mixed-type  combinations.  Combinations  with BN family classifiers  were 

found to justify the positive relationships in UP1 while combinations with NN family 

classifiers were found to justify the negative relationships in UP2. Finally, the chapter 

examined the mixed-type combinations which formed decision trees with the highest 

accuracy levels. The decision trees with the highest accuracy levels from both UP1 and 

UP2 datasets were examined to reveal a small number of features that best described the 

target variables of each of the datasets.

The results from the mixed-type approach have showed that the number and nature of 

classifiers  used  influence  feature  selection  results.  The  results  from  the  same-type 

approach, which were presented in the previous chapter, also showed that number and 

nature of classifiers have considerable influences on feature selection. The mixed-type 

approach and same-type approaches were used to investigate the effects of number and 

nature of classifiers, but they are two different approaches. The two approaches differ in 

the type of classifiers that they combine. As such, the results from these two approaches 

will show the influences of number and nature of classifiers slightly differently. In order 

to better understand the influences of number and nature of classifiers as found by both 

approaches, the next chapter will synthesise the results from the same-type and mixed-

type approaches.
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Chapter 6 – The Influences of Classifiers: Number vs. Nature

6.1  Introduction

The purpose of this thesis was to investigate how the number and nature of classifiers 

influence  feature  selection.  The  investigation  was  carried  out  using  two  different 

approaches:  same-type  approach  and  mixed-type  approach.  These  two  approaches 

produce several interesting results, which are presented in the previous two chapters. In 

order to provide a deep understanding of classifiers, this chapter synthesises the results 

found from the previous two chapters. 

More specifically,  the results  from these two approaches will  be synthesised in three 

different  parts.  The  first  part,  presented in  Section  6.2,  will  focus  on the  number  of 

classifiers and the results obtained from both approaches regarding this issue, which will 

provide answers to the first research question of the thesis (RQ1: The influences of the 

number of classifiers on feature selection). Section 6.3 presents the second part which 

will focus on the results regarding nature of classifiers, and will help provide answers to 

the  second  research  question  of  the  thesis  (RQ2:  The  influences  of  the  nature  of  

classifiers on feature selection).  Based on the findings from these two parts,  we also 

identify which of the two issues (i.e., number of classifiers or nature of classifiers) has a 

greater  effect  on  feature  selection.  This  will  provide  answers  to  the  third  research 

question of the thesis (RQ3: Whether number of classifiers or nature of classifiers has a  

greater influence on feature selection). The third part of the chapter, presented in Section 

6.4, will compare the decision trees formed by the same-type and mixed-type approaches 

for both UP1 and UP2 datasets. The comparison will consider the features used to build 

the decision trees from each approach and help identify a small number of features that 

best describe the target variable of each dataset. Finally, Section 6.5 uses the findings 

from  all  parts  to  propose  some  suggestions.  The  suggestions  will  act  as  a  kind  of 

reference to identify the suitability of different numbers of classifiers and classifiers with 

a particular nature for feature selection and decision tree construction. 
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6.2  Number of Classifiers

This section uses the results from the same-type and mixed-type approaches to provide a 

holistic  view  of  the  influences  of  number  of  classifiers  on  feature  selection  results. 

Firstly, we present the influences of number of classifiers on number of relevant features 

selected. Subsequently, we present the effects of number of classifiers on accuracy levels 

of selected features.  Finally,  we provide answers to the first  research question (RQ1) 

based on the results from both same-type and mixed-type approaches.

6.2.1  Influences on Number of Features Selected 

The combinations from the same-type and mixed-type approaches comprised of different 

numbers  of  classifiers.  These  combinations  selected  different  numbers  of  relevant 

features  from  the  UP1  and  UP2  datasets.  A  brief  summary  of  the  results  from 

combinations used in both approaches is shown in Table 6.1. The table shows the mean 

number of features selected by all same-type and mixed-type combinations for UP1 and 

UP2 datasets. In addition, the total mean number of features selected by these two types 

of combinations for the datasets is presented. The number of combinations that select 

number of features above and below total mean accuracy is also provided.

Same-type Combinations Mixed-type Combinations
UP1 UP2 UP1 UP2

Mean Above 
Total  
Mean

Below 
Total 
Mean

Mea
n

Above 
Total 
Mean

Below 
Total  
Mean

Mean Above 
Total  
Mean

Below 
Total 
Mean

Mea
n

Above 
Total 
Mean

Below 
Total 
Mean

2-classifier 17.36 10 8 6.28 10 8 17.11 29 7 6.53 20 16
3-classifier 15.31 6 6 5.67 6 6 16.42 28 26 5.94 24 30
4-classifier 11.63 - 3 4.67 1 2 11.33 3 34 4.30 7 20
Total Mean 15.05 5.91 16.33 5.76

Table 6.1. Number of Features Selected by Same-type and Mixed-type Combinations

After a closer look at Table 6.1, a common finding was noted among the number of 

features  selected  by  the  combinations  from  the  two  datasets.  It  was  found  that 

combinations with few classifiers generally selected a high number of relevant features 

from UP1 and UP2 datasets while combinations with many classifiers generally selected 

a low number of relevant features. In fact, it was found that 2-classifier combinations 

selected  more  relevant  features  whereas  3-classifier  and  4-classifier  combinations 

selected  fewer  relevant  features.  In  addition,  it  was  found  that  more  2-classifier 

combinations generated number of features higher than the total mean number of features 

128



The Role of Classifiers in Feature Selection: Number vs Nature                                                       Chapter 6

for each UP1 and UP2 dataset. On the other hand, there were more 3-classifier and 4-

classifier combinations which generated number of features lower than the total mean 

number of features for each dataset. These findings show that 2-classifier combinations 

selected a high number of features and 3-classifier and 4-classifier combinations selected 

a  low  number  of  features,  irrespective  of  the  nature  of  classifiers  used  in  the 

combinations.

Interestingly, we found an additional finding that concerns the actual number of features 

selected  by  the  same-type  and  mixed-type  approaches.  When  comparing  the  mean 

number of relevant features selected by same-type and mixed-type combinations for both 

datasets (see Table 6.1), we generally found that the mean numbers of features selected 

by  the  same-type  combinations  are  rather  similar  to  the  mean  numbers  of  features 

selected by the mixed-type combinations. This result was apparent in both datasets. In 

addition, the results from Table 6.1 show that the total mean number of features selected 

by same-type and mixed-type combinations for both datasets are also very similar. The 

results suggest that the nature of classifiers used to form these two types of combinations 

had little (if any) influence on the overall number of relevant features selected. In other 

words, combining classifiers of the same nature and combining classifiers of a different 

nature made very small difference to the number of features selected from the datasets. 

These aforementioned results suggest that the number of classifiers used may have more 

of an influence on number of features selected than the nature of the classifiers used.

6.2.2  Influences on Accuracy Levels of Features 

The number of classifiers used in the same-type and mixed-type combinations were also 

found to influence the classification accuracies generated. Table 6.2 presents a summary 

of the mean classification accuracies of all combinations belonging to the same-type and 

mixed-type approaches for UP1 and UP2. In addition, the table shows the number of 

classifiers combinations that generated accuracies higher and lower than the total mean 

accuracy level for each of the datasets.
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Same-type Combinations Mixed-type Combinations
UP1 UP2 UP1 UP2

Mean Above 
Total  
Mean

Below 
Total  
Mean

Mea
n

Above 
Total 
Mean

Below 
Total 
Mean

Mean Above 
Total  
Mean

Below 
Total 
Mean

Mea
n

Above 
Total  
Mean

Below 
Total  
Mean

2-classifier 81.30 5 13 94.69 11 7 82.01 11 25 94.27 17 19
3-classifier 84.93 9 3 95.38 10 2 83.75 34 20 95.37 42 12
4-classifier 84.16 2 1 94.87 2 1 82.50 13 14 94.81 12 15
Total Mean 83 94.95 82.88 94.90

Table 6.2. Classification Accuracies Generated by Same-type and Mixed-type 
Combinations

As  shown  in  Table  6.2,  3-classifier  combinations  selected  features  which  generated 

higher mean accuracy levels than those of 2-classifier and 4-classifier combinations. This 

was found across both approaches and in both datasets. In addition, the table shows that 

nearly  all  of  the  3-classifier  same-type  and  mixed-type  combinations  generated 

accuracies above the total mean accuracy of each dataset. However, in general, many of 

the 2-classifier and 4-classifier combinations generated accuracies below the total mean 

accuracy  of  each  dataset.  These  results,  along  with  the  detailed  results  presented  in 

Chapters  4 and 5,  suggest that combinations comprising of three classifiers  are more 

likely to identify the most accurate subsets of features in relation to the target variable, 

irrespective of the nature of classifiers used. 

The  reason  for  this  may  have  to  do  with  the  number  of  features  selected  and  their 

relevance.  As  previously  found,  the  number  of  classifiers  influenced  the  number  of 

features selected. However, the features selected by the different numbers of classifiers 

may not  necessarily  be  relevant  to  the  target  variable.  On the  one  hand,  2-classifier 

combinations were found to select the highest number of features from the datasets. The 

fact that they selected the highest number may possibly suggest that some of the selected 

features are not very relevant to the target variables and may explain the low accuracy 

levels they generated. On the other hand, 4-classifier combinations were generally found 

to select  the lowest number of features from the datasets. The fact that they selected 

lowest number may possibly suggest that such classifier combinations missed out some 

of the features that are highly relevant to the target variables, which may explain why 

they  generated  lower  accuracies.  The  3-classifier  combinations  were  found  to  select 

number of features in between the number of features selected by 2-classifier and 4-

classifier combinations. In addition, they selected accuracies higher than the accuracies of 
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2-classifier  and  4-classifier  combinations.  This  may  suggest  that  combinations 

comprising  of  three  classifiers  are  the  right  balance  for  excluding  features  of  low 

relevance but  including features of  high relevance.  This in  turn may explain why 3-

classifier combinations generated higher accuracies overall.

6.2.3   Differences  in  Accuracies  Generated  by  Same-type  and  Mixed-type 
Combinations 

The findings revealed two more interesting issues relating the classification accuracies 

generated by the same-type and mixed-type approaches.  

1)  Mean Accuracy Levels

The first issue relates to the mean accuracy levels generated by same-type combinations 

and mixed-type combinations for the two datasets. In terms of UP1, Table 6.2 showed 

that in general same-type combinations generated higher mean accuracies than mixed-

type  combinations.  In  terms of  UP2,  it  was  also  found that  same-type  combinations 

generated higher mean accuracies than mixed-type combinations although the difference 

between the two was marginal. In order to better understand this issue, we carry out a 

deep analysis of the accuracies generated using the two datasets. The deep analysis will 

consider the accuracy levels and frequencies of accuracy levels generated (i.e., number of 

times each accuracy level was generated) by same-type and mixed-type combinations for 

each of the UP1 and UP2 datasets. The results from the deep analysis concerning UP1 

and UP2 can be found in Table 6.3 and Table 6.4, respectively.

Level of
Accuracy (%)

Frequency of Accuracies Selected by Combinations (UP1)
Same-Type Combinations Mixed-Type Combinations

90.83 - 1
89.17 - 1
88.33 1 5
87.50 - 2
86.67 3 10
85.83 4 9

85 3 11
84.17 4 8
83.33 1 11
82.50 6 17
81.67 3 10
80.83 2 7

80 2 7
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79.17 - 7
78.33 2 4
76.67 - 1

75 1 1
75.83 - 2
72.50 1 1

Table 6.3. Frequency of Accuracies Generated by Same-type and Mixed-type 
Combinations for UP1

Level of
Accuracy (%)

Frequency of Accuracies Selected by Combinations (UP2)
Same-Type Combinations Mixed-Type Combinations

96.92 2 9
95.38 21 67
93.85 9 34
92.31 1 7

Table 6.4. Frequency of Accuracies Generated by Same-type and Mixed-type 
Combinations for UP2

The results from Table 6.3 show that the same-type combinations generated far fewer 

kinds of accuracy levels than mixed-type combinations for UP1, as indicated by the fact 

that the former generated six types of accuracy levels less than the latter. The fact that 

same-type combinations produced fewer types of accuracy levels may suggest that same-

type combinations produced less diverse accuracy levels than mixed-type combinations 

in the UP1 dataset. Interestingly, the results from Table 6.4 are different to that of Table 

6.3. More specifically, results in Table 6.4 do not show clear differences in the accuracies 

generated  using  UP2  because  the  same-type  and  mixed-type  combinations  generated 

exactly the same accuracy levels. Therefore the results from UP1 show large differences 

between accuracies  generated  by  same-type  and mixed-type  combinations  but  results 

from  UP2  show  very  small  differences  between  accuracies  of  these  two  types  of 

combinations. A possible reason for this may lie within the number of features present in 

these two datasets. On the one hand, the UP1 dataset includes a large number of features, 

90 to be precise. The fact that there are many features in this dataset means that it is more 

likely for the different types of combinations to select very different relevant features 

which may subsequently lead to very different levels of accuracies. On the other hand, 

the UP2 dataset includes a small number of features, i.e., 20 features. The fact that few 

features exist in this dataset implies that it may be more likely that the combinations will 

select similar features from the dataset which may lead to similar levels of accuracy. 
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Further analysis of the accuracies generated by same-type and mixed-type combinations 

was also carried out. The analysis only dealt with the accuracies from the UP1 dataset 

(shown in Table 6.3) because it was the only dataset to show major differences among 

accuracies  generated  by  both  types  of  combinations.  The  analysis  revealed  further 

differences  among  the  accuracies  of  same-type  and  mixed-type  combinations.  These 

differences related to the range of accuracies generated by the combinations, which is the 

difference between the highest accuracy and the lowest accuracy for the 2-classifier, 3-

classifier,  and 4-classifier  combinations.  The range values for  these combinations are 

presented in Table 6.5. In general, the range values presented in this table show that the 

difference  between  the  highest  and  lowest  accuracies  of  same-type  combinations  is 

smaller than that of mixed-type combinations. The smaller differences in accuracies once 

again suggest that there was less diversity in the accuracies generated by the same-type in 

comparison to mixed-type combinations. 

Combinations Range of Accuracies (%)
Same-Type Combinations Mixed-Type Combinations

2-Classifier 13.33 12.50
3-Classifier 6.66 18.33
4-Classifier 2.50 10.83

Table 6.5. Range of Accuracies for Same-type Combinations and Mixed-type 
Combinations in UP1

A possible reason for these differences in accuracies may lie within the nature of the 

classifiers considered by same-type combinations. As previously mentioned, same-type 

combinations  utilise  classifiers  from the  same  family.  Therefore,  the  biases  of  these 

classifiers will be very similar or even identical. In other words, same-type combinations 

take into account  the bias  associated with only one  type of  classifier  when selecting 

features.  In  this  way,  classifiers  with  similar  biases  may  in  turn  select  very  similar 

features.  If  they  select  similar  features  then  it  is  highly  likely  that  the  features  will 

generate similar levels of accuracies. In contrast, mixed-type combinations make use of 

classifiers from different families, each of which has a very different bias. This means 

that the selected features will be different depending on the classifiers (and their biases) 

used  in  combinations,  subsequently  leading  to  a  larger  difference  in  the  accuracies 

generated.  In  summary,  same-type combinations  generate  similar  levels  of  accuracies 

whereas mixed-type combinations generate diverse levels of accuracies. As a result of 
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this difference, these two types of combinations will generate different mean accuracy 

levels. The mean accuracy level is determined by calculating the mean of the individual 

accuracy levels generated by the same-type and mixed-type combinations. Because of the 

way in which the mean accuracy is calculated, considering similar individual accuracy 

levels (i.e., same-type) will result in a higher mean accuracy than if diverse individual 

accuracy levels  (i.e.,  mixed-type)  were  considered.  This  may explain  why same-type 

combinations were generally found to produce higher mean accuracy levels than mixed-

type combinations.

2)  Individual Accuracy Levels 

The second issue identified relates to the individual accuracy levels produced by same-

type  and  mixed-type  combinations.  To  have  a  deep  understanding  of  this  issue,  we 

consult Table 6.3 and Table 6.4 which were previously presented in this section. A closer 

look at these two tables reveals some interesting findings. 

With regards to Table 6.3, which represents results from UP1, accuracies generated by 

same-type  combinations  seem  to  be  evenly  spread.  On  the  other  hand,  accuracies 

generated by mixed-type combinations are somewhat unevenly spread. It was found that 

the majority of accuracies generated by mixed-type combinations were located towards 

the top half of the table as opposed to the bottom half. A deep analysis of accuracies in 

the top and bottom halves of Table 6.3 was conducted. The averages of accuracies in the 

top  half  and  bottom  half  for  both  same-type  and  mixed-type  combinations  were 

computed. In terms of same-type combinations, the average of the accuracies in the top 

half was 85.25% and the average of the accuracies in the bottom half was 80.31%. In 

terms of mixed-type combinations, the top half average was 86.98% and the bottom half 

average was 80.86%. These findings show that the average top half accuracy of mixed-

type  combinations  was  higher  than  the  average  top  half  accuracy  of  same-type 

combinations. It also shows a higher proportion of accuracies generated by mixed-type 

combinations to be in the top half  of the table.  These findings therefore suggest that 

mixed-type combinations were able to generate slightly higher individual accuracies than 

those of same-type combinations.
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With regards to Table 6.4, which represents results from UP2, accuracies generated by 

same-type and mixed-type combinations are identical. Considering the number of times 

each  accuracy  level  was  generated  by  these  two  types  of  combinations  also  shows 

similarities. These similarities are clearly shown in Table 6.6. This table is an extension 

of Table 6.4 in that it shows the percentage of combinations which generated each type of 

accuracy level. The fact Table 6.6 shows similarities in the percentage of accuracy levels 

generated suggests that same-type and mixed-type combinations were not really different 

in  the  context  of  UP2 dataset.  The  reason why these  two combinations  were  not  so 

different may have to do with the UP2 dataset itself. As previously mentioned, the UP2 

dataset contains a significantly lower number of features compared to UP1. As such, 

classifier  combinations  used  with  this  dataset  may  be  more  likely  to  select  similar 

features and thus produce similar accuracy levels.

Level of
Accuracy (%)

Percentage of Accuracies Selected by Combinations (UP2)
Same-Type Combinations Mixed-Type Combinations

96.92 6% 8%
95.38 64% 57%
93.85 27% 29%
92.31 3% 6%

Table 6.6. Percentage of Accuracies Generated by Same-type and Mixed-type 
Combinations for UP2

Although results regarding UP2 dataset do not show clear findings, the results from UP1 

dataset are quite clear. The results regarding accuracies of UP1 suggested that mixed-type 

combinations were able to generate slightly higher individual accuracies than those of 

same-type combinations. The reason for these results may be attributed to the nature of 

classifiers used in the combinations. On the one hand, same-type combinations combine 

classifiers from a single family. This means that the classifiers will be of the same nature 

and  have  the  same  or  very  similar  biases.  However,  this  is  only  one  type  of  bias. 

Considering only one type of bias when selecting features may affect the accuracy of the 

features  because  the  features  are  selected  from the  perspective  of  only  one  type  of 

classifier  family.  On  the  other  hand,  mixed-type  combinations  make  use  of  multiple 

classifiers from very different families. This means that the classifiers will be of different 

nature and subsequently have different types of biases.  In other words, diverse types of 
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biases  are  considered  when  selecting  relevant  features.  Considering  several  different 

types of biases in this manner can help lower the impact  that they may have on the 

selection of features. This is because the different classifiers will mutually agree on the 

relevant features as a bid to overcome their individual biases. Reducing the impact of 

classifier biases on the feature selection process may therefore aid in the identification of 

feature subsets that contain highly relevant features with regards to the target variable. 

Such highly relevant features can subsequently lead to higher accuracy levels, which may 

therefore explain why mixed-type combinations were able to generate higher accuracy 

levels than same-type combinations using the UP1 dataset.

The  two  aforementioned  findings  showed  that  same-type  combinations  were  able  to 

generate  higher  mean accuracy  levels  than  mixed-type  combinations,  but  mixed-type 

combinations  were  able  to  generate  higher  individual  accuracy  levels.  Such  findings 

show that using different classifier arrangements (i.e., same-type and mixed-type) can 

lead to different feature selection results. In fact, the findings suggest that these classifier 

arrangements are capable of generating different levels of classification accuracy. Thus, 

there  is  a  need  to  be  aware  of  these  different  capabilities  when  performing  feature 

selection so as to help them in uncovering the feature subset with the highest accuracy 

level.

6.2.4  The Role of Number of Classifiers in Feature Selection (RQ1)

The  previous  sections  presented  the  findings  from  both  same-type  and  mixed-type 

combinations regarding the influences of number of classifiers on number of features 

selected and the accuracy levels generated. These findings can help provide answers to 

the first research question (RQ1) of this thesis. Figure 6.1 summarises the key answers 

for RQ1. The figure presents the answers regarding influences of number of classifiers on 

number of features selected on the left side. The answers regarding influences of number 

of classifiers on accuracy levels of features are shown on right hand side of the figure. 

These answers can significantly improve our understanding of  the role  of number  of 

classifiers in feature selection tasks.
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Figure 6.1. Summary of Answers to RQ1

6.3  Nature of Classifiers

This section uses the results from the same-type and mixed-type approaches to identify 

the overall influences of nature of classifiers on feature selection results.  Initially, we 

present the influences of nature of classifiers on number of relevant features selected. The 

influences  of  nature  of  classifiers  on  accuracy  levels  of  selected  features  are  also 

presented. The section concludes by providing answers to the second research question 

(RQ2) of the thesis based on the results from both same-type and mixed-type approaches.

6.3.1  Influences on Number of Features Selected 

The same-type and mixed-type approaches combined classifiers of different nature. The 

fact that these two approaches used classifiers of different nature helped us determine the 

influences of nature of classifiers on feature selection results. 

In  terms  of  same-type  approach,  it  was  found  that  combinations  with  DT  family 

classifiers (i.e., C4.5, CART and CN2) selected a higher number of relevant features than 

combinations with the other classifier families. This was found in both UP1 and UP2 

datasets.  In terms of the mixed-type approach, it  was found that  combinations which 

included BN family classifiers (i.e., BNC, NB and AODE) influenced number of features 
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selected from UP1 dataset and combinations that included NN family classifiers (i.e., 

NNC, KNN and K*) influenced number of features selected from UP2 dataset.  With 

regards  to  BN family  classifiers,  combinations  with  BNC  were  found  to  select  low 

number of features whereas combinations with NB or AODE classifiers selected high 

number of features. With regards to NN family classifiers, combinations with NNC or K* 

classifiers  selected low number of relevant features whereas combinations with KNN 

selected high number of features. 

These results show that different families of classifiers influenced number of features 

selected. On the one hand, the findings suggest that DT family classifiers may only affect 

number of features when they are combined together. However, the influences of DT 

family classifiers are less apparent when combined with classifiers from other different 

families.  Interestingly,  BN  family  and  NN  family  classifiers  were  found  to  cause 

differences in number of features selected when used and combined with classifiers from 

other families. 

6.3.2  Influences on Accuracy Levels of Features 

An examination of the accuracies generated by same-type and mixed-type combinations 

revealed interesting issues. With regards to the same-type combinations, we found that 

combinations with DT family classifiers generated higher accuracies than combinations 

with  the  other  classifier  families.  This  finding  was  observed  in  both  UP1  and  UP2 

datasets. With regards to the mixed-type combinations, we found that combinations with 

BN  family  classifiers  influenced  the  accuracy  levels  of  features  selected  from  UP1 

dataset and combinations with NN family classifiers influenced the accuracy levels of 

features  selected  from  UP2  dataset.  With  respect  to  former  classifier  family, 

combinations  with  BNC  were  found  to  generate  low  accuracy  levels  whereas 

combinations  with NB or  AODE were found to  generate  high accuracy levels.  With 

respect to the latter classifier family, combinations with NNC or K* classifiers generated 

high  levels  of  accuracy  whereas  combinations  with  KNN  generated  low  levels  of 

accuracy. 
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These findings suggest that DT classifiers have a greater effect on the accuracy levels 

when used together. On the other hand, the nature of BN and NN family classifiers cause 

differences  in  accuracy  levels  when  used  in  conjunction  with  other  classifiers  from 

different families. In other words, the nature of BN and NN classifier families seems to 

be enhanced in the presence of other classifiers that have different nature. Such findings 

tie in with those obtained from the previous section. The previous section found that DT 

family classifiers influenced the number of features selected by same-type combinations 

whereas BN and NN family classifiers influenced the number of features selected by 

mixed-type combinations. The findings of the previous section and the findings from the 

current section collectively suggest that the nature of these three classifier families is 

stronger in different contexts. On the one hand, the nature of DT classifier is stronger in 

same-type combinations but weaker in mixed-type combinations. On the other hand, the 

nature of BN and NN classifiers is stronger in mixed-type combinations but weaker in 

same-type combinations. The reasons why the classifiers families are stronger in different 

contexts are explained in detail.

1)  DT Family Classifiers Strong in Same-type Approach

As previously  stated,  DT classifiers  possess  two advantages  over  the  other  classifier 

families used. The first advantage is that DT classifiers do not require the presence of 

prior details regarding the features in the dataset to make decision as to which feature is 

more relevant than others (like BN family classifiers do), nor do they rely on a small 

number of features to determine set of relevant features; neighbours in the case of NN 

classifiers and support vectors in the case of SVM classifiers. The fact that DT classifiers 

do not possess such characteristics, which may reduce the number of features suggests 

that  they  may  be  able  to  select  a  higher  number  of  relevant  features.  The  second 

advantage relates to the fact that DT classifiers perform feature selection on their own. 

This means that they will perform feature selection on two occasions when used with 

WDT. The fact that DT classifiers perform feature selection on two occasions suggests 

that the features that are selected may be of very high relevance, which may subsequently 

lead to high levels of accuracy. 
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These advantages show that individual DT classifiers are able to select a high number of 

features which generate high levels of accuracy. However, the DT classifiers were not 

able to show such results when they were used in mixed-type combinations. There are 

two possible reasons that may explain this result.  The first reason may lie within the 

assumptions  made  by  the  different  classifiers  that  were  used.  On  the  one  hand,  DT 

classifiers make no assumptions about the data they use owing to the fact that they are 

non-parametric classifiers. On the other hand, classifiers belonging to other families, like 

BN and SVM, tend to make some assumptions about the data. The fact that classifiers 

make  different  assumptions  suggests  that  there  may  be  conflicts  when  such  diverse 

classifiers are combined and used together. Such conflicts may mean that DT classifiers 

will have little if any influence on the feature selection results. However, when many DT 

classifiers are combined the result may be different. In this case, the DT classifiers that 

are combined will be similar in that they make no assumptions about the data. This means 

that there will be hardly any conflict between classifiers. As such, DT classifiers may 

influence results, which may explain why DT classifiers were found to be stronger in 

same-type combinations.

The second possible  reason may lie within the number of trees that  are  built  by DT 

classifiers. DT classifiers build trees to illustrate relationships among relevant features in 

dataset.  Each DT classifier will build a single tree comprised of a certain number of 

relevant features. However, the trees built by different DT classifiers may not be the same 

since each DT classifier is slightly different. In this case, a single DT classifier may build 

a tree comprised of features very relevant to the target variable but the other DT classifier 

may build a tree with features that are not so relevant to target variable of dataset. By 

combining several trees, there is a better likelihood of identifying a tree in addition to 

features  most  relevant  to  the  target  variable.  In  other  words,  combining  several  DT 

classifiers may help produce better results than that of a single one. This may explain 

why the nature of DT classifiers was strengthened when several DT classifiers were used 

together. 

Collectively, the findings from the same-type approach suggest that DT family classifiers 

have the ability to select large feature subsets that generate high levels of accuracies. The 
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ability to select such large yet precise feature subsets may appeal to experts who wish to 

use  only  one  type  of  classifier  family  for  their  feature  selection  task.  However,  as 

explained previously,  DT classifiers  can only form such precise feature subsets when 

combined and used together. 

2) BN and NN Family Classifiers Strong in Mixed-type Approach

The results from the mixed-type approach showed that classifiers belonging to the BN 

family and NN family influenced the number of feature selected and the accuracy levels 

generated. The fact that BN and NN family classifiers showed influences in the mixed-

type  approach  may  imply  that  they  have  a  strong  nature  when  used  with  different 

classifier  families.  In  addition,  the  results  may  also  imply  that  BN  and  NN  family 

classifiers  work  better  when  used  together.  More  specifically,  they  may  be  more 

influential in the presence of each other. This may be due to the fact that they have some 

similarities. As previously stated, BN and NN family classifiers have some similarities 

when determining the relevance of a feature. This may mean that they can influence both 

the number of features selected and thus the accuracies of the selected features. As such, 

similarities among BN and NN classifier families may enhance their strengths when they 

are combined together.

The similarities among the BN and NN family classifiers helped explain why they were 

found  to  influence  feature  selection  results  in  mixed-type  approach.  However,  BN 

classifiers  caused  different  feature  selection  results  for  the  UP1  dataset  whereas  NN 

classifiers caused different feature selection results for the UP2 dataset. As previously 

explained in Chapter 5, the reason for such findings may have to do with the nature of 

BN and  NN family  classifiers.  With  regards  to  BN family  classifiers,  there  are  two 

possible reasons why they influenced feature selection results of UP1. The first relates to 

the fact that BN family classifiers are more able to show relevancies in a dataset when the 

graphical  network  structures  are  built  using  a  large  number  of  features  (i.e.,  UP1). 

Revealing the relevancies in the UP1 dataset may in turn make the influences of BN 

family  classifiers  more  obvious.  The  second  reason  relates  to  the  conditional 

independence assumption normally employed by BN classifiers. It  may have been the 
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case that the features in the UP1 dataset consisted of features that were conditionally 

independent, which satisfies the assumption made by such BN classifiers. In this way, 

BN classifiers would most likely perform well on the dataset, which in turn can show 

their influences on feature selection results. 

With regards to NN family classifiers, the reason they influenced results of UP2 may 

relate to the size of the feature space. The feature space of UP2 is rather small, i.e., UP2 

contains a small number of features. When the feature space of a dataset is small, NN 

family classifiers only need to compute and handle the distances of few features when 

determining the relevant features. A small feature space may therefore enable NN family 

classifiers  to  clearly  distinguish  relevant  features  from irrelevant  features.  With  this 

ability, NN family classifiers may be able to show their influences on feature selection 

results.  This  may  explain  why  NN  family  classifiers  caused  differences  in  feature 

selection results of UP2 dataset.

In summary, one may need to be aware of the BN and NN classifier families when doing 

feature  selection  because  of  their  strong  influential  nature  in  the  presence  of  other 

classifier families.

6.3.3  The Role of Nature of Classifiers in Feature Selection (RQ2)

The results from the same-type and mixed-type combinations showed that the nature of 

classifiers greatly affects the number of features selected and accuracy levels of features. 

In fact, the strength of a classifier’s nature was found to influence the feature selection 

results. Classifiers were found to possess either a weak nature or a strong nature, which 

reflects the classifier’s ability to influence feature selection results. On the one hand, a 

classifier that has a weak nature is unable to influence feature selection results when used 

with classifiers of different nature, but able to influence results when used with classifiers 

that are similar to it in nature. An example of a classifier with a weak nature is the DT 

classifier. On the other hand, a classifier that has a  strong nature is unable to influence 

feature  selection  when  used  with  classifiers  of  a  similar  nature  to  it,  but  is  able  to 

influence  results  when  used  in  conjunction  with  classifiers  of  a  different  nature. 
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Examples of classifiers with a strong nature include BN and NN classifiers. Figure 6.2 

summarises the influences of classifiers with a weak nature (highlighted in a light shade 

of grey) and a strong nature (highlighted in a dark shade of grey) on feature selection 

results. The findings from this figure provide answers to the second research question of 

the thesis (RQ2), which can offer a better understanding of the role of nature of classifiers 

in feature selection.

Figure 6.2. Summary of Answers to RQ2

6.3.4  Number of Classifiers vs Nature of Classifiers (RQ3)

The two abovementioned sections determined the influences of the number of classifiers 

and the nature of classifiers on feature selection. As a result, we were able to provide 

answers to the first (RQ1) and second (RQ2) research questions of the thesis. However, 

the third and final research question of the thesis remains unanswered. The third research 

question (RQ3) determines whether number of classifiers or nature of classifiers has a 

greater impact on feature selection.  In order to provide answers to RQ3, this section 

compares the results obtained from number of classifiers and nature of classifiers. 

In terms of number of classifiers, it was found that: 1) combinations with few classifiers 

consistently selected a high number of relevant features while combinations with many 

classifiers consistently selected low number of features and 2) combinations with three 
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classifiers generated higher classification accuracies than combinations with two or four 

classifiers.  These two findings were observed among both same-type and mixed-type 

approaches  and  were  found  in  both  UP1  and  UP2  datasets.  In  terms  of  nature  of 

classifiers, the results differed according to the approach that was used. The results from 

same-type approach showed that combinations with DT family classifiers selected higher 

number of features than other families,  and also generated higher accuracies than the 

other  families.  The  results  from  the  mixed-type  approach,  however,  showed  that 

classifiers  from  BN  family  influenced  feature  selection  results  of  UP1  dataset  and 

classifiers from NN family influenced feature selection results of UP2 dataset.

In summary, the findings from number of classifiers were observed in both approaches 

and across both datasets used in the thesis. On the other hand, the findings from nature of 

classifiers were specific to the approach used and in some cases the datasets used. This 

shows that the number of classifiers influenced all aspects of feature selection whereas 

nature  of  classifiers  influenced certain  aspects  of  feature  selection  depending  on  the 

approach and dataset.  The fact  that  number  of  classifiers  influenced feature selection 

results irrespective of the approach and dataset used may suggest that it has a greater 

effect than the nature of classifiers. 

A possible explanation for why number of classifiers had a greater effect than nature of 

classifier on feature selection may be to do with the way in which WDT reduces effects 

of biases of individual classifiers. WDT combines multiple classifiers so as to reduce the 

effects of biases of individual classifiers on feature selection. However, the number of 

classifiers  combined using WDT may have a major impact on this issue. In fact,  the 

agreement among the number of classifiers used may influence this issue. As previously 

mentioned,  combining  few  classifiers  using  WDT  is  somewhat  easier  to  do  than 

combining many classifiers, irrespective of the nature of classifiers used. This is because 

a small number of classifiers are used to agree on the relevance of a feature. The fact that 

a small number of classifiers are used may suggest that it  is a ‘relaxed’ approach for 

selecting relevant features. On the other hand, combining many classifiers is often more 

difficult because there are more classifiers that need to agree on whether a feature is 

relevant or irrelevant. This may suggest that using many classifiers for selecting relevant 
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feature subsets is a ‘strict’ approach. In summary, the results seem to suggest that the 

number of classifiers used and the agreement among the classifiers (i.e., relaxed or strict 

approach) is a very important issue with regards to feature selection. The fact that the 

number of classifiers and the agreement among classifiers were found to be unaffected by 

nature of classifiers also implies that number of classifiers is more important and thus 

more influential than the nature of classifiers used in the WDT combinations. As such, 

we may need to pay more attention to the number of classifiers used when doing feature 

selection rather than the nature of classifiers used.

6.4  Comparison of Decision Trees 
 
The  same-type  combinations  and mixed-type  combinations  selected  a  set  of  relevant 

features from datasets, which were then used to build decision trees. The decision trees 

each had a level of classification accuracy which indicated how accurate the selected 

feature sets were in relation to target variable of dataset. The decision trees with highest 

classification accuracies were subsequently chosen and analysed. This was done for both 

UP1 and UP2 datasets. In this section, we compare the decision trees with the highest 

accuracies obtained from both same-type and mixed-type approaches for UP1 as well as 

UP2. By comparing the decision trees from both approaches, we will be able to identify 

any similarities or differences among the trees built and also identify a small number of 

features from the trees that are most reliable in describing the target variable of each 

dataset. 

This section is divided into two subsections. The first subsection compares the decision 

trees from the UP1 dataset, whereas the second subsection compares the decision trees 

from the UP2 dataset.

6.4.1  Comparison of Decision Trees for UP1 Dataset

A total of two decision trees were formed for the UP1 dataset. One was formed by a 

same-type combination with all three decision tree classifiers (C4.5, CART, and CN2). 

The other tree was formed using the mixed-type approach, in which three classifiers from 

the BN, DT, and NN families were used. A close examination of these two decision trees 
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was  carried  out,  which  revealed  some  interesting  results.  The  results  related  to  the 

features  that  were  used  in  the  decision  trees.  The  features  used  in  the  trees  are 

summarised in Table 6.7. 

Features Used in the Decision Trees
Q14 Q15 Q21 Q23 Q29 Q30 Q3

1
Q32 Q33 Q42 Q4

8
Q56

Same-type 
Combination

√ √ √ √ √ √ √ √

Mixed-type 
Combination

√ √ √ √ √ √ √ √

Table 6.7. Features Used in Decision Trees for UP1

The first interesting result concerns Q31. This feature appeared as the root node (i.e., the 

feature at the first level) of both trees. This showed that Q31 was regarded as the most 

relevant  and  most  important  feature  by  the  decision  trees  with  regards  to  the  target 

variable (i.e., user’s level of computer experience). This suggests that both approaches 

were able to identify Q31 as the most relevant feature for differentiating the preferences 

of users with low and high levels of computer experience. 

The second interesting finding relates to a small number of features also presented in 

Table  6.7.  In  addition  to  Q31,  other  features  were  found  to  help  differentiate  the 

preferences of users with low and high levels of computer experience. In terms of the 

decision tree constructed using the same-type approach, the small number of features 

included Q31, Q14, and Q48. In terms of the decision tree constructed using the mixed-

type approach, the features included Q31, Q14, Q48, and Q56. Comparing these features 

selected by the different approaches shows that there are common features, namely Q31, 

Q14 and Q48. The fact that common features were found among the decision trees may 

suggest that these features are highly relevant to users’ level of computer experience. 

Such highly relevant features can therefore be used to differentiate the preferences of 

users  with  different  levels  of  computer  experience.  As  such,  it  may  be  essential  to 

consider  these  features  when  developing  personalised  search  engines  that  can 

accommodate the needs of users with different levels of computer experience. 
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6.4.2  Comparison of Decision Trees for UP2 Dataset

Several decision trees were formed using the UP2 dataset. One decision tree was formed 

using the same-type approach and two decision trees were formed using the mixed-type 

approach. In terms of the former approach, the tree was constructed by a combination 

which included all three of the NN family classifiers. In terms of the latter approach, the 

two  decision  trees  were  constructed  by  combinations  which  included  NN  family 

classifiers, namely NNC and K*. Interestingly, the same-type approach and the mixed 

type approach formed identical decision trees. This meant that only two different decision 

trees were produced from both same-type and mixed-type approaches. On the surface, the 

two decision  trees  appeared  to  be  different  but  a  deep  analysis  of  the  trees  and  the 

features used within the trees showed that they shared some common features. In fact, the 

two decision trees shared two common features, namely Q9 and Q18. In terms of Q9, this 

particular feature was used as the root node of each decision tree that was constructed 

implying that it is the most relevant feature among all features in the UP2 dataset. In 

addition,  this  feature was consistently  assigned the  highest  level  of  relevance by the 

combinations used to build the decision trees. In terms of Q18, results from both types of 

combinations showed that this feature was the second most relevant feature in the dataset 

since it had high relevance levels. This may explain why it was included in the decision 

trees of both approaches.

All in all, the findings from the decision trees generated using the same-type and mixed-

type approaches suggest that there are four key features present in UP2. The four key 

features include: Q9, Q18, Q13 and Q19. This is because these four features represent a 

small number of features that helped differentiate the preferences of users with different 

cognitive styles. Such features may therefore be very useful for designing personalised 

Web-based learning systems that suit the requirements of users with different cognitive 

styles. 

6.4.3  Differences Between Same-type and Mixed-type Decision Trees
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The comparison of decision trees from same-type and mixed-type approaches enabled us 

to identify a small number of features that are highly relevant to determining the target 

variable values of each dataset, i.e., users’ level of computer experience (UP1) and users’ 

cognitive  style  (UP2).  However,  the  number  of  such  highly  relevant  features  varied 

according  to  the  approach  that  was  used.  In  general,  slightly  more  highly  relevant 

features were identified from trees of the mixed-type approach in comparison to trees of 

the  same-type  approach.  In  the  case  of  UP1,  four  features  were  extracted  from the 

decision tree constructed by mixed-type approach, whereas three features were extracted 

from the decision tree constructed by same-type approach. In the case of UP2, we were 

able  to  extract  one  more  highly  relevant  feature  from  the  trees  of  the  mixed-type 

approach in comparison to the tree of same-type approach. It suggests that using mixed-

type approach helped identify more highly relevant features than using the same-type 

approach. In other words, mixed-type approach found features that same-type approach 

may have missed out. 

A possible reason for this may lie within the nature of classifier combinations used in 

these two approaches. As aforesaid, same-type combinations combine classifiers from a 

single family, which means that the classifiers will be of similar nature and have similar 

biases. In this way, same-type combinations consider the bias of a single classifier family. 

Considering only one type of bias when selecting features may limit  the selection of 

highly relevant features because features will be selected from the perspective of only 

one type of classifier family. On the other hand, mixed-type combinations make use of 

multiple classifiers from different families which will be of different nature and will have 

different types of biases.  Considering different types of biases may help lower the impact 

that they may have on the selection of features. In other words, mixed-type combinations 

may  be  able  to  select  other  relevant  features  because  the  perspectives  of  different 

classifier families are considered. As such, mixed-type combinations may be more likely 

to find a greater number of highly relevant features than same-type combinations, which 

will be used to build the decision trees. 

6.5  Suggestions 
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The previous sections showed that different numbers of classifiers and classifiers with 

different nature affect feature selection results. In addition, it was found that different 

classifiers  were  used  to  build  decision  trees  with  highest  accuracies.  It  is,  therefore, 

essential to propose some general suggestions for identifying the suitability of different 

classifiers for feature selection and decision tree construction. This section proposes such 

suggestions in two sections. The first section will identify the suitability of classifiers for 

the  task  of  feature  selection.  The  second  section  will  also  identify  the  suitability  of 

classifiers for building decision trees of highest accuracies. 

6.5.1  Feature Selection

Based on the findings obtained from the first and second parts of this chapter, we were 

able  to  establish  that  different  numbers  of  classifiers  resulted  in  different  number  of 

features and accuracy levels being generated. In addition, we found that the nature of 

classifiers  led  to  different  number  of  features  selected  and  accuracy  levels.  In  fact, 

classifiers  had  different  strengths  when  combined  in  same  family  (i.e.,  same-type 

approach)  and  when combined with  different  families  (i.e.,  mixed-type  approach).  A 

detailed examination of the strengths of classifiers in these different approaches is given 

over the next few pages. 

1)  Single Family

An examination of the nature of classifiers showed that DT family classifiers seemed to 

have a weak nature because they were not found to influence feature selection results 

when used in the presence of other classifiers. On the other hand, it was interesting to 

discover that the nature of DT family classifiers was strengthened when several of these 

classifiers were used together. The fact that these classifiers showed a stronger nature 

when  combined  together  meant  that  they  influenced  feature  selected  results.  More 

precisely,  DT family classifier  combinations  selected  higher  number  of  features  than 

other classifier families and also generated higher levels of accuracies than other families. 

Interestingly,  a  deeper  analysis  of  the  each  of  the  DT family  classifiers  used  in  the 

combinations  revealed two additional  issues.  The first  issue relates to  the number  of 
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features selected by the DT classifiers. It was found that DT combinations with CART 

classifier selected a higher number of relevant features than combinations without CART. 

This  was  found  across  both  UP1  and  UP2 datasets.  The  second issue  relates  to  the 

accuracy levels generated by the DT classifiers. It was found that DT combinations with 

CART were able to generate slightly higher accuracy levels than combinations without 

CART. Once again, this was found across both datasets. The results of these two issues 

are  shown in  Table  6.8.  This  table  shows the  mean  number  of  features  selected  by 

combinations with and without CART. In addition, it shows the mean accuracy levels 

generated when CART was included in and excluded from the DT combinations.

Mean no. of 
features 

selected by 
combinations 
with CART

Mean no. of 
features 

selected by 
combinations 

without CART

Mean Accuracy 
Level of 

combinations 
with CART

Mean Accuracy 
Level of 

combinations 
without CART

UP1 UP2 UP1 UP2 UP1 UP2 UP1 UP2
2-classifier 21.33 9.33 20.67 6.33 83.33 95.38 81.11 94.16
3-classifier 20 8 18 6 85.83 95.38 84.17 95.38
4-classifier 13 7 13 7 85 95.38 85 95.38

Table 6.8. Results from DT Family Classifiers

These two issues may suggest that the CART classifier may have been more responsible 

for  the fact  that  DT family classifiers  selected higher  number  of  features  and higher 

accuracy levels. The reason for this may relate to the characteristics of CART and the 

other two DT classifiers including C4.5 and CN2. These three DT classifiers are similar 

in that  they use the data to build hierarchical  trees which include the most  and least 

relevant features with regards to target variable and display the relationships among these 

features. However, CART uses a slightly different way to build trees compared to C4.5 

and CN2. 

The CART classifier is different to the other classifiers in that it employs 10-fold cross 

validation during the tree building process. As such, CART can reduce the level of error 

in  the  resulting  tree  and  utilise  more  of  the  data  (i.e.,  features  and  instances)  when 

building the tree (Kohavi, 1995a; Kohavi and Quinlan, 2002). The fact that CART can 

utilise more of the data whilst building the tree suggests that it is more likely to handle a 

higher number of features and instances. This may subsequently lead to a higher number 
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of features being used in the tree, which may explain why combinations which included it 

were able to select a higher number of relevant features than combinations without it. The 

fact  that  10-fold cross validation helps CART reduce the error  level  of  the tree also 

suggests that the resulting trees built using this classifier may be of higher accuracy than 

those built by the other classifiers. This may help explain why combinations with CART 

were able to generate higher accuracies than combinations without this classifier. 

In summary, the DT family classifiers work well when used in conjunction with each 

other. As a result, they are able to select a high number of features. More specifically, 

using the CART classifier in combinations may help select a high number of features. To 

obtain  a  higher  number  of  features,  one  may also  want  to  use  CART in 2-classifier 

combinations since these combinations were found to select a higher number of features 

than combinations with three or four classifiers. Interestingly, Table 6.8 shows that 2-

classifier combinations with CART are able to select higher number of features than 2-

classifier combinations without CART in both UP1 and UP2 datasets. Furthermore, DT 

family  classifiers  are  able  to  produce  higher  accuracies  when  used  together.  In  this 

context,  it  might be a  better  idea to include the CART classifier  when doing feature 

selection  since  it  was  found  to  generate  higher  accuracies.  Incorporating  the  CART 

classifier  into  a  3-classifier  combination  may  also  increase  the  chances  of  obtaining 

higher accuracy levels since combinations with three classifiers were previously shown to 

generate highest accuracy levels. In fact, the 3-classifier combinations with CART were 

shown in Table 6.8 to generate higher accuracy levels than those without the CART 

classifier for both of the datasets used.

These  suggestions  regarding  the  DT  family  classifiers  may  prove  useful  when  such 

classifiers  are  used  together.  Their  union  creates  a  strong  nature  which  results  in 

significant effects on feature selection outputs. 

2)  Mixed Family

Classifiers from the BN and NN families were shown to possess a different nature to that 

of the DT family classifiers. It  was previously found that BN family and NN family 

classifiers were unable to influence feature selection results when used on their own (i.e., 
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single family). This seemed to suggest that they have a weak nature when used on their 

own.  However,  their  nature  strengthened  when  such  classifiers  were  combined  with 

classifiers from other families (i.e., mixed family).  In other words, these classifiers were 

able  to  influence  the  feature  selection  results  when  combined  with  other  classifier 

families. It may be that the nature of BN and NN family classifiers strengthens when 

these classifiers are used together in the same combination. It suggests that these two 

types of classifiers complement one another. Since there is a very high possibility that 

classifiers from these two families complement each other, we suggest that they be used 

together for the purpose of feature selection. 

The  suggestions  are  made  according  to  the  number  of  features  that  are  selected  by 

classifiers from these two families and the accuracy levels that are generated by them. 

The suggestions based on these two issues are shown in Figure 6.3.

Figure 6.3. Suggestions for BN and NN Family Classifiers

With regards to number of features, classifiers from BN and NN family showed different 

results. In terms of the BN family, BNC led to low number of features whereas NB and 

AODE led to high number of features. In terms of NN family, NNC and K* led to low 

number of features while KNN led to high number of features. This shows that different 

classifiers selected different numbers of relevant features, some of which were lower or 

higher  than  others.  A  way  of  assisting  the  manner  in  which  these  classifiers  select 

BNC

NB AODE

NNC K*

KNN
High No. of 

Features
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Key:
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relevant features may be to combine those which select  low number of features with 

those that select high number of features. In this case, we may want to combine BNC 

with KNN in order  to  increase  the number  of  features that  are  selected by BNC. In 

addition, we may also combine NNC or K* with either NB or AODE in order to increase 

the number of features selected by NNC and K*. These suggestions are shown in Figure 

6.3 by dashed arrow lines. In order to further enhance the effects of these suggestions, 

one may also want to alter the number of BN and NN family classifiers that are used. It 

may be wise to combine two classifiers from these families in order to further increase 

the number of features selected (see Section 6.2.2). 

To see whether the above suggestions work in practise, we examined their influences on 

the number of features selected by the combinations. The results from this examination 

are shown in Tables 6.9 and 6.10. The former table shows the results for increasing the 

number of relevant features selected by combinations with BNC. The latter table shows 

the results for increasing the number of features selected by combinations with NNC and 

combinations with K*. A close look at both of these tables reveals that the number of 

relevant  features  selected  by  the  BNC,  NNC  and  K*  classifier  combinations  can  in 

general be increased by combining them with the previously mentioned classifiers. This 

therefore shows that the suggestions outlined above do work in practice.

Mean  no.  of  features 
selected  by  BNC 
combinations with KNN 

Mean  no.  of  features 
selected  by  BNC 
combinations without KNN 

UP1 13 12.36
UP2 10 4.83

Table 6.9. Increasing Number of Features Selected by BNC Combinations 

Mean no. of features 
selected  by  NNC 
combinations  with 
NB or AODE

Mean  no.  of 
features selected by 
NNC  combinations 
without  NB  or 
AODE

Mean no. of features 
selected  by  K* 
combinations  with 
NB or AODE

Mean no. of features 
selected  by  K* 
combinations 
without  NB  or 
AODE

UP1 17 15 19 18.20
UP2 4.20 4 4 4.10
Table 6.10. Increasing Number of Features Selected by Combinations with NNC and 

Combinations with K*
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With  regards  to  accuracy  levels,  BNC  generated  low  levels  of  accuracy  whereas 

combinations with NB and AODE generated high levels of accuracy. For the NN family 

classifiers,  NNC  and  K*  generated  high  accuracy  levels  while  KNN  generated  low 

accuracy  levels.  This  shows  that  different  classifiers  selected  different  levels  of 

accuracies. In this case, we may want to match classifiers which generated low accuracies 

with those classifiers that generated high accuracies. On the one hand, we may want to 

use BNC with either NNC or K* in order to increase the accuracy of BNC. On the other 

hand, we may want to combine KNN with either NB or AODE so as to increase the 

accuracy levels generated by KNN classifier. These suggestions are also shown in Figure 

6.3  by  solid  arrow  lines.  Such  suggestions  may  be  further  enhanced  by  taking  into 

account the number of classifiers that are used. For the purpose of increasing accuracy 

levels, it may also be worthwhile combining three classifiers since such combinations 

were found to generate higher accuracy levels (see Section 6.2.3). For example, one may 

want to use KNN, NB, and one other classifier from a different family. This may help 

improve the chances of obtaining higher accuracy levels. In order to identify the effects 

of such suggestions on increasing accuracy levels, we present Table 6.11. In this table, 

we identify whether the inclusion of NNC or K* classifiers increase accuracy levels of 

BNC  combinations  and  whether  the  inclusion  of  NB  or  AODE  classifiers  increase 

accuracy levels of KNN combinations. Analysing Table 6.11 shows that the accuracy 

levels of BNC combinations and KNN combinations increase with the addition of the 

aforementioned classifiers, thus supporting the suggestions previously mentioned.

Mean  accuracy 
levels  of  BNC 
combinations with 
NNC or K* (%)

Mean  accuracy 
levels  of  BNC 
combinations 
without NNC or K* 
(%)

Mean  accuracy 
levels  of  KNN 
combinations  with 
NB or AODE (%)

Mean accuracy levels 
of  KNN 
combinations without 
NB or AODE (%)

UP1 82.71 79.64 84.48 81.43
UP2 95.38 95 94.81 94.28

Table 6.11. Increasing Accuracy Levels of BNC Combinations and KNN Combinations

6.5.3  Decision Tree Construction

The previous section showed that classifiers from the DT family and NN family had 

different nature and led to different feature selection results. Interestingly, the findings 
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from the third part of this chapter showed that classifiers belonging to these families were 

able to select features that generated decision trees with the highest levels of accuracies 

for UP1 and UP2. For UP1, the decision tree with the highest accuracy was built using a 

combination with all three DT family classifiers. For the UP2, the decision trees with the 

highest  accuracies  were  built  by  combinations  comprised  of  NN  family  classifiers, 

namely NNC and K*. On the one hand, these findings suggest that DT classifiers are only 

able to build most accurate decision tree when used together. The fact that DT classifiers 

are influential when combined together ties in with the findings from Section 6.3.2. On 

the other hand, the findings regarding NN family classifiers imply that such classifiers, 

especially NNC and K*, should be incorporated into combinations so as to uncover the 

most  relevant  features in  the dataset.  Such findings  tie  in  with those of the previous 

section,  which  showed that  including  these  two classifiers  resulted  in  high  levels  of 

accuracies. As a suggestion, it may therefore be worthwhile using DT family classifiers 

or classifiers from NN family to select relevant features from a dataset. This is because 

the  features  that  are  selected  will  more  than  likely  form decision  trees  with  highest 

accuracies. Subsequently, these kind of decision trees will help illustrate the most reliable 

and important relationships among the selected features.

All in all, the suggestions presented can be used to guide a choice of which number of 

classifiers and/or nature of classifiers to use when performing feature selection tasks and 

building decision trees.  The suggestions cannot only be used to select suitable classifiers 

for such tasks but can also be used to identify those classifiers that are not so suitable. 

Such knowledge may prove vital when performing a wide variety of tasks. A summary of 

the key suggestions are illustrated in Figure 6.4.
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Figure 6.4. Summary of Key Suggestions
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6.6  Conclusions

This  chapter  compared  the  findings  from same-type  and  mixed-type  approaches  in 

order to determine the role of number of classifiers and nature of classifiers in feature 

selection. The results from the comparison helped provide answers to all three research 

questions of this thesis, namely RQ1, RQ2, and RQ3. In terms of RQ1, we found that 

combinations with few classifiers resulted in many relevant features being selected but 

many classifiers  resulted  in  few features  being  selected  regardless  of  the  nature  of 

classifiers used. In addition, we found that combinations with three classifiers were able 

to generate highest levels of accuracy regardless of what types of classifiers were used. 

In terms of RQ2, we found that DT family classifiers led to different feature selection 

results in same-type approach. However, it was found in the mixed-type approach that 

BN family  classifiers  influenced feature  selection  results  of  UP1 while  NN family 

classifiers influenced feature selection results of UP2. According to the answers of both 

RQ1 and RQ2, we established that the number of classifiers had a greater effect on 

feature  selection  results  than  nature  of  classifiers,  which  answered  RQ3.  This  was 

attributed to the fact that results regarding number of classifiers were consistent among 

all approaches and datasets used, whereas results regarding nature of classifiers were 

specific  to  the  approach  and  dataset  used.  In  other  words,  number  of  classifiers 

influence feature selection as a whole whereas nature of classifiers influence feature 

selection depending on some issues.

Subsequently, the chapter compared the decision trees generated by the same-type and 

mixed-type approaches. This comparison was done for both the UP1 and UP2 datasets. 

The results from the comparison showed similarities in the decision trees generated. 

The similarities helped identify a small number of highly relevant features that best 

describe and differentiate the different values of target variables. However, differences 

were also found. The differences lied within the number of highly relevant features that 

were identified. It was found that slightly more highly relevant features were found 

from mixed-type decision trees than same-type decision trees. Differences in the nature 

of  classifiers  used  in  the  mixed-type  and same-type  approaches  helped  explain  the 

occurrence of this finding. Finally, some general suggestions based on the comparisons 

in this chapter were presented. The suggestions considered the suitability of classifiers 

for feature selection tasks and building decision trees with the highest accuracy levels. 
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In summary, this chapter has provided answers to the three research questions of the 

thesis. The following chapter will summarise the answers to the research questions and 

present  the  key  contributions  of  the  thesis.  In  addition,  it  will  describe  possible 

limitations of the thesis and discuss directions for further work.
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Chapter 7 – Conclusions

7.1  Introduction

Wrappers  are  probably  the  most  popularly  used  feature  selection  approaches  for 

reducing  the  dimensionality  of  datasets  and  identifying  the  most  relevant  sets  of 

features.  To  identify  relevant  sets  of  features,  Wrappers  make  use  of  classifiers. 

However, existing Wrapper approaches use a single classifier for this task. The problem 

with using a single classifier is that each one is different; each one will have a different 

nature and possess different biases. The fact that each classifier is different means that 

they will select different feature sets. More specifically, various classifiers may select 

different  numbers  of  features  which  may  produce  different  levels  of  accuracy. 

Interestingly, little is known about using different numbers of classifiers and classifiers 

with a different nature. On the one hand, the number of classifiers used may play a part 

in influencing the number of features selected or the accuracy levels generated by the 

selected  features.  On  the  other  hand,  the  nature  of  classifiers  may  play  a  role  in 

influencing the feature selection results. 

The number of classifiers and nature of classifiers are thus two important issues that 

may influence feature selection results. With this in mind, this thesis investigated the 

role of number of classifiers and nature of classifiers in feature selection with the help 

of  a  novel  data  mining  method called  Wrapper-based  Decision  Trees  (WDT).  The 

WDT method  is  able  to  combine  multiple  classifiers  for  feature  selection  and  use 

decision trees to visualise relationships between selected features. Therefore, the main 

novelty of the WDT method lies within its ability to combine multiple classifiers for 

feature selection. As such, the WDT method can be used with different numbers of 

classifiers and classifiers that have a different nature. This thesis used the WDT method 

along with three research questions to better understand the role of number and nature 

of classifiers in feature selection. The three research questions of this thesis are detailed 

below:

   
• To what extent does the number of classifiers used influence the number of 

features selected and the accuracy levels of the features (RQ1);
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• To what  extent  does  the  nature  of  classifiers  used  influence  the  number  of 

features selected and the accuracy levels of the features (RQ2); and 

• Which of the two issues (i.e., number of classifiers or nature of classifiers) has a 

greater affect on feature selection (RQ3). 

The aim of this  chapter is  to present  the key answers to the three abovementioned 

research questions proposed in this thesis. The key answers to RQ1 (Section 7.2) will 

be presented first along with the answers to RQ2 (Section 7.3) and RQ3 (Section 7.4). 

The significance of the results found in this thesis is also discussed in Section 7.5. The 

chapter then moves on to describe the limitations of this thesis in Section 7.6. Finally, 

Section 7.7 discusses ideas for future work.

7.2  Number of Classifiers in Feature Selection (RQ1)

The  WDT  method  proposed  in  this  thesis  was  used  with  different  numbers  of 

classifiers. In fact, WDT combined two, three and four classifiers to perform feature 

selection. The number of classifiers that were combined was found to influence the 

feature selection results. There were two key findings that emerged regarding the role 

of number of classifiers:

1. Few  classifiers  (2-classifiers)  selected  higher  number  of  relevant  features 

whereas many classifiers (3-classifiers and 4-classifiers) selected lower number 

of relevant features.

2. Features selected by 3-classifier  combinations generated higher classification 

accuracies than those of 2-classifier and 4-classifier combinations. 

On the  one  hand,  these  findings  show that  different  numbers  of  classifiers  lead  to 

different numbers of relevant features being selected. On the other hand, they show that 

different  numbers  of  classifiers  lead  to  different  levels  of  classification  accuracy. 

Interestingly,  both  findings  were  observed,  irrespective  of  the  nature  (i.e.,  type)  of 

classifiers that were used to select the relevant features. The reason why number of 

classifiers  plays  a  significant  role  in  feature  selection  may  be  attributed  to  the 

agreement  among  the  classifiers  used.  The  agreement  among  classifiers  can  vary 

because different classifiers will agree on features differently. Agreement may be high, 
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which may result in more features being selected, or low, which may result in fewer 

relevant features being selected by the classifiers. In addition, if the agreement among 

the classifiers leads to highly relevant features being selected, then this may lead to 

high levels of classification accuracy. Otherwise, agreeing on features of little or no 

relevance may lead to low accuracy levels. In summary, the number of classifiers and, 

in  turn,  the  agreement  among  the  classifiers  can  considerably  affect  the  feature 

selection results generated. 

7.3  Nature of Classifiers in Feature Selection (RQ2)

Classifiers with a different nature were also used with the WDT method. In fact, four 

families  of  classifier  were  used  and  these  four  families  are  Bayesian  Networks, 

Decision  Trees,  Nearest  Neighbour,  and  Support  Vector  Machines.  The  nature  of 

classifiers belonging to three of these four families, namely Decision Tree, Bayesian 

Network and Nearest Neighbour families was found to influence the feature selection 

results. There were two main results relating to the nature of these three families:

1. Decision  Tree  classifiers  influenced  the  number  of  features  selected  and 

accuracy levels of features when combined together.

2. Bayesian Network and Nearest Neighbour classifiers influenced the number of 

features selected and accuracy levels of features when combined with classifiers 

of different nature.

The aforementioned results  suggest  that the nature of classifiers  belonging to  these 

three  families  was  stronger  in  different  contexts.  On  the  one  hand,  the  nature  of 

Decision Tree classifiers was stronger when several of these classifiers were combined 

and used together to do the feature selection. This strength meant that combinations 

with several Decision Tree classifiers influenced number of relevant features selected 

and accuracy levels generated. On the other hand, the nature of Bayesian Network and 

Nearest Neighbour classifiers was found to be stronger when such classifiers were used 

with  classifiers  from  other  families.  Subsequently,  combinations  with  Bayesian 

Network  or  Nearest  Neighbour  classifiers  and  classifiers  from other  families  were 

shown  to  influence  feature  selection  results.  Collectively,  these  results  show  that 

classifiers of a different nature influence feature selection results in a different manner. 
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Such results  can improve our  understanding of  the effects  of  using classifiers  with 

different nature on the feature selection process. 

7.4  The Importance of Number of Classifiers (RQ3)

The two aforementioned sections showed that the number of classifiers and nature of 

classifiers influence feature selection. However, the influences of these two issues were 

observed  in  different  contexts.  In  terms  of  number  of  classifiers,  the  two  findings 

mentioned in Section 7.2 were found in both of the user preference datasets used in this 

thesis (i.e., UP1 and UP2) and both of the classifier arrangement approaches used (i.e., 

same-type  and  mixed-type).  In  terms  of  the  nature  of  classifiers,  the  two  findings 

presented  in  Section  7.3  were  specific  to  the  dataset  used  and  also  the  classifier 

approach used. For example, the first finding shown in the previous section (relating to 

the Decision Tree classifiers) was observed in both datasets but only in the same-type 

approach. These findings regarding these two issues seem to suggest that the number of 

classifiers  influenced  all  aspects  of  feature  selection  whereas  nature  of  classifiers 

influenced certain aspects of feature selection depending on the classifier approach and 

dataset  employed.  The  fact  that  number  of  classifiers  influenced  feature  selection 

results irrespective of the classifier approach and dataset used may suggest that it has a 

greater effect than the nature of classifiers. In other words, the number of classifiers 

plays a bigger role in feature selection than the nature of classifiers used. The reason for 

this  was attributed to  the level  of  agreement  among the classifiers  used for feature 

selection. 

In summary, the findings suggest that the number of classifiers used and the agreement 

among the classifiers is a very important issue with regards to feature selection. In fact, 

the number of classifiers is more of an important issue than the nature of classifiers. 

With  this  in  mind,  there  may  be  a  need  to  pay  more  attention  to  the  number  of 

classifiers  used for feature selection.  In  doing so,  they can improve the chances of 

finding features most relevant to the feature selection task.

7.5  Significance of This Study

The significance of the results presented in this study lies within three different aspects 

including theory, methodology and application. Each of these aspects is explained in 

detail:
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• With regards to theory, the study contributes to the understanding of the effects 

of using multiple classifiers for feature selection, in particular the number of 

classifiers and nature of classifiers. The results in this study showed that number 

and nature of classifiers are two important issues that can significantly affect the 

feature selection results. Suggestions based on these results were proposed to 

assist in the selection of suitable number and nature of classifiers for feature 

selection tasks.

• With regards to  methodology, the study developed a new data mining method 

called WDT to help analyse the effects of the two abovementioned issues. The 

novelty  of  the  WDT method  lies  within  its  ability  to:  1)  combine  multiple 

classifiers  in  order  to  select  relevant  sets  of  features  and  2)  visualise  the 

interactions  among  selected  features  using  decision  tree.  Due  to  these  two 

abilities, the WDT method was able to identify highly accurate sets of relevant 

features. 

• With  regards  to  application,  the  WDT  method  was  applied  to  datasets 

consisting  of  users’  preferences  of  search  engines  and  Web-based  learning 

systems. From these datasets, WDT was able to identify sets of highly relevant 

features. These highly relevant features helped differentiate the preferences of 

users regarding search engines and Web-based learning systems. Therefore, the 

relevant  features  selected  in  this  study  may  prove  useful  for  better 

understanding  the  preferences  of  different  users  when  interacting  with  such 

systems.

7.6  Limitations of Thesis

As with any piece of research, there are limitations which may affect the results and 

conclusions obtained. A summary of the limitations of the research presented in this 

thesis are described in the next few pages.

• This thesis investigated the role of number and nature of classifiers in feature 

selection using the WDT method. However, this investigation was carried out 

using only two types of user preference datasets. The fact that this investigation 

only considered datasets from one area of research (i.e., HCI) may somewhat 
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limit  the findings  obtained and the suggestions  proposed.  Further  works  are 

needed to conduct experiments with a greater number of datasets so that the 

findings of this thesis can be strengthened and validated.

• The WDT method was able to: 1) combine several classifiers to perform feature 

selection and 2) visualise relationships between selected relevant features. In 

this  thesis,  a  small  selection of  classifiers  from only four types  of  classifier 

families was used to perform these two tasks. Employing a small selection of 

classifiers may limit the feature selection findings obtained. Several other types 

of classifiers are needed to expand on the findings.

• The WDT method was also able to combine different numbers of classifiers. 

But only a small number of classifiers were combined (i.e., two, three and four). 

Combining  a  small  number  of  classifiers  may  limit  the  number  of  features 

selected and affect the accuracy levels generated by the features. 

• In addition to the classifiers used, the WDT method made use of the forward 

search strategy to help identify relevant feature subsets. However, this is only 

one type of searching strategy. There are many different types of strategies that 

can be used, each of which may lead to different features being selected and 

subsequently affect the accuracy of the results. Experiments with other types of 

search strategies are needed to reinforce the results of this thesis.

Some of these limitations can be used as the starting point for future work, which are 

discussed in the following section.

7.7  Directions for Future Work

The research presented in this thesis has identified new directions for future research, 

some of which are summarised in the following pages.

• Chapter 3 proposed the WDT method which combines multiple classifiers for 

feature selection. However, a small number of classifiers were used with WDT 

in this thesis. It may be worthwhile using a greater variety of classifiers to do 

the feature selection.  For example,  Neural  Networks (May et  al.,  2008) and 
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Genetic Algorithms (Sikora and Piramuthu, 2007), which are prolific in the data 

mining  community,  may  be  used  with  WDT.  Employing  such  additional 

classifiers  with WDT may further  enhance our  understanding of  the  role  of 

nature of different classifiers in feature selection. 

• In  order  to  further  understand  the  role  of  number  of  classifiers  in  feature 

selection, it may also be an idea to increase the number of classifiers that are 

used with WDT. In other words, use five or more classifiers with the WDT 

method. This may help us better understand how the relevance of features is 

affected as the number of classifiers increases. In addition, we may also be able 

to find a point at which the number of classifiers makes little difference to the 

relevance of the features selected.

• Interactions among features selected by WDT were visualised using decision 

trees.   Since decision trees are  only one type of classifier  that builds visual 

models, it may be valuable to use a different classifier for this task. Bayesian 

Networks classifiers, for example, may be used for this task as they are capable 

of building visual structures that show relevant dependencies and relationships 

between features. By using other classifiers that build visual models, we will be 

able to gain a deeper look at the relationships among selected relevant features.

• As previously mentioned, this thesis investigated the role of number and nature 

of  classifiers  using  two  types  of  user  preference  datasets.  However,  these 

datasets were relatively small in size, i.e., less than 100 features. It is therefore 

necessary to use datasets that are larger in size in order to establish the validity 

of the results in the thesis. For example, bioinformatics datasets, which consist 

of thousands of features, may be suitable. The results from this process can be 

combined with the results presented in this thesis in order to uncover how the 

role of the number and nature of classifiers in feature selection differs according 

to the size of the datasets used. 

• Employing the use of several different datasets, each of a different size, will not 

only help generalise the suggestions proposed in this thesis but will also help 

develop additional suggestions that can collectively assist experts in choosing 
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classifiers suitable to particular feature selection tasks. However, there is a need 

to conduct further empirical work to validate such suggestions. 
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