19 research outputs found

    Computational Imaging Biomarkers For Precision Medicine: Characterizing Heterogeneity In Breast Cancer

    Get PDF
    In the United States, 1 in 8 women are diagnosed with breast cancer. Breast tumor heterogeneity is well-established, with intratumor heterogeneity manifesting spatially and temporally. Increased heterogeneity is associated with adverse clinical outcomes. Current critical disease treatment decisions are made on the basis of biomarkers acquired from tissue samples, largely under sampling the heterogeneous disease burden. In order to drive precision medicine treatment strategies for cancer, personalized biomarkers are needed to truly characterize intratumor heterogeneity. Medical imaging can provide anon-invasive, whole tumor sampling of disease burden at the time of diagnosis and allows for longitudinal monitoring of disease progression. The studies outlined in this thesis introduce analytical tools developed through computer vision, bioinformatics, and machine learning and use diagnostic and longitudinal clinical images of breast cancer to develop computational imaging biomarkers characterizing intratumor heterogeneity. Intrinsic imaging phenotypes of spatial heterogeneity, identified in dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) images at the time of diagnosis, were identified and validated, demonstrating improved prognostic value over conventional histopathologic biomarkers when predicting 10-year recurrence free survival. Intrinsic phenotypes of longitudinal change in spatial heterogeneity in response to neoadjuvant treatment, identified in DCE-MRI were identified and leveraged as prognostic and predictive biomarkers, demonstrating augmented prognostic value when added to conventional histopathologic and personalized molecular biomarkers. To better characterize 4-D spatial and temporal heterogeneity, illuminated through dynamic positron emission tomography imaging, a novel 4-D segmentation algorithm was developed to identify spatially constrained, functionally discrete intratumor sub-regions. Quantifying the identified sub-regions through a novel imaging signature demonstrated the prognostic value of characterizing intratumor heterogeneity when predicting recurrence free survival, demonstrating prognostic improvement over established histopathologic biomarkers and conventional kinetic model derived parameters. Collectively, the studies in this thesis demonstrate the value of leveraging computational imaging biomarkers to characterize intratumor heterogeneity. Such biomarkers have the potential to be utilized towards precision medicine for cancer care

    The impact of arterial input function determination variations on prostate dynamic contrast-enhanced magnetic resonance imaging pharmacokinetic modeling: a multicenter data analysis challenge, part II

    Get PDF
    This multicenter study evaluated the effect of variations in arterial input function (AIF) determination on pharmacokinetic (PK) analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data using the shutter-speed model (SSM). Data acquired from eleven prostate cancer patients were shared among nine centers. Each center used a site-specific method to measure the individual AIF from each data set and submitted the results to the managing center. These AIFs, their reference tissue-adjusted variants, and a literature population-averaged AIF, were used by the managing center to perform SSM PK analysis to estimate Ktrans (volume transfer rate constant), ve (extravascular, extracellular volume fraction), kep (efflux rate constant), and τi (mean intracellular water lifetime). All other variables, including the definition of the tumor region of interest and precontrast T1 values, were kept the same to evaluate parameter variations caused by variations in only the AIF. Considerable PK parameter variations were observed with within-subject coefficient of variation (wCV) values of 0.58, 0.27, 0.42, and 0.24 for Ktrans, ve, kep, and τi, respectively, using the unadjusted AIFs. Use of the reference tissue-adjusted AIFs reduced variations in Ktrans and ve (wCV = 0.50 and 0.10, respectively), but had smaller effects on kep and τi (wCV = 0.39 and 0.22, respectively). kep is less sensitive to AIF variation than Ktrans, suggesting it may be a more robust imaging biomarker of prostate microvasculature. With low sensitivity to AIF uncertainty, the SSM-unique τi parameter may have advantages over the conventional PK parameters in a longitudinal study

    Dynamic And Quantitative Radiomics Analysis In Interventional Radiology

    Get PDF
    Interventional Radiology (IR) is a subspecialty of radiology that performs invasive procedures driven by diagnostic imaging for predictive and therapeutic purpose. The development of artificial intelligence (AI) has revolutionized the industry of IR. Researchers have created sophisticated models backed by machine learning algorithms and optimization methodologies for image registration, cellular structure detection and computer-aided disease diagnosis and prognosis predictions. However, due to the incapacity of the human eye to detect tiny structural characteristics and inter-radiologist heterogeneity, conventional experience-based IR visual evaluations may have drawbacks. Radiomics, a technique that utilizes machine learning, offers a practical and quantifiable solution to this issue. This technology has been used to evaluate the heterogeneity of malignancies that are difficult to detect by the human eye by creating an automated pipeline for the extraction and analysis of high throughput computational imaging characteristics from radiological medical pictures. However, it is a demanding task to directly put radiomics into applications in IR because of the heterogeneity and complexity of medical imaging data. Furthermore, recent radiomics studies are based on static images, while many clinical applications (such as detecting the occurrence and development of tumors and assessing patient response to chemotherapy and immunotherapy) is a dynamic process. Merely incorporating static features cannot comprehensively reflect the metabolic characteristics and dynamic processes of tumors or soft tissues. To address these issues, we proposed a robust feature selection framework to manage the high-dimensional small-size data. Apart from that, we explore and propose a descriptor in the view of computer vision and physiology by integrating static radiomics features with time-varying information in tumor dynamics. The major contributions to this study include: Firstly, we construct a result-driven feature selection framework, which could efficiently reduce the dimension of the original feature set. The framework integrates different feature selection techniques to ensure the distinctiveness, uniqueness, and generalization ability of the output feature set. In the task of classification hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) in primary liver cancer, only three radiomics features (chosen from more than 1, 800 features of the proposed framework) can obtain an AUC of 0.83 in the independent dataset. Besides, we also analyze features’ pattern and contributions to the results, enhancing clinical interpretability of radiomics biomarkers. Secondly, we explore and build a pulmonary perfusion descriptor based on 18F-FDG whole-body dynamic PET images. Our major novelties include: 1) propose a physiology-and-computer-vision-interpretable descriptor construction framework by the decomposition of spatiotemporal information into three dimensions: shades of grey levels, textures, and dynamics. 2) The spatio-temporal comparison of pulmonary descriptor intra and inter patients is feasible, making it possible to be an auxiliary diagnostic tool in pulmonary function assessment. 3) Compared with traditional PET metabolic biomarker analysis, the proposed descriptor incorporates image’s temporal information, which enables a better understanding of the time-various mechanisms and detection of visual perfusion abnormalities among different patients. 4) The proposed descriptor eliminates the impact of vascular branching structure and gravity effect by utilizing time warping algorithms. Our experimental results showed that our proposed framework and descriptor are promising tools to medical imaging analysis

    The radiological investigation of musculoskeletal tumours : chairperson's introduction

    No full text

    Infective/inflammatory disorders

    Get PDF
    corecore