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The Quantitative Imaging Network: A Decade
of Achievement
Thomas E. Yankeelov

Guest Editor, Special QIN Issue of Tomography, The University of Texas at Austin, TX

This issue of Tomography is a collection of articles derived from
over 20 research teams which comprise the Quantitative Imaging
Network (QIN) of the National Institutes of Health (NIH).

A primary motivation for establishing the QIN program was
the acknowledgement of the lack of validated and reproducible
tools appropriate for performing quantitative analysis of medical
imaging data to support prediction of clinical tumor responses and
outcomes. This consortium, which currently consists of 21 individ-
ual research teams, has come together to form a cohesive and
productive collaborative effort that supports development, optimi-
zation, and validation of quantitative imaging methods and asso-
ciated software tools. The advances that have been developed as
part of these efforts form the infrastructure for which practicing
oncologists and radiologists can derive and utilize quantitative
imaging metrics in decision support for improvement of individual
patient care as well as for clinical trial assessment of novel thera-
peutics. This issue of Tomography celebrates the 10th-year anni-
versary of QIN advances following its inception in 2008. During
this time, the NCI program staff has supported QIN efforts through
program announcements, providing opportunities for the network
to grow. Furthermore, investigators and governments from the
international community have taken interest in this important
effort. Today, the QIN includes teams from 11 different countries; in
addition to laboratories from the United States, 2 teams were added
to the QIN as Full Members through support from the Canadian
Government, and teams from 9 other countries joined as Associate
Members. Additional funding announcements have emerged to
advance research objectives that include PAR-18-248 (a UG3/UH3

mechanism). This announcement is focused on supporting the
development and adaptation/implementation of quantitative im-
aging methods, protocols, and/or software tools based on existing
commercial imaging platforms and instrumentation for application
in current or planned clinical therapy trials. Moreover, an R01
mechanism, PAR-18-919, is now also available for research teams
with a fully developed and optimized clinical decision tools need-
ing clinical validation.

As evidenced from the articles presented in this special issue,
translation of quantitative imaging methods and algorithms as
clinical decision support tools into clinical utility has been success-
fully achieved across imaging modalities and instrument manufac-
turers. Collectively, these contributions exemplify the unified effort
provided by the organizational structure of the QIN that consists of
an executive committee, technical teams, working groups, and a
coordinating committee.

The articles in this issue indicate the diversity and versatility of
the membership and highlight their ingenuity and dedication to
further improve the use of imaging in patient care. It is an honor to
thank the contributors to this special issue for their excellent con-
tributions and for their effective partnership with NIH staff to
advance quantitative imaging. The impact of these efforts will be
ever more apparent over time—long after the NIH QIN has formally
ended funding of this vitally important program. The advances
produced by the QIN teams of dedicated clinicians and scientists
will directly translate into improved patient care, yielding im-
proved clinical outcomes in the decades ahead.

QIN organizational overview.

GUEST EDITORIAL

© 2019 The Authors. Published by Grapho Publications, LLC This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
ISSN 2379-1381 http://dx.doi.org/10.18383/j.tom.2019.00999

A8 TOMOGRAPHY.ORG | VOLUME 5 NUMBER 1 | MARCH 2019

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.18383/j.tom.2019.00999
http://WWW.TOMOGRAPHY.ORG


QIN Benchmarks for Clinical Translation of
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The Quantitative Imaging Network of the National Cancer Institute is in its 10th year of operation, and re-
search teams within the network are developing and validating clinical decision support software tools to
measure or predict the response of cancers to various therapies. As projects progress from development ac-
tivities to validation of quantitative imaging tools and methods, it is important to evaluate the performance
and clinical readiness of the tools before committing them to prospective clinical trials. A variety of tests, in-
cluding special challenges and tool benchmarking, have been instituted within the network to prepare the
quantitative imaging tools for service in clinical trials. This article highlights the benchmarking process and
provides a current evaluation of several tools in their transition from development to validation.

INTRODUCTION
A distinguishing advantage of any research network is the
opportunity for the ensemble of member teams to collaborate in
areas of shared interest, addressing common scientific or tech-
nological problems, to compare individual approaches, and ul-
timately to build consensus. As a result, the ensemble of teams
in a research network is often greater than the sum of its parts.
For the past 10 years, the National Cancer Institute (NCI) Quan-
titative Imaging Network (QIN) has provided a network environ-
ment where the development and validation of quantitative
imaging (QI) analysis software tools designed to measure or
predict response to cancer therapies in clinical trials have been
pursued. The motivating hypothesis for the QIN has been that
clinical trials in systemic or targeted chemo-, radiation-, or
immunotherapies can benefit from the inclusion of QI methods
in the treatment protocols. These methods involve the extraction
of measurable information from medical images to assess the
status or change of a disease.

To date, 36 multidisciplinary teams from academic institu-
tions across the United States and Canada have participated in
the NCI-funded research program. The current number of teams
supported by the network is 20. These research teams discuss
and resolve common challenges such as imaging informatics
activities, clinical trial design and validation planning, and data
acquisition and analysis issues, to name only a few. At the same
time, each team is required to make technical and clinical prog-
ress on its individual research project.

The interest in QI as a method to gauge tumor progression or
predict response to therapy predates the QIN. An early attempt at
extracting numeric information from clinical images came in
the form of RECIST (Response Evaluation Criteria in Solid Tu-

mors) in 2000 (1, 2), based on earlier guidelines first published
by the World Health Organization in 1981 (3). The RECIST
criteria used a single straight line drawn across the widest
dimension in a tumor image to provide a quantitative measure
of tumor size. Size, suitability, and the number of lesions to be
measured were stated in the original guidelines, and later
revised in version 1.1 (4). Response criteria, measured by the
change in linear dimension, were established to determine if the
tumor was in complete response, partial response, or stable or
progressive disease.

Although tumor shrinkage is an obvious desirable response
to cancer therapy, it is not the only response that can occur, or
in some cases, the response may be delayed in appearing (5).
Furthermore, in a metastatic cancer setting a limited set of target
lesions, as prescribed in RECIST 1.1, may not represent the
overall tumor burden or response to therapy (6). These limita-
tions restrict the usefulness of RECIST in some clinical trials.
Often, immunotherapy trials, for example, show that complete
response or stable response can occur after an initial increase in
tumor burden (7, 8). Conventional RECIST criteria early in the
therapy run the risk of labeling this initial increase as tumor
progression, failing to account for the delayed onset of antitu-
mor T cell response. Thus, a therapy under study in a clinical
trial can be seen as failing. This has led to the development of
iRECIST guidelines for response criteria in immunotherapy
trials (9).

QI tools being developed and validated by QIN research
teams measure far more than simple unidimensional tumor size,
and the articles in this special issue of Tomography highlight a
number of them. Physical attributes of tumors such as hetero-
geneity, diffusion and perfusion, and metabolic activity are
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being added to the more traditional size and shape measure-
ments of QI to determine response to therapy. These attributes
have been used in machine-based modeling studies driven by
imaging data to characterize tumor growth (10-13). In addition,
machine learning radiomics approaches for high-throughput
extraction and analysis of quantitative image features are pro-
viding an even richer set of image parameters. These include
intensity, texture, kurtosis, and skewness from which to extract
measurement and prediction information on tumor progression
(14-16).

Background
If QI is to be useful in clinical trials as a method to measure or
predict response to therapy, the methods must be developed on
clinically available platforms such that the final validated tools
would have value in multicenter clinical trials. To this end, the
NCI QIN program was initiated in 2008. The support mechanism
chosen for this effort was the cooperative agreement U01 mech-
anism. Here, successful applicants agree to collaborations and
conditions established by NCI program staff. In the case of the
QIN, these conditions include participation in a network of
teams, joining in monthly teleconference meetings, and collab-
orating in several working groups.

Applications to the QIN are subject to the NIH peer-review
process conducted 3 times each year. As a result, the network
teams enter the program at different times and are thus at
different stages in their tool development and validation at any
given point in time. This creates a need to qualify the degree of
development and validation each quantitative tool has attained.
Accordingly, a system of benchmarking to assess tool maturity
has been implemented.

Clinical Translation
The process of translating ideas and products from laboratory
demonstration to clinical utility is the exercise of transferring
stated features of the idea or product into realized benefits to the
user. For example, the stated feature of improved sensitivity or
specificity in an imaging protocol can translate into improved
personalized care in the clinic. The tool developer must be aware
of the nature of the clinical need for such a tool. Likewise, the
clinical user must be realistic regarding the performance char-
acteristics needed in a clinical decision support tool.

To ensure a strong connection between developer and clin-
ical user, each QIN team is required to have a multidisciplinary

composition that brings expertise in imaging physics and radi-
ology along with informatics, oncology, statistics, and clinical
requirements to the cancer problem being addressed. This gives
each team multiple perspectives on the challenges of advancing
decision support tools through the development and verification
stages and on to the clinical validation stage.

Translation is not a simple move from bench to bedside. It
requires a constant check on progress with a compass heading
set by clinical need. There must be a set of guiding milestones to
point the way through the translation landscape and to measure
progress along the way. This, however, can be very difficult in a
network of research teams, where each team is focused on a
different imaging modality or approach and cancer problem.

A guiding pathway for QIN teams in this translation process
continues to be the use of benchmarks for measuring progress
toward clinical utility. Even though each team is working on a
different application of QI for measurement or prediction of
response to cancer therapy, they all share the challenges of
bringing tools and methods into clinical utility. The benchmarks
offer a ubiquitous pathway for all teams to move toward clinical
workflow. As such, the benchmarks measure the tasks on the
development side of the translation. There is no doubt that a set
of benchmarks could be established for monitoring progress on
the clinical side of the translation issue, but that is not a part of
the QIN mission.

Figure 1 shows a schematic pathway from initial concept
and development of tools and methods for clinical decision
support all the way to final clinical use. The demarcations show
that the benchmark grades represent milestones in the develop-
ment toward the clinical use. The details of the benchmarks and
the requirements to achieve each are given in the next section.

Benchmarking
For each team, the transition from the activities of tool devel-
opment to clinical performance validation is a central part of the
research, but this does not occur in a sudden step. There is a
period where prototype tools are tested against retrospective
image data from archives such as The Cancer Imaging Archive
(TCIA) (http://www.cancerimagingarchive.net/) or other data
sources to objectively assess tool performance. The benchmark-
ing initiative allows investigators the opportunity to adjust their
algorithms before committing to a specific prospective clinical
trial.

Figure 1. Quantitative Imaging
Network (QIN) benchmarks, de-
scribed in the text and in Figure
2, designate key milestones to-
ward the clinical translation of
quantitative imaging (QI) tools
from laboratory prototype (A) to
scale up and optimization (B) to
clinical use (C).
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Another initiative embraced by the QIN team members
during their period of initial verification of tool performance has
been team challenges. Here, several teams with sufficiently
developed tools with similar quantitative measurement func-
tions (segmentation, volume metrics, volume transfer constant,
Ktrans, measurements, etc.) use a common data source, divided
into training and test data sets, to determine and compare
task-specific tool performance related to determining or predict-
ing the therapeutic response. Within the QIN, these activities are
referred to as challenges and collaborative projects (CCPs) (17)
and have proven very useful in guiding the development of QI
tools and analytic methods in preparation for more complete
clinical validation studies. CCPs have been conducted at various
points along the development pipeline, from basic concept to
technical verification and preliminary clinical validation. De-
scriptions of CCP tasks, project design, and results have been
disseminated through several peer-reviewed scientific publica-
tions (18-28).

The CCP activities highlighted the need to create a method
for gauging the degree of development a tool had attained at any
specific timepoint. This would help to evaluate challenge results
when tools with widely different levels of development partici-
pated. To gauge the level of development for tools in the QIN, a
benchmarking process was developed. A Task Force, comprising
QIN members, was charged with the task of developing a system
to stratify the level of progress made by teams in their efforts to
develop QI tools for clinical workflow. In the context of QIN
activities, a tool can be a software algorithm, a physical phan-
tom, or a digital reference object used in the production or
analysis of QI biomarkers for diagnosis and staging of cancer
and for the prediction or measurement of response to therapy.

The Task Force developed QI Benchmarks as standard labels
that signify the development, validation, and clinical translation
of quantitative tools through a 5-tier benchmark system as
shown in Figure 2 (29): pre-benchmark (level 1), basic bench-
mark (level 2), technical test benchmark (level 3), clinical trial
benchmark (level 4), and clinical use benchmark (Level 5). In
general, requirements for each benchmark designation require a
peer-reviewed publication, where the scientific goals, methods,
and results of the QI biomarker development or analysis are
described. A benchmark is not automatically conferred on a QIN
tool. The developer must make an application which includes
the required information for that benchmark and conduct a
discussion of the objective performance claim for the bench-
mark, best practices, and current limitations of the tool. In
addition, it is important to note that candidates for each of the
benchmarks must have fulfilled the requirements for the prior-
level benchmark but not necessarily obtained it. The Coordinat-
ing Committee of QIN, consisting of the chairs of each of the
Network Working Groups (30) and certain NCI program staff,
reviews each benchmark application. If an application for a
benchmark is rejected, the applicant will be allowed to address
the concerns and resubmit the application.

The establishment of this benchmarking process will help to
advance the field of QI in oncology by recognizing QI tools
entering QIN (benchmark level 1), encouraging QIN investiga-
tors to participate in objective performance evaluation of their
tools and methods (benchmark level 2), to streamline validation

through dissemination of appropriately developed tools and
methods to test sites (benchmark level 3), and to promote par-
ticipation in oncology clinical trials (benchmark level 4) by
providing objective evaluation of tool development to allow
more accurate assessment or prediction of cancer therapies and
eventual clinical use (benchmark level 5). It is anticipated that
this initiative will help in proper placement of advanced tools
and methods into prospective clinical trials and will streamline
the process of translating such tools into the broader clinical
community with adoption by industry.

RESULTS
The current catalog of QIN tools contains 67 clinical decision
support tools in various stages of development. Because of the
staggered entrance of teams into the network, progress in de-
velopment is not uniform across the network. This has created
the need for benchmarking as a measurable way to evaluate tool
development status. Of the tools listed in the catalog, there are
�12 that are to the point of entering the clinical domain and
qualifying for benchmark level 4 or 5.

Image segmentation of tumor from surrounding tissue is an
important tool function and serves as a first step in determining
treatment planning regimens in oncology and many quantita-
tive measurements of tumor status. Several QIN teams are de-
veloping segmentation tools for various applications. One such
tool developed at Columbia University (New York, NY) performs
image segmentation on solid tumors and has been shown in
lung, liver, and lymph nodes as a semiautomatic software tool.
The segmentation of magnetic resonance imaging (MRI) and/or
computed tomography (CT) images across multiple slices yields
quantitative information on tumor volume (31-33) and has been
used in several clinical trials. This tool can be integrated into
diagnostics, radiation-treatment planning, and tumor response
assessment on commercial workstations.

Volumetric measurement of breast cancer tumors using
dynamic contrast-enhanced MRI has been developed by the QIN
team at the University of California at San Francisco (San
Francisco, CA). The tool is an image processing and analysis
package based on dynamic contrast-enhanced MRI contrast
kinetics and has been approved on a commercial platform. It has
proven useful in clinical trials performed by several groups in
the NCI clinical trials network (34, 35). In addition to the anal-
ysis of algorithm performance, the validation of a breast phan-
tom design has been reported (36). Features of the software
package include image reconstruction, image registration, seg-
mentation, and viewer/visualization. A commercial version is
being used in �20 I-SPY clinical sites.

Auto-PERCIST (Positron Emission Tomography [PET] Re-
sponse Criteria in Solid Tumors) is a software package for PET
imaging and can provide clinical decision support through im-
age segmentation, viewer/visualization, and response assess-
ment. Similar to RECIST, the PERCIST package focuses on ana-
lyzing fludeoxyglucose-PET scans and evaluates if the study
was performed properly from a technical standpoint. It estab-
lishes the appropriate threshold for the standardized uptake
value corrected for lean body mass (SUL) evaluation of the
lesion at baseline. Auto-PERCIST has been used to provide
clinical assessment of therapy response in multicenter evalua-
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tions both here in the United States and in Korea, and a release
of Auto-PERCIST for European oncology trials is planned. Al-
though not completely developed under the QIN program, many
of the features found in Auto-PERCIST were created and vali-
dated in the QIN program by teams originally at the Johns
Hopkins University (Baltimore, MD) and currently at Washing-

ton University (St. Louis, MO). This tool has been used in several
multicenter clinical trials, and details of its performance can be
found in several publications (37-40).

Clinical support for evaluating tumor response can come in
many forms. It be the algorithm, phantom, or digital reference
object for direct analysis of images, and it can also be the

 

Pre Benchmark 

• QI product, defined as a so�ware tool, a physical, or a digital phantom, used for produc�on or analysis of a 
candidate QI biomarker (based on imaging features), for diagnosis or staging of cancer, for measurement or 
evalua�on of response to therapy.  
 

• Requirements:  Peer-reviewed publica�on, (or patent) describing the product, and associated data set from 
phantom or a single site clinical study.          
       Cer�ficate designa�on- 

Basic 
Benchmark 

• QI product, fulfilling  requirements for a pre-Benchmark, that has par�cipated in a CCP, within or outside of QIN, 
and is made publicly available for example through GitHub, Docker Hub, or as an executable code (in case of 
so�ware tools), or through ins�tu�onal Material Transfer Agreements.  
 

• Requirements:* Peer-reviewed publica�on, describing product and its performance in CCP.   
       Cer�ficate designa�on- 

Technical Test  
Benchmark 

• QI product, fulfilling  requirements for a Basic Benchmark, that has been tested by one or more independent 
academic or industry groups (the ToolX CCP).  
 

• Requirements:* Publica�on, led by the test team, describing func�onality, performance, and limita�ons, on 
na�ve and non-na�ve pla�orms, reference (common) and independent data sets.    
       Cer�ficate designa�on- 

Clinical Trial 
Benchmark 

• QI product, fulfilling  requirements for a Technical Test Benchmark, that has been used or cross-checked in a 
clinical trial through the NCI Na�onal Clinical Trials Network, or other independent clinical trial mechanism. 

• Requirements:* Peer-reviewed publica�on, describing product performance and use case in a clinical trial.  
             
       Cer�ficate designa�on- 

Clinical Use 
Benchmark 

• QI tool, fulfilling  requirements for a Clinical Trial Benchmark, that has been used in the clinic to acquire clinical 
data and/or evaluate a quan�ta�ve metric. 
 

• Requirements:* Peer-reviewed publica�on describing the u�lity and performance in a specific clinical applica�on
             
       Cer�ficate designa�on- 
 

Figure 2. Five levels of QI benchmark for labeling of QI products. *In addition to the requirements listed for each level,
candidates for benchmarks must have fulfilled the requirements for the prior-level benchmark, but not necessarily ob-
tained that benchmark, to be considered for the current benchmark level.
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workspace in which the software operates. Such is the case for
ePAD, a Stanford University (Palo Alto, CA) web-based image
viewing and annotation platform to enable deploying QI bio-
markers into clinical trial workflow (41). It supports applications
such as data collection, data mining, image annotation, image
metadata archiving, and response assessment. This publicly
available platform predates QIN, but many of the current quan-
titative functionalities of ePAD have been installed and vali-
dated under QIN support.

CONCLUSIONS
The list of benchmarked tools in QIN is growing. Constant
updates are being made to the catalog as new QIN teams enter
the network and existing teams progress in their development
and validation of their QI tools in support of clinical trials (42,
43). This issue of Tomography highlights several QI tools and
studies in the QIN. As the network moves forward, it has begun
to focus on coordinated ways to approach clinical trial groups
and interested commercial parties.
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Noninvasive imaging methods are sought to objectively predict early response to therapy for high-grade gli-
oma tumors. Quantitative metrics derived from diffusion-weighted imaging, such as apparent diffusion coeffi-
cient (ADC), have previously shown promise when used in combination with voxel-based analysis reflecting
regional changes. The functional diffusion mapping (fDM) metric is hypothesized to be associated with vol-
ume of tumor exhibiting an increasing ADC owing to effective therapeutic action. In this work, the reference
fDM-predicted survival (from previous study) for 3 weeks from treatment initiation (midtreatment) is compared
to multiple histogram-based metrics using Kaplan–Meier estimator for 80 glioma patients stratified to re-
sponders and nonresponders based on the population median value for the given metric. The ADC histo-
gram metric reflecting reduction in midtreatment volume of solid tumor (ADC � 1.25 � 10�3 mm2/s) by
�8% population-median with respect to pretreatment is found to have the same predictive power as the ref-
erence fDM of increasing midtreatment ADC volume above 4%. This study establishes the level of correlation
between fDM increase and low-ADC tumor volume shrinkage for prediction of early response to radiation
therapy in patients with glioma malignancies.

INTRODUCTION
Clinical oncology trials actively seek robust radiological mark-
ers of early response to cancer therapy to noninvasively guide
patient treatment plans. By measuring water mobility known to
be altered by tissue cellular constituents (1-3), diffusion-
weighted imaging (DWI) is able to provide information on
changes in tumor cellular density related to cytotoxic therapy
response (4-7). Growth of viable tumor leads to increased cell
density and reduced water mobility, while effective therapy
decreases cell density and increases water mobility. Higher wa-
ter mobility independent of therapy is also observed for necrotic
tissue (8, 9). DWI measurements are typically represented as
quantitative parametric diffusion maps of the apparent diffusion
coefficient (ADC) based on an assumed monoexponential DWI
signal decay with increasing diffusion-weighting strength (de-
noted by b-value) (5-7, 10). The therapy-related changes in the
ADC maps can be quantitatively characterized spatially by the
functional diffusion map (fDM) method within the general class

of parametric response mapping (PRM). These approaches
deal with tumor heterogeneity to display significant regional
change of treatment responsive/resistant voxels, while sup-
plying a global quantitative response metric (11-13). PRM
fDM has been shown to allow earlier prediction of glioma
therapy response and more accurate prediction of survival
relative to conventional neuroimaging metric (12). To pro-
vide robust alternative to invasive biopsies, the predictive
power of this promising method needs to be linked to changes
in tumor histopathological properties.

The fDM method (13) generally requires robust spatial reg-
istration of tumor volumes between longitudinal scans, which is
potentially dependent on specific registration algorithm param-
eters and thus may be prone to introducing additional repeat-
ability errors due to variation in image registration workflow.
The method also relies on precise tumor region/volume-of-
interest (ROI/VOI) definition and on matching voxels during
potentially rapid tumor growth or shrinkage. By virtue of the
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underlying statistical assumptions (14), fDM analysis includes
thresholding for significant change, which can be nonspecific to
the ADC range and tumor density as was originally proposed in
(13). Notwithstanding demonstrated promising predictive value
of the fDM metrics (11, 12), its direct relation to the biophysical
properties of dense versus necrotic tumor volumes has not yet
been clearly established. In principle, significant changes of fDM
may occur over the full range of ADC values (both for restricted
and less restricted diffusion (1)).

An alternative approach that forfeits retention of spatial
origin of voxels within tumor is to perform histogram analysis
of ADC voxel values (6, 15). Intralesion heterogeneity is retained
by the histogram, although direct spatial identification of re-
sponsive/resistant regions is lost. The histogram analysis ap-
proach has several benefits. First, this approach removes depen-
dence on technical performance of an image volume registration
step, as well as assumptions that regions of rapid tumor growth/
shrinkage are adequately coregistered. Second, the ADC histo-
gram inherently facilitates segmentation of tumor based on
tissue density reflected by water mobility (6). Third, this also
allows direct identification of naturally high water mobility
within cystic necrotic tumor tissue present before initiation of
treatment to potentially distinguish from additional necrosis (9)
resultant from cytotoxic treatment.

The purpose of the present study was to evaluate predictive
power of several histogram-based ADC metrics and their corre-
lation to fDM using quantitative DWI data from a common
cohort of patients with glioma treated by chemoradiation. Be-
cause the overall objective was a technical comparison of the
metrics, image processing and image segmentation were held
constant across metrics derivation, and “survival” was used as
the sole clinical outcome.

METHODOLOGY
This study analyzed Kaplan–Meier (KM) survival prediction for
multiple ADC histogram metrics versus reference fDM-derived
from quantitative DWI data including pretreatment (preTx) and
3-week midtreatment (midTx) imaging of a cohort of patients
with high-grade glioma that underwent chemoradiotherapy
treatment with longitudinal radiological surveillance (12). The
baseline preTx scan was acquired postsurgery/biopsy before the
start of treatment. The survival was assessed from the time of
the diagnosis. All quantitative DWI and statistical analysis was
performed using home-built routines developed in MATLAB 7
(MathWorks, Natick, MA). KM estimate of cumulative distribu-
tion function (CDF) for survival probability was generated using
MATLAB built-in “ecdf” routine. The KM stair-step graphs for
CDF censoring visualization were generated using MATLAB
Central “MatSurv” function (16).

Patient Cohort
Details on patient cohort, treatment schedule, and diffusion
scans are previously reported (12). Informed consent for images
and medical record use for research was approved by institu-
tional review board and renewed over the study period from
2000 to 2011. In total, 25 additional consented study subjects
(scanned between 2007 and 2011) with grade 3 and 4 primary
brain tumors were included into the present analysis and were

added to the 60 previously analyzed (2000 to 2006) (12). Overall
patient demographics, pathology grade, treatment plans, response
status, and imaging schedule were not significantly different from
the original study and are not detailed here. Both patient survival
(median months, 13.7 and 14.5) and pathology grade (3-to-4 ratios,
28% and 25%) were consistent between acquisition-date sub-
groups (Student’s t-test, P � .7), ensuring nominally unbiased
clinical outcome measures of the combined group. Only preTx and
3-week midTx imaging were included in this study owing to pre-
viously demonstrated relevance for early response survival predic-
tion by fDM (12). Only survival was used and no other clinical
outcomes such as time-to-progression were considered.

Imaging Studies
Clinical MRI scans including quantitative diffusion MRI and
standard MRI (fluid attenuation inversion recovery, T2-
weighted, and T1-weighted with gadolinium enhancement
[T1Gd] and without Gd enhancement) were performed for all
imaging endpoints on 1.5 T MRI system (General Electric,
Waukesha, WI; n � 45 patients) and on 3 T MRI scanner (Philips,
Best, The Netherlands; n � 40 patients). The 75% of the initial
(2000–2006) study scans were performed on1.5 T, while 3 T
scanner system was used exclusively for the (2007–2011) study
subgroup. Consistent with the nominal independence on the
acquisition-date, survival and pathology grade were not biased
by the scanner subgroups (P � .3).

DWI protocol prescribed single-shot echo-planar imaging
acquisition of three orthogonal–axial DWI scans with b-values � 0
and 1000 s/mm2 using a 16-channel head-coil. On the 1.5 T
system, 24 6-mm axial-oblique sections were acquired using a
22-cm field of view and 128 matrix (voxel size � 17.7 mm3)
repetition time � 10 000 ms; echo time � 71 to 100 ms, and
number of averages (NAV) � 1. On the 3 T system, at least 28
4-mm axial–oblique sections were acquired through the brain
using a 24-cm field of view and 128 matrix (voxel size � 14
mm3; repetition time � 2.636 milliseconds; TE � 46 ms; NAV �
1 for b � 0, and NAV � 2 for b � 1000 s/mm2. Parallel imaging
(sensitivity-encoding factor � 3) was used at 3 T to reduce spatial
distortion. PreTx and midTx scans for a given patient were per-
formed on the same system.

ADC Parametric Map Generation
The diffusion images for the three orthogonal directions were
combined into trace DWI to calculate an ADC map. All acquired
data were stored and distributed in Digital Image Communica-
tion in Medicine (DICOM) format (17). ADC was fit as a slope of
log-signal DWI as a function of b-value up to bmax � 1000
s/mm2. For previously published data subset (12), image regis-
tration volumes and tumor segmentations were reused from
prior analysis. For additional study subjects, the resulting low
b-value, high b-value, and ADC maps were exported as Meta-
image Header (MHD) format (18) for volumetric spatial registra-
tion to the anatomical pretreatment T1Gd images using the
Elastix toolkit (19) with full-affine transformation. The low
b-value DWI volume was used to drive image registration using
the mutual information figure of merit, and the resultant spatial
transformation was automatically applied to the corresponding
high b-value and ADC volumes. Tumor-encompassing ROIs pre-
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viously defined by two experienced (�20 years) radiologists on
the T1Gd images (coregistered to ADC maps) were imported into
3D Slicer (20) and converted to MHD ROI labels. These MHD VOI
masks were then imported to MATLAB and applied to ADC maps to
generate histograms of voxel ADC values within the defined tumor
VOI (Figure 1). Additional VOIs (median volume, 5.4 cm3; range,
3.6–7.6 cm3) were defined on 3 slices for frontal normal-appearing
white matter (contralateral to tumor) to confirm negligible system-
specific ADC bias (21, 22) in two scanner subgroups [median ADC
(�10�3 mm2/s): 0.785 (1.5 T) and 0.789 (3 T); P � .19].

ADC Histogram Metrics
Histogram “volume” metrics (in cubic centimeter units) were
generated by numerically integrating the voxels up to specified
ADC thresholds (without reference to spatial location other than
being within the specified tumor VOI) and multiplying by the

known image voxel volume. The upper thresholds for low-ADC
histogram portion (presumably reflecting more cellular-dense tu-
mor) were sampled from 0.25 to 1.5 in steps of 0.25 (�10�3 mm2/s).
The upper sampling bound of 1.5 (�10�3 mm2/s) was set to the
previously published ADC value for necrotic tumor tissue (8). The
standard whole-tumor histograms metrics, including ADC mean,
median, and standard deviation were likewise evaluated for preTx
and midTx imaging points separately and for their fraction-change
with respect to preTx. The thresholds for survival-based therapy
response prediction of each ADC histogram metric were dichoto-
mized by population median values.

fDM Reference Metrics and KM Analysis
fDM analysis was performed as previously described (12). Only
voxels present both in preTx and midTx tumor VOIs were strat-
ified according to their change in ADC value (Figure 2, A and B)

Figure 1. Left vertically arranged images (A, D) show ADC maps for preTx and midTx imaging time-points of 2 patients
with glioma that responded favorably (A) and did not responded (D) to chemoradiation therapy. Common scale for the
ADC maps is indicated by the color bar. The center panes (B, E) illustrate the corresponding tumor volume ADC histo-
grams (preTx: red, and midTx: blue) and tumor voxel volumes (filled) below ADC threshold of 1.25 (�10�3 mm2/s).
The corresponding integrated volumes of the dense tumor are listed in the legend. The spatial location of thresholded
histogram voxels is overlaid in red and blue on a single representative slice of each patient preTx and midTx T1Gd im-
ages on the right in (C, F), used as a reference for tumor ROI definition.
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into significantly increased (Vi, red, ADC change � 0.55 � 10�3

mm2/s), decreased (Vd, blue, �0.55 � 10�3 mm2/s), and the
remainder unchanged (Vo, green, within the 0.55 � 10�3 mm2/s
95% confidence interval [CI]). The total percentage of tumor
with significant increase in diffusion value was calculated as
100% � Vi/(Vi � Vo � Vd) and used as the reference fDM
biomarker.

The KM survival probability analysis was then performed
for the choice metrics with predetermined (population-median)

thresholds and the corresponding log-rank P-values (PKM). Me-
dian fDM threshold was Vi � 4% (PKM � 0.0008; Figure 2C;
magenta KM line), which reasonably agreed with the opti-
mized fDM threshold of 4.7% from the previous study (12)
corresponding to maximum area under (AUC) receiver oper-
ating curve (ROC). Note that compared to the typical stair-
step graphical representation (Figure 2C), the actual KM CDF
curves would terminate before the last “stair-step” to exclude
(unchanging) probability from the last censored patients (eg,

Figure 2. fDM metrics determined from midTx versus preTx ADC PRM scatter plots is overlaid on the T1Gd image inserts for
the same two patients [responder (A) and nonresponder (B)] as in Figure 1 histograms. The dashed diagonal lines indicate
95% CI for the change encompassing green voxels corresponding to tumor regions not altered by therapy. The solid yellow
line corresponds to the perfect fDM correlation. Red and blue areas mark tumor voxels with respective significant increase
and decrease in ADC midTX verus preTx (summarized in the legends). (C) shows stair-step graph for reference fDM KM sur-
vival analysis of responders (magenta) and nonresponders (cyan) based on a median response threshold of 4% fDM-increase
(magenta KM stair-step trend) for the whole glioma study population. Magenta and cyan KM trends correspond to the tumor
fDM, respectively, above and below median response threshold. Vertical tick-marks along KM trends indicate individual pa-
tients whose survival times have been censored. Dashed vertical line corresponds to the minimal survival time included into the
corresponding KM cumulative distribution function (CDF) probability analysis (excluding survival for the late censored
patients).
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at minimum CDF probability values of 0.07 and 0.3 for Figure
2C cyan and magenta trends, respectively).

Predictive power of each KM estimator was quantified by
the mean cumulative probability difference (mCPD) between KM
CDF curves (0.21 for reference fDM in Figure 2C). The KM curves
for each sampled ADC metric were linearly interpolated to the
common time-since-diagnosis axis corresponding to the fDM
reference. The time-dependent survival probability differences
between KM responder and nonresponder curves were corre-
lated to that of the fDM reference to determine metrics with
maximum KM “alignment” to the fDM. Pearson correlation,
RfDM, with PR � .05 was considered significant. KM-length was
determined as the minimal length of the two survival CDF
curves for each metric. Similarity index was assessed by product
of RfDM and KM-length ratio, LR, with respect to the fDM non-
responder reference (Figure 2C; vertical dashed line marks the
end of the corresponding CDF at 35 months).

RESULTS
Figure 1 illustrates ADC histogram analysis for the representa-
tive responder and nonresponder tumors using a low-ADC vol-
ume threshold of 1.25 � 10�3 mm2/s (ie, only counting voxels
within VOI having an ADC below this value) to favor inclusion
of dense tumor while excluding necrotic regions. The corre-
sponding ADC maps (Figure 1, A and D) depict quantitative
regional diffusion changes in response to therapy, more pro-
nounced for the responder (Figure 1, A–C) (survival, �27
months), relative to the nonresponder in Figure 1, D–F (survival,
�9 months). The low ADC tumor component between midTx
and preTx is quantified by a 9 cm3 decrease of integrated dense
tumor volume for the responder (Figure 1B) versus a 4 cm3

increase for nonresponder (Figure 1E). That is, the fractional
change in the low-ADC component of the histogram (59% de-
crease) owing to an upward shift, and shape change is enhanced
by exclusion of the high ADC contribution that attenuates
whole-tumor volumetric change (32% decrease) and whole-
tumor mean ADC (30% increase). The low-ADC histogram voxel
overlays on T1Gd images (Figure 1, C and F) further illustrate

how influence of the preexisting necrotic portion of the tumor is
reduced by this analysis. Conversely, the nonresponder had an
increase in dense tumor volume (by �28%) despite a reduction
in whole-tumor volume (�6%). Although only central-tumor
slices are shown in Figure 1, the histogram VOI analysis in-
cluded all tumor slices.

Figure 2 illustrates fDM analysis for the same 2 subjects
with diagnostic changes related to tumor response metrics (Fig-
ure 2A: Vi � 13%, red, and Figure 2B: Vd � 4.5% blue voxels)
observed predominantly toward lower ADC values (�1.5 �
10�3 mm2/s). The red or blue fDM voxels marking regions with
respective significant increase or decrease in ADC are evidently
clustered in the lower half of midTx versus preTx values for a
responder (Figure 2A, red) and nonresponder (Figure 2B, blue).
The voxels with significantly higher midTX ADC for responder
are distributed more uniformly across the ADC range of dense
and necrotic tumor ([1.25 � 2.25] � 10�3 mm2/s). However, the
necrotic portion of the tumor does not significantly contribute
to Vi in fDM analysis owing to high baseline ADC. Much lower
red fDM volume shifted toward higher (necrotic) midTX ADC
(�1.5 � 10�3 mm2/s) is observed for nonresponder in Figure 2B
with a noticeable increase in blue fDM voxel areas correspond-
ing to lower (dense-tumor) ADC (�1.25 � 10�3 mm2/s) for
midTx. As in Figure 1, fDM difference overlays are on a single
slice (Figure 2, inserts), whereas the fDM analysis spans the full
tumor volume.

The responder versus nonresponder KM thresholds for the
select test histogram characteristics based on population-wise
median values are summarized in Table 1 along with their KM
mCPD and percent-similarity index to the fDM CDF reference
(Figure 2C). These median thresholds were used for the corre-
sponding KM survival analysis shown in Figure 3. Other histo-
gram metrics (not included) has shown �50% absolute similar-
ity to fDM KM reference. Low predictive power was observed for
all preTx metrics (median response threshold, PKM � .1, mCPD �
0.06), reflecting dependence of response on the therapy admin-
istration. As expected, the corresponding KM CDF (Figure 3, A,
D, and G) have shown low absolute similarity (�35%) to refer-

Table 1. Population-wise Median KM Response-Threshold, mCPD, and Similarity to Reference KM fDM for
Select ADC Histogram Metrics

Metric Median KM Threshold (PKM
a) mCPD Similarity Index (%)

preTx Mean ADC (10�3 mm2/s) 1.19 (0.36) 0.06 20

midTx Mean ADC (10�3 mm2/s) 1.25 (0.0033) 0.2 13

% Changeb Mean ADC 1.83 (0.05) 0.17 51

preTx Volume (cm3) 32.5 (0.75) 0.05 35

midTx Volume (cm3) 27.6 (0.38) 0.1 13

% Changeb Volume �0.8 (0.011) 0.18 �87

preTx LowADC Volc (cm3) 17.6 (0.51) 0.04 �18.6

midTx LowADC Volc (cm3) 15 (0.047) 0.14 �86

% Changeb LowADC Volb �7.8 (0.0006) 0.22 �92.5

a P-value of population-wise median KM response-threshold.
b % Change � 100% (midTx � preTx)/preTx.
c Volume of tumor with ADC �1.25 � 10�3 mm2/s.
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ence KM fDM (Figure 2C) that was based on changes between
midTx and preTx. Significant enhancement of KM CDF separa-
tion (PKM � 0.003–0.05, mCPD � 0.17–0.2) was observed for
midTx ADC (Figure 3E) above a median response threshold of
1.25(�10�3 mm2/s), as well as for change in whole-tumor mean
ADC and total tumor-volume differences above versus below
1%–2% (Figure 3, C, E, and F). However, a notably high number
(fourteen) of censored patients (Figure 3E, magenta ticks) made
CDF estimate for midTx ADC metric unreliable beyond 21-
months survival (Figure 3E, dashed). The similarity of the frac-
tional volume KM to reference fDM was �87%, notably higher
than that for significant (midTx and fractional change) ADC
metrics, consistent with volumetric nature of the fDM analysis.
This is also consistent with observation of high KM similarity

(�86%) for low-ADC volume midTx (Figure 3H). The general
color “flip” for responder KM trends based on volume metrics
(Figure 3, A–C, G–I, cyan) versus ADC metrics (Figure 3, D–F,
magenta) reflected negative change in tumor volume versus
positive change in ADC metrics related to higher probability of
survival.

The best KM survival probability CDF estimator in Figure 3I
(with maximum mCPD � 0.22 and minimum PKM � 0.001) was
based on the fraction low-ADC volume shrinkage (cyan KM
trend). This estimator used combined tumor volume change and
tumor density (ADC-threshold � 1.25 � 10�3 mm2/s) informa-
tion. The fractional low-ADC volume metric clearly showed
similar predictive power (relative distance between KM CDF) as
reference fDM KM (Figure 2C, mCPD � 0.21) based on the

Figure 3. KM survival probability analysis results are summarized as stair-step graphs for conventional histogram met-
rics of total T1Gd tumor volume in (A–C), mean ADC in (D–F), and low ADC (�1.25 � 10�3 mm2/s) histogram volume
in (G–I). Magenta and cyan KM trends correspond to the tumor characteristics, respectively, above and below median
response threshold for the studied ADC histogram metrics. The color flip from cyan to magenta for responder KM trends
(with higher probability of survival) between mean ADC (D–F) and volume-based metrics (A–C, G–I) reflects negative
change in tumor volume versus positive change in ADC metrics. Time-dependent distance between KM curves reports on
predictive power of the studied histogram metrics. Vertical tick-marks along KM trends indicate individual patients whose
survival times have been censored. Dashed vertical line corresponds to the minimal survival time included into the corre-
sponding KM CDF probability analysis (excluding survival for the late censored patients).
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increased fDM PRM midTx (“magenta” trend). The reliable CDF
estimate for both reference (Figure 2C) and fractional low-ADC
volume (Figure 3I) was confirmed by a small number (two) of
patients censored beyond minimal CDF values of the corre-
sponding KM trends (at survival probabilities of 0.3 and 0.07).
The bulk of the KM differences between responders and nonre-
sponders was evidently related to the low ADC volume midTx
(Figure 3H), rather than preTX volume (Figure 3G), confirming
that the functional response was triggered by treatment. The
decreasing low-ADC volume midTX versus preTx (less than
�8%, PKM � 0.001) in Figure 3I, was significantly (negatively)
correlated to increasing fDM (�4%, PKM � 0.001) in Figure 2C
and Table 1 (�92.5%), confirming fDM relation to shrinking
tumor volume.

DISCUSSION
The decrease in low-ADC volume was found to be a good
predictor of KM survival (treatment response) most similar to the
fDM reference. The strong alignment between KM curves for
fDM and low-ADC volume metrics confirms that the early re-
sponse prediction power of increasing fDM likely stems from
decreasing volume of shrinking dense tumor observed as early
as 3 weeks after radiation therapy for glioma tumors. Interest-
ingly, the fDM population-median KM threshold for responders
versus nonresponders of 4% was still close to 4.7% that maxi-
mized AU-ROC as previously determined (12) despite the addi-
tional 25 subjects. Another supporting observation is that the
population-median response threshold for mean ADC-based KM
survival probability midTx corresponded to the dense tumor
low-ADC integration limit of 1.25 � 10�3 mm2/s. The proximity
of median thresholds for fractional ADC and tumor volume
changes to 0% likely reflected KM sensitivity to the sign of the
effect (increasing ADC and decreasing volume) rather than ab-
solute metric value. The fact that no significance was observed
for preTx low-ADC volume itself, suggested that midTx volume
change was indeed reflective of the therapy efficacy. This spe-
cific relation to reduction of the dense tumor ADC volume and
treatment option provided independent evidence for the bio-
physical origin of the fDM predictive power. Our analysis effec-
tively revealed that fDM portions with low-ADC midTx report
on the therapy response.

The main limitation of this study was that the data analysis
was restricted to only two imaging end points, precluding eval-
uation of relative longitudinal changes in the histogram metrics
over the full course of radiological surveillance. Furthermore,
the KM thresholds were not optimized by AU-ROC analysis or
cross-validation. These restrictions were intentional for the
largely technical aims of this study to determine the ADC his-
togram metrics that had early response prediction power similar
to the reference fDM, as shown by previous work (12), and to
maximize method consistency across histogram and fDM anal-
yses, reducing dependence on any residual study bias. For this
reason, ADC histograms were derived from the same coregis-
tered image sets and the same tumor segmentations as used to
generate the reference fDM metrics, even though ADC histogram
analysis can be performed on non-coregistered images. This
study design precluded evaluation of sensitivity of low-ADC

histogram-based segmentation to image registration-related er-
rors. For ADC histogram threshold method, the specific voxel
locations are less important, and hence higher immunity is
potentially expected to coregistration errors. This should be a
topic of a future study.

Others have applied alternative ADC histogram-based anal-
yses in the context of newly diagnosed (6, 10, 15) and recurrent
(23) glioblastoma to predict response to antivascular chemo-
therapy used alone or in combination with radiation treatment.
Technical aspects of histogram analysis varied. Bimodal mixed
normal distribution fitting of the whole tumor ADC histogram
into means of the low-ADC curve and high-ADC curve was
performed by Pope et al. (10, 15, 23). In contrast, Wen et al. (6)
analyzed specific percentile points of the ADC histogram. How-
ever, both methods consistently found greater predictive con-
tent in the low-ADC regime. Prediction metrics in both of these
alternative histogram approaches were expressed in physical
diffusion units (ie, square millimeter per second), whereas the
method presented in this study focused on volume (ie, in cubic
centimeter units) of ostensibly dense tumor defined by an ADC
below a specified value, 1.25 � 10�3 mm2/s.

The low-ADC volume approach presented here parallels
similar logic used to assess traditional response metrics based
on tumor shrinkage assessed by conventional neuroimaging
(24-26), although it exploits tumor density segmentation qual-
ities inherent in diffusion mapping. A common feature in these
various diffusion histogram approaches and fDM (or PRM) is a
framework to deal with tumor heterogeneity and to avoid inclu-
sion of preexisting cystic/necrotic portions of the tumor that can
attenuate sensitivity to therapeutic changes in viable tumor.
Response to treatment (or tumor progression) can be spatially
nonuniform as well, and fDM/PRM provides means to map
responsive/resistant/progression regions (11, 12, 27).

The current study design amplified ADC measurement sen-
sitivity to the therapeutic effect by performing longitudinal
patient surveillance scans on the same MRI system. Although
desirable, this level of control may be challenging in the clinical
setting. When multiple scanners are used, systematic biases may
increase between-scan variability (eg, due to spatial b-value bias
for anatomy at different offsets from isocenter (21, 22). For
longitudinal studies, these errors may potentially increase the
population histogram noise and attenuate the absolute ADC
measurement sensitivity to the therapeutic effect. In principle,
such systematic errors should be monitored similar to normal-
appearing white matter analysis in this study [or using phan-
toms with known ADC (21, 22)] and, when present, corrected
using MRI system gradient characteristics before population
ADC histogram analysis.

In conclusion, fDM changes diagnostic of early therapy
response for high-grade glioma tumors are confirmed using
comprehensive analysis of multiple ADC histogram metrics.
Reduction in solid (non-necrotic) tumor volume correlates with
low-ADC fDM changes. Histogram-based ADC segmentation
facilitates elimination of high-mobility (necrotic) tissue, allow-
ing for focusing on shrinkage of low-mobility (cellular-dense)
tumor regions.
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The aim of this study was to establish the repeatability measures of quantitative Gaussian and non-Gaussian
diffusion metrics using diffusion-weighted imaging (DWI) data from phantoms and patients with head-and-
neck and papillary thyroid cancers. The Quantitative Imaging Biomarker Alliance (QIBA) DWI phantom and
a novel isotropic diffusion kurtosis imaging phantom were scanned at 3 different sites, on 1.5T and 3T mag-
netic resonance imaging systems, using standardized multiple b-value DWI acquisition protocol. In the clini-
cal component of this study, a total of 60 multiple b-value DWI data sets were analyzed for test–retest, ob-
tained from 14 patients (9 head-and-neck squamous cell carcinoma and 5 papillary thyroid cancers). Re-
peatability of quantitative DWI measurements was assessed by within-subject coefficient of variation (wCV%)
and Bland–Altman analysis. In isotropic diffusion kurtosis imaging phantom vial with 2% ceteryl alcohol and
behentrimonium chloride solution, the mean apparent diffusion (Dapp � 10�3 mm2/s) and kurtosis (Kapp,
unitless) coefficient values were 1.02 and 1.68 respectively, capturing in vivo tumor cellularity and tissue
microstructure. For the same vial, Dapp and Kapp mean wCVs (%) were �1.41% and �0.43% for 1.5T and
3T across 3 sites. For pretreatment head-and-neck squamous cell carcinoma, apparent diffusion coefficient,
D, D*, K, and f mean wCVs (%) were 2.38%, 3.55%, 3.88%, 8.0%, and 9.92%, respectively; wCVs exhib-
ited a higher trend for papillary thyroid cancers. Knowledge of technical precision and bias of quantitative
imaging metrics enables investigators to properly design and power clinical trials and better discern between
measurement variability versus biological change.

INTRODUCTION
Malignant tumors of the head and neck (HN) region include a
diverse group of cancers in the oral cavity, nasopharynx, orophar-
ynx, hypopharynx, larynx, and paranasal sinuses; although sali-
vary and thyroid carcinomas are also located within the HN region,
they are typically thought of as separate tumors (1). HN tumors are
heterogeneous with complex anatomy ranging between oral cavity
to hypopharynx (2, 3). Accurate detection and delineation of tumor

extent is critical to optimize treatment planning; patients therefore
routinely undergo noninvasive imaging for careful assessment of
this complex anatomy by an experienced neuroradiologist (4).
Noninvasive magnetic resonance imaging (MRI) has served an
important role as a diagnostic test for initial staging and follow-up
of tumors in the HN region (5-8).

The quantitative MRI (qMRI) technique, diffusion-weighted
imaging (DWI), assesses the Brownian motion of water mole-
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cules at a cellular level (9). Apparent diffusion coefficient (ADC),
derived by fitting DWI data to a monoexponential model using
�2 b-values (ie, diffusion-weighting factor), reflects tumor cel-
lularity (10, 11). Repeatability of ADC has been tested in both
phantoms and solid tumors (12-15). In previous studies, ADC
has exhibited promise as a quantitative imaging biomarker (QIB)
of treatment response in HN cancer (16-20). The use of ADC is
helpful in differentiation between malignant and benign soli-
tary thyroid nodules and assessing tumor aggressiveness in
papillary thyroid cancer (PTC) (21, 22).

Recent literature reflects interest in acquisition of DWI data
using multiple b-values, which allows the measurement of both
water diffusion for higher b-values (�200 s/mm2) and vascular
perfusion fraction at lower b-values separately without contrast
agent injection (23, 24). Le Bihan et al. developed a biexponen-
tial model using multiple b-value DWI data and termed it “intra-
voxel incoherent motion” (IVIM) (25, 26), which has shown
utility for the assessment of treatment response in various can-
cers, including HN cancer (27, 28). Test–retest studies using
IVIM-DWI metrics in normal liver and metastases have a ten-
dency towards better repeatability of measurement of true dif-
fusion coefficient (D), whereas use of perfusion fraction (f) and
pseudo-diffusion coefficient (D*) are still exploratory in nature
(23, 29).

Underlying biological structures can alter the Gaussian dis-
tribution of the water diffusion as assumed in IVIM to be non-
Gaussian (NG) in nature (30). This NG behavior has been incor-
porated in the non-monoexponential diffusion kurtosis imaging
(DKI) model which provides the kurtosis coefficient (K) metric, a
surrogate QIB of tissue microstructure, in addition to diffusion
coefficient (31-33). Lu et al. incorporated the NG diffusion into
the IVIM-DWI model (NG IVIM-DWI) and provided estimates for
all the aforementioned quantitative imaging metrics (f, D, D*,
and K) (34).

QIBs are being used in oncology clinical trials to monitor
the effects of treatments, identify subjects likely to benefit from
treatment, and as trial endpoints. As compared with other mo-
dalities and endpoints, QIBs have the advantage of being non-
invasive and requiring little or no subjective interpretation.
Furthermore, for disease conditions with multiple treatment
options, early detection of nonresponders enables physicians to
consult patients about other treatment options earlier, to poten-
tially improve outcomes and limit adverse effects of ineffective
treatments.

Before QIBs can be used in clinical trials, their technical
performance must be assessed, similarly to how sensitivity and
specificity must be established for diagnostic tests (35). Techni-
cal performance includes precision, bias, and the property of
linearity. Perhaps the most important QIB performance metric is
precision, that is, the ability to provide the same, or nearly the
same, measurement value on repeated observations (36). Once
precision and performance metrics are established, they may be
used to formulate a clinical trial’s eligibility criteria, to deter-
mine the cut-point for defining true change over time, and to
compute the sample size required for the trial (37).

There is currently a paucity of repeatability literature for
DWI measurements in the clinical setting, particularly for HN
cancers and PTC. Hence, it is critical to perform test–retest

studies as the fundamental building blocks for QIB discovery
and clinical application of these more advanced quantitative
imaging methods. The objective of this study was to establish
the repeatability measures of quantitative Gaussian and NG
diffusion metrics using data from phantoms and from patients
with HN cancers and PTC.

MATERIALS AND METHODS
Quantitative DWI Phantom
The quantitative diffusion phantom (High Precision Devices,
Inc, Boulder, CO) developed by National Institute of Standards
and Technology (NIST)/Radiological Society of North America
(RSNA)-Quantitative Imaging Biomarker Alliance (QIBA) con-
sists of 13 vials filled with varying concentrations of polyvi-
nylpyrrolidone (PVP) in aqueous solution (38). The phantom
was specifically designed for quantitatively mapping isotropic
Gaussian diffusion of water molecules and generating physio-
logically relevant ADC values. The distribution of PVP concen-
trations in the phantom is as follows: 0% (vials 1–3), 10% (vials
4–5), 20% (vials 6–7), 30% (vials 8–9), 40% (vials 10–11), and
50% (vials 12–13). The space between the vials within the
phantom was filled with an ice-water bath at 0°C to eliminate
thermal variability across scanner locations and timepoints in
ADC measurements. In this study, we will focus on the measure-
ments obtained from 2 vials, that is, (1) water-only and (2)
PVP-20%, as they relate to data from the novel isotropic diffu-
sion kurtosis imaging (iDKI) phantom. Details of the NIST/QIBA
DWI phantom have been published previously (38, 39).

The newly developed iDKI phantom used in this study was
designed and fabricated by coauthors at the University of Mich-
igan (40). The phantom captures a range of in vivo kurtosis
values (Kapp ranges, 0.4–1.7) (31). Here we report data from 2

Table 1. Summary of Patient Characteristics

Patient Age (years) Gender
Primary
Cancer

1 63 M BOT

2 58 M NPC

3 59 M Tonsil

4 59 M Tonsil

5 60 M BOT

6 68 F BOT

7 61 F Hypopharynx

8 75 M BOT

9 55 M BOT

10 51 M PTC

11 44 M PTC

12 44 M PTC

13 48 M PTC

14 44 F PTC

Abbreviations: BOT, base of tongue; NPC, nasopharyngeal carcinoma;
PTC, papillary thyroid cancer.
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vials in the iDKI phantom: 1 vial containing chemical ceteryl
alcohol and behentrimonium (CA-BTAC), a vesicular suspension
formed by water solution of 2% CA-BTAC with other (minor)
stabilizing ingredients (vial #2 [V2]), and a negative control
consisting of a 20% solution of PVP in water (vial #4 [V4],),
similar to the vial in NIST/QIBA DWI phantom (41). The iDKI
phantom has been detailed in the poster presented at the NCI/
Quantitative Imaging Network (QIN) meeting (40), and its full
repeatability and long-term stability study is summarized in a
research paper by Malyarenko D et al. submitted to this issue of
Tomography.

The above 2 phantoms were studied to assess the technical
performance of the quantitative imaging metrics among the 3

participating sites. There was a need to compare the vials with
similar chemical composition for both the standard NIST/QIBA
DWI and novel iDKI phantoms to emphasize the differences
between the quantitative imaging metrics values for both diffu-
sion and kurtosis coefficients.

Patient Cohort
The institutional review board of Site 1 (Memorial Sloan Ketter-
ing Cancer Center [MSKCC]) approved this prospective study for
patients with head and neck squamous cell carcinoma (HNSCC)
and PTC and was compliant with the Health Insurance Portabil-
ity and Accountability Act. We obtained written informed con-
sent from all eligible patients. A total of 14 patients were
enrolled in the study between December 2016 and August 2017.
In total, 30 MRI examinations were performed for these 14
patients, which comprised 60 test–retest MRI data sets. Nine
patients with HNSCC were enrolled. All subjects had with met-
astatic nodes (M/F: 7/2, mean age: 59 years, range � 55–68
years) and underwent standard chemoradiation therapy (dose,
70 Gy). MRI examinations were performed before initiation of
the standard chemoradiation treatment (pre-TX) and during
treatment (intra-TX weeks 1 and 2) for patients with HNSCC.
One patient with pre-TX MRI did not participate in MRI exam-
inations during treatment. Five patients with PTC who under-
went surgery (M/F: 4/4, mean age: 47 years, range � 37–61
years) were studied. All patient characteristics are summarized
in Table 1.

DWI Data Acquisition
Quantitative DWI Phantom. Diffusion studies were performed

using the NIST/QIBA DWI phantom at 0°C on 1.5T and 3T
scanners using a 16-channel head coil at all 3 sites (Site 1
[MSKCC], Site 2 [Columbia University Irving Cancer Center;
CUMC] and Site 3 [University of Michigan; UMich]). Localizer
images were acquired for accurate positioning of the phantom.
DWI images were acquired using a single-shot echo planar
imaging sequence with 4 b-values (ie, b � 0, 500, 900, 2000
s/mm2) and the following parameters: repetition time (TR) �
15 000 milliseconds, echo time (TE) � minimum (109–110 mil-
liseconds), number of averages (NA) � 1, acquisition matrix � 128
� 128, field of view (FOV) � 220 mm, number of slices (NS) �
36, slice thickness � 4 mm, all 3 orthogonal directions at both
1.5T and 3.0T scanners. The total acquisition time for the mul-
tiple b-value DWI data acquisition was �2 minutes 30 seconds.

The iDKI phantom, designed and fabricated by Site 3 (UMich),
was imaged by all 3 sites at different field strengths of 1.5T

Figure 1. Box-and-whisker plot showing the test–
retest mean apparent diffusion coefficient (ADC �

10�3 mm2/s) values obtained from National Insti-
tute of Standards and Technology (NIST)/Quanti-
tative Imaging Biomarker Alliance (QIBA) polyvi-
nylpyrrolidone (PVP) diffusion phantom (at 0°C)
from the 3 different sites at 1.5T and 3T. The hori-
zontal line inside the box indicates median val-
ues. The bottom and top of the boxes indicate
25th and 75th percentiles of the values, respec-
tively. The differences between median values
across scanners reflect the differences in gradient
designs.

Table 2. Test–Retest Repeatability Measurement of the ADC for NIST/QIBA Phantom

Metrics
Chemical (PVP)
Composition

Site 1 Site 2 Site 3

1.5T 3T 1.5T 3T 1.5T 3T

ADC � 10�3

mm2/s
0% 1.13 	 0.008 1.12 	 0.002 1.14 	 0.012 1.14 	 0.01 1.11 	 0.007 1.09 	 0.002

20% 0.61 	 0.007 0.59 	 0.005 0.60 	 0.004 0.61 	 0.02 0.59 	 0.003 0.60 	 0.004

wCV (%)
0% 0.21 (	0.48) 0.15 (	0.34) 1.07 (	2.41) 0.84 (	1.90) 0.67 (	1.48) 0.22 (	0.49)

20% 0.24 (	0.09) 0.32 (	0.37) 0.71 (	0.85) 3.19 (	3.86) 0.33 (	0.39) 0.10 (	0.11)

wCV data in parentheses are lower and upper 95% confidence intervals.
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and/or 3T MRI scanners using a 16-channel head coil at ambient
temperature. Localizer images were acquired for accurate posi-
tioning of the phantom. DWI images were acquired using a
single-shot spin-echo echo planar imaging (SS-SE-EPI) se-
quence with 11 b-values (ie, b � 0, 50, 100, 200, 500, 800, 1000,
1500, 2000, 2500, 3000 s/mm2) and parameters on both 1.5T
and 3T scanners were kept similar as follows: TR � 10 000
milliseconds, TE � minimum (93–107 milliseconds), NA � 1,
matrix � 128 � 128, FOV � 220 mm, NS � 5, slice thickness �
5 mm, all 3 orthogonal directions. The total acquisition time for
the multiple b-value DWI data acquisition was �5 minutes 20
seconds.

Four repeatability experiments for the NIST/QIBA DWI phan-
tom in the study and 2 test–retests for iDKI phantoms with
physical repositioning of the phantoms after each diffusion
acquisition were performed.

Patient Cohort. MRI examinations were performed at Site 1
for patients with HNSCC on a Philips 3T MRI scanner (Ingenia,
Philips Healthcare, The Netherlands) with a neurovascular
phased-array coil (maximum number of channels: 20). Standard

T1W and T2W imaging was followed by a multiple b-value DWI
sequence (28). The DWI data were acquired using a SS-SE-EPI
sequence with 10 b-values (ie, b � 0, 20, 50, 80, 200, 300, 500,
800, 1500, 2000 s/mm2) with TR � 4000 milliseconds, TE � 80
(minimum) milliseconds, NA � 2, matrix � 128 � 128, FOV �
200–240 mm, NS � 8–10, and slice thickness � 5 mm. For
patients with HNSCC, DWI was acquired with full field of view
as part of the standard clinical imaging protocol. The total
acquisition time for the multiple b-value DWI data acquisition
was �5 min. Two multi b-value DWI data sets were acquired at
the same MR examination for each patient with HNSCC to test
for the repeatability of the derived quantitative imaging metrics.
Eighteen multiple b-value DWI data set were acquired at pre-TX
(week 0). In addition, 32 multiple b-value DWI data sets were
acquired at intra-TX week 1 and week 2 (during chemoradiation
therapy). A total of 50 multiple b-value DWI examinations
(pre-TX [9 patients], intra-TX week 1 [8 patients], and intra-TX
week 2 [8 patients]) were performed (2 MR examinations at each
session). As a note, these DWI data sets were acquired with full
FOV (phase FOV factor � 1.0).

Figure 2. Representative DWI mean signal intensity decay curve vs. b-value obtained from vials of ceteryl alcohol and
behentrimonium (CA-BTAC) and PVP-20% in iDKI phantom (scanned at ambient temperature) (A). The diamonds (black)
and circles (blue) represent the experimental data, the monoexponential fit is represented by solid blue and yellow lines,
and the solid red and dotted black lines are the fitted curves for the diffusion kurtosis model. Box-and-whisker plots show
the test–retest for mean values of diffusion coefficient (Dapp � 10�3 mm2/s) (B), and kurtosis coefficient (Kapp, no unit)
for the iDKI phantom (C). The horizontal line inside the box indicates median values. The bottom and top of the boxes
indicate 25th and 75th percentiles of the values, respectively. The differences between median values across scanners
reflect both different scanner room temperatures and system gradient designs.

Table 3. Test–Retest Repeatability Measurement of the Dapp and Kapp for Isotropic Diffusion Kurtosis Phantom

Metrics
Chemical

Composition 1.5T (Site 1) 3T (Site 1) 1.5T (Site 2) 3T (Site 3)

Dapp � 10�3

mm2/s
CA-BTAC 1.06 	 0.08 0.99 	 0.029 1.05 	 0.034 1.01 	 0.021

PVP20% 1.32 	 0.10 1.26 	 0.041 1.30 	 0.043 1.22 	0.024

wCV (%)
CA-BTAC 1.41 (	2.94) 1.18 (	2.32) 1.18 (	2.47) 0.70 (	1.41)

PVP-20% 1.01 (	2.67) 0.63 (	1.58) 0.31 (	0.79) 0.84 (	1.97)

Kapp
CA-BTAC 1.66 	 0.026 1.71 	 0.001 1.68 	 0.015 1.68 	 0.044

PVP-20% 0.06 	 0.003 0.03 	 0.005 0.05 	 0.023 0.05 	 0.006

wCV (%)
CA-BTAC 0.35 (	1.17) 0.42 (	1.41) 0.36 (	1.20) 0.43 (	1.43)

PVP-20% 19.35 (	2.21) 11.12 (	0.57) 7.13 (	0.64) 25.06 (	2.41)

wCV data in parentheses are lower and upper 95% confidence intervals.
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MRI examinations were performed at Site 1 for patients with
PTC (n � 5) on a 1.5T (n � 2) or 3T (n � 3) scanner (General
Electric, Milwaukee, WI), with a neurovascular phased-array
coil and consisted of standard T1W and T2W imaging scans
followed by multiple b-value DWI data acquisition. This was a
feasibility test for the MRI of patients with PTC, which was
performed as part of an ongoing research imaging protocol.
Data were acquired with reduced field of view (rFOV) DWI
technique, using a 2-dimensional spatially selective excitation
(42). The acquisition parameters of rFOV DWI scans with the
SS-SE-EPI sequence were as follows: 10 b-values (ie, b � 0, 20,
50, 80, 200, 300, 500, 800, 1500, 2000 s/mm2), TR � 4000
milliseconds, TE � 80 (minimum) milliseconds, NA � 2, ma-
trix � 128 � 64, FOV � 200–240 cm, NS � 8–10, slice
thickness � 5 mm, and phase FOV factor � 0.5. The total time
for rFOV DWI data acquisition was �5 min.

Repeatability measures were tested on the multiple b-value
DWI data sets obtained from patients with HNSCC at pre-TX,
and during intra-TX weeks 1 and 2 of standard chemoradiation
therapy. Pretreatment DWI repeatability data were obtained for
patients with PTC who underwent surgery.

DWI Data Analysis
All DWI data postprocessing and quantitative metrics map
generation, detailed below, were performed using in-house–
developed software entitled MRI-QAMPER (MRI Quantitative
Analysis of Multi-Parametric Evaluation Routines). The MRI-
QAMPER package includes the algorithm routines for DWI
data analyses (ADC, diffusion kurtosis, IVIM, and NG-IVIM),
implemented in MATLAB (The MathWorks, Natick, MA). The
MRI-QAMPER tool is approved by National Cancer Institute/
Quantitative Imaging Network (QIN) with pre-benchmark status,
which facilitates its use by other QIN site colleagues for analysis
of multiple b-value DWI data.

For NIST/QIBA DWI phantom data analysis, 3 distinct cir-
cular regions of interest (ROIs) were manually placed (9 mm in
diameter) on the selected vials, with water only and PVP-20%,
in ADC maps avoiding boundaries; the mean pixel value across
the ROIs in each vial was used to measure repeatability.

For iDKI phantom data analysis, 2 distinct circular ROIs
(12 mm in diameter, single-plane) were placed on vials with
CA-BTAC solution and PVP-20% in the phantom images; the
mean pixel value across the ROIs in each vial was used for the
test–retest study. To guarantee model convergence, a bmax
constraint value for fitting the kurtosis expression in the
CA-BTAC phantom vial was set to 1500 s/mm2 (bmax � Dapp �
Kapp �3) (43).

For DWI patient data, ROIs were manually delineated on the
DWI images (b � 0 s/mm2) on the metastatic neck node in
HNSCC, normal thyroid gland, and PTC. ROIs were placed on
thyroid glands avoiding obvious cystic, hemorrhagic, or calci-
fied portions, whereas for normal thyroid tissue, ROIs were
placed on the selected contralateral side to the PTC. ROIs were
contoured by an experienced neuroradiologist based on the
clinical information and T1W/T2W images using ImageJ (44).

Multiple b-value DWI data sets were analyzed using the
following models:

1. Mono-exponential (ADC): All b-value DWI signal inten-
sity data obtained from each voxel in the ROI were fitted to a

Figure 3. Representative intra-TX week 1 magnetic
images (MR) images of a patient with head and
neck squamous cell carcinoma (HNSCC) (76 years,
male). Diffusion-weighted (b � 0 s/mm2) image (A),
apparent diffusion coefficient (ADC � 10�3 mm2/s)
(B), diffusion coefficient (C) (D � 10�3 mm2/s), and
kurtosis metric maps overlaid on DWI (b � 0
s/mm2) image (D). Representative plot of the loga-
rithm of signal intensity vs. b-values (E). The circle
(black) represents the experimental data, and the
solid lines are the fitted curves with the monoexpo-
nential (red) and extended non-Gaussian (NG) intra-
voxel incoherent motion (NG-IVIM) model (blue).
Box-and-whisker plot shows the mean value of (F)
apparent diffusion coefficient (ADC � 10�3 mm2/s)
and the NG-IVIM model derived metrics: (G) diffu-
sion coefficient (D � 10�3 mm2/s and (H) kurtosis
coefficient (“K”). The bottom and top of the boxes
indicate 25th and 75th percentiles of the values,
respectively. The horizontal line inside the box indi-
cates median values. Note: Data were acquired
using standard full FOV DWI sequence.
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monoexponential model to calculate ADC (mm2/s) as follows
(45):

S(b) � S0e
�bADC (1)

where S(b) and S0 are the signal intensities with and without
diffusion weighting, and the quantity b is the diffusion-weight-
ing factor (s/mm2).

2. DKI: The signal intensity versus b-value DWI data were
fitted to non-monoexponential diffusion kurtosis imaging
model (DKI) of the following form (43):

S(b) � S0�e
�bDapp�

1

6
Kappb2D2

� (2)

where Dapp is the ADC (mm2/s) and Kapp (no unit) is a dimen-
sionless apparent kurtosis coefficient. Dapp and Kapp are as-
sociated with the NG behavior of a signal in tissue. As a note,
Kapp � 0 is equivalent to equation (1).

3. NG-IVIM: The signal intensity versus b-value DWI signal
were fitted to biexponential NG-IVIM DWI model as follows (34,
46):

S(b) � S0�fe�bD* � (1 � f)e
�bD�

1

6
Kb2D2

� (3)

Where D is the diffusion coefficient (mm2/s), perfusion fraction
(f), and D* is the pseudo-diffusion coefficient (mm2/s), and K is
the kurtosis coefficient.

The NIST/QIBA DWI phantom was analyzed using mono-
exponential diffusion model equation (1), the iDKI phantom
using DKI model [equation (2)], and HNSCC (tumor), and PTC
(tumor and normal) using DKI model [equation (2)] and ex-
tended NG-IVIM model [equation (3)]. Mean metric values of
ADC, DKI-derived metrics (Dapp and Kapp), and NG-IVIM-derived
metrics (D, D*, f, and K) calculated from each ROI were compared
between repeated measurements.

Statistical Analysis
Technical precision of QIBs was evaluated based on the frame-
work proposed by the RSNA/QIBA (https://www.rsna.org/
uploadedFiles/RSNA/Content/Science_and_Education/QIBA/
QIBA_Process_05Jan2015.pdf). The within-subject coefficient
of variation (wCV, %) was used as the measure of precision; it
was estimated from the phantom and clinical data as follows
(22, 47-49):

wCV (%) �
�w

�
	 100 (4)

where �w is the within-subject standard deviation and � is the
mean. A 95% confidence interval (CI) for the wCV was con-
structed using 
2 as the pivotal statistic as follows:

CI (95 %) ��N 	 wCV2


N,�
2

(5)

where N is the number of patients, each having 2 replicate
observations and 
N,�

2 is the �th percentile of the chi-square
distribution with N degrees of freedom. For the lower bound, �
is 0.975, and for the upper bound, � is 0.025. Bland–Altman
plots were constructed to measure the repeatability of the quan-
titative imaging metrics.

Statistical analysis for the data was conducted in R (50) and
MATLAB (The MathWorks, Inc., Natick, MA).

RESULTS
Quantitative DWI Phantom
Mean ADC values obtained from the NIST/QIBA DWI phantom
(scanned at 0°C) at all 3 different sites on 1.5T and 3T MRI
scanners are displayed in a box-and-whisker plot (Figure 1).
ADC values are reported for 2 vials only (water-only and PVP-
20%). The mean wCV (%) for vial with water-only were �1.07%
and �0.84% and that for vial with PVP-20% were �0.71% and
�3.19% at 1.5T and 3T MRI across the 3 sites, respectively.
Results of ADC wCV and 95% CIs are summarized in Table 2.

Figure 2A shows the representative plot of the DWI loga-
rithmic signal intensity versus b-value, fitted by both monoex-
ponential and DKI models obtained from the iDKI phantom ROI
for the vials with CA-BTAC (V2) and PVP-20% (V4). The box-
and-whisker plots show the mean values of Dapp � 10�3 mm2/s
(Figure 2B) and Kapp (no unit) (Figure 2C) obtained from V2
(captures both in vivo tumor cellularity and tissue microstruc-
ture) and V4 (captures in vivo tumor cellularity but negative
control for kurtosis).

The wCV (%) mean values of Dapp and Kapp for V2 were
�1.41% and �0.43% on both 1.5T and 3T MRI. The wCV (%)
mean values of Dapp and Kapp for V4 were �1.01% and �25.06%
respectively, on both 1.5T and 3T MRI. Table 3 summarizes the

Table 4. Test–Retest Repeatability Measurement of Diffusion Kurtosis Model-Derived Metrics for Patients With HNSCC

Treatment Measurement Dapp Kapp

Pre-TX
Mean (1.54 	 0.02) � 10�3 mm2/s (0.94 	 0.01)

wCV (%) 5.62 (3.87, 10.30) 5.18 (3.59, 9.47)

Intra-TX Week 1
Mean (1.56 	 0.02) � 10�3 mm2/s 0.96 (	0.01)

wCV (%) 2.99 (2.10, 5.72) 8.12 (3.50, 15.56)

Intra-TX Week 2
Mean (1.68 	 0.06) � 10�3 mm2/s (0.85 	 0.01)

wCV (%) 4.29 (2.90, 8.22) 6.01 (4.06, 11.51)

wCV data in parentheses are lower and upper 95% confidence intervals.
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Dapp and Kapp mean wCV and 95% CIs values for vials with
CA-BTAC and PVP-20%. The absolute Kapp � 0.05 value ob-
served for ROI in vial with PVP-20% samples indicates minor
bias of the NG model for this monoexponential material.

Patient Cohort. The pre-TX tumor volume (mean 	 SD) in
patients with HNSSC and PTC were 9.13 	 6.22 cm3 and 0.35 	
0.39 cm3, respectively.

Figure 3, A–D shows a representative DWI (b � 0 s/mm2)
image, ADC � 10�3 mm2/s, D � 10�3 mm2/s, and K metric maps
for a patient with HNSCC. Figure 3E depicts a representative
logarithmic DWI signal as a function of the b-value obtained
from the metastatic node of the HNSCC patient. The DWI signal
was fitted to the monoexponential and NG IVIM model. Figure
3, F–H also displays the box-and-whisker plots for pre-TX
test–retest mean values of the same quantitative imaging met-
rics detailed above.

The wCV (%) mean values of Dapp and Kapp at Pre-TX were
5.62% and 5.18%, respectively. Table 4 summarizes the mean
wCV (%) and 95% CIs for Dapp and Kapp at pre-TX and intra-TX
weeks in patients with HNSCC.

The mean wCV (%) values for pre-TX ADC, D, D*, K, and f
were 2.38%, 3.55%, 3.88%, 8.0%, and 9.92%, respectively.
Table 5 summarizes mean wCV (%) and 95% CIs for ADC- and
NG-IVIM-derived metrics (D, D*, K, and f) at pre-TX and in-
tra-TX weeks in patients with HNSCC.

Bland–Altman plots are shown for selective quantitative im-
aging metrics, ADC, D, and K, obtained from the pre-TX neck
nodal metastases of patients with HNSCC (Figure 4). In each
panel, the differences in mean values of ADC, D, and K were

plotted between the repeated MRI examinations against the
combined mean values of ADC, D, and K.

The results from patients with PTC are part of ongoing feasi-
bility testing in the research setting for thyroid MRI imaging
using rFOV multiple b-value DWI. Figure 5, A–D displays a
representative DWI (b � 0 s/mm2) image, ADC � 10�3 mm2/s,
D � 10�3 mm2/s, and K metric maps for a patient with PTC.
Figure 5E shows a representative logarithmic DWI signal as a
function of the b-value obtained from the normal thyroid tissue
and tumor of the patient with PTC.

The wCV (%) mean values of Dapp and Kapp for normal tissue
were 12.87% and 17.46%, respectively, whereas these metric
values in tumor tissue were 22.42% and 25.94% in patients with
PTC. Table 6 summarizes mean Dapp and Kapp wCV (%) and 95%
CIs for normal and tumor region in patients with PTC.

ADC mean wCV (%) were 11.86% and 10.04%, respectively,
for tumor and normal thyroid tissue ROIs. The wCV (%) for NG
IVIM-derived metrics (D, D*, K, and f) from tumors were 14.98%,
4.31%, 11.09%, and 13.31%, respectively. Preliminary mean
values for ADC, D, D*, K, and f are summarized in Table 7 for
normal and tumor tissue in patients with PTC.

Bland–Altman plots are shown for ADC, D, and K, obtained
from normal and tumor regions in the PTC patients (Figure 6).

DISCUSSION
In this preliminary study, we measured the repeatability of the
quantitative diffusion imaging metrics for Gaussian and NG
models using 2 phantoms (the temperature-controlled NIST/
QIBA DWI phantom and a novel iDKI phantom at ambient

Table 5. Test–Retest Repeatability Measurement of the ADC- and NG-IVIM DWI-Derived Metrics for Patients With HNSCC

Treatment Measurement ADC D D* K f

Pre-TX
Mean (0.90 	 0.04) � 10�3 mm2/s (1.03 	 0.07) � 10�3 mm2/s (2.51 	 0.19) � 10�3 mm2/s (0.84 	 0.13) (0 .19 	 0.04)

wCV (%) 2.38 (1.67, 4.34) 3.55 (2.44, 6.48) 3.88 (2.67, 7.10) 8.00 (5.57, 14.61) 9.92 (6.8, 18.12)

Intra-TX Week 1
Mean (0.93 	 0.02) � 10�3 mm2/s (1.09 	 0.07) � 10�3 mm2/s (2.46 	 0.11) � 10�3 mm2/s (0.87 	 0.08) (0.18 	 0.02)

wCV (%) 0.86 (0.58, 1.66) 3.46 (2.39, 6.63) 2.24 (2.62, 4.28) 4.74 (5.40, 9.09) 9.92 (67.0, 10.96)

Intra-TX Week 2
Mean (0.96 	 0.04) � 10�3 mm2/s (1.16 	 0.08) � 10�3 mm2/s (2.47 	 0.19) � 10�3 mm2/s (0.86 	 0.14) (0.19 	 0.04)

wCV (%) 1.18 (0.79, 2.26) 5.57 (3.76, 10.67) 1.20 (0.81, 2.28) 8.36 (5.64, 16.01) 3.01 (2.02, 5.74)

wCV data in parentheses are lower and upper 95% confidence intervals.

Figure 4. Bland–Altman plots of apparent diffusion coefficient (ADC � 10�3 mm2/s) (A), diffusion coefficient (D �

10�3 mm2/s) (B), and kurtosis coefficient (K) obtained from the metastatic neck node in patients with HNSCC on pre-
treatment (C). The solid lines correspond to the mean differences between 2 estimates and the dashed lines show the
95% limits of agreement. Note: 
 represent the change in mean difference between 2 scans.
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temperature) in a multisite setting, as well as for a small cohort
of patients with HNSCC and PTC using the DKI model and the
extended NG IVIM model.

For the NIST/QIBA DWI phantom, repeatability of mean
ADC wCV (%) and 95% CIs values was excellent for the studied
phantom vials with water-only and PVP-20% (�3.19% and
�4.0% respectively), for all 3 sites. The results reported herein
are comparable to results from similar test–retest repeatability
studies (51, 52). The Dapp and Kapp wCVs (%) and 95% CIs from
all 3 sites were comparable at both 1.5T and 3T MRI. The novel
iDKI phantom has been designed and fabricated with the purpose to
better understand the performance of the quantitative diffusion
metric kurtosis (K) as a surrogate of tissue microstructure and the
stability of K over time. Performing appropriate phantom testing is
a prerequisite for the QIB pipeline for clinical trials that use quan-
titative NG diffusion imaging metrics (37). Our phantom results
confirmed adequate baseline technical performance of the MRI
scanner systems and multiple b-value DWI protocols used for the
quantitative DWI studies for patients with HNSCC and PTC.

There is currently paucity of repeatability measures for
quantitative Gaussian and NG DWI in cancers of the HN region,
despite availability of ADC test–retest data for organs such as brain
(wCV � 3.97%), liver (wCV � 9.38%), and prostate (wCV �
16.97%) (13-15, 53). Only a few studies have reported test–retest
data for IVIM in organs such as liver (23).

The preliminary findings for test–retest data in HNSCC
showed that the mean wCV (%) for ADC-derived metric, DKI-
derived metric (Dapp), and NG IVIM-derived metrics (D and D*)
were �6% for pre-TX, intra-TX weeks 1 and 2. For f, Kapp, and
K, the mean wCV(%) were �10%. Both ADC and D, quantitative
imaging metrics, are surrogate biomarkers of tumor cellularity,
while f and D* are still exploratory in nature (23, 29, 54). There
is keen interest in furthering description of tissue microstructure
using the quantitative imaging metric K (31, 34, 55, 56). The
uncertainties from clinical HNSCC data slightly exceeded base-
line repeatability achieved for phantoms due to additional pa-
tient-related variability.

Our clinical repeatability measurements for normal thyroid
tissue and PTC are preliminary findings. Lu et al. reported that the
ADC mean wCV (%) for the normal thyroid tissue in healthy
volunteers is �10% using rFOV DWI at 3T (42). The present study
found consistent results for the normal thyroid tissue (ADC mean
wCV (%) � �10%) acquired with rFOV DWI at 1.5T and 3T MRI

Figure 5. Representative MR images of a patient
with papillary thyroid cancer (PTC) (76 years,
male). Diffusion-weighted (b � 0 s/mm2) image
(A), apparent diffusion coefficient (ADC � 10�3

mm2/s) (B), diffusion coefficient (D � 10�3

mm2/s) (C), kurtosis metric maps overlaid on DW
(b � 0 s/mm2) images (D), representative plot of
the logarithm of DWI signal intensity vs. b values
(E). The squares (green) and circles (red) represent
the experimental data in normal and tumor; the
solid lines are the fitted curves with the monoexpo-
nential (yellow and orange) and NG intravoxel
incoherent motion (NG-IVIM) (purple and blue).
Box-and-whisker plot shows the mean value in
normal tissue and in tumor for (F) apparent diffu-
sion coefficient (ADC � 10�3 mm2/s) and the
NG-IVIM model-derived metrics: diffusion coeffi-
cient (D � 10�3 mm2/s) (G) and kurtosis coeffi-
cient (K, unitless) (H). The horizontal line inside
the box indicates median values. The bottom and
top of the boxes indicate 25th and 75th percen-
tiles of the values, respectively. Note: The DWI
images were acquired with reduced FOV DWI
sequence.

Table 6. Test–Retest Repeatability
Measurement of Diffusion Kurtosis Model-
Derived Metrics for Patients With PTC

Treatment Measurement Dapp Kapp

Normal

Mean (2.51 	 0.32) �

10�3 mm2/s
(1.08 	 0.19)

wCV (%) 12.87 (7.71, 37.00) 17.46 (10.46, 50.19)

Tumor

Mean (2.52 	 0.57) �

10�3 mm2/s
(1.14 	 0.29)

wCV (%) 22.42 (13.43, 64.46) 25.94 (15.54, 74.57)

wCV data in parentheses are lower and upper 95% confidence
intervals.
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(42). Kim et al. reported that mean ADC values obtained at 2
different MRI field strengths (1.5T and 3T) were not signifi-
cantly different (19). A relatively high wCV was observed for
DKI- and NG IVIM-derived metrics that may likely be related
to the limited sample size and the biology of the tumors in the
thyroid gland.

Establishing the technical performance of a QIB allows us to
better understand a patient’s measurement at a single time
point, especially the changes in measurements over time, by
constructing a CI for the true value or the true change. For
example, suppose we measure ADC of 1.22 � 10�3 mm2/s for
PTC. If we know from our technical performance studies that the
measurements are made with negligible bias and precision of
wCV (%) � 11.86%, then a 95% CI for the patient’s true ADC
value is (1.22 	 1.96 � (0.1186 � 1.22) � 10�3 mm2/s or (0.94
to 1.50) � 10�3 mm2/s. The CI helps differentiate between the
true change of the parameter value versus the measurement
uncertainty. Now suppose that on a second visit, the patient’s
tumor has an ADC of 1.31 � 10�3 mm2/s. Has the ADC value
truly increased or is the observed change attributable to mea-
surement error? The 95% CI for the true change is [(1.31–1.22) 	

1.96 � ��0.1186 	 1.22�2 � �0.1186 	 1.31�2] � 10�3 mm2/s
or [�0.32, 0.50] � 10�3 mm2/s. Thus, given the known impre-
cision in the ADC measurements, we cannot conclude that a true
change has occurred with 95% confidence.

Once the technical performance of a QIB is known, investi-
gators are better able to design their clinical trials effectively.
For example, a measured change in a patient’s quantitative
imaging metrics (eg, D or K) must exceed 10% (ie, 2.77 � wCV)

to be 95% confident that a true change has occurred (37). Thus,
in a drug trial using changes in D or K (QIBs) as a measure of
therapeutic effect, a �10% cut-point should be used to define
whether a treatment effect should be used to define treatment
success and determine when a change in treatment is war-
ranted. Similarly, in planning a clinical trial where D or K values
will be compared across treatment arms, the imprecision in the QIB
values affects trial sample size by increasing it relative to its mag-
nitude and the magnitude of the between-subject variability.

There are a few known limitations to this study. This is the
first feasibility test–retest study of Gaussian- and NG diffusion-
derived metrics from multisite phantom and single-site clinical
data testing. A larger cohort of patients (�30) is necessary to
confirm statistical significance of the preliminary findings (57).
Susceptibility artifacts caused by SS-SE-EPI, voluntary and in-
voluntary bulk motion, are still an issue in the HN region,
limiting repeatability. Thus, rFOV DWI for incremental improve-
ment may be an option, exciting only a limited FOV and not
surrounding regions that potentially cause interference (42). For
the test–retest data set, technically the patients should be
scanned, removed from the scanner for a few minutes and
scanned again, referred to as a “coffee break” study. Here, the
patients were repositioned between scans on the table but not
removed from the scanner (“coffee break”) owing to practical
reasons relating to patient comfort and workflow at the MR
scanner. The results reported here provide insights into what is
needed and must be paid attention to in test–retest studies in
clinical oncology trials. For example, the test–retest studies
for ADC in brain tumors derived from monoexponential mod-

Figure 6. Bland–Altman plots of apparent diffusion coefficient (ADC � 10�3 mm2/s) (A), diffusion coefficient (D �

10�3 mm2/s) (B), and kurtosis coefficient (K) obtained from the papillary thyroid cancer (C). The solid lines correspond
to the mean differences between 2 estimates, and the dashed lines show the 95% limits of agreement. Note: 
 represent
the change in mean difference between 2 scans.

Table 7. Test–Retest Repeatability Measurement of the ADC and NG-IVIM DWI-Derived Metrics for Patients With PTC

ROI Measurement ADC D D* K f

Normal
Mean (1.23 	 0.24) �10�3 mm2/s (1.16 	 0.58) �10�3 mm2/s (2.89 	 0.43) �10�3 mm2/s (0.96 	 0.36) (0.26 	 0.08)

wCV (%) 10.05 (6.02, 28.90) 25.80 (15.46, 74.17) 7.63 (4.57, 21.94) 19.25 (11.53, 55.34) 16.54 (9.91, 47.57)

Tumor
Mean (1.31 	 0.30) �10�3 mm2/s (1.54 	 0.45) �10�3 mm2/s (2.87 	 0.24) �10�3 mm2/s (1.21 	 0.26) (0.22 	 0.06)

wCV (%) 11.86 (7.11, 34.10) 14.98 (8.97, 43.06) 4.31 (2.58, 12.38) 11.09 (6.65, 31.89) 13.31 (7.97, 38.26)

wCV data in parentheses are lower and upper 95% confidence intervals.
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eling of DWI data reports a wCV of 3.97% (53, 58, 59). A
smaller wCV value (�5%) indicates less variation in repeat-
ability measurements.

CONCLUSION
In conclusion, we have shown repeatability of measurements for
quantitative Gaussian and NG diffusion imaging metrics using
multiple b-value acquisitions for NIST/QIBA DWI phantom and

iDKI phantom, across multisite MRI systems, and used in HNSCC
and PTC clinical trials. The preliminary results for the repeat-
ability measurement of NG IVIM-derived metrics in HNSCC and
PTC show promise and need additional validation with a larger
subject cohort. In short, the precision of QIBs must be estab-
lished for oncology clinical trials to noninvasively monitor the
effects of treatment, to identify subjects likely to benefit from
treatment and define trial endpoints.
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We assessed a priori aggressive features using quantitative diffusion-weighted imaging metrics to preclude
an active surveillance management approach in patients with papillary thyroid cancer (PTC) with tumor size
1–2 cm. This prospective study enrolled 24 patients with PTC who underwent pretreatment multi-b-value diffu-
sion-weighted imaging on a GE 3 T magnetic resonance imaging scanner. The apparent diffusion coefficient
(ADC) metric was calculated from monoexponential model, and the perfusion fraction (f), diffusion coefficient
(D), pseudo-diffusion coefficient (D*), and diffusion kurtosis coefficient (K) metrics were estimated using the
non-Gaussian intravoxel incoherent motion model. Neck ultrasonography examination data were used to
calculate tumor size. The receiver operating characteristic curve assessed the discriminative specificity, sensi-
tivity, and accuracy between PTCs with and without features of tumor aggressiveness. Multivariate logistic
regression analysis was performed on metrics using a leave-1-out cross-validation method. Tumor aggressive-
ness was defined by surgical histopathology. Tumors with aggressive features had significantly lower ADC
and D values than tumors without tumor-aggressive features (P � .05). The absolute relative change was
46% in K metric value between the 2 tumor types. In total, 14 patients were in the critical size range (1–2
cm) measured by ultrasonography, and the ADC and D were significantly different and able to differentiate
between the 2 tumor types (P � .05). ADC and D can distinguish tumors with aggressive histological features to
preclude an active surveillance management approach in patients with PTC with tumors measuring 1–2 cm.

INTRODUCTION
Currently, many clinicians continue to recommend an aggres-
sive initial management approach to all but the patients with the
most low-risk papillary thyroid carcinoma (PTC), which usually
includes thyroid surgery and radioactive iodine adjuvant ther-
apy (1). Despite this, a more-stratified, risk-adapted initial man-
agement approach has been strongly recommended in the recent
American Thyroid Association thyroid cancer clinical practice
guidelines (2). The recommendations for either a limited thyroid

surgery option (thyroid lobectomy without adjuvant therapy) or
an active surveillance management approach (serial observation
with neck ultrasonography [US] with surgical intervention de-
ferred until documented disease progression) may be less-drastic
incremental options for patients with intrathyroidal papillary
thyroid cancers thought to be at low risk for disease-specific
mortality and recurrence. These treatment options are being
offered on the basis of abundance of data showing excellent
clinical outcomes following either thyroid lobectomy or active
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surveillance in properly selected low-risk PTC patients with
intrathyroidal disease (1-3). Studies have shown that patients
with micropapillary carcinomas having small tumors (size, �1
cm) well confined to the thyroid and without presence of ex-
trathyroidal extension and/or lymph node metastases are good
candidates for active surveillance (2). The cumulative risk of
extrathyroidal extension and lymph node metastases both in-
creased linearly as the primary tumor increases from 1 to 2 cm
(4). It is therefore even more important to ensure that these
larger thyroid cancers are confined to the thyroid before con-
sidering an observation management approach. US alone is an
adequate study for selection of those PTCs with smaller tumors
(�1 cm) for active surveillance (5-8). However, for those PTCs
with larger tumors (�1 cm up to 2 cm), US has suboptimal
sensitivity and specificity in the detection of extrathyroidal
extension (9, 10) and cannot reliably detect cervical lymph node
metastases deep to the intact thyroid gland or in the infracla-
vicular, retropharyngeal, and parapharyngeal regions (1). There-
fore, some experts have suggested that additional imaging
methods be used to verify the absence of disease outside the
thyroid when considering a conservative management approach
in larger tumors.

Quantitative magnetic resonance imaging (qMRI) is a
noninvasive technique that provides images of high spatial
resolution with excellent tissue contrast. Quantitative diffusion-
weighted imaging (DWI) measures the Brownian motion of wa-
ter molecules in tumor tissue, which is highly reflective of the
cellular organization and membrane integrity (11). DWI has
shown promise in the detection, staging, prognosis, and moni-
toring of thyroid cancers (12-19). Quantitative apparent diffu-
sion coefficient (ADC) metric derived from monoexponential
modeling of DWI data, under a Gaussian behavior, using �2
b-values (ie, diffusion-weighting factor) (11) reflects tumor cel-
lularity. Recently, clinical relevance for ADC has been shown in
assessing extrathyroidal extension in discernable intrathyroidal
papillary microcarcinomas (tumor size, �1 cm), an aggressive
tumor feature that was limited to identification by surgery only
(20).

Le Bihan et al. developed the intravoxel incoherent motion
(IVIM) model to describe diffusion in the capillary and tissue
compartments separately using multiple b value DWI data set
(21, 22). IVIM is a biexponential model, which is based on a
Gaussian distribution, and it provides estimates of pseudo-dif-
fusion coefficient (D*), perfusion fraction (f) within the capillary
network, and true diffusion coefficient of the tissue (D) metrics
(22). Recent studies have shown the utility of IVIM-DWI in
clinical oncology (23-31).

Diffusion in biological tissue is hindered and complex and
therefore lends itself well to a non-Gaussian (NG) nature, which
has been readily observable via noninvasive imaging at high
b-values (32, 33). Using multi-b-value DWI data, NG models [ie,
diffusional kurtosis (34, 35) and extension of biexponential
IVIM with kurtosis, called NG-IVIM (22, 36)] have been devel-
oped to account for hindered and restricted diffusion in tumor
tissue. The dimensionless imaging metric K characterizes NG
diffusion behavior in tissue microstructure. The quantitative
metric K obtained from both diffusion kurtosis and NG-IVIM
models has shown feasibility to quantify tissue microstructure in

head and neck (HN) cancer (35, 36). Given the known micro-
structural complexity in PTC, we hypothesized that the NG-IVIM
may have greater utility than Gaussian models in risk stratifi-
cation for active surveillance candidates. The purpose of this
study was to identify a priori aggressive histological features
using NG-IVIM to preclude an active surveillance management
approach in patients with PTC, with tumor diameter size 1–2 cm
as measured by US.

MATERIALS AND METHODS
Patients
This clinical study was approved by our institutional review
board, which was compliant with the Health Insurance Porta-
bility and Accountability Act. In total, 24 patients (age, 27–78
years; male/female, 8/16) were enrolled in this prospective clin-
ical trial, before surgery. All patients who underwent the study
signed a form of written consent.

DWI Data Acquisition
MRI examinations were performed on a 3-Tesla GE scanner
(General Electric, Milwaukee, WI), with a neurovascular phased-
array coil and consisted of standard multiplanar (sagittal, axial,
coronal) T1- and T2-weighted imaging scans followed by multi-
b-value DWI scans. The T1- and T2-weighted MRI scans covered
the whole thyroid gland with a field of view (FOV) of 20–24 cm,
slice thickness of 5 mm, and acquisition matrix of 256 � 256.
The repetition time (TR)/echo time (TE) for T1-weighted scans
were 500 milliseconds (ms)/15 ms; and TR/TE for T2-weighted
scans were 4000 ms/80 ms.

Multi-b-value DWI images were acquired using a single-
shot spin-echo echo planar imaging (SS-SE-EPI) sequence with
TR � 4000 ms, TE � minimum (100–110 ms), number of excita-
tions (NEX) � 4, slice thickness � 5 mm, gap � 0 mm, field of
view � 20–24 cm, acquisition matrix of 128 � 128, which was
zero-filled and reconstructed to 256 � 256 pixels, with 10 b
values of 0, 20, 50, 80, 200, 300, 500, 800, 1000, and 1500
s/mm2. Images were acquired using 3 orthogonal diffusion gra-
dient direction. The acquisition minimum TE varied between
patients (minimum TE 100–110 ms) because of slight differ-
ences in obliquity of the prescription. A calibration scan was
performed before multi-b-value acquisition to reduce Nyquist
(N/2) ghosting artifacts (20, 37). Fat suppression, shimming, and
parallel imaging (acceleration factor � 2) techniques were used
to reduce imaging artifacts.

DWI Data Processing
The regions of interest (ROIs) on thyroid glands for the PTCs
were drawn on the DWI images (b � 0 s/mm2) by an experienced
neuroradiologist (�10 years’ experience) using ImageJ (38), in
conjunction with the radiological, clinical, and pathological
information. All ROIs avoid obvious cystic, hemorrhagic, or
calcified portions. All data analyses were performed using an
in-house-developed software package, MRI-QAMPER (Quanti-
tative Analysis Multi-Parametric Evaluation Routines) imple-
mented in MATLAB (The MathWorks, Natick, MA). Metric
values were estimated on a voxel-by-voxel basis to generate
parametric maps, and ROI-averaged values for each quantitative
imaging metric were calculated.
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The voxel-wise apparent diffusion coefficient (ADC) map
within the ROI was calculated from the multi-b-value DWI data,
using a monoexponential model given by:

Sb � S0e
�b ADC (1)

where Sb and S0 are signal intensities with and without
diffusion weighting, and b is the diffusion-weighting factor
(s/mm2).

The quantitative imaging metrics estimated from NG-IVIM
using the multi-b-value DW-MRI data are given by the follow-
ing equation (21, 36):

Sb � S0� fe�bD* � (1 � f)e
�bD�

1

6
Kb2D2

� (2)

where f is the vascular volume fraction; D is the diffusion
coefficient (mm2/s); D* is the pseudo-diffusion coefficient
(mm2/s) associated with blood perfusion, and K is the diffu-
sion kurtosis coefficient. Under the assumption of a Gaussian
distribution (K � 0), equation (2) is equivalent to IVIM model
equation (21).

Because multi-b-value DWI images are inherently noisy
owing to thermal or physiological factors, a noise-rectified
method was used for metric estimation, as detailed elsewhere
(36). For image processing, DWI data were fitted using a non-
linear least-square fitting method using MRI-QAMPER (24, 36).

Histopathological Examination
Surgical papillary thyroid tumor specimens after radical thy-
roidectomy or lobectomy were collected under the supervision
of an experienced (�10 years) pathologist. Paraffin-embedded
tissue blocks were obtained for each surgically resected tumor
specimen and stained with hematoxylin and eosin. The hema-
toxylin and eosin section of each papillary thyroid tumor was
reviewed by the same excising pathologist, using established
criteria for evaluating tumor aggressiveness (39, 40). The histo-
pathological characteristics of tumor aggressiveness were
evaluated individually using the following 6 features: tall cell
variant, necrosis, vascular and/or tumor capsular invasion, ex-
trathyroidal extension, regional metastases, and distant metas-
tases. A tumor identified with the presence of any 1 of these
features was considered to be aggressive.

US Examination
US examinations were performed according to a standard pro-
tocol that includes grayscale and color Doppler US assessment
of the thyroid bed and cervical lymph nodes in all neck com-
partments. US reports include information about size, location,
and structure of thyroid nodules and cervical lymph nodes. Size
was defined as the largest diameter among the 3 dimensions
observed. The US studies were performed with Siemens Acuson
S2000 or SEQUOIA (Siemens Medical Solutions, Mountain
View, CA), or the GE Logiq 9 (GE Healthcare, Little Chalfont, UK)
units, using 8- to 15-MHz linear transducers.

Statistical Analysis
Quantitative imaging metrics ADC, D, f, D*, and K from NG-
IVIM analysis and US measurement values were reported as
ROI-based mean 	 standard deviation (SD). To compare metric
value differences among groups of PTCs with and without fea-

tures of aggressiveness, a nonparametric Wilcoxon rank-sum
test was used. A Spearman correlation analysis was performed
between quantitative imaging metrics. The significance level
was set at P � .05.

Finally, the relative percentage change (rc, %) in imaging
metrics mean values were calculated as:

rc(%) �
�Xag � Xnag�

Xnag
	 100 (3)

where Xag and Xnag are the quantitative imaging metrics mean
values (ie, ADC, D, f, D* and K) of tumors with and without
aggressive features, respectively.

Receiver operating characteristic (ROC) curve analysis was
performed for each metric to assess its capability to discriminate
between PTC groups with and without aggressive features, result-
ing in area under the ROC curve (AUC) evaluation. Youdon’s index
was used to estimate the optimal cutoff values for individual met-
rics (41, 42). Multivariate logistic regression analysis was per-
formed on relevant metrics using a leave-one-out cross-validation
(LOOCV) method for unbiased assessment of the modeling.

All statistical analyses were performed using R software and
Stata (43, 44).

RESULTS
Patient characteristics are summarized in Table 1. Of the 24
patients, 13 patients were found to have locoregional metastases
by preoperative US imaging. Based on surgical pathology anal-
ysis, all 24 patients had PTCs, including 6 patients with the tall
cell variant, 1 patient with vascular and/or capsular invasion, 9
patients with extrathyroidal extension, and 16 patients with
locoregional metastases. The mean size of the lesion based on US
was 16 	 6 mm and ranged from 6–26 mm.

Figure 1 shows a representative plot of signal intensity
decay curve as a function of the b-values (s/mm2) obtained from
a patient with aggressive feature of extrathyroidal extension
(ETE) confirmed at surgical pathology.

Figures 2 and 3 show NG-IVIM metric maps overlaid on the
DWI images from a representative patient with PTC with aggres-
sive tumor features (female; 28 years; US tumor maximum
diameter, 2.1 cm) and a representative patient with PTC without
aggressive tumor features (female; 48 years; US tumor maxi-
mum diameter, 2.1 cm), respectively. It is interesting to note that
maximum tumor diameter in preoperative US was the same for
both tumors shown in Figures 2 and 3. However, at surgical
pathology, the tumor with aggressive features was found to be
in the size range of �2 cm (Figure 2), while tumor with nonag-
gressive feature was in the size range of 1–2 cm (Figure 3).

Tumors with aggressive features (tall cell variant, necrosis,
vascular and/or tumor capsular invasion, ETE, regional metas-
tases, or distant metastases) had significantly lower ADC and D
values and higher f values than tumors without aggressive
features (P � .05) (Figure 2), whereas K and D* values were not
significantly different (P � .05) for the 2 groups (Table 2).

Out of the 24 patients, 14 patients were in the critical size
range (1–2 cm), and ADC and D were significantly different
(Table 2), differentiating between tumors with (n � 10) versus
without (n � 4) aggressive features (P � .05). The ADC values
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were 1.3 	 0.3 � 10�3 mm2/s vs 1.9 	 0.5 � 10�3 mm2/s for
tumors with and without aggressive features, respectively. The D
values were 1.3 	 0.3 � 10�3 mm2/s vs 2.1 	 0.6 � 10�3 mm2/s
for tumors with and without aggressive features, respectively.
The K, D*, and f metrics were not significantly different in this
cohort (P � .05).

Figure 4 boxplot compares the quantitative imaging metrics
mean values for ADC, D, and US-measured tumor size (mm)
between tumors with and without aggressive features. The ab-
solute relative percentage change (rc, %) in the quantitative
imaging metric ADC, D, K, D*, and f metric values for tumors
with aggressive features were 31%, 40%, 46%, 7%, and 31%
respectively, in comparison to tumors without aggressive fea-
tures.

Figure 5 displays the scatter plot between NG-IVIM esti-
mates of two quantitative imaging metrics D and K. The Spear-
man rank-order correlation coefficient (�) was �0.46 (P � .05),
indicating a significant correlation between the D and K.

Figure 6A shows the estimated ROC curves for quantitative
imaging metrics ADC, D, and K. Using ROC analysis, the best
cutoff values of ADC, D, and K that discriminate between ag-
gressive PTCs with and without aggressive features were deter-
mined as follows: ADC � 1.79 � 10�3 mm2/s, D � 1.35 � 10�3,
and K � 0.68. The sensitivity, specificity, and AUC obtained
from the ROC curve were 100%, 75%, and 0.875, respectively,
for ADC; 80%, 100%, and 0.95, respectively, for D; and 70%,
75%, and 0.725, respectively, for K. The AUC is the highest for
metric D, followed by metrics ADC and K. Figure 6B resulted
from logistic regression on combined 2 metrics (ADC and D) and
3 metrics which included K based on the LOOCV method. Sen-
sitivity, specificity, and AUC obtained from the LOOCV analysis
combining 2 and 3 metrics were as follows: 90%, 75% and 0.70
and 80%, 75%, and 0.65, respectively.

DISCUSSION
To the best of our knowledge there are no published studies that
have leveraged the use of biexponential NG-IVIM modeling
using multi-b-value DWI data sets to stratify PTCs into tumor
groups with and without aggressive features. The quantitative
imaging metrics ADC, D, and K exhibit promise as surrogate
biomarkers for aggressiveness in patients with PTC, following
appropriate validation.

Previously, Lu et al. using monoexponential modeling of
quantitative DWI data stratified PTCs into tumor groups with
and without ETE, one of the multiple aggressive features,
thereby obtaining significantly lower mean ADC values for
tumors with ETEs than without (1.53 	 0.25) � 10�3 [mm2/s] vs
(2.4 	 0.7) � 10�3 [mm2/s] (20). Previously ETE was identified
by surgery only (8, 45). Hao et al., also using DWI, stratified
PTCs with and without ETEs, thereby showing significant lower
median ADC values for tumor with ETE features (1.41 	 0.29) �
10�3 [mm2/s] vs (1.53 	 0.29) � 10�3 [mm2/s] (46). In the
present study the cut-off value of ADC to discriminate PTCs with
and without aggressive features was 1.79 � 10�3 mm2/s and is
consistent with the previous studies by Lu et al. and Hao et al.,
1.85 � 10�3 mm2/s and 1.89 � 10�3 mm2/s, respectively (20,
46).

Table 1. Patient Characteristics

Characteristic Values

Age at diagnosis (years) 41 	 7 (range, 27–78)

Sex

Female 16 (67%)

Male 8 (33%)

Fine-needle aspiration cytology

Papillary thyroid cancer 16 (67%)

Suspicious for papillary thyroid cancer 8 (33%)

Preoperative US

Subcapsular location of tumor 19 (79%)

Extrathyroidal Extension 2 (8%)

Evidence of Lymph node metastases 13 (54%)

Size of papillary carcinoma (mm) 16 	 6 (range, 6–26)

Histology

Classic papillary thyroid cancer (cPTC) 13 (54%)

Follicular variant papillary thyroid cancer
(fvPTC)

3 (12%)

Diffuse sclerosing PTC (dsPTC) 1 (4%)

Tall cell variant PTC (tPTC) 4 (16%)

Multifocal (cPTC�fvPTC; cPTC�tPTC) 1 � 2 (12%)

Size of papillary carcinoma (mm) 15 	 6 (range, 5–25)

Aggressive features based on
pathology

Tall cell 6 (25%)

Extrathyroidal extension 9 (38%)

Necrosis 0 (0%)

Vascular and/or tumor capsular invasion 1 (4%)

Regional metastases 16 (67%)

Distant metastases 0 (0%)

Pathology T

T1a 2 (8%)

T1b 10 (42%)

T2 3 (13%)

T3 9 (38%)

Pathology N

N0 8 (33%)

N1a 6 (25%)

N1b 10 (42%)

Clinical M

M0 24 (100%)

M1 0 (0%)

AJCC Stage

I 17 (71%)

II 2 (8%)

III 3 (13%)

IVA 2 (8%)
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Recently biexponential modeling (IVIM) analysis using
multi-b-value DWI data have shown clinical utility in several
cancers, including prostate and head and neck (30, 47-49).
Valerio et al. have shown that ADC and D values are signifi-
cantly lower in prostate cancer tissue compared with healthy
tissue (0.76 	 0.27 � 10�3 [mm2/s] vs 0.99 	 0.38 � 10�3

[mm2/s]) (47). In addition, Barbieri et al. found that ADC and D
differ significantly between high- and low-grade prostate can-

cer lesions (0.76 	 0.27 � 10�3 [mm2/s] vs 0.99 	 0.38 � 10�3

[mm2/s]) (48). The clinical utility of multi-b-value DWI is being
tested in cancers in the head and neck region, including the
thyroid gland (30, 31, 49). Shen et al. investigated the feasibility
of using IVIM to detect radiation changes of normal-appearing
parotid glands in patients with differentiated thyroid cancer
after radioiodine therapy (49). In a small study of 8 healthy
volunteers, Becker et al. used an IVIM-derived imaging metric to

Figure 1. Logarithmic signal in-
tensity (Sb/S0) plotted as a func-
tion of b-value. The experimental
data (black circle) obtained from
a representative thyroid patient is
fitted with a mono exponential
model (blue line) and non-Gauss-
ian intravoxel incoherent motion
model (red line).

Figure 2. The representative patient with papillary thyroid carcinoma (PTC) with tumor aggressive features (female; 28
years; ultrasonography [US] maximum tumor diameter, 2.1 cm). Diffusion-weighted image (b � 0 s/mm2) (A). ADC
map (�10�3 mm2/s) overlaid on diffusion-weighted image (b � 0 s/mm2) (B). K map overlaid on diffusion-weighted
image (b � 0 s/mm2) (C). D* (�10�3 mm2/s) map overlaid on diffusion-weighted image (b � 0 s/mm2) (D). D map
(�10�3 mm2/s) overlaid on diffusion-weighted image (b � 0 s/mm2) (E). f map overlaid on diffusion-weighted image
(b � 0 s/mm2) (F).
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establish a comprehensive description of tissue properties of
healthy thyroid tissue (50). The IVIM imaging metric D was
shown to be significantly different between complete responders
(the change between pre- and intratreatment week 3 was from
0.67 	 0.17 � 10�3 mm2/s to 0.98 	 0.28 � 10�3 mm2/s) and
noncomplete responders (the change between pre- and intra-
treatment week 3 was from 0.59 	 0.10 � 10�3 mm2/s to 0.72 	
0.03 � 10�3 mm2/s) in patients with head and neck squamous
cell carcinoma treated with radiotherapy (31). For tumors with
hindered and restricted diffusion, NG-IVIM modeling analysis
from multi-b-value DWI, as developed by Lu et al., has shown to
be a better-fitting model in head and neck region (36). This

model is used in the present study for the first time in the thyroid
region.

The findings from 14 patients with PTC with tumor di-
ameter 1–2 cm (as measured by US) emphasize the role of
NG-IVIM DWI in differentiating this sub group. Preoperative
US could identify 6 out of 14 patients with aggressive fea-
tures, while NG-IVIM DWI indicated 11 patients. As ground
truth, there were 10 patients with aggressive tumor features
determined by pathology, our reference standard (Table 2).
Therefore, NG-IVIM could correctly identify all 10 patients
with aggressive tumor features confirmed by pathology,
whereas US correctly identified only 6 patients. US is the

Table 2. Statistical Analysis (mean 	 SD) for Quantitative Imaging Metrics Using Tumor Size by US

US Tumor Size �1 cm (n � 3) 1–2 cm (n � 14) �2 cm (n � 7)

Aggressive features on US YES
(n � 2)

NO
(n � 1)

YES
(n � 6)

NO
(n � 8)

YES
(n � 5)

NO
(n � 2)

Aggressive features on pathology YES
(n � 3)

NO
(n � 0)

YES
(n � 10)

NO
(n � 4)

YES
(n � 5)

NO
(n � 2)

ADC � 10�3 (mm2/s) (1.2 	 0.7) – (1.32 	 0.27)a (1.9 	 0.5)a (1.7 	 0.4) (2.03 	 0.06)

D � 10�3 (mm2/s) (1.4 	 0.7) – (1.27 	 0.25)a (2.1 	 0.6)a (1.7	 0.6) (2.20 	 0.08)

D* � 10�3 (mm2/s) (2.61 	 0.62) – (2.84 	 0.06) (2.95 	 0.06) (2.7 	 0.3) (2.98 	 0.02)

f (0.17 	 0.05) – (0.21 	 0.06) (0.16 	 0.05) (0.18 	 0.05) (0.10 	 0.02)

K (0.7 	 0.6) – (0.70 	 0.26) (0.48 	 0.29) (0.71 	 0.28) (0.64 	 0.15)

astatistical significance P � 0.05.

Figure 3. The representative patient with PTC without tumor-aggressive features (female; 48 years; US maximum tumor
diameter, 2.1 cm). Diffusion-weighted image (b � 0 s/mm2) (A). ADC map (�10�3 mm2/s) overlaid on diffusion-
weighted image (b � 0 s/mm2) (B). K map overlaid on diffusion-weighted image (b � 0 s/mm2) (C). D* (�10�3

mm2/s) map overlaid on diffusion-weighted image (b � 0 s/mm2) (D). D map (�10�3 mm2/s) overlaid on diffusion-
weighted image (b � 0 s/mm2) (E). f map overlaid on diffusion-weighted image (b � 0 s/mm2) (F).
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imaging modality most commonly used to identify and mon-
itor locoregional disease progression and recurrence in thy-
roid cancer. However, US is unable to preoperatively identify
features such as tall cell variant, necrosis, vascular, and/or
tumor capsular invasion or distant metastases (5). NG-IVIM
DWI were able to correlate nonaggressive tumor features in 3
out of 4 patients, whereas US overestimated nonaggressive-
ness in 8 patients. These data strongly suggest that US and
MRI are complementary and should be used in combination
for patients with tumor size in the range of 1–2 cm. This
finding is of key clinical importance for treating physicians
who are considering active surveillance for said patient pop-
ulation.

Quantitative NG-IVIM DWI and its derived diffusion and
perfusion imaging biomarkers have shown promise in this study

of patients with PTC when grouped on the basis of different
tumors sizes from preoperative US measurements. In addition,
for US-measured tumors sized in the range of 1–2 cm, substan-
tial difference was observed in rc (%) in the NG-IVIM-derived
metrics between the 2 groups. D is the true diffusion coefficient
metric and a surrogate biomarker of tumor cellularity with 40%
change, while metric K is considered as an index of tissue
microstructure related to hindered and restricted diffusion with
46% change observed for tumors with aggressive features on
comparison to tumors without aggressive feature. The rc (%) for
imaging metrics f and D* were 31% and 7%, and these imaging
metrics remain exploratory in nature as their biological mean-
ing has yet to be fully understood. In the present study, K was
not necessarily independent of D for all tumors but a weak
correlation coefficient between these 2 quantitative imaging

Figure 4. Box-and-whisker plots comparing the mean values for quantitative imaging metrics for all tumors in the 2
groups (tumor with and without aggressive features): ADC � 10�3 (mm2/s) (A), D � 10�3 (mm2/s) (B), f (C), D* �

10�3 (mm2/s) (D), K (E), and radiological information from US (mm) (F).

Figure 5. Scatter plot of the
true diffusion coefficient (D) and
the kurtosis value (K) obtained
from all thyroid patients, show-
ing a statistically significant neg-
ative correlation (� � �0.46; P
� 0.05).
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metrics suggested that K might provide additional information
related to tissue microstructure. Similar results have been re-
ported previously using NG analysis of DWI in head and neck
squamous cell carcinoma (51).

In the present study, for all US-based tumor sizes, the
univariate analysis showed the most favorable predictive power
with D (AUC � 0.95). However, the AUC is lower for both
combinations of the metrics in the cross-validation–multivari-
ate analysis, implying cross-validation is necessary to build the
predictive model for more realistic and unbiased assessment.
The decrease in AUC between 2- and 3- metric models, is due to
the metric K which may have discriminatory power for US-
based tumor size, in the range of 1–2 cm only. For differentia-
tion between the 2 PTC groups, the 2-metric model appears to be
the model of choice.

These findings indicate that the quantitative imaging met-
rics derived from NG-IVIM modeling can provide important risk
stratification information and additional insights into potential
tumor behavior that cannot be gained from US evaluation alone.
As consideration is being given to extend active surveillance to
tumors larger than 1 cm, it is increasingly important to develop

additional noninvasive tools to help clinicians risk-stratify these
slightly larger tumors.

There are several known limitations in this study. First,
further investigation is needed in those cohorts with tumors
diameters �2 cm and �1 cm. Although no active surveillance is
needed for tumors that are �2 cm, it is important to identify
aggressive features in tumors that are �1 cm, as has been shown
by Lu et al. for papillary microcarcinomas with ETE features
(20). Second, a validation study with a larger cohort of patients
with PTC is necessary to confirm our initial findings for use in
clinical trials. Finally, DWI acquisition using SS EPI suffers from
susceptibility artifacts owing to voluntary and involuntary bulk
motion in the thyroid region (52). Modified sequences, such as
reduced field of view, can help obtain images with fewer distor-
tions (53).

In conclusion, quantitative imaging biomarkers (ADC, D,
and K) derived from NG-IVIM DWI could be used to noninva-
sively identify tumors with aggressive histological features to
preclude an active surveillance management approach in pa-
tients with PTC with primary tumor diameters ranging between
1–2 cm.
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Figure 6. Receiver operating characteristic (ROC) curve to discriminate patients with PTC with and without aggressive
features using apparent diffusion coefficient (ADC, black line), D (blue line), K (orange line) (A). ROC curve from logistic
regression based on a leave-one-out cross validation method for the combination of ADC, D, and K (blue line) and ADC
and D (red line) (B).
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Quantitative kurtosis phantoms are sought by multicenter clinical trials to establish accuracy and precision of
quantitative imaging biomarkers on the basis of diffusion kurtosis imaging (DKI) parameters. We designed
and evaluated precision, reproducibility, and long-term stability of a novel isotropic (i)DKI phantom fabri-
cated using four families of chemicals based on vesicular and lamellar mesophases of liquid crystal materi-
als. The constructed iDKI phantoms included negative control monoexponential diffusion materials to inde-
pendently characterize noise and model-induced bias in quantitative kurtosis parameters. Ten test–retest DKI
studies were performed on four scanners at three imaging centers over a six-month period. The tested proto-
type phantoms exhibited physiologically relevant apparent diffusion, Dapp, and kurtosis, Kapp, parameters
ranging between 0.4 and 1.1 (�10�3 mm2/s) and 0.8 and 1.7 (unitless), respectively. Measured kurtosis
phantom Kapp exceeded maximum fit model bias (0.1) detected for negative control (zero kurtosis) materials.
The material-specific parameter precision [95% CI for Dapp: 0.013–0.022(�10�3 mm2/s) and for Kapp:
0.009–0.076] derived from the test–retest analysis was sufficient to characterize thermal and temporal sta-
bility of the prototype DKI phantom through correlation analysis of inter-scan variability. The present study
confirms a promising chemical design for stable quantitative DKI phantom based on vesicular mesophase of
liquid crystal materials. Improvements to phantom preparation and temperature monitoring procedures have
potential to enhance precision and reproducibility for future multicenter iDKI phantom studies.

INTRODUCTION
Diffusion-weighted imaging (DWI) is extensively used in clini-
cal radiology studies to monitor changes in water mobility that
reflect altered tissue cellularity (1-3). These alterations often
arise from malignancy (4-6) or in response to treatment (7-9).
Quantitative parametric maps are derived on the basis of phys-
ical models for DWI signal dependence on diffusion gradient-
weighting strength (denoted by b-value). A single-component
diffusion model, most widely used by clinical oncology trials (7,
9, 10), assumes monoexponential DWI signal decay with in-
creasing b-value, where the decay rate is quantified by apparent
diffusion coefficient (ADC).

Diffusion kurtosis (11, 12) is a heuristic extension of the
single-component model that introduces an additional quanti-

tative parameter (apparent kurtosis coefficient, Kapp) to describe
the degree of non-Gaussian deviation from monoexponential
signal decay in tissue observed for certain in vivo structures and
malignancies with increasing b-values (5, 13-15). These devia-
tions are typically caused by the presence of cellular structures
that substantially impede water mobility, leading to sustained
DWI signal at high b-values (1, 11). Because typical diffusion
kurtosis imaging (DKI) parameter fit is performed over a limited
range of b-values (bmax � 3000 s/mm2), the derived diffusion
and kurtosis values are “apparent” rather than absolute charac-
teristics.

Recently there has been a surge of interest in the diffusion
imaging community to evaluate Kapp as a noninvasive, surro-
gate biomarker of tissue microstructure (5, 13, 15-17). Unlike
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classic diffusion kurtosis in anisotropic brain tissue (11, 12), for
nominally isotropic cancerous parenchyma, observed relatively
high apparent kurtosis (0.8–1.7, for example, in head and neck
or prostate and bladder cancers [5, 13-15]) is typically associ-
ated with tumor potency. To use DKI parameters as quantitative
imaging biomarkers (QIBs) of tumor response to therapy in
multicenter oncology trials (16, 17), the precision (repeatability)
and accuracy (bias) of the potential QIBs need to be evaluated
(18, 19) across multiple scanner platforms using a common scan
protocol (20, 21). Construction of a novel phantom, one that
provides true parameter values in the physiologically relevant
ranges (5, 13-15), is the first step for the development of a
repeatable multisite study protocol and the only means for the
absolute bias estimate (20, 21).

The search for a viable DKI phantom has been ongoing for
over a decade. The “natural” phantoms based on cream and
asparagus (12, 13, 22) provide single “untunable” kurtosis pa-
rameter value and perish quickly. Synthetic phantoms compris-
ing the polyethylene particle suspensions (23) and most recently
suggested microbead impregnated gels (24) are more stable, but
still suffer from limited range of provided kurtosis parameters
(Kapp � 0.7) and limited precision owing to microscopic sample
inhomogeneity, chemical shift (23), and/or low signal-to-noise
ratio (SNR) (short T2) (24). Our recent pilot study (25) proposed
the development of novel kurtosis phantoms based on lamellar
(amorphous layers) and vesicular (fluid-filled microsacs) phases
of liquid crystal systems. These molecular constructs are com-
posed of hydrophobic long-chain fatty alcohols and surfactants
that mimic tissue cellularity by forming regularly spaced mem-
branous mesostructures that impede water diffusion. Altering
relative concentrations of restricted and free water pools allows
a broad range of tunable apparent kurtosis parameters (25) with
sufficient SNR for easy quantitative DKI scan protocol testing.

The purpose of the present multi-site study was to evaluate
precision, reproducibility, and long-term stability of a novel (pro-
totype) isotropic (i)DKI phantom, fabricated using four families of
chemicals based on select combinations of vesicular and lamellar
mesophases of liquid crystal materials with adjustable restricted
diffusion fraction. The desired iDKI phantom characteristics in-
cluded long-term temporal stability and homogeneous iDKI model
parameters, tunable over physiologically relevant ranges.

METHODOLOGY
To guide design of the next-generation phantom toward im-
proved stability and reproducibility, this study included the
following four steps: [1] development and fabrication of the
prototype iDKI phantom using four families of liquid crystal
materials and three negative controls, [2] implementation of a
common quantitative iDKI test–retest scan protocol, [3] para-
metric map generation and intra-scan test–retest repeatability
analysis to establish measurement precision, and [4] apparent
(water ADC-based) temperature calibration for characterization
of thermal versus temporal inter-scan variability.

Isotropic Diffusion Kurtosis Imaging (iDKI) Phantoms
Four quantitative iDKI phantom materials were chemically de-
signed based on water solutions of paired long carbon-chain
surfactants (cetyltrimethylammonium bromide [CTAB] or be-

hentriammonium chloride [BTAC]) and alcohols (cetearyl [CA]
or decyl [DEC]), as well as prolipid 161 [PL161] (see details in
(25); online Supplemental Figure 1). These materials formed two
uniformly distributed physical compartments with distinct (sev-
eral orders of magnitude different) proton diffusion rates, result-
ing in apparent water diffusion (Dapp) and apparent kurtosis
(Kapp) at high b-values. Major differences among the tested
chemical designs were in the physical origin of restricted diffu-
sion for lamellar structures versus vesicular phase materials (25)
(see online Supplemental Figure 1). Three negative control,
monoexponential diffusion samples, were included based on
polyvinylpirrolidone (PVP) (26) solutions in water at 0%, 20%,
and 40%. All seven phantom materials were individually housed
in polypropylene vials (V1–V7) of 150 mm in length and 25 mm
of diameter, in a circular arrangement, submerged in water bath
in a 1L plastic jar. The chemical phantom sample assignments
for V1–V7 vials are provided in Table 1. The example axial-
plane b � 0 image of the phantom with vial (region of interest
[ROI]) labels is shown in Figure 1A. Three identical phantom
prototypes were prepared using the same material batch, labeled
for consistent scan geometry (see online Supplemental Figure1),
and shipped to each of the participating sites. The jars were filled
with tap water on-site and scanned at ambient temperature.

Multicenter iDKI Phantom Studies
The prototype quantitative iDKI phantoms were scanned at three
Quantitative Imaging Network (27) centers on four MRI scanners
(2 at 1.5 T and 3 T each) using shared scan protocol over a period
of six months. Consistent with the clinical iDKI scan protocol,
the phantom scan instructions prescribed single-shot echo-pla-
nar imaging (SS EPI) acquisition of 3 orthogonal axial DWI
directions with 11 b-values (b � 0, 50, 100, 200, 500, 800, 1000,
1500, 2000, 2500, 3000 s/mm2), using a 16-channel head-coil.
Other nominal acquisition parameters included the following:
field of view (FOV) � 220 � 220 mm2, echo time/repetition
time � shortest/10 000 ms. (Actual minimum echo time varied
from 93 ms to 107 ms across system scans owing to differences
in gradient settings). The acquired section of the phantom
ranged between 3 and 8 slices (3–5 mm in thickness) for the
sites. Minor deviations from nominal scan protocol parameters
among the sites were allowed with no effect on repeatability

Table 1. Sample-Specific Inter-scan (All-Site)
Average Kurtosis Parameters With Test–Retest
(Repeatability-Based) 95% Confidence
Intervals (95% CI)

Vial# Sample Dapp � 95% CI Kapp � 95% CI

V1 DEC-CTAB 0.71 	 0.014 1.11 	 0.017

V2 CA-BTAC 1.02 	 0.022 1.69 	 0.013

V3 PVP20% 1.27 	 0.017 0.04 	 0.013

V4 Water 2.16 	 0.034 0.06 	 0.021

V5 PVP40% 0.60 	 0.012 0.08 	 0.022

V6 PL161 1.11 	 0.014 1.29 	 0.009

V7 CA-CTAB 0.39 	 0.013 0.84 	 0.076
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results. Test–retest acquisitions were performed with fixed scan
protocol parameters with or without phantom repositioning,
anywhere from several minutes to several days apart.

All acquired data were stored and distributed in Digital Image
Communication in Medicine (DICOM) format (28), and centralized
analysis of multi-b trace DWI DICOM data was performed using qual-
ity control routines developed inMATLAB7 (MathWorks,Natick,MA)
(20). Noncompliant scans from two dates that had large deviation in
FOV (two scans) or had high EPI susceptibility artifacts (one scan),
precluded uniform ROI definition and were excluded from the analy-
sis. The remaining ten sets of test–retest data (three from each of the 3
T and two from each of the 1.5 T scanners) and four (early) single-run
acquisitions (from one 3 T scanner) were analyzed. Test–retest studies
were used for intra-scan repeatability assessment, while single runs
were included for intra-scan reproducibility and sample stability eval-
uation. Phantom temperatures were not controlled and varied with the
scanner room (ambient) environment. Reference scan room tempera-
ture was recorded for four (later) study scans. One site (that provided
single-run acquisitions) stored the phantom in a scan room over the
course of the study, while the other two allowed the phantom to
thermally equilibrate in the scan room (for one 3 T and two 1.5 T
systems) for �24 hours before each scan.

Parametric Map Generation and Repeatability Analysis
The parametric maps of apparent diffusion, Dapp, and kurtosis,
Kapp, (Figure 1B) were calculated using linear least square fit of
voxel DWI log-signal to a quadratic function of b-value, accord-

ing to the iDKI model (11, 12), Log(Sb/S0) � � Dapp · b � Kapp/
6 · (Dapp · b)2. Maximum b-value allowed in the fit was con-
strained by bmax  3⁄�Kapp·Dapp� to satisfy iDKI signal model
convergence (11) and Sbmax/S0 � 0.01 (to ensure SNRbmax � 2).
This yielded bmax � 1500 s/mm2 for CA-BTAC (V2), and bmax �
2000 s/mm2 for water (V4) and PL-161 (V6) vials (Figure 1, C
and D). Absolute (residual) kurtosis bias of negative controls
(Figure 1, A and D: V3, V4, and V5) was estimated as Kapp fit
parameter deviation from zero (29) for monoexponential (zero
kurtosis) diffusion materials.

Uniform areas of the b � 0 image were used to define ROIs
within phantom vials, for example, avoiding susceptibility and
parallel imaging artifacts. Seven circular ROIs (12 mm diameter,
155 pixels) were defined on DWI (b � 0) for phantom tubes
separately for the test–retest runs, using in-house MATLAB-based
tools to generate ROI statistics for repeatability estimates of the Dapp

and Kapp parameters. Uniform ROI definition was noted to be
challenging for V7 owing to multiple small air bubbles (Figure 1A)
apparently formed within the sample volume. These air bubbles
were observed to “migrate” between test–retest runs. For all scans,
the defined ROI pixel locations were within 	30 mm from the
magnet isocenter that minimized potential contribution of gradient
system and offset-dependent DWI bias (20, 21).

Sample-specific coefficient of variance (wCV) was calcu-
lated from available test–retest studies (18, 19): wCV �

�2⁄N�i�1
N |X1 � X2|⁄�X1 � X2�, where X1 and X2 were mean-

Figure 1. (A) Axial b � 0 image
of the central slice of the kurtosis
phantom acquired at 1.5T showing
sample vial cross section with typical
ROI placement. (B) example fit para-
metric diffusion kurtosis maps for (A)
with the common color-bar indicating
(�10�3 mm2/s) scale for Dapp and
dimensionless for Kapp. (C) and (D)
show b-value dependence of ROI-
mean log-signal DWI (asterisks) and
kurtosis model fit (traces) for kurtosis
samples and negative (mono-expo-
nential diffusion) controls, respec-
tively. Sample vial data are color-
coded in the legend corresponding
to the ROI numbers in (A). Last DWI
data point on the solid-fit curves indi-
cates maximum b-value (bmax), al-
lowed by the fit constraints of kurtosis
model convergence in (C) and DWI
noise floor in (D). Dashed segments
for V2, V4, and V7 illustrate (un-
physical) model extrapolation, pre-
vented by constrained fit.
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ROI test–retest (Dapp or Kapp) parameter values, respectively, for
N repeatability studies. The 95% confidence interval (CI) for an
average value of measured parameter (X), was estimated as
1.96·wCV·ave(X), where the average was over all available (ten)
test–retest DKI acquisitions (including less repeatable outliers)
for each phantom vial. Single-acquisition 95% CI was also esti-
mated for individual test–retest studies (N � 1) to assess systematic
site and field dependencies. Bland–Altman (BA) repeatability anal-
ysis was performed for Dapp and Kapp across all test–retest samples
(pool of 70). The overall BA limits of agreement (LOA) were calcu-
lated across all sample vials and test–retest scans excluding less
repeatable scan “outliers.” These “outliers” were identified on the
basis of test–retest value differences �1.5 interquartile ranges
above the upper quartile or below the lower quartile of the 70
sample test–retest parameter difference histogram, corresponding
to 	2.7 � SD for the normal error distribution (defined according
to MATLAB “boxplot” default outliers).

Pearson correlation, R, was evaluated for the derived mean
parameter values and their corresponding 95% CI estimates
versus scan time (days from phantom manufacturing), apparent
(water ADC-based) phantom temperature, and system magnetic
field, to characterize the sources of variation in the measured
iDKI parameters and identify materials with desired properties.
Among covariates, date was not correlated to temperature, al-
lowing independent analysis, while magnetic field had signifi-
cant negative correlation to temperature (�0.64; pR � .02) as
expected from dependence on scanner environment.

Water ADC-Based Apparent Phantom Temperature
Comprehensive characterization of thermal phantom properties
was beyond the scope of this study; however, assessment of appar-
ent phantom temperature (Ta) was deemed useful for discrimination
between temporal and thermal origin of inter-scan variation in

measured kurtosis parameters across multiple sites and dates. To
this end, the Ta of each phantom scan was self-calibrated retrospec-
tively using water diffusion coefficient based on Speedy–Angell
relation (30): Ta � 215.05 · ��ADC⁄D0�1⁄��1� � 273.15; � �
2.063, D0 � 0.1635 mm2⁄s; it ranged between 19.5°C and 25.5°C
(	1°C) (Figure 2). For ADC-based Ta, water ADC was fit as a slope
of log-signal DWI dependence on b-value up to bmax � 1000
s/mm2 (to minimize SNR bias), and mean ADC value was measured
from 15 � 15 mm2 ROI defined on the central vial (V4, Figure 1A).
ADC map vertical image “gradients” were observed for one system
(online Supplemental Figure 2), with values increasing toward the
posterior direction, indicative of phantom warming during the
scan, possibly owing to contact from support pads or coil-induced
heating. For this system, mean ADC values were used from three
ROIs across the water-bath volume away from the posterior coil
(see online Supplemental Figure 2).

Four independent, direct water temperature (Tm) measure-
ments (with alcohol-based thermometer, CI � 	0.5°C) were
recorded by the sites and indicated �0.5°C positive bias of
“apparent” Ta-values. (The ADC calculation using b-values up to
2000 s/mm2 resulted in �1°C bias for the same independent
Tm-measurements.) Notwithstanding the limited accuracy and
precision of the utilized ADC-based Ta-calibration procedure
(CI � 	1°C, owing to relatively imprecise water ADC values
[	0.03 � 10(�3) mm2/s]), the derived apparent temperature, Ta,
was sufficient to differentiate thermal from temporal trends in
the measured diffusion kurtosis parameters. Adequacy of the
water ADC-based Ta-calibration procedure was confirmed by
observation of (expected) linear temperature dependence for
ADC of the negative control PVP samples (PVP20%: V3 and
PVP40%: V5; Figure 2) not used for internal calibration. Minor
excursions from linearity in Figure 2 for ADC values of PVP20%

Figure 2. Left pane shows axial
ADC maps (based on mono-expo-
nential fit using bmax � 1000
s/mm2) for phantoms scanned by
two participating sites at different
(measured) temperatures Tm � 24
and 19.5°C (recorded by sites). The
common scale for the ADC maps is
indicated by the color bar. Change
in water ADC contrast between two
maps illustrates sufficient thermal
sensitivity for self-calibration of “ap-
parent” phantom temperature, Ta (as
described in Methodology). Linear
ADC dependence on Ta is observed
in the right pane for mean-ROI val-
ues of the negative control samples
(color-coded in legend) from all ana-
lyzed scans (different sites and
dates).
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(V3) and PVP40% (V5) vials offset from the isocenter compared
with the centrally positioned water (V4) (Figure 1), further confirmed
the negligible effect of scanner gradient system bias (20, 21) on inter-
scan variability for the measured diffusion parameters.

RESULTS
Four different chemical designs tested for iDKI phantom mate-
rials in V1, V2, V6, and V7 (Table 1) exhibited restricted diffu-
sion at high b-values (�1000 s/mm2), with DWI signals sus-
tained above 20% of S0 (Figure 1C), and apparent kurtosis
coefficient exceeding negative control bias owing to back-
ground noise (Figure 1B, Kapp). All materials allowed achieve-
ment of physiologically relevant apparent kurtosis parameter
values (Kapp ranges, 0.8–1.7; Table 1). Consistent qualitative
observations across sites were that phantom samples apparently de-
gassed after 3–4 weeks from preparation. Less viscous materials
formed large air bubbles outside the sample volume, while more vis-
cous materials formed small visible bubbles within the sample volume
(Figure 1A; V7). The in-volume microbubbles tended to migrate be-
tween test–retest runs, potentially contributing fluctuating measure-
ment errors owing to susceptibility artifact.

BA analysis across all test–retest acquisitions and samples
summarized in Figure 3 showed generally good agreement for
apparent diffusion kurtosis parameters of all phantoms across
centers, compared with those of negative controls. Excluding
outliers, BA 95% LOAs were 	0.025 (�10�3 mm2/s) for Dapp

and 	0.035 for Kapp. Negligible positive bias of 0.005 was
observed for Dapp. This bias and lower repeatability for several
Dapp (V4) and Kapp (V7) “outliers” (well outside the LOA) was
likely because of finite noise floor interference (V4, high water
ADC) and “migrating” air bubble artifacts (V7) for the corre-
sponding test–retest scans.

Finite spread of the mean parameter values of each sample
observed along the horizontal axis in Figure 3 reported on
cross-system and cross-scan variability, further detailed for in-
dividual sample vials in Figure 4A. The scan-to-scan differences

in Dapp of negative controls (V3, V4, V5, diamonds) were fully
explained by the dependence on scanner ambient temperature
(Figure 2; R � 0.97, pR � 1e-5). Absolute bias for Kapp of
negative control materials (Figure 2, “x”, right axis) did not
exceed 0.1 (without significant temperature dependence). The
highest bias, independent of system (magnetic field), was ob-
served for V5 (40%PVP sample) consistent with contrast-to-
noise limits for this (low ADC) control. For V4, the bias was
inversely dependent on the field strength (higher for 1.5 T Sys2
and Sys3), indicating its SNR origin. All measured Kapp for
kurtosis samples (V1, V2, V6, and V7) exceeded negative control
(zero kurtosis) bias. The estimated single test–retest 95% CIs
(Figure 4B) for iDKI phantom materials ranged between 0.0003
and 0.15 (median 0.015), and (except for V7: Kapp and V4: Dapp

outliers) these were not significantly different for Dapp versus
Kapp and 1.5 T (Sys2, Sys3) versus 3 T (Sys1, Sys4) systems.
CI(Dapp) (Figure 4B, diamonds, left axis) for V1 and V2 has
shown minor correlation to measured Dapp values (R � 0.59,
0.57; pR � .07, .09), suggesting negligible contribution of model
fit error to test–retest repeatability. For V2 sample, CI(Dapp) was
significantly correlated to temperature (R � 0.67, pR � .033),
indicating thermal noise sensitivity of this material. No other
significant correlations were observed for the material-specific
test–retest measurement errors (pR � 0.1).

The mean iDKI parameter values and derived 95% CIs ob-
served across sites and scans are summarized in Table 1 for
individual phantom components (including less repeatable
“outliers”). Except for the V7 outlier Kapp (95%CI: 0.076), the
apparent measurement precision of iDKI phantom parameters
(CI[Dapp]: 0.013–0.022 (�10�3 mm2/s) and CI[Kapp]: 0.009–
0.017) was as good (or better) than that of the negative controls
(0.012–0.034 (�10�3 mm2/s) and 0.013–0.022). The achieved
measurement precision was sufficient for analysis of systematic
scan-to-scan variability sources for kurtosis phantom parame-
ters (Figure 4A, V1, V2, V6, V7).

Figure 3. Bland–Altman (BA) plot for ROI-mean Dapp (A) and Kapp (B) fit parameters of all phantom samples (color-
coded in the legend) from ten test–retest study scans. Solid and dashed horizontal lines mark mean bias and 95% LOA,
respectively, across all samples (excluding outliers for V4 (A) and V7 (B)). Horizontal data spread for individual vials
reflects inter-scan (temporal and thermal) variability of measured parameters.
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Table 2 summarizes correlation between mean parameters
and apparent scan room temperature (Ta), day and field vari-
ables. The bulk of the significant correlation to magnetic “field”
observed for sample V1 (negative for Dapp, and positive for Kapp)
apparently originated from the systematic kurtosis parameter
differences observed for Sys1 phantom stored in the scanner
room versus two other sites using prolonged storage outside of
their scanners (Sys2, Sys3, Sys4). Unambiguous interpretation
of significant correlation to magnetic field observed for Kapp of
V7 sample was not warranted owing to limited precision of the
corresponding measurements (Table 1, CI[Kapp] � 0.076).

For vials showing significant thermal and temporal corre-
lations in Table 2, the corresponding parameter dependence is
plotted in Figure 5. Temperature dependence was a significant
contributor to 10%–15% variation in Dapp (Figure 5A) of V2 and
both “parallel” trends of V1 phantom materials. The deviations
from linear trends were due to finite precision of self-calibrated
Ta values and temporal stability. Marginally significant negative
thermal correlation for Kapp of V1 was evidently caused by 2
high-Ta � 24°C measurements for Sys2 and Sys3 (Figure 5B),
when this viscous material might not have reached thermal
equilibrium. Temporal Dapp and Kapp parameter value trends

(Figure 5, C and D) for V1, V2, and V7 materials exhibit initial
slope (Dapp V1: 9%, V7: �22%; Kapp V1: �18%, V2: 6%) which
settled into relatively stable values after a 3- to 4-week stabili-
zation period (coincidental with observed active sample degas-
sing). In contrast, V6 (PL161 lamellar phantom) diffusion
kurtosis parameter values continued to drift toward 50%-higher Kapp

and 20%-lower Dapp parameter values over the whole study period
(without significant Ta-dependence). Interestingly, Dapp of V7
sample was also nominally independent of temperature. The site-
dependent �0.2 (�10�3 mm2/s) “fork” in Dapp was observed con-
sistently for thermal and temporal dependence of V1, strongly
suggesting involvement of phantom storage conditions and/or low
thermal conductivity of this viscous material.

DISCUSSION
All four of the different chemical designs evaluated for the proto-
type iDKI phantom (25) provided quantitative diffusion character-
istics which could be tuned to a physiologically relevant range of
parameters (Kapp � 0.8) observed for in vivo tumor tissue, for
example, for head and neck, prostate, and bladder cancers (5,
13-15). The study confirmed feasibility of quantitative iDKI phan-
toms based on vesicular and lamellar phases of liquid crystal

Table 2. Dapp and Kapp Percent-Correlation (%R) Summary for Kurtosis Phantom Materials (V1, V2, V6, V7)

Vial\%R (pR) (Dapp, Ta) (Dapp, day) (Dapp, field) (Kapp, Ta) (Kapp, day) (Kapp, field)

V1 54.1
(0.046)

64.1
(0.013)

�76.9
(0.0013)

�53.8
(0.047)

�70.7
(0.0047)

71.2
(0.0043)

V2 86.5
(�0.001)

�3.9
(0.89)

�42.9
(0.13)

�23.4
(0.42)

�56.2
(0.036)

12.8
(0.66)

V6 25.1
(0.39)

�90.6
(�0.001)

6.8
(0.82)

9.5
(0.75)

98.3
(3E-10)

�30.5
(0.29)

V7 13.3
(0.65)

�84.5
(�0.001)

10.7
(0.72)

32.8
(0.25)

�5.1
(0.86)

-61.8
(0.019)

Figure 4. Vial-specific mean test–
retest values for Dapp (diamonds)
and Kapp (“x”, horizontally offset for
clarity) in (A) and corresponding
(single test–retest) 95% CI in (B) are
color-coded for system of origin, as
indicated in the legend (Sys1, Sys4
are 3 T, and Sys2, Sys3 are 1.5 T).
Left and right vertical axes are for
Dapp and Kapp,, respectively. The
vertical spread of mean values re-
flects potential thermal, temporal,
and field dependence of measured
diffusion kurtosis parameters, while
spread of CIs reports on test–retest
measurement error.
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materials of different viscosity, and provided guidance toward a
phantom product and multisite quality control protocol with im-
proved precision and reproducibility. Included negative control
samples allowed independent characterization of kurtosis bias and
supplied internal standards for thermal diffusion-based calibration.
Independent of chemical design, all kurtosis phantoms allowed
sufficient SNR to avoid noise-bias or noise-limited precision in
measured parameters. Phantom material-specific confidence inter-
vals, derived from test–retest repeatability measurements, de-
pended on sample preparation and handling more than on scan
SNR, indicating possible improvement venue. The achieved model
parameter precision (95% CI) of 1%–3.5% was sufficient to study
sources of systematic inter-scan variability related to thermal and
temporal stability of the prototype phantom materials. These results
will be used in future studies to improve development of the
next-generation quantitative iDKI phantom for utilization in mul-
ticenter clinical trials.

Among studied chemical designs, CA-BTAC (V2) phantom has
shown the most promising characteristics and was least sensitive to
sample preparation (6% Dapp change during stabilization stage).
Owing to thermal sensitivity of Dapp (�3%/oC), typical of water-
based phantoms (30), this iDKI phantom should be best used with
temperature control or monitoring. In contrast, moderately viscous
CA-CTAB (V7) phantom has shown thermally stable parameters,
but large (22%) change in Dapp during initial stabilization period, as
well as limited Kapp precision (9%, likely owing to migrating in-
volume microbubbles). The observed field dependence of its Kapp

might be related to chemical properties of the material; however,
this would require further investigation with improved precision.

More viscous lamellar DEC-CTAB (V1) material exhibited moderate
(9%–18%) kurtosis parameter changes during stabilization and mod-
erate thermal sensitivity (10%), but was sensitive to prolonged storage
and thermal equilibrium conditions, likely due to lower thermal con-
ductivity. The stable kurtosis parameter values were not achieved for
PL161 (V6) sample and continually changed over the course of the
study, reflecting poor temporal stability of this material.

A limitation of this study was that all phantoms shared among
sites were prepared from a single batch of (four families of) mate-
rials; repeatability of the batch preparation procedure itself was not
evaluated. Temperature was not consistently monitored during
scanning, which should be implemented for future multicenter
studies, for example, by including in situ thermometer. The phan-
tom T1 and T2 relaxation properties were not studied, and likely do
not match in vivo tissue characteristics. However, having longer-
than-tissue T2 relaxation times could be desirable for intended use
of the kurtosis phantoms to increase the range of accessible b-val-
ues for DKI protocol optimization. Furthermore, adjustment of
relaxation properties for vesicular phase (predominantly water)
materials by adding relaxivity agents should be possible without
substantial interference with diffusion characteristics.

Overall, observed apparent phantom diffusion sensitivity to tem-
perature (2%–3%/°C) was similar to free water diffusion (30) and
markedly higher than that of apparent kurtosis, consistent with the
restricted diffusion origin of the latter. All phantom materials were
noted to undergo initial parameter stabilization period of 3-4 weeks
following preparation, coincidental with evident sample degassing.
The parameter values for vesicular phase materials remained relatively
stable after stabilizationperiod. The candidatematerials basedonmore
viscous multilamellar vesicle phase, exhibited either poor temporal
stability (PL161: V6) or notable dependence on site storage and ther-
mal equilibrium conditions (DEC-CTAB: V1), and hence are not rec-
ommended for product iDKI phantom manufacturing. The kurtosis
parameter values of CA-CTAB (V7) vesicular material had limited
precision (9%) likely owing to formation of in-volume gas micro-
bubbles, but warranted further evaluation after improved preparation
due to offered thermal stability.

These observations suggested that sample degassing (eg, by
centrifuging) during preparation should be attempted to improve
precision and shorten stabilization period, preferably down to �1
week. The future studies should also monitor DKI parameter
changes for up to a month for several material batches to evaluate
reproducibility of phantom preparation and stabilization time. For
use of temperature-sensitive phantoms, temperature monitoring
(with DKI parameter calibration) is also recommended for multisite
reproducibility studies at ambient temperature. Temperature mon-
itoring could be implemented using an in situ thermometer or a
calibrated internal standard, and it would be preferred to temper-
ature control (eg, with ice-water bath) to avoid kurtosis phantom
material phase transition (to gel) at lower temperatures.

CONCLUSION
The present multisite repeatability study has identified the liquid
crystal materials based on vesicular phase as best candidates for
quantitative iDKI phantom production. Independent of chemical
design, the preparation procedure for iDKI phantoms could be
improved by including degassing step to enhance repeatability
and reduce stabilization period of diffusion kurtosis character-

Figure 5. Thermal (A, B) and temporal (C, D) depen-
dence of mean Dapp (A, C, diamonds) and Kapp (B, D,
‘x”) for phantom materials with significant (pR � 0.05,
Table 2) correlation to Ta/Time variables. Source vial
number is color-coded in the legend (consistent with
previous figures). The vertical data spread in each plot
is indicative of cross-dependence on alternative vari-
able (Ta in C, D or Time in A, B).
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istics. The most promising iDKI phantom design recommended
for multisite trials is based on CA-BTAC (V2) vesicular suspen-
sion that allowed easy preparation, temporal stability, and in-
dependence of storage. Before utilization in multisite studies,
this phantom would require temperature calibration and moni-
toring owing to observed thermal sensitivity of diffusion (sim-
ilar to other water-based phantoms). Another iDKI phantom
design (based on CA-CTAB: V7) with desirable thermal stability,
needs to be studied after improved preparation to enhance

precision and allowed longer thermal equilibration before scan-
ning to ensure reproducibility for adaption in future longitudi-
nal multicenter clinical trials.

Supplemental Materials
SupplementalFigure1:http://dx.doi.org/10.18383/j.tom.2018.

00030.sup.01
SupplementalFigure2:http://dx.doi.org/10.18383/j.tom.2018.

00030.sup.02

ACKNOWLEDGMENTS
This research was supported by National Institutes of Health Grants: U01CA166104,
U01 CA211205, P01CA085878 and in part through P30 CA008748.

Disclosure: S.D. Swanson, D.I. Malyarenko, and T.L. Chenevert are co-inventors on
intellectual property assigned to and managed by the University of Michigan for the

technology underlying the manufacturing of the quantitative diffusion kurtosis phantoms
utilized in this manuscript.

Conflict of Interest: The authors have no conflict of interest to declare.

REFERENCES
1. Le Bihan D. Molecular diffusion, tissue microdynamics and microstructure. NMR

Biomed. 1995;8:375–386.
2. Manenti G, Di Roma M, Mancino S, Bartolucci DA, Palmieri G, Mastrangeli R,

Miano R, Squillaci E, Simonetti G. Malignant renal neoplasms: correlation be-
tween ADC values and cellularity in diffusion weighted magnetic resonance imag-
ing at 3 T. Radiol Med. 2008;113:199–213.

3. Squillaci E, Manenti G, Cova M, Di Roma M, Miano R, Palmieri G, Simonetti G.
Correlation of diffusion-weighted MR imaging with cellularity of renal tumours.
Anticancer Res. 2004;24:4175–4179.

4. Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and chal-
lenges in oncology. AJR Am J Roentgenol. 2007;188:1622–1635.

5. Lawrence EM, Gnanapragasam VJ, Priest AN, Sala E. The emerging role of
diffusion-weighted MRI in prostate cancer management. Nat Rev Urol. 2012;
9:94–101.

6. Levy A, Medjhoul A, Caramella C, Zareski E, Berges O, Chargari C, Boulet B,
Bidault F, Dromain C, Balleyguier C. Interest of diffusion-weighted echo-planar
MR imaging and apparent diffusion coefficient mapping in gynecological malig-
nancies: a review. J Magn Reson Imaging. 2011;33:1020–1027.

7. Foltz WD, Wu A, Chung P, Catton C, Bayley A, Milosevic M, Bristow R, Warde
P, Simeonov A, Jaffray DA, Haider MA, Ménard C. Changes in apparent diffu-
sion coefficient and T2 relaxation during radiotherapy for prostate cancer. J
Magn Reson Imaging. 2013;37:909–916.

8. Jensen LR, Garzon B, Heldahl MG, Bathen TF, Lundgren S, Gribbestad IS. Diffu-
sion-weighted and dynamic contrast-enhanced MRI in evaluation of early treat-
ment effects during neoadjuvant chemotherapy in breast cancer patients. J Magn
Reson Imaging. 2011;34:1099–1109.

9. Lacognata C, Crimi F, Guolo A, Varin C, De March E, Vio S, Ponzoni A, Barilà
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Repeatability and reproducibility of magnetization transfer magnetic resonance imaging of the breast, and
the ability of this technique to assess the response of locally advanced breast cancer to neoadjuvant therapy
(NAT), are determined. Reproducibility scans at 3 different 3 T scanners, including 2 scanners in community
imaging centers, found a 16.3% difference (n � 3) in magnetization transfer ratio (MTR) in healthy breast
fibroglandular tissue. Repeatability scans (n � 10) found a difference of �8.1% in the MTR measurement of
fibroglandular tissue between the 2 measurements. Thus, MTR is repeatable and reproducible in the breast
and can be integrated into community imaging clinics. Serial magnetization transfer magnetic resonance
imaging performed at longitudinal time points during NAT indicated no significant change in average tu-
moral MTR during treatment. However, histogram analysis indicated an increase in the dispersion of MTR
values of the tumor during NAT, as quantified by higher standard deviation (P � .005), higher full width at
half maximum (P � .02), and lower kurtosis (P � .02). Patients’ stratification into those with pathological
complete response (pCR; n � 6) at the conclusion of NAT and those with residual disease (n � 9) showed
wider distribution of tumor MTR values in patients who achieved pCR after 2–4 cycles of NAT, as quantified
by higher standard deviation (P � .02), higher full width at half maximum (P � .03), and lower kurtosis
(P � .03). Thus, MTR can be used as an imaging metric to assess response to breast NAT.

INTRODUCTION
Magnetization transfer magnetic resonance imaging (MT-MRI)
is sensitive to the macromolecular content of tissue, providing a
contrast mechanism that differs from conventional magnetic
resonance imaging (MRI) relaxation measurements such as T1
and T2. This macromolecular content includes contributions
from a variety of biomolecules. For example, in white matter,
the tissue for which MT-MRI has been best characterized, the
macromolecular content is considered to include contributions
from cholesterol, sphingomyelin, and galactocerebroside (1).
The macromolecules that contribute to MT-MRI in cancer have
not been fully described, although it has been postulated that
increased proteolytic activity or decreased enzyme inhibition
may play a role (2). The protons on these macromolecules are
difficult to image directly owing to their fast transverse relax-
ation, but their effects can be observed indirectly by perturbing

the macromolecular pool and imaging the effect on free water
protons. More specifically, the image contrast in MT-MRI re-
flects the exchange of magnetization between protons in free
water and protons bound to semisolid macromolecules through
dipole–dipole interactions and/or chemical exchange. Since
first reported by Wolff and Balaban (3), MT-MRI has been used
extensively as a research tool in neuroimaging (1, 4), with
notable success in assessing the demyelination process accom-
panying multiple sclerosis (5).

Compared with progress in neuroimaging, MT-MRI has
been relatively underexplored in cancer imaging. A study of
excised breast tissue found that magnetization transfer (MT)
saturation improved the discrimination between healthy and
malignant tissue (6). Further in vivo studies in the breast found
that MT-MRI improved conspicuity of breast lesions (7) and
distinguished malignant and benign lesions (2, 8). Although the
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biochemical basis for MT-MRI contrast in tumors has not been
fully explored, these studies suggest that MT may reflect some
aspects of malignant tissue, putatively the extracellular matrix,
which has garnered increased recent attention for its role in
tumor formation, growth, and metastasis (9). In breast cancer, in
particular, the extracellular matrix has been implicated as a
crucial driver of tumor progression and metastasis, as well as a
potent mediator of treatment resistance (10).

MRI has shown the capability of characterizing changes in
the tumor and tumor microenvironment that are associated with
therapy. In breast cancer, MRI performed early in the course of
neoadjuvant therapy (NAT) has proven capable of predicting the
eventual tumor response before downstream changes in tumor
size (11-13). The 2 MRI techniques that have been the most
investigated for predicting therapeutic response to breast NAT
are diffusion-weighted MRI (14) and dynamic contrast-en-
hanced MRI (15, 16), as well as their combination (17, 18).
MT-MRI has not yet been investigated for evaluating (or pre-
dicting) response during therapy in locally advanced breast
cancer.

In this study, we first characterize the repeatability and
reproducibility of MT-MRI in healthy breast fibroglandular tis-
sue (FGT). Then in a pilot cohort of women with locally ad-
vanced breast cancer, we investigate changes in MT-MRI in
response to NAT and correlate these changes with surgical
pathology results. Importantly, these studies are performed on
MRI scanners sited in community imaging centers, showing that
MT-MRI can be deployed beyond academic research centers and
into routine clinical practice.

METHODOLOGY
MRI Protocol
MRI was performed using 3 T Siemens Skyra scanners (Erlangen,
Germany) equipped with 8- or 16-channel receive double-breast
coil (Sentinelle, Invivo, Gainesville, Florida). Three scanners
were used in this study: 2 were located at community imaging
facilities, while 1 was sited at an academic research facility.
Repeatability studies were performed on the scanner sited at the
academic research facility, while the normal subject reproduc-
ibility experiment was performed on all 3 scanners. The study in
patients with breast cancer was performed at the 2 community
imaging facilities.

All breast MRI data were acquired in the sagittal plane. To
calculate the magnetization transfer ratio, 2 images were ac-
quired, identical, save for the inclusion of an MT saturation
pulse on 1 of the acquisitions. Both images consisted of spoiled
gradient-echo sequences with repetition time (TR) � 48 milli-
seconds, echo time (TE) � 6.4 milliseconds, flip angle � 6°,
receiver bandwidth � 260 Hz/pixel, acquisition matrix � 192 �
192, field of view � 256 � 256 mm, number of sections � 10,
section thickness (with no section gap) � 5 mm. GRAPPA
(GeneRalized Autocalibrating Partial Parallel Acquisition) ac-
celeration factor of 2 and SPAIR (SPectral Attenuated Inversion
Recovery) fat suppression were performed. The MT saturation
pulse consisted of a 9.88-millisecond Gaussian-shaped MT pre-
pulse performed within each repetition, with a flip angle of 500°,
which was offset from the water frequency peak by 1.5 kHz. The
acquisition time was 53 seconds for each acquisition, yielding a

total imaging time of 1 minute, 46 seconds to acquire data both
with and without the MT pulse.

The MRI protocol also included a high-resolution T1-
weighted 3D gradient-echo FLASH (fast low angle shot) acqui-
sition for identifying anatomy and segmentation of fibroglan-
dular and adipose tissue. The following are parameters of this
anatomical image: TR � 5.3 milliseconds, TE � 2.3 millisec-
onds, flip angle � 20°, acquisition matrix � 256 � 256, FOV �
256 � 256 mm, section thickness � 1 mm, GRAPPA accelera-
tion � 2, and SPAIR fat suppression. Acquisition time for the
anatomical image was 3 minutes and 11 seconds. For patients
with breast cancer, a dynamic contrast-enhanced MRI protocol
was performed after the MT acquisition to segment the tumor.
The dynamic contrast-enhanced protocol consisted of a T1-
weighted VIBE (volumetric interpolated breath-hold examina-
tion; no breath-holding was, however, used in these studies)
acquisition with TR � 7.02 milliseconds, TE � 4.6 milliseconds,
flip angle � 6°, acquisition matrix � 192 � 192, field of view �
256 � 256 mm, number of sections � 30, slice thickness � 5
mm, GRAPPA acceleration factor � 3. Imaging was performed
at 7.27-seconds temporal resolution for 1 minute before and 6
minutes after administration of a gadolinium-based contrast
agent (Multihance; Bracco, Monroe Township, NJ) or Gadovist
(Bayer, Leverkusen, Germany) via a power injector followed by
a saline flush.

Repeatability/Reproducibility Study
Volunteers consisted of healthy women (n � 10; median age �
39.5 years [range � 22–62]) with no history of breast disease
who were neither pregnant nor breastfeeding. For the repeat-
ability study, 2 MRI examinations were performed on the same
day on a single MRI scanner, with subject removal from the
examination table and repositioning between scans. To assess
reproducibility of MTR, subjects were scanned at 3 different
locations (which included 1 academic and 2 community radiol-
ogy centers) on 3 different days.

Response to Breast Cancer NAT Study
Women (n � 15; median age � 41 years [range � 25–63 years])
with stage II or III locally advanced breast cancer undergoing
NAT were recruited from community oncology practices (n �
15). Longitudinal MTR measurements were performed at 4 time
points: before the start of NAT, after 1 cycle of NAT, after 2–4
cycles of NAT, and 1 cycle after MRI #3.

Image Analysis
MTR was calculated for each voxel via equation (1):

MTR � 100% 	
S0 � SMT

S0
(1)

where SMT and S0 are the measured signal intensities with and
without the MT saturation pulse, respectively. MTR values for
voxels that returned undefined values (for which S0 � 0) or for
which SMT � S0 were excluded from subsequent analyses. All
pixels with MTR values of 0 were excluded to minimize the
number of residual pixels, with partial volume averaging from
adipose tissue.
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Segmentation of FGT was performed on the anatomical
images as previously described (20). Briefly, a k-means cluster-
ing algorithm was used to generate a mask specific to FGT based
on image intensity. Segmentation of the tumor in the patient
population with breast cancer was performed using dynamic
contrast-enhanced images. A fuzzy c-means algorithm sepa-
rated tumor from surrounding tissue based on the dynamics of
signal intensity after contrast agent injection, similarly to a
method previously described (21).

Statistical Analysis
Statistical analysis was performed using the statistical toolbox
in MATLAB 2018a (The MathWorks, Natick, MA). Voxel values
were averaged across the FGT, and repeatability/reproducibility
statistics were calculated as previously described (20). Voxel
values were both averaged across the tumor and binned into
histograms for the therapeutic response study. Voxel distribu-
tions quantified the Kolmogorov–Smirnov test, and histogram
analysis, similar to methods previously used to characterize
MTR distributions in the brain (22). The following histogram
parameters were derived from the histograms of MTR values:
standard deviation; kurtosis; and the 25th, 75th, and 95th per-
centiles of the tumor MTR, where the nth percentile is the point
at which n% of the voxel values that form the histogram are
found to the left. The full width at half maximum, which was
calculated using the “dfittool” in MATLAB to fit voxel values to
a Gaussian distribution. To ensure that differences in voxel
distributions were not due solely to tumor regression and thus a
smaller number of voxels in the distribution, MTR distributions
were truncated to be the same number of voxels and compared.
Comparisons between 2 groups were made using a 2-tailed t test,

with P � .05 considered significant. The voxel-wise distribu-
tions of MTR values were tested for equal variance using a
2-sample F-test to compare the pCR and non-pCR groups and
Levene test to compare groups through time (multiple-sample
test). Comparisons among �2 groups were made using 1-way
ANOVA or, for measurements repeated in the same subject,
repeated-measures ANOVA. Data are expressed as mean 	 stan-
dard deviation.

RESULTS
Repeatability and Reproducibility
Reproducibility of MT-MRI in the breast was assessed by scan-
ning normal breast FGT at the 3 different sites, yielding an
average difference of 16.3% 	 14.4% in MTR between sites
(Figure 1), with no statistical differences detected between the
sites (P � .1). Repeatability was assessed by scanning the breast
of the same woman twice with repositioning attempted between
scans (Figure 2A). Repeatability scans of the same subject’s FGT
showed an average percent difference of 8.1% 	 7.9% in mean
MTR measurement between the 2 scans. Repeatability of MTR in
FGT was not significantly different between scans, suggesting
lack of bias between the first and second scanning sessions
(Figure 2B). In addition, the difference between repeated mea-
surements was independent of the mean. The average MTR of
FGT was 33% 	 5%. The difference between subject age and MTR
was not significant (P � .08), but it did indicate a trend toward
higher MTR values in younger subjects. The standard deviation
of MTR values throughout the FGT was also assessed to deter-
mine how the voxel distribution varied across repeat scans
(Figure 3B). The repeatability statistics for both mean and stan-
dard deviation of MTR are summarized in Table 1, which estab-
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Figure 1. Multisite reproducibil-
ity of magnetization transfer ratio
(MTR) in 3 normal subjects
scanned at 3 sites. MTR values of
fibroglandular tissue (FGT) are
displayed in pseudo color and
overlaid on top of an anatomical
image.
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lish metrics for intraindividual variability of MTR in breast
tissue.

Response to Neoadjuvant Therapy
To assess changes in MTR during treatment, longitudinal MT-
MRI was performed on women before the start of NAT and at 3
time points during the course of NAT. Mean MTR values of the
breast tumors before the start of therapy were higher than the
MTR values of FGT in healthy controls (mean tumor MTR � 29% 	
1%; mean FGT MTR � 33% 	 5%; P � .02) and did not display
any correlation with subject age (P � .74). Representative im-
ages from a subject who experienced partial response to NAT are
shown in Figure 3A, with MTR values of the tumor overlaid in
pseudo color. The volume of the tumor decreased from the first
MRI, performed before the start of therapy, through the subse-
quent MRIs. Across all subjects receiving NAT, in comparison
with the pretreatment MRI, the average tumor volume was 26% 	
37% smaller at the second scan session, 65% 	 28% smaller at the
third scan session, and 68% 	 29% smaller at the fourth scan
session (P � .02). Histograms of MTR values from all tumor
voxels of all subjects are displayed in Figure 3B, which show
increased dispersion through the course of therapy. Parameters

characterizing tumor MTR distributions for all subjects are dis-
played in Table 2. There was no significant change in mean
tumor MTR during therapy (Figure 4A; P � .37). However, the
distribution of MTR values revealed an increase in the spread
and relative distribution of extreme values as therapy pro-
gressed, with increases in standard deviation (Figure 4B; P �
.005) and full width at half maximum (Figure 4C; P � .02) and
a decrease in kurtosis (Figure 4D; P � .02). The Levene test
indicated that the distribution of voxel-level MTR values had
unequal variance during NAT (P � .001). There was no signifi-
cant difference in the 25th (P � .06), 75th (P � .06), or 95th
percentile (P � .09) of MTR distribution (Table 2).

To determine whether alterations in MTR in response to
therapy were related with treatment efficacy, we separated the
study participants into those who achieved a pCR (n � 6) and
those who had residual disease at the conclusion of NAT (non-
pCR, n � 9). Note that results from the fourth MRI time point are
excluded from this analysis of results stratified by pathological
response, as 5 of the subjects no longer had quantifiable residual
tumor at the fourth MRI scan. Figure 5 presents example data
sets for a patient who achieved pCR (Figure 5A) and 1 who had

Figure 2. Repeatability of MTR maps of FGT in 5 women undergoing test–retest scanning with subject repositioning
between scans (A). MTR maps of FGT are displayed in pseudo color and overlaid on top of an anatomical image.
Bland–Altman plot of mean MTR repeatability in breast FGT (B). Bland–Altman plot of MTR standard deviation
repeatability in breast FGT (C).
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residual disease (Figure 5C). Of note, while both subjects display
regression in tumor size, the patient who achieved pCR had a
more heterogeneous MTR distribution throughout the tumor
after NAT, as quantified by histogram analysis. This heteroge-
neity is shown for all patients achieving pCR and residual
disease in Figure 5B and 5D, respectively; observe the increased
spread in tumor MTR values in the patients achieving pCR after
treatment compared with the tumor MTR values in non-pCR
patients. The MTR value averaged over the entire tumor was
similar in subjects achieving pCR and those with residual disease
at the first (Figure 6A; P � .44), second (Figure 6B; P � .07), and
third scan sessions (Figure 6C; P � .22). The heterogeneity in

MTR values was quantified by standard deviation, showing
similar standard deviation at the first (Figure 6D; P � .19) and
second scan sessions (Figure 6E; P � .98), but larger standard
deviation in patients ultimately achieving pCR who had viable
tumor at the third scan session (Figure 6F; P � .02). In addition,
the difference in standard deviation between the pCR and non-
pCR cohorts (5.19) exceeds the 95% CI found in healthy FGT
(1.92), indicating that the difference in standard deviation be-
tween the pCR and non-pCR cohorts is not due to intraindi-
vidual variation. Furthermore, 2 sample F tests comparing all
voxel-level MTR values from subjects achieving pCR versus
those who did not achieve pCR showed significantly different

Table 1. Repeatability Statistics for Normal Breast FGT (n � 10)

Mean MTR
Standard Deviation

of MTR

Kendall’s tau, P (age vs mean) 0.08 0.06

Kendall’s tau, P (difference vs mean) 0.236 0.04

95% CI (percentage of mean) 2.39, (7.30%) 1.92, (16.90%)

Root mean square deviation (percentage of mean) 3.44, (10.51%) 3.23, (28.36%)

Within-subject standard deviation (percentage of mean) 2.43, (7.43%) 2.29, (20.06%)

Repeatability value (r) (percentage of mean) 7.56, (23.13%) 7.12, (62.43%)

Figure 3. Representative MTR maps pseudo-colored and overlaid on an anatomical image of a subject who experienced a
partial response to neoadjuvant therapy (NAT) (A). Histograms of voxel distributions of tumor MTR from all participants
at the first, second, third, and fourth magnetic resonance imaging (MRI) sessions show higher dispersion at later time
points after the start of treatment (B).
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variance at the first, second, and third scan sessions (P � .05, all
scans). The kurtosis of the MTR distribution was similar at the
first (Figure 6G; P � .55) and second scan sessions (Figure 6H;
P � .32), but lower in the 4 patients who ultimately achieved
pCR at the third scan session (Figure 6I; P � .03). The MTR
values of the non-pCR group at the third MRI time point, when
truncated to be the same number of voxels as the pCR group at
the third MRI, showed a smaller standard deviation (0.09) than
the pCR distribution (0.15), indicating that the increased spread
in the pCR distribution is not solely due to a smaller sample size.
Furthermore, the standard deviation of the truncated non-pCR
distribution was similar to that of the full non-pCR distribution
at the third MRI time point, suggesting that the smaller numbers
of voxels in patients achieving pCR were not driving increased
dispersion of MTR values.

DISCUSSION
To the best of our knowledge, this study is the first application of
MT-MRI to assess the repeatability and reproducibility of the
healthy breast tissue, as well as changes to breast tumors in
response to therapy. Furthermore, this was accomplished in
imaging clinics from the community setting (ie, not in the
environment of an academic research center). In response to
NAT, the distribution of tumor MTR values is more heteroge-
neous, with an increasing number of voxels exhibiting more
extreme values of the MTR. Furthermore, the increased disper-
sion of MTR throughout the tumor is more pronounced in
patients who display complete response to therapy, indicating
that alterations in intratumoral MTR may reflect successful
treatment response. Collectively, these findings indicate that
MT-MRI may provide important information regarding tumor

Table 2. Trends in MTR Parameters During NAT

Average
at Scan 1

Average
at Scan 2

Average
at Scan 3

Average
at Scan 4

P-Value (from subjects with
tumor at all 4 scans)

Mean 28 	 5 27 	 4 29 	 5 31 	 7 0.37

Standard deviation 11 	 4 11 	 4 13 	 4 12 	 4 0.005

FWHM 24 	 9 26 	 9 31 	 10 27 	 10 0.02

25th percentile 25 	 6 22 	 5 22 	 9 27 	 7 0.06

75th percentile 37 	 9 36 	 6 40 	 11 41 	 7 0.06

95th percentile 49 	 11 48 	 9 53 	 14 53 	 11 0.09

Kurtosis 5.59 	 3.44 4.65 	 2.88 3.17 	 1.00 3.49 	 1.26 0.02

The averages include all subject scans, while the P-value is from repeated-measures ANOVA, which includes only subjects with data at all 4 scans (n � 12).
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Figure 4. Mean tumoral MTR is
similar across all subjects before
therapy (first Scan) and at serial
scans performed during the
course of NAT (second, third,
and fourth scans) (A). The stan-
dard deviation of tumor MTR val-
ues increases with longer dura-
tion of NAT (B). Full width half
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tion of tumor MTR values in-
creases with longer duration of
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response to NAT and can be integrated into current standard-
of-care therapeutic monitoring paradigms.

The primary finding of this study, that the tumor displays
increased heterogeneity of MTR values during the course of NAT
while the mean tumor MTR value is unchanged, suggests that
MTR reflects a heterogeneous response throughout the tumor.
The increased heterogeneity in MTR distribution found in pa-
tients achieving pCR compared with that in patients with resid-
ual disease at the end of NAT exceeds the heterogeneity found in
repeatability studies of healthy breast, suggesting that the results
found are not due solely to intraindividual variation. We hypoth-
esize that areas with high MTR after therapy may reflect fibrotic
areas, whereas areas with low MTR after therapy may reflect edem-
atous areas remaining after tumor death. When performed at the
conclusion of chemoradiation of rectal tumors, MTR has shown
increased values in fibrotic tissue and lower values in edematous
tissue (23). Breast cancer chemotherapy is also considered to induce
fibrosis, owing to remodeling of the extracellular matrix by in-
creasing expression of fibulin (24) and formation of cancer-asso-
ciated fibroblasts that secrete fibronectin and collagen (25). Higher
concentrations of these macromolecules would be expected to
result in higher MTR values. Alternately, diffusion-weighted MRI
has shown increased water diffusion in breast tumors after chemo-
therapy, reflecting cell necrosis (14). Correlative studies comparing
results from diffusion-weighted MRI and MT-MRI on a voxel-wise
basis are underway to further investigate mechanisms of altered
MTR after therapy.

The MTR parameter quantified in this study is semiquanti-
tative in nature, in contrast with quantitative magnetization
transfer (qMT) techniques that model the magnetization trans-
fer process to separate relaxation and exchange rates and
ultimately derive the concentration of macromolecules rela-
tive to free water (26). In contrast, MTR depends on both
frequency and power of the saturation pulse used during
image acquisition, as well as the relaxation and exchange
rates of the tissue (4). Thus, although the MTR values in this
study can be compared across patients as they were per-
formed on the same scanner with identical acquisition pa-
rameters, these MTR values calculated cannot be generalized
across sites with different scanner hardware or protocols.
MTR was used in this study owing to its fast acquisition time
(�2 minutes) and the fact that this study was performed at
community imaging centers, which do not typically have the
capability to patch scanners with novel pulse programs nec-
essary to perform qMT. Notably, a previous study of qMT in
human FGT found repeatability metrics similar to those cal-
culated for MTR in this experiment (27). Future studies using
qMT to investigate changes in tumors in response to therapy
are currently being performed to generalize these results
across sites.

This study is subject to a number of limitations. The
composition of breast tissue is known to change with age
(28), as well as through the course of the menstrual cycle (29),

Figure 5. Example MTR maps
from (A) a subject who achieved
pathological complete response
and (C) a subject who had resid-
ual disease at the conclusion of
therapy at the first, second, and
third scan sessions. Histograms of
voxel distributions of MTR at the
first, second, and third MRI scans
for all patients who achieved
pathological complete response
(B) and all patients who had re-
sidual disease (bottom row) show
increased heterogeneity in the
patients who achieved pCR com-
pared with histograms of those
who had residual disease (D).
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which could influence the results in this study. We found a
nonsignificant trend toward increasing MTR in FGT of
younger patients; however, there was no relationship be-
tween MTR measurements in tumors and patient age. MTR
reproducibility measurements were not made at fixed points
in the menstrual cycle, which may affect the reproducibility
of our measurements. However, previous studies indicated
that the MTR of FGT does not vary across different phases of
the menstrual cycle (30). Furthermore, measurements in the

breast tumors of patients undergoing NAT are not expected to be
affected by menstrual cycle fluctuations, as patients often experi-
ence amenorrhea owing to chemotherapy (31).

In summary, this study shows the potential of MT-MRI for
assessing changes to breast tumors induced by chemotherapy
and that these measurements are repeatable and reproducible
across time and scanners. These measurements were made in
community radiology clinics, showing the potential for wide-
spread clinical dissemination.
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Histone deacetylases regulate a wide variety of cellular functions and have been implicated in redifferentia-
tion of various tumors. Histone deacetylase inhibitors (HDACi) are potential pharmacologic agents to im-
prove outcomes for patients with gliomas. We assessed the therapeutic efficacy of belinostat (PXD-101), an
HDACi with blood–brain barrier permeability. Belinostat was first tested in an orthotopic rat glioma model to
assess in vivo tumoricidal effect. Our results showed that belinostat was effective in reducing tumor volume in
the orthotopic rat glioma model in a dose-dependent manner. We also tested the antidepression activity of
belinostat in 2 animal models of depression and found it to be effective. Furthermore, we confirmed that
myo-inositol levels improved by belinostat treatment in vitro. In a human pilot study, it was observed that beli-
nostat in combination with chemoradiation may delay initial recurrence of disease. Excitingly, belinostat sig-
nificantly improved depressive symptoms in patients with glioblastoma compared with control subjects. Fi-
nally, spectroscopic magnetic resonance imaging of 2 patient cases from this pilot study are presented to
indicate how spectroscopic magnetic resonance imaging can be used to monitor metabolite response and
assess treatment effect on whole brain. This study highlights the potential of belinostat to be a synergistic
therapeutic agent in the treatment of gliomas.

INTRODUCTION
Glioblastomas (GBMs; WHO grade IV glioma) are highly aggres-
sive malignant primary adult brain tumors. Despite comprehen-
sive treatment consisting of neurosurgical resection, high-dose
radiation therapy (RT), and chemotherapy (temozolomide, TMZ),
the median progression-free survival (PFS) remains 5–7 months
(1). Given these poor results, there is an urgent need for im-
proved therapy options. A potential therapeutic target is the
family of histone deacetylases (HDACs) that comprises 18 dif-
ferent nuclear and cytoplasmic proteins primarily involved in
modulating gene expression through epigenetic mechanisms
but also having a broad impact on many additional pathways,
including ones associated with cellular metabolism and cell
cycle regulation (2-4). Several specific HDACs, particularly in
class I and class II, show increased expression and are thought to

contribute to oncogenesis in several types of cancer, including
ones arising in breast, prostate, lung, and brain (5). As a result,
the development of targeted HDAC inhibitors (HDACi) is an
active research area for pharmacologic treatment of these dis-
eases (6). In 2006, suberanilohydroxamic acid (SAHA), a first-
generation HDACi which targets multiple class I and class II
HDAC family members, became the first HDACi to receive FDA
approval for advanced cutaneous T cell lymphomas (7). Preclin-
ical investigations of SAHA have also shown antitumor effects
in orthotopic glioma animal models (8, 9). This suggests that
development of potent HDACis capable of penetrating the
blood–brain barrier has the potential to improve therapeutic
outcomes of patients with GBM. Research is ongoing into eval-
uating the synergistic effect of HDACi and chemoradiation for
such patients (10).
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Belinostat (PXD101, Spectrum Pharmaceuticals Inc., Irvine,
CA), a new pan-HDACi that is structurally similar to SAHA,
improves upon the former by having greater blood–brain bar-
rier uptake, which may potentiate its use in the treatment of CNS
tumors (11, 12). Belinostat received FDA approval for patients
with relapsed/refractory peripheral T cell lymphoma in 2014
(13). In this work, we seek to show a translational analysis of
belinostat in the treatment of GBM and describe how a quanti-
tative imaging technique, proton spectroscopic magnetic reso-
nance imaging (sMRI), can serve as a reliable imaging biomarker
for monitoring therapy response of belinostat when combined
with standard chemoradiation. First, we tested the antitumor
effect of belinostat in an orthotopic rat glioma model. Second,
we assessed the antidepression effect of belinostat in 2 well-
known depression animal models. We also quantified the in-
crease of mRNA levels of bottleneck enzymes for the production
of myo-inositol (MI), myo-inositol phosphatase (MIP), an sMRI-
detectable metabolite known to be associated with depression.
Finally, we assessed the impact of belinostat in combination
with chemoradiation in a human pilot study (ClinicalTrials.gov
ID: NCT02137759) and present interim results for PFS and a
survey of depressive symptomatology. We present sMRI and
clinical data from patients in this study to evaluate the modal-
ity’s use in monitoring response to belinostat � chemoradiation.
Our results show a statistically significant improvement of de-
pressive symptoms with belinostat treatment, consistent with
our animal data. These results support the utility of belinostat as
an adjuvant therapy for GBM and sMRI as a quantitative imag-
ing technique that can noninvasively monitor therapy response.

METHODOLOGY
Cell Culture and In Vitro HDACi Treatment
Belinostat and other HDACis were dissolved in dimethyl sulfox-
ide (DMSO) to obtain a 100mM stock solution. A 9L rat glioma
cell line was maintained in Dulbecco’s modified eagle medium
(DMEM) (Mediatech Inc., Manassas, MA) supplemented with
10% fetal bovine serum and antibiotics at 37°C in 5% CO2. 9L
cells were plated in 100-mm cell culture petri dishes. Cells were
then treated 2 days following seeding with fresh medium con-
taining various HDACis at concentrations of 1 �M for 12 h and
were collected to prepare total RNA.

RNA Isolation, RT-PCR, and Real-Time RT-PCR
Cells were collected 12-hour postincubation; these cells under-
went RNA isolation and reverse transcription-polymerase chain
reaction (RT-PCR) to assess the total mRNA expression levels of
the key enzymes in the synthesis of MI (MIP) (8). Total RNA was
extracted from cultured cells following the manufacturer’s in-
structions as previously described (14). Primer sequences of
MIP-1 were as follows: MIP-1 (GenBank accession number:
NM_016368), 5=- AGCTGCATCGAGAACATCCT –3= and 5=-
GGGTACCGGTCCTTTCTTGT –3=; SYBR Green quantitative PCR
reaction was carried out in a 15-�L reaction volume containing
2� PCR Master Mix (Applied Biosystems) per our previous
reports (14).

Antitumor Effect in an In Vivo Rat Glioma Model
Using a previously described orthotopic rat glioma model (8),
the tumoricidal and psychological effects of belinostat were

tested. 9L rat glioma cells were stereotactically injected into the
frontal lobes of male Fischer 344 rats (n � 9). At postinjection
day 9, rats were treated with a daily intraperitoneal injection of
either vehicle (10% DMSO, n � 1) or tiered doses of belinostat
(n � 2 each of 25 mg/kg, 50 mg/kg, 75 mg/kg, and 100 mg/kg)
for 4 days. Throughout the experiment, rats were monitored for
mood behavior and activity levels using the volume of drop-
pings as a surrogate measurement. Animals were sacrificed on
postinjection day 12, and tumors were excised. This protocol
was approved by the Institutional Animal Care and Use Com-
mittee (IACUC) at Emory University.

Antidepression Effect Assessment of Belinostat in 2
Animal Models
As described previously (15), the forced-swim test and tail sus-
pension tests were used to assess the antidepression effect of
belinostat. Five 6-week-old C57 black female mice were used in
each group for forced-swim test and five 7-week-old NIH Swiss
male mice were used in each group for tail suspension test. C57
black mice may not perform well in the tail suspension test
owing to tail climbing behavior (https://www.research.psu.edu/
arp/experimental-guidelines/rodent-behavioral-tests-1/rodent-
behavioral-tests.html), whereas the NIH Swiss mice did not have
similar issues. The forced-swim test was performed 6 h after
belinostat treatment (75 mg/kg i.p.) in a 4-L beaker containing 3
L of tap water at a temperature of 25°C. Video tracking–based
methods were used to record the duration of time spent “immo-
bile” in the arena over 6 minutes (immobility measured between
2 and 8 minutes of a 10-minute trial; the extent of immobility
correlates with levels of depression). Similarly, the tail suspen-
sion test is based on the fact that animals subjected to inescap-
able stress of being suspended by their tail for the short term,
would develop an immobile posture (16). For the tail suspension
test, the lipopolysaccharide (LPS)-induced depression model was
used (17). Twenty-four hours after LPS administration (Sigma
L3129; 0.85 mg/kg i.p.), the tail suspension test was performed.
Video tracking–based methods were used to record the duration
of time spent in immobility for 6 minutes.

Clinical Study
Patients with newly diagnosed GBM were enrolled in either the
control or treatment arm of an Institutional Review Board (IRB)-
approved clinical trial at Emory University (ClinicalTrials.gov ID
NCT02137759), wherein the treatment arm received intravenous
belinostat (Spectrum Pharmaceuticals, Irvine, CA) as an inves-
tigational therapeutic. The study was not randomized, with
patients serially enrolling into the control arm (in 2014–2015)
followed by the belinostat treatment arm (in 2015–2018). All
patients underwent maximal safe tumor resection, if resection
was feasible, before enrolling in the study. Patients in both arms
of the trial received standard-of-care therapy consisting of daily
TMZ (75 mg/m2) � 42 days and focal radiation doses of 60 and
51 Gy to the resection cavity/residual contrast-enhancing tissue
(per T1-weighted contrast-enhanced MRI postresection) and T2/
FLAIR signal, respectively, in 30 fractions. Margins of 0.5–1.0
cm and 0.3–0.5 cm were added to the target volumes to generate
the clinical treatment volume and planning treatment volume to
account for microscopic disease spread and spatial uncertainty
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in treatment delivery (18). In the treatment arm, patients re-
ceived daily intravenous doses of belinostat at either 500 or 750
mg/m2 for 5 consecutive days in 3 cycles, spaced 3 weeks apart
beginning 1 week before the start of chemoradiation, as shown
in Figure 1. The first 3 patients received a higher dose of
belinostat. However, because 2 of the patients had serious ad-
verse events with hematologic toxicity during the course of
belinostat, TMZ, and radiation, the dose was lowered to 500
mg/m2 for the remaining patients in the trial.

Each patient in the study underwent an sMRI scan prior to
starting chemoradiation (week 1), after 2 weeks of chemoradia-
tion (week 3), and 4 weeks after completing radiation (week 11).
Patients in the treatment arm underwent an additional sMRI
scan before starting the first week of belinostat (week 0). sMRI
scans were conducted on a 3 T MR scanner (Siemens TimTrio or
Siemens PRISMA with 32 channel head coil, Siemens Health-
ineers, Erlangen, Germany) using an echo planar spectroscopic
imaging (EPSI) sequence combined with generalized autocalibrat-
ing partially parallel acquisition (GRAPPA), and metabolite maps
were produced using the MIDAS software (University of Miami,
Miami, FL) (19, 20). The metabolite maps were coregistered to a
volumetric T1-weighted (T1w) MRI taken during the same scan-
ning session with the patient in the same orientation. Longitu-
dinal scans on the 4 patients were coregistered and brought into
the first scan (week 0/1) imaging space using rigid registration.
After each sMRI scan, the patient completed the Inventory of
Depressive Symptomatology Self Report (IDS-SR), a validated 30-
question survey designed to assess depressive symptoms (21, 22).

EPSI/GRAPPA sequence parameters were optimized to en-
hance the signal of choline (Cho, a metabolite involved in the
synthesis of the phospholipid cell membrane and increased in
tumors) and NAA (a healthy neuronal marker decreased as
neoplasia invades into and destroys neuronal tissue). Patients
were followed-up with standard-of-care imaging (contrast-
enhanced T1-weighted MRI, CE-T1w MRI; fluid attenuation

inversion recovery, FLAIR) for 12 months post-treatment or
until progression of disease was confirmed by neuroradiologist.
A total of 26 patients (13 control, 13 treatment) were enrolled at
Emory University; of these, 3 did not complete the treatment
protocol (1 in control arm, 2 in belinostat arm), and 2 did not
undergo surgical resection of tumor (only underwent a biopsy
for diagnosis). These 5 patients are excluded from analysis
(see online Supplemental Figure 1). PFS is reported for pa-
tients based on time to radiologic confirmation of disease
progression (per CE-T1w MRI) from the date of surgery. Data
are right-censored for patients who have no known disease
progression or were lost to follow-up. Sample cases from each
arm of the study are shown to show the ability of sMRI to
identify early response to treatment. Because follow-up data
are continuing to be collected for patients in the treatment
arm of the study, statistical analyses of the full data will be
presented in future work.

RESULTS
Antitumor Effect of Belinostat in an Orthotopic
Rat Model
In Figure 2, photographs of the 9 rats evaluated in this experi-
ment are shown in their cage at pretreatment with belinostat and
at day 13, 4 days after treatment, when the rats were sacrificed.
The volume of animal droppings seen in the cage is used as a
surrogate measure of activity and normal physiology. Rats
showed decreased movement and grooming, measures of mood,
before treatment with belinostat. The restoration of activity and
improved mood was observed in a dose-dependent manner, with
normal levels observed in rats treated with the highest 2 doses
(75 mg/kg and 100 mg/kg). Photographs of the tumor in situ and
excised are also shown in Figure 2, showing a similar dose-
dependent decrease in tumor volume from untreated mice
through the increasing doses of belinostat.

Figure 1. One-year timeline of chemotherapy, intravenous belinostat, radiation, spectroscopic magnetic resonance
imaging (sMRI) scanning, Inventory of Depressive Symptomatology Self Report (IDS-SR) survey, and neurocognitive
testing for patients in NCT02137759. Hashed boxes indicate items conducted for patients in only the treatment
arm of the study.
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Figure 2. A rat model of stereot-
actically injected 9L glioma cells
shows a dose-dependent response
in both tumor volume and mood/
activity levels when treated with
belinostat.

Figure 3. Two mouse models of depression to assess antidepressive effect of belinostat: Force-swim test measuring the
time spent in immobility during 2–8 minutes (6 minutes) (A). Tail suspension test measuring the time spent in immobility
in mice treated with lipopolysaccharide (LPS) for 6 minutes. Five mice were used in each group (B).
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Antidepression Effect of Belinostat in 2 Animal Models
Figure 3 shows the results of the forced-swim and tail suspen-
sion tests. In the forced-swim test, the mice who received beli-
nostat spent less time immobile compared to the control mice
(P � .14). In the tail suspension test, the mice who received
LPS � belinostat had a statistically significant decrease in im-
mobility compared with mice who received LPS alone (P � .02).

In Vitro Study of mRNA Expression
mRNA expression levels of MIP (a bottleneck enzyme in the
production of MI) from HDACi-treated cells are shown in online
Supplemental Figure 2 as fold-increases in log-scale compared
with those of the untreated cells (DMSO vehicle control). Beli-
nostat showed greater increases in restoration of mRNA levels at
the same concentration as other HDACi, including SAHA. The
only other HDACi which achieved greater efficacy is quisinostat
(JNJ26481585, Janssen Pharmaceuticals, Beerse, Belgium), a
second-generation pan-HDACi, which was being tested in phase
II clinical trials for multiple myeloma (23). However, currently
there are no active trials for quisinostat on ClinicalTrials.gov.

Clinical Study
In total, 21 patients who met inclusion criteria for analysis were
assessed to determine differences in PFS between the 2 arms (see
online Supplemental Figure 1). A table summarizing basic de-
mographics of the 2 arms of the clinical study is shown in Figure
4A. Both arms showed similar distributions of known genetic

targets that improve response to radiation—mutation of isocit-
rate dehydrogenase 1 (IDH1) and promoter methylation of the
gene for O (6)-methylguanine-DNA methyltransferase (24).
Figure 4B shows Kaplan–Meier curves for PFS from date of
surgery (tick marks indicate time of censoring). Six-month PFS
was 73% for the control arm and 100% for the belinostat arm. A
log-rank test assessing PFS data up to 6 months trended toward
statistical significance (P � .09). No statistically significant
difference was observed on a log-rank test assessing PFS data up
to 12 months (P � .45). Of these 21 patients, 17 completed an
IDS-SR survey at both baseline (week 0 for belinostat arm, week

Table 1. IDS-SR Assessment

Control Belinostat P value

Number of Patients 10 7

Baseline Score 18.2 	 9.1 22.0 	 9.8 0.43

Week 11 Score 22.3 	 10.9 16.1 	 15.5 0.39

Change in Score 4.1 	 9.7 �5.9 	 8.7 0.04

The IDS-SR assessment of patients in both study arms between base-
line and 1-month post-RT shows a statistically significant improve-
ment in assessment scores for patients who received belinostat. P
values indicate results of a two-tailed unpaired t-test.

Figure 4. Progression-free sur-
vival (PFS) of patients in both
arms of the study up to 1 year
(A). Age indicates age at time of
surgery, and PFS is right-censored
from the time of surgery. Kaplan–
Meier curves for the 2 arms of
the study; tick marks indicate time
of censoring (B).
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1 for control arm) and at week 11 (see online Supplemental
Figure 2; Table 1). While no significant difference in the scores
was observed at either time point, the belinostat cohort had a
statistically significant improvement in scores over the course of
treatment using a 2-tailed unpaired T test (P � .04).

Figures 5 and 6 depict sMRI and clinical CE-T1w MRI scans
for 2 representative patients, 1 from each of the study arms. At
baseline, both patients showed elevated choline metabolism (red
arrows) around the resection cavities, indicating the presence of
increased cellular turnover associated with neoplasia. One-
month post-RT (week 11), both patients showed decreased levels
of choline compared with baseline, and low NAA levels owing to
subsequent radiation damage to in-field neurons. Therefore,
Cho/NAA did not reliably indicate early response (see online
Supplemental Figure 3); however, we found that peritumoral MI

was improved in the subject who received belinostat (see online
Supplemental Figure 3) at 1-month post-RT. The control patient
(Figure 5) was deemed to have potential progression of her
disease because of the thickened contrast enhancement around
the resection cavity on CE-T1w imaging; a month later, how-
ever, the thickened contrast rim was gone, and the patient was
deemed to not yet have disease progression. The patient in the
belinostat arm (Figure 6) had a similar course; only the increase
in enhancement occurred 3 months after radiation was com-
pleted.

DISCUSSION
In this work, we sought to characterize the antitumor and anti-
depressant activity of belinostat, a new HDACi with improved
brain penetration, in a translational manner: starting from in

Figure 5. Longitudinal imaging of a patient in the control arm of the study. An sMRI map of choline indicates a re-
sponse to chemoradiation between baseline and the first follow-up; however, standard clinical imaging indicates poten-
tial progression of disease. Further follow-up indicates that the imaging findings at 1 month were attributable to
pseudoprogression.

Figure 6. Longitudinal imaging
of a patient in the belinostat (treat-
ment) arm of the study. An sMRI
map of choline indicates a re-
sponse to chemoradiation as as-
sessed at 1 month post-RT. Addi-
tional follow-up imaging indicates
the pseudoprogression phenome-
non occurring at 3 month post-RT,
resolving by 4 month post-RT.
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vivo animal glioma models to testing in patients with glioblas-
toma. First, we assessed the efficacy of belinostat in reducing
tumor volume in an orthotopic rat glioma model. Here, a dose-
dependent reduction in tumor size was observed, suggesting the
antitumor properties of the drug are effective in crossing the
blood–brain barrier in vivo (Figure 2). In addition, it was ob-
served that the activity levels of rats, as measured by grooming
activities and droppings, were higher in those treated with in-
creased doses of belinostat. These improvements are consistent
with previously reported literature by Covington et al. (25) that
HDACis possess antidepressant properties. To further assess the
antidepressive effect of belinostat, we subjected mice to 2 dif-
ferent models of induced depression. We found that belinostat
reduced the immobility time in both the forced-swim and tail
suspension tests (Figure 3), exhibiting the drug’s antidepressant
effect. We followed these tests with an in vitro assessment of
belinostat’s effect on MIP, the key enzyme in the production of
MI that was implicated in depression. The in vitro cell study
showed that belinostat had greater restorative activity for MIP
than most other HDACi. An HDACi tested that had higher res-
toration than belinostat was quisinostat (JNJ26481585); how-
ever, there is no clinical trial currently enrolling patients testing
quisinostat. As such, belinostat shows promise as a targeted
HDACi for glioblastoma because of its increased uptake into the
brain and its efficacy in restoring key metabolic activity for
depression.

The belinostat clinical trial completed enrollment of pa-
tients in August 2018, and patients are continuing to be fol-
lowed to assess long-term outcomes including progression-free
and overall survival. Although statistical claims cannot yet be
made regarding long-term survival and efficacy, a comparison
of 6-month PFS and initial changes in mood are presented in
this work. The cohort receiving belinostat showed a trend of
improved 6-month PFS compared to the control cohort (P �
.09); however, this difference was mitigated by 12 months (P �
.45). Despite a limited sample size for this study, these results
suggest that belinostat may improve response to chemoradia-
tion therapy as hypothesized. A speculated reason for the im-
proved PFS at 6 months but not at 12 months is that belinostat
was given to subjects for only a short term during RT.

While 6-month PFS outcomes approached statistical signif-
icance, the belinostat cohort did achieve a statistically signifi-
cant improvement in depression as measured by the IDS-SR
(P � 0.04). This suggests that the mood improvement effect of
belinostat, as shown in our animal data and with the claim by
Covington et al. (25), may translate to humans. These prelimi-
nary data suggest future large cohorts to be evaluated.

Finally, this study showed the potential of sMRI as a non-
invasive monitoring tool for investigational therapeutics. As

shown in Figures 5 and 6, both patients appeared to have a
reduced tumor burden when assessing choline metabolism at
week 1, 1 month after the completion of RT. Owing to radiation-
induced damage, NAA was reduced around the high dose area,
which made Cho/NAA ineffective in assessing tumor response
(see online Supplemental Figure 3). MI showed a slight improve-
ment back towards normal level at the 1-month post-RT scan in
the patient treated with belinostat, consistent with IDS-SR score
improvement (see online Supplemental Figure 3). Further stud-
ies, including longitudinal scanning, are needed to fully eluci-
date the timeline of metabolite changes in these patients. Stan-
dard imaging, however, differed between the 2 patients and
suggested that the control patient may have been experiencing
disease progression, when eventually it turned out to be stable
disease at that time. This is a phenomenon known as pseudo-
progression, the ambiguity of CE-T1w findings in differentiating
true progression of disease from normal tissue response to high-
dose radiation. sMRI, however, is robust to the pseudoprogres-
sion phenomenon, as the modality is measuring endogenous
intracellular metabolism rather than vasculature damages/
changes or tissue phenomena such as edema. Both patients
showed similar metabolic signatures, which turned out to be
more accurate of the underlying pathology compared to clinical
imaging.

CONCLUSION
In this work we described the therapeutic and antitumor, anti-
depression effects of belinostat, a potent pan-HDACi with
blood–brain barrier permeability through: a rat glioma model, 2
mouse depression models, an in vitro cell study, and testing in a
pilot clinical study in patients with glioblastoma. The results
from this work suggest that belinostat may be an effective
HDACi at delaying disease progression and improving depres-
sion. Furthermore, it shows that the treatment response can be
monitored noninvasively using spectroscopic MRI during pseu-
doprogression period. Further studies and analysis of the ongo-
ing clinical trial may yield a better understanding of the role that
HDACis play in the metabolic profiles of GBM and motivate the
development of better, targeted therapies for patients with this
debilitating disease.

Additional testing of this drug in human subjects can help
with separating this improved mood/activity effect due to a
primary property of HDACis from improvement as a secondary
effect to reduced tumor burden.

Supplemental Materials
Supplemental Figure 1-3: http://dx.doi.org/10.18383/j.tom.2018.

00031.sup.01
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Accuracy and precision of quantitative imaging (QI) metrics should be assessed in real time in each patient
during a clinical trial to support QI-based decision-making. We developed a framework for real-time quanti-
tative assessment of QI metrics and evaluated accuracy and precision of dynamic contrast-enhanced (DCE)-
magnetic resonance imaging (MRI)–derived blood volume (BV) in a clinical trial for head and neck cancers.
Patients underwent DCE-MRI before and after 2 weeks of radiation therapy (2wkRT). A mean as a reference
value and a repeatability coefficient (RC) of BV values established from n patients in cerebellum volumes of
interest (VOIs), which were normal and affected little by therapy, served as accuracy and precision measure-
ments. The BV maps of a new patient were called accurate and precise if the values in cerebellum VOIs and
the difference between the 2 scans agreed with the respective mean and RC with 95% confidence. The new
data could be used to update reference values. Otherwise, the data were flagged for further evaluation be-
fore use in the trial. BV maps from 62 patients enrolled on the trial were evaluated. Mean BV values were
2.21 (	0.14) mL/100 g pre-RT and 2.22 (	0.17) mL/100 g at 2wkRT; relative RC was 15.9%. The BV maps
from 3 patients were identified to be inaccurate and imprecise before use in the clinical trial. Our framework of
real-time quantitative assessment of QI metrics during a clinical trial can be translated to different QI metrics and
organ-sites for supporting QI-based decision-making that warrants success of a clinical trial.

INTRODUCTION
Quantitative imaging (QI) metrics are emerging as a tool for
therapeutic response assessment in cancer treatment (1). As QI
tools have been technically validated, clinical trials start to
make decisions based upon these imaging metrics, for example,
quantitative parameters derived from dynamic contrast-en-
hanced (DCE)-magnetic resonance imaging (MRI) (1, 2).

The DCE-MRI-derived QI metrics can be affected by differ-
ences in MRI platforms, pulse sequences, acquisition parame-
ters, image reconstruction schemes, pharmacokinetic models,
and quantification software packages (3-8), which limits de-
ployment of DCE-MRI in clinical trials and practice. MRI scan-
ners from each vendor have unique hardware configuration,
vendor-specific pulse sequences, and reconstruction schemes,
which can cause a systematic bias in estimated QI metrics (4). In

addition, selection of magnetic resonance (MR) acquisition pa-
rameters can influence quantification of these metrics (5, 9).
Furthermore, QI metrics derived from different image-process-
ing software packages can lead to substantial variations in the
metrics, even when using the same pharmacokinetic model, T1
map, arterial input function (AIF), and region of interest (6, 7).
To address these challenges, collaborative efforts under the
initiatives of professional societies and government agencies
have been made for development of DCE-MRI profiles, T1 phan-
toms, digital reference object, and statistical methods to harmo-
nize imaging acquisition across different platforms, to validate
imaging hardware and software, to test computer algorithms,
and to assess technical performance (4-6, 10-16). All these
efforts are absolutely necessary but not sufficient to warrant the
accuracy and precision of QI metrics obtained in each individual
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patient during a clinical trial, which could affect decision-
making and even clinical outcomes (1). Therefore, it is necessary
to develop and implement a quantitative quality assurance (QA)
procedure to measure QI metrics acquired in the patients who are
on the trial (17).

Accuracy, in general, refers to closeness of a measured QI
metrics to a true or known value, while precision is an agree-
ment between repeated measurements of a metrics (17). For any
QI metrics that does not have its true value available, its devi-
ation from a reference value, obtained as a group mean from a
large sample study in any standard reference region, can serve
as its measurement accuracy (17). Precision, more commonly
known as repeatability, can be easily evaluated from repeated
measurements, often called as test–retest studies, in a normal
reference region that is not expected to have any changes during
a time interval of test–retest studies (17). Under these principles,
a reference value and repeatability coefficient (RC) of a QI
metrics in a reference region under certain conditions or con-
straints of image acquisition and process can be determined
from a sample of population with 95% confidence and used to
assess accuracy and precision of the metrics measured from an
individual patient.

DCE-MRI-derived blood volume (BV) is emerging as a
promising QI metrics in assessing therapeutic response in head
and neck (HN) cancers (18, 19). Tumor subvolumes characterized
by low BV have been reported to be high-risk imaging biomark-
ers for tumor progression (19-22). Boosting those poorly per-
fused subvolumes with high radiation doses could improve local
and regional control (23, 24). To test this clinical hypothesis, a
randomized phase-II adaptive radiation therapy (RT) trial that
targets persisting poorly perfused subvolumes of the tumor with
high radiation doses in patients with poor prognosis HN cancers
has been initiated (21, 22, 25). The persisting poorly perfused
tumor subvolumes are defined on the basis of BV measurements
pre-RT and 2 weeks after starting RT. Inaccurate and unrepeat-
able estimates of BV maps could generate false, poorly perfused
subvolumes. Subsequently, intensifying radiation doses to these
falsely classified subvolumes can lead to either tumor overdose
or underdose, which could increase radiation toxicity or cause
failure of disease control, respectively. To achieve the goal of
the clinical trial, it is critical to ensure accuracy and precision of
BV maps in each individual patient and thereby warrant proper
segmentation of low BV tumor subvolumes.

The present study developed and evaluated a framework for
real-time quantitative assessment of accuracy and precision of a
QI metrics in individual patients during a clinical trial. The
method was applied to DCE-MRI-derived BV maps acquired
during an ongoing clinical trial for poor prognosis HN cancers.
As the repeatability analysis cannot be done in treated tumor
volume owing to expected therapy-caused changes, a normal
tissue region in the cerebellum that has little therapy-induced
change was used as a reference region for BV measurements and
hence to assess the accuracy and precision of BV maps. Our
study showed that inaccurate and imprecise BV maps could be
detected in real time before clinical decision was made. This
method can be extended to other QI metrics and body sites. This
process should be a part of the workflow of a clinical trial.

MATERIALS AND METHODS
Human Subjects
Patients with advanced HN cancers were enrolled in an IRB-
approved randomized phase-II clinical trial. The patients who
have advanced human papillomavirus (HPV)-HN cancers (stage
IV) or HPV� T4/N3 HN cancers (stage III) were eligible for the
trial. All patients gave their study-specific informed consent to
participate in the trial. Patients underwent MRI scans before RT
and after receiving 10 fractions (Fx) of 2 Gy per fraction of
radiation.

MR Acquisition
All MRI scans were acquired on a 3 T MR scanner (Magnetom
Skyra, Siemens Healthineers, Erlangen, Germany). Each patient
underwent scanning in the radiation treatment position on a flat
table top using the patient-specific immobilization face mask,
head support, and bite bar. MRI series included 2-dimensional
multislice pre- and postcontrast T1-weighted images with fat
saturation (voxel size: 0.88 � 0.88 � 3.3 mm3; echo time
[TE]/repetition time [TR] � 8.4/1040 milliseconds), 2-dimen-
sional T2-weighted images (voxel size: 0.78 � 0.78 � 3.3 mm3;
TE/TR � 89/11000 milliseconds), and 3-dimensional (3D) volu-
metric T1-weighted DCE images. The DCE image volumes were
acquired using a 3D gradient-echo sequence in the sagittal
orientation with a large field of view (FOV) in the superior and
inferior directions to cover primary and nodal cancers, carotid
artery, and cerebellum. The sagittal orientation allows us to
achieve higher temporal resolution and avoid time-of-flight
effects of blood-flow spins (Figure 1). Other acquisition param-
eters included flip angle/TE/TR � 10°/0.97/2.73 milliseconds,
FOV � 300 � 300 � 150 mm3, and voxel size � 1.6 � 1.6 � 2.5
mm3. Sixty dynamic scans were collected at 3 minute, with a
temporal resolution of 3 second.

Extended Tofts Model for BV Quantification
Plasma volume maps (vp) were generated from the T1-weighted
DCE image series using the extended Tofts model (26);

Ctiss(t) � Ktrans	0

t
e�kep�t���Cp���d� � VpCp�t� , (1)

where Ctiss(t) and Cp(t) were respective tissue and plasma con-
centrations of the contrast agent, and Ktrans and kep were respec-
tive transfer constant and rate. An assumption of 
S/S0 � C was
used to fit equation (1). In-house software package of functional
image analysis tool (FIAT) was used for image analysis and
processing to generate parametric maps (20, 21), in which the
implemented extended Tofts model has been validated using
digital reference object (DRO) (5). To convert the plasma volume
maps to the BV maps, a Hematocrit value of 0.45 was applied
(27). A protocol-specific procedure of DCE analysis was estab-
lished before initiation of the clinical trial, particularly regard-
ing how to create an AIF. To obtain the AIF, a dynamic phase in
which contrast just entered the carotid artery was chosen by
visually inspecting the temporal profile of the dynamic image
volumes. Then, an AIF was generated by thresholding 20 voxels
with the largest intensity changes on the selected phase com-
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pared with the average baseline image intensities. Finally, the
AIF was visually inspected to make sure that its voxels were
located within the carotid artery and had the expected dynamic
profile. BV maps were derived from the extended Tofts model
using the patient-specific AIF, and then coregistered to the
postcontrast T1-weighted images at pre-RT using rigid-body
transformation (20).

System-Level QA
To ensure quality of quantitative parametric maps, QA of hard-
ware and software at system-level was performed routinely.
System-level QA of the MRI scanner was performed daily,
weekly, and yearly using an ACR water phantom following the
ACR protocol. Daily signal-to-noise ratio variations were re-
corded and were stable. Also, in an NCI Quantitative Imaging
Network (QIN) multicenter collaborative project, we evaluated
accuracy, repeatability, and interplatform reproducibility of T1
quantification from variable flip angles using an NIST T1 water
phantom on our scanner, compared to others (4). For software
QA, performance of our implementation of the extended Tofts
model was evaluated using a digital reference object, that is,
synthesized DCE phantoms with and without noise, which was
fully reported previously (5). Also, we participated in an NCI QIN
multicenter AIF challenge to validate and compare our AIF
delineation procedure with others’ (15). Based upon these eval-
uation and validation, imFIAT has been granted a level-2
benchmark by NCI QIN (28).

Individual-Level Assessment of Accuracy and Precision
of BV Maps
Our pilot study indicates that repeatability of BV values in the
cerebellum is stable and �18% (unpublished data). Also, cere-
bellums in our patients received a mean radiation dose �3Gy
after 10 Fx of 2 Gy treatment. Therefore, we chose cerebellum as
a reference region and manually drew bilateral volumes of
interest (VOIs) across 2–3 slices having a volume of �4 cc

Figure 1. T1-weighted dynamic contrast-en-
hanced (DCE) images acquired using a 3-dimen-
sional gradient-echo sequence in the sagittal ori-
entation. As shown in the figure, these images
were collected with a large field-of-view (FOV) in
the superior and inferior directions to cover the
primary and nodal tumors, carotid artery, and
normal tissue region in cerebellum. The latter re-
gion, that is, the normal cerebellum region, was
used as a reference region for quality assessment
of blood volume (BV) measurement in each indi-
vidual examination.

Figure 2. The coregistered post-
contrast T1-weighted image (left),
and the BV maps pre-radiation
therapy (RT) (middle) and after
10 fractions of radiation therapy
(right) from a sample study. The
postcontrast T1-weighted images
was used to delineate the tumor
volumes and to locate the normal
cerebellum region as a reference
region. Red contours (�4cc in
volume) represent the volumes of
interest (VOIs) in the normal cere-
bellum, which was used as the
reference region for the accuracy
and precision analysis.
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(number of voxels, �1600) to extract mean BV values (Figure
2).

For each patient, MRI scanning was performed pre-RT and
repeated after 10 Fx of radiation (2wkRT), which were consid-
ered as test and retest studies. An RC of BV values in the
cerebellum VOIs was estimated using 1-way analysis of variance
(ANOVA) model (29). First, within-subject mean squares (WMS)
was estimated from n patients. Then RC and relative RC were
estimated by RC � 2.77 	 �WMS and rRC � 100 	 RC⁄X̂,
respectively, where X̂ was the grand mean of overall observa-
tions from n patients. Because the WMS for 2 repeated measure-
ments was distributed as 
n

2wSD2⁄n, the 95% confidence
interval (CI) of the estimated RC was given by RCL �

RC 	 �n⁄
n
2�0.975� and RCU � RC 	 �n⁄
n

2�0.025�, where

n

2�a� was the ath percentile of the 
2 distribution with n degrees
of freedom.

To assess accuracy and precision of BV values in each
individual patient, a group mean (Mn) of BV in cerebellum VOIs
as a reference value with a 95% CI defined by standard deviation
(SDn), and an RCn with a 95% CI defined by RCL and RCU were
computed from n patients. For the next new scan, it was deter-
mined whether the mean BV value in the cerebellum VOI was
between Mn�2SDn and Mn�2SDn. If yes, the BV map was
deemed accurate with 95% confidence. For each new patient, a
difference of BV between the 2 scans (test and retest) was
determined whether it was within �RCn and RCn. If yes, the BV
maps of this new patient were considered repeatable with 95%
confidence. When the new patient’s data passed both tests, the
BV maps could be used to update the reference value and RC.
Otherwise, the BV maps from this individual patient were
flagged for further evaluation or correction before used in the
clinical trial.

Other Statistical Analysis
A paired t test was performed to examine whether there was any
difference between mean BVs measured at test and a retest with
P-value �0.05 as statistically significant. The distribution of
differences in mean BV values between the 2 scans was tested
for normality using the Shapiro–Wilk test. Similarly, to detect a
potential relationship between the measurement error and the
magnitude of the combined mean BV values between 2 scans, a
rank correlation coefficient (Kendall’s tau) test between absolute
differences against their combined means was performed.

Association Between Repeatability of AIF Peak and BV
As noted, we used a fixed imaging protocol to minimize varia-
tions in acquisition. However, it was unknown how repeatability
of AIF was associated with repeatability of BV values. To exam-
ine this association, we measured the AIF peak value for each
scan and calculated the RC from the 2 scans. We compared
percentage differences of AIF peaks between the 2 scans with
those of BV values measured in the cerebellum VOIs.

RESULTS
At the time of this report, 62 consecutive patients (median age,
62 years; male, 52; female, 10) were enrolled in the clinical trial.
For the first 10 patients, the mean (	SD) BV values from test and

retest were 2.22 (	0.13) mL/100 g and 2.21 (	0.19) mL/100 g,
respectively, and not significantly different (P-value � 0.79:
paired t test), yielding the overall group mean (	SD) of 2.21
(	0.16) mL/100 g (see Table 1). The difference in the BV values
between test–retest studies was independent to the combined
mean (P-value � 0.21: Kendall tau test), indicating that the
measurement error was independent to the magnitude of mea-
sured BV values. Also, the Shapiro–Wilk test showed that the
differences in BV values between the 2 examinations were
normally distributed. An RC of BV values between the 2 tests
was estimated to be 0.37, yielding a relative RC (rRC) of 16.7%
with a 95% CI of (11.7%, 29.4%). Using the leave-1-out cross-
validation, we did not find any outlier from the first 10 patients.
Therefore, we used M10 and RC10 as starting reference values to
evaluate the next patient (Table 1).

BV measurements from 62 patients were evaluated in real
time, and 3 patients were identified to have inaccurate BV
values in 1 of the 2 scans (Figure 3). Mean BVs measured from
these 3 patients were in the range of 3.05–3.95 mL/100 g, which
were much higher than those measured from the group mean �
2 � SD value (2.52 mL/100 g). The repeatability tests found that
the percentage differences of BV values between the 2 scans of
the 3 patients were much greater than the uncertainty range
defined by �RC and RC. Note that our procedure detected large
variations of BV values in 3 scans in real time, but not in
retrospective analysis. The consequences of the BV maps for
decision-making with and without correction were evaluated
and discussed with the physicians during the clinical trial.

As the patients were enrolled into the clinical trial, the data
from the 3 patients were excluded from the updated reference
values for accuracy and precision measurements. One additional
patient who had BV values within the normal range for both test
and retest was excluded owing to partial coverage of cerebellum
in 1 scan and mismatched slices in cerebellum between the 2
scans. As a result, the data from 58 patients were included to
update the reference values. A group mean (	SD) of BV values
was of 2.21 (	0.14) mL/100 g at test, and 2.22 (	0.17) mL/100
g at retest, which were not significantly different (P-value � 0.

Table 1. Summary Statistics for BV
Measurement at Normal Cerebellum
Region

Statistical
Parameters

Preliminary
Statistics
(n � 10)

Updated
Statistics
(n � 58)

Mean BV (	SD) (mL/100 g)

Test study 2.22 (	0.13) 2.21 (	0.14)

Retest study 2.21 (	0.19) 2.22 (	0.17)

Overall 2.21 (	0.16) 2.22 (	0.15)

Paired t test (P-value) 0.79 0.73

Kendall’s tau test (P-value) 0.21 0.67

WMS 0.02 0.02

RC (rRC%) 0.37 (16.7) 0.35 (15.9)

95%CI on rRC (%): rRCL, rRCU 11.7, 29.4 13.5, 19.5

Accuracy and Precision of DCE-MRI Blood Volume

64 TOMOGRAPHY.ORG | VOLUME 5 NUMBER 1 | MARCH 2019

http://WWW.TOMOGRAPHY.ORG


73: paired t test; see Table 1), suggesting stability of the quan-
tified BV maps. Also, the absolute difference was independent of
their combined means (P-value � 0.67: Kendall tau test).
ANOVA led to an RC of 0.35, and an rRC of 15.9% with a 95%
CI of (13.5%, 19.5%). Note that the 95% CI (uncertainty) of
estimated RC decreased with an increase in the number of
patients. Figure 4 shows a plot of percentage differences of BV

values between test–retest studies versus their combined means.
As shown in the plot, percentage differences of mean BVs from
the 3 patients, who had inaccurate mean BVs, were much large
than the RC interval (% difference � 33% at the lowest), indi-
cating the imprecision in the repeated measures.

Finally, the relative RC of the AIF peak values was of 61.8%.
Figure 5 shows a scatter plot of percentage differences of BV
values in the cerebellum VOIs versus those of AIF peak values
between the 2 scans. Note that there was no association or even
a trend between the 2 differences, suggesting the variation of
AIF peaks could not explain the variation in BV measurements.

DISCUSSION
In this study, we developed and evaluated a methodology and
metrics for real-time quantitative assessment of accuracy and
precision on DCE-MRI derived metrics using reference values in
a normal reference tissue region. It is critical to establish such a
real-time QA test in the workflow of a clinical trial to identify
unreliable estimates of QI metrics before used in a trial. A
subsequent action should be planned in the design of a clinical
trial. A real-time QA procedure of QI metrics in individual
patients would enhance the ability of the trial to achieve its
objectives and increase reliability of scientific findings. Our
method can be extended to other QI metrics and body-sites to
support individualized therapy and improve therapeutic out-
comes.

It would be worth noting that accuracy and precision of BV
values investigated in this study do not represent how accurate
the QI metrics measure a true physiological BV. As discussed in
the Introduction, they are measures of bias and variation of BV
values as a QI metrics quantified from HN DCE-MRI using the
extended Tofts model to reference values. Our data show that the

Figure 3. Mean BV values obtained in the cere-
bellum VOIs in each study plotted against the pa-
tient number. A center dotted line represents the
overall group mean of BV, while 2 dashed lines
depict the 95% confident interval (	1.96 � SD
from the group mean). Note that 3 BV values are
far away from the confident range, and are identi-
fied as inaccurate BV measurements.

Figure 4. Bland–Altman plots of the percentage
difference in mean BV between 2 studies plotted
against their combined mean. A center dotted line
shows the mean percentage difference of BV be-
tween the 2 scans, while 2 dashed lines represent
the estimated repeatability coefficient (RC) interval
(�RC, RC).

Figure 5. Scatter plot of percentage differences
of mean BVs versus percentage differences of ar-
terial input function (AIF) peaks between the 2
scans, with their corresponding RC ranges (hori-
zontal dashes lines for BV and vertical ones for
AIF peak).
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group mean and RC of BV values in the cerebellum are stable,
suggesting that it is a great candidate used as a reference region.
As anticipated, the 95% CI of estimated RC decreases with an
increase in the sample size. Using these reference values, we are
able to detect unreliable QI measures of individual patients in
real time during the clinical trial. Our test is different from test
and retest analysis performed before therapy. The latter helps us
understand the general technical behavior of a QI metrics in a
sample of population, but it does not tell us whether the metrics
acquired in each patient in a clinical trial is reliable or not.
Finally, the impact of uncertainty of a QI metrics in a decision-
making process needs to be investigated in future.

As shown in this study, reference values have to be estab-
lished in a reference tissue region to perform the proposed QA
test. The reference tissue region chosen may depend upon the
image type and body site of interest. However, the QI metrics in
a reference region has to be stable, less affected by therapy, and
within the FOV of the scan. In our preliminary investigation, we
tested sternocleidomastoid muscle (SCM) contralateral to tumor
as a possible tissue reference region. We found that the BV
values in SCM were not as stable as those in the cerebellum,
possibly owing to low BV in SCM. Also, in some cases, tumors
are distributed bilaterally, in which there is no noninvolved SCM
that can be used as a reference region. On the other hand, the
cerebellum tissue receives few Gy radiation doses (�3 Gy) for
HN cancer treatment, and BV changes in cerebellum VOIs after
10 Fx of RT do not show any positive or negative trend (Figure
4), suggesting that the treatment effect within the cerebellum is
minimum and can be ignored. Reference values of BV in the

cerebellum VOIs are adequate for evaluation of the overall
quality of BV maps, as MRI data are acquired in the k-space and
BV maps are determined by a single AIF. However, local motion,
e.g., swallowing, can cause local degradation in DCE-MRI,
which cannot be captured by the analysis performed in the
normal reference region. However, it still needs to be cautious to
use QI metrics during a therapeutic trial.

In our study, patient positioning, scanner, image protocol,
acquisition procedure, and analysis software and process are con-
trolled carefully to maintain consistency of QI metrics delineation
during the clinical trial. The factors that can influence repeatability
of DCE-MRI-derived QI metrics include patient positioning, image
registration, AIF delineation, image noise, image process, treatment
effect, and unknown physiological fluctuation. We further inves-
tigated repeatability of AIF peaks, as well as its influence on
repeatability of BV maps, but found no relationship among differ-
ences in the BV values and the AIF peaks between the 2 scans
(Figure 5). These findings indicate that the AIF peak variation
cannot solely explain one in the BV measures.

In conclusion, the present study developed and evaluated a
methodology for quantitative assessment of accuracy and precision
of DCE-MRI derived BV maps in a phase-II randomized clinical trial
for poor prognosis HN cancers. The outlined framework was able to
detect outliers, that is, identify the individual patients who had
unreliable BV values in real time during the clinical trial. Because
accuracy and precision of QI metrics influence decision-making in
the individualized and adaptive cancer therapy, individual QA
testing of such QI metrics needs to be integrated into a clinical trial
workflow to warrant success of the trial.
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Prostate cancer identification and assessment of clinical significance continues to be a challenge. Routine multipa-
rametric magnetic resonance imaging has shown to be useful in assessing disease progression. Although dy-
namic contrast-enhanced imaging (DCE) has the ability to characterize perfusion across time and has shown enor-
mous utility, radiological assessment (Prostate Imaging-Reporting and Data System or PIRADS version 2) has lim-
ited its use owing to lack of consistency and nonquantitative nature. In our work, we propose a systematic
methodology to quantify perfusion dynamics for the DCE imaging. Using these metrics, 7 different subregions or perfu-
sion habitats of the targeted lesions are localized and related to clinical significance. We found that quantitative fea-
tures describing the habitat based on the late area under the DCE time-activity curve was a good predictor of clinical
significance disease. The best predictive feature in the habitat had an AUC of 0.82, CI [0.81–0.83].

INTRODUCTION
Prostate cancer is the second leading cause of cancer deaths
among men in the United States and accounts to be the third
largest among newly diagnosed cancer cases (19%) (1). Rising
prostatic-specific antigen and abnormal digital-rectal examina-
tion have been traditionally used in the diagnosis of prostate
cancer. Advent of improved imaging resulted in the inclusion of
multiparametric magnetic resonance imaging (mpMRI) in the
clinical workflow (2). Recently, the United States Preventive
Services Task Force (USPSTF) has recommended against the
routine use of prostatic-specific antigen testing for diagnosis of
prostate cancer, owing to the risk of overdiagnosis and over-
treatment (3, 4). Advancements in image acquisition and reso-
lution of mpMRI coupled with the use of fusion-based transrectal
ultrasonography (TRUS)–guided biopsy has improved disease de-
tection and shown promise in improving diagnosis and treat-
ment (5). Routine MP-MRI includes T2-weighted (T2W) imaging
that describes the prostate anatomy, diffusion-weighted imag-
ing (DWI) that measures the density of cellular space by quan-
tifying the diffusion of water molecules. DCE image data shows
the dynamics of the administered contrast agent, which charac-
terizes the blood flow into prostate tissue and allows the iden-
tification of suspicious lesions by localizing abnormal contrast
absorption.

DCE analysis can be quantitative or semiquantitative. The
first approach is based on a contrast concentration model used

to determine the rate of contrast transfer from the blood plasma
into the tissue’s extravascular extracellular space (6, 7). The
second approach describes different contrast absorption pat-
terns based on the characteristics of time–activity curves
(8-10). The Prostate Imaging-Reporting and Data System
(PI-RADSv2) currently includes DCE along with T2W and
DWI, but their added value in diagnosis seems to be limited
(11). PI-RADSv2 limits the use of DCE to the peripheral zone
(PZ) when DWI is not conclusive. The standard limits the use
of DCE to a single binary observation: presence or absence of
uptake. This could be attributed to the lack of consensus in
the community to use better metrics. Traditionally, these DCE
curves are qualitatively characterized, which includes wash-in and
wash-out slopes and time-to-peak (12). These have been related to
tumor aggressiveness (13). The difficulty in establishing consistent
features from the DCE curves, as well as the high interobserver
variability, has limited the use of DCE in a quantitative fashion.
Nonetheless, there have been successful efforts to semiquantita-
tively characterize DCE and use these parameters for classification
of prostate cancer aggressiveness (14, 15).

Recently, radiomic analysis of habitats defined by textural
kinetic features has been used to predict recurrence-free survival
in patients with breast cancer (16). DCE-based habitats have
shown to correlate with estrogen receptor and nodal metastatic
status in breast cancer. Habitats in MRI imaging have also been
useful in identifying disease progression in glioblastoma (17).
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MRI-defined features have been used to define radiotherapy
treatment planning in prostate cancer (18).

In this study, we obtained the tumor region based on radi-
ologist delineation on a T2W sequence. The region was centered
on the TRUS biopsy location that was imported directly from the
fused TRUS/MRI system. DCE characteristics at voxel level,
across time, were quantified. Each feature map was used to form
a habitat or localization of voxels. These new habitat regions
were limited by a boundary around the known biopsy location
that was quantified. The ability of the features to discriminate
clinically significant cancers was evaluated for these specific
habitats. Figure 1 shows the methodology followed.

METHODS
Patients and MRI Acquisition
Patient imaging and histopathology records were collected at H.
Lee Moffitt Cancer Center, retrospective investigatory protocol
approved by the University of South Florida IRB. Informed
consent was waived for retrospective access of deidentified
patient records. The study included patients that had MRI-
guided targeted biopsy acquired between November 2015 and
February 2018. Suspicious lesions were marked by a clinical
radiologist on MRI. The patients in the study cohort had at least
one biopsy with an assigned Gleason Score (GS) sum �6. The
data set consisted of 72 biopsies from 54 patients. The average
interval between imaging and biopsy sampling was 27 days. In
this study, patients were grouped in 2 categories: clinically
insignificant cancer (GS � 6) and clinically significant cancer
(GS � 7). All statistics were performed using this grouping. The
data set consisted of 25 clinically insignificant and 47 clinically
significant biopsies.

MRI Acquisition and DCE Normalization
Routine clinical MP-MRI acquisition includes T2-weighted im-
aging (T2W), DCE, and DWI. The DWI includes an apparent
diffusion coefficient (ADC) map generated at the time of acqui-
sition. Patients were injected with contrast agent Gadavist
(Bayer HealthCare, Whippany, NJ) with a dose of 0.1 mL/kg
before MRI-DCE acquisition. In total, 27 patients were imaged
using a Siemens –SymphonyTim (Siemens, Munich, Germany)
scanner at 1.5 T and endorectal coil (ERC) (eCoil, Medrad, Pitts-
burgh, PA) with median repetition time (TR) of 7.7 seconds
(range, 6.4–9.5 seconds) and median echo time (TE) of 95 mil-
liseconds (range, 94–95 milliseconds) for DWI. For DCE, TR was
4.72 milliseconds, TE was 1.34 milliseconds, flip angle was 12°,
and temporal resolution was 11.45 seconds. Twenty-two pa-
tients were imaged using a Siemens-Skyra (Siemens, Munich,
Germany) scanner at 3 T and a pelvic phased-array coil with a
median TR of 4.6 seconds (range, 4.5–5.8 seconds) and a median
TE of 77 milliseconds (range, 67–84 milliseconds) for DWI. For
DCE, the median TR was 4.5 milliseconds (range, 4.5–5.08 mil-
liseconds), the median TE was 1.71 milliseconds (range 1.71-
1.87 milliseconds), flip angle was 12° (n � 20), and 15° (n � 2);
temporal resolution was 11.45 seconds (n � 20) and 13.75
seconds (n � 2). Three patients were imaged on a Philips-
Ingenia scanner at 3 T and a pelvic phased-array coil with a
median TR of 6.0 seconds (range, 4.5–6.2 seconds) and a median
TE of 114 milliseconds (range, 91–114 milliseconds) for DWI.
For DCE, the median TR was 4.21 milliseconds (range, 3.56–
4.28 milliseconds), the median TE was 2.02 milliseconds (range,
1.62–2.08 milliseconds), flip angle was 10°, and temporal res-
olution was 13.75 seconds. In summary, 27 patients (38
biopsies, 14 clinically insignificant and 24 clinically signifi-

Figure 1. Block diagram shows the DCE habitat identification and processing. A perfusion tumor habitat was localized for
each DCE feature map and these regions were characterized (by DCE features). Classification models were applied to iden-
tify features that can discriminate clinically significant prostate cancers.
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cant) were imaged at 1.5 T with ERC and 25 patients (34
biopsies, 11 clinically insignificant and 23 clinically signifi-
cant) at 3 T with a phased-array pelvic coil (Table 1).

Image registration against the T2W image was performed for
all modalities using gradient descent of mutual information on the
space spanned by 3D affine transformations. Manual contours of
the prostate, PZ, and the radiologist finding in the prebiopsy MRI
were stored as RT-DICOM structures. The peak-absorption time
point Speak was identified in DCE using the AIF (arterial input
function) signal as reference. All other time points were registered
to Speak. DCE data were normalized using an automatically seg-
mented arterial contour as described in the literature (19), which
makes the signal proportional to the change in relaxation rate
caused by the contrast agent weighted by the initial spin-lattice
relaxation time (20).

DCE-Feature Maps
Seven features were extracted from the DCE time–activity
curves, which describe both early and late enhancement
(Table 2). DCE time–activity curves were represented using a
biexponential semiquantitative model (12) that has the follow-
ing 5 parameters: initial static intensity s0, plateau sm, start of
enhancement t0, time-to-peak tau, and wash-out slope, wo. The
online Supplemental Figure 1 shows an example with the pa-
rameters used to characterize the DCE time activity curve. Peak
enhancement sp � sm � s0, wash-in slope wi � sp/tau. In
addition, we computed 2 features that describe the area under
the DCE curve between a time interval, namely: AUCt1-t2 is the
area under the biexponential fitted DCE curve between time t1
and t2. AUCi � AUCt0-t0�60 measures the early wash-in uptake
curve and AUCf � AUCt0�240�t0�270 measures the late wash-

out curve. The seventh feature computes the multiplicative ef-
fect of wash-in and wash-out slopes and was computed as mio�
wi* wo. Each one of these parameters was used to generate a 3D
DCE-feature map that was used to obtain a habitat (Figure 2).

Habitat Representation
We localized the regions of interest (ROIs) based on each of
the 7 DCE feature maps, which includes intra and peritumoral
regions around the biopsy location, referred to as DCE based
Habitats. A sphere (radius r � 15 mm) around the biopsy
location was placed on each DCE feature map used to bound
the tumor habitat. This region was additionally bounded by
the prostate zones (PZ or peripheral zone, TZ or transitional zone)
allowing convergence of largest lesion volume. The values for each
feature map within the localized sphere were used to obtain the
region defined by either the lower or upper quartile depending on
the feature. The converged habitats were labeled as H-DCE feature.
The mean DCE signal at the converged habitat region at each
sampling time was used as a representative perfusion curve for the
patient biopsy. DICE index between each habitat and the radiolo-
gist’s lesion ROI were computed to assess the volume of intratu-
moral habitat.

Statistical Analysis
Univariate analysis of the 7 DCE features was performed to
evaluate the overall discrimination using support vector ma-
chines (SVMs) to discriminate clinically significant cancers.
Sensitivity, specificity, and AUC were computed on the habitats
(Table 3). Pair-wise multivariable analysis was performed by
exhaustive comparison of all possible DCE features. The under-
represented GS class was oversampled using SMOTE (21), cali-

Table 1. Patients Enrolled in the Study With Their Biopsies Clinical Status and Scanner Differences

Patients Biopsies
Clinically

Insignificant
Clinically

Significant

1.5 T/ERC 27 38 14 24

3 T 25 34 11 23

Total 52 72 25 47

Table 2. List of DCE Features

Number Feature ID Feature Description Dice

1 sp Peak enhancement, sm-s0 0.22

2 tau Time-to-peak 0.42

3 wi Wash-in slope 0.21

4 wo Wash-out slope 0.25

5 AUCi Initial AUC, AUCt0-t0�60 0.33

6 AUCf Final (late) AUC, AUCt0�240-t0�270 0.22

7 mio Slope product, wi � wo 0.17

The DCE features were used in this paper to converge a habitat from the associated feature map and to characterize the average time activity curve in each
habitat.
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brated so that both classes had matched sample size. Classifier
performance was evaluated using leave-1-out cross-validation.
Each classification experiment was repeated 50 times. Further,
95% confidence intervals for sensitivity, specificity, and AUC
were estimated. Image processing and segmentations were per-
formed on commercial imaging Picture Archive Communication
System (PACS) workstation (MIM Corporation, Cleveland, OH,
USA). Classifiers and feature computations were developed us-
ing custom code written in C�� and Matlab.

RESULTS
In this study we evaluated the predictive performance of DCE
(perfusion) habitats, confined regions with similar perfusion be-
havior in the intra and peritumoral regions, using established char-
acteristics of the DCE time activity curves. We determined a set of
7 parameters from a biexponential curve fitting of these curves (see
online Supplemental Figure 1). These parameters generate feature
maps (Figure 2) that were used to generate 1 habitat for each

identified lesion. DICE score between habitats and manual lesion
contours ranged between 0.17 and 0.42 (Table 2).

The discriminatory ability of each feature was evaluated per-
forming univariate classification using SVM, repeated for each
habitat (Table 3 and online Supplemental Table 1). The top per-
forming habitat was the slope product habitat (H-mio), with AUC for
its DCE features in the range 0.46–0.78. The best predictive features
were tau (AUC, 0.71 [0.69, 0.73]; sensitivity, 0.66 [0.64, 0.69]),
followed by wo (AUC, 0.74 [0.73, 0.75]; sensitivity, 0.62 [0.60,
0.64]) and mio (AUC, 0.78 [0.77, 0.79]; sensitivity, 0.68 [0.68, 0.68]).

Additionally, we separated the samples for consistent scan-
ner types. For 1.5 T/ERC, the top performing habitats were the
late AUC habitat (H-AUCf) and H-mio (Table 4 and online
Supplemental Table 2). For H-AUCf, the best predictive feature
was wi (AUC, 0.81 [0.80, 0.82]; sensitivity, 0.74 [0.72, 0.75]), and
for H-mio, the best predictive feature was sp (AUC, 0.78 [0.76,
0.80]; sensitivity, 0.79 [0.76, 0.81]). For 3 T, the top performing
habitats were H-AUCf and the peak enhancement habitat (H-sp)

Figure 2. Example of prostate habitats based on DCE features. Radiologist’s outline of an anterior lesion in the
transition zone (TZ) (cyan) and prostate (yellow) contours overlapped with T2-weighted (T2w) imaging (A) and
peak-enhancement DCE series (B). DCE feature maps for peak enhancement (C), time-to-peak (D), wash-in slope (E),
wash-out slope (F), early AUC (G), late AUC (H), and slope product (I). DCE feature maps were built by parame-
trizing the DCE features for every voxel in the prostate.
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(Table 5 and online Supplemental Table 3). For the habitat
based on the late area under the DCE time–activity curve
(H-AUCf), the best predictive feature was tau (AUC, 0.83
[0.82, 0.85]; sensitivity, 0.69 [0.69, 0.70]), and for the H-sp,
the best predictive feature was wo (AUC, 0.81 [0.80, 0.83];
sensitivity, 0.85 [0.83, 0.86]).

The late AUC habitat (H-AUCf) was selected for pair-wise
feature analysis because it had shown accurate features for both
cohorts being robust for scanner strength/acquisition coil. Pair-
wise analysis of this habitat showed that 2 pairs of features were
predictive in both the 1.5/ERC data set and the 3 T data set. These
pairs were (tau, wi) and (wo, AUCi) (Table 6 and online Supple-
mental Tables 4 and 5). Classification using the feature pair (tau,
wi) had an AUC of 0.80 [0.79, 0.81] and a sensitivity 0.71 [0.70,
0.72] for 1.5 T and an AUC of 0.84 [0.83, 0.85] and a sensitivity

0.76 [0.75, 0.77] for 3 T. Classification using the feature pair (wo,
AUCi) had an AUC of 0.82 [0.81, 0.83] and a sensitivity 0.80
[0.79, 0.81] for 1.5 T and an AUC of 0.81 [0.80, 0.82] and a
sensitivity 0.73 [0.72, 0.75] for 3 T.

DISCUSSION
In our current work we present an approach to converge on a
region (habitat) and quantify its DCE (perfusion) characteristics
to discriminate clinically aggressive cancers. Prior work on
perfusion characterization has shown DCE values extracted
from ROIs correlates with pathological assessment (GS), using
intra-subject nonlinear matrix factorization to identify a suspi-
cious region (10). Owing to varied scanner types, using direct
voxel intensity values, coupled with the nondeterministic nature
of non-negative matrix factorization, limits the ability of the

Table 3. Univariate Evaluation of DCE-Based Habitats Versus DCE Features

Feature

sp tau wi wo AUCi AUCf mio

Habitat

H-sp
Sensitivity 0.54 0.76 0.60 0.68 0.43 0.56 0.64

Specificity 0.58 0.66 0.69 0.52 0.50 0.53 0.63

AUC 0.56 0.71 0.65 0.60 0.47 0.54 0.63

H-tau

Sensitivity 0.44 0.55 0.71 0.59 0.49 0.71 0.71

Specificity 0.37 0.54 0.61 0.52 0.53 0.62 0.46

AUC 0.41 0.55 0.66 0.55 0.51 0.67 0.58

H-wi

Sensitivity 0.48 0.40 0.54 0.51 0.58 0.58 0.44

Specificity 0.49 0.55 0.52 0.45 0.54 0.49 0.53

AUC 0.48 0.48 0.53 0.48 0.56 0.53 0.49

H-wo

Sensitivity 0.55 0.71 0.60 0.65 0.59 0.56 0.58

Specificity 0.48 0.57 0.62 0.70 0.55 0.50 0.70

AUC 0.52 0.64 0.61 0.67 0.57 0.53 0.64

H-AUCi

Sensitivity 0.57 0.49 0.47 0.59 0.55 0.55 0.55

Specificity 0.48 0.63 0.45 0.46 0.52 0.59 0.45

AUC 0.53 0.56 0.46 0.52 0.53 0.57 0.50

H-AUCf

Sensitivity 0.55 0.68 0.66 0.63 0.68 0.57 0.71

Specificity 0.68 0.74 0.49 0.51 0.58 0.52 0.57

AUC 0.62 0.71 0.58 0.57 0.63 0.54 0.64

H-mio

Sensitivity 0.65 0.66 0.42 0.62 0.45 0.57 0.68

Specificity 0.57 0.75 0.69 0.86 0.46 0.41 0.88

AUC 0.61 0.71 0.56 0.74 0.46 0.49 0.78

Seven habitats were outlined by thresholding DCE feature maps (columns). For each habitat, the mean DCE feature values were computed (rows). Mean
sensitivity, mean specificity, and mean AUC for classification between clinically insignificant and clinically significant cancer, based on MRI-guided
biopsies. SVMs were used as classifiers with leave-1-out cross-validation. All patients in the study were included.
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method to reproduce across varied cohorts. The habitat model
presented here addresses the key issue of showing a means to
localize the ROI before quantification. We use SVM classifiers to
discern the habitat and quantified features on this habitat that
improved the ability to discriminate aggressive cancers (22).

The use of parameters from pharmacokinetics modeling has
shown to lack robustness. A recent study has shown usability of
Ktrans map to localize the tumor region and these maps have
been reported to be predictive of tumor aggressiveness (13). It
has also been reported that repeatability of Ktrans maps across
institutions has been low, and a recent report shows a coefficient
of variation to be as high as 0.59 (23).

There is an open debate about the accuracy of ERC and
pelvic phased-array coil for the detection of prostate cancer. At

1.5 T, ERC produces a higher-quality imaging of the prostate
with common artifacts in the PZ. At 3 T, the pelvic phased-array
coil produces high-quality images without the inconvenience
and cost of an ERC. Because both of these technologies are
currently used in the clinic, we strive to find DCE features that
are robust to both acquisition coil and magnetic field strength of
the scanner. It is imperative to develop prognostic features that
work well with both types of coils. In this paper we review the
robustness of DCE features in the prediction of clinically aggres-
sive cancers, with respect to the acquisition settings.

To improve the accuracy and reproducibility of classifications,
the patients were divided according to the MRI acquisition charac-
teristics, and their habitats were analyzed separately, identifying
DCE features that were common in both subsets. The late AUC

Table 4. Univariate Evaluation of 1.5 T ERC DCE-Based Habitats Versus DCE Features

1.5 T ERC

Feature

sp tau wi wo AUCi AUCf mio

Habitat

H-sp
Sensitivity 0.54 0.63 0.58 0.7 0.58 0.51 0.52

Specificity 0.45 0.7 0.67 0.53 0.59 0.5 0.42

AUC 0.49 0.66 0.63 0.62 0.59 0.5 0.47

H-tau

Sensitivity 0.47 0.6 0.64 0.72 0.5 0.53 0.62

Specificity 0.45 0.53 0.68 0.53 0.55 0.52 0.49

AUC 0.46 0.57 0.66 0.62 0.53 0.52 0.56

H-wi

Sensitivity 0.39 0.56 0.6 0.52 0.49 0.51 0.47

Specificity 0.53 0.59 0.43 0.63 0.54 0.51 0.44

AUC 0.46 0.57 0.52 0.57 0.52 0.51 0.46

H-wo

Sensitivity 0.42 0.59 0.67 0.43 0.55 0.57 0.57

Specificity 0.65 0.51 0.6 0.49 0.58 0.42 0.52

AUC 0.54 0.55 0.64 0.46 0.57 0.49 0.54

H-AUCi

Sensitivity 0.43 0.71 0.64 0.52 0.51 0.37 0.59

Specificity 0.55 0.69 0.52 0.64 0.43 0.45 0.55

AUC 0.49 0.7 0.58 0.58 0.47 0.41 0.57

H-AUCf

Sensitivity 0.42 0.55 0.74 0.46 0.72 0.56 0.65

Specificity 0.42 0.74 0.88 0.48 0.76 0.64 0.66

AUC 0.42 0.64 0.81 0.47 0.74 0.6 0.66

H-mio

Sensitivity 0.79 0.65 0.61 0.66 0.72 0.72 0.63

Specificity 0.78 0.63 0.81 0.59 0.79 0.66 0.46

AUC 0.78 0.64 0.71 0.62 0.75 0.69 0.55

Seven habitats were outlined by thresholding DCE feature maps (columns). For each habitat, the mean DCE feature values were computed (rows). Mean
sensitivity, mean specificity, and mean AUC for classification between clinically insignificant and clinically significant cancer, based on MRI-guided
biopsies. SVMs were used as classifiers with leave-1-out cross-validation. All patients in the study were included. The two features with the largest AUC
amongst all habitats have been indicated in boldface.
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habitat (H-AUCf) showed good performance (with features having
an AUC greater than 0.8) for both scanner settings. The peak
enhancement habitat (H-sp) in the 3 T data set had the largest
sensitivity with the wo feature (AUC, 0.81 [0.80, 0.83]; sensitivity,
0.85 [0.83, 0.86]) but failed to be robust with the 1.5 T/ERC cohort
(AUC, 0.62 [0.60, 0.64]; sensitivity, 0.70 [0.68, 0.72]).

Further pair-wise analysis of the H-AUCf habitat showed
improvement for classification accuracy. For 3 T, 10 pairs of
features showed AUC larger or equal to 0.8, while for 1.5 T/ERC,
there were only 3 pairs. This may suggest that 3 T acquisition
provides better predictive features on DCE images compared to
1.5 T with endorectal coil. The H-AUCf habitat had a DICE score
of 0.22, suggesting that this habitat was mostly exploring the
peritumoral region, adding information to the model from the

surrounding environment. Two DCE feature pairs performed well:
(tau, wi) and (wo, AUCi). The (wo, AUCi) pair had a sensitivity of
0.80 for 1.5 T/ERC and the (tau, wi) pair had a sensitivity of 0.76 for
3 T. Because we are aiming for features with high accuracy and
high sensitivity, future experiments should evaluate if the tuple
(wo, AUCi, tau, wi) would provide robust accuracy with high sen-
sitivity. The main limitation of this study is the small sample size
used for training; we expect using a conservative approach such as
ours, would have a better chance of reproducibility.

CONCLUSION
We present a systematic quantitative methodology to identify DCE
perfusion regions that provide quantitative assessment of DCE
characteristics in these regions. We show that these metrics identify

Table 5. Univariate Evaluation of 3 T Pelvic Coil DCE-Based Habitats Versus DCE Features

3 T PELVIC

Feature

sp tau wi wo AUCi AUCf mio

Habitat

H-sp
Sensitivity 0.52 0.59 0.6 0.85 0.7 0.65 0.67

Specificity 0.62 0.8 0.89 0.78 0.54 0.71 0.79

AUC 0.57 0.7 0.74 0.81 0.62 0.68 0.73

H-tau

Sensitivity 0.67 0.49 0.64 0.58 0.4 0.68 0.69

Specificity 0.69 0.66 0.6 0.56 0.61 0.79 0.58

AUC 0.68 0.57 0.62 0.57 0.51 0.73 0.63

H-wi

Sensitivity 0.78 0.31 0.54 0.51 0.68 0.59 0.57

Specificity 0.68 0.64 0.57 0.46 0.57 0.69 0.57

AUC 0.73 0.48 0.55 0.48 0.63 0.64 0.57

H-wo

Sensitivity 0.66 0.46 0.45 0.56 0.45 0.72 0.5

Specificity 0.56 0.36 0.47 0.67 0.48 0.52 0.61

AUC 0.61 0.41 0.46 0.61 0.46 0.62 0.56

H-AUCi

Sensitivity 0.54 0.5 0.56 0.58 0.58 0.69 0.7

Specificity 0.63 0.6 0.55 0.67 0.62 0.8 0.6

AUC 0.59 0.55 0.55 0.63 0.6 0.75 0.65

H-AUCf

Sensitivity 0.66 0.69 0.64 0.53 0.56 0.66 0.58

Specificity 0.62 0.97 0.68 0.87 0.65 0.64 0.89

AUC 0.64 0.83 0.66 0.7 0.6 0.65 0.73

H-mio

Sensitivity 0.68 0.59 0.51 0.47 0.55 0.48 0.52

Specificity 0.53 0.61 0.58 0.66 0.52 0.39 0.69

AUC 0.6 0.6 0.54 0.57 0.54 0.44 0.61

Seven habitats were outlined by thresholding DCE feature maps (columns). For each habitat, the mean DCE feature values were computed (rows). Mean
sensitivity, mean specificity, and mean AUC for classification between clinically insignificant and clinically significant cancer, based on MRI-guided
biopsies. SVMs were used as classifiers with leave-1-out cross-validation. All patients in the study were included. The two features with the largest AUC
amongst all habitats have been indicated in boldface.
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clinically significant cancers. In particular,wefind that habitat regions
identified by the late area under the DCE time–activity curve (H-AUCf)
yield features to be related to clinically significant cancers. We also
find thatusingacohesive cohortwithhighermagneticfield strength (3
T) seems to improve the predictor performance.
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Table 6. Evaluation of pairs of DCE features for habitat H-AUCf

1.5 T ERC 3 T

sp tau wi wo AUCi AUCf mio sp tau wi wo AUCi AUCf mio

Sensitivity

sp 0.42 0.74 0.64 0.75 0.70 0.60 0.64 0.66 0.76 0.61 0.70 0.74 0.65 0.74

tau 0.55 0.71 0.76 0.76 0.72 0.70 0.69 0.76 0.75 0.70 0.70 0.68

wi 0.74 0.63 0.73 0.68 0.60 0.64 0.63 0.61 0.70 0.73

wo 0.46 0.80 0.69 0.72 0.53 0.73 0.75 0.69

AUCi 0.72 0.73 0.69 0.56 0.77 0.64

AUCf 0.56 0.63 0.66 0.74

mio 0.65 0.58

Specificity

sp 0.42 0.91 0.89 0.75 0.77 0.56 0.62 0.62 0.82 0.81 0.91 0.83 0.77 0.97

tau 0.74 0.89 0.72 0.81 0.86 0.70 0.98 0.93 0.98 0.84 0.83 0.94

wi 0.88 0.77 0.84 0.87 0.84 0.68 0.93 0.85 0.82 0.95

wo 0.48 0.84 0.66 0.67 0.87 0.88 0.91 0.94

AUCi 0.76 0.79 0.84 0.65 0.83 0.93

AUCf 0.64 0.63 0.64 0.91

mio 0.66 0.89

AUC

sp 0.42 0.83 0.76 0.75 0.74 0.58 0.63 0.64 0.79 0.71 0.80 0.79 0.71 0.85

tau 0.64 0.80 0.74 0.79 0.79 0.70 0.83 0.84 0.87 0.77 0.76 0.81

wi 0.81 0.70 0.78 0.78 0.72 0.66 0.78 0.73 0.76 0.84

wo 0.47 0.82 0.67 0.69 0.70 0.81 0.83 0.82

AUCi 0.74 0.76 0.76 0.60 0.80 0.79

AUCf 0.60 0.63 0.65 0.83

mio 0.66 0.73

Sensitivity, specificity, and AUC for classification between clinically insignificant and significant cancer is shown, based on MRI-guided biopsies. Support
vector machines were used as classifiers. Leave-1-out cross-validation was used. The diagonal corresponds to the univariate case. The two features with
the largest average AUC between 1.5 T and 3 T acquisitions have been indicated in boldface.
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Accurate, patient-specific measurement of arterial input functions (AIF) may improve model-based analysis of
vascular permeability. This study investigated factors affecting AIF measurements from magnetic resonance
imaging (MRI) magnitude (AIFMAGN) and phase (AIFPHA) signals, and compared them against computed to-
mography (CT) (AIFCT), under controlled conditions relevant to clinical protocols using a multimodality flow
phantom. The flow phantom was applied at flip angles of 20° and 30°, flow rates (3–7.5 mL/s), and peak
bolus concentrations (0.5–10 mM), for in-plane and through-plane flow. Spatial 3D-FLASH signal and vari-
able flip angle T1 profiles were measured to investigate in-flow and radiofrequency-related biases, and mag-
nitude- and phase-derived Gd-DTPA concentrations were compared. MRI AIF performance was tested against
AIFCT via Pearson correlation analysis. AIFMAGN was sensitive to imaging orientation, spatial location, flip
angle, and flow rate, and it grossly underestimated AIFCT peak concentrations. Conversion to Gd-DTPA con-
centration using T1 taken at the same orientation and flow rate as the dynamic contrast-enhanced acquisition
improved AIFMAGN accuracy; yet, AIFMAGN metrics remained variable and significantly reduced from AIFCT

at concentrations above 2.5 mM. AIFPHA performed equivalently within 1 mM to AIFCT across all tested con-
ditions. AIFPHA, but not AIFMAGN, reported equivalent measurements to AIFCT across the range of tested con-
ditions. AIFPHA showed superior robustness.

INTRODUCTION
Dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI) is a useful tool to measure blood vessel permeability and
volume fractions within heterogeneous lesions, such as tumors
(1). There is growing interest in the role of early changes in
tumor vascularity as predictive biomarkers of tumor response
to therapy, particularly with increasing use of antiangiogenic
agents, recognizing that changes in tumor physiology can
often precede tumor volume changes (1-3). Biomarkers of
early response to treatment introduce the potential to indi-
vidualize cancer treatment based on individual responses, but
the current challenge is determining the optimal approach for
acquiring and interpreting these biomarker measures. To date
there has been wide variability in the reported DCE-MRI
findings and responses across different institutions and this

may, at least in part, reflect the variability in image acquisi-
tion and analysis (4, 5).

Analysis of DCE-MRI data commonly assumes a 2-compart-
mental model to generate functional parameters, such as the
permeability surface area product per unit volume (Ktrans), size
of the extracellular extravascular space (ve), and efflux rate
constant (kep) (6, 7). Accurate quantification of these permeabil-
ity kinetic parameters is dependent on the application of an
accurately measured arterial input function (AIF) from a major
vessel in the vicinity of the tumor (8). Typically, the AIF has been
evaluated by using the magnetization magnitude signal in an
artery, but the conversion from magnitude signal to absolute
gadolinium contrast agent concentration (eg, Gd-DTPA) is sus-
ceptible to a number of factors including blood inflow effects,
radiofrequency transmit field (B1) inhomogeneity, slice profile
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effects, mis-registration susceptibility shifts, contrast agent
dispersion, and hematocrit variation (9-12). Owing to these
challenges, many studies have used the population-average
AIF provided by vendor software for the generation of kinetic
parameters from DCE-MRI data. Use of a population-average
AIF may improve reproducibility in permeability kinetic pa-
rameters, but it may not result in accurate and meaningful
quantification of kinetic parameters for individual patients
(13, 14). Accurate measurement of an individual AIF may
help improve both the accuracy and reproducibility of kinetic
analysis (15, 16).

A growing body of work supports the use of the MRI signal
phase for AIF measurement, for improved robustness relative to
the magnitude signal (17-20). This study used an in-house-
developed dynamic flow phantom (21) to investigate factors
affecting the magnitude signal-derived AIF (AIFMAGN), and to
compare AIFMAGN to the phase signal-derived AIF (AIFPHASE) in
a controlled environment with validation against the gold-
standard computed tomography (CT)-derived AIF (AIFCT).
Both accuracy and robustness of the respective input func-
tions were tested against varying imaging orientation, flip
angles, flow rates, and peak AIF gadolinium contrast agent
concentrations.

MATERIALS AND METHODS
Multimodal CT/MRI Flow Phantom
The basis of experimentation was an in-house-developed flow
phantom (Figure 1), currently in use for accreditation of centers
participating in multicenter clinical trials using DCE-CT in the
province of Ontario (21). Physiological flow was simulated by a
positive displacement pump (Compuflow 1000MR, Shelley Med-
ical Imaging Technologies, London, ON), which pushed a blood-

mimicking fluid consisting of a 15%–85% glycerol–water by
volume mixture through the flow circuit. The 15%–85% glyc-
erol–water mixture was pumped from an external reservoir
through 1/4 (6.35 mm) polyvinyl chloride tubing, and an in-
line clinical power injector (Optistar Elite, Mallinckrodt, Cincin-
nati, OH) was used to simulate the contrast bolus representing
the AIF (Phantom Input) by injecting various dilutions of Gad-
ovist 1.0 (604 mg/ml, Bayer Corp., Leverkusen, DE). The flow
phantom, based on a 2-compartmental exchange model, has 2
output tubes roughly representing the venous output function
(phantom output 1) and the tissue signal function (phantom
output 2). Fluid from the phantom outputs was fed back to the
external reservoir for noncontrast experiments or to a waste
container for contrast experiments.

Within flow rates up to 7.5 mL/s, the flow phantom provides
high intrarun and intraday reproducibility with an error of �2%
as validated through CT imaging.

The flow through the phantom output tubes is controlled by
a set of flow control valves such that the output flow rates in
each output tube is equal to half that of the input tube. The
relationship between the phantom input peak concentration and
that of the output tube peaks is variable, based on the choice of
flow rate because exchange happens more quickly under higher
rates of flow, but it is fully predictable based on the known
geometry of the system.

Gold Standard CTAIF

Gold standard CTAIF measurements, shown in Figure 2, were
acquired with a 320-slice scanner (Toshiba Medical Systems,
Aquilion ONE) using a dynamic volume–time sequence operat-
ing at 120 kV, 300 mA gantry rotation of 0.5 seconds, and image
frequency of 1 vol (160 mm longitudinal coverage) every 1.5

Figure 1. Simplified layout of the flow-phantom experiment. A high-concentration bolus is delivered from the pump and
power injector through the phantom input tube into the flow phantom, where it divides into phantom output tubes 1 and
2, so that arterial input functions (AIFs) corresponding to each tube are captured within the same dynamic acquisition.
The output flow ratios of the 2 phantom output tubes were set to 50:50 so that the velocity in each of the output tubes is
half of that in the input tube. The diverter valve can channel the returning fluid to the reservoir for recirculation or to the
waste for disposal (22).
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seconds, with spatial resolution of 0.625 � 0.625 � 1 mm3. The
DCE-CT studies were performed at flow rates of 3, 5, and 7.5
mL/s, corresponding to average flow velocities of 9.5, 15.8, and
23.7 cm/s, at peak AIF Gd-DTPA concentration of 50 mM to
improve CT signal-to-noise ratio (SNR). The peak CT-measured
Gd-DTPA concentrations are linearly scaled to match those of
corresponding MRI experiments, based on a priori validation of
linearity between the CT Hounsfield Units and Gd-DTPA con-
centration (Figure 2).

MRI Methods
A consistent setup was used for both DCE-CT and DCE-MRI
acquisitions. The in-flow and out-flow tubes were oriented par-
allel to B0 to minimize susceptibility artifacts (22), and these
tubes were placed above the spine array coil and below the
2-coil body array to allow for sensitive experimentation. A
separate polyvinyl chloride tube filled with the 15%–85% glyc-
erol–water mixture was placed within the imaging stack to
provide a signal reference for MRI analysis. An additional 4 m of
coil tubing was also wound within the MRI bore to allow for
polarization of in-flowing spins.

All magnetic resonance (MR) imaging used a 3 T Verio
System (IMRIS, Winnipeg, CA). Variable-flip-angle (VFA) T1
quantification and DCE experimentation used a 3-dimensional
Fast Low Angle SHot (3D-FLASH) pulse sequences with shared
geometric features (23). For axially oriented slice packages (eg,
through-plane flow), 3D data sets were acquired over a 12.8- �
6.4- � 12-cm field of view (FOV) with 124 � 64 � 24 matrix,
providing 1 � 1 � 5 mm voxels. For coronally oriented slice
packages (eg, in-plane flow), the FOV was 19.2 � 9.6 � 7.2 cm,
matrix size was 192 � 96 � 24, and voxels were 1 � 1 � 3 mm3.
All acquisitions used an echo time (TE) and repetition time (TR)
of 1.86 milliseconds and 4.8 milliseconds, and a 500 Hz/pixel
readout bandwidth. For dynamic scans, 3D-FLASH temporal
resolution was 5 seconds with 36 repetitions including at least 3
repetitions at baseline flow before contrast agent injection to
determine the average preinjection signal. The acquisition times
were 37 seconds per flip angle for VFA-T1 (4 flip angles of 2°,
10°, 20°, 30°, 5 averages, iPAT factor 1), and 3 minutes 4 seconds
for DCE-MRI (experiment-dependent flip angle, iPAT factor 2,
5-second temporal resolution, 38 repetitions).

Static Experiments
Gd-DTPA was diluted into 15%/85% glycerol/water and water-
only at concentrations between 0 and 10 mM within 15-cc

conical tubes. Within the 8-channel head coil of the 3 T Verio
system, shimming was then performed using the 0 mM tube
centrally placed, and surrounded by 6 control tubes containing
water. 3D-FLASH acquisitions, including magnitude and phase
reconstructions, were then performed. The central tube was then
replaced with a tube of higher Gd-DTPA concentration and
imaged without reshimming. This design reduced biases from
coil sensitivity, and from shimming to an asymmetric distribu-
tion of samples with varying magnetic susceptiblity. It also
provided a background phase correction, measured as the aver-
age phase drift across all 6 control tubes.

T1 relaxivity was measured using the body coil for RF
transmit, and spine array coil elements and anteriorly placed
small flexible coil for RF receive. T1 values were measured from
all samples at once using an inversion recovery spin-echo tech-
nique (slice-selective inversion pulse; TE 12 milliseconds; TR
9350 milliseconds; inversion times 25, 50, 100, 200, 400, 800,
1200, 1600, 2000, 3500, 5000 milliseconds; FOV 240 �
192 mm; matrix 138 � 102; 5 mm slice thickness; iPAT factor
2; readout bandwidth 130 Hz/pixel; 10 minutes per inversion
time). T1 relaxivity was extracted from the T1 and concen-
tration data pairs via linear regression (OriginLab, Northam-
pton, MA).

Dynamic Experiments
The complete set of dynamic experiments is summarized in
Table 1. The input flow rate varied between 3, 5, and 7.5 mL/s
(average flow velocities of 9.5, 15.8, and 23.7 cm/s), consistent
with the physiologic range of internal carotid artery blood flow
rates (24). For most runs, a peak concentration of 10 mM was
delivered through the in-flow tube, which also provided assess-
ment of peak concentrations of �5 and 2.5 mM in the 2 outflow
tubes. Lower peak AIF Gd-DTPA concentrations of �0.5, 1, and
2 mM in the in-flow tube were also considered. This concentra-
tion range from 0.5 to 10 mM provided coverage of the full
range of Gd-DTPA concentrations expected in a clinical DCE-
MRI examination (25). Gd-DTPA concentration at peak en-
hancement was programmed by varying the dilution of Gd-
DTPA within the power injector at constant injection volume of
16 mL and duration of 10 seconds.

Magnitude-Derived AIF: In-flow, RF, and Slice Profile Effects.
Inhomogeneity of the RF transmit field and inflow affect the
spatial profile and accuracy of the 3D-FLASH magnitude signal
(23). Furthermore, inflow and RF transmit field inhomogeneity
prolong the transition of the 3D-FLASH signal to steady-state

Figure 2. Gold standard AIFCT:
linearity of Hounsfield unit cali-
bration with Gd-DTPA (A), Gold
standard AIFCT for 10 mM bolus
injection at 3, 5, and 7.5 mL/s
flow velocity (B).
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(9). Different RF inhomogeneity, slice profile, in-flow, and
steady-state errors are to be expected for through-plane flow
with an axial slice excitation and for in-plane flow with a
sagittal or coronal slice excitation.

Spatial profiles of the 3D-FLASH signal were measured via
acquisitions at flow rates from 0 to 23.7 cm/s and at flip angles
from 2° to 30° for both axially and coronally oriented slice
packages. Effects of flow rate and flip angle on the 3D-FLASH
signal profile were confirmed via magnitude AIF measurements
(through-plane and in-plane dynamic acquisitions at flip angles
of 20° and 30° at flow rates of 5 mL/s and 7.5 mL/s and peak
concentration of 10 mM. The magnitude AIF signals was scaled
to Gd-DTPA concentration using T1 measured in a central slice
using the variable flip angle technique.

Magnitude-Derived AIF: Correction Using VFA-T1. Endoge-
nous T1 scales the conversion between the magnitude signal and
Gd-DTPA concentration. However, in-flow accelerates the mea-
sured T1 relaxation based on the extent of spin displacement
(26). Commonly used VFA-T1 measurements are very prone to
bias from RF inhomogeneity, RF mistuning, and slice profile
(23). Therefore, endogenous T1 values for blood taken from the
literature or measured from static volumes may not be represen-
tative of true rates of repolarization at any location within the

3D-FLASH slice package in vivo. Geometrically equivalent 3D-
FLASH VFA-T1 and DCE acquisitions at matched TR should be
affected similarly by in-flow and RF errors. If so, MR signal to
concentration conversion using position- and velocity-matched
VFA-T1 instead of assumed T1 may improve the AIFMAGN mea-
surement.

The following acquisitions tested for improved AIFMAGN using
position- and velocity-matched VFA-T1. First, through-plane
and in-plane 3D-FLASH image sets were measured at 2°, 10°,
20°, and 30° under static conditions. These image sets confirmed
VFA-T1 at each location along the slice profile of the 3D-FLASH
RF excitation pulse. Second, VFA-T1 maps were reconstructed
from equivalent 3D-FLASH image sets acquired at flow rates of
3, 5, and 7.5 mL/s, to validate T1 acceleration with in-flow (26).
Third, dynamic acquisitions at matching flow rates and flip
angles of 20° and 30° were acquired during bolus Gd-DTPA
injection with peak concentration of 10 mM and compared
against DCE-CT to verify improved AIF accuracy when position-
and velocity-matched VFA-T1 values were used rather than the
VFA-T1 value at the center of the RF slice profile.

Phase-Derived AIF: Velocity and Concentration Effects. Com-
pared to the magnitude-derived AIF, the phase-derived AIF
should be insensitive to slice profile and in-flow effects. Phase-

Table 1. List of AIF Experiments

Run # Flow Rate (ml/s) Peak Concentration (mM) Imaging Plane Flip Angle (Degrees)

1 7.5 10 Through-plane 20

2 7.5 10 Through-plane 20

3 5 10 Through-plane 20

4 5 10 Through-plane 20

5 5 10 Through-plane 20

6 5 10 Through-plane 20

7 3 10 Through-plane 20

8 3 10 Through-plane 20

9 5 5 Through-plane 20

10 5 5 Through-plane 20

11 5 2 Through-plane 20

12 5 2 Through-plane 20

13 5 1 Through-plane 20

14 5 1 Through-plane 20

15 5 0.5 Through-plane 20

16 5 0.5 Through-plane 20

17 7.5 10 Through-plane 30

18 5 10 Through-plane 30

19 3 10 Through-plane 30

20 5 5 Through-plane 30

21 5 2 Through-plane 30

22 5 1 Through-plane 30

23 5 0.5 Through-plane 20

24 7.5 10 In-plane 30

25 5 10 In-plane 20

26 7.5 10 In-plane 30

Imaging plane is stated as relative to the direction of flow; through-plane corresponds to an axial slice package; and in-plane corresponds to a coronal
slice package. Flow rates of 3, 5, and 7.5 mL/s correspond to flow velocities of 9.5, 15.8, and 23.7 cm/s, respectively.
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and CT-derived AIFs for both axially and coronally oriented
slice packages were compared at variable peak Gd-DTPA con-
centrations (0.5, 1, 2, 5, and 10 mM) and flow rates (9.5, 15.8,
and 23.7 cm/s), across the entire slice profile.

Phase- and Magnitude-Derived AIFs: Comparison to CT. MRI
AIF performance was tested against the CT gold standard via
Bland–Altman difference and Pearson correlation analyses for
all through-plane acquisitions in Table 1 (sample size of 69
given 23 runs, with readings from 1 phantom input and 2
phantom output tubes for each run). Further, 95% limits of
agreement between the techniques for measurements in a single
central slice were reported as the mean difference 	 1.96 stan-
dard deviance of the difference for the peak AIF concentration
and the area under the curve (AUC) for the first 120 seconds after
injection.

Phase- and Magnitude-Derived AIFs: Spatial Heterogeneity.
Given the insensitivity to RF and in-flow effects, AIFPHA should
prove robust away from the central imaging slice. Spatial AIF-
MAGN and AIFPHA profiles were generated for 10 mM Gd-DTPA
bolus injection at 23.7 cm/s flow velocity (5 mL/s). T1 measure-
ments were matched to both velocity and slice position. Mean
and standard deviations of T1-corrected AIFMAGN and AIFPHA

were reported across the slice package for through-plane flow
and across the field-of-view for in-plane flow.

Image Analysis
All MRI and CT signal and image data processing and analysis
used Matlab® (MathWorks, Natick, MA). MR signal modeling
used standard equations for magnitude and phase signal con-
version to Gd-DTPA concentration, as follows:

S � S0sin(�)(1 � E1)⁄(1 � E1cos(�))e�TE⁄T2* (1)

where E1 � exp(�TR/T1), � is the flip angle, and S0 and S are the
relative signal enhancements before contrast injection and after
contrast injection, respectively (27).

Magnitude signal enhancement was converted to concen-
tration according to Schabel and Parker (28) with the following
equation:

1⁄T1(C) � 1⁄T10 � r1C (2)

where T10 and T1 are the spin-lattice relaxation times before
and after contrast injection, respectively; r1 is the relaxivity
of the contrast agent in the 15%–85% glycerol–water mix-
ture; and C is the concentration of the Gd-DTPA contrast
agent (27). For dynamic image analysis, the average of sig-
nals at the first 3 time points provided an estimate of the
signal baseline.

The change in signal phase was converted to Gd-DTPA
concentration with the following equation:

�� � TE��B0
m�C(cos2� � 1⁄3) (3)

where � is the proton gyromagnetic ratio (4.258 � 107 Hz/T), B0

is the magnitude of the main magnetic field in Tesla, 
m is the
molar susceptibility of the Gd-DTPA concentration (3.4 �
107 mM�1 for Gd, in MKS units), and � is the angle of the vessel
relative to the main magnetic field (� � 0 being parallel with
that field) (19). Concentration profiles of AIFPHA were compen-
sated for background phase drifts by subtraction of the phase
signal within the 15%–85% glycerol–water control tube (18).
The background phase drifts between baseline and final dy-

namic frames corresponded to Gd-DTPA concentration changes
of 0.6 	 0.2 mM, averaged across all 23 through-plane acqui-
sitions and 2 control tubes.

Mean and standard deviations of signals were extracted
from regions of interest (ROIs) for each of the 3 flow tubes.
Analysis of axially oriented images used circular ROIs drawn on
the AIF and control tubes in each of the 24 axial reconstructed
slices. Coronal image analysis used 12 ROIs drawn equally
spaced along the z-direction with both AIF and control tubes on
a single coronal section that bisected each tube. Phase images
were manually unwrapped if the ROI contained a phase 360° to
0° discontinuity by shifting modulo 360° until the discontinuity
disappeared.

Statistical Analysis
Pearson correlations and linear regressions of peak Gd-DTPA
concentrations and AUC measurements between CT and differ-
ent MR data sets (magnitude, magnitude T1-corrected, and
phase) were performed in MATLAB (The MathWorks) for both
peak and AUC.

RESULTS
Static Experiments
Using the inversion recovery technique, an endogenous VFA-T1
of 1935 	 40 milliseconds and T1 relaxivity of 7.5 	 0.1 1/mM*
milliseconds (R � 0.9998) were measured (Figure 3, A and B).
The corresponding values for the Gd-DPTA–water solutions
were 3007 	 76 milliseconds and 5.0 	 0.1 1/mM* milliseconds.
Gd-DTPA concentrations derived from the magnitude signal
were badly truncated to 2.5 mM using a 10° flip angle, but the
Gd-DTPA concentration to 5 mM using a 20° flip angle, and
to 10 mM using a 30° flip angle (Figure 3C). Linear and
accurate measurement of Gd-DTPA concentration from the
phase signal was observed after background phase correction
(Figure 3D).

Dynamic Experiments
Magnitude-Derived AIF: In-flow, RF, and Slice Profile Effects.

Spatial 3D-FLASH signal profiles are presented in Figure 4. In
this figure, a completed transition to steady state was visualized
as an equalization of signal magnitude with the static (0 cm/s)
case. Flow data acquired with a 2° flip angle did not deviate
much from the static experiment. At a 10° flip angle, consider-
able inflow bias was observed across the entire slice package at
flow velocities above 3.2 cm/s for through-plane flow data
(Figure 4C), whereas in-plane flow data were effectively ac-
quired in steady-state at 0.6 relative to the FOV for flow veloc-
ities up to 30 cm/s (9.5 mL/s) (Figure 4D). With increasing flip
angle above 10°, the extent of in-flow bias was reduced. Corre-
spondingly, Figure 5 confirms improved, yet underestimated,
magnitude-derived AIF estimation using higher flip angle ac-
quisitions (20o and 30° for through-plane flow; 20o for in-plane
flow at flow rates of 5 and 7.5 mL/s).

Magnitude-Derived AIF: Correction Using VFA-T1. Figure 6
confirms that in-flow and RF-related biases on the 3D-FLASH
magnitude signal are encoded in VFA-T1 for through-plane
measurements. Under no-flow conditions, axial VFA-T1 was
uniform within 10% across 40% of the 12-cm slice package, and
reduced sharply towards zero outside of the plateau region of the
RF pulse profile. In comparison, coronal VFA-T1 was uniform
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within 10% over 60% of the 19.2-cm FOV, and then reduced
gradually, reflecting the RF inhomogeneity of the body transmit
coil. Through-plane flow shifted the VFA-T1 profile in the di-
rection of flow at increasing velocities, yet in-plane flow intro-
duced only minor deviations to the VFA-T1 profile. Figure 7
confirms considerable improved, yet underestimated, AIFMAGN

accuracy compared to AIFCT by using velocity-matched VFA-T1
measurements for signal-to-concentration conversion.

Phase-Derived AIF: Velocity and Concentration Effects.
Figure 8A compares AIFPHA and AIFCT within a central slice
across varying Gd-DTPA concentrations (0.5 to 10 mM) for
through-plane flow at a fixed input flow rate of 5 mL/s. After

Figure 3. Static experiment re-
sults: Inversion-recovery signal as
a function of inversion time for
pure water and the 15% glycer-
ol/water mixture (A). T1 and con-
centration data pairs used for T1
relaxivity calculations (B). Magni-
tude-derived concentration esti-
mates against truth for flip angles
of 10°, 20°, and 30° (C). Phase-
derived concentration estimates
against truth for flip angles of 10°
and 30°, with and without back-
ground phase correction (D).

Figure 4. 3D FLASH signal profiles at varying flip angles and flow rates, corresponding to the range of velocities in the
phantom input and 2 output tubes without Gd-DTPA for through-plane and in-plane orientations.
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Figure 5. Magnitude and computed tomography (CT)-derived AIFs acquired at 10 mM peak Gd-DTPA concentration
acquired for in-plane and through-plane flow orientations at multiple flip angles and 2 flow velocities.

Figure 6. VFA-T1 measured at flow rates ranging from 0 to 7.5 mL/s. VFA-T1 accelerated by through-plane flow across
the 12-cm slice profile in the axial orientation (A). VFA-T1 accelerated by in-plane flow across the 19.2 cm field of view
(FOV) at zero flow in the coronal orientation (B).
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background phase correction, the phase measurement tracked
AIFCT at Gd-DTPA concentrations above 1.6 mM, corresponding
to phantom input and phantom output 1 tubes for input peak
bolus �2 mM; yet, deviations were apparent in all phantom
output 2 measurements and in all 1 mM peak bolus experi-
ments. Figure 8B compares the same AIFs across varying
input flow rates (3–7.5 mL/s) at a fixed input concentration of
10 mM. Under these conditions, AIFPHA again tracked AIFCT

accurately.
Phase- and Magnitude-Derived AIFs: Comparison to CT.

Pearson correlation analysis presented in Figure 9 reported the
following trends: (A) bias in AIFMAGN increased with Gd-DTPA
concentration and reduced with flip angle; (B) T1 correction
improved the AIFMAGN measurement, but the 95% limits of
agreement were prohibitively broad; and (C) phase-corrected
AIFPHA tracked AIFCT. Difference analysis, summarized in
Table 2, reported equivalence of AIFPHA with AIFCT within 1 mM
for both peak concentration and within 20 mM*s AUC across all
tested conditions, and that AIFMAGN measurements approached
equivalence with AIFCT only at concentrations below 2 mM.

Phase- and Magnitude-Derived AIFs: Spatial Heterogeneity.
For the through-plane flow, AIFPHA reported mean and standard
deviation values of 9.6 	 0.5 mM for peak concentration and
28 	 7 mM*s for AUC, across the middle 60% package of slices.
For in-plane flow, AIFPHA reported mean and standard deviation
values of 9.2 	 1 mM for peak concentration and 27 	 14 mM*s
for AUC, across the central 60% of the FOV. In comparison,
T1-corrected AIFMAGN using flip angles of 20° and 30° reported

4.0 	 0.3 mM (through-plane) and 7 	 2 mM (in-plane) for peak
concentration, and 13 	 1 mM*s (through-plane) and 20 	
4 mM*s (in-plane) for AUC.

DISCUSSION
In this study a multimodality flow phantom was used to com-
pare the AIFs derived from 3D-FLASH magnitude and phase
signals, against the gold standard DCE-CT under similar condi-
tions (including use of Gd-DTPA for CT investigation). Magni-
tude signal-derived AIF is sensitive to imaging orientation, flip
angle, and in-flow effects, as demonstrated by prior authors. We
show that implementation of position and velocity-matched T1
measurements can improve the magnitude signal-derived AIF
measurement, yet equivalence to CT was noted only at peak
Gd-DTPA concentrations to 2.5 mM. In comparison, phase-
derived AIF showed equivalence to CT within 1 mM across the
range of tested conditions, plus robustness to imaging orienta-
tion, flip angle, and in-flow effects. However, the phase AIF
overshot the CT AIF for low concentrations.

Magnitude Signal-Derived AIF Measurements
Conversion of the magnitude signal to concentration using the
standard FLASH signal equation leaves the AIFMAGN measure-
ment prone to a number of biases. Saturation of the nonlinear
FLASH signal owing to T1 and T2* properties of gadolinium is a
known problem (29). In addition, the magnetic susceptibility

Figure 7. Accuracy in calculation of AIFMAGN is improved using velocity-matched VFA-T1 at higher flow rates and Gd-
DTPA concentrations. AIFMAGN is compared to AIFCT in a central slice at set peak concentration of 10 mM for through-
plane flow at flow rates of (upper) 3, (middle) 5, and (lower) 7.5 mL/s for all 3 flow tubes (left—phantom input, mid-
dle—phantom output 1, right—phantom output 2).
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offset at peak bolus concentration may introduce a mis-regis-
tration artifact (18).

This research investigated RF and inflow biases to the 3D-
FLASH magnitude signal, and it showed dramatic underestima-
tion of AIFMAGN metrics (28). RF and inflow biases were partic-
ularly severe for through-plane flow compared to in-plane flow,
consistent with Garpenbring et al. (10). Inflow effects were

partially compensated by incorporation of flow and position-
matched VFA-T1 measurements into equation (1). The T1 cor-
rection is intuitive because the rate of inflow from outside of the
imaging volume is captured as an acceleration of R1 (26). How-
ever, even with this correction, our AIFMAGN measurements were
significantly different from AIFCT except at peak Gd-DTPA con-
centrations �2.5 mM. Korporaal et al. also presented with a

Figure 8. AIFPHA compared to AIFMAGN at a flip angle of 30° and AIFCT for: (A) peak concentrations of 10 mM at in-
creasing flow rates and for (B) 5 mL/s through-plane flow rate with increasing peak Gd-DTPA concentrations.
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considerably underestimated AIFMAGN compared to AIFPHA and
AIFCT targeting the femoral artery of patients with prostate
cancer (17).

A key issue for the current multimodal phantom design is
the need for a higher T1 relaxivity glycerol/water mixture to
sustain CompuFlow pump performance. A peristaltic pump
would convect water instead, at the cost of reproducibility in
performance because of residual pulsatility, deviation from ex-
pected flow under high downstream pressure, and tube stretch
over time. At the measured T1 relaxivity of 7.5 1/mM*s, the MR
magnitude signal to Gd-DTPA concentration conversion satu-
rates at lower concentrations than would be expected for
Gd-DTPA within saline or plasma (T1 relaxivity, �5.0 1/mM*s).
This saturation is exacerbated at lower flip angles (eg, saturation
of 10° flip angle data at �2.5 mM in Figure 3C).

Dynamic measurement analysis at high Gd-DTPA concen-
trations can also be compromised by T2* relaxation, because T2*
relaxation times of the 15% glycerol/water mixture appear to be
well within an order of magnitude of the TE at concentrations
above 5 mM. Our image processing assumed negligible T2*
relaxation, in part because experimental TE values are generally
short relative to T2*, but it was also infeasible to measure T2* at
each Gd-DTPA concentration during the dynamic experiment.
Schabel et al. published a nonlinear concentration-independent
solution to the dynamic analysis problem, but logic and accurate
knowledge of T2* are necessary for selection of the correct
concentration following saturation (28). Sufficient signal-to-
noise must also exist for differentiation between concentrations,
and the dynamic range of the signal across concentrations
reduces with flip angle.

Another likely issue affecting the 3D-FLASH magnitude
signal during dynamic experiments is its transient nature. At
high flow rates, the magnetization may be exposed to an insuf-
ficient number of RF pulses to achieve steady-state condition,
which is further compounded by spatially varying RF ampli-
tudes. At low flow rates for through-plane flow, the magnetiza-
tion may also be exposed to spatially varying RF amplitude
along the shoulder region of the RF pulse slice profile. Conse-
quently, some groups advocate AIFMAGN measurement in ROI
locations, where the steady-state condition is better satisfied
(11, 21). Use of higher flip angles also improves AIFMAGN ro-
bustness by accelerating the transition to steady state (25).

One may also expect better comparative performance at
higher flip angles because of improved 3D-FLASH signal linear-
ity with Gd-DTPA concentration, consistent with our results in
Figure 2 and the published comparative measurements from
Cron et al. (20). However, the improved signal linearity comes at
a price of SNR and specific absorption ratio, factors which can
prohibit implementation of high spatial resolution and high
temporal resolution brain protocols with considerable coverage
(eg, 1.5 � 1.5 � 3 mm spatial resolution, 6-second temporal
resolution, 12 cm of through-plane coverage).

Phase-Signal-Derived AIF Measurements
The phase of the MR signal provides a mechanism for AIF
quantification based on the magnetic susceptibility of Gd-
DTPA. Our findings show that AIFPHA peak concentration mea-
surements are equivalent within 1 mM to gold standard AIFCT to
a concentration of 10 mM, which covers the clinically relevant
concentration range for AIF measurement (25). The AIFPHA was

Figure 9. Pearson correlation results for AIFMAGN and AIFPHA compared to AIFCT, for (A) peak concentration, and (B)
AUC measurements within a central slice. The different shapes represent the 3 data types evaluated, pooled across ve-
locities and concentrations for through-plane flow at flip angles of 20 (filled symbols, 16 runs, 48 measurements in input
and output tubes) and 30° (open symbols, 7 runs, 21 measurements in input and output tubes).
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also spatially robust in both in-plane and through-plane flow
orientations, and to flow velocity and flip angle. This improved
and more robust performance is consistent with the results from
other groups. Korporaal et al. compared AIFMAGN, AIFPHA, and
AIFCT, targeting the femoral artery in patients with prostate
cancer (17). Cron et al. favorably compared AIFPHA to AIFMAGN

in the femoral artery, but without measurement of vascular T1
or AIFCT validation (20). The same group has also applied phase
imaging to calculate the venous input function in the superior
sagittal sinus (30).

A limiting factor for the phase AIF measurement is precision
at low Gd-DTPA concentrations, because the phase shift is small
and imprecisely measured. Gd-DPTA increases the SNR in T1-
weighted magnitude images, and phase noise varies inversely
with the SNR in magnitude images (31). For this reason, the
analysis of data presented in experiment 6 considers only the
middle 60% of the imaging slices.

A number of factors can further impact the use of AIFPHA in
the clinical setting. First, 3D-FLASH phase reconstruction may
not be accessible on clinical MRI systems in the absence of a
research license or key. Second, vessel selection for AIFPHA

measurements may be limited to large vessels (eg, femoral ar-
tery, sagittal sinus, internal carotid artery) owing to the need for
sufficient vessel diameter to reduce partial volume effects, and
the increasing complexity of modeling of magnetic susceptibil-
ity effects when vessel orientation and shape diverges from
that of a cylinder aligned in parallel with B0 (22). Finally, phase
wrap during bolus passage requires automated postprocessing,

or manual correction by modulo 360° shifts in the phase image
(32, 33).

A need for background phase correction is a complication
of the AIFPHA measurement. Our flow phantom experiments
used a single control tube satisfactorily; yet, the phase signal
calibration was stabilized against off-resonance effects when
the Gd-DTPA-doped sample tube was surrounded with a
hexagonal array of control tubes. Residual static field inho-
mogeneity will also exist across the brain in vivo, and within
the sagittal sinus itself (34), which may complicate selection
of an ROI for background phase correction in vivo. Our own
experiences (unpublished) also suggest that the sagittal sinus
AIFPHA measurement is improved at lower flip angles for
reasons that require further investigation and yet may sug-
gest a combination of off-resonance and RF heating effects.
However, any RF heating effects should be apparent in the
brain parenchyma but not in the sinus owing to convection.
Alternatively, field camera technology can capture the tem-
poral and spatial history of resonance frequency changes
during phase-sensitive acquisitions (35, 36). Also, the fat
resonance provides a temperature-insensitive phase reference
that should enable tracking of instrumentation-related reso-
nance frequency changes (37).

Clinical Relevance
The value of individualized patient AIF acquisition is not yet
fully understood. Port et al. showed that in 23% of patients, the
individual’s AIF differs from the population average by �50%

Table 2. 95% Limits of Agreement (LoA) for Peak Concentration and AUC Measurements Defined from
Bland–Altman Difference Analysis Between MRI- and CT-derived AIF

Data Type
Data Range

(mM)
Peak Concentration

(mM)
AUC

(mM*s)

AIFPHA, FA 20° 0–10 0.1 	 0.7 0.6 	 37.0

AIFPHA, FA 30° 0–10 �0.1 	 �0.9 3.6 	 43.6

AIFPHA, FA 20° 0–5 0.3 	 0.4 3.4 	 27.3

AIFPHA, FA 30° 0–5 0.1 	 0.4 2.6 	 32.6

AIFPHA, FA 20° 0–2 0.3 	 0.4 5.9 	 27.3

AIFPHA, FA 30° 0–2 0.2 	 0.4 �3.8 	 20.3

Uncorrected AIFMAGN, FA 20° 0–10 �2.8 	 6.2 �52.5 	 85.9

Uncorrected AIFMAGN, FA 30° 0–10 �1.9 	 4.9 �35.4 	 64.7

Uncorrected AIFMAGN, FA 20° 0–5 �0.9 	 2.4 �15.5 	 34.7

Uncorrected AIFMAGN, FA 30° 0–5 �0.6 	 1.6 �10.7 	 24.1

Uncorrected AIFMAGN, FA 20° 0–2 �0.4 	 2.4 �6.8 	 34.7

Uncorrected AIFMAGN, FA 30° 0–2 �0.2 	 0.5 �4.7 	 8.2

T1-corrected AIFMAGN, FA 20° 0–10 �1.4 	 4.3 �23.4 	 58.4

T1-corrected AIFMAGN, FA 30° 0–10 �1.2 	 2.8 �23.3 	 44.6

T1-corrected AIFMAGN, FA 20° 0–5 �0.4 	 1.7 �6.7 	 23.9

T1-corrected AIFMAGN, FA 30° 0–5 �0.3 	 0.8 �6.6 	 19.6

T1-corrected AIFMAGN, FA 20° 0–2 �0.1 	 1.7 �0.8 	 23.9

T1-corrected AIFMAGN, FA 30° 0–2 �0.1 	 0.2 0.6 	 37.0

The table entries report the 95% LoA for each parameter as the average difference 	 1.96 standard deviation of the difference across variable
concentrations and flow rates. The statistical analyses are repeated across 3 ranges of input tube concentrations.
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(38), and it is possible that the use of population-average AIFs
may limit our ability to meaningfully interpret DCE-MRI find-
ings, and this variability may contribute to the high inconsis-
tency in permeability measures reported in prior DCE-MRI stud-
ies. Ashton et al. showed a 70% reduction of visit-to-visit
coefficient of variation in permeability parameters using indi-
vidual compared with population AIFs (39). However, several
publications have shown equivalence in pharmacokinetic out-
put parameters when DCE-MRI data are analyzed using popu-
lation average or individualized measurements (13, 40). These
findings may reflect on-going challenges to measure individual
AIF accurately. This study shows that AIFPHA could provide a
feasible supplemental method for individual AIF acquisition
with greater accuracy and robustness such that this approach
may improve the consistency in the results of future DCE-MRI
studies.

The technical requirements for a dynamic MRI phantom for
quality assurance testing are currently not well understood.
However, recognizing that site and system factors that compro-
mise shim performance and temperature regulation of hardware

components may compromise phase-based AIF evaluation
within clinical trials, the roles of a flow phantom may include to
measure and consider differences across sites and scanners
when interpreting data, as well as to monitor system perfor-
mance. It is important to note that factors affecting phase may
not be captured by standardized QA protocols that focus on
magnitude signal metrics. The phantom could also be modified
to account for partial voluming, and vessels of smaller calibers.

In summary, we use a controlled multimodal flow phantom
that is validated against AIFCT to show that AIFPHA tracks peak
Gd-DTPA concentration within 1 mM, and AUC within 44 mM*s,
over a range of tested conditions. The robustness of the AIFPHA

measurements was also apparent across the imaged volume. In
comparison, AIFMAGN measurements were highly sensitive to im-
aging plane orientation, flip angle selection, and flow velocity, and
equivalent performance to AIFCT was shown at only Gd-DTPA
concentrations �2 mM. Improving the accuracy of the AIF should
reduce variability in pharmacokinetic output parameters, and
thereby, it should increase the potential for meaningful interpreta-
tion of the changes in vascular permeability using DCE-MRI.
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We aimed to determine whether multiresolution fractal analysis of voxel-based dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI) parametric maps can provide early prediction of breast cancer
response to neoadjuvant chemotherapy (NACT). In total, 55 patients underwent 4 DCE-MRI examinations
before, during, and after NACT. The shutter-speed model was used to analyze the DCE-MRI data and gener-
ate parametric maps within the tumor region of interest. The proposed multiresolution fractal method and the
more conventional methods of single-resolution fractal, gray-level co-occurrence matrix, and run-length matrix
were used to extract features from the parametric maps. Only the data obtained before and after the first
NACT cycle were used to evaluate early prediction of response. With a training (N � 40) and testing (N �
15) data set, support vector machine was used to assess the predictive abilities of the features in classifica-
tion of pathologic complete response versus non-pathologic complete response. Generally the multiresolution
fractal features from individual maps and the concatenated features from all parametric maps showed better
predictive performances than conventional features, with receiver operating curve area under the curve
(AUC) values of 0.91 (all parameters) and 0.80 (Ktrans), in the training and testing sets, respectively. The dif-
ferences in AUC were statistically significant (P � .05) for several parametric maps. Thus, multiresolution
analysis that decomposes the texture at various spatial-frequency scales may more accurately capture
changes in tumor vascular heterogeneity as measured by DCE-MRI, and therefore provide better early pre-
diction of NACT response.

INTRODUCTION
Breast cancer is the second leading cause of cancer death among
all cancers occurring in American women (1). The survival rate
and prognosis of a patient with breast cancer is dependent on
the stage of cancer at diagnosis. Locally advanced breast cancers
(generally with tumor size �2 cm) are often treated with neo-
adjuvant chemotherapy (NACT) before surgery to reduce the
tumor size for breast-conserving surgery (2, 3). A pathological
complete response (pCR) to NACT is considered a surrogate
marker for overall and long-term disease-free survival (4). How-
ever, the pCR rate is only 6%–45% depending on breast cancer
subtypes and treatment regimen (5, 6, 7, 8). It is therefore
important to identify the nonresponders at an early stage so that
their treatment regimen can be modified, sparing them the long-
and short-term toxicities from ineffective chemotherapies. Cur-

rently, in standard of care, the response to NACT is evaluated
based on the histological examination of a surgical specimen
taken after the completion of NACT. Noninvasive or minimally
invasive methods that can predict therapy response at the early
stages of NACT can potentially play an important role in the
emerging era of precision medicine to help guide regimen de-
escalation/alteration in NACT treatment of breast cancer (9).

A significant change in the microenvironment of the tumor,
such as perfusion/permeability and metabolism, usually pre-
cedes a reduction in tumor size as response to chemotherapy
(10-13). As a noninvasive imaging method for assessment
of microvascular perfusion/permeability, dynamic contrast-en-
hanced magnetic resonance imaging (DCE-MRI) is increasingly
used in research and early-phase clinical trial settings to predict
and evaluate cancer response to treatment (9, 10). Several stud-
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ies (9, 14-22) have shown that changes in quantitative param-
eters estimated from pharmacokinetic modeling of DCR-MRI
data can be useful markers for early prediction of breast cancer
response to NACT.

When compared to normal tissue vasculature, tumor vas-
culature exhibits greater spatiotemporal heterogeneity. The het-
erogeneity of the tumor vasculature reflects the tumor stage and
the disease progression (23). The aforementioned DCE-MRI
studies (9, 14-22) generally reported changes in mean parameter
values of the entire breast tumor, masking the potential changes
in spatial heterogeneity of the microvasculature in response to
NACT. Image texture features that can capture the heterogeneity
of tumor vasculature from DCE-MRI images or voxel-based
parametric maps could be highly useful in assessing tumor
response to therapy. Several texture analysis methods such as
gray-level co-occurrence matrix (GLCM) and gray-level run
length matrix (RLM) have been frequently used in DCE-MRI
analysis (24, 25). They were initially used on DCE-MRI images
directly. Teruel et al. (24) analyzed T1-weighted DCE-MRI im-
ages using GLCM features to predict breast cancer response to
NACT. They extracted 16 textural features at each time point of
a DCE-MRI acquisition, and the most significant feature yielded
a receiver operating curve (ROC) area under the curve (AUC) of
0.77 for prediction of pCR versus stable disease. Similarly,
Golden et al. (25) used GLCM features from pre- and post-NACT
2-dimensional (2D) DCE image slices to evaluate NACT re-
sponse. The pre-NACT features were able to predict pCR with an
AUC of 0.68. Although the post-NACT features showed more
favorable performances in predicting pCR, these were obtained
after the completion of NACT and were not useful for early
prediction of pCR. Several studies have performed the same
texture analysis on voxel-based maps of pharmacokinetic pa-
rameters estimated from pharmacokinetic modeling of DCE-MRI
data. Banerjee et al. (26) extracted a combination of intensity,
texture, shape, and edge-based features from 2D maps of phar-
macokinetic parameters before and after NACT to assess treat-
ment response. Their best model obtained an AUC of 0.83, using
a concatenation of Riesz and first-order statistical features.
However, the use of only pre- and post-NACT data limits the
utility of this model for early prediction of NACT response. In
our previous study, we (27) have extracted multiple statistical
texture features from 3-dimensional (3D) pharmacokinetic para-
metric maps before and after 1 cycle of NACT, and found that 3D
GLCM features were most effective for early prediction of NACT
response through correlation with index values of residual can-
cer burden (RCB) using a regression model.

In all the analysis methods described above, texture has
been studied on a statistical level, by analyzing the spatial
distribution of the gray-level values. Textures can also be char-
acterized by fractals, which describe irregular structures that
show self-similarity at various scales. Fractal-based texture
analysis correlates texture heterogeneity to fractal dimension
(FD), which is a mathematical descriptor of a structure’s geo-
metrical complexity, based on the concept of spatial pattern
self-similarity. Rose et al. (28) showed that fractal analysis could
be used to quantify spatial heterogeneity in DCE-MRI paramet-
ric maps and differentiate between low- and high-grade tumors.

Several other studies (29, 30) have used fractal analysis of breast
DCE-MRI images to classify benign versus malignant tumors.

Another important aspect while considering textures is the
scale. It has been shown that human visual system processes
information in a multiscale approach (different cells in the
visual cortex respond to different frequencies and orientations)
(31). Owing to the highly heterogeneous nature of the tumor
vasculature, analyzing images at a single resolution may not be
able to capture the entire complexity of the tumor vasculature. A
multiresolution approach can decompose an image into differ-
ent levels of resolution, giving an opportunity to extract infor-
mative features at each level. Lower resolution levels best rep-
resent large structures or high contrast, while higher resolutions
describe small size or low-contrast objects (32). Multiresolution
analysis gives the advantage of analyzing both small- and
large-object characteristics in a single image at several resolu-
tions and therefore may be better suited to describe the highly
heterogeneous tumor vasculature structure. Multiresolution
methods, such as the wavelet analysis, transform images into a
representation containing both frequency and spatial informa-
tion (33). The mean and entropy values extracted from the
subimages resulting from wavelet decomposition of DCE-MRI
images have been used to classify malignant and benign breast
tumors (34, 35). Braman et al. (36) used Gabor wavelet, co-
occurrence measures and energy measures to generate 1980
features from DCE images to predict breast cancer response to
NACT. A feature selection step was carried out to select top 10
features for final classification. Al-Kadi et al. combined wavelet
analysis with fractal analysis and used multiresolution fractal
descriptors on ultrasonography images to characterize the tis-
sue and showed that tumor heterogeneity described by this
feature improved prediction of response to therapy and dis-
ease characterization (37). To the best of our knowledge,
fractal analysis at multiple resolutions has not been con-
ducted on breast MRI images for prediction of response to
NACT. In this preliminary study, we evaluated the potential of
multiresolution fractal analysis of volumetric DCE-MRI phar-
macokinetic parametric maps for early prediction of breast
cancer response to NACT, and compared it with the conven-
tional methods of GLCM, RLM and single-resolution fractal
analysis.

MATERIALS AND METHODS
Patient Cohort and Study Schema
In total, 55 patients diagnosed with locally advanced breast
cancer received standard-of-care NACT. They were consented to
participate in a longitudinal research DCE-MRI study approved
by the local IRB. The NACT regimen typically consists of 4 cycles
of doxorubicin–cyclophosphamide administration every 2 weeks
followed by 4 cycles of taxane every 2 weeks, or 6 cycles of the
combination of all 3 drugs every 3 weeks (9, 27). The targeted
agent trastuzumab was added to the regimen for tumors with
positive HER2 (human epidermal growth factor receptor 2) re-
ceptor status. A full NACT course therefore would normally last
4–5 months.

In total, 4 DCE-MRI examinations were performed before,
during, and after the NACT course: pre-NACT (visit-1), after the
first NACT cycle (visit-2), at NACT midpoint (visit-3; usually
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after 3 or 4 cycles of NACT, or before the change of NACT
agents), and after the completion of NACT but before surgery
(visit-4). Except for the visit-1 examination, all examinations
were performed at least a week after administering the latest
cycle of NACT agents to allow time for the drugs to take effect.
Pathological analysis of the post-NACT surgical specimens was
performed to determine the status of pathologic response to
NACT. The values of cross-sectional size of the tumor in 2D,
tumor cell density, number of lymph nodes involved, and the
greatest dimension in the largest involved node were measured
and used in the equation given by Symmans et al. (38) to
compute the RCB. A pCR is defined as the absence of residual
invasive tumor, indicated by RCB � 0. Non-pCR includes all
cases with RCB � 0.

In this preliminary study, only data from the visit-1 and
visit-2 DCE-MRI studies were used for image feature analysis
and correlations with response endpoint of pCR versus non-pCR
to assess the capability for early prediction of breast cancer
response to NACT.

DCE-MRI Data Acquisition and Analysis
DCE-MRI data acquisition was performed using a Siemens 3 T
system (Siemens, Erlangen, Germany) with the body coil as the
transmitter and a 4-channel bilateral phased-array breast coil as
the receiver. During each MRI session, following pilot scans and
precontrast axial T1- and T2-weighted MRI acquisitions, axial
bilateral DCE-MRI images with full breast coverage were ac-
quired using a 3D gradient echo-based Time-resolved angiog-
raphy With Stochastic Trajectories (TWIST) sequence (9). DCE-
MRI acquisition parameters included the following: flip angle �
10°, echo time/repetition time � 2.9/6.2 milliseconds, parallel
imaging acceleration factor of 2, field of view � 30 to 34 cm,

in-plane matrix size � 320 � 320, and slice thickness � 1.4
mm. About 32–34 image volume sets of 104–128 slices each
were acquired over a period of about 10 minutes with a temporal
resolution of 14–20 seconds. The contrast agent gadolinium
(HP-DO3A) was injected intravenously (0.1 mmol/kg at 2 mL/s)
using a programmable power injector after acquisition of 2
baseline image volumes, followed by a 20-mL saline flush at the
same injection rate.

Three experienced breast radiologists manually delineated
the tumor region of interest (ROI) on postcontrast (90–120
seconds after the injection of the contrast agent) DCE-MRI
image slices that contained the contrast-enhanced tumor. To
minimize interobserver variability in tumor ROI drawing for the
same patient, 1 radiologist drew ROIs for the entire longitudinal
study of a single patient. With only 2 patients having multifocal
disease, ROIs were drawn for the primary breast tumors only.
Figure 1 shows an example of postcontrast DCE images from a
pCR patient, drawn tumor ROIs, and ROI mean signal intensity
ratio time-courses at visit-1 and visit-2. For pharmacokinetic
analysis, precontrast tissue T1 value, T10, was determined using
a proton density method (9) by acquiring proton density images
just before DCE-MRI that were spatially coregistered with the
DCE images. The DCE time-course data from the voxels within
the tumor ROI was fitted with a 2-compartment—3-parameter
shutter-speed model (9, 39), using a population-averaged arte-
rial input function from the axillary artery (9). This pharmaco-
kinetic analysis yielded the following 4 parameters: Ktrans

(volume transfer rate constant), ve (volume fraction of extravas-
cular and extracellular space), kep (�Ktrans/ve, efflux rate con-
stant), and �i (mean intracellular water lifetime). Figure 2 shows
examples of voxel-based parametric maps of these 4 parameters

0 10 20 30
DCE time frame

0.8

1

1.2

1.4

1.6

1.8

2
S

/S
0

0 10 20 30
DCE time frame

0.8

1

1.2

1.4

1.6

1.8

2

S
/S

0

Visit - 1 Visit - 2 

(A) (C) 

(B) (D) 

Figure 1. The visit-1 and visit-2
postcontrast dynamic contrast-
enhanced magnetic resonance
imaging (DCE-MRI) image slice (A
and C, respectively) through the
center of the primary breast tumor
of a pathologic complete re-
sponse (pCR) patient [35 years,
grade 2 invasive ductal carci-
noma, 2.9 cm in the longest di-
ameter at visit-1, ER (estrogen re-
ceptor) �, PR (progesterone re-
ceptor) �, HER2 � receptor
status]. The tumor ROI boundaries
are shown in yellow. The time
courses of mean signal intensity
ratio, S/S0, in the tumor ROI are
shown in B and D for visit-1 and
visit-2, respectively. S0: signal
intensity at baseline before con-
trast injection.
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for a pCR (Figure 2A) and a non-pCR (Figure 2B) tumor at visit-1
and visit-2. The parametric maps from the visit-1 and visit-2
studies of all patients were subjected to multiresolution fractal
analysis described in detail below, as well as the traditional
texture analysis methods of GLCM, RLM and single-resolution
fractal analysis.

Multiresolution Fractal Analysis
Each of the parametric maps was decomposed into a multireso-
lution representation using wavelet analysis, and subsequently,
FDs were calculated at each resolution level.

Wavelet Analysis for Multiresolution Decomposition. Wavelet
analysis is used to decompose the parametric maps into a set of
frequency sub-bands based on small basis functions of varying
frequency and limited time duration called wavelets, enabling
the characterization of texture at appropriate frequency levels.
The wavelet is scaled and translated to cover the time-frequency
domain. The discrete wavelet transform for a function f(x, y, z)
of size (M, N, K) can be represented as:
W�(j0, m, n, k)
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where W�(j0, m, n, k) is the approximation of f(x, y, z) at scale j0,
W�

i �j, m, n, k� coefficients define the horizontal (H), vertical (V,
and diagonal (D) details for scales j � j0, � is the scaling
function, and � is the wavelet function (40). The wavelet trans-
form depends mainly on the scaling (�) and wavelet (�) func-
tions, but it is not necessary to define their explicit form. Instead, a
low-pass and high-pass filter that characterize the interaction of
these functions are used. The process of decomposing the paramet-
ric maps can be viewed as passing them through a series of low-
pass and high-pass filters and down-sampling successively. The 3D
volume is first filtered along the columns resulting in a low-pass-
filtered subvolume and a high-pass-filtered subvolume. These re-
sulting subvolumes are further filtered along rows and slices re-
sulting in 8 decomposed subvolumes. We have used Daubechies
wavelets, as these filters have been designed to account for signal
discontinuities and self-similarity, which make them the most suit-
able wavelet for describing signals exhibiting fractal patterns (41).
Unlike Haar wavelet, they use overlapping windows that help
capture changes in high frequency, and they also demonstrate

Figure 2. The visit-1 and visit-2 parametric maps of Ktrans, kep, ve, and �i of the tumor ROI on an image slice through
the center of the tumor: a 27-year-old pCR patient with a grade 3 invasive ductal carcinima (5.0 cm in the longest diam-
eter at visit-1) and ER �, PR �, HER2 � receptor status (A); a 45-year-old non-pCR patient with a grade 2 invasive
mammary carcinoma (11.9 cm in the longest diameter at visit-1) and ER �, PR �, HER2 � receptor status (B).
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better recognition of fine characteristic structures (40). One level of
decomposition results in 8 subvolumes. The FD for each of these
subvolumes is calculated.

Multiresolution Fractal Analysis. The FD is calculated based
on the power spectrum analysis of the 3D Fourier transforma-
tion of the subvolumes (42). The 3D discrete Fourier transform is
defined as:

F(x, y, z) � �
m�0

M�1

�
n�0

N�1

�
k�0

K�1

I(m, n, k)e
�j2��x
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�y

n

N
�z

k

K


(3)

where I(m, n, k) is the 3D volume of size (M, N, K) and x, y, and
z are the spatial frequencies. The power spectral density (P) is
estimated as:

P(x, y, z) � �F(x, y, z)�2 (4)
The frequency space is evenly divided into 12 zenith and 24

azimuth directions, and 30 points are uniformly sampled along
the radial component in each of these directions. The power
spectral density is plotted against sampled radial frequency in a
log-log plot. The slope � of a least-squares regression line of the
log-log plot is related to the FD as:

FD �
11 � �

2
(5)

In standard wavelet analysis, the energy of the subvolume is
used to guide further decomposition, but this value is highly
dependent on the intensity values of the subvolume. In this
work, instead of using energy, the subvolume with the highest
FD was selected for further decomposition.

Each parametric map was decomposed down to 4 levels, using
FD to guide the sub-band tree structure. Finally, we concate-
nated the highest and the lowest FD at each level of decompo-
sition to form a feature vector. Therefore, for each parametric
map an 8-dimensional feature vector is generated from multi-
resolution FD analysis.

Conventional Texture Feature Analysis
We compared the performance of multiresolution fractal anal-
ysis features with that of GLCM, RLM, and single-resolution
fractal analysis. GLCM is a second-order statistical method,
which estimates the joint probability P(i, j | d �), where 2 voxels
with intensity i and j are separated by distance d and direction �.
A GLCM matrix was constructed by averaging the matrices
obtained over 13 directional offsets at distance d � 1 (27).
Twelve Harlick features (43) were derived from this GLCM ma-
trix. RLM P(i, r | �) is defined as the number of pixels with
gray-level i and run-length r, for a given direction �. RLM was
computed by adding all possible run lengths in the 13 directions
of the 3D space and 13 statistical features were derived from this
matrix (44). Fractal analysis describes the roughness or smooth-
ness of the texture through the FD measure. Here, single-reso-
lution fractal analysis refers to the estimation of FD of the tumor
ROI from 3D parametric maps directly (39).

Evaluation of Predictive Performance for NACT
Response
For each of the features obtained from the GLCM, RLM, multi-
resolution, and single-resolution fractal analysis, the percentage
change in the feature values was calculated between the visit-1
and visit-2 DCE-MRI studies. These percentage changes were
given as input to support vector machine (45), a robust classifier,

to generate a predictive model for classification of pCR versus
non-pCR. The performances of the models were evaluated using
the ROC AUC, sensitivity and specificity analysis. Sensitivity
here refers to the proportion of pCRs correctly identified as pCRs,
while specificity refers to the proportion of non-pCRs correctly
identified as non-pCRs.

The support vector machine classification performance was
evaluated by calculating the average over 10 random partitions
of the data for training and testing. For each partition, pCRs and
non-pCRs were randomly divided into training and testing data
sets as described below. The mean and standard deviation of
AUC, sensitivity, and specificity values obtained over the 10
partitions of training and testing data sets are reported. The
predictive performance was assessed for the features extracted
from each of the 4 parametric maps as well as those constructed
by concatenating the texture features from all 4 parametric
maps of Ktrans, kep, ve, and �i, designated as “All.”

The ROC AUC values of the multiresolution fractal features
were compared with those of the conventional features by cal-
culating the critical ratio according to the Hanley and McNeil
formula (46). The statistical significance was set at P � .05.

RESULTS
Among the 55 patients in the study cohort, 14 achieved pCR to
NACT, while the other 41 patients were non-pCRs based on
pathological analysis of the surgical specimens. Table 1 shows
the clinicopathological characteristics of the pCR and non-pCR
groups. Nine pCRs/31 non-pCRs and 5 pCRs/10 non-pCRs were

Table 1. Clinicopathological Characteristics
of pCR and non-pCR Groups

pCR non-pCR

(n � 14) (n � 41)

Age at Diagnosis (years) 27–63 27–79

Tumor Type 14–IDC

34–IDC

3–ILC

4–IMC

Tumor Grade

1 1 4

2 7 16

3 6 21

Tumor Size in Longest Diameter (cm) 1.0–6.9 1.2–12.8

ER

Positive 2 24

Negative 12 17

PR

Positive 3 26

Negative 11 15

HER-2

Positive 12 25

Negative 2 16

Abbreviations: IDC, invasive ductal carcinoma; ILC, invasive lobular
carcinoma; IMC, invasive mammary carcinoma.
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selected randomly to form the training and testing sets, respec-
tively. Figure 3 shows the ROC AUC values for classification of
pCR versus non-pCR using the GLCM, RLM, single-resolution
fractal, and multiresolution fractal features from parametric
maps of different DCE-MRI parameters considered individually
and the concatenated feature from all 4 parametric maps. GLCM
and RLM features seemed to overfit on the training data, as they
had high training AUCs but low testing AUCs. For example, the
AUC values were 0.76 and 0.75 from the training Ktrans maps,
and 0.47 and 0.40 from the testing Ktrans maps for the GLCM and
RLM methods, respectively. Overall, the multiresolution fractal
features from each DCE-MRI parametric map and the concate-
nated features performed the best in prediction of pCR versus
non-pCR in both the training and testing data sets with AUC �
0.85, 0.86, 0.87, 0.86, 0.91 (for Ktrans, kep, ve, �i, and All, respec-
tively), and 0.80, 0.63, 0.74, 0.70, 0.78 for the training and
testing data sets, respectively. The only exception was from the
kep maps in the testing data sets, where the single-resolution
fractal analysis provided the highest AUC of 0.71 among the 4
feature analysis methods. Within the testing or training sets, the
predictive performances of multiresolution fractal features were
significantly better than the GLCM features from the Ktrans map
(AUC � 0.47, P � .022) in the testing set, RLM features from the
�i map (AUC � 0.71, P � .012) in the training set, RLM features
from the Ktrans (AUC � 0.40, P � .013), and “All” (AUC � 0.47,
P � .049) maps in the testing set, and single-resolution fractal
features from the ve (AUC � 0.71, P � .012) and �i (AUC � 0.67,
P � .037) maps in the training set.

We evaluated the specificities of the classification models at
2 levels of sensitivities for the testing data sets: 60% (3 out of 5

pCRs were classified correctly) and at 80% (4 out of 5 pCRs were
classified correctly), as shown in Table 2. At both sensitivity
levels, with a few exceptions, fractal features presented higher
specificities than the GLCM and RLM features, with the multi-

Table 2. Specificity Values [Mean (Standard
Deviation)] in the Testing Data Set for GLCM,
RLM, Single-Resolution Fractal, and
Multiresolution Fractal Methods With
Sensitivity Set at 60% and 80%

GLCM RLM

Single-
Resolution

Fractal

Multi-
Resolution

Fractal

Sensitivity � 60

Ktrans 49.3 (22.3) 34.7 (27.5) 84.0 (16.1) 89.3 (11.4)

kep 73.3 (9.4) 67.3 (17.9) 84.0 (7.2) 70.7 (23.3)

ve 64.0 (31.6) 82.0 (14.4) 75.3 (7.1) 80.7 (12.4)

�i 40.7 (28.4) 44.0 (21.6) 57.3 (27.6) 68.7 (25.0)

All 49.3 (21.6) 42.0 (18.1) 82.0 (15.7) 82.7 (17.0)

Sensitivity � 80

Ktrans 19.3 (16.2) 25.3 (14.7) 63.3 (25.4) 68.7 (13.7)

kep 49.3 (19.9) 45.3 (19.1) 55.3 (29.3) 49.3 (27.8)

ve 22.0 (30.0) 67.3 (19.7) 56.0 (20.7) 62.0 (17.2)

�i 18.0 (23.1) 30.0 (24.6) 47.3 (24.2) 62.0 (37.7)

All 32.0 (21.5) 28.7 (16.3) 62.0 (26.9) 62.0 (17.8)
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Figure 3. The ROC AUC values for classification of pCR from non-pCR patients in the training (A) and testing (B) data
sets using the GLCM (red), RLM (blue), single-resolution fractal (yellow), and multiresolution fractal (black) features ex-
tracted from the Ktrans, kep, ve, and �i parametric maps. The final column “All” represents the concatenated features from
all 4 parametric maps. The error bars represent the standard deviation obtained over the 10 different partitions of train
and test data. *: significant (P � .05) difference in AUC compared to that of multiresolution fractal features.
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resolution method generally outperforming the single-resolu-
tion method (except when they were applied to the kep map).

Figure 4 shows the ROC AUC values (for the training and
testing data sets) for each level of decomposition of the concat-
enated feature vectors obtained by combining multiresolution
fractal features extracted from the Ktrans, kep, ve, and �i maps.
The combination of features from all 4 levels and all 4 paramet-
ric maps is represented by the black bar “All.” It can be observed
that the first level of decomposition alone achieved a predictive
performance (AUC � 0.87 and 0.82 for the training and testing
sets, respectively) comparable to that of the combined features
from all levels (AUC � 0.91 and 0.78 for the training and testing
sets, respectively), while features from levels 2, 3, and 4 indi-
vidually had rather poor performances in the test set with
AUC � 0.57, 0.45, and 0.54, respectively.

DISCUSSION
This preliminary study shows that multiresolution fractal anal-
ysis has the potential to better capture the heterogeneity in the
breast tumor vasculature as measured by DCE-MRI, and the
extracted features from voxel-based DCE-MRI parametric maps
are good early predictors of breast cancer response to NACT. In
general, the concatenated features extracted from parametric
maps of all the DCE-MRI parameters provide the best predictive
performance. Multiresolution analysis filters out irrelevant fea-
tures and noise at different resolutions, rendering more empha-
sis on distinct features, and fractal analysis at each level appears
to be able to capture these distinct features. The GLCM and RLM

features reflect the overall correlation between adjacent voxels
in terms of second-order and higher-order statistical features,
respectively (27). For the small data set used in this study, the
generally higher AUC values from the multiresolution fractal
analysis when compared to GLCM and RLM methods suggest
that decomposing the texture may give further insights into
the heterogeneity of the tumor microvasculature shown on
DCE-MRI parametric maps and help capture the subtle varia-
tions in the texture which cannot be assessed by the single-
resolution approach. However, this observation needs to be
validated with a larger patient cohort. Consistent with the stud-
ies reporting mean parameter changes (9, 14-22), the results
from this study provide further proof that changes in vascular
perfusion/permeability represented by DCE-MRI imaging bio-
markers are important features in identifying responders and
nonresponders at the early stage of NACT.

On inspecting the AUC values from Figure 3, it can be
observed that single-resolution fractal features performed con-
sistently well in prediction of response for both the training and
testing sets, although not as well as the multiresolution ap-
proach. The higher AUCs for fractal-based features suggest that
they provide a richer representation of the heterogeneity in the
tumor when compared to GLCM and RLM methods. The low
dimensionality (d � 1) of single-resolution fractal feature is less
likely to cause overfitting for the small sample size of our data
set and therefore could lead to a good discriminative model. This
could be one of the reasons that contributed to its effectiveness.
On the other hand, in spite of increased dimensionality (d � 32),
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Figure 4. The receiver operating curve (ROC) area under curve (AUC) values for classification of pCR from non-pCR
patients in the training (A) and testing (B) data sets using concateneted feature vectors obtained by combining multireso-
lution fractal features extracted from the Ktrans, kep, ve and �i maps. The green, orange, teal, and magenta columns rep-
resent the first, second, third, and fourth levels of decompositions, respectively, while the black column corresponds to
the combination of features from all 4 levels. The error represents the standard deviation obtained over the 10 different
partitions of train and test data.
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multiresolution fractal features exhibited better predictive per-
formance, suggesting that analyzing heterogeneity at multiple
resolutions provides a more comprehensive measure of the tex-
ture and thus increases the discriminative power of the feature.
At each level of decomposition, the approximation coeffi-
cient [W� from equation (1)] represents the low-frequency
component, which characterizes the coarse structure of the
data, and the detail coefficients [W�

i from equation (2)] rep-
resent the high-frequency components, which capture the
discontinuities and singularities in the data. Therefore, com-
bination of features from different scales and frequencies
gives a richer representation of the overall underlying tex-
ture. The advantages of multiresolution fractals can be ex-
pected to be even more significant when the data set is large
enough to offset their high dimensionality.

The tumor heterogeneity appears to be captured well at the
first level of decomposition as shown by Figure 4. Each decom-
position level analyzes the signal at a particular band of fre-
quencies. Higher decomposition levels have better frequency
resolution. The first level of decomposition encompasses the
entire frequency band of the input data in its subvolumes.
Thereafter, we select the subvolume with the highest FD and
perform multiresolution fractal analysis on that sub-band alone.
By doing this we are effectively looking at finer frequency
resolutions of the selected sub-band frequencies alone. Con-
sidering features from these finer frequency resolutions in
isolation do not appear to have as much discriminative power
as the first level of decomposition, but combining the finer
frequency resolutions features with the features from first
level appears to enrich the representation and provide incre-
mental improvement.

As shown in Table 2 for the test data set, at fixed sensitivity,
the higher AUC values from the multiresolution fractal features
generally resulted in higher specificity values compared to those
from other features. It is important to have high sensitivities so
that most pCR patients will be correctly identified and con-
tinue with the original or de-escalated NACT regimen. At 80%

sensitivity, the �60% specificity (except for the kep features)
of the multiresolution fractal features implies that were this
method used in clinical care, more than half of the non-pCRs
would be correctly classified after the first NACT cycle, po-
tentially enabling alteration of treatment plans for these
nonresponders at the early stage of NACT to receive more
personalized care.

This study has several limitations. The first being the
small size of the data set used. The preliminary results ob-
tained need to be evaluated on a larger patient cohort. Also
due to the small size of the data set, dimensionality increase
in feature vectors impedes the performance of the classifier.
Larger data set can enable the choice of a richer feature vector
from different levels in the multiresolution fractal decompo-
sition, which might consistently outperform the other fea-
tures. Finally, the DCE-MRI parametric maps used for feature
analysis were obtained with the shutter-speed model, which
is not commonly used in pharmacokinetic analysis of DCE-
MRI data. In future studies, parametric maps obtained with
the widely used standard Tofts model (47, 48), which gener-
ates only the Ktrans

, ve, and kep parameters and thus results in
reduced dimensionality of the feature vector, will be used for
feature extractions and the results will be compared with
those presented here.

CONCLUSION
In this preliminary study, we have demonstrated that multireso-
lution fractal analysis of voxel-based DCE-MRI parametric maps
could be a promising tool for early prediction of breast cancer
response to NACT. The multiresolution fractal features generally
have better predictive performances than those extracted with
the more conventional methods of GLCM, RLM, and single-
resolution fractal analysis. Furthermore, compared to features
extracted from individual DCE-MRI parametric maps, the use of
concatenated features from all DCE-MRI parameters generally
further improves prediction of NACT response.
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Abbreviations: Arterial input function (AIF), concordance correlation coefficient (CCC),
confidence interval (CI), intra-class correlation coefficient (ICC), volume transfer rate constant
(Ktrans), efflux rate constant (kep), pre-contrast tissue longitudinal relaxation rate constant
(R10), shutter-speed model (SSM), mean intracellular water lifetime (�i), extravascular,
extracellular volume fraction (ve), within-subject coefficient of variation (wCV), dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI), contrast agent (CA), region of
interest (ROI)

This multicenter study evaluated the effect of variations in arterial input function (AIF) determination on phar-
macokinetic (PK) analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data using
the shutter-speed model (SSM). Data acquired from eleven prostate cancer patients were shared among nine
centers. Each center used a site-specific method to measure the individual AIF from each data set and submit-
ted the results to the managing center. These AIFs, their reference tissue-adjusted variants, and a literature
population-averaged AIF, were used by the managing center to perform SSM PK analysis to estimate Ktrans

(volume transfer rate constant), ve (extravascular, extracellular volume fraction), kep (efflux rate constant), and
�i (mean intracellular water lifetime). All other variables, including the definition of the tumor region of inter-
est and precontrast T1 values, were kept the same to evaluate parameter variations caused by variations in
only the AIF. Considerable PK parameter variations were observed with within-subject coefficient of variation
(wCV) values of 0.58, 0.27, 0.42, and 0.24 for Ktrans, ve, kep, and �i, respectively, using the unadjusted
AIFs. Use of the reference tissue-adjusted AIFs reduced variations in Ktrans and ve (wCV � 0.50 and 0.10,
respectively), but had smaller effects on kep and �i (wCV � 0.39 and 0.22, respectively). kep is less sensitive
to AIF variation than Ktrans, suggesting it may be a more robust imaging biomarker of prostate microvascula-
ture. With low sensitivity to AIF uncertainty, the SSM-unique �i parameter may have advantages over the
conventional PK parameters in a longitudinal study.

INTRODUCTION
As a noninvasive method to measure tissue microvascular per-
fusion and permeability, dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI) is increasingly used in oncologic
imaging for cancer diagnosis and therapeutic monitoring (1, 2).

DCE-MRI generally involves the serial acquisition of heavily
T1-weighted images before, during, and after the injection of a
paramagnetic contrast agent (CA). Quantitative pharmacoki-
netic (PK) modeling of DCE-MRI time-course data allows esti-
mation of imaging biomarkers, such as Ktrans (volume transfer
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rate constant) and ve (extravascular, extracellular volume frac-
tion), that are direct measures of tissue biology and in principle
independent of data acquisition details and MRI scanner plat-
form (3). However, the accuracy and precision of the derived PK
parameters can be largely affected by the selection of the PK
model for data fitting (3-5), errors in quantification of the native
tissue T1 value (3, 4, 6), and variance in determination of arterial
input function (AIF; the time-course of CA plasma concentra-
tion) (3, 4, 7-9). These challenges lead to substantial variations
in the reported PK parameter values for the same disease and are
fundamental obstacles in translating quantitative DCE-MRI into
multicenter clinical trials and general clinical practice. There-
fore, it is important for the DCE-MRI community to investigate
the impact of variations/errors in different steps of PK data
analysis on the estimated parameter values, establish ways to
reduce parameter variance, and identify those parameters that
are less sensitive to certain variations in data analysis and,
therefore, the more robust imaging biomarkers for multicenter
studies.

Quantification of the AIF is generally required in most PK
models to fit the DCE-MRI time-course data from the tissue of
interest. There are many approaches to determine the AIF, in-
cluding blinded estimation (10), reference tissue (11-13), empir-
ically derived population-averaged AIF (14), and direct mea-
surement of AIF from a feeding artery if the artery is clearly
visible within the image field of view (9). In a previous multi-
center data analysis challenge (9) within the Quantitative Imag-
ing Network (QIN) of the National Cancer Institute, we have
shown, with shared DCE-MRI data sets from patients with pros-
tate cancer, different extents of PK parameter variations owing
to differences in individually measured AIFs using site-specific
methods. We have shown that parameter variations could be
reduced by using a reference-tissue method (15, 16) to adjust the
amplitude of the measured AIF. The commonly used standard
Tofts model (17, 18) with two independent fitting parameters
(Ktrans and ve) was used for PK analysis in that study. A recent
single-center prostate DCE-MRI study (19) also shows parameter
variations when individually measured AIFs and literature pop-
ulation-average AIFs were used for PK analysis with the Tofts
model, resulting in substantial variations in diagnostic accuracy
of prostate cancer.

In this study, part II of the QIN multicenter data analysis
challenge, the shutter-speed model (SSM) (20, 21) was used to
perform PK analysis of the shared data sets with AIFs measured
by multiple QIN centers. The main difference between the SSM
and the Tofts model is that the former takes into account inter-
tissue-compartment water-exchange kinetics. An additional pa-
rameter, the mean intracellular water lifetime (�i), is used in the
SSM to account for the transcytolemmal (cross cell membrane)
water-exchange kinetics. Recent studies show that the SSM-
derived Ktrans parameter is a more accurate diagnostic marker
for both breast (22, 23) and prostate cancer (24), and pretreat-
ment �i is predictive of breast cancer response to neoadjuvant
chemotherapy (25) and overall survival in patients with head
and neck cancer (26). Furthermore, recent results suggest that �i

is potentially a new imaging biomarker of cellular metabolic
activity (27-31), specifically the activity of the Na�-K�-ATPase
pump, which is essential for all mammalian cells and is primar-

ily responsible for maintaining the K� and Na� gradient in vivo.
In addition, a simulation study (16) has shown low sensitivity of
�i to AIF amplitude scaling compared with other conventional
PK parameters such as Ktrans. Thus, it is important to experimen-
tally investigate the effect of uncertainty in AIF determination
on parameters estimated with the SSM, which was the goal of
this study.

MATERIALS AND METHODS
Data Sharing and Multicenter AIF Measurement
Axial prostate DCE-MRI data were collected by one QIN center
(32) for pretreatment staging of patients with prostate cancer.
Data sets from 11 patients were shared with other QIN centers
through TCIA (The Cancer Imaging Archive). These data sets
were acquired at 3 T using a 3-dimensional SPoiled Gradient
Recalled (SPGR) sequence with repetition time � 3.6 millisec-
onds, echo time � 1.3 milliseconds, flip angle � 15°, a temporal
resolution ranging from 4.4 to 5.3 seconds, and about 60 frames
for a 4.5- to 6-minute acquisition time. Nine QIN centers, de-
noted as QIN1 to QIN9, downloaded the DCE-MRI data and
performed AIF measurement from a single image slice for each
individual data set using site-specific methods. The smaller
circular region of interest (ROI) placed in the left femoral artery
(Figure 1A insert) shows the most common location where the
AIFs were measured. The derived AIFs in the form of signal
intensity time-course data were then submitted to one of the 9
centers, the data managing center, for centralized PK analysis of
the 11 DCE-MRI data sets. Additional details on DCE-MRI ac-
quisition parameters and the methods used by each center for
AIF measurement from the imaging data are described in Huang
et al.’s study (9).

DCE-MRI Data Analysis
The AIF signal intensity time-course was converted by the
managing center to blood R1 (' 1/T1) time-course, R1,b(t), using
the steady-state MRI signal intensity equation for a gradient
pulse sequence (33) with the known acquisition parameters of
flip angle, echo time, and repetition time, and a fixed precon-
trast blood R1 of 0.61 s�1 (34), and then to plasma CA concen-
tration time-course, Cp(t), using the following equation:

R1,b(t) � r1hCP(t) � 0.61 s�1 (1)

where r1 is the CA relaxivity at 3 T, set at 3.8 mM�1s�1; h is the
hematocrit, set at 0.45.

For comparison with the individually measured AIFs, a
frequently cited and used population-averaged AIF published by
Geoff Parker (GP) et al. (14) was also included in this study. The
analytical expression of the GP AIF was implemented at the
managing center and resampled to match the temporal features
of the prostate DCE-MRI data sets.

For each data set, the prostate tumor ROI was defined on a
single image slice through the central portion of the tumor by
one investigator from the center where the data were generated.
The signal intensity time-course for each voxel within the tumor
ROI was converted by the managing center to R1 time-course,
R1(t), in the same way as for R1,b(t), but with a fixed precontrast
R1 for the tumor tissue, R10, assumed to be 0.63 s�1 (7). Follow-

AIF Variations on DCE-MRI Analysis

100 TOMOGRAPHY.ORG | VOLUME 5 NUMBER 1 | MARCH 2019

http://WWW.TOMOGRAPHY.ORG


ing calculation of Cp(t) [equation (1)] for each of the AIFs
measured by the 9 QIN centers and the literature GP AIF, and
R1(t) for each tumor voxel, the managing center performed PK
analysis of the shared 11 prostate DCE-MRI data sets on a
voxel-by-voxel basis using an in-house Python-based SSM
software package. All AIF arrival times were manually aligned
with the uptake phase of the average tissue response curves from
the tumor ROIs. The 2-compartment–3-parameter version of the
SSM (20, 21) was used for R1(t) data fitting in this study:

R1(t) � (1⁄2)[{2R1i � r1K
trans⁄ve	

0

t

Cp(t�)exp((�Ktrans⁄ve)

	 (t � t�))dt� �(R10 � R1i � 1⁄�i)⁄ve} � {[2⁄�i

� (R1i � R10 � 1⁄�i)⁄ve � r1K
trans⁄�ve	

0

t

Cp(t�)exp

	 ((�Ktrans⁄ve)(t � t�))dt�)]2 � 4(1 � ve)⁄�i
2ve}

1⁄2] (2)

where R1i is the intrinsic intracellular longitudinal relaxation
rate constant and is assumed to be equal to the tissue R10. The PK
model fitting returned Ktrans, ve, and �i parameter values for each
voxel within the tumor ROI, and the CA efflux rate constant, kep,
was calculated as kep � Ktrans/ve. The mean parameter values of
the single-slice tumor ROI were obtained by averaging the voxel
parameter values within the ROI.

Owing to large differences in the site-specific methods for
the AIF measurement (9), such as the placement of the ROI in the
artery and the ROI size, substantial variations in AIF amplitude

were observed in the AIFs measured from the same data set. A
reference tissue method (15, 24) was used to adjust the ampli-
tude of the measured AIFs, as well as the literature GP AIF, in an
attempt to reduce the variations (9). In this approach, an ellip-
soidal ROI (Figure 1A insert) was drawn in the adjacent, normal-
appearing obturator muscle area on the same image slice as the
one for the AIF measurement and used as the reference tissue
ROI. The AIF amplitude was varied until the Tofts model fitting
of the DCE-MRI data from the muscle reference tissue ROI
returned a ve value of 0.1 (35). In total, 20 AIFs, including
unadjusted and reference tissue-adjusted AIFs measured by the
9 QIN centers and of the literature GP AIF, were used for PK
modeling of each prostate DCE-MRI data set using the SSM,
resulting in 20 sets of mean tumor Ktrans, ve, kep, and �i values
that were then separated into two groups of results based on the
unadjusted and reference tissue-adjusted AIF approaches.

Because a physically meaningful ve is in the range of 0.0 to
1.0, these two values were used as the lower and upper bound-
aries, respectively, for SSM fitting of all voxel data. All returned
voxel ve values were within the two boundaries (none at bound-
ary values) when the reference tissue-adjusted AIFs were used,
while, on average, �3% voxels (range: 0%–6.6% for all the AIF
and data set combinations) had returned ve values reaching the
upper boundary of 1.0 when the unadjusted AIFs were used. In
the latter case, the parameter values from these limited number
of voxels with ve value of 1.0 were not excluded from the
calculation of tumor mean parameter values.

Figure 1. Individual arterial in-
put functions (AIFs) measured
from one subject’s prostate dy-
namic contrast-enhanced mag-
netic resonance imaging (DCE-
MRI) data set by 9 Quantitative
Imaging Network (QIN) centers.
The insert in (A) is a zoomed ax-
ial postcontrast DCE-MRI image
slice showing the smaller red,
circular region of interest (ROI) in
the left femoral artery where the
blood signals were measured for
the AIF time-courses, and the
larger red, ellipsoidal reference
ROI in the normal-appearing ob-
turator muscle adjacent to the
prostate. Substantial variations in
both the shape and magnitude
can be observed in the AIF
curves determined by the 9 QIN
centers (A), which are clearly re-
duced following magnitude ad-
justment using the reference tissue
method (B).
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Statistical Analysis
The mean parameter values for the tumor ROI obtained from all
fittings were used for statistical analysis. Descriptive statistical
analysis was conducted to summarize the PK parameter values
returned using different AIFs, with the distribution graphically
assessed by boxplots. Intraclass correlation coefficients (ICC),
within-subject coefficient of variation (wCV), and concordance
correlation coefficients (CCC) were calculated, and these were
reported with the corresponding 95% confidence intervals (CIs).
Although all three coefficients were computed to assess the
reproducibility of the PK parameter values obtained with differ-
ent AIFs, each had specific focus. The ICC measures the propor-
tion of total variation contributed by between-subject differ-
ences, with a high ICC value indicating good agreement (36). The
wCV is the ratio of within-subject standard deviation to the
mean of a parameter, with smaller wCV value suggesting better
reproducibility. Closely related to ICC, CCC represents the level
of pairwise linear agreement to a 45° line of which the intercept
is forced to be zero. A larger CCC indicates better agreement
between results from a pair of measurements and thus better
reproducibility. Bland–Altman plots were used to graphically
demonstrate pairwise agreements in results from different AIF
measurements. SAS 9.4 (Cary, NY) was used for all statistical
analysis. SAS macro “%ICC9” and “%mccc” were used for the
estimations of ICC, wCV, and CCC.

RESULTS
Variations in AIF Determination
For each data set, substantial variations in both the amplitude
and shape of the Cp(t) time-course can be observed as a result of
direct AIF measurement from the DCE-MRI data by the 9 QIN
centers using site-specific methods. A clear example of Cp(t)
variation is shown in Figure 1A. Following amplitude adjust-
ment of Cp(t) using the reference tissue (Figure 1A insert), the
agreement among the individually measured AIF curves was
clearly improved (Figure 1B). Table 1 lists the standard deviation
(SD) of the Cp(t) peak amplitude for unadjusted and reference
tissue-adjusted AIFs from measurements by the 9 centers for
each patient. Two-tailed paired t test shows that the AIF peak
value SD of the reference tissue-adjusted AIFs is significantly
(P � .018) smaller than that of the unadjusted AIFs.

PK Parameter Variations Due to AIF Differences
Figure 2 shows the boxplots of Ktrans, ve, kep, and �i parameters
estimated from SSM modeling of the 11 DCE-MRI data sets with
adjusted and unadjusted AIFs (including those from the GP AIF).
For most measurements, the mean is greater than the median,
which is commonly seen when distributions are skewed toward
larger parameter values. The dispersion of the estimated param-
eter values from the 11 patients varies substantially across the
QIN centers (or AIFs), with Ktrans showing clearly the largest
variation, while ve and �i exhibiting the least variations. As
another marker of microvascular properties, kep shows less vari-
ation than Ktrans. Comparing the boxplots between unadjusted
and adjusted AIFs, it can be visually observed that the agree-
ment in parameter dispersion among different centers (or AIFs)
is improved for Ktrans and ve when the reference tissue-adjusted
AIFs were used in data fitting, but this is not clearly the case for

kep and �i. Similar observations can be obtained from Table 2,
which shows the mean SSM parameter values and 95% CIs for
each patient under the unadjusted and reference tissue-adjusted
AIF approaches. The mean values were calculated by averaging
the tumor parameter values derived with the individual AIFs
determined by the 9 QIN centers.

Figure 3 shows a column graph of wCV for Ktrans, ve, kep,
and �i obtained with the unadjusted (gray) and adjusted (white)
AIFs. The error bars represent the 95% CIs. The larger the wCV
value, the higher the variation in a measurement performed on
the same subject by different methods. The wCV values for
Ktrans, ve, kep, and �i are 0.58, 0.27, 0.42, and 0.24 for unadjusted
AIFs, and 0.50, 0.10, 0.39, and 0.22 for adjusted AIFs, respec-
tively. The wCV of Ktrans is the largest among all 4 parameters
with either unadjusted or adjusted AIFs, while those of ve and �i

are the smallest. From unadjusted to adjusted AIFs, the decrease
in parameter variation is more prominent for Ktrans and ve (wCV
value decreases from 0.58 to 0.50 and from 0.27 to 0.10, respec-
tively), compared with kep and �i (0.42 to 0.39 and 0.24 to 0.22,
respectively). Figure 4 shows a similar graph of ICC values for
Ktrans, ve, kep, and �i obtained with the two AIF approaches. The
ICC values for Ktrans, ve, kep, and �i are 0.44, 0.51, 0.72, and 0.92
for unadjusted AIFs, respectively, and 0.59, 0.91, 0.79, and 0.93
for adjusted AIFs, respectively. Consistent with the results
shown in Figure 3 , Ktrans has the smallest ICC value with either
AIF approach, while �i has the largest ICC value. From unad-
justed to adjusted AIFs, the increase in ICC is the most obvious
for Ktrans and ve (ICC value increases from 0.44 to 0.59 and from
0.51 to 0.91, respectively) compared with kep and �i (0.72 to 0.79
and 0.92 to 0.93, respectively).

As an example of differences in AIF-caused variations in
estimated PK parameters when unadjusted and reference tissue-
adjusted AIFs were used for SSM analysis, Figure 5 shows
voxel-based parametric maps of Ktrans and �i of a prostate tumor
generated from the SSM analysis. The tumor ROI was in the

Table 1. Standard Deviation of AIF Peak
from Multicenter Measurements

Patient

SD of AIF Peak Value (mM)

Unadj. AIF Adj. AIFa

1 0.88 0.54

2 2.36 0.72

3 4.74 1.98

4 0.75 0.65

5 0.55 0.32

6 0.68 0.32

7 0.55 0.76

8 1.63 0.64

9 0.41 0.42

10 1.28 0.56

11 4.45 2.27

a Standard deviation (SD) of AIF peak value is significantly smaller for
reference tissue-adjusted (Adj.) AIFs in comparison with unadjusted
(Unadj.) AIFs: 2-tailed paired t test, P � .018.
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peripheral zone, as indicated by the arrow in the postcontrast
DCE-MRI image. Ktrans and �i maps obtained with unadjusted
AIFs from the 9 QIN centers are shown on the left panels and
those with reference tissue-adjusted AIFs are shown on the right.
These maps are displayed under the same Ktrans and �i color
scales, respectively. With either AIF approach, substantially
higher variations among the 9 Ktrans maps can be visually
observed compared with the 9 �i maps. While the variations
among the Ktrans maps can be seen reduced when the reference
tissue-adjusted AIFs were used, there is no noticeable improve-
ment in agreement among the �i maps going from unadjusted to
adjusted AIFs. It is interesting to note, however, that despite
considerable variations in Ktrans maps owing to AIF differences,

the spatial pattern of voxel Ktrans distribution largely remains
the same in all the maps. This was also observed in the �i maps,
and in the maps of ve and kep (data not shown for the latter two
parameters).
Concordance Analysis
Concordance correlation analysis was conducted to assess pa-
rameter agreement between any two AIFs under the same con-
dition (adjusted or unadjusted). Tables 3 and 4 tabulate the CCC
values for Ktrans and �i, respectively, with those for the unad-
justed AIFs listed in the top right half and those for the adjusted
AIFs in the lower left half. The CCC ranges for Ktrans and �i are
0.005–0.937 and 0.558–0.993, respectively, for unadjusted
AIFs, and 0.102–0.991 and 0.640–0.997, respectively, for ad-

Figure 2. Boxplots of the tumor
mean Ktrans, ve, kep, and �i pa-
rameters for the 11 subjects ob-
tained with shutter-speed model
(SSM) analysis using unadjusted
(left column) and reference tissue-
adjusted (right column) AIFs mea-
sured by the 9 QIN centers and
the population-averaged Geoff
Parker (GP) AIF from the literature
(14). The diamond and bar sym-
bols represent the mean and me-
dian values, respectively. The
body of the box is bounded by
the upper 75% and lower 25%
quartiles, representing the inter-
quartile range of the middle 50%
of the measurements. The upper
and lower whiskers define the
range of non-outliers. The outliers
are plotted as dots beyond the
whiskers.
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justed AIFs. Reflective of the results shown in Figures 3 and 4,
there is generally a considerable increase (comparing values that
are symmetric to the diagonal line in Table 3) in the CCC value
for pair-wise comparisons of the Ktrans parameter going from
unadjusted to adjusted AIFs, while little CCC changes are ob-
served (comparing values that are symmetric to the diagonal
line in Table 4) for the �i parameter. The CCC ranges for ve and
kep (tables not shown) are 0.334–0.986 and 0.145–0.957, re-
spectively, for unadjusted AIFs, and 0.554–0.993 and 0.129–
0.965, respectively, for adjusted AIFs. From unadjusted to ad-
justed AIFs, the changes in CCC for ve and kep are similar to those
for Ktrans and �i, respectively. In addition, it is important to note
that with either AIF approach, the CCC values for pair-wise
comparisons that included the GP AIF are among the smallest
values in the aforementioned CCC ranges.

Bland–Altman plots are shown in Figure 6 to show exam-
ples of pair-wise agreements in Ktrans (Figure 6A) and �i (Figure
6B). The plots are displayed only for the AIF pairs with the
largest (top rows in Figure 6, A and B) and smallest (bottom rows
in Figure 6, A and B) CCC values for the unadjusted (left col-
umns) and reference tissue-adjusted (right columns) AIFs. Al-
though the differences between the measurements are mostly
within the 95% CIs for all the plots, it is clear, with the vertical
axis scales kept the same for the Ktrans and �i plots, respectively,
that the width of the CI band differs substantially between AIF
pairs with greater CCC values and those with smaller CCC val-
ues: narrower for the former and wider for the latter. For Ktrans

and �i with the largest CCC values (ie, the best pair-wise agree-
ments in the estimated Ktrans and �i values), the means of pa-
rameter difference represented by the dotted lines are 0.22

Table 2. Mean and 95% Confidence Interval of the SSM PK Parameters Obtained with Unadjusted and
Reference-Tissue-Adjusted AIFs

Patient

Unadj. AIF Adj. AIF

Ktrans (min�1) ve kep (min�1) �i (s) Ktrans (min�1) ve kep (min�1) �i (s)

1 0.52 (0.26, 0.77) 0.65 (0.55, 0.76) 0.80 (0.60, 1.00) 0.38 (0.32, 0.44) 0.35 (0.26, 0.43) 0.48 (0.46, 0.51) 0.75 (0.60, 0.90) 0.31 (0.28, 0.34)

2 0.99 (0.45, 1.52) 0.41 (0.25, 0.57) 2.26 (1.92, 2.61) 0.20 (0.14, 0.27) 0.94 (0.79, 1.08) 0.41 (0.39, 0.43) 2.27 (1.92, 2.60) 0.19 (0.16, 0.22)

3 1.89 (1.32, 2.46) 0.35 (0.26, 0.43) 5.58 (4.55, 6.61) 0.34 (0.24, 0.44) 2.29 (1.88, 2.65) 0.44 (0.41, 0.47) 5.44 (4.59, 6.49) 0.36 (0.25, 0.46)

4 2.67 (2.45, 2.89) 0.74 (0.65, 0.83) 3.73 (3.26, 4.20) 0.40 (0.29, 0.50) 2.15 (1.88, 2.42) 0.49 (0.46, 0.53) 4.47 (3.87, 5.07) 0.34 (0.24, 0.44)

5 0.60 (0.43, 0.77) 0.44 (0.39, 0.49) 1.45 (1.20, 1.71) 0.60 (0.42, 0.83) 0.48 (0.38, 0.58) 0.36 (0.34, 0.40) 1.44 (1.21, 1.68) 0.58 (0.41, 0.82)

6 1.21 (0.77, 1.65) 0.92 (0.89, 0.96) 1.26 (0.84, 1.68) 0.42 (0.37, 0.48) 1.06 (0.83, 1.28) 0.93 (0.92, 0.94) 1.11 (0.87, 1.34) 0.46 (0.44, 0.48)

7 0.44 (0.33, 0.54) 0.84 (0.60, 0.99) 0.48 (0.38, 0.58) 0.41 (0.36, 0.46) 0.22 (0.16, 0.28) 0.81 (0.76, 0.85) 0.29 (0.23, 0.36) 0.56 (0.54, 0.58)

8 0.68 (0.32, 1.04) 0.78 (0.62, 0.94) 0.82 (0.47, 1.18) 0.42 (0.37, 0.47) 0.63 (0.35, 0.91) 0.79 (0.74, 0.84) 0.79 (0.46, 1.12) 0.41 (0.39, 0.44)

9 1.10 (0.75, 1.45) 0.63 (0.58, 0.67) 2.01 (1.50, 2.52) 1.25 (1.18, 1.32) 0.80 (0.59, 1.02) 0.51 (0.49, 0.53) 1.97 (1.42, 2.51) 1.21 (1.13, 1.29)

10 1.25 (0.59, 1.91) 0.62 (0.49, 0.76) 1.87 (1.29, 2.44) 0.35 (0.24, 0.46) 1.28 (0.75, 1.82) 0.71 (0.66, 0.76) 1.81 (1.14, 2.40) 0.39 (0.32, 0.46)

11 1.13 (0.55, 1.71) 0.52 (0.42, 0.61) 2.13 (1.45, 2.81) 0.23 (0.20, 0.26) 0.90 (0.31, 1.40) 0.37 (0.30, 0.45) 2.36 (1.56, 3.25) 0.22 (0.19, 0.24)

The values in the parenthesis represent the lower and upper bounds of the 95% confidence interval.

Figure 3. Column graphs of within-subject coeffi-
cient of variation (wCV) for the SSM Ktrans, ve,
kep, and �i parameters obtained with the unad-
justed (gray) and adjusted (white) AIFs. The re-
spective 95% confidence intervals (CI) are shown
as error bars.

Figure 4. Column graphs of intraclass correla-
tion coefficient (ICC) for the SSM Ktrans, ve, kep,
and �i parameters obtained with the unadjusted
(gray) and adjusted (white) AIFs. The respective
95% CIs are shown as error bars.
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min�1 and 0.012 seconds, respectively, for unadjusted AIFs, and
0.078 min�1 and 0.005 seconds, respectively, for adjusted AIFs.
For Ktrans and �i with the smallest CCC values (ie, the worst
pair-wise agreements in the estimated Ktrans and �i values), the
means of parameter difference represented by the dotted lines
are �0.56 min�1 and �0.18 seconds, respectively, for unad-
justed AIFs, and �1.29 min�1 and �0.18 seconds, respectively,
for adjusted AIFs. From unadjusted to adjusted AIFs, the de-
crease in the width of the 95% CI band is substantially greater

for the Ktrans parameter than that for the �i parameter; the
average percent decrease (from the cases with the largest and
smallest CCCs) is 37% for Ktrans and 15% for �i. This indicates
that the use of reference tissue-adjusted AIF has a stronger effect
in improving parameter agreement in Ktrans compared with �i.
The same observation was made when comparing Ktrans and kep

(data not shown). In addition, in cases of poor Ktrans agreement
(bottom row of Figure 6A), there appears to be a correlation
(linear bias) between the difference in Ktrans and the mean of

Table 3. CCC Values for Ktrans

QIN1 QIN2 QIN3 QIN4 QIN5 QIN6 QIN7 QIN8 QIN9 GP

QIN1 0.239 0.702 0.683 0.914 0.846 0.921 0.838 0.790 0.005

QIN2 0.406 0.464 0.188 0.197 0.358 0.317 0.325 0.337 0.084

QIN3 0.836 0.642 0.440 0.666 0.937 0.825 0.857 0.639 0.159

QIN4 0.462 0.277 0.498 0.669 0.565 0.541 0.600 0.581 0.182

QIN5 0.960 0.409 0.840 0.643 0.820 0.864 0.747 0.718 0.089

QIN6 0.881 0.586 0.991 0.548 0.880 0.937 0.886 0.685 0.144

QIN7 0.990 0.447 0.862 0.562 0.969 0.906 0.780 0.800 0.045

QIN8 0.975 0.372 0.864 0.682 0.942 0.911 0.961 0.595 0.148

QIN9 0.977 0.488 0.866 0.620 0.938 0.895 0.981 0.931 0.057

GP 0.191 0.102 0.162 0.348 0.224 0.173 0.209 0.159 0.194

CCC values for unadjusted (unadj.) AIFs are presented in the top right triangle and those for reference-tissue-adjusted (adj.) AIFs are presented in the bottom
left triangle.

Figure 5. Voxel-based Ktrans (top two panels) and �i (bottom two panels) parametric maps in a prostate tumor ROI, with
each panel consisting of 9 maps corresponding to those obtained with AIFs measured by 9 QIN centers. The left and
right two panels show the maps obtained with unadjusted and adjusted AIFs, respectively. The grayscale image at the
center shows an axial postcontrast DCE-MRI image slice, with the arrow pointing to the cyan-colored prostate tumor ROI.
The color scales of Ktrans and �i are kept the same, respectively, for the unadjusted and adjusted AIF approaches.
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Ktrans; the larger the parameter value, the larger the difference in
the parameter value between the two measurements. No clear
correlation is observed for �i, even in cases of poor agreement
(bottom row of Figure 6B).

DISCUSSION
In this part II of a multicenter data analysis challenge to evaluate
the effect of variations in AIF determination on estimated PK
parameters from prostate DCE-MRI data, the SSM was used for
PK modeling of the DCE-MRI data. All other aspects in the data
analysis were kept the same as those in part I (9) of the challenge
where the standard two-parameter (Ktrans and ve) Tofts model
was used. For example, quality control measures such as fixed

tumor ROI definition, fixed tumor T10, and central data analysis
with a single SSM software package were adopted to ensure that
PK parameter variations are mainly due to variations in only
AIF. Compared with challenge part I (9), where the effect of AIF
uncertainty was evaluated on parameters of Ktrans, ve, and kep,
one additional parameter, �i, was included in this part II study.

Consistent with results from challenge part I (9), substantial
variations in the estimated PK parameters were observed in this
study owing to variations in AIF quantification by 9 QIN centers
using site-specific methods (9), especially in Ktrans and kep.
Among the four parameters derived with the SSM using unad-
justed AIFs, Ktrans shows the largest AIF-caused variation with a
wCV value of 0.58, while ve and �i show the smallest variations

Table 4. CCC Values for �i

QIN1 QIN2 QIN3 QIN4 QIN5 QIN6 QIN7 QIN8 QIN9 GP

QIN1 0.858 0.937 0.821 0.947 0.977 0.972 0.933 0.953 0.583

QIN2 0.920 0.935 0.835 0.895 0.855 0.869 0.881 0.882 0.577

QIN3 0.945 0.976 0.849 0.974 0.899 0.908 0.949 0.920 0.594

QIN4 0.803 0.845 0.859 0.860 0.842 0.864 0.840 0.872 0.773

QIN5 0.938 0.955 0.995 0.849 0.922 0.925 0.964 0.941 0.600

QIN6 0.997 0.906 0.938 0.806 0.937 0.993 0.949 0.973 0.619

QIN7 0.989 0.920 0.945 0.844 0.941 0.990 0.943 0.965 0.662

QIN8 0.974 0.916 0.960 0.815 0.957 0.971 0.965 0.954 0.617

QIN9 0.978 0.929 0.965 0.830 0.962 0.979 0.971 0.992 0.558

GP 0.702 0.640 0.658 0.840 0.653 0.714 0.764 0.675 0.677

CCC values for unadjusted (unadj.) AIFs are presented in the top right triangle and those for reference-tissue-adjusted (adj.) AIFs are presented in the bottom
left triangle.

Figure 6. Bland–Altman plots showing agreements in Ktrans (A) and �i (B) for AIF pairs with the largest (top row in A
and B) and smallest (bottom row in A and B) CCC values under the conditions of unadjusted (left column in A and B)
and adjusted (right column in A and B) AIFs. The two solid horizontal lines represent the upper and lower limits of the
95% CI, while the dotted horizontal line represents the mean value of Ktrans (A) and �i (B) difference between the paired
measurements.
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with nearly equal wCV values of 0.27 and 0.24, respectively.
Although higher than ve and �i, kep has a lower AIF-caused
variation than Ktrans, with a wCV value of 0.42. Our findings are
in agreement with a recent study comparing fully automated
and semiautomated AIF determination approaches for prostate
DCE-MRI data analysis (7), showing that Ktrans variation owing
to AIF uncertainty is the most prominent compared with other
PK parameters. A similar conclusion was drawn in a brain
DCE-MRI study (8) that investigated PK parameter variations
caused by the use of AIFs measured from different vessels.

As shown by this study using the SSM, as well as part I of
the challenge (9) using the standard Tofts model, adjusting the
amplitudes of individually measured AIFs with a reference-
tissue method (15, 24) by placing the reference ROI in the
adjacent normal muscle region can decrease AIF variance
(Table 1) and, as a result, reduce parameter variations. For
example, the wCV values were decreased from 0.58 to 0.50 and
from 0.27 to 0.10 for Ktrans and ve, respectively, when the
reference tissue-adjusted AIFs replaced the unadjusted AIFs in
the SSM analysis. The effect of AIF amplitude adjustment was
smaller, however, on kep (wCV: 0.42 to 0.39) and �i (wCV: 0.24 to
0.22) parameters. These observations are consistent with the
results from a simulation study using the SSM (16), which found
significantly lower sensitivity of kep and �i to a 30% change in
AIF amplitude compared with Ktrans and ve. Interestingly, the
aforementioned brain DCE-MRI study (8) using the extended
Tofts model (18) also showed lower variation of kep in response
to different AIF sources compared with Ktrans. Because kep, like
Ktrans, is also a measure of perfusion and permeability, the low
sensitivity of kep to AIF amplitude uncertainty suggests that kep

could be a more robust and reproducible imaging biomarker
than Ktrans for DCE-MRI characterization of tissue microvascu-
lature (37) when consistent and accurate AIF quantification is
difficult.

In pair-wise assessment of agreement in parameter values
obtained with two different AIFs, the worst agreements (or the
smallest CCC values) generally occurred when a measured AIF
(from acquired DCE-MRI data) was paired with the literature
population-averaged GP AIF, for any parameter and under the
condition of either unadjusted or adjusted AIFs. It is important
to note that, in addition to amplitude, the AIF curve shape also
influences the estimation of the PK parameters (3, 9). Although
the methods used by the 9 QIN centers to measure the AIFs were
quite different (9), the individually measured AIFs captured the
actual AIF curve shapes from the DCE-MRI data. The curve
shape is specific to data acquisition details and data sampled for
AIF quantification. This may not be well represented by the GP
AIF, which is modeled on the basis of data from the aorta or iliac
arteries acquired with different pulse sequence parameters at a
different field strength. Such differences between the measured
AIFs and GP AIF are probably a central reason why any pair-
wise comparison of the GP AIF with a measured AIF resulted in
large differences in estimated PK parameter values. Therefore,
whenever possible, an individually measured AIF should be used
for PK analysis of DCE-MRI data instead of a generic popula-
tion-averaged AIF, which may be unrelated to a specific study.
This conclusion is based on the results from this study, as well as
on those from part I of this data analysis challenge (9), which

were obtained from a single time-point pretreatment prostate
DCE-MRI data sets. For longitudinal DCE-MRI studies of cancer
response to treatment, percent changes in parameter values
(rather than absolute values) are generally used to assess therapy
response, and high parameter repeatability is crucial. The use of
a fixed population-averaged AIF may have advantages over
individually measured AIFs because of the likely randomness of
AIF measurement errors in the latter approach across multiple
studies over a period of time. A recent DCE-MRI study of 13
patients with abdominal metastases by Rata et al. (38) shows
that the highest parameter repeatability in a baseline test–retest
study was achieved with a population-averaged AIF in compar-
ison with three approaches of direct AIF measurement from
acquired imaging data, and that, as a result, parameters derived
with the population-averaged AIF have the highest sensitivity to
treatment-induced changes. Further investigations with larger
patient cohorts and data collected from different organs are
needed before clear recommendations can be made in terms of
direct AIF measurement versus fixed population-averaged AIF
(39) for longitudinal DCE-MRI evaluation of cancer therapy
response.

The representative parametric maps of Ktrans and �i (Figure
5) indicate that DCE-MRI parameter variations caused by AIF
variations are mostly systematic. Despite differences in absolute
voxel parameter values owing to different AIFs used in SSM
analysis, it can be seen that the pattern of voxel parameter
distribution largely remains the same for all the Ktrans or �i maps,
that is, there are no visible changes in the spatial locations of the
parameter “hot” and “cold” spots when different AIFs were used.
This is also observed in the voxel-based kep and ve parametric
maps (not shown). Therefore, the assessment of PK parameter
spatial heterogeneity using texture analysis of parametric maps
may not be affected by variations in AIF determination. How-
ever, quantitative texture feature analysis needs to be conducted
to test this hypothesis.

The �i parameter is unique to the SSM, and its reciprocal,
1/�i, is a measure of the rate of water cycling across cell mem-
brane. Previous studies (27-31) indicate that �i is an imaging
biomarker of cellular metabolic activity, specifically the activity
of Na�-K�-ATPase, which consumes ATP and drives active
water cycling. The relationship between �i and Na�-K�-ATPase
was recently validated by a study of breast cancer cell lines
using magnetic resonance and immunofluorescence measure-
ments (40). The present multicenter data analysis challenge
shows that �i (along with ve) not only has the smallest AIF-
caused variance among the PK parameter but is also (along with
kep) the least sensitive to changes in AIF amplitude. Therefore,
the inclusion of the �i parameter (or the use of the SSM) in
DCE-MRI studies could be advantageous, especially for stud-
ies of therapeutic monitoring when random errors of AIF
measurement in multiple exams over time could lead to low
accuracy and precision in parameters such as Ktrans and
consequently either over- or underestimation of true re-
sponse to treatment.

Similar to challenge part I (9), this multicenter study has
several limitations. The study cohort size is small (11 patients)
and the results should be validated with a larger cohort size. Due
to the lack of data for R10 measurement in the shared data sets,
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a fixed R10 value was used for PK analysis of all voxel data
across all 11 patients. Although this approach eliminated the
contamination of R10 variation in the evaluation of the effect of
AIF variation on SSM parameters, the use of a uniformed pre-
sumed R10 value most likely reduced the accuracy in the esti-
mated parameter values, as well as in the assessments of intra-
and intertumoral heterogeneity. The AIF determination methods
used by the 9 QIN centers are constrained to direct measurement
from the imaging data. Other AIF quantification methods were
not evaluated in this study. It would be interesting to investigate
if AIF variations from a method like blinded estimation (10) will
have similar effects on PK parameter variance. Because the
shared prostate DCE-MRI data sets were all acquired before
treatment, it was not possible to assess the effects of AIF vari-
ation on DCE-MRI assessment of prostate cancer response to
treatment, particularly the comparison of the individually mea-
sured AIFs with the population-averaged GP AIF.

CONCLUSION
The results from this part II of a multicenter DCE-MRI data analysis
challenge using the SSM are generally consistent with those ob-
tained using the standard Tofts model (9). Variations in AIF quan-
tification result in considerable variance in the estimated PK

parameters. Among the three conventional PK parameters (ie,
Ktrans, ve, and kep), the AIF-caused parameter variation is the high-
est in Ktrans and the lowest in ve. The SSM-specific �i parameter has
low AIF-caused variation, similar to ve. Use of the reference tissue
method to adjust the amplitude of measured AIF can improve
agreement in AIF and reduce variations in Ktrans and ve, but it has
little effect on kep and �i. kep may be a more robust and reproducible
marker of prostate microvasculature than Ktrans because of its lower
sensitivity to AIF uncertainty. Because �i is the least sensitive
among the four parameters to AIF variation and has the potential of
being an imaging biomarker of metabolic activity, the SSM could
be the better choice for PK analysis of DCE-MRI data acquired with
sufficient sensitivity to the water-exchange kinetics (41), especially
those acquired in longitudinal studies to assess cancer response to
treatment. In multicenter quantitative DCE-MRI studies, central
data analysis with a fixed AIF determination method should be
adopted to minimize parameter variations due to inconsistency in
AIF determination by each local site. If local PK data analysis is
required, the AIFs used by the local sites need to be consistent:
either individually measured from acquired data or a population-
averaged AIF, but not both. Furthermore, the reference tissue-
adjusted AIF should be used in data modeling to reduce AIF-caused
parameter variations.
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Relative cerebral blood volume (rCBV) cannot be used as a response metric in clinical trials, in part, because
of variations in biomarker consistency and associated interpretation across sites, stemming from differences
in image acquisition and postprocessing methods (PMs). This study leveraged a dynamic susceptibility con-
trast magnetic resonance imaging digital reference object to characterize rCBV consistency across 12 sites
participating in the Quantitative Imaging Network (QIN), specifically focusing on differences in site-specific
imaging protocols (IPs; n � 17), and PMs (n � 19) and differences due to site-specific IPs and PMs (n �
25). Thus, high agreement across sites occurs when 1 managing center processes rCBV despite slight varia-
tions in the IP. This result is most likely supported by current initiatives to standardize IPs. However, marked
intersite disagreement was observed when site-specific software was applied for rCBV measurements. This
study’s results have important implications for comparing rCBV values across sites and trials, where variabil-
ity in PMs could confound the comparison of therapeutic effectiveness and/or any attempts to establish
thresholds for categorical response to therapy. To overcome these challenges and ensure the successful use
of rCBV as a clinical trial biomarker, we recommend the establishment of qualifying and validating site- and
trial-specific criteria for scanners and acquisition methods (eg, using a validated phantom) and the software
tools used for dynamic susceptibility contrast magnetic resonance imaging analysis (eg, using a digital refer-
ence object where the ground truth is known).

INTRODUCTION
The relative cerebral blood volume (rCBV), derived from dy-
namic susceptibility contrast magnetic resonance imaging
(DSC-MRI), is an established biomarker of glioma status that can

aid in diagnosis (1), detecting treatment response (2, 3), guiding
biopsies (4, 5), and reliable differentiation of post-treatment
radiation effects and tumor progression (6-10). It is also increas-
ingly leveraged as a biomarker of early therapeutic response in
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clinical trials (11, 12). However, variations in image acquisition
and postprocessing methods (PMs) can limit rCBV reproducibil-
ity, potentially diminishing its clinical utility. To promote rCBV
reproducibility across institutions, many national initiatives are
underway to standardize DSC-MRI acquisition and PMs, includ-
ing National Cancer Institute’s Quantitative Imaging Network
(QIN), Radiological Society of North America’s Quantitative Im-
aging Biomarkers Alliance (QIBA), and the National Brain Tu-
mor Society’s Jumpstarting Brain Tumor Drug Development
Coalition. Recent imaging protocol (IP) recommendations by the
American Society of Functional Neuroradiology (ASFNR) has
served as the first step in standardizing DSC-MRI protocols for
clinical applications (13).

To aid in this effort, 12 institutions within the QIN aimed to
investigate and determine the current rCBV reproducibility us-
ing a recently developed and validated in silico digital reference
object (DRO) that is representative of a wide range of possible
glioma magnetic resonance signals (14). Leveraging this DRO
enables us as a community to determine the multisite consis-
tency in rCBV owing to varying permutations of imaging ac-
quisition parameters and postprocessing steps. In specific, our
goals are to characterize rCBV consistency under conditions
where there exist: (1) variations in the site-specific imaging
acquisition parameters (PMs held constant), (2) variations in
only site-specific PMs (IP held constant), and (3) variations
owing to site-specific imaging and postprocessing protocols.
Results from this community-based challenge will help steer
standardization of DSC-MRI rCBV protocols with the hope that
it can be successfully translated to the clinical setting.

MATERIALS AND METHODS
This National Cancer Institute QIN DSC-DRO challenge project
was proposed and organized by the investigators at Barrow
Neurological Institute (BNI). Eleven centers participated in this
project: BNI (the managing center), Brown University (BU), Mas-
sachusetts General Hospital (MGH), Mayo Clinic Arizona (Mayo
AZ), Mayo Clinic Minnesota (Mayo MN), Medical College of
Wisconsin (MCW), University of Michigan (UM1), The Univer-
sity of Texas Health at San Antonio (UTSA), University of Texas
at Austin (UT), University of Texas Southwestern Medical Center
at Dallas (UTSW), University of Washington (UW), and Wash-
ington University (WashU). Unless specifically named, these
participating sites have been anonymized, in no particular order,
and will be referred to as sites 01–12 as seen in Table 1.

This project comprised 3 phases, summarized in the last 3
columns of Table 1, to evaluate the influence of IPs and/or PMs
on multisite consistency:

• Phase I (“site IP w/constant PM”) involved each participat-
ing site to submit their current clinical DSC IP to the
managing center. The managing center then simulated site-
specific DROs reflecting the IP parameters provided. Some
sites provided �1 IP owing to differences in field strengths
(sites 01, 04, and 05), dosing schemes (sites 03 and 10), and
acquisition method (site 04). In total, 19 different IPs were
submitted. The managing center postprocessed (specific
details below in “Site-specific IP and PM”) rCBV maps of

each of these submitted site-specific IP DROs to evaluate
differences owing to the IP provided.

• Phase II (“constant IP w/site PM”) involved analysis of a
“standard imaging protocol” (SIP), which represents DSC-
MRI data acquired using the IP recommended by ASFNR
(13). Each site was asked to process DSC-MRI DRO data
derived from the SIP. Some sites choose to use multiple
commercially available software packages (site 03) and
different rCBV definitions (sites 05, 06, 12), yielding a total
of 17 submitted rCBV maps.

• Phase III (“site IP w/site PM”) required each site to calculate
rCBV maps using their PM of choice and the site-specific
DRO data. Combining the possible permutations owing to
choice of IP and PM from phases I–II, a total of 25 rCBV
maps were submitted.

All sites but 1 completed all 3 phases of the challenge. Site 11
completed only phase I, and these results are included in this
study.

DRO Simulations
The DSC-MRI signals for each IP were simulated using a recently
developed and validated population-based DRO that was trained
to generate realistic signals using in vivo data from �40 000
voxels derived from patient data (14). The resulting DRO, which
contains 10 000 unique voxels, reflects the distribution of per-
fusion, permeability, precontrast T1, T2*, diffusion coefficients,
and the vascular and cellular features found in patients with
high-grade glioma. Using this DRO, the DSC-MRI signals and
resulting rCBV values can be computed for any combination of
preload dosing scheme, contrast agent choice (by varying T1
relaxivities specific to the contrast agent), pulse sequence pa-
rameters, and postprocessing protocol. For the purposes of this
study, the DRO consisted of tumor voxels simulated under two
blood-brain-barrier (BBB) conditions to recapitulate DSC-MRI
signals from an intact-BBB (Ktrans � 0) and a disrupted-BBB
(Ktrans � 0). In addition to the tumor voxels, normal appearing
white matter (NAWM) voxels (Ktrans � 0) were simulated to
normalize CBV. For the purposes of comparing site-to-site con-
sistency, the SIP that has been postprocessed by the managing
center was considered the reference standard where necessary.
In our recent study, focused on investigating the influence of IP
on CBV fidelity (15), the SIP yielded CBV values, when corrected
for contrast agent leakage, that were among the most accurate.

Site-Specific IP and PM Methods
Site-specific IP and PM methods are briefly listed in Table 1.
Overall, IPs were similar across sites. Most sites submitted clin-
ical DSC IPs for 3 T with 3 sites that also included a 1.5 T IP.
Overall, the following were the imaging parameters [mode (min-
max)]: repetition time � 1500 milliseconds (1300–2560 milli-
seconds), echo time (TE) � 30 milliseconds (18–71 millisec-
onds), flip angle � 60° (60°–90°), preload dose � 0.05 mmol/kg
(0–0.1 mmol/kg), and injection dose � 0.1 mmol/kg (0.05–0.15
mmol/kg). Five different gadolinium contrast agents were used
across the 12 sites: gadobenate (n � 5), gadobutrol (n � 3), gad-
oterate (n � 2), gadoteridol (n � 1), and gadopentetate (n � 1). For
PMs, there was a mix of software options used, including in-house-
based software scripts (n � 4), IB Neuro (n � 4), 3D Slicer (n � 1),
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nordicICE (n � 1), PGUI (n � 2), and Philips IntelliSpace Portal
(ISP; Philips Healthcare, Best, the Netherlands) (n � 1).

For PM methods, most sites defined rCBV �
	0
t �R2,tumor�BSW

� ⁄	0
t �R2,NAWM

� and used the Boxerman–Schmain-
da–Weiskoff (BSW) method for leakage correction (16). A few
sites submitted results that deviated from this postprocessing
convention by alternative rCBV definitions (S06, S12) and dif-
ferences in integration limits as determined by the software
(S05). These differences are highlighted in Table 1. Site 06
defined CBV by the area under the curve of the deconvolved
residue function. This deconvolved residue function was deter-
mined by singular value decompositions (rCBV definition 1) and

by oscillating singular value decompositions approach (rCBV
definition 2). S12 used 3 different rCBV definitions within the
Philips ISP platform: a “model-free” option that integrates the
area underneath the signal intensity curve (rCBV definition 1)
(17), a “�-variate” option that integrates the area underneath the
signal intensity curve that has been fit to a �-variate function
(rCBV definition 2), and a “leakage correction” option that
integrates the area underneath the computed delta R2* curve
after a modified BSW leakage correction method is applied
(rCBV definition 3). To be clear, the first 2 options of the Philips
ISP do not apply any sort of leakage correction algorithm to the
data. S05 included CBV maps calculated using the default inte-

Table 1. Summary of Participating Teams’ IPs and PMs

Site
Number

Imaging Protocol (IP)

CA
Processing Method

(PM)

ID Tag for AnalysisScan Protocol Dose Protocol

Field
Strength

TR
(ms)

TE
(ms) Flip

Preload
(mmol/kg)

Injection
(mmol/kg)

Time
Between

(min)

Site IP
w/Constant

PP

Constant IP
w/Site

PP

Site IP
w/Site

PP

01 01:3.0 T 1500 30 60 0.05 0.10 3 Gadobenate 01: In-house processing S01_IP01 S01_PM01 S01_IP01_PM01

02:1.5 T 1500 30 60 0.05 0.10 3 Gadobenate S01_IP02 S01_IP02_PM01

02 01:3.0 T 1600 30 60 0 0.1 n/a Gadobenate 01: IB Neuro S02_IP01 S02_PM01 S02_IP01_PM01

03 01:3.0 T 1500 31 90 0.05 0.15 6.5 Gadoterate 01: 3DSlicer S03_IP01 S03_PM01 S03_IP01_PM01

02:3.0 T 1500 31 90 0.1 0.1 6.5 Gadoterate 02: nordicICE S03_IP02 S03_PM02 S03_IP01_PM02

03: PGUI S03_PM03 S03_IP01_PM03

S03_IP02_PM01

S03_IP02_PM02

S03_IP02_PM03

04 01:3.0 T 1500 30 80 0.10 0.10 5 Gadobutrol 01: IB Neuro S04_IP01 S04_PM01 S04_IP01_PM01

02:3.0 T 1500 2,35 80 0 0.10 n/a Gadobutrol S04_IP02 n/a

03:1.5 T 1500 30 72 0.10 0.10 5 Gadobutrol S04_IP03 S04_IP03_PM01

04:1.5 T 1500 2,35 72 0 0.10 n/a Gadobutrol S04_IP04 n/a

05 01:3.0 T 1300 30 60 0.025 0.10 5 Gadobutrol 01: IB Neuro (Integration
limits 1)

S05_IP01 S05_PM01 S05_IP01_PM01

02:1.5 T 1300 30 60 0.025 0.10 5 Gadobutrol 02: IB Neuro (Integration
limits 2)

S05_IP02 S05_PM02 S05_IP01_PM02

S05_IP02_PM01

S05_IP02_PM02

06 01:3.0 T 1500 30 75 0.10 0.10 5 Gadoteridol 01: PGUI (rCBV definition 1) S06_IP01 S06_PM01 S06_IP01_PM01

02: PGUI (rCBV definition 2) S06_PM02 S06_IP01_PM01

07 01:3.0 T 1500 30 65 0.025 0.075 6 Gadobenate 01: In-house processing S07_IP01 S07_PM01 S07_IP01_PM01

08 01:3.0 T 1500 21 60 0.10 0.05 6 Gadobenate 01: In-house processing S08_IP01 S08_PM01 S08_IP01_PM01

09 01:3.0 T 1500 18 60 0.05 0.05 6 Gadobenate 01: IB Neuro S09_IP01 S09_PM01 S09_IP01_PM01

10 01:3.0 T 1900 36 90 0 0.10 n/a Gadoterate 01: In-house processing S10_IP01 S10_PM01 S10_IP01_PM01

02:3.0 T 1900 36 90 0.10 0.10 5 Gadoterate S10_IP02 S10_IP02_PM01

11 01:3.0 T 2560 71 90 0.025 0.10 2 Gadopentetate n/a S11_IP01 n/a n/a

12 01:3.0 T 1757 30 90 0.033 0.067 8 Gadobutrol 01: Philips ISP (rCBV
definition 1)

S12_IP01 S12_PM01 S12_IP01_PM01

02: Philips ISP (rCBV
definition 2)

S12_PM02 S12_IP01_PM02

03: Philips ISP (rCBV
definition 3)

S12_PM03 S12_IP01_PM03

Standard
Protocol

01:3.0 T 1500 30 60 0.10 0.10 5 Gadopentetate n/a SIP n/a n/a

Totala: 12 19 17 25

a Excludes the standard protocol.
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gration limits set by IB Neuro (integration limits 1) and manu-
ally chose all time points in IB Neuro (integration limits 2). A
little less than 50% of the submitted rCBV maps were normalized
to the NAWM. To compare maps, the managing site normalized
tumor CBV to the mean NAWM CBV of all pixels when neces-
sary. Specifics on site-specific postprocessing steps are outlined
in Table 2.

The managing center postprocessed the site-specific DROs with
an in-house script by defining rCBV � 	0

120sec �R2,tumor�BSW
� ⁄	0120sec

�R2,NAWM
� , where the conventional �R2

� curves in the tumor were
corrected for leakage effects using the BSW method. In our recent
study, the CBV was found to be the most accurate by using these
specific PM steps, and thus was chosen to be used as the reference

where applicable (15). No thresholding, smoothing, or quality assess-
ment was done before rCBV calculations when analyzed by the man-
aging center.

Statistics
To evaluate the consistency of rCBV across sites owing to dif-
ferences between IP and PM, the intraclass correlation coeffi-
cient (ICC) was calculated. Furthermore, to evaluate the agree-
ment of rCBV between sites and a reference (SIP), the 95% limits
of agreement (LOA) were extracted from a Bland–Altman anal-
ysis. Variability of rCBV was assessed across a distribution of
rCBV values by calculating the covariance (CV) across sites.
Lastly, Lin’s correlation coefficient was calculated for rCBV

Table 2. Summary of Participating Teams’ PMs

Site
Number Software CBV Definition

Normalized
to NAWM? Integration Limits

Leakage Correction
Method Comments

01 01: In-house processing AUC of the 
R2* time
course

No Time points: 2 to 64 (93 sec) BSW leakage correction
method

Manual inspection of pre-
and post- contrast
points for rCBV
integration

02 01: IB Neuro AUC of the 
R2* time
course

Yes automatically detected
(default option)

BSW leakage correction
method

Default IB Neuro settings
for rCBV

03 01: 3DSlicer AUC of the 
R2* time
course

No 118 seconds BSW leakage correction
method

No thresholding

02: nordicICE AUC of the 
R2* time
course

Yes Time points: 2 to 121
(178.5 sec)

BSW leakage correction
method

03: PGUI AUC of the 
R2* time
course

No Time points: 2 to 121
(178.5 sec)

BSW leakage correction
method

No thresholding, but
smoothing applied

04 01: IB Neuro AUC of the 
R2* time
course

Yes automatically detected
(default option)

BSW leakage correction
method

05 01: IB Neuro (Integration limits 1) AUC of the 
R2* time
course

Yes automatically detected
(default option)

BSW leakage correction
method

02: IB Neuro (Integration limits 2) AUC of the 
R2* time
course

Yes 180 seconds (all time
points)

BSW leakage correction
method

06 01: PGUI (rCBV definition 1) Deconvolution of the
residue function
(SVD)

No Time points: 5 to 121
(174 sec)

BSW leakage correction
method

02: PGUI (rCBV definition 2) Deconvolution of the
residue function
(oSVD)

No Time points: 5 to 121
(174 sec)

BSW leakage correction
method

07 01: In-house processing AUC of the 
R2* time
course

No automatically detected
(default option)

BSW leakage correction
method

08 01: In-house processing AUC of the 
R2* time
course

Yes 90 sec BSW leakage correction
method

09 01: IB Neuro AUC of the 
R2* time
course

Yes automatically detected
(default option)

BSW leakage correction
method

Did not use the entire
NAWM ROI - instead
used a 6 mm � 6 mm
(�225 pixels) ROI

10 01: In-house processing AUC of the 
R2* time
course

No 171 sec BSW leakage correction
method


R2* maps were
smoothed with a 5 �

5 Gaussian window
that had an FWHM
value of 3 mm

11 n/a

12 01: Philips ISP (rCBV definition 1) AUC of the SI time
course

No Based on the characteristics
of signal time curves

No leakage correction
method

02: Philips ISP (rCBV definition 2) AUC of the SI time
course fitted to a
gamma-variate

No Based on the characteristics
of signal time curves

No leakage correction
method

03: Philips ISP (rCBV definition 3) AUC of the 
R2* time
course

No 180 s BSW leakage correction
method
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between the intact-BBB and disrupted-BBB DROs for each per-
mutation of IP and PM to determine the agreement of rCBV after
leakage correction was applied. All statistical calculations were
done in MATLAB R2018a (The MathWorks Inc., Natick, MA) by
the managing center.

RESULTS
In general, the ICC decreases when Ktrans � 0, that is, disrupted-
BBB (Table 3) for all the 3 phases of this study. High agreement
is observed across sites when a constant PM is applied to site-
specific IP (ICC � 0.879). However, when site-specific PMs are
applied to either a constant IP or to their site-specific IP, the
agreement is quite poor (ICC � 0.439 and 0.380, respectively).

Figure 1 shows consistency in rCBV measurements for all 3
phases of this study when compared with the reference. For each
site, the 95% LOA of both Ktrans � 0 (gray lines, intact-BBB) and
Ktrans � 0 (black lines, disrupted-BBB) are indicated in compar-
ison to the reference (see Table 1 for site ID descriptions). For
phase I (Figure 1A), the 95% LOA are generally fairly narrow and
centered around the mean rCBV of the reference for the Ktrans �
0 case. A few exceptions (S02_IP01, S10_IP01, and S12_IP01)
show larger 95% LOA and a negative bias compared with the
other sites. The first 2 sites (S02 and S10) did not use a contrast
agent preload unlike the other sites, while the third site (S12)
used 1/3 standard dose for a preload. Sites S09_IP01 and
S10_IP01, although centered around the reference’s mean rCBV,
also express wider ranges of 95% LOA compared with other sites.
These 2 sites have markedly lower TE and use less than a full
standard dose compared with the other sites. Much larger LOA are
seen for phase II in Figure 1B) than for that in Figure 1A. Large 95%

LOA are observed for even the Ktrans � 0 case, where no leakage
correction is applied during postprocessing. The analysis software
that show the smallest 95% LOA with the reference are in-house
processing scrips (S01_PM01, S08_PM01), IB Neuro (S02_PM01,
S04_PM01, S05_PM01, S05_PM02, S09_PM01), nordicICE
(S03_PM02), and the “model-free option” in Philips ISP
(S12_PM01). For phase III (Figure 1C), 9 out of the 24 sites show a
tight 95% LOA and relatively no bias when compared to the SP
reference (S01_IP01_PM01, S01_IP01_PM02, S03_IP02_PM02,
S04_IP01_PM01, S04_IP03_PM01, S05_IP01_PM01, S05_IP01_
PM02, S05_IP02_PM01, S05_IP02_PM02) for the Ktrans � 0 case.
These 4 sites implemented nordicICE, IB Neuro, and an in-house
postprocessing script.

Figure 2 illustrates the CV as a function of rCBV across
DROs for all voxels. The covariance across DROs (nPhase I � 19,
nPhase II � 17 nPhase III � 25) was calculated in the 10 000 tumor
voxels and plotted against the mean rCBV of each voxel across
DROs. The DRO simulated with Ktrans � 0 (gray circles) and Ktrans � 0
(black circles) is plotted along with the mean CV (horizontal line
plots) across all voxels. This figure does not assume a reference
for calculations. In general, the CV increases for each phase
when more freedom is allowed in the rCBV calculations for both
IP and PM. For phase I (Figure 2A), the average CV is 4% and it
remains fairly flat over the rCBV distribution for Ktrans � 0.
However, when Ktrans � 0, the average CV rose to 17% and
exponentially decreased from roughly 60% to 10% as rCBV
increased. For phases II and III (Figure 2, B and C, respectively),
the CV is observed to exponentially decrease for both Ktrans

cases. For phase II, the average CV is 18% and 30% for Ktrans �
0 and � 0, respectively. As rCBV increases, the CV exponentially

Table 3. Intraclass Correlation Coefficient Results for Each Phase of the Study for Computed rCBV from the
Simulated Intact-BBB and Disrupted-BBB DRO

Site-Specific IP
w/Constant PM

Constant IP
w/Site-Specific PM

Site-Specific IP
w/Site-Specific PM

Intact-BBB 0.970 0.690 0.641

Disrupted-BBB 0.879 0.439 0.380

Figure 1. Bland–Altman limits of agreement (LOA) against the standard imaging protocol (SIP) plotted for site-specific IP
w/constant postprocessing method (PM) (A), constant IP w/site-specific PM (B), and site-specific IP w/site-specific PM
(C). The vertical dashed line is the mean rCBV across 10 000 voxels for the SIP.
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decreases from roughly 80% to 20% for both Ktrans cases. For
phase III, the average CV is 21% and 39% for Ktrans � 0 and �
0, respectively. As rCBV increases, the CV exponentially de-
creases from roughly 120% to 35% for both Ktrans cases.

Figure 3 examines the agreement between the intact-BBB
(Ktrans � 0) and disrupted-BBB (Ktrans � 0) DRO for each pro-
cessed rCBV map. The LCC for each analysis combination was
sorted from the highest (perfect agreement � 1) to the lowest (no
agreement � 0) for each of the 3 phases. A high agreement
indicates that the processed CBV from the simulated disrupted-
BBB DRO had high accuracy when compared to the simulated
intact DRO where no leakage occurs. Site-specific IP with con-
stant PM is shown by the black bars in the bar graph. Note that

the third black bar is the SIP and has a high LCC value, which is
consistent with previous results (15) and therefore used as ref-
erence in Figure 1. Here we observed that most of the sites’ IPs
are able to accurately compute CBV—most likely because these
sites already use IPs similar to the SIP. Three site protocols had
an LCCC � 0.8, indicating low rCBV accuracy when leakage
effects are introduced: S02_IP01, S10_IP01, and S12_IP01.
These protocols also resulted in large LOA and a negative bias as
seen in Figure 1. These results indicate that the IP is highly
sensitive to contrast agent leakage effects even when a leakage
correction PM algorithm is applied. Constant IP with site-spe-
cific PM results are indicated in the dark gray bars in the bar
graph. Here we observe 10 software programs that clearly show

Figure 2. The covariance (CV%) across all relative cerebral blood volume (rCBV) maps for each of the 10 000 voxels plot-
ted across the mean rCBV of the voxels for site-specific IP w/constant PM (A), constant IP w/site-specific PM (B), and site-spe-
cific IP w/site-specific PM (C). Results from the Ktrans � 0 (light gray) and Ktrans � 0 (black) are included with their mean CV%
across all 10 000 voxels indicated for the horizontal lines. For all 3 phases of this study, the largest variation in rCBV occurs
at the low rCBV range for Ktrans � 0, and CV% increases when more freedom was introduced in the choice of IPs and PMs.

Figure 3. A bar plot of Lin’s correlation coefficient (LCC) for each rCBV map for site-specific IP w/constant PM (black),
constant IP w/site-specific PM (medium gray), and site-specific IP w/site-specific PM (light gray). Each phase is sorted by
the resulting LCC from the highest to the lowest value. A horizontal bar at LCC � 0.8 is placed to evaluate agreement
good agreement (LCC � 0.8).

Multisite rCBV Consistency Using a DRO

TOMOGRAPHY.ORG | VOLUME 5 NUMBER 1 | MARCH 2019 115

http://WWW.TOMOGRAPHY.ORG


high agreement: in-house scripts (n � 4), IB Neuro (n � 4),
nordicICE (n � 1), and “model-free” option in the Philips ISP.
Lastly, site-specific IP with site-specific PM resulted in 50% of
the rCBV maps with LCC � 0.8, most likely owing to a combi-
nation of variations in IPs and postprocessing as deduced from
the earlier 2 phases.

DISCUSSION AND CONCLUSION
Reproducibility in DSC-MRI rCBV is crucial for the success of
multisite clinical trials. In this study, we have evaluated rCBV
consistency owing to differences in both IPs and PMs across 12
QIN sites using a DRO. The results outlined in this manuscript
show that standardization of both is warranted.

Our prior DRO investigation highlighted the significant in-
fluence of IPs (including preload dosing and pulse sequence
parameters) on CBV accuracy (15). The findings of this study
strongly indicate that differences in the PM can also confound
multisite CBV consistency and accuracy. High agreement when
site-specific IP were processed by the managing center most
likely reflects the similarity of the IP parameters across all the
sites owing to previous initiatives from the ASFNR that aimed to
standardize IPs (13). However, it was observed that when no
preload was used in the IP (S02_IP01 and S10_IP01), a system-
atic negative bias relative to the SIP occurs. Furthermore, a
slight negative bias is observed for the sites that administered
less than a full standard dose as the main injection (S07_IP01,
S08_IP01, S09_IP01, S12_IP01). These 2 findings underscore
potential challenges to comparing CBV changes in a clinical
trial from sites that use dissimilar preload and bolus dosing
protocols. Three sites (S01, S04, S05) provided clinical IPs for 1.5
T. Sites 01 and 05 used the same IP at both field strengths, and
it was observed that the LOA did widen when compared to the
3.0 T protocol. Site 04 used a smaller flip angle at 1.5 T than at
3 T; however, a widening of LOA was still observed. Differences
here may warrant further investigation into a standardized 1.5 T
IP; however, for the scope of this paper, high agreement was
observed when both field strengths were compared together.

When each site was asked to postprocess the SIP, agreement
decreased substantially as indicated by the ICC and the 95%
LOAs. Interestingly, the disagreement across sites is not isolated
to differences in the leakage correction method, as poor agree-
ment is also observed with the Ktrans � 0 case. For the Ktrans �
0 case, 1 potential source of disagreement in rCBV arises from
whether smoothing is implemented in the software and the CBV
definition. Methods 01 and 02 from S12 deviated from the
traditional CBV definition, as these methods calculated CBV
from the signal intensity curves, potentially losing the biophys-
ics and kinetic properties. For the Ktrans � 0 case, potential
sources of disagreement in rCBV may be attributed to smoothing
and the algorithms and/or implementation of algorithms used
for leakage correction.

It is challenging to compare the results from this current
study directly to prior ones since we performed a voxel-wise
analysis across the DRO, whereas most other studies, like the
recent DSC-MRI challenge (18), report comparisons between
mean region of interest tumor values across data that likely
exhibits patient-specific rCBV distributions. As seen in Figure 2,
there is greater variation across platforms at low rCBV values.

These differences most likely average out when hotspot types of
analyses are performed. Although most likely sufficient for
diagnosis of tumor grade, this might not be ideal for longitudi-
nal assessment of treatment response where voxel-wise analysis
and/or CBV difference quantification has shown to be more
beneficial (11, 12). Despite this, our results indicating incon-
sistent CBV values as more freedom is allowed to the IP and
processing methods is not surprising. Kelm et al. compared
rCBV measurements using 3 software platforms (IB Neuro,
FuncTool, and nordicICE) and also found significant varia-
tion in rCBV (19).

A limitation to our study is that the ROIs for brain tumor
and NAWM have been clearly outlined and predetermined for
analysis. In the context of patient data, allowing users to define
ROIs would likely contribute to greater rCBV inconsistency.
Schmainda et al. showed high mean CBV agreement when ROIs
were predetermined (18). In addition, sites were not required to
determine an AIF for the CBV calculations within this manu-
script.

Results from this study and our prior DRO analysis, which
focused on IP optimization (15), highlight the IPs and PMs that
maximize rCBV accuracy and multisite consistency. First, IPs
that yield the highest rCBV accuracy and multisite concordance
utilize a full-dose contrast agent preload and a full-dose bolus
injection, low (30°) or moderate (65°) flip angle, �30 millisecond
TE, and a �1.5 millisecond TR. In both studies, the use of lower
bolus dose injections (eg, 1/2 dose) were found to substantially
reduce both consistency and accuracy, likely owing to the lower
CNR. Second, the 2 studies further show that, even with opti-
mized IPs, leakage correction should be applied to DSC-MRI
data in brain tumors. Further, the correction algorithms should
be based on the underlying biophysics and kinetics, such as the
BSW correction, as they maximize both accuracy and precision.
Generic leakage correction algorithms (like gamma variate fit-
ting) that arbitrarily modify the shape of DSC-MRI data to
remove T1 and/or T2* leakage effects are not recommended. It
should be noted that in the IP optimization study (15), a low flip
angle approach (30° with a 30 millisecond TE) with a full-dose
bolus injection, no preload, and application of BSW leakage
correction provided accuracy slightly less than that using the
ideal protocol. Studies are currently underway to validate the
clinical potential of this protocol as it could be a compelling
single-dose option for routine surveillance scans and in clinical
trials.

Although great efforts have been made to standardize DSC-
MRI imaging acquisition protocols, this study highlights that
poor CBV agreement can arise when there are variations in
processing platforms. Highest agreement is observed when site-
specific CBV maps are processed by 1 managing center, as might
be expected in a clinical trial setting where acquisition and PMs
are predetermined, and/or raw data are sent to a single site for
analysis. However, differences in CBV, especially at low values,
as would be expected with effective therapy, arise when differ-
ent platforms are used. This finding has important implications
for comparing CBV values across trials, where variability in
trial-specific PMs could confound the comparison of therapeutic
effectiveness and/or any attempts to establish thresholds for
categorical response (eg, predetermined percent changes in
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rCBV values that could be used to refine RANO criteria). To
overcome these challenges and to ensure the successful use of
rCBV as a clinical trial biomarker, it is critical that the DSC-MRI
community establish qualifying and validating criteria, similar

to that in the RSNA DCE-MRI Profile (20), for scanners and
acquisition methods to be used in clinical trials (eg, using a
validated phantom) and the software used for DSC-MRI analysis
(eg, using a DRO where the ground truth is known).
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Quantitative mapping of hyperperfused and hypercellular regions of glioblastoma has been proposed to im-
prove definition of tumor regions at risk for local recurrence following conventional radiation therapy. As the
processing of the multiparametric dynamic contrast-enhanced (DCE-) and diffusion-weighted (DW-) magnetic
resonance imaging (MRI) data for delineation of these subvolumes requires additional steps that go beyond
the standard practices of target definition, we sought to devise a workflow to support the timely planning
and treatment of patients. A phase II study implementing a multiparametric imaging biomarker for tumor hy-
perperfusion and hypercellularity consisting of DCE-MRI and high b-value DW-MRI to guide intensified (75
Gy/30 fractions) radiation therapy (RT) in patients with newly diagnosed glioblastoma was launched. In this
report, the workflow and the initial imaging outcomes of the first 12 patients are described. Among all the
first 12 patients, treatment was initiated within 6 weeks of surgery and within 2 weeks of simulation. On av-
erage, the combined hypercellular volume and high cerebral blood volume/tumor perfusion volume were
1.8 times smaller than the T1 gadolinium abnormality and 10 times smaller than the FLAIR abnormality. Hy-
percellular volume and high cerebral blood volume/tumor perfusion volume each identified largely distinct
regions and showed 57% overlap with the enhancing abnormality, and minimal-to-no extension outside of
the FLAIR. These results show the feasibility of implementing a workflow for multiparametric magnetic reso-
nance-guided radiation therapy into clinical trials with a coordinated multidisciplinary team, and the unique
and complementary tumor subregions identified by the combination of high b-value DW-MRI and DCE-MRI.

INTRODUCTION
Conventional therapies for glioblastoma (GBM) continue to rely
on anatomic imaging modalities for both surgery and radiation
therapy (RT), including T1 gadolinium- (T1-Gd) enhanced and
T2-weighted fluid attenuated inversion recovery (T2-FLAIR) se-
quences that do not provide biological information about the
underlying disease. Multiple studies have shown the prognostic
value of physiological magnetic resonance imaging (MRI) tech-
niques such as proton spectroscopy and perfusion and diffusion
MRI and measures such as progression-free survival (PFS) and
overall survival (OS) in predicting treatment response in patients
with GBM (1-9). These imaging techniques may show abnormal
tumor infiltration beyond the contrast-enhanced or nonen-

hanced areas conventionally targeted by surgery and radiation,
and these may potentially be used to guide radiation treatment,
reduce tumor recurrence, and improve patient outcome (10).

Dynamic contrast-enhanced (DCE)-MRI assesses relative
cerebral blood volume (rCBV), cerebral blood flow, and vascular
permeability, which are associated with neovascularization and
tumor growth and predict PFS and OS in patients with GBM (1,
2, 5, 11). While regions of elevated rCBV often overlap with
regions of contrast enhancement, the nonenhancing, infiltrating
tumor beyond this region may potentially be underestimated
with perfusion MRI (12). In contrast, diffusion-weighted (DW)
MRI may identify tumor phenotype by estimating water mobil-
ity in the tissue microenvironment as an indicator of tumor
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cellularity (13). Apparent diffusion coefficient (ADC) is inversely
correlated with cellularity but it may be unreliable in regions of
highly cellular tumor, normal brain tissue, edema, and micro-
necrosis, yielding elevated ADC compared with normal tissue
using standard b-values of 0–1000 s/mm2 (10). At our center,
we developed a novel DW-MRI technique using high b-value
(b � 3000 s/mm2) to selectively isolate solid, often nonenhanc-
ing, tumor that is predictive of PFS and often extends beyond
the high-dose radiation target (14). We have shown that a
combination of these imaging techniques (DCE-MRI and high
b-value DW-MRI) into a multiparametric imaging signature
predicts PFS with spatial correspondence with patterns of fail-
ure, representing biologically high-risk tumor subvolumes iden-
tifiable before therapy (12).

Based on these findings, we wished to develop a phase II
study to evaluate the feasibility and efficacy of using a multipa-
rametric hypervascular/hypercellular MRI signature to identify
areas at highest risk of failure before radiation treatment in
patients with newly diagnosed GBM (NCT02805179). Building
on a prior phase I/II study showing the safety and efficacy of
radiation dose-escalation with concurrent temozolomide (15),
this multiparametric advanced imaging technique was used to
prospectively guide the boost volume for dose-intensified radi-
ation. To conduct this trial, the development of a workflow was
required to permit the integration of an advanced, multipara-
metric imaging technique into the radiation treatment planning
process. Here, we report the workflow and imaging characteris-
tics of the initial patients treated on this prospective clinical
trial.

METHODOLOGY
Patient Population
Adult patients of �18 years of age with newly diagnosed,
pathologically confirmed suptratentorial GBM following any
extent of resection were enrolled on this University of Michigan
IRB-approved clinical trial following study-specific informed
consent. Research was conducted in compliance with the World
Medical Association Declaration of Helsinki-Ethical Principles
for Medical Research Involving Human Subjects. Eligibility in-
cluded Karnofsky performance status �70, minimal life expec-
tancy of 12 weeks, adequate organ function, and maximal
contiguous volume of tumor based on advanced imaging-de-
fined boost volume of �1/3 volume of brain. Patients unable to
undergo MRI scans or with prior overlapping radiation therapy
were excluded. All patients were treated with standard concur-
rent daily (75 mg/m2) and adjuvant monthly (150–200 mg/m2)
temozolomide.

MRI and Computed Tomography Simulation
All patients underwent an MRI simulation and computed to-
mography (CT) simulation after surgery for radiation planning,
within 14 days of commencing chemoradiation. Rigid alignment
of the T1-weighted contrast-enhanced and T2 FLAIR MRI to the
CT image volumes in the Eclipse image registration workspace
was performed by the medical physicist and verified by the
radiation oncologist.

Commissioning of Hardware and Software QA
All MRI scans were performed on a 3 T scanner (Skyra, Siemens
Healthineers, Erlangen, Germany) in the Radiation Oncology
Department. Routine quality assurance of this scanner consists
of daily checks of intensity uniformity as well as weekly checks
following the ACR phantom accreditation scanning protocol
(16). T1 mapping is a critical element of DCE-MRI analysis. To
assess the accuracy, repeatability, and interplatform reproduc-
ibility of T1 quantification from variable flip angles, we scanned
a National Institute of Standards and Technology (NIST) T1
water phantom on our system, provided by our participation in an
NCI Quantitative Imaging Network (QIN) multicenter collaborative
project (17). We used the extended Tofts model to quantify DCE-
MRI, which was implemented in an in-house functional image
analysis tool (imFIAT) (18). The performance of our implementa-
tion of the extended Tofts model was evaluated using digital ref-
erence objects, that is, synthesized DCE phantoms with and without
noise, which was fully reported previously (19). In addition, we
participated in an NCI QIN multicenter arterial input function (AIF)
challenge to validate and compare our AIF delineation procedure to
others’ (20). On the basis of these evaluations and validations,
imFIAT has been granted a level-2 benchmark by the NCI QIN (21).

MRI Acquisition
All images were acquired on a 3 T scanner (Skyra) using a
20-channel head coil. Conventional images, such as 2-dimen-
sional (2D) T2-FLAIR images, and 3-dimensional pre- and post-
contrast T1-weighted images, were acquired. In addition,
physiological image acquisitions are described in the following
subsections.

Diffusion-Weighted Imaging. DW images were acquired using
a 2D RESOLVE pulse sequence with diffusion weighting in 3
orthogonal directions and b-values of 0 and 3000 s/mm2 (1 and
4, respectively) to reduce geometric distortion required for radi-
ation treatment planning. RESOLVE is a multishot technique
that uses 2D navigator correction with readout-segmented echo
planar imaging (22). Thirty slices were acquired to cover the
whole brain with echo time (TE)/repetition time (TR) � 81/7650
milliseconds, matrix size � 160 � 160, and slice thickness/
gap � 4.0/1.2 mm for �4.23 minutes. DW images acquired with
b � 3000 s/mm2 were used for target definition. In addition, DW
images were acquired by a 2D echo planar spin echo pulse
sequence with diffusion weighting in 3 orthogonal directions
and 11 b-values from 0 to 2500 s/mm2 as a backup scan. Thirty
slices were acquired with TE/TR � 93/8200 milliseconds, matrix
size � 192 � 192, slice thickness/gap � 4.0/1.2 mm, parallel
imaging factor of 4 and a single average for 5 minutes. Parallel
imaging factor of 4 was used to reduce the echo training time
and thereby reduce geometric distortion. A full characterization
of geometric accuracy of DW images with these acquisition
parameters was previously reported (14).

DCE Imaging. DCE images were acquired by a 3D gradient
echo pulse sequence, called TWIST, in the sagittal orientation to
avoid the in-flow effect and ensure artery coverage for an input
function delineation. To cover the whole brain, a field of view of
250 � 256 � 187 mm3 was used with a matrix of 128 � 128 �
104 to obtain an isotropic voxel size of �1.9, which allows
reformatting of the images in an axial plane or other planes as
desired. Other acquisition parameters included flip angle �
�10°, TE/TR � �0.95/2.65 milliseconds, temporal resolution �
�3 s, dynamic phase volumes � 60, and total acquisition
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time � 3 minutes. Contrast was injected after 5 dynamic image
volumes to achieve sufficient baseline data points.

Acquisition for T1 Quantification. 3D gradient echo images
with 4 flip angles (3°, 7°, 12°, and 16°), TE/TR � 2.27/5.34
milliseconds, a voxel size � �2 mm, and total acquisition
time � 1:45 minutes before contrast injection were acquired to
quantify native T1. Low spatial resolution B1 maps were ac-
quired to correct flip angle errors in T1 quantification, with an
acquisition time of �12 seconds.

Target Volume Definition and Data Transfer
Physician-defined volumes were delineated in the Eclipse treat-
ment planning system (Varian Medical Systems) directly on the
MRI scans. T2/FLAIR abnormality was defined on the FLAIR
MRI (FLAIR^GTV). The surgical cavity (Cavity^GTV), residual
contrast enhancement (Gd^GTV), and combination of cavity and
contrast enhancement (GTV_Low) were delineated on the T1-Gd
MRI. Volumes were then exported from the treatment planning
system to the image analysis software (functional image analy-
sis tool or imFIAT), for creation of DCE-MRI tumor volumes
(high CBV [hCBV]), and high b-value DW-MRI tumor volumes
(hypercellular volume [HCV]).

Image Analysis
DCE Analysis. Three-parameter Tofts model was used to

quantify the fractional plasma volume (Vp), transfer constant of
contrast (Ktrans), and the fractional volume of extravascular
extracellular space (ve) (23). The model was programed using
C�� with a GUI in a functional image analysis tool (imFIAT). A
full characterization of performance of software using digital
reference objects with a large range of physiological parameters,
acquisition parameters, and added Gaussian noise has been
previously published (19).

In brief, we used the general assumption that
Ct � �R1 (1)

where Ct is a contrast concentration in a voxel, and 
R1 is a
change in longitudinal relaxation rates after and before the
contrast injection. If TR � R1 ��1, which is generally satisfac-
tory for brain normal tissue and tumors,

�R1 �
�S

Sbaselline
R10 (2)

where 
S is a change in gradient echo intensities after and
before the contrast injection, Sbaseline is the averaged baseline
gradient echo intensity before contrast injection, and R10 is the
longitudinal relaxation rate before contrast injection. To obtain
an AIF, 20 voxels with maximum intensity differences in a
dynamic frame that was 1–2 time frames (�4–7 seconds) before
the enhancement peak were delineated. We participated in an
NCI QIN challenge project of AIF delineation using our approach
and our software (24). The parameters quantified from our AIF
were well correlated with others (24).

T1 Calculation. T1 maps were derived by fitting

S � S0
sin(�)

1 � cos(�) exp��
TR

T10


�1 � exp��TR 	 T10�� (3)

where � is a flip angle, TR is repetition time, and S0 is margin-
ation amplitude, to the 4-flip angle T1-weighted images using
Simplex algorithm.

Using equations (1) and (2), AIF, T10 and the 3-parameter
Tofts model, Vp maps were calculated. Then, hematocrit of 0.45
was used to convert Vp to CBV as CBV � [Vp/(1 � 0.45) � 100
(ml/100 g)], where blood density (1 mL/g) was used.

HCV Delineation
HCV was determined on DW images with b � 3000 s/mm2. A
threshold was used from the normal tissue volume of interest
(VOI) that was most contralateral to GBM. To obtain the normal
brain VOI, an automated process was used to first extract the
brain surface and find the middle line near the central fissure of
the brain on T2-weighted images (b � 0). Then, the FLAIR
abnormality volume was mirrored to the opposite side of the
brain surface through the middle line. To remove CSF influence
on the signals from the normal VOI, we remove all voxels with
strong CSF signals by classifying CSF on T2-weighted images
(b � 0) using fuzzy c-means. The VOI was eroded at least 5 mm
from GTV^FLAIR, and had �600 pixels per slice. Then, voxels
within the GTV^FLAIR on each slice were thresholded using
mean � 2SD of the intensities in the VOI on the slice to account
for DW intensity variations across slices. All these processes are
fully automated. If a visual inspection of the normal brain VOI
indicated the VOI inadequate, HCV could be recreated after
adjusting the normal brain VOI by physician coauthors.

hCBV Delineation
hCBV was delineated on the CBV images with a threshold that
was established in a previous study (12). Because normal white
matter (WM) and gray matter (GM) have intrinsically different
CBV values, the threshold value obtained from an uninvolved
contralateral volume would vary depending on the ratio of GM
to WM in that volume. We therefore segmented uninvolved
contralateral GM in the frontal lobe (which has a higher CBV
than uninvolved WM) and defined the hCBV tumor volume as
the volume of tumor with CBV �1 SD above GM. This definition
resulted in hCBV tumor volumes that predicted PFS and OS (12).
Therefore, we used this definition in this pilot study of the
clinical trial. This threshold was applied to GTV_Gd with 0–3
mm extension on CBV maps.

Volume Review
HCV and hCBV volumes were reviewed by the physician, neu-
roradiologist, and MRI physicist. Volumes were slightly edited
during central review to remove components outside of the
brain parenchyma for both HCV and hCBV, or overlap with
blood vessels rather than parenchymal tumor volume for hCBV.
Finalized tumor volumes were then imported from imFIAT back
into the treatment planning system as binary image volumes
associated with the HCV and hCBV image set. Images were
automatically registered in the Eclipse Image Registration work-
space to the original T1-post-Gd scan and checked by the clin-
ical physicist. The clinical physicist then copied the HCV and
hCBV volumes to the CT data set in the treatment planning
system.

Image and Volume Registration and Delineation
The physician reviewed the HCV and hCBV volumes in the
treatment planning system. CTV and PTV structures were then
created as follows: CTV_Low was defined as a 1.7 cm expansion
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from GTV_Low delimited by normal anatomic boundaries.
PTV_Low was defined 0.3 cm (0.2 cm positioning uncertainty
with daily CBCT plus 0.1 cm MRI to CT registration uncertainty)
as per institutional standard. For the advanced MRI (HCV and
hCBV) boost target volumes, no CTV margin was used. PT-
V_High was defined as a 0.5 cm expansion from the HCV/hCBV

volumes (0.2 cm positioning uncertainty � 0.2 cm RESOLVE
DWI uncertainty � 0.1 cm MR to CT registration uncertainty).

PTV_Low was prescribed 60 Gy in 30 fractions and
PTV_High was prescribed 75 Gy in 30 fractions using a simul-
taneous integrated boost technique. Volumetric modulated arc
therapy using the Eclipse treatment planning system was used in
all cases. The goal was to cover 100% of the target volumes with
95% of the prescribed dose, while maintaining conventional
dose limits as utilized on cooperative group trials for high-grade
glioma. This included maintaining optic chiasm and optic
nerves �54 Gy, brainstem surface (ventral 3 mm of brainstem)
�64 Gy, and brainstem core �55 Gy.

RESULTS
Patient Characteristics and Imaging Subvolumes
The initial 12 patients enrolled between September 2016 and
June 2017 were included in this analysis. Baseline characteris-
tics of patients are described in Table 1. All patients had IDH1
wild-type tumors by immunohistochemistry. Fifty percent of
patients underwent gross total resection, 33% underwent sub-
total resection, and the remainder underwent biopsy alone. The
workflow for image acquisition, volume delineation and data
transfer, and treatment planning is depicted in Figure 1. All
patients initiated radiation within 6 weeks of surgery and within
2 weeks of simulation. Advanced volume processing was gen-
erally done within 24–36 hours of simulation.

Characteristics and distributions of CBV in normal frontal
GM, normal WM, and the hCBV tumor volumes are shown in

Table 1. Baseline Patient Characteristics

Clinical Characteristic No (%)

Median age (range) 65–(51-77)

Male 8 (67%)

Extent of resection

Gross total resection 6 (50%)

Subtotal resection 4 (33%)

Biopsy 2 (17%)

MGMT methylation status

Positive 3 (25%)

Negative 9 (75%)

Tumor location

Frontal lobe 4 (33%)

Temporal lobe 5 (42%)

Parietal lobe 2 (17%)

Occipital lobe 1 (8%)

Figure 1. Integrated workflow diagram for the implementation of an advanced dynamic contrast-enhanced (DCE)- and
high b-value magnetic resonance (MR) imaging signature to guide dose-intensified radiotherapy. TPS � treatment plan-
ning system; Gd � T1-Gd-enhanced MRI; GTV � gross tumor volume; CTV � clinical target volume; PTV � planning
target volume.
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Figure 2. Note that the CBV value � 2SD in the frontal WM
was below the mean value in the normal frontal GM, and
thus, it cannot be used to define the elevated CBV in the
tumor volume.

Characteristics of conventional and advanced MRI target
volumes are listed in Table 2. On average, the Gd-enhanced
volume was �3 times larger than those of either HCV or hCBV,
and 1.8 times larger than the union (combination) of HCV and
hCBV. HCV and hCBV identified largely distinct volumes with
only �1 cc of overlap between the 2 (range, 0.002–6.8 cc). The
enhancing component of the union of HCV and hCBV was only
57% (range, 0.3–0.9) of the volume, with an average of 4.1 cc
(range, 1.4–7.9) extending outside of the enhancing region.
Only 2 patients showed minimal extension of the union HCV
and hCBV volume beyond FLAIR (0.06 cc and 0.04 cc, respec-
tively), and FLAIR volumes were �10 times larger than the
union of HCV and hCBV. An example of HCV and hCBV vol-
umes that are largely nonoverlapping overlaid on the corre-
sponding T1-Gd MRI is shown in Figure 3. Two examples of
representative radiation plans for 2 different patients are shown
in Figure 4. For comparison, example plans without the ad-
vanced MRI boost are also depicted. As showed, the advanced

MRI boost volume was generally a smaller tumor subregion
contained within the conventional target volume.

DISCUSSION
While the limitations of anatomic MRI for radiation therapy
have been reinforced by multiple studies showing that tumor
identified by advanced MRI techniques extending outside of
conventionally defined volumes predicts patient prognosis
independent of T1-Gd, T2-FLAIR, and other clinical factors,
advanced imaging techniques have not been incorporated
into routine radiation planning (10, 25). In this initial report
of a prospective, single-arm phase II trial for patients with
newly diagnosed GBM from a single institution, we describe
the end-to-end process of delivery of dose-intensified RT to
predicted, high-risk tumor subregions identified by multipa-
rametric MRI. The advanced hypercellular and hyperperfu-
sion tumor subvolumes were significantly smaller than the
conventionally defined T1-Gd and T2/FLAIR abnormalities
standardly targeted for radiation treatment planning, and
identified distinct regions that were frequently nonenhancing
and therefore excluded from standard radiation boost volume
definition. Using physician-defined volumes on conventional
T1-Gd and T2-FLAIR images, the semiautomated creation of
advanced MR boost volumes was accomplished for real-time
planning, yielding successful delivery of advanced imaging-
defined dose-intensified RT in all patients beginning within 2
weeks of simulation.

Given the known limitations of conventional MRI for de-
fining tumor extent and predicting outcome in patients with
GBM, the use of advanced imaging including perfusion and
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Figure 2. The averaged CBV values in the hCBV
tumor volumes, normal frontal white matter (WM)
and normal frontal gray matter (GM) in the 12
study patients. The error bars depict the averaged
standard deviations of cerebral blood volume
(CBV) in the 3 volumes of interest across the 12
patients. Note that the mean CBV value � 2SDs
in the frontal WM is smaller than the mean value
in the frontal GM, and thus, it cannot be used as
a threshold value to define the elevated CBV in
the tumor volume.

Table 2. Volume and Overlap of
Conventional and Advanced Imaging
Subvolumes

Target
Mean

Volume (cc) Range

GTV^Gd 23.9 3.9–49.9

GTV^FLAIR 128.9 39.2–248.5

GTV^HCV 7.5 1.7–20.4

GTV^hCBV 6.6 0.5–18.2

Union of HCV and hCBV 13.1 2.3–31.8

Overlap of HCV and hCBV 0.9 0.002–6.8

Overlap Gd and HCV 5.3 0.4–17.4

Overlap of Gd and hCBV 4.5 0.3–15.0

Overlap Gd and Union 8.9 0.9–26.0

Overlap FLAIR and HCV 7.5 1.7–20.4

Overlap FLAIR and hCBV 6.5 0.5–18.2

Overlap FLAIR and Union 13.1 2.3–31.7

HCV outside of Gd 2.2 0.8–3.6

hCBV outside of Gd 2.0 0.0–6.1

Union outside of Gd 4.1 1.4–7.9

GTV�Gd � Gadolinium enhanced target volume; GTV�FLAIR � FLAIR
target volume; GTV�HCV � Hypercellular high b-value DW-MRI target
volume; GTV�hCBV � Hyperperfused DCE-MRI target volume.
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diffusion-weighted MRI has been studied for more than a decade
to assess physiologic phenotypes of prognostic significance in
this disease. Dynamic susceptibility contrast (DSC) and DCE-
MRI permit quantitative estimation of parameters reflective of

tumor neovascularization that has been associated with tumor
growth in GBM, including CBV, cerebral blood flow, and Ktrans

(23, 26). Maximum CBV and pathologically verified tumor vas-
cularity are correlated, and elevated mean relative CBV (rCBV)

Figure 4. Representative images from radiation plans from 2 different patients. The top row depicts images of radiation
plans using advanced MRI to boost tumor subregions to 75 Gy. High-risk tumor targets are identified by advanced MRI
(cyan) beyond the abnormal regions seen on T1 Gd-enhanced conventional MRI (green). The conformal 75-Gy isodose
line targeting the advanced imaging tumor volume is depicted in red, and the larger 60-Gy isodose line targeting the
anatomic T1-Gd-enhanced region with standard clinical margins is depicted in gray-white. The bottom row depicts im-
ages of comparison standard radiation plans for the same patients based on anatomic T1-Gd-enhanced MRI with stan-
dard clinical margins prescribed to 60 Gy. As showed, advanced MRI-identified boost regions prescribed to 75 Gy
were often contained within standard anatomic MRI regions prescribed to 60 Gy.

Figure 3. An example of a pa-
tient with largely nonoverlapping
hypercellular tumor regions
(TVHCV) identified by high b-value
diffusion-weighted (DW)-magnetic
resonance imaging (MRI) (cyan,
left panel) and hyperperfused
tumor regions (TVHCBV) identified
by DCE-MRI (red, middle panel).
Significant extension of TVHCV is
showed beyond the T1 Gd-en-
hanced region (overlay on T1
Gd-enhanced image, right
panel).
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�1.75 in patients with low- and high-grade gliomas is associ-
ated with shorter time to progression (2). Additionally, these
perfusion parameters are predictive of overall survival in pa-
tients with malignant gliomas (10, 11).

Given the well-known limitation in geometric accuracy of
DSC images, we selected T1-weighted DCE images to estimate
CBV for the purpose of radiation boost target definition. Several
previous studies as well as ours have directly compared CBV
values estimated by DSC and DCE images (27-31). An early
study reported good correlation of median values in tumors
between 2 CBV estimates (r � 0.67) and excellent pixel-by-pixel
correlation between the 2 estimates in normal brain tissues (r �
0.96) in 9 patients with intraaxial cerebral tumors (27). Another
study of 32 patients with high-grade glioma showed a weak-
but-significant correlation between the 2 estimates in the en-
hancing tumor volumes in a pixel-by-pixel comparison (28).
Another study including 17 healthy subjects and 9 patients with
glioblastoma reported excellent correlations of the 2 CBV esti-
mates in normal GM and WM (r � 0.9 and r � 0.89, respectively)
and a good and significant correlation in the tumor (r � 0.67)
(29). A recent study examined the diagnostic accuracy of glioma
grades in 26 patients using the median tumor values of the 2
CBV estimates, which achieved a similar diagnostic accuracy
(30). We have performed similar analysis in 20 patients with
brain metastases, in which both DCE and DSC images were
acquired in a single session with 2 contrast injections. We found
good correlation between the 2 CBV estimates in both normal
brain tissue and brain tumor volumes (r � 0.66–0.71) (unpub-
lished data). These similarities and discrepancies depend upon
several factors. The 2 imaging methods rely on considerably
different contrast mechanisms and model theories, which can be
affected by different physical and physiological conditions.
Also, different acquisition parameters and modeling implemen-
tations, for example, correcting T1 and vascular leakage effects
in DSC analysis, can affect the results.

Additional physiologic properties of malignant gliomas
may be assessed with DW-MRI, which has been used to assess
the mobility of water molecules in the tissue microenvironment
as a surrogate for tumor cellularity, and is a method for thera-
peutic response assessment as first shown in patients with gli-
oma (6, 7, 13). An inverse correlation is observed between ADC
and brain tumor cellularity in preclinical studies (13). However,
known limitations of this approach for isolating tumor cellular-
ity from normal brain tissue, edema, and micronecrosis in the
heterogeneous GBM microenvironment may lead to unpredict-
ably elevated ADC compared with normal tissue. This limitation
may be mitigated through the use of high b-value DW-MRI
(3000–4000 s/mm2) versus 0 and 800–1000 s/mm2 to attenuate
signals due to edema (14, 32-34). We investigated the prognostic
value of this approach, showing that the hypercellular tumor
region (HCV) identified before RT using high b-value DW-MRI
correlates with worse PFS in patients with newly diagnosed
GBM treated with standard chemoradiation (14). We determined
that in contrast to DCE-MRI alone, the combined use of high
b-value MRI with DCE-MRI identifies largely spatially distinct
regions with mean overall of only 21% (12). Moreover, the

combination of these modalities correlated with patterns of
failure and progression, and therefore, these are rationally tar-
geted for intensified radiation treatment (12).

A limited number of studies are prospectively evaluating
the incorporation of advanced imaging for the radiation treat-
ment of patients with GBM. These include ongoing studies using
proton MR spectroscopic imaging and amino acid positron
emission tomography to guide radiation treatment in patients
with GBM. Proton MR spectroscopic imaging detects chemical
compounds reflective of cellular turnover and proliferation and
correlates with histologic tumor cell density and survival in
patients with GBM (35-38), although its use for radiation treat-
ment has been limited to select centers with imaging expertise.
Amino acid positron emission tomography including 11C-Me-
thionine and 18F-radiolabeled 3,4-dihydroxy-6-[18F]fluoro-L-
phenylalanine [18F]F-DOPA tracers is also under evaluation for
targeting of potentially aggressive tumor regions beyond con-
ventional MRI in ongoing trials in the United States and Europe.
Studies have shown significant correlation in the standard up-
take values of 11C-MET and 18F-FDOPA with nearly identical
patterns of spatial uptake (39); both have been shown to be
prognostic for survival and recurrence and potentially comple-
mentary to MRI, although not widely adopted and limited to
research centers with expertise in complex radiotracer synthesis
or on-site cyclotrons (40-42).

Our study represents the first report of the prospective
implementation of a multiparametric imaging signature that is
integrated in the RT workflow to guide intensified RT against
distinct, poor prognosis phenotypes in patients with GBM. Ini-
tial implementation of the real-time use of a multiparametric
MR signature for radiation planning involved QA and commis-
sioning of DW- and DCE-MRI for clinical usage before clinical
implementation. Implementation of an advanced MR biomarker
for radiation treatment requires close coordination between the
radiation oncologist, imaging physics, and clinical physics
teams to delineate tumor volumes, process and transfer data
between treatment planning and advanced imaging software,
and ensure timely initiation of treatment. Limitations of this
approach include the phenotypic and biologic diversity of GBM,
and whether a multiparametric signature is sufficient to char-
acterize this heterogeneity and guide treatment in this disease.
To address this, we are acquiring and correlating other physio-
logical imaging modalities with advanced MRI, as well as ac-
quiring longitudinal imaging to evaluate whether temporal
changes in advanced imaging features may be used to predict
outcome and further tailor therapy.

In this report, we show the feasibility of the real-time use of
a multiparametric MR signature to guide radiation treatment
against prognostic, unique tumor subregions that substantially
differ from the T1-Gd-enhancing high-risk boost volumes stan-
dardly defined by conventional MRI. Survival outcomes are
awaited from this study, and future directions include transla-
tion of this workflow to a second site to validate the generaliz-
ability of this novel radiotherapeutic approach for patients with
GBM.
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Prostate cancer is the most common noncutaneous cancer in men in the United States. The current paradigm
for screening and diagnosis is imperfect, with relatively low specificity, high cost, and high morbidity. This
study aims to generate new image contrasts by learning a distribution of unique image signatures associated
with prostate cancer. In total, 48 patients were prospectively recruited for this institutional review board–ap-
proved study. Patients underwent multiparametric magnetic resonance imaging 2 weeks before surgery. Post-
surgical tissues were annotated by a pathologist and aligned to the in vivo imaging. Radiomic profiles were
generated by linearly combining 4 image contrasts (T2, apparent diffusion coefficient [ADC] 0-1000, ADC
50-2000, and dynamic contrast-enhanced) segmented using global thresholds. The distribution of radiomic
profiles in high-grade cancer, low-grade cancer, and normal tissues was recorded, and the generated prob-
ability values were applied to a naive test set. The resulting Gleason probability maps were stable regard-
less of training cohort, functioned independent of prostate zone, and outperformed conventional clinical
imaging (area under the curve [AUC] � 0.79). Extensive overlap was seen in the most common image sig-
natures associated with high- and low-grade cancer, indicating that low- and high-grade tumors present simi-
larly on conventional imaging.

INTRODUCTION
Prostate cancer is the most frequently diagnosed noncutaneous
cancer in men in the United States, accounting for �1 in 5 new
cancer diagnoses (1). Increased screening efforts, early aggres-
sive therapy for high-risk disease, and the relatively indolent
nature of the disease in most patients have resulted in an overall
5-year survival rate of 99% for organ-confined prostate cancer
(1). The current paradigm for prostate cancer diagnosis centers
on obtaining tissue diagnosis before definitive therapy, either
through conventional 12-core systematic transrectal ultra-
sound-guided biopsy systems or newer magnetic resonance im-
aging (MRI)-fusion targeted biopsies. These data are typically
combined with clinical information (ie, prostate-specific antigen
[PSA], PSA density, and clinical T stage) and implemented into
various nomograms to predict disease “risk” status.

While PSA screening has been shown to reduce mortality
(2-4), PSA alone has relatively low specificity for prostate can-

cer diagnosis and is insufficient in stratifying disease risk status,
leading to an abundance of low-risk patients undergoing an
invasive biopsy (5). The conventional paradigm for prostate
cancer diagnosis and staging has been challenged in recent
years, with data showing that nontargeted biopsies can lead to
under-sampling, inaccurate risk stratification, or missing the
target cancer all together (6, 7). As a result, noninvasive imaging
with multiparametric MRI (MP-MRI) of the prostate is increas-
ingly being used as a tool for prostate cancer detection, preop-
erative staging, active surveillance, targeted biopsy, and guid-
ance for definitive focal therapy. Several recent prospective
trials have shown that using MP-MRI in the prebiopsy setting to
identify target lesions for targeted biopsy outperforms system-
atic 12-core biopsy, leading to a higher rate of diagnosis for
clinically significant cancers and a fewer clinically insignificant
cancers (8, 9). The incorporation of MR-guidance, however,
requires a radiologist to identify and label potential targets.
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With the clinical standard of care shifting toward image-guided
biopsies, an increased burden will be placed on radiologists to
correctly and efficiently identify prostate tumors for biopsy.

A typical clinical prostate MRI protocol includes T2-
weighted imaging to delineate structure and zone anatomy,
multi b-value diffusion-weighted imaging to identify areas of
diffusion restriction, and dynamic contrast-enhanced (DCE) im-
aging to identify early or contemporaneous focal enhancement.
The exams are interpreted by a radiologist according to the
PI-RADS v2 (10) that assesses the probability of clinically sig-
nificant cancer. The lack of specificity inherent to PSA screening
and MP-MRI means that a definitive diagnosis still requires a
biopsy procedure which often leads to the overtreatment of
low-risk prostate cancer (11). Patients who do not necessarily
have cancer undergo invasive biopsy procedures to mitigate the
uncertainty in the screening tests. The clinical barrier to over-
come is to appropriately stratify patients near the boundary
between intervention and active surveillance before biopsy. The
line between active surveillance and treatment is histologically
Gleason 3 vs Gleason 4, which roughly correlates to PI-RADS 3
vs PI-RADS 4 on MP-MRI.

Computer-aided diagnostic tools informed by postoperative
tissue may provide an opportunity to address this clinical barrier
(12-14). Predictive models made from aligned whole mount
tissue and in vivo imaging provide opportunity to bring addi-
tional information into image space, increasing the overall spec-
ificity of a nonspecific test. Radiomics and machine-learning
based approaches have been a great success over the past decade
(15-18) and improved sensitivity yet decreasing the specificity.
However, there is a need for further improvement of this tech-
nology.

Radiomics provides a framework for quantifying tumor
microenvironment by analyzing images as a mineable database.
In addition, by creating a database of aligned pathology or
genetics with clinical imaging, it becomes feasible to find radio-
logic patterns of tumor phenotype which may provide critical
predictive information (19-21). Radiomics-based approaches
have seen success over the past decade, proving successful
across modalities (22, 23) and organ systems, (24-26) by pro-
viding a useful means for engineering features amenable to
machine learning approaches.

This study uses an aligned rad-path data set to determine
whether unique imaging signatures predict the presence of pa-
thologist-identified prostate cancer. We present a method which
learns a distribution of unique image characteristics associated
with histologic annotations to create voxel-wise predictive
maps on a naïve test set.

METHODS
Patient Population
Forty-eight patients were recruited prospectively for this insti-
tutional review board (IRB)–approved study between June 2014
and February 2017. Written consent was obtained from all
patients. Patients’ age ranged from 45 to 71 years (mean, 60
years). Inclusion criteria for this study included a scheduled
radical prostatectomy and clinical imaging with additional high
b value DWI 2 weeks before surgery.

Imaging
MP-MRI was acquired on a 3 T MRI scanner (General Electric,
Waukesha, WI) using an endorectal coil. MP-MRI included field
of view (FOV)–optimized and –constrained undistorted single
shot (FOCUS) DWI, DCE imaging, and T2-weighted imaging. T2
acquisition parameters were as follows: repetition time (TR) �
3370 milliseconds, FOV � 120 mm, voxel dimensions � 0.23 �
0.23 � 3 mm, acquisition matrix � 512, and slices � 26.
Diffusion images were collected with 10 b-values (b � 0, 10, 25,
50, 80, 100, 200, 500, 1000, 2000). The DCE images were col-
lected during injection of a gadolinium contrast agent with
acquisition matrix � 256, slices � 25, and FOV � 120 mm. All
image contrasts used in this study were acquired axially.

MRI Preprocessing
The T2-weighted images were intensity-normalized to the stan-
dard deviation within a manually drawn prostate mask (26-29).
The B � 0 image was aligned to the T2 using FLIRT (30, 31) and
corrected manually if necessary using a freesurfer tool, tkregis-
ter2 (surfer.nmr.mgh.harvard.edu). ADC was calculated from 2
combinations of b-value for the purposes of this study, 0 and
1000 and 50 and 2000 (32). The DCE volume with maximal
contrast influx was identified using a custom algorithm pro-
grammed in Matlab (MathWorks Inc., Natick, MA) and manually
aligned to the T2-weighted image using tkregister2. The DCE
was intensity-normalized as described above for the T2-
weighted images.

Tissue Processing
Following surgery, prostate samples were sectioned using pa-
tient-specific tissue slicing molds created from the presurgical
T2 images, as previously published (29, 32). Surface models were
created from the manually drawn prostate mask using 3D slicer
and subtracted from a template-slicing mold matching the T2
slice spacing using Blender. The slicing molds were then 3D-
printed using a fifth-generation Makerbot. Tissue sections were
paraffin-embedded, whole-mounted, and stained with hema-
toxylin-eosin. Slides were digitally scanned using a microscope
equipped with an automated stage (Nikon Metrology, Brighton
MI). The digitized histology was annotated by a fellowship-
trained urologic pathologist (KAI) using color codes correspond-
ing to the Gleason grading system. Annotations were drawn on
a Microsoft Surface Pro 4 using a predefined color palette. The
annotations were saved as a mask overlaid on the high-resolu-
tion histology.

Tissue Alignment
Digitized samples were aligned to the T2-weighted images using
custom software previously published (29, 32). Control points
were manually placed on analogous points on both the histol-
ogy and the MRI. A nonlinear transform was then calculated to
warp the histology into T2 space using the imwarp command in
the Matlab image processing toolbox (MathWorks Inc.). The
annotations from our pathologist were likewise transformed
into T2 space using the same transform and a nearest-neighbor
interpolation. The pathologist annotations in MRI space are
referred to as “deep annotations” throughout the manuscript.
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Stratification by Tumor Volume
A 3-fold cross-validation approach was chosen to test general-
izability. A custom sampling algorithm was required to distrib-
ute patients into cohorts with balanced tumor burden. Patient-
wise tumor burden was calculated as the sum of the number of
pathologist-annotated high grade (Gleason 4-5) and low grade
(Gleason 3) voxels. Stratification by high grade and low grade
was chosen in lieu of individual Gleason grade owing to the
relatively limited amount of grade 5 tumor in the data set.
The ideal cohort tumor burden was calculated as the total tumor
burden divided by the number of cohorts. Random permutations
of patients were created, and the difference between the ran-
domly generated tumor burden and the ideal tumor burden was
calculated. A separate error metric is calculated for each cohort
(n) and then summed to produce a single error score for that
permutation as seen in equation 1:

Error � �
n�1

3

�1 �
Actual Tumor Burden

Ideal Tumor Burden
� 	 Cost (1)

The cost function was empirically set at 3:1, favoring high-
grade tumors; this results in a much larger error score if the
high-grade tumor volume is unbalanced. There were a larger
number of low-grade annotations than high-grade ones in the
data set, and balancing high-grade tumor volume was deemed
more important than balancing low grade. The permutation
producing the lowest error in 10,000 iterations was used as the
group assignment for this study. There are approximately 1021

possible combinations, thus sampling 10,000 limits bias but
provides relatively balanced cohorts.

Global Thresholding and Segmentation
Each of the 3 cohorts was used as a test set for an algorithm
trained on the other 2 cohorts. Three sets of global thresholds
were established; for each cohort a global threshold was estab-
lished using the 2 unused cohorts (32 patients). The contrasts
used in this study were ADC (b � 0 and b � 1000), ADC (b � 50
and b � 2000), T2, and DCE. Global thresholds were created
using Otsu’s method calculated on all voxels in the manually
drawn prostate masks for the entire training cohort of 32 pa-
tients; thresholds applied to the test set were not generated from
these data (33). Global thresholding tests the assumption that all
cohorts represent the same probability density function and
additionally removes the constraint that each patient expresses
each unique image characteristic. Images were segmented using
the calculated thresholds into dark, intermediate, and bright
intensities represented by values of 1, 2, and 3 respectively.

Generation of Radiomic Profiles
A unique code was created for each voxel by linearly combining
the segmented image contrasts. Radiomic profiles were created
by multiplying the segmented contrasts by ascending powers of
10 such that each digit represents the segmentation value of that
individual contrast. With 4 image contrasts with 3 color values
each a total of 81 radiomic profiles are possible; a voxel encoded
with 1133 contains dark ADCshort, dark ADClong, bright T2, and
bright DCE. A schematic demonstrating the generation of the
radiomic profiles is shown in Figure 1 (26).

Training Set Independence
To determine the training set independence, imaging from an
additional 5 patients not included in the previous analysis was
processed. Three sets of radiomic profiles were generated using
each of the 3 sets of thresholds calculated prior. Each pixel
within the prostate mask was analyzed to quantify the overlap
among the 3 sets of images. Pixels where the radiomic profile
was identical across all images were labelled 3, and pixels where
only 2 images matched were labelled as 2. A high overlap score
(a large percentage of voxels with a value of 2 or 3) would
indicate stable performance regardless of training set.

Gleason Probability Maps Generation
A probability table was generated by analyzing the distribution
of each unique image signature within the pathologist-anno-
tated regions. The distribution of each profile in the training set
is recorded for low grade, high grade, and benign atrophy (ie,
profile 1111 contains benign atrophy 75% of the time). The
probability distribution is then propagated to the test set, where
each profile is replaced by its respective percentage value, cre-
ating 4 maps depicting low grade, high grade, benign, and
cancer likelihood. Figure 2 shows the generation of the proba-
bility table and Gleason probability maps.

Zone Dependence
The imaging signatures of prostate cancer are known to be
zone-dependent. Lesions are evaluated via the PI-RADS scale
using primarily the T2-weighted images in the transition zone
and DWI in the peripheral zone. To test the robustness of
the Gleason probability maps to tumor location, additional
probability tables were created stratified by zone (ie, profile

Figure 1. Generation of Radiomic profiles. Left:
The 4 contrasts included in this study and the re-
sulting segmentations created using Otsu’s
method. Right: 81 unique image characteristics
created by linearly combining the segmented im-
age contrasts. Each voxel receives a 4-digit code
representative of the segmented image contrasts.
Code 1133 indicates dark ADCshort, dark
ADClong, bright T2, and bright DCE.
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3333 contains high-grade tumor in 3% of the voxels located in
the peripheral zone and 0% of the voxels in the transition zone)
and applied to the test set. These new maps were evaluated using
a receiver operator characteristic (ROC) and compared to the
nonzone-dependent maps.

Evaluation of Gleason Probability Maps and
Comparison to Clinical Imaging
The Gleason probability maps were evaluated lesion-wise using
a ROC analysis. High grade was compared to all other tissue,
cancer to all other tissue, and high grade to low grade. In
addition, the intensity normalized image contrasts were evalu-
ated for their ability to distinguish high-grade cancer from all
other tissue and high grade from low grade.

RESULTS
Patient Stratification
Patients were stratified pseudorandomly, attempting to match
an empirically determined ideal tumor burden using a custom
sampling algorithm. The high-grade tumor and low-grade tu-
mor burdens were, on average, 7.3% and 19.4% off the calcu-
lated ideal tumor burden.

Training Set Independence
Radiomic profile maps generated using thresholds from 3 pa-
tients cohorts were compared for overlap on data from 5 patients
not included in the study. The individual radiomic profile maps
and the overlap map can be seen in Figure 3. At least 2 cohorts
had identical radiomic profile values on 98.6% of the pixels in
the additional subject (red and yellow areas), and all 3 cohorts
agreed on 76.3% of voxels (yellow only).

Zone Independence
The zone dependence of the technique was tested using a ROC.
The resulting AUCs can be seen in Table 1. The algorithms’
performance was nearly identical when zone information was
included; however, the addition of zone information requires
manually drawn zone masks. Figure 4 shows the high-grade
Gleason probability map on the same patient with and without
zone information included.

Table 1. Comparison of ROC AUC in
Gleason Probability Maps Made With and
Without the Inclusion of Zone Information in
the Probability Table

Zones
No

Zones

High Grade vs All 0.76 0.77

Cancer vs All 0.79 0.77

Normal vs All 0.79 0.79

Figure 2. Generation of Gleason probability
maps from a training data set. Top: Hematoxylin
and eosin stained whole mount histology and the
corresponding pathologist annotations and T2
slice. Middle: Radiomic profiles are masked by
the pathologist annotations and the distribution of
the radiomic profiles. Bottom: The distribution of
radiomic profiles within high grade, low grade,
and benign regions are analyzed over 32 pa-
tients. The resulting probability values are applied
to the radiomic profiling images on naïve data to
create Gleason probability maps.

Figure 3. Top: Radiomic profiles generated with
global thresholds calculated on 3 different train-
ing sets, applied to a patient not otherwise in-
cluded in the analysis. Bottom: Overlap map: yel-
low pixels have an identical image signature
across all cohorts, red and yellow pixels have
identical image signatures in 2 cohorts. Blank
pixels have no overlap.
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Receiver Operator Characteristic
The resulting ROCs can be seen in Table 2 along with the
difference between the 2 conditions. The AUC of the clinical
contrasts alone ranged from 0.55 to 0.78. The Gleason proba-
bility maps achieved an AUC of 0.79, distinguishing cancer from
benign atrophy. Figure 5 shows ROCs comparing the Gleason
probability maps to the raw image contrasts used in the analysis.
Figure 6 shows the resulting Gleason probability maps on 3
true-positive and 1 true-negative case.

Image Signatures Unique to Low- and High-Grade
Tumors
The 10 most common profiles by volume seen in both high- and
low-grade cancer can be seen in Table 3. Seven of the top 10

most frequently seen profiles in high-grade cancer also fre-
quently appear in low-grade cancer. Approximately 13,000
voxels containing high-grade tumor are explained by profile
1122, making it the most frequently seen high-grade image
signature. That profile is the fifth most common low-grade
profile, but the volume is nearly identical at 12,000 voxels,
resulting in a similar probability that a voxel containing 1122 in
the test set is high grade or low grade.

The similarity in image characteristics between high- and
low-grade tumors occurs independent of lesion size. Normal and
benign regions, on average, exhibit image signature 2222. Le-
sions less than 200 contiguous voxels (�12.5 mm2 in-plane)
exhibit an identical image signature—these lesions are indistin-
guishable from normal tissue. Large lesions exhibit profile 1122
regardless of final Gleason grade.

DISCUSSION
This study translated a technique developed as a risk stratification
model in glioblastoma (26) to identify unique image signatures
associated with prostate cancer. The technique outperforms the
diagnostic capacity of each of the clinical images individually
(Figure 5) and brings histologic data in the form of a learned
probability distribution of unique image signatures into image
space on naive data. Patients were successfully stratified pseudo-
randomly into cohorts with roughly equivalent volumes of high-
and low-grade prostate cancer. Gleason probability mapping pro-
duces nearly identical results independent of training cohort and
functions without requiring zone information.

Table 2. Comparison of ROC AUC in
Gleason Probability Maps and Clinical Image
Contrasts

Cancer vs
Benign

High Grade
vs Low
Grade

T2 0.58 0.53

ADC 0-1000 0.77 0.58

ADC 50-2000 0.78 0.60

DCE 0.65 0.51

Gleason Probability Map 0.79 0.56

Both cancer versus benign and high grade vs low grade were tested.

Figure 4. Top: T2-weighted image and deep
annotation overlaid on the same slice. A grade 4
cribriform tumor is shown in yellow. Bottom: Glea-
son probability maps created with and without the
inclusion of zone information in the training data
set. The images are nearly identical and the tumor
is clearly visible.

Figure 5. Receiver operator characteristic (ROC)
evaluating the performance of the 4 raw image
contrasts compared to Gleason probability maps
(cancer probability). ADC 50-2000 � 0.78, ADC
0-1000 � 0.77, DCE � 0.65, T2 � 0.57, Glea-
son probability map � 0.79.
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Other prostate radiomics approaches have seen success in
detecting prostate cancer using MP-MRI (34, 35). These tools
rely either on confirmed pathologically radiologist ROIs or
aligned, annotated whole mount slides and frequently combine
first-order histogram features with texture and volume features
to create a single risk score rather than applying global thresh-
olds. Many volume- and histogram-based features require an a
priori ROI in the test set, whereas pixel-wise approaches can
provide both disease severity and detection. These tools have
trended toward aligned whole mount histology which allows
voxel-wise predictions and eliminates the need for a radiologist
to manually draw ROIs. Reported AUC varies by technique and
ranges from 0.76 to 0.99; however, all published techniques
distinguish cancer (G3�) from benign or healthy tissue. Nota-
bly, to the best of our knowledge, no technique has been pub-
lished to date that is capable of distinguishing G3 and G4
patterned lesions, which is where the clinical decision is often
made, as it pertains to choosing active surveillance versus de-
finitive therapy. The method introduced in this study, Gleason
probability mapping, likewise performs poorly at distinguishing
high-grade tumor from low-grade tumor, likely because of the
limitations of the imaging techniques themselves. Future studies
focused specifically on differentiating G3 from G4� need to
occur.

Table 3. Top 10 Most Common Radiomic
Profiles in High- and Low-Grade Lesions
Ordered by Volume

Low Grade High Grade

Volume Profilea Volume Profile

22 179 2222 13 572 1122

17 900 1123 12 146 1112

16 302 1112 9871 1132

13 609 2212 8470 1123

13 060 1122 8356 1111

12 651 2223 8323 1121

9159 1111 7800 2211

8972 1121 5873 2221

8780 2221 5452 1133

8712 2211 5157 2222

a Profiles that are common between the two are shown in italics on the
low-grade profile list.

Figure 6. Gleason probability maps. Top: True-positive cases. High-grade tumors are shown on the deep annotation in
pink (cribriform) and yellow (not cribriform). Low-grade tumors are shown in green. Images are scaled to reflect the max-
imum probability in the training data set. Bottom: True negative. The displayed slide has only benign atrophy, and thus,
no hot spots occur in the Gleason probability maps.
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Transition zone lesions are identified primarily by the T2-
weighted images in PI-RADS v2 because benign prostatic hy-
perplasia nodules often exhibit diffusion restriction and early/
contemporaneous enhancement (mimicking cancer) but appear
morphologically different from significant cancers, which may
not be captured fully by a segmentation-based method. Cur-
rently, no prostate CAD tool reads a prostate exam like a radi-
ologist—techniques are either contrast-based and well suited to
identify peripheral zone lesions or texture-based and well suited
to identify transition zone lesions. It is plausible that the most
effective method of identifying prostate tumors distinguished by
zone and uses vastly different techniques depending on the
lesions location.

There are known sources of error associated with rad-path
studies that may reduce accuracy. Our sample includes patients
with cancer: other confounding diseases are unlabeled and may
thus contribute to error. While we have previously validated our

control point–warping technique, there is still error involved in
the process. This technique used global thresholds generated
from 1 set of acquisitions on similar magnets. Future studies
should validate these thresholds on acquisitions from magnets
by other manufacturers. This study is limited to endorectal coil
images, but future studies may quantify the generalizability to a
population imaged without an endorectal coil.

CONCLUSIONS
Gleason probability mapping stratifies cancer tissue from nor-
mal prostate tissue independent of zone and training set. The
technique performs better than traditional image contrasts alone
and provides a voxelwise map which may be potentially useful
for biopsy guidance and reading clinical scans. Additional re-
search is necessary to further classify regions of tumor among
the different Gleason patterns.
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Standard-of-care multiparameter magnetic resonance imaging (MRI) scans of the brain were used to objec-
tively subdivide glioblastoma multiforme (GBM) tumors into regions that correspond to variations in blood
flow, interstitial edema, and cellular density. We hypothesized that the distribution of these distinct tumor
ecological “habitats” at the time of presentation will impact the course of the disease. We retrospectively
analyzed initial MRI scans in 2 groups of patients diagnosed with GBM, a long-term survival group compris-
ing subjects who survived �36 month postdiagnosis, and a short-term survival group comprising subjects
who survived �19 month postdiagnosis. The single-institution discovery cohort contained 22 subjects in each
group, while the multi-institution validation cohort contained 15 subjects per group. MRI voxel intensities
were calibrated, and tumor voxels clustered on contrast-enhanced T1-weighted and fluid-attenuated inversion-
recovery (FLAIR) images into 6 distinct “habitats” based on low- to medium- to high-contrast enhancement
and low–high signal on FLAIR scans. Habitat 6 (high signal on calibrated contrast-enhanced T1-weighted
and FLAIR sequences) comprised a significantly higher volume fraction of tumors in the long-term survival
group (discovery cohort, 35% 	 6.5%; validation cohort, 34% 	 4.8%) compared with tumors in the short-
term survival group (discovery cohort, 17% 	 4.5%, P � .03; validation cohort, 16 	 4.0%, P � .007). Of
the 6 distinct MRI-defined habitats, the fractional tumor volume of habitat 6 at diagnosis was significantly
predictive of long- or short-term survival. We discuss a possible mechanistic basis for this association and
implications for habitat-driven adaptive therapy of GBM.

INTRODUCTION
Glioblastoma multiforme (GBM) typically exhibits substantial
intratumoral heterogeneity at both microscopic and radiological
spatial scales (1). Analysis of genomic patterns from The Cancer
Genome Atlas (TCGA) database led to a general molecular model
that identified 4 distinct “species” of GBM: proneural, neural,
classical, and mesenchymal (2). However, more recent studies (3)
found substantial spatial variations, so that, in some cases, all 4
species could be observed in different regions of the same tumor.
Canoll et al. used RNA-sequencing and histological analysis of
image-guided biopsies to show differences in cellular and mo-
lecular markers between tissue taken from the contrast-enhanc-
ing (CE) core and that from the nonenhancing (NE) margins of
GBM tumors (4). Characteristic metabolic differences between
the CE and NE regions in GBM have also been identified by 1H

magnetic resonance spectroscopy (5). Machine learning on pat-
terns in standard brain magnetic resonance imaging (MRI) im-
ages, and parameter maps from diffusion tensor imaging, and
dynamic susceptibility contrast-enhanced (DSC)-MRI have been
reported to correlate with molecular subtype and survival in
newly diagnosed patients with GBM (6). Radiogenomic analysis
informed by spatially localized biopsies has identified spatially
complex distributions of molecularly distinct subpopulations in
GBMs (7). Although such spatial variations in expression of
molecular and pathologic markers, metabolism, and radiologic
imaging patterns are known to exist in all solid tumors, the
origin and the clinical significance of this heterogeneity remain
subjects of investigation.

Heterogeneity within tumors may drive resistance to both
untargeted and targeted therapies (8). Reliance on conventional
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maximum tolerated dose–based treatment regimens may accel-
erate the unopposed proliferation of resistant populations by
eliminating the susceptible populations and the attendant com-
petition for space and substrate. Enriquez-Navas et al. recently
showed that an evolution-based adaptive therapeutic strategy
that exploits such competition between subpopulations of tumor
cells could prolong progression-free survival in preclinical mod-
els of breast cancer (9). An ongoing clinical trial in prostate
cancer (10) has shown that evolutionary dynamics can be suc-
cessfully integrated into clinical cancer treatment protocols, and
it highlighted the unmet need for noninvasive metrics of intra-
tumoral subpopulation changes during treatment.

In the present work, we build upon a conceptual model of
GBMs as spatially heterogeneous complex adaptive systems in
which tumor growth and response to therapy are governed by
eco-evolutionary interactions between the tumor microenviron-
ment and phenotypic properties of local cellular populations.
This model posits an explicit and predictable link between mac-
roscopic tumor features observed radiologically and the molec-
ular-, cellular-, and tissue-scale properties of the underlying
cancer cell populations. In this model, we hypothesize that
radiologically apparent spatial heterogeneity within each GBM
can be quantified by some combination of a small number of
distinct eco-evolutionary “habitats,” each of which may have
different patterns of growth and invasion and may respond
differently to therapy (11). Our approach builds upon methods
developed in landscape ecology to bridge spatial scales. For
example, field biologists are often tasked with estimating spe-
cies distribution within a large area such as a county or state.
Methods developed in landscape ecology typically begin with an
analysis of satellite imagery of the region. By combining image
channels containing nonoverlapping information (RADAR, in-
frared and visible light, for example), the biologist can divide the
whole region into a patchwork collection of distinct habitats. By
sampling the species distribution within each distinct habitat,
the geographic distribution of each species over the entire region
can be estimated (12, 13).

Multispectral clustering on MRI images has been used be-
fore to quantify spatial variations within tumors. Vannier et al.
recognized the analogy between multispectral remote-sensing
satellite imagery and multiparametric MRI and showed that
signatures for “scene components” in the radiologic images
could be computed (14-16). This approach can be used to further
objectively subdivide the tumor itself into spatially distinct
subregions (“habitats”) that harbor distinct subpopulations of
tumor cells (11, 17, 18). Spatial heterogeneity of GBMs at radio-
logical scales presents as regional variations in contrast en-
hancement and edema, and we have used multispectral cluster-
ing to decompose each glioma into a small number of distinct
“habitats” based on their intensity on different MRI sequences.
Tumor voxels were clustered by the calibrated signal intensities
on contrast-enhanced T1-weighted (T1W-CE) and fluid-attenu-
ated inversion-recovery (FLAIR) sequences into 6 distinct “hab-
itats” based on low- to medium- to high-contrast enhancement
and low–high signal on FLAIR scans. The long-term survival
(LTS) cohort (�36 months postdiagnosis) were found to have a
significantly higher fraction of habitat 6 (high CE and high
FLAIR signal intensity) compared with the short-term survival

(STS) cohort (� 19 months postdiagnosis) in both the discovery
and validation cohorts. We discuss a possible mechanistic basis
for this association between habitat 6 and survival in GBM, and
implications for habitats-driven adaptive therapy of GBM.

MATERIALS AND METHODS
Discovery Cohort
In this work, we have used the terms “discovery” (or training)
and “validation” as they are understood in the field of machine
learning, namely, to refer to the specific steps of training–
validation–test in model development (19). Following IRB ap-
proval, patients with pathologically confirmed primary GBM
and available preoperative T2-weighted (T2W), FLAIR, unen-
hanced T1W, and T1W-CE scans were identified retrospectively
from a single participating institution. Median survival in glio-
blastoma is reported to be between 12 and 18 months postdiag-
nosis (20, 21). Recent estimates of 5-year survival rates for
patients receiving maximal safe resection, concurrent radiother-
apy and chemotherapy, and adjuvant chemotherapy are �10%
(22). Our original intent was to investigate MRI habitats in
high-grade gliomas from subjects who survived �5 years post-
diagnosis. However, after application of the additional require-
ment that certain MRI scans be available at diagnosis, we had to
downgrade this criterion to �3-year survival postdiagnosis of
GBM so as to form cohorts with reasonable numbers of subjects.
Thus, an LTS group comprising 22 subjects who survived �36
months postdiagnosis (median survival, 62.6 months; range,
36–107 months) was created. A control STS group of 22 subjects
who survived �19 months postdiagnosis (median survival, 11.6
months; range, 2.5–19 month) was created to individually
match to LTS subjects on age and calendar year of diagnosis.

Validation Cohort
Following IRB approval, patients with pathologically confirmed
primary GBM and available preoperative T2W, FLAIR, T1W, and
T1W-CE MRI scans were identified retrospectively from a multi-
institutional database, matching on age and sex. The LTS group
included 15 subjects who survived �36 months postdiagnosis
(median survival, 86.6 months; range, 39–177 months), while
the STS group included 15 subjects who survived �19 months
postdiagnosis (median survival, 12.6 moths; range, 1.8–19
months).

Patient Population Statistics
Additional demographic and clinical covariates of relevance to
this study are shown in Table 1.

Image Registration
For each patient, the FLAIR, T1W, and T1W-CE images were coreg-
istered with the T2W images using in-house MATLAB (MathWorks,
Natick, MA) software (top panel in Figure 1). As part of this process,
the FLAIR, T1W, and T1W-CE images were resampled to match
pixel dimensions and slice thicknesses with the reference T2W
images. Spatial alignment was performed using a combination of
rigid and affine geometrical transformations.

Tumor Segmentation
In this work, we restricted our analysis of intratumoral “habi-
tats” to the CE portion of the tumor volumes. For this purpose, a
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contour was manually drawn to circumscribe the CE tumor in all
applicable slices on postregistration T1W-CE images (middle
panel in Figure 1).

Intensity Calibration
The next step in our image processing pipeline was intensity
calibration (middle panel of Figure 1), the objective of which is
to allow comparison of voxel intensities across patients on each
given type of MRI scan. For this purpose, 2 reference normal
tissue regions were automatically segmented as shown in Figure
2. In brief, intensities within the T1W-CE � T1W difference
volume (
T1W) were clustered into low- and high-intensity
classes using Otsu thresholding (23). Then, on T2W, voxels from
the low-intensity class were subdivided further into low- and
high-intensity clusters using Otsu thresholding. Voxels from the
low cluster formed a volume of interest (VOI) that was applied to
T1W, which was subdivided into low- and high-intensity clus-
ters by Otsu thresholding, with the resulting voxels in the high-
intensity class labeled as “normal white matter” (reference re-
gion 1). Voxels from the high T2W cluster formed a VOI mask
that was applied to the FLAIR scan, and these were again
subdivided into low- and high-intensity clusters using Otsu
thresholding, and the low-intensity cluster was labeled as “CSF”
(reference region 2). Voxel intensities on T2W, FLAIR, and
precontrast T1W images were then linearly calibrated using
“normal white matter” and “CSF” as reference tissues. The ref-
erence intensity values for these 2 tissues, respectively, were 81

and 183 on T2W, 587 and 464 on FLAIR, and 1099 and 748 on
precontrast T1W, all in arbitrary units. These reference values
were taken from the T2W, FLAIR, and precontrast T1W images
of a patient chosen randomly from the discovery cohort, and
do not carry any particular physiological meaning as such.
Intensity calibration for T1W-CE was performed using the
same linear transformation as computed for the associated
precontrast T1W. Our input data comprise standard-of-care
MRI images that were acquired with varying protocols per
subject. Acquisition parameters such as the repetition time,
echo time, and flip angle were not the same across all subjects
for each scan type (T2W, FLAIR, T1W). Because MRI signal
intensity is a nonlinear function of these acquisition parame-
ters, linear calibration against 2 reference tissues may not neces-
sarily be adequate for standardization of intensities per scan type.
Fortunately, the range of excursions in these acquisition parame-
ters across subjects was relatively small, and signal equation sim-
ulations indicated that calibration of raw signal intensity against 2
dissimilar reference tissues would provide satisfactory intensity
calibration for other tissues with T1 and T2 values similar to or
in-between those of the 2 reference tissues. The coefficient of
variation of normal gray matter intensity across all patients was
significantly smaller postcalibration as compared with precalibra-
tion on each of FLAIR, T1W, and T1W-CE images, and we took this
to be evidence of successful intensity calibration (see online Sup-
plemental Figure 1).

Table 1. Demographic and Clinical Characteristics of Patients in the Discovery and Validation Cohorts According
to LTS and STS Status

Characteristics LTS STS

Discovery Cohort

(N � 22) (N � 22)

Median Age (years) 50.5 (range: 22–74) 50.5 (range: 28–72)

Percent Male 59.1 63.6

Percent College Graduatea 45.5 23.8

Median KPS Scorea 90% 80%

Median Year Diagnosed 2010 2011

Percent Completed Stupp Protocolb 37 0

Median Survival (Months) 67.7 (range: 36–126) 11.5 (range: 2.5–19)

Validation Cohort

(N � 15) (N � 15)

Median Age (years) 50 (range: 23–68) 62 (range: 23–78)

Percent Male 67 60

Median Education (years) Unknown Unknown

Median KPS Score 90c 90d

Median Year Diagnosed 2009 2009

Percent Completed Stupp Protocol 66.7 26.7

Median Survival (months) 86.6 (range: 39–177) 12.6 (range: 1.8–19)

a 1 STS missing education; 3 LTS and 6 STS missing KPS score.
b As defined in PubMed PMID: 15758009. Results based on 20 LTS and 16 STS patients with complete information on receipt of the chemoradiation protocol.

A total of 7 patients underwent biopsy as the only form of surgery (1 LTS and 6 STS).
c 10 missing values.
d 11 missing values.
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Multispectral Clustering to Define Intratumoral Habitats
Calibration of intensities per MRI scan type allows us to pool
voxels over multiple patients for combined cluster analysis. This
series of steps is depicted in the bottom panel of Figure 1. In
brief, the manually drawn CE tumor mask was applied to the
calibrated 
T1W difference volume of each patient in the dis-
covery cohort, and the voxels within the mask were pooled over

all subjects and clustered by Otsu thresholding into 3 levels of
contrast enhancement: CE1 (low enhancement), CE2 (medium
enhancement), and CE3 (high enhancement). The low-, medium-
and high-contrast enhancement thresholds identified on the
discovery cohort were refined on validation, specifically that the
maximum value of 
T1W difference intensity was capped at
5000 arbitrary units postcalibration before Otsu thresholding.

Figure 1. Fluid-attenuated inversion-recovery (FLAIR), T1-weighted (T1W), and contrast-enhanced T1-weighted (T1W-
CE) images were coregistered with and resampled to match voxel dimensions in the reference T2W scans (top panel). A
contour was manually drawn to circumscribe the CE tumor in all applicable slices on postregistration T1W-CE images
(middle panel). Normal white matter and cerebral spinal fluid (CSF) were automatically segmented (middle panel, de-
tails in Figure 2). Voxel intensities were calibrated against white matter (WM) and CSF to permit cluster analysis of vox-
els pooled across patients on each type of magnetic resonance imaging (MRI) scan (middle panel). Pooled voxels from
within the CE tumor mask were clustered into 6 habitats using the criteria listed in Table 1 (bottom panel). Also shown in
the bottom panel is a 3D stack of maps of habitats 1–6 in an example tumor, for illustrative purposes.
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This was done to manage the skewing of the clustering process
by a long 1-sided tail on the 
T1W difference intensity histo-
gram in some patients. Each of these 3 clusters was further
subclustered into 2 classes around a calibrated value of 600 on
FLAIR, a threshold value that is similar to the mean intensity of
normal white matter over all subjects after calibration. The final
habitat definitions are listed in Table 2.

Statistics and Survival Analyses
Absolute tumor volume, habitat volumes, and habitat volume
fractions for each habitat were computed. Statistical analyses

were performed using GraphPad Prism 7 (GraphPad Software,
La Jolla, CA). Data normality was assessed using the
D’Agostino–Pearson test, and significance of differences in
habitat volumes between groups was assessed by 2-tailed
unpaired t-tests. Survival analyses were performed using
Kaplan–Meier survival curves, and statistical significance
was computed using the log-rank test. For the Kaplan–Meier
analysis, habitat volumes were dichotomized into 2 groups
using the median score value.

RESULTS
Mean tumor volumes at diagnosis were comparable between the
LTS and STS groups in the discovery cohort (33 	 6.6 cm3 vs.
37 	 6.1 cm3, P � .62) (see online Supplemental Figure 2A).
There was no statistically significant difference in mean tumor
volumes at diagnosis between the LTS and STS groups in the
validation cohort (33 	 7.0 cm3 vs. 17 	 4.8 cm3, P � .075),
although there was a trend toward smaller tumor volumes in the
STS group (see online Supplemental Figure 2B).

Figure 3 depicts differences in habitat 6 (high contrast
enhancement and high FLAIR) content between a representative
LTS subject (left; overall survival, 41� months) and STS subject
(right; overall survival, 3 months) at the time of tumor presen-
tation before surgical intervention. In the discovery cohort hab-
itat 6 comprised a significantly higher volume fraction (P � .03)
of the tumor volume at diagnosis in long-term survivors

Table 2. Intratumoral Habitats’ Definitions on
Calibrated FLAIR and 
T1W Intensities

Calibrated
FLAIR Image

Intensity

Calibrated
�T1W Difference

Intensity

Habitat 1 �600 �303

Habitat 2 �600 �303

Habitat 3 �600 303 � 
T1W � 790

Habitat 4 �600 303 � 
T1W � 790

Habitat 5 �600 �790

Habitat 6 �600 �790

Figure 2. Automatic segmentation procedure to locate WM and CSF volumes within the brain for use in intensity cali-
bration. Intensities within the T1W-CE � T1W difference volume (
T1W) of a given subject were clustered into low- and
high-intensity classes by Otsu thresholding. A mask of voxels in the low-intensity class was applied to the T2W image
and further subdivided into low- and high-intensity clusters by Otsu thresholding. The resulting mask of voxels in the low-
intensity cluster was applied to the T1W image, which was again subdivided into low- and high-intensity clusters with
the high-intensity class labeled as “normal white matter” (reference region 1). The mask of high-intensity voxels from the
T2W image was applied to the FLAIR image, and it was again subdivided into low- and high-intensity clusters with the
resulting low-intensity cluster labeled as “CSF” (reference region 2).
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(mean 	 S.E.M. � 35% 	 6.5%; n � 22) compared with
short-term survivors (mean 	 S.E.M. � 17% 	 4.5%; n � 22)
(Figure 4A). This finding was replicated in the validation cohort
(P � .007), with habitat 6 comprising 34% 	 4.8% (n � 15) of
the tumor volume in LTS subjects compared with 16% 	 4.0%
(n � 15) of the tumor volume in STS subjects (Figure 4B).

Habitat 2 (low enhancement and high FLAIR) comprised a
significantly lower volume fraction (P � .0126) of the tumor at
diagnosis in long-term survivors (mean 	 S.E.M. � 28 	 5.7;
n � 22) relative to short-term survivors (mean 	 S.E.M. � 51 	
6.8; n � 22) in the discovery cohort (Figure 5A), but this was not
replicated in the validation cohort (Figure 5B). In parallel, hab-
itat 1 (low enhancement and low FLAIR) was not found to be
significantly different between LTS and STS subjects in the
discovery cohort (Figure 5C) but comprised a significantly lower

volume fraction (P � .0279) of the tumor at diagnosis in long-
term survivors (mean 	 S.E.M. � 3.2 	 0.96; n � 15) relative to
short-term survivors (mean 	 S.E.M. � 12 	 3.4; n � 15) in the
validation cohort (Figure 5D). Minor inconsistencies in FLAIR
intensity calibration across the patients may be the root cause of
this variable finding, given that Habitats 1 and 2 belong to the
low and high FLAIR clusters, respectively.

Habitat 3 (medium enhancement and low FLAIR), habitat 4
(medium enhancement and high FLAIR), and habitat 5 (high
enhancement and low FLAIR) were not significantly different
between the LTS and STS groups in either the discovery or
validation cohorts (see online Supplemental Figure 3).

Median percent of tumor volume occupied by habitat 6 in
the discovery cohort (5.77%) was used as a cutpoint to dichot-
omize patients into high and low habitat 6 fraction groups.
Kaplan–Meier survival analyses were then carried out separately
in the discovery and validation cohorts using the prespecified
cutpoint (5.77%) established for the discovery cohort, as a strin-
gent test of reproducibility. Based on the median cutpoint, low
and high fractions of habitat 6 were not associated with overall
survival in the discovery cohort (Figure 6A; P � .62), but were
statistically significant with respect to overall survival in the
validation cohort (Figure 6B; P � .0001). In the discovery
cohort, Kaplan–Meier 3-year survival rates were 45% and 55%
in the � median versus � median subgroups, respectively. In the
validation cohort corresponding 3-year survival rates were 18%
and 68%, respectively.

DISCUSSION
The overall goal of our work is to develop noninvasive imaging
biomarkers that can be used to drive evolution-based adaptive
therapeutic strategies for GBM. For any biomarker to be clini-
cally useful, it must be computable reliably and reproducibly
(24). MRI parameters such as ADC, T1, and T2, and with some
limitations, also model-dependent parameters such as relative
cerebral blood volume (rCBV), relative cerebral blood flow, and
Ktrans, are comparable between data sets when standardized

Figure 3. Habitat 6 (high enhancement and high
FLAIR) on preoperative MRI comprises 23% of the
tumor by volume in a long-term survivor (left, over-
all survival 41� months) and 9% of the tumor by
volume in a short-term survivor (right, overall sur-
vival 3 months).

Figure 4. Habitat 6 (high enhancement and high FLAIR) was significantly higher in the LTS group relative to the STS
group in both the (A) discovery and (B) validation cohorts.
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protocols are utilized (25-35). Parameter maps are therefore
attractive for computing tumor habitats consistently across pa-
tients and scan dates, but these maps are not routinely collected
as part of standard-of-care imaging. The subjects in our study
received their initial diagnostic scans at a variety of institutions
including at community radiology facilities, as a result of which
there was great variability in the type and quality of scans that
were available for retrospective analysis. In particular, we were
unable to curate sufficient numbers of LTS subjects with avail-
able ADC maps at diagnosis. We therefore sought to compute
intratumoral habitats using FLAIR, T1W, and T1W-CE scans
after calibrating raw MRI pixel intensities against 2 reference
tissues.

High signal on 
T1W is indicative of either good perfusion
or high microvascular leakiness. High intensity on FLAIR im-
ages in glioma represents a mixture of vasogenic edema, which
arises from leakage of plasma into regions with low cell density,
and tumor cell infiltration along long white matter tracts (36).
Our retrospective study shows, in both a discovery cohort and a

validation cohort, that tumors in LTS subjects have a signifi-
cantly higher fraction of habitat 6 (high contrast enhancement
and high FLAIR signal intensity) than STS. Particularly striking
is the similarity in habitat 6 content of LTS tumors between the
discovery and validation cohorts (35% and 34%, respectively)
and of STS tumors between the discovery and validation cohorts
(17% and 16%, respectively). We divided tumor regions with
high signal intensity on 
T1W calibrated difference images into
2 distinct habitats with either high or low FLAIR signal. Low
FLAIR signal would be expected in regions with high contrast
enhancement stemming from good perfusion, which would be
conducive to high cellular density, although not necessarily
where the enhancement arises from microvascular leakiness.
Our results demonstrate the high contrast enhancement and
high FLAIR signal habitat is strongly associated with patient
survival.

In a preliminary study of pretreatment MRI examinations
from 32 patients with GBM enrolled in the TCGA, Gatenby et al.
showed that GBM tumor habitats defined on FLAIR and T1W-CE

Figure 5. Habitat 2 (low enhancement and high FLAIR) was significantly lower in the LTS group relative to the STS
group in the discovery cohort (panel A), but this difference was not recapitulated in the validation cohort (panel B). Hab-
itat 1 (low enhancement and low FLAIR) was not significantly different between the LTS and STS groups in the discovery
cohort (panel C), but was significantly lower in the LTS group in the validation cohort (panel D).
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images could be used to differentiate patients who survived
�400 days from patients who survived �400 days postdiagno-
sis (37). A follow-up study indicated that incorporating infor-
mation from 3 MRI sequences, namely, T2W, FLAIR, and T1W-
CE, improved prediction of survival time in patients with GBM
(38). LaViolette et al. similarly clustered voxels into low, me-
dium, and high classes on T1W, T1W-CE, FLAIR and apparent
diffusion coefficient of water (ADC) maps to divide GBM tumors
into 81 habitats, and identified 5 specific habitats that when
present at higher volumes correlated with poorer prognosis (39).
Recently, Juan-Albarracín et al. analyzed preoperative DSC-
MRI and FLAIR scans of 50 patients with GBM to compute tumor
habitats on the basis of rCBV, relative cerebral blood flow, and
edema, and they found a surprising correlation between longer
survival times and lower indices of perfusion (40). Boonzaier et
al. report that tumor habitats reflecting low ADC values inter-
secting with high rCBV values demonstrate a significantly ele-
vated choline-to-N-acetylaspartate ratio on 1H magnetic reso-
nance spectroscopy, and that a higher proportion of this habitat
within the NE region of GBM is associated with poor overall
survival (41). Interpatient diversity in overall imaging patterns
of growth and invasion has been associated with tumor aggres-
siveness and clinical outcomes across patients (42-45). Our
investigation leverages unique resources of data including pa-
tients with exceptionally long follow-up for prognosis in
glioblastoma.

Standard-of-care therapy in newly diagnosed GBM is max-
imal safe surgical resection followed by concomitant radiation
therapy and temozolomide for 6 weeks, followed by adjuvant
temozolomide for 6 monthly cycles (46). Thereafter, subjects in
our retrospective study would each also have received a variety
of investigational and/or palliative treatments, including ex-
tended cycles of temozolomide. Our findings suggest that one or
more characteristics of the radiologically visible initial tumor mass
define an intrinsic prognostically relevant tumor feature that con-
tinues to influence patient outcome months, and even years, after
diagnosis. It is possible that the radiologic appearance of habitat 6

is a shared feature of disparate favorable markers in GBM, such as
Isocitrate Dehydrogenase (IDH) mutation status (47), mesenchymal
subtype (48) or lymphocyte cytokines such as CXCR4 (49). Alter-
nately, one can hypothesize that components of the immune
system in the LTS subjects retain the ability to recognize tumor
antigens present in the original mass that are retained in the
recurrent mass. Immune infiltrates in the tumor would be con-
sistent with the MRI characteristics of habitat 6, namely, high
contrast-enhancement and high tumor-associated edema. Path-
ological studies have shown that increased CD8� T cell infil-
trates in newly diagnosed GBM is associated with long-term
survival (50), and we hypothesize that increased FLAIR signal in
well-perfused—and presumably cellular—regions may be indic-
ative of interstitial edema related to inflammatory changes
caused by an immune response. A definitive biological interpre-
tation of our finding requires further investigation.

Known weaknesses in our study include that the numbers in
each survival group stratum were small and statistical power
correspondingly limited to detect all but strong associations in
the data. Specifically, while our analysis detected a significant
difference between the LTS and STS groups in both the discov-
ery and validation cohorts (Figure 4), on an individual patient
basis, we could observe survival differences by a binary analysis
around the median habitat 6 content in only the validation
cohort (Figure 6). The need to improve calibration of raw MRI
image intensities is revealed in the inconsistent significances of
Habitats 1 and 2 in the discovery and validation cohorts (Figure
5). Additional covariates may also impinge upon our analysis.
For example, in the discovery cohort, LTS and STS subjects were
matched for parameters such as patient age and year of diagno-
sis, but LTS patients were nonetheless more educated and more
likely to survive the completion of standard treatment. In the
validation cohort, the LTS and STS groups were not matched for
patient age and treatment regimens. It is unclear how these
group differences might explain the present findings.

Only about 5% of patients with GBM undergoing standard
of care survive �5 years postdiagnosis (46). Investigation of a

Figure 6. Kaplan–Meier plots of overall survival in the discovery cohort (A). Survival of patients with habitat 6 volume
fraction � median (5.77%, n � 22) and � median (n � 22). Kaplan–Meier plots of overall survival in the validation
cohort (B). Survival of patients with habitat 6 volume fraction � median from the discovery cohort (5.77%, n � 19) and
� median (n � 11).
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cohort of rare long-term survivors identifies a “habitat” on
initial multiparametric MRI scans that is significantly different
than in a control cohort. Our working hypothesis is that habitat
6 corresponds to a microenvironment that selects for glioma
cells that are either innately less aggressive or are more
amenable to control by tumor-infiltrating leukocytes. Habitat
imaging has the potential to provide noninvasive longitudi-

nal biomarkers of intratumoral evolutionary and ecological
dynamics for the informed application of adaptive therapy to
manage GBM.

Supplemental Materials
Supplemental Figures 1-3: http://dx.doi.org/10.18383/j.tom.
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We identified computational imaging features on 18F-fluorodeoxyglucose positron emission tomography
(PET) that predict recurrence/progression in non–small cell lung cancer (NSCLC). We retrospectively identi-
fied 291 patients with NSCLC from 2 prospectively acquired cohorts (training, n � 145; validation, n �
146). We contoured the metabolic tumor volume (MTV) on all pretreatment PET images and added a
3-dimensional penumbra region that extended outward 1 cm from the tumor surface. We generated 512
radiomics features, selected 435 features based on robustness to contour variations, and then applied ran-
domized sparse regression (LASSO) to identify features that predicted time to recurrence in the training co-
hort. We built Cox proportional hazards models in the training cohort and independently evaluated the mod-
els in the validation cohort. Two features including stage and a MTV plus penumbra texture feature were se-
lected by LASSO. Both features were significant univariate predictors, with stage being the best predictor
(hazard ratio [HR] � 2.15 [95% confidence interval (CI): 1.56–2.95], P � .001). However, adding the
MTV plus penumbra texture feature to stage significantly improved prediction (P � .006). This multivariate model
was a significant predictor of time to recurrence in the training cohort (concordance � 0.74 [95% CI: 0.66–
0.81], P � .001) that was validated in a separate validation cohort (concordance � 0.74 [95% CI: 0.67–0.81],
P � .001). A combined radiomics and clinical model improved NSCLC recurrence prediction. FDG PET radiomic
features may be useful biomarkers for lung cancer prognosis and add clinical utility for risk stratification.

INTRODUCTION
Lung cancer remains the most common cause of cancer death
worldwide, and the 5-year survival rates of non–small cell lung
cancer (NSCLC) remain quite poor despite advances in diagnosis
and treatment (1, 2). Further, many patients will develop recur-
rence or progression following primary treatment. The absolute
risk of any recurrence at 5 years post-treatment ranges from
33% to 52%, with the majority occurring at a distant site (3, 4).
Among prognostic factors for predicting outcomes in NSCLC,
tumor stage based on the American Joint Committee on Cancer
(AJCC) staging system is currently considered the best for pre-
dicting outcomes (5). More accurate clinical, imaging, and mo-
lecular biomarkers will be extremely useful for stratifying pa-

tients who are at a higher risk of recurrence and who might
benefit from adjuvant or more aggressive treatment options (6).

Maximum standardized uptake value (SUVmax) on fluo-
rine-18F fluoro-2-deoxy-D-glucose (FDG) positron emission
tomography (PET) imaging has also been shown to predict
recurrence or death in NSCLC (7). However, this is a single-
voxel metric; we hypothesized that applying a radiomics
approach to extract more complex information (eg, texture)
from standard medical images could provide additional prog-
nostic information (8, 9).

While recent work has evaluated the potential for radiomics
features to augment traditional metrics of response (10-12), the
majority of studies to date have focused on only the metabolic
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tumor volume (MTV) on PET and, to the best of our knowledge,
no study has investigated the peritumoral region. Tumor inva-
sion from the main mass can be defined by infiltration of
stroma, blood vessels, or visceral pleura (13). Recent studies
have also shown the potential for tumor cells to spread into air
spaces in the lung tissue adjacent to the tumor volume (14). It is
well known that these features may present as border spicula-
tion, vascular convergence, or pleural attachment surrounding
the tumor on anatomical imaging, and that they may result in
subtle heterogeneous uptake on PET imaging (15).

We investigated the potential of FDG-PET radiomics to
predict recurrence in NSCLC by (1) assessing the variability in
radiomic feature extraction from PET images and (2) building
and validating a radiomics model to predict time to recurrence.
We hypothesize that computational imaging features in the
tumor and surrounding area on FDG-PET can augment clinical
features to improve recurrence prediction.

METHODOLOGY
Patient Selection
We retrospectively analyzed a total of 291 patients with NSCLC
from 2 distinct cohorts of prospectively acquired patients (n �
145 and n � 146). The study was approved by our Institutional
Review Board, and all subjects signed informed consent before
participation. Our study was also compliant with the Health
Insurance Portability and Accountability Act.

The training cohort consisted of subjects from a pool of
patients with early-stage NSCLC referred for surgical treatment
at 2 local medical centers between 2008 and 2012 with preop-
erative PET/computed tomography (CT) performed before sur-
gery (n � 145). This data set is publicly available on The Cancer
Imaging Archive (16, 17). We used a second cohort (n � 146) for
model validation. This was a cohort from 3 local medical centers
between 2010 and 2016. Subjects were selected from patients
undergoing evaluation for lung cancer by PET/CT imaging be-
fore definitive treatment as part of an observational biomarker
study. In both the training and validation cohorts, there were no
patients that received neoadjuvant therapy.

The AJCC seventh edition system was used for staging.
Pathological staging was used in the training cohort and a
combination of clinical and pathological staging in the valida-
tion cohort. Demographic differences between the training and
validation cohorts were assessed using the Wilcoxon rank-sum
test for continuous variables and the 
2 test for categorical
variables. All patients were followed per standard clinical pro-
tocol with clinical examination and imaging. We analyzed the
combined endpoint of disease recurrence or progression. For
stage I–IIIA subjects, we defined recurrence as either local,
regional, or distant. For patients with stage IIIB–IV disease, we
defined an event as any progression of disease. Time to event or
last known follow-up was recorded from the date of pretreat-
ment PET imaging.

Image Acquisition
Pretreatment FDG-PET/CT scans were acquired using a standard
clinical protocol at 1 of 3 local medical centers. Images were
acquired using either a GE Discovery VCT (GE Health care,
Waukesha, WI), a GE Discovery LS PET/CT (GE Healthcare,

Waukesha, WI), a Siemens Biograph mCT (Siemens Healthcare,
Erlangen, Germany), or a Phillips Allegro/Gemini TF PET/CT
(Phillips Healthcare, Cleveland, OH). Patients underwent scan-
ning following fasting for a minimum of 6–8 h. A dose of 12–17
mCi of FDG was administered and patients underwent scanning
from the skull base to mid-thigh using bed positions acquired every
2–5 minutes �45–60 minutes after injection. Manufacturer-spe-
cific CT-based attenuated correction was performed using ordered
subset expectation maximization reconstruction.

Region of Interest Delineations
Pretreatment PET images were converted to SUV units normal-
ized by body weight. Two research assistants (S.M. and S.B.)
were trained by a board-certified physician in Nuclear Medicine
(G.D.) in using MIM Version 6.6 (MIM Software Inc., Cleveland,
OH) to contour tumor MTVs using the semiautomatic PET-edge
gradient-based segmentation tool. Both observers contoured all
images independently in the training cohort. A subset of 21
images considered difficult to contour were reviewed by the
same physician and re-delineated if necessary. To assess intrao-
bserver variability, observer 1 (S.M.) contoured all images a
second time after a delay of 3 months. We calculated the Dice
similarity coefficient (DSC), mean absolute distance (MAD) of
the boundary, and absolute volume difference between each set
of contours to assess inter- and intraobserver variability of the
MTV regions in the training cohort. Observer 1 alone contoured
all images in the validation cohort.

We then generated a 3-dimensional penumbra region ex-
tending outward 1 cm from the surface of the MTV to sample
surrounding uptake by using a 3D distance transform with a
threshold of 1 cm. This distance was intuitively chosen to sam-
ple enough surrounding tissue given the voxel sizes of the PET
images, while avoiding oversampling normal tissue. In addition
to the MTV alone, we also evaluated the following 2 additional
regions: the MTV plus penumbra and the penumbra only (ex-
cluding the MTV).

Feature Extraction
We extracted radiomics features in the MTV, penumbra, and
MTV plus penumbra regions in both cohorts using The Quanti-
tative Image Feature Engine (18) implemented in MATLAB
R2016B (The MathWorks, Natick, MA). In the MTV, features
included size (n � 4), sphericity (n � 1), local volume-invariant
integral (LVII) shape (n � 39), histogram intensity (n � 12), and
gray-level co-occurrence matrix (GLCM) texture (n � 144) (19,
20), for a total of 200 features. Because the penumbra region was
generated from the MTV, 44 size and shape measures were not
calculated in the penumbra and MTV plus penumbra regions
(because they would not be independent measurements), for a
total of 156 features in each. This resulted in a total of 512
features for analysis as summarized in Table 1. We set a fixed
intensity bin size of 0.2 SUV for texture feature calculation to
allow a meaningful comparison between images on the same
SUV scale. This discretization may also reduce the differences
between multiple scanners used in this study (21).

We then calculated intraclass correlation coefficients (ICCs)
across the 3 sets of outlines for each radiomic feature to assess
inter- and intraobserver variability. Robust features, defined as
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those with ICCs �0.8 in the training cohort, were selected for
further analysis (22, 23).

Model Building and Validation
All radiomic features were normalized (Z-score transformation)
before feature selection and model building. We further opti-
mized the features through a generalized linear model via the
least absolute shrinkage and selection operator (LASSO) (24)
Cox regression using the glmnet package in R software version
3.4.3 (25). LASSO is a shrinkage and variable selection method
for high-dimensional data, which was used to select top features
to predict time to recurrence in the training cohort. The robust
radiomic features and the 2 known clinical predictors (stage and
SUVmax) were provided to LASSO. Alpha, the regularization
parameter, was set to 1 (LASSO penalty) to minimize the number
of selected features by shrinking most of the coefficients to zero
and to minimize potential overfitting in the training cohort. In
total, 100 randomizations of 4-fold cross-validation was used to
reduce the effect of randomness in fold selection. The mean
cross-validated error curves were averaged for each tuning pa-
rameter lambda value across all randomizations. The lambda
and corresponding radiomic features associated with the mini-
mum error were selected.

We built univariate and multivariate Cox proportional haz-
ards models in the training cohort using the most frequently
selected radiomic and/or clinical features. We evaluated the
Akaike information criterion (AIC) to compare the quality of the
different models, with lower AICs representing a higher quality
model. We assessed the likelihood ratio P-value for the derived
models to show recurrence prediction significance. HRs and
95% CIs were reported for individual variables. To evaluate
nested models combining the clinical and/or radiomic features,
the likelihood ratio test was used to compare the goodness of fit.

To verify prediction validity, we locked the coefficients of
the variables in the top model generated from the training
cohort and evaluated it in the validation cohort. The prognostic
value was assessed using the concordance index with Noether’s
test to determine significance from random (0.5). We performed
Kaplan–Meier analysis to separate high- and low-risk groups

based on the median risk score in the training cohort. We
performed a Student’s t test for dependent samples to compare
concordance indices between the models. All statistical analyses
and model building were performed using R. Statistical signifi-
cance was assessed at the P � .05 level.

RESULTS
Patient Demographics
The training and validation cohorts were similarly matched with
regard to median age (P � .057) and tumor location (P � .571)
(Table 2). The training cohort had a higher proportion of males
(P � .005) and adenocarcinoma histology (P � .035). There was
a slightly higher proportion of stage IV patients in the validation
cohort (P � .001), resulting in a larger percentage of patients
who recurred/progressed (P � .038). The median time to recur-
rence was 14 months (range, 2–97) in the training cohort and 15
months (range, 1–59) in the validation cohort. The median
follow-up time for censored patients without an event was 50
months (range, 1–115) in the training cohort and 32 months
(range, 1–76) in the validation cohort.

Segmentation Variability
Table 3 shows the Dice Similarity Coefficient (DSC), Mean Ab-
solute Boundary Distance (MAD), and absolute volume differ-
ence between observers in the training cohort. Overall, semiau-
tomatic segmentations were highly reproducible with an
average DSC �0.9, MAD �1 mm, and volume differences �1
mL. When we inspected images with low DSC, high MAD, and/or
high volume differences, we found that lesions that had the
largest degree of variability tended to have a low uptake (eg,
SUVmax �2), heterogeneous uptake, and/or were adjacent to
structures with a similar metabolic uptake as the tumor (eg, the
heart or mediastinum), making the precise boundary of the
tumor difficult to determine. These features were evident in
�20% of the cases.

Feature Variability
Table 4 shows the ICCs of the 4 different classes of radiomic
features in each of the 3 regions of interest. We found that a total

Table 1. Number of Extracted Features

Region of
Interest

Feature
Type

Number of
Features

Total Number of
Features in ROI

Metabolic Tumor Volume (MTV)

Size 4

200

Sphericity 1

LVII shape 39

Intensity 12

GLCM texture 144

Penumbra
Intensity 12

156
GLCM texture 144

MTV � Penumbra
Intensity 12

156
GLCM texture 144

Total Number of Features 512
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Table 2. Baseline Patient and Lesion Characteristics

Training
(n�145)

Validation
(n�146) P-value

Age, years 69 (42–87) 71 (41–96) .057

Gender Male 109 (75%) 87 (60%) .005

Tumor Location

Right upper lobe 52 (36%) 50 (34%)

.571

Right middle lobe 14 (10%) 9 (6%)

Right lower lobe 21 (14%) 26 (18%)

Left upper lobe 38 (26%) 34 (23%)

Left lower lobe 20 (14%) 27 (19%)

Tumor Histology

Adenocarcinoma 113 (78%) 103 (71%)

.035Squamous cell 29 (20%) 30 (21%)

Non–small cell cancer not
otherwise specified 3 (2%) 13 (9%)

Tumor Stage

0a 4 (3%) 0 (0%)

�.001

I 89 (61%) 100 (68%)

II 28 (19%) 13 (9%)

III 21 (14%) 17 (12%)

IV 3 (2%) 16 (11%)

Recurrence/Progression
Yes 40 (28%) 57 (39%)

.038
No 105 (72%) 89 (61%)

Variables shown as median (range) or number (%).
a Pathological stage 0 disease is defined as a carcinoma in situ (TisN0M0) as per the American Joint Committee on Cancer (AJCC) 7th edition staging system.

Table 3. Inter- and Intraobserver Variability in Metabolic Tumor Volume (MTV) PET-edge Segmentations

Observera
Dice Similarity

Coefficient (DSC)
Mean Absolute

Boundary Distance (MAD, mm)
Absolute Volume
Difference (mL)b

A vs a (Intra) 0.916 (0.090) 0.548 (0.544) 0.71 (1.66)

A vs B (Inter) 0.917 (0.087) 0.559 (0.507) 0.58 (0.92)

a vs B (Inter) 0.904 (0.105) 0.628 (0.631) 0.79 (1.46)

All values are the mean (standard deviation).
a Observer 1 contoured each tumor twice (A and a) and observer 2 contoured each lesion once (B).
b For reference, the average [range] volumes of all MTV contours by the three observers were 15.4 [0.4–297.8], 15.3 [0.4–296.9], and 15.3 [0.3–296.0] mL.

Table 4. Intraclass Correlation Coefficients for All FDG-PET Radiomic Features

Feature Type

MTV Penumbra MTV � Penumbra

Inter- Intra- Inter- Intra- Inter- Intra-

Size 0.996
(0.99–1.00)

0.994
(0.99–1.00) – – – –

Intensity 0.977
(0.89–1.00)

0.972
(0.84–1.00)

0.931
(0.48–0.99)

0.916
(0.36–0.99)

0.995
(0.98–1.00)

0.995
(0.98–1.00)

Shape 0.867
(0.37–0.98)

0.847
(0.39–0.98) – – – –

Texture 0.898
(0.50–0.99)

0.893
(0.48–0.99)

0.892
(0.14–0.99)

0.925
(0.50–0.99)

0.981
(0.28–1.00)

0.977
(0.66–1.00)

All values are shown as the mean (range).
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of 435 of the 512 features (85%) had an ICC �0.8 (Table 5)
and were considered robust to differences in the segmenta-
tions (22, 23).

Feature Selection and Model Training
Across the 100 randomizations, the average minimum cross-
validation error was 10.5% at a lambda value of 0.1296 in the
training cohort. This lambda generated 2 features with nonzero
coefficients, stage, and 1 MTV plus penumbra GLCM texture
feature (maximum probability). Although SUVmax has previ-
ously been shown to be associated with recurrence in NSCLC, it
was not selected by LASSO as a top feature. However, it was
found to be a significant univariate predictor in our cohort
(Table 6), consistent with previous studies (7).

Figure 1 visualizes the Pearson correlation coefficients of
the top features. For reference, correlation of the top features
with MTV volume and SUVmax is also shown. All correlations
were low and the radiomic feature showed no correlation with
stage, volume, or SUVmax.

Univariate Cox regression model statistics, including the
AIC, likelihood ratios, P-values, and HRs, are shown for the top
features in Table 6. Both features were significant univariate
predictors of time to recurrence. Overall, stage was the best
univariate predictor.

Because stage was the best univariate predictor, the likeli-
hood ratio test was performed to assess significant improve-
ments to this well-established clinical model for recurrence
prediction. Additional features were added to determine signif-
icant improvements to the model. Adding the MTV plus penum-
bra texture feature to stage significantly improved the model
(P � .006). This multivariate model was a significant predictor

of time to recurrence in the training cohort (likelihood ratio �
27.59, P � .001, concordance � 0.74 [95% CI: 0.66-0.81]). Both
stage (HR � 1.92 [95% CI: 1.37–2.67], P � .001) and the
radiomic texture feature (HR � 0.52 [95% CI: 0.30–0.91], P �
.02) were significant covariates in the multivariate model. Add-
ing SUVmax to stage did not significantly improve the clinical
model performance (P � .22). It also did not significantly im-
prove performance in the combined stage and radiomic model
(P � .73).

Model Validation
Univariate results were confirmed in the validation cohort
(Table 7), with all features being significant predictors of time
to recurrence. The locked multivariate model from the train-
ing cohort, which included stage and the radiomic texture
feature, was a significant predictor in the validation cohort
(concordance � 0.74 [95% CI: 0.67–0.81], Noether’s P �
.001). We separated the patients into high- and low-risk
groups on the basis of the median risk score in the training
cohort. Kaplan–Meier time-to-recurrence curves for the mul-
tivariate model in both cohorts are shown in Figure 2. Recur-
rence was lower in the group below the median model risk
score.

The multivariate model including stage and the radiomic
feature significantly outperformed the best performing clinical
model of stage in the training (P � .036) and validation (P �
.033) cohorts. The combined model also outperformed the ra-
diomic feature alone in both the training cohort (P � .019) and
the validation cohort (P � .001).

Figure 3 exemplifies 2 patients with similar SUVmax that
would typically be considered to be at a high risk of recurrence.

Table 5. Number (percent) of Robust FDG-PET Radiomic Features Selected in Each Category by Virtue of an ICC � 0.8

Feature Type

MTV Penumbra MTV � Penumbra

Inter- Intra- Inter- Intra- Inter- Intra-

Size 4 (100%) 4 (100%) – – – –

Intensity 12 (100%) 12 (100%) 11 (92%) 11 (92%) 12 (100%) 12 (100%)

Shape 27 (68%) 30 (75%) – – – –

Texture 115 (80%) 115 (80%) 118 (82%) 131 (91%) 144 (100%) 142 (99%)

Table 6. Cox Proportional Hazards Model Statistics for Univariate Features in the Training Cohort

Feature
Akaike Information

Criterion
Likelihood

Ratio P-value HR [95% CI]
Concordance

[95% CI]

Stage 341.7 19.98 �.001 2.15
[1.56–2.95]

0.68
[0.60–0.76]

Gray-level Cooccurrence Matrix
Maximum Probability
(MTV � Penumbra)

347.5 14.18 �.001 0.41
[0.23–0.74]

0.66
[0.57–0.74]

SUVmax 353.7 7.99 .005 1.06
[1.02–1.10]

0.67
[0.58–0.75]
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Yet, the combined model including radiomics correctly pre-
dicted the recurrence status of each patient on the basis of the
median risk value. Based on qualitative inspection, the high-risk
patient had more heterogeneous uptake in the penumbra region
compared with the low-risk patient.

DISCUSSION
We show here evidence that texture in the MTV and nearby
surrounding region can predict recurrence in NSCLC. Further-
more, augmenting this radiomic feature with stage significantly
improved performance over stage alone, which was validated in

Table 7. Cox Proportional Hazards Model Statistics for Univariate Features in the Validation Cohort

Feature
Akaike Information

Criterion Likelihood Ratio P-value HR [95% CI]
Concordance

[95% CI]

Stage 475.6 35.7 �.001 2.13
[1.69–2.68]

0.69
[0.63–0.76]

Gray-level Cooccurrence
Matrix Maximum Probability
(MTV � Penumbra)

497.2 14.14 �.001 0.50
[0.33–0.76]

0.66
[0.60–0.72]

SUVmax 506.1 5.24 .02 1.03
[1.01–1.05]

0.67
[0.61–0.73]
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Figure 1. Pearson correlation
coefficient heatmap for the
radiomic and standard clinical
variables.
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an independent data set. This model also showed potential value
in risk-stratifying patients with NSCLC who are at high versus
low risk of recurrence or progression. A general rule in modeling
studies is that 10 patients are needed for every feature selected in
the model (8). To minimize overfitting, our final model consisted
of only 2 features. However further studies on larger sample
sizes with additional features may improve prognostic perfor-
mance and applicability to other cohorts.

The radiomic feature selected was a GLCM texture feature in
the combined MTV plus penumbra volume. This feature, which
describes local texture variations, suggests that patients whose
PET images show a more heterogeneous texture, specifically in
the penumbra region surrounding the MTV, are more likely to
recur. This suggests the importance of image data in the sur-
rounding region for recurrence prediction. This region may
contain uptake not measured in the MTV (and not by the SUVmax)
and could indicate areas of disease adjacent to the primary mass.
The texture being detected in this region may be indicative of an

invasive component of the tumor, for example, spiculations or
tumor spread through blood vessels, but this requires further
investigation (15).

Notably, size or shape features, including the commonly
used metrics of maximum axial diameter and 3D volume, were
not selected as predictive features. SUVmax was also not selected,
and adding it to clinical or combined models did not signifi-
cantly improve performance. This suggests that texture features
may provide more useful information than traditional metrics
for predicting recurrence/progression.

Previous work in the field of radiomics has evaluated FDG-
PET features for outcome prediction in lung cancer. Jansen et al.
found the GLCM energy texture feature was a significant pre-
dictor of overall survival in oligometastatic NSCLC (26). Others
have shown that texture features may be beneficial for predict-
ing local control, distant metastasis, and disease-free survival in
lung cancer (10-12). However, the majority of studies to date
have focused on only the MTV. To the best of our knowledge,
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Figure 2. Kaplan–Meier curves
for the multivariate stage and ra-
diomic texture model risk scores
in the training cohort (n � 145,
P � .001) (A) and the validation
cohort (n � 146, P � .001) (B).
Patients have been stratified on
the basis of median risk value in
the training cohort. The shaded
regions represent the 95% confi-
dence intervals (CI) and “�” indi-
cates censored data.
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Figure 3. Example computed
tomography (CT) image (left),
corresponding positron emission
tomography (PET) image (mid-
dle), and fused PET/CT images
(right) for 2 patients, where the
metabolic tumor volume (MTV) is
encircled in magenta and the
penumbra in between the ma-
genta and blue outlines. Patients
(A) and (B) had relatively high
SUVmax values, but the radiomics
model distinguished the high-risk
patient (A) who recurred at 16-
month follow-up and the low-risk
patient (B) who had not recurred
at just under 5 years of follow-up.
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ours is the first study that evaluates the lung tumor penumbral
region of PET images for recurrence prediction. Future work
integrating CT imaging features or molecular data may improve
prognostic performance.

Our study investigated PET/CT images from multiple scan-
ners and institutions, potentially introducing variability in im-
age data and quality and therefore the construction of a predic-
tive model. We used a standard acquisition protocol across all
institutions to minimize this variability (27, 28). This may still
result in signal variations in the tumor and penumbra regions;
therefore, further studies investigating single scanners are war-
ranted and may improve model performance.

Previous work has also shown that PET radiomic features
are dependent more on delineation variability than on recon-
struction algorithm (29) and that texture features are less af-
fected by difference in scanners (30). Many radiomic features
also show high test–retest stability with repeat PET imaging (31).
The PET-edge segmentation tool we used for tumor segmenta-
tion showed high reproducibility with associated radiomic fea-
ture robustness. Segmentations were performed with commer-
cially available software (MIM Software, Inc.), making it an
easily deployed and integrated system.

Our work is also applicable in a “real world,” nonresearch
setting, where different scanners and images of variable quality
are routinely used for clinical assessment. However, additional
external validation of this radiomics model is warranted to

determine the impact of different scanners and acquisition pro-
tocols on model predictions.

Our study has several limitations. The primary limitation is
that the penumbra region was not restricted to the lung volume,
that is, it may at times have included the adjacent chest wall,
major blood vessels, and/or mediastinum. However, as features
were selected from within this region, it is providing relevant
information for the prediction of recurrence. The effect of this
and the efforts to minimize it remain the subject of further
investigation. Owing to differences in breathing between the
PET and CT images, accurate registration of the lung boundary
is challenging. We also investigated only a single distance of 1
cm for the penumbra region; it is possible that larger or smaller
distances could improve or degrade performance. Another lim-
itation is the inherent low resolution of the PET images, limiting
the amount of information we can analyze for each tumor owing
to lower voxel quantities for smaller tumors. Finally, the sample
sizes analyzed were relatively small, and validation of this
model in larger data sets is warranted.

In conclusion, a PET texture feature in the metabolic tumor
volume and surrounding region augmented staging for NSCLC
recurrence prediction. This model may be useful in identifying
patients who are at a higher risk of recurrence or progression
and may assist physicians in determining what patients may
benefit from adjuvant or personalized treatment options at the
time of diagnosis.
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The use of computed tomography (CT) images to correct for photon attenuation in positron emission tomogra-
phy (PET) produces unbiased patient images, but it is not optimal for synthetic materials. For test objects
made from epoxy, image bias and artifacts have been observed in well-calibrated PET/CT scanners. An ep-
oxy used in commercially available sources was infused with long-lived 68Ge/68Ga nuclide and measured
on several PET/CT scanners as well as on older PET scanners that measured attenuation with 511-keV pho-
tons. Bias in attenuation maps and PET images of phantoms was measured as imaging parameters and
methods varied. Changes were made to the PET reconstruction to show the influence of CT-based attenuation
correction. Additional attenuation measurements were made with a new epoxy intended for use in radiology
and radiation treatment whose photonic properties mimic water. PET images of solid phantoms were biased
by between 3% and 24% across variations in CT X-ray energy and scanner manufacturer. Modification of
the reconstruction software reduced bias, but object-dependent changes were required to generate accurate
attenuation maps. The water-mimicking epoxy formulation showed behavior similar to water in limited test-
ing. For some solid phantoms, transformation of CT data to attenuation maps is a major source of PET image
bias. The transformation can be modified to accommodate synthetic materials, but our data suggest that the
problem may also be addressed by using epoxy formulations that are more compatible with PET/CT
imaging.

INTRODUCTION
With proper calibration, positron emission tomography (PET)
accurately quantifies the concentration of radiolabeled mole-
cules in patients noninvasively and with excellent sensitivity.
Biomarkers computed from these measured concentrations have
proven utility in managing the treatment of certain cancers
(1-4). However, the acquisition of PET data is a physically
complicated process, and the software required to convert the
raw data to form an image relies on numerous approximations
and empirical corrections. Poor calibration or nonoptimal pro-
cessing of the data leads to biased images (5-7). This bias may
reduce PET’s prognostic value for patients and researchers (8).

One of the most important effects that the reconstruction
must model is the interaction of 511-keV annihilation photons
with tissues (in patients) or other materials (in calibration ob-
jects, which are commonly called “phantoms”). Without math-
ematical corrections, absorption of photons leads to reduced
signal from central regions of PET images as well as edge
artifacts. Scattered photons also affect raw PET data because
PET’s coincidence detection, which does not use physical colli-
mation, cannot distinguish between scattered and unscattered

photons for small deflections and therefore misplaces them in
the raw projection data.

For modern PET scanners, the corrections for scattered
and absorbed photons are calculated from computed tomog-
raphy (CT) images that are acquired just before or after the
PET scan (9, 10). CT volume images are mapped to attenua-
tion images, commonly via a piecewise-linear transformation
(11), whose final units are “attenuation coefficients” that
represent the probability of an annihilation photon being
“attenuated” (absorbed or scattered) per unit length. With
these attenuation images, the scanner is able to estimate the
required data corrections for scatter and absorption that are
applied during the reconstruction.

However, CT-based attenuation correction suffers from a
known limitation in that there is no unique relationship between
CT pixelwise image values (Hounsfield Units) and attenuation
coefficients at the energy of PET photons. Figure 1 shows this
problem. The disparity in the absorption properties of bone and
soft tissue varies with photon energy, and it is much greater at
lower CT photon energies than at PET energy. The piecewise-
linear transformation succeeds in producing sufficiently accu-
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rate attenuation images because human tissues have predictable
chemical compositions and their CT image values can be
coarsely grouped into soft tissue and bone. This allows bone to
be scaled separately, thus avoiding overestimation of Compton
scatter at PET’s 511-keV energy. Figure 2 shows a continuous,
piecewise-linear transformation used in a modern PET/CT
scanner.

Tests of quantitative accuracy for PET scanners often in-
volve phantoms that are carefully designed to validate a PET/CT
scanner’s correction of all physical effects, including detection
sensitivity and random coincidences (15, 16). Among current pub-
lished standards and accreditation organizations, water-filled
phantoms containing short-lived radionuclides predominate (17,
18). These phantoms’ physical properties are well-matched to pa-
tient scans, to the extent that water-filled phantom scans are
routinely used to measure the calibration factors used to convert
clinical scans from a scanner’s arbitrary units to true nuclide con-
centration. However, recent reports suggest that this calibration
process may result in increased variability in PET signal, likely

owing to difficulties in repeatedly refilling short-lived phantoms
each time the phantom is used (19).

This problem can potentially be solved by using phantoms
infused with long-lived radionuclides, which can be measured
repeatedly without refilling. These phantoms follow highly pre-
dictable decay curves, allowing bias to be computed at multiple
time points with fewer confounding factors. In this work, we
investigate an important drawback of long-lived phantoms:
they are usually constructed from solid materials to mitigate the
risk of spilling, and these solid materials have attenuation prop-
erties that are not accurately estimated by the CT-based atten-
uation estimation used for human tissues (Figure 2). This can
lead to image bias. Below, we examine the bias in attenuation
images and reconstructed PET images of several solid long-lived
phantoms, and we show that CT-based attenuation correction
underestimates photon absorption by the epoxy used in their
construction.

METHODOLOGY
Phantoms were constructed using epoxy with and without the
admixture of long-lived positron-emitting 68Ge/68Ga (68Ge).
Phantoms were imaged by PET/CT and by 511-keV transmission
scans. Modifications to the X-ray tube voltage and reconstruc-
tion software were used to investigate the dependence of PET
image bias on CT-based attenuation correction.

Image Quality Phantom
A National Electrical Manufacturers Association (NEMA) Image
Quality (IQ) phantom (15) (Data Spectrum Corporation, Durham,
NC) was filled with solid epoxy and 68Ge at an initial back-
ground concentration of 7.19 kBq/mL. The phantom, shown in
Figure 3A, contained spherical inserts at the sizes specified in
the NEMA test standard, but with the modification that all
spheres were filled to the same concentration of radionuclide (ie,
the phantom contained no nonradioactive spheres). Sphere con-
trast was 7.7:1 relative to background, and the same epoxy
formula was used to fill both background and spheres. The
phantom was scanned on 3 commercial PET/CT scanners: a
Discovery STE (General Electric Healthcare, Waukesha, WI), a

Figure 1. Attenuation coeffi-
cients for bone and soft tissues
(black lines) and filtered brems-
strahlung spectra for 80- and
140-kVp computed tomography
(CT) scans (blue lines). Tissue at-
tenuation values are from the Na-
tional Institute of Standards and
Technology (12). X-ray energies
are from the Catsim software
package (13). Epoxy composition
is from the PubChem database
(14).

Figure 2. Estimated attenuation coefficients at
511 keV versus Hounsfield Units from CT images
with varying characteristic voltage. Coefficients
were copied from a modern clinical positron emis-
sion tomography (PET)/CT scanner.
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Biograph (Siemens Healthcare, Knoxville, TN), and a Philips
Gemini TF Big Bore (Philips Healthcare, Best, The Netherlands.).
The dependence of reconstructed signal on CT X-ray energy

(commonly characterized by the potential in kilovolts [kVp]
applied to the X-ray tube) and variations in the reconstruction
software were investigated.

Nonradioactive Epoxy Phantom
A 20-cm cylinder (Figure 3B) was filled with the same epoxy
used in the IQ phantom, but without the addition of any radio-
nuclide. This phantom was scanned on a General Electric Dis-
covery LS and a Siemens HR�. Both scanners used positron
sources to measure photon absorption at the same energy mea-
sured in clinical PET scans, 511 keV. Filtered backprojection was
used to generate attenuation images. The phantom was also
CT-scanned on the General Electric Discovery STE scanner, and
attenuation images resulting from 80-, 100-, 120-, and 140-kVp
CT scans were copied from the scanner console and read in
MATLAB (MathWorks, Natick, MA).

X-Cal Phantom
A comercially-available 45-mm cylinder phantom was
scanned inside a 20-cm water-filled American College of
Radiology flood phantom (Figure 3C) on the same Discovery
STE as the IQ phantom. The 45-mm phantom is sold as part of
a “cross-calibration” kit sold by RadQual, LLC (Weare, NH)
and we consequently refer it to it as the X-Cal phantom. It
was made from the same epoxy as the above sources. We have
previously reported on its signal properties and the bias
between measured values and known tracer concentration
(19, 20).

Nonradioactive PlasticWater Phantom
A nonradioactive 20-cm-diameter cylinder (Figure 3D) was con-
structed from a different epoxy that was formulated to better
match the attenuation properties of human tissues. The cylinder

Figure 3. Image Quality (IQ) phantom filled with
epoxy infused with 68Ge (A). Nonradioactive ep-
oxy phantom made from the same epoxy as the
IQ phantom and the X-Cal phantom (B). X-Cal
phantom mounted for scanning in an American
College of Radiology flood phantom (C). CIRS
20cm Plastic Water LR phantom (D).

Figure 4. Images and profiles of
PET signal from the IQ phantom in
three scanners. Signal has been
normalized by the known nuclide
concentration, with truth repre-
sented by the horizontal black
dotted line. The 3 columns show
scanner models from 3 manufac-
turers: a General Electric Discov-
ery STE (A and D), a Siemens Bio-
graph (B and E), and a Philips
Gemini TF Big Bore (C and F).
Data were averaged over 3 cm
axially and acquired over a de-
cay-compensated duration of 60
minutes. Colored lines in the im-
ages correspond to the locus of
points shown in the profiles. Color
windows are matched between
images.
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was constructed by Computerized Imaging Reference Systems,
Incorporated, or CIRS (Norfolk, VA), and was filled with their
“LR” epoxy. The phantom was scanned on a General Electric
Discovery LS to generate 511-keV transmission images as well
as CT-based attenuation images.

Variations in Imaging Parameters
CT photon energies were varied by changing the X-ray voltage
in CT scans of the IQ phantom and the nonradioactive phan-
toms. CT voltage modifications were done using the scanners’
user-facing interfaces and spanned the available settings of 80,
100, 120 and 140 kVp. Where possible, the impact of CT voltage
on PET measured radioactivity concentration was assessed.

Modification of CT-Based Attenuation Correction
An additional variation for the data measured on the General
Electric Discovery STE scanner was the modification of the
rescaling functions shown in Figure 2 to provide more accurate
conversion of the CT images to attenuation images for the IQ
and X-Cal phantoms. In particular, for the domain that con-
tained the phantoms’ image values of �80–90 Hounsfield Units,
the rescaling coefficient (slope) for 120-kVp CT images was
increased. The new coefficients for the 2 phantoms were chosen
to make the resulting attenuation images agree with values
obtained from the 511-keV transmission scans of the phantoms.
Modifications to the attenuation conversion were made in

MATLAB, and reconstructions were performed using code from
General Electric.

RESULTS
The IQ phantom PET images demonstrated quantitative bias. For
all 3 PET/CT scanners, the bias was spatially variable. Figure 4
shows data from axially averaged (ie, thick-slice) images from
the 3 scanners. For each scanner, the figure depicts data from
�60-minutes’ worth of scanning (scan durations were corrected
to a common time point to compensate for phantom decay).

Table 1 shows the PET background signal divided by the
known nuclide concentration for the images in Figure 4. Back-
ground signal was computed as in the NEMA standard using
28-mm regions (15).

Figure 5 shows the attenuation image from the transmission
scan of the nonradioactive epoxy phantom (Figure 3B) on the
GE Discovery LS. The values obtained on the Siemens HR� were
similar. Figure 5 also shows profiles through this transmission
image as well as the attenuation values that were estimated from
CT data on the General Electric Discovery STE. The profiles show
that the CT-based attenuation images do not agree with the
values obtained using positron annihilation photons. While
varying X-ray tube voltage does lead to varying CT signal, no
user-selectable tube voltage led to agreement between the CT-
based attenuation images and the transmission image. Region of
interest means in the CT-based attenuation images were 0.095,
0.096, 0.097, and 0.098 cm�1 as the CT voltage varied. In the
transmission scan, the value was 0.105 cm�1.

Figure 6A shows the attenuation images generated in the
reconstruction before and after our modification of the algo-
rithm. Figure 6B, shows PET data reconstructed with each at-
tenuation image. It can be seen that the accuracy of the signal is
improved. The bottom row of Table 1 shows that the modifica-
tions to the attenuation correction lead to more accurate PET
signal.

Figure 7A shows a transaxial slice containing the spherical
inserts in an image made with the modified attenuation correc-
tion algorithm. Figure 7B shows mean signal from regions of
interest drawn on the spheres. Averaged over sphere sizes, the
signal was 1.20 times larger in the images with modified atten-
uation correction, indicating that if solid phantoms are used for

Table 1. PET Signal (measured/known) in
the Background Region of the IQ Phantom
with Varying X-ray Tube Voltage and
Modified CT Rescaling for 2 of the Scanners
in this Study

kVp Siemens
General
Electric

80 0.92 0.75

100 0.97 0.78

120 0.95 0.80

140 0.95 0.82

120 (mod’d AC) 1.04

Figure 5. Profiles showing CT-
based attenuation estimates in the
solid epoxy phantom as well as
511-keV transmission measure-
ment (dashed line) (A).The attenu-
ation image produced using 511-
keV photons (B).
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resolution measurements, some compensation for attenuation
bias must be applied.

Figure 8 shows the signal from PET images of the X-Cal
source before and after modification to the attenuation correc-
tion. With the modified algorithm, the signal is visibly more
accurate. Using XCaliper (20), a previously reported method for
drawing regions of interest in the X-Cal phantom, the bias was
measured as �4.7% using the standard attenuation correction
algorithm and 0.5% with our modifications. Different scale
factors were used in the respective modifications to the CT
rescaling for the X-Cal and IQ phantoms.

Figure 9 shows profiles through transmission scans of the
PlasticWater epoxy phantom and a similarly sized water-filled
cylinder. Also shown are CT-based attenuation estimates. It can be
seen that the PlasticWater epoxy better matches the water values in
the transmission scans. In addition, the bias between the transmis-
sion scan and the CT-based attenuation images is similar to that
seen in an actual water phantom, as Table 2 also shows.

DISCUSSION
Inaccuracy of PET activity concentration measurements in solid
epoxy phantoms has been previously observed and is a chal-
lenge to their use in determining scanner calibration accuracy.
We have investigated signal bias in solid phantoms made from
an epoxy that is used in commercially available sources. While
several factors may affect long-lived phantom bias, such as
scatter correction and prompt gamma emission by 68Ge, our

results show that bias is greatly reduced by modification to the
CT-based attenuation correction algorithm.

Although we did not evaluate attenuation images for all
scanners used, Figure 4 shows that each scanner exhibited
signal bias over all or part of the phantom images. It is expected
that scanners from different manufacturers would behave sim-
ilarly, as the generation of X-rays, and therefore the transfor-
mation needed to generate attenuation images, is substantially
similar across scanner types (9).

The transmission measurements made with 511-keV pho-
tons provide a more accurate estimate of attenuation because, in
contrast to CT photons, their probability of various modes of
scatter interactions (ie, Compton, photoelectric, Rayleigh) is
precisely the same as for the photons emitted during a PET scan.
Figure 5A shows that regardless of X-ray energy, the CT-based
attenuation values have a negative bias versus the transmission
scan. Because the PET reconstruction uses these attenuation
values to compensate for lost photons, we would expect PET
images of the phantom to inherit this negative bias, as was
observed. While the PET image bias does change with CT
values, as shown in Table 1, X-ray energy cannot be varied
arbitrarily and no user-selectable setting led to unbiased PET
images.

As Figures 6B and 8 and Table 1 show, modifying the
reconstruction to improve the accuracy of attenuation images
leads to more accurate PET measurements and reduced bias.
Figure 7B shows that recovery curves, which are used to char-

Figure 6. Profiles through CT-
based attenuation images before
and after our modifications to the
CT attenuation correction algo-
rithm (A). Profiles through the re-
constructed PET images made
with the pre- and postmodification
attenuation data, showing im-
proved signal accuracy (B). PET
signal has been divided by
known phantom background
activity concentration.

Figure 7. IQ phantom recon-
structed with modified CT-based
attenuation correction, showing
uniformity in the background re-
gion (A). Mean region of interest
divided by known concentration
(signal recovery) for the depicted
spheres (B).

Bias in Solid PET Phantoms

158 TOMOGRAPHY.ORG | VOLUME 5 NUMBER 1 | MARCH 2019

http://WWW.TOMOGRAPHY.ORG


acterize resolution, also exhibit reduced bias when attenuation
correction is accurate.

The precise modifications required to generate accurate
attenuation images were object-dependent. For the IQ phantom
and the X-Cal phantom, the correct coefficient was determined
by measuring the Hounsfield Units of the epoxy in each scan
and choosing the new slope of the rescaling formula that led to
0.105 1/cm. The IQ and X-Cal phantoms had Hounsfield Units of
92.1 and 82.2, respectively, although they were made of the
same material. We did not attempt to correct the CT transfor-
mation for multiple X-ray tube voltages, but we note that
because CT values themselves depend on voltage, the optimal
modifications for one voltage will not work for others. We
further expect that they would change if the experiment were
repeated with a different epoxy. In all, this indicates that cor-
recting bias in epoxy with this method would require premea-

sured look-up tables so that the appropriate rescaling factors are
available for a range of scan scenarios.

An alternative approach would be the use of an epoxy whose
attenuation properties are better suited to the transformation used
by the scanner. The PlasticWater phantom was investigated with
this in mind. As Table 2 shows, the attenuation estimates from a GE
Discovery LS do not show a dependence on X-ray tube voltage, and
the bias of attenuation estimates versus the transmission scan is
reduced. Further, the bias between CT-based and 511-keV trans-
mission measurements closely resembles that of an actual water
phantom (Figure 9), for which the scanner’s reconstruction algo-
rithm is presumably well-calibrated. That is, the slight bias of
CT-based water attenuation coefficients may be intentionally in-
troduced to compensate for other approximations in the algorithm,
such as imperfect scatter correction. It is therefore plausible, al-
though not confirmed here, that a radioactive PET phantom con-
structed from the PlasticWater epoxy would exhibit bias similar to
a water-filled phantom.

We emphasize that bias in attenuation estimates of our solid
phantoms made from CT images (Figure 5A) does not imply that
clinical patient images are similarly affected. Rather, it is a
property of an empirical optimization in the reconstruction that
favors clinical patient images over other materials.

While our study was limited in scope, using a small number
of scanners, we expect that the bias seen in our PET images
could be replicated on most scanners using CT-based attenua-
tion correction, owing to the similarity in the way their X-rays
are generated and detected.

Future work should better characterize the robustness and
trade-offs of applying software modifications versus using new
materials for phantom construction. In particular, the fabrica-
tion of long-lived radioactive phantoms can present unique
manufacturing challenges, and the authors make no claims
about the fitness of the specific materials used in the present
study for this purpose. Software modifications would require
vendor participation, but have the advantage of being compat-
ible, in principle, with any existing phantom whose attenuation
properties are known. Standardization of phantom size and
composition may lead to object-dependence being a smaller
hurdle for software-based bias reduction.
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Figure 8. PET signal from the 45-mm-diameter
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Figure 9. Profiles through 511-keV transmission
scans and standard CT-based attenuation images
for the PlasticWater LR phantom and a similarly
sized water phantom.

Table 2. Attenuation Values (1/cm)
Measured by Large Regions of Interest in the
PlasticWater LR phantom and Similarly Sized
Aqueous Phantom from CT Scans (First 4
Rows) and Transmission Measurements
(Bottom Row)

LR Water

80 kVp 0.0922 0.0917

100 kVp 0.0922 0.0916

120 kVp 0.0921 0.0916

140 kVp 0.0922 0.0916

511 keV trans 0.0949 0.0944
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CONCLUSIONS
Solid, long-lived PET phantoms can suffer signal bias owing to
physical factors. We have shown that corrections for photon
attenuation computed from CT images can be a significant
source of bias. Modifications to the reconstruction algorithm
can reduce the errors in CT-based attenuation estimates, al-

though the required parameters are likely to depend on X-ray
tube voltage, the type of epoxy used, and the geometry of the
phantom. The use of epoxy that better matches the photon-
scattering properties of water appears to be a promising alter-
native to algorithmic corrections if they can be manufactured
reliably, which is a nontrivial task.
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Radiomics is an image analysis approach for extracting large amounts of quantitative information from medi-
cal images using a variety of computational methods. Our goal was to evaluate the utility of radiomic fea-
ture analysis from 18F-fluorothymidine positron emission tomography (FLT PET) obtained at baseline in predic-
tion of treatment response in patients with head and neck cancer. Thirty patients with advanced-stage oro-
pharyngeal or laryngeal cancer, treated with definitive chemoradiation therapy, underwent FLT PET imaging
before treatment. In total, 377 radiomic features of FLT uptake and feature variants were extracted from vol-
umes of interest; these features variants were defined by either the primary tumor or the total lesion burden,
which consisted of the primary tumor and all FLT-avid nodes. Feature variants included normalized measure-
ments of uptake, which were calculated by dividing lesion uptake values by the mean uptake value in the
bone marrow. Feature reduction was performed using clustering to remove redundancy, leaving 172 repre-
sentative features. Effects of these features on progression-free survival were modeled with Cox regression
and P-values corrected for multiple comparisons. In total, 9 features were considered significant. Our results
suggest that smaller, more homogenous lesions at baseline were associated with better prognosis. In addi-
tion, features extracted from total lesion burden had a higher concordance index than primary tumor features
for 8 of the 9 significant features. Furthermore, total lesion burden features showed lower interobserver
variability.

INTRODUCTION
Concomitant chemoradiation is used as an organ-sparing treat-
ment strategy for advanced oropharyngeal and larynx cancers.
Although outcomes vary based on stage, site, and other factors
including human papilloma virus status, the 3-year progres-
sion-free survival of patients with advanced-stage head and
neck cancer after chemoradiation therapy (CRT) is �60% (1).
Patients in whom cancer recurs after initial CRT are consid-
ered for salvage surgery; but, patients with presalvage Stage
IV disease and those with presalvage Stage III disease at
recurrence have poor prognosis with a median survival of �6
month and 14 months, respectively (2). As both new targeted
therapies and radiation therapy (RT) delivery methods are
developed, there is a need to develop biomarkers that may
help stratify patients a priori for different treatment modal-
ities or that can predict the likelihood of durable response

versus ultimate failure earlier during therapy to allow for
adaptive treatment approaches.

Positron emission tomography (PET) with 18F-fluorodeoxy-
glucose (FDG PET) is widely used in pretreatment staging and
post-therapy evaluation of head and neck cancers after RT or
CRT. Because of its high negative predictive value in detection of
recurrent disease, the National Comprehensive Cancer Network
Guidelines now recommend omitting consolidative surgery
(neck dissection) if the post-therapy FDG PET obtained at least
12 weeks after initial therapy is negative for residual tumor (3).
However, the role of FDG PET in predicting failure of CRT or
monitoring treatment response to (chemo)radiation during or
early after treatment is not well established (12 weeks after
initial therapy is typically required).

Radiation therapy and chemotherapy affect proliferation
rates in treated tumors. In addition, pretreatment proliferation
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rates may be a determinant of sensitivity to chemotherapy and
RT. Assessment of cancer proliferation rates and changes in cell
proliferation rate may therefore accurately predict ultimate
therapeutic response. 3=-deoxy-3=-18F-fluorothymidine (FLT), a
thymidine analogue that is not incorporated into DNA, is the
most widely studied PET agent for imaging cell proliferation.
The intracellular trapping of FLT is regulated by thymidine
kinase 1, a key enzyme in DNA synthesis, with high activity
during the proliferative phase of the cell cycle and low activity
in the quiescent phase (4). Several studies have shown that
untreated head and neck cancers can be imaged with FLT PET
with a high tumor-to-background contrast (5–9).

Radiomics is an image analysis approach with the goal of
extracting large amounts of quantitative information from med-
ical images using a variety of computational methods. Extracted
features include measurements of intensity (uptake), shape, and
texture. The objective of this study was to evaluate the utility of
FLT PET radiomic features obtained at baseline in the prediction
of treatment response in patients with head and neck squamous
cell cancer (HNSCC). The present work provides a basis for
further optimization of predictive FLT PET features, which can
then be further evaluated in future clinical trials.

METHODOLOGY
Patients
A single-center prospective study was performed in patients
who had histologically confirmed HNSCC and were scheduled to
receive definitive concurrent CRT per standard cancer care.
Other eligibility criteria included a Karnofsky score of �60,
acceptable bone marrow reserve (absolute neutrophil count,
�1.5 K/mL; platelet count, �100 K/mL) and kidney (serum
creatinine, �2.1 mg/dL), and liver function (bilirubin, �1.0
mg/dL; ALT/AST, �2.5 times upper limits of normal for the
institution). These criteria generally excluded patients who were
not robust enough to receive combined modality therapy. Pa-
tients were excluded if they had chemotherapy or radiotherapy
within 4 weeks before the study (no induction chemotherapy) or
were receiving investigational drugs or nucleoside analogues
(such as 5-Fluorouracil that could interfere with FLT uptake). All
patients were scheduled to undergo a baseline FLT PET scan
within 30 days of the initiation of CRT. This was generally done
the week before starting treatment. Platinum-based chemother-
apy was started the first day of radiotherapy, either with high-
dose cisplatinum or a combination of cisplatinum or carboplati-
num combined with a taxane. Patients were followed every 3
months with clinical exams for the first year per our clinical
routine and 2–4 times per year subsequently. Surveillance FDG
PET scans were obtained at 3–4 months after treatment. Subse-
quent follow-up imaging was individualized on the basis of
symptoms and clinical findings. This research was approved by
the University of Iowa Institutional Review Board, and all sub-
jects signed an informed consent. The research was conducted
according to the principles of the Declaration of Helsinki and
Good Clinical Practice.

In total, 30 patients with squamous cell head and neck
cancer, including 27 oropharyngeal cancers, 1 unknown pri-
mary, and 2 laryngeal cancers, were available for analysis. There
were 26 male and 4 female patients with an age range of 36–76

years (median, 57 years). The demographics of the patients
including distribution of tumor stages are summarized in
Table 1. After a median follow-up of 26 months (range, 7–36
months), 8 patients died of disease, 1 patient was alive with
distant metastasis (DM), and 21 patients had no evidence of
disease. Among the 8 patients who died from the disease, 4
patients had local recurrence (LR), 1 patient had local recurrence
and distant metastasis (LR � DM), and 3 patients had DM alone
at the time of initial recurrence or progression. Three patients
underwent salvage surgery after completion of radiotherapy
because of local recurrence and had no evidence of disease at
last follow-up. The median follow-up in patients with no evi-
dence of disease was 25 months.

FLT PET Imaging
For the synthesis of FLT, fluorine-18 fluoride was reacted with
3=-anhydrothymidine-5=-benzoate following the procedure of

Table 1. Overview of Patients in the FLT PET
Study (n � 30)

Patient
Characteristics Categories Total [%]

Median
[Range]

Age at
diagnosis
(years)

57 [36–76]

Sex Male 26 [86.7]

Female 4 [13.3]

Site Oropharynx 27 [90.0]

Larynx 2 [6.7]

Unknown
primary

1 [3.3]

T-Stage Tx 1 [3.3]

T1 1 [3.3]

T2 15 [50.0]

T3 7 [23.3]

T4 6 [20.0]

N-Stage N0 5 [16.7]

N1 5 [16.7]

N2 16 [53.3]

N3 4 [13.3]

Overall
Stage

II 2 [6.7]

III 9 [30.0]

IVA 13 [43.3]

IVB 6 [20.0]

Follow-Up
(Months)

22.0 [4.6–36.0]

Survival
Status

Progression-
free
survival

21 [70]

Progression
or
death

9a[30]

a Consists of 4 patients with LR, 4 patients with DM, and 1 patient with
LR � DM.
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Machulla et al. (10). The benzoate protecting group was removed
with base hydrolysis and the product purified by semiprep HPLC
with 10% ethanol/90% isotonic saline as the mobile phase with
typical yields of 5%–8%. FLT was infused via a syringe pump
over 2 minutes followed by 10-mL saline flush administered
manually. The administered activity of FLT was 2.6 MBq/kg
(0.07 mCi/kg) with a maximum dose of 185 MBq (5 mCi).
Imaging was performed on a Siemens ECAT EXACT HR � PET
scanner (Siemens Medical Solutions USA, Inc., Knoxville, TN)
for 40 minutes, starting 60 minutes after injection. Transmission
imaging was performed before the injection of FLT. Whole-body
scans were obtained for 28 patients, and scans of the head and
neck region were obtained for only 2 patients. Images were
iteratively reconstructed (2 iterations � 8 subsets, Gaussian 8.0
mm, zoom � 1.2) with a resulting voxel size of 4.29 � 4.29 �
4.29 mm.

Image Analysis
For primary tumors and FLT-avid lymph nodes, volumes of
interest (VOIs) defined by high FLT uptake above background
were generated by a nuclear medicine physician using a semi-
automated segmentation software developed for head and neck
tumors in PET (11). Primary tumors were segmented on FLT PET
in all patients except for 1 patient who had an unknown primary
tumor site. FLT-avid nodal metastases in the neck were identi-
fied in 23 patients. In total, 83 lesions/VOIs were identified using
the semiautomated PET segmentation tool. Each VOI received an
individual label. Subsequently, these labels were used to define
2 different measurement region categories (ie, VOIs) from which
radiomic features were extracted. The first measurement region
category PT consisted of VOIs representing primary tumor only.
The second category LB was the total lesion burden, which
corresponds to the primary tumor and all FLT-avid nodes com-
bined. To calculate quantitative features for LB, all lesion pre-
viously segmented in a FLT scan were combined into 1 image
mask, forming a single VOI. For each measurement region,
radiomic features describing intensity, shape, and texture prop-
erties were calculated by using the open-source packages PET-
IndiC (12) and pyradiomics (13). All features were derived from
standardized uptake value (SUV) normalized PET images. A total
of 104 quantitative baseline PT features and an additional 99
baseline LB features were extracted from each patient. Note that
5 shape features (ie, slice maximum 2D diameter, column max-
imum 2D diameter, row maximum 2D diameter, maximum 3D
diameter, and sphericity) are meant for single, connected VOIs,
so these were excluded from the LB features.

For texture features, the histogram bin size was fixed at 0.25
SUV. The selected bin size follows van Velden et al. (14), where
the total number of bins will be �64 bins, depending on the
lesion SUV range. A fixed bin size is used rather than a fixed
number of bins because lesion SUV ranges vary among patients
and fixing the number of bins is less appropriate for the clinical
setting (15).

In addition to SUV-based measurements, normalized mea-
surements of uptake were calculated by dividing lesion SUVs by
the mean SUV in the bone marrow. The goal of normalization is
to compare the cell proliferation in cancerous tissue to that of a
normal structure. Normalization of SUVs was accomplished by

generating a VOI around the largest vertebra completely visible
in the field of view using the same segmentation software
described above. In total, 30 vertebral VOIs were created using
the semiautomated segmentation tool. For most patients, the L5
vertebra was segmented. The L4 vertebra was segmented for 1
patient owing to the L5 vertebra not being completely within the
field of view. Because 2 patients had PET scans that did not
include lumbar vertebrae, the T4 or T6 vertebra were segmented
instead. Patient SUVs were then normalized by dividing by the
mean vertebral SUV, and radiomic features were again calcu-
lated from the lesion VOIs. In total, 87 vertebra-normalized PT
features and 87 vertebra-normalized LB features were generated
from each patient. Note that normalization is not applicable for
11 features (ie, shape features) and has no effect on Q1–Q4
distributions, skewness, and kurtosis. For texture features based
on normalized uptake, the histogram bin size was fixed at 0.125
(unitless). Note that the bin size is reduced compared with
unnormalized texture features (bin size, 0.25), because normal-
ization reduces the lesion intensity ranges compared with un-
normalized lesions. In total, 377 baseline radiomic features were
extracted from each patient.

Feature Reduction
Redundancy of quantitative features was reduced by using a
clustering algorithm. The goal of feature reduction was to re-
place highly correlated features with a single representative
feature. Such a step could be achieved by utilizing a PCA-based
feature selection step [eg, FactoMineR (16)]. However, due to the
sparseness of our feature space, a more appropriate feature
selection method was utilized. First, the similarities of features
were calculated by determining the Pearson correlation (r) for all
pairs of features. Next, features were clustered according to
similarity using an affinity propagation (AP) clustering algo-
rithm (17), an unsupervised dimension reduction technique that
others have utilized in the analysis of quantitative imaging
features (18–20). An advantage of AP clustering over k-means
clustering is that the total number of clusters at the output is
automatically determined. Moreover, the algorithm is able to
handle infinite dissimilarities, meaning 2 features that are
highly dissimilar will not be placed in the same cluster. There-
fore, to allow features with only strong correlations defined by
r � 0.90 to be clustered together, all features with pairwise
similarity values less than 0.90 were artificially set to have
infinite dissimilarity before application of the AP clustering
algorithm. As output, the algorithm produces a reduced set of
representative exemplar features. An exemplar feature can be
either a single feature with no strong correlations with other
features or a representative of a cluster containing �2 features.
The feature reduction step was performed using the apcluster
package (21) in version 3.2.3 of the R statistical software (22).

Statistical Evaluation
Survival analysis was conducted to estimate and test the effects
of quantitative features in the reduced set on progression-free
survival (PFS). Time to event for PFS was defined as time from
start of treatment to recurrence or death. Effects on survival
during the 36-mo, post-treatment period were of primary inter-
est. Hence, subjects who did not experience an event by month

FLT PET Radiomics for Response Prediction in HNSCC

TOMOGRAPHY.ORG | VOLUME 5 NUMBER 1 | MARCH 2019 163

http://WWW.TOMOGRAPHY.ORG


36 were censored at that point in time for the analysis. Cox
regression was used to model the effects of individual quantita-
tive features on survival. Using multiple predictors in a Cox
regression model on a small cohort has the potential to overfit
the patient data. Therefore, a Cox model with a single predictor
was chosen to avoid overfitting. Estimated effects are summa-
rized with hazard ratios (HRs) and the concordance (c)-index.
The c-index is an estimate of the probability that, out of 2 ran-
domly selected patients, the model can discriminate which patient
will survive longer (23). Values can range from 0.0 to 1.0, with 0.5
indicating absence of discriminant value for the model, 0.7 indi-
cating reasonable discriminant value, and 1.0 indicating perfect
discriminant value. Two-sided P-values for tests of significance of
features in the models are reported. To account for multiple statis-
tical tests, the false-discovery rate (FDR) was computed using the

Benjamini–Hochberg method (24). Features with a FDR of 10%
were identified as significant. All statistical tests were performed
using the survival package (25) for R.

Interobserver Variability Analysis
To study the variabiltity of feature measurement, a second observer
independently generated segmentations (VOIs) for the same 83
lesions and features were calculated as described above. The fea-
tures extracted from the second observer’s VOIs were then com-
pared to the features extracted from the VOIs of the first observer.
Agreement in feature measurement was compared using the intra-
class correlation coefficient (ICC). To investigate the impact of
interobserver segmentations on model performance, a separate
model for each predictive feature was generated using segmenta-
tions by the second observer. The performance of these models
were then compared to the initial models from the first observer.
Differences of model performance were reported as changes in
c-index values.

RESULTS
Feature Reduction
The feature reduction step took the 377 FLT features as input and
clustered similar features together to produce 172 uncorrelated
clusters. Figure 1 shows the distribution of cluster sizes. Ninety-
six clusters had a size of one, meaning there were 96 features
(25.5%) that were not highly correlated with any other feature
(r � 0.9). The remaining 76 clusters had size of �2, with the
maximum being a size of 10.

Correlation of Baseline Features With Treatment
Outcome
Feature performance was estimated using each feature as a
predictor in a univariate Cox regression model. A total of 37

Figure 1. Cluster size distribution for the 172
clusters identified in the feature reduction step.

Table 2. Comparison of Predictive FLT Features (Progression-Free Survival) With 3 Commonly Used Features,
SUVmax, SUVpeak, and SUVmean

Feature (VOI, normalization) P-Value HR [95% CI] FDR c-Index

Gray-Level Non-Uniformitya (LB, N) 0.0002 3.11 [1.70, 5.68] 0.043 0.86

Gray-Level Non-Uniformityb (LB, N) 0.0012 3.12 [1.56, 6.24] 0.058 0.72

Spherical Disproportion (LB, U) 0.0012 4.10 [1.56, 10.80] 0.058 0.74

Information Measure of Correlation 2c (LB, U) 0.0017 0.32 [0.16, 0.65] 0.058 0.79

Zone Percentageb (LB, N) 0.0020 0.18 [0.04, 0.78] 0.058 0.75

Gray-Level Non-Uniformitya (LB, U) 0.0020 2.21 [1.40, 3.47] 0.058 0.83

Q1 Distribution (LB, U) 0.0042 0.36 [0.17, 0.75] 0.088 0.78

Volume (LB, U) 0.0043 2.44 [1.38, 4.32] 0.088 0.74

Information Measure of Correlation 1c (LB, U) 0.0046 4.07 [1.23, 13.42] 0.088 0.78

SUVmax (LB, U) 0.1916 0.60 [0.27, 1.33] 0.395 0.66

SUVpeak
d (LB, U) 0.3341 0.69 [0.32, 1.48] — 0.63

SUVmean
d (LB, U) 0.5038 0.76 [0.34, 1.71] — 0.62

Abbreviations: VOI, volume of interest; HR, hazard ratio; CI, confidence interval; FDR, false-discovery rate; PT, primary tumor; LB, lesion burden; U,
unnormalized; N, normalized.

a Calculated from the gray-level run length matrix (GLRLM).
b Calculated from the gray-level size zone matrix (GLSZM).
c Calculated from the gray-level co-occurrence matrix (GLCM).
d Not selected in feature reduction step, so FDR was not calculated.
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exemplar baseline features (21.5%) had P-values below the 5%
level. After adjusting for multiple testing to control the false-
discovery rate, a total of 9 baseline features were identified as
significant at the set 10% FDR level. Table 2 summarizes the
unadjusted Cox regression P-values, estimated hazard ratios
with corresponding confidence intervals, FDRs, and c-index
values for the 9 significant features as well as for 3 commonly
used features (ie, SUVmax, SUVpeak, and SUVmean). SUVpeak was
defined as the highest average uptake within a 1 cm3 sphere that
is completely contained within the VOI. Note that SUVpeak and
SUVmean were not selected in the feature reduction step, so
univariate analyses were done separately and no FDRs were
calculated for SUVpeak and SUVmean. The clinical parameter for
primary tumor stage (T-stage) was not significantly associated
with survival.

Figure 2 shows a heatmap of correlations among the 9
significant features. The feature reduction step used a high
correlation threshold (r � 0.90), so moderate correlations among
the best-performing features still exist. By showing the correla-
tions of the features in a heatmap, good-performing lesion
characteristics, rather than individual features, may be ob-
served. For example, features that measure lesion size (eg, vol-
ume) and shape (eg, spherical disproportion) had good perfor-
mance. Also, measures of lesion heterogeneity (eg, gray-level
nonuniformity and zone percentage) had good performance.

Interobserver Variability Analysis
Table 3 shows the results of the variability analysis for the 9
significant features and the commonly used features SUVmax,
SUVpeak, and SUVmean. Gray-level nonuniformity from the gray-
level size zone matrix (GLSZM) had moderate agreement be-
tween the 2 observers. The other 8 significant features had
strong agreement between the 2 observers. Both SUVmax and

SUVpeak had perfect agreement between the 2 observers and
SUVmean had strong agreement.

To assess model performance stability, the segmentations of
the second observer were used to produce a second model for

Table 3. Interobserver Agreement for
Predictive FLT Features and 3 Commonly Used
Features, SUVmax, SUVpeak, and SUVmean

Feature (VOI, normalization)
Measurement

Agreement

Gray-level Non-Uniformitya (LB, N) 0.99

Gray-level Non-Uniformityb (LB, N) 0.75

Spherical Disproportion (LB, U) 0.96

Information Measure of Correlation 2c (LB, U) 0.98

Zone Percentageb (LB, N) 0.91

Gray-level Non-Uniformitya (LB, U) 0.99

Q1 Distribution (LB, U) 0.90

Volume (LB, U) 0.99

Information Measure of Correlation 1c (LB, U) 0.95

SUVmax (LB, U) 1.00

SUVpeak (LB, U) 1.00

SUVmean (LB, U) 0.94

Measurement agreement was calculated as the Intraclass Correlation
Coefficient (ICC) between the feature values of the first and second
observer.

Abbreviations: VOI, volume of interest; LB, lesion burden; U, unnormal-
ized; N, normalized.
a Calculated from the gray-level run length matrix (GLRLM).
b Calculated from the gray-level size zone matrix (GLSZM).
c Calculated from the gray-level co-occurrence matrix (GLCM).

Figure 2. Heatmap of correlations among the 9
baseline 18F-fluorothymidine (FLT) features with
the best performance.
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each of the predictive features shown in Table 2. Table 4 shows
the performance differences of the second model in reference to
the first model for the univariate predictors with the best per-
formance. For most features, only small changes in performance
(c-index) were observed, indicating that model performance was
stable. Only 1 feature (Q1 distribution) had a change in c-index
�5 percentage points.

DISCUSSION
Performance
In this work, we investigated associations of patient outcomes
with radiomic features derived from FLT PET lesion segmenta-
tions. Radiomics generates many features that can be highly
correlated from each subject, so a feature reduction step was
included to remove redundancies from the feature space. Despite
this reduction, a large number of features were not highly
correlated and tested in the performance analysis, so controlling
the false-discovery rate was used to reduce false positives. A
total of 9 FLT features were considered significant.

Our results suggest that a favorable prognosis is associated
with a small lesion size, a more sphere-like lesion shape, and
homogeneous intensity. Figure 3 shows the baseline scans of 2
patients with different outcomes and different FLT-avid lesion
shapes. The surviving patient (Figure 3A) has a small, sphere-
like lesion. The patient later classified with progressive disease
(Figure 3B) has large lesions with a large, irregular surface area.
Our results also suggest that lesion texture/homogeneity of
intensity may be an indicator of outcome. Figure 4 shows the
baseline scans of 2 patients with different outcomes and differ-
ent lesion textures. The surviving patient (Figure 4A) has lesions
with smaller regions of more uniform texture. The patient later
classified with progressive disease (Figure 4B) has large regions
and an overall nonuniform texture.

The authors are not aware of any publications that normal-
ize lesion uptakes with the mean vertebral uptake before anal-
ysis of response prediction for HNSCC with FLT PET. Three out
of the 5 best-performing intensity-based features were normal-
ized with the mean vertebral uptake. Table 5 compares the
c-indices of intensity-based FLT features with and without nor-
malization. Texture features from the gray-level co-occurrence
matrix have poorer performance after normalization. Texture
features from the gray-level run length matrix and the GLSZM
have a small increase in performance after normalization. Due
to our small cohort of patients, more analysis is needed on a
larger patient population to determine if these differences are
significant.

All features identified as having an association with patient
outcome were calculated from the total lesion burden (Table 2).
This suggests that important information about the disease is
found not only in the primary tumor, but also in the FLT-avid
lymph nodes. Table 6 compares the c-indices of the 9 best-
performing FLT features calculated from the primary tumor and
the total lesion burden. All but 1 feature (ie, information mea-
sure of correlation 1) had higher performance when calculated
from the total lesion burden. Furthermore, the interoperator
agreement (ICC) average and standard deviation of the 9 best-
performing FLT features for primary tumor and the total lesion
burden was 0.88 	 0.13 and 0.94 	 0.08, respectively. Thus, FLT
PET features derived from total lesion burden show higher
agreement, and 8 out of the 9 best-performing features had
strong agreement between different observers (Table 3). As

Table 4. Differences of Model Performance
Due to Interobserver Segmentation
Variability

Feature (VOI, normalization) �c-index

Gray-Level Non-Uniformitya (LB, N) 0.00

Gray-Level Non-Uniformityb (LB, N) �0.01

Spherical Disproportion (LB, U) �0.03

Information Measure of Correlation 2c (LB, U) 0.03

Zone Percentageb (LB, N) 0.01

Gray-Level Non-Uniformitya (LB, U) 0.01

Q1 Distribution (LB, U) �0.07

Volume (LB, U) �0.01

Information Measure of Correlation 1c (LB, U) 0.03

Change Calculations are the Difference (
) of the c-Indices Between
the Model of the First Observer and the Model of the Second Observer.

Abbreviations: VOI, volume of interest; LB, lesion burden; U, unnormal-
ized; N, normalized.
a Calculated from the gray-level run length matrix (GLRLM).
b Calculated from the gray-level size zone matrix (GLSZM).
c Calculated from the gray-level co-occurrence matrix (GLCM).

Figure 3. Baseline FLT scan
slices showing differences in le-
sion size and shape. Patient later
classified as progression-free sur-
vival at follow-up (A). Patient later
classified as progression at fol-
low-up (B). A favorable prognosis
was associated with small tumor
volume (Vol) and a lower spheri-
cal disproportion (SphDisp).
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stated before, more analysis is needed on a larger patient pop-
ulation to determine if these differences are significant.

Related Work
The association of standard FLT features and outcome has been
previously studied. For example, Hoshikawa et al. reported that
baseline FLT tumor volume and total lesion proliferation (TLP)
were predictive of locoregional tumor control in 32 patients
with HNSCC treated with CRT and surgery (26). We found
similar results to their findings for the total lesion burden vol-
ume (P � .004) and total lesion burden TLP (P � .012) for
predicting 3-y progression-free survival. Note that total lesion
burden TLP in our analysis was not selected during the feature
reduction step. Hoshikawa et al. later reported that baseline FLT
tumor volume, TLP, and SUVmax were predictive of locoregional
tumor control in 53 patients with HNSCC treated with RT or CRT
(27). Our results are not similar to their findings for unnormal-
ized SUVmax (P � .192). This may be due to our smaller patient
cohort (30 vs. 53). However, Linecker et al. reported earlier that

high FLT uptake is associated with poor outcome in 20 patients
treated with RT and CRT (8).

The authors are aware of 2 other publications that report
correlations of FLT based radiomic features and patient out-
comes. Willaime et al. reported that radiomic features were
predictive of treatment response in 11 breast cancer patients
treated with chemotherapy (28). However, the different cancer
site and treatment type does not allow for a meaningful com-
parison with our results. Majdoub et al. (29) reported that tumor
proliferative volume and textural features are predictive of dis-
ease-free survival in 45 patients with HNSCC treated with RT
and CRT. They found that large, more heterogeneous lesions

Table 5. Comparison of c-Index Values for
Unnormalized and Normalized Features

Feature Unnormalized Normalized

Gray-Level Non-Uniformitya 0.83 0.86

Gray-Level Non-Uniformityb 0.66 0.72

Information Measure of Correlation 2c 0.79 0.63

Zone Percentageb 0.73 0.75

Information Measure of Correlation 1c 0.78 0.56

Higher c-Index Values for Each Feature are Indicated in Bold.
a Calculated from the gray-level run length matrix (GLRLM).
b Calculated from the gray-level size zone matrix (GLSZM).
c Calculated from the gray-level co-occurrence matrix (GLCM).

Table 6. Comparison of c-Index Values for
Features Calculated from the Primary Tumor
and the Total Lesion Burden

Feature (Normalization)
Primary
Tumor

Lesion
Burden

Gray-Level Non-Uniformitya (N) 0.71 0.86

Gray-Level Non-Uniformityb (N) 0.50 0.72

Spherical Disproportion (U) 0.49 0.74

Information Measure of Correlation 2c (U) 0.75 0.79

Zone Percentageb (N) 0.68 0.75

Gray-Level Non-Uniformitya (U) 0.71 0.83

Q1 Distribution (U) 0.64 0.78

Volume (U) 0.59 0.74

Information Measure of Correlation 1c (U) 0.79 0.78

Higher c-Index Values for Each Feature are Indicated in Bold.
Abbreviations: U, unnormalized; N, normalized.
a Calculated from the gray-level run length matrix (GLRLM).
b Calculated from the gray-level size zone matrix (GLSZM).
c Calculated from the gray-level co-occurrence matrix (GLCM).

Figure 4. Baseline FLT scan
slices showing differences in le-
sion texture. Patient later classi-
fied as progression-free survival
at follow-up (A). Patient later clas-
sified as progression at follow-up
(B). A favorable prognosis was
associated with more homoge-
neous lesions and finer textures.
Gray-level nonuniformity from the
gray-level run length matrix
(GLNU) has a lower value for
more uniform regions. Zone per-
centage from the gray-level size
zone matrix (ZonePct) has a
higher value for regions with finer
textures.
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were associated with a less favorable prognosis, which is con-
sistent with our findings.

In current clinical practice, FDG PET imaging is com-
monly utilized for assessment of response to treatment. For
this purpose, simple quantitative image features like SUV-
max, SUVpeak (30), metabolic tumor volume (MTV), or total
lesion glycolysis (TLG) have been proposed, out of which
SUVmax is most widely adopted. In a recent study, Castelli et
al. (31) summarized the results of 45 studies regarding the
predictive value of such FDG PET features with respect to
clinical outcome in HNC treatment with chemoradiotherapy
(CRT). The study concluded that MTV and TLG in pretreat-
ment PET scans showed good correlation with disease free
survival (DFS) or overall survival (OS). In this work, we have
investigated FLT PET derived image features. At this stage, it is
unclear which imaging approach (ie, tracer) results in better pre-
dictive performance. For example, the volume defined by above
normal tracer uptake showed good performance on FLT data
(Table 2) as well as in FDG PET studies (31). However, to decide
which approach is preferable, a dedicated study is needed.

Limitations
This study has several limitations. The HPV (human papilloma
virus) status, which is now a well-known prognostic factor in
oropharyngeal cancers, was not available for this cohort as it
was not routinely obtained when subjects were enrolled in this
study. Furthermore, the effects of repeated scans and image
reconstruction parameters on FLT-based radiomic features was
not determined. Willaime et al. did investigate test–retest vari-
ability of texture features in breast cancer using FLT PET (28).
They report similar results to a study by Tixier et al., which
investigated the test-retest variability of FDG PET texture fea-
tures using 16 patients with esophageal cancer (32). Both studies

found that measures of tumor homogeneity and entropy had good
repeatability. Leijenaar et al. investigated the repeatability of FDG
PET texture features in non–small cell lung cancer (33). A majority
of features (71%) were stable during test-retest analysis.

Yan et al. reported that zone percentage of the GLSZM
was sensitive to image reconstruction parameters and should
be used with caution (34). Their work used 20 patients with
lung lesions imaged with FDG PET. Zone percentage was
associated with patient outcome in our results, and it is a
measure of fine textures. It is reasonable to expect that high
variability of zone percentage calculations by different image
reconstruction parameters would also occur in FLT PET. Re-
construction parameters were held constant for the images in
our study.

CONCLUSION
In conclusion, radiomics is a useful approach for extracting
large amounts of information from tumor images. We investi-
gated the association of patient outcomes with radiomic features
extracted from tumors imaged with FLT PET. Radiomics features
performed favorably compared to standard clinical stage. We
found that smaller, more homogenous lesions at baseline were
associated with a better prognosis in 30 patients with head and
neck cancer. Therefore, for future studies of FLT-based predic-
tion of outcome, we recommend including radiomic features of
lesion size, shape, and texture features that measure lesion
homogeneity. We also recommend that radiomic features be
calculated from the total lesion burden, rather than the primary
tumor only, so that the largest amount of disease information is
used for analysis. Our findings enable future optimization of
FLT-based features which can then be assessed in validation
studies.
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Medical imaging is critical for assessing the response of patients to new cancer therapies. Quantitative le-
sion assessment on images is time-consuming, and adopting new promising quantitative imaging biomarkers
of response in clinical trials is challenging. The electronic Physician Annotation Device (ePAD) is a freely
available web-based zero-footprint software application for viewing, annotation, and quantitative analysis of
radiology images designed to meet the challenges of quantitative evaluation of cancer lesions. For imaging
researchers, ePAD calculates a variety of quantitative imaging biomarkers that they can analyze and com-
pare in ePAD to identify potential candidates as surrogate endpoints in clinical trials. For clinicians, ePAD
provides clinical decision support tools for evaluating cancer response through reports summarizing changes
in tumor burden based on different imaging biomarkers. As a workflow management and study oversight
tool, ePAD lets clinical trial project administrators create worklists for users and oversee the progress of anno-
tations created by research groups. To support interoperability of image annotations, ePAD writes all image
annotations and results of quantitative imaging analyses in standardized file formats, and it supports migra-
tion of annotations from various propriety formats. ePAD also provides a plugin architecture supporting
MATLAB server-side modules in addition to client-side plugins, permitting the community to extend the ePAD
platform in various ways for new cancer use cases. We present an overview of ePAD as a platform for medi-
cal image annotation and quantitative analysis. We also discuss use cases and collaborations with different
groups in the Quantitative Imaging Network and future directions.

INTRODUCTION
Advances in molecular medicine are providing many new treat-
ments that promise to be safer and more effective than tradi-
tional cytotoxic treatments by targeting the molecular charac-
teristics of each patient’s tumor (1-3). As these new targeted
treatments enter clinical trials, there is a growing need to derive
quantitative characteristics from images of cancer lesions
(“quantitative imaging biomarkers”) that accurately assess the
clinical benefit of these treatments (surrogate endpoints in clin-
ical trials). Tumor shrinkage is the hallmark of response to
traditional cytotoxic cancer therapies (4), and thus linear mea-
surement of target lesions is the imaging biomarker used in most
clinical trials using criteria such as Response Evaluation Criteria
in Solid Tumors (RECIST) (5-7), Response Assessment in Neuro-
Oncology (RANO) (8, 9), and International Harmonization Cri-
teria (10). However, targeted, noncytotoxic therapies may arrest
cancer growth and improve progression-free survival without
necessarily shrinking tumors (11-14). Simple linear measure-
ment may underestimate treatment response (15-18), in addition

to having other limitations (7, 19). Alternative imaging bio-
markers may be more promising than linear measurement for
assessing response, especially with targeted therapeutic agents,
as they can capture specific imaging features related to biolog-
ical alterations in tumors during treatment (eg, heterogeneity,
hypoxia, or changes in tumor microenvironment) (20-24), un-
like tumor shrinkage (15, 25-27). Indeed, quantitative imaging
biomarkers that reliably detect the results of anticancer agents
(as opposed to detecting only change in tumor size) are desirable
for all classes of therapeutic agents (28). Such new imaging
biomarkers could become surrogate endpoints in clinical trials,
as regulatory approval can be based on surrogate endpoints that
document clinical benefit (29).

Development of imaging biomarkers follows a life cycle,
starting with discovery and validation (“emerging biomarkers”),
then translation and incorporation into clinical trials, and even-
tually to qualification for clinical use as surrogate endpoints for
evaluating treatments (“qualified biomarkers”) (30). A number
of research groups are working on the discovery/validation of
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the spectrum and developing new quantitative imaging bio-
markers, including the Quantitative Imaging Network (QIN) (31)
and the broader community (32-39). On the translation end of
the spectrum, many of the new imaging biomarkers are ready to
be translated for use in clinical trials, such as tumor volume (40),
changes in contrast enhancement on computed tomography
(41), radiotracer uptake on positron emission tomography (PET)
(32, 42-46), kinetic parameters in dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI) (47-49), and spatial
maps of such parameters (50, 51); however, very few of these
new imaging biomarkers have yet to be incorporated into clin-
ical trials for assessing treatment response.

Current image viewing and annotation tools are limited in
their ability to support incorporating new imaging biomarkers
into clinical trials in 4 major ways. First, although there are
several commercial and open-source tools available to assess
cancer lesions (52-55), they generally support very few mea-
sures of cancer lesions, such as linear dimension of target le-
sions, and they cannot be readily extended to deploy novel
imaging biomarkers. Newer algorithms for computing imaging
biomarkers are generally written in a variety of languages such
as Java, Python, and C/C��, or exist within single toolkits [eg,
MATLAB and 3D Slicer (56, 57)], which may not be compatible
with current image assessment tools. Second, current lesion
assessment tools are designed for only tracking cancer lesions in
clinical practice, and they generally do not provide workflow
management and study oversight features needed for assessing
new image biomarkers in clinical trials. Third, there are no
decision tools that use new imaging biomarkers for assessing
treatment response in patients and overall drug effectiveness in
clinical trial cohorts. Such decision-making requires calculating
a variety of response measures in patients and across cohorts—
tasks generally done by hand, making it difficult to compare
multiple alternative imaging biomarkers. Fourth, it is costly and
difficult to accrue aggregate data needed to qualify new imaging
biomarkers as surrogate endpoints for clinical trials (58). Qual-
ification of new imaging biomarkers requires collecting con-
text-specific assessments of the performance of the biomarker
relative to clinical outcomes (59). It is challenging to acquire
sufficient data that link imaging biomarker data with clinical
outcomes, such as survival (60). Efforts such as the Quantitative
Imaging Biomarker Alliance (QIBA) are creating consensus on
processes to qualify new imaging biomarkers (61), but their
ultimate success depends on expanding public data sets (62) and
leveraging many studies from individual laboratories and coop-
erative groups, which currently cannot be repurposed for this
task because image annotations (or biomarker values extracted
from them) are not recorded in standardized formats.

We developed ePAD—one of the research projects of the
QIN—to address all of these challenges by developing a modular
software platform integrating image viewing with computation
of emerging and validated quantitative imaging biomarkers,
facilitating translation of novel biomarkers into clinical trials as
surrogate endpoints. In this paper, we will present ePAD’s core
architecture and describe the ways in which it meets the fore-
going challenges. We also describe active research projects that
are leveraging ePAD.

THE ePAD PLATFORM
We describe the design of ePAD and its core architecture, pre-
senting this information from 4 different perspectives that ad-
dress 4 major challenges mentioned above: (1) as a platform
enabling the computing of novel imaging biomarkers of cancer
treatment response, (2) as a workflow management and study
oversight tool enabling the oversight for assessing new image
biomarkers in clinical trials, (3) as a clinical decision support
tool for the treatment response assessment using current and
new imaging biomarkers, and (4) as infrastructure to permit
researchers to aggregate evidence needed to show that new
imaging biomarkers predict survival, which can be useful in
qualifying them as surrogate endpoints in clinical trials.

Image Annotations in ePAD
A key distinguishing feature of ePAD is its support for standard-
ized formats for image annotations, specifically Annotation and
Image Markup (AIM) (63) and DICOM segmentation objects (64).
AIM is an information model developed by the National Cancer
Imaging Program of NCI for storing and sharing image metadata
(65-67), such as lesion identification, location, size measure-
ments, regions of interest (ROIs), radiologist observations, ana-
tomic locations of abnormalities, calculations, inferences, and
other qualitative and quantitative image features. The image
metadata also include information about the image, such as the
name of imaging procedure and how or when the image was
acquired. AIM supports controlled terminologies, enabling se-
mantic interoperability. In the use case of lesion annotation in
cancer, the value of AIM is recording lesion identifiers (enabling
unambiguous tracking of lesions across longitudinal images),
anatomic locations of lesions, lesion types (target, nontarget,
new lesion, or resolved lesion), and study types (baseline or
follow up). This semantic information is critical for automating
the generation of tabular summaries of lesions, and it also
enables automating comparing the response assessment in pa-
tients according to different imaging biomarkers (see Section
“Clinical Decision Support Tool for Treatment Response Assess-
ment”). AIM has recently been incorporated into DICOM Struc-
tured Report (DICOM SR) (68), with specifications for saving
AIM in DICOM-SR (69).

Architecture of ePAD
ePAD Components. ePAD (70-72) is a freely available quan-

titative imaging informatics platform (http://epad.stanford.edu)
distributed as a virtual machine or as Docker containers. Users
can download virtual machine or Docker version of ePAD and
host it in their own environment. This enables them to restrict
the access to their private networks, typically to the hospital
network. These machines generally do not have access to the
internet. The core architecture of ePAD is shown in Figure 1. The
ePAD platform comprises the following 5 main components: (1)
the ePAD viewer, a zero-footprint web image viewer and image
annotator, (2) ePAD web services, providing a programming
interface to ePAD services, (3) an image database, (4) an image
annotation database, and (5) plugin modules (server-side and
client-side for extending the ePAD platform). The image data-
base, image annotation database, and ePAD web services com-
prise the “back end” of ePAD. The ePAD plugin modules extend
the functionality of ePAD, and while most of the plugins de-
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scribed below were developed by us, we also describe several
developed by the community, and such community engagement
will enable ePAD to foster an ecosystem enabling continued
evolution of the platform to meet the needs of researchers
broadly.

1. ePAD Viewer. The ePAD viewer is a web application pro-
viding the look and feel of a Picture Archiving and Communi-
cation System (PACS) to the user, who can browse patient
studies and open them to view images. To display images, the
ePAD viewer queries an embedded PACS database [dcm4chee
(73)] and stores image annotations in ePAD’s annotation data-
base. The ePAD viewer was written using HTML5 (74), Java,
JavaScript, and the Google Web Toolkit (http://www.gwtprojec-
t.org), which supports image rendering with controls for image
display (eg, zooming, panning, and window/level) within the
Web browser. Drawing and editing image annotations are ac-
complished with HTML5 Scalable Vector Graphics (SVG).

An important component of the ePAD viewer is its image
annotation window (Figure 2). The ePAD viewer ensures the
minimum information necessary to create a meaningful image
annotation is collected from the user: the lesion name, the lesion
type (target, nontarget, new lesion, or resolved lesion) and the
anatomic location of the lesion, and the study time point (base-
line or follow-up). The ePAD viewer automatically labels each
lesion with a name (eg, “Lesion1”) to enable unambiguous de-
termination of the same lesion on serial imaging studies (75). To
specify the content of annotations, ePAD uses AIM templates
(76) that are created by a separate freely available application.
AIM templates specify the data elements to be provided by the
user when making image annotations. All answer choices in
ePAD templates are controlled terminology lists such as RadLex
(77). The ePAD viewer prompts the user if certain values in the
templates are inconsistent or incomplete (66). The ePAD viewer
permits creating 2 types of ROI, coordinate based and pixel map
based. The former is saved as coordinates in the AIM file (63),
and the latter is saved as a DICOM segmentation object (64).

2. ePAD Web Services. The ePAD viewer uses a set of RESTful
Web services (78) to communicate with the back end of ePAD to
retrieve images and save image annotations, as well as authen-
ticating user credentials and invoking image calculation meth-

ods that need to be executed on the server. The ePAD Web
Services provides programmatic access to the image database
and the annotation database that are components of the ePAD
back end (Figure 1). The ePAD Web Services is typically hosted
on a server that resides within an institution’s firewall so that all
traffic between the ePAD viewer and the ePAD Web Services
resides within the institution’s Intranet. Thus, users can use
ePAD to evaluate image data containing protected health infor-
mation, provided the network on which ePAD is hosted is secure.
Another model for hosting ePAD is a centralized, hosted version,
which could provide publicly available images (which should be
deidentified for public dissemination). The ePAD Web Services
are used by plugin developers to extend ePAD’s functionality,
either as client-side or as server-side plugins (Figure 1). Plugin
developers can use the ePAD Web services to access annotations
and images in their own applications or to provide extensions to
the ePAD platform.

3. Image Database. Medical images in DICOM format are
managed by an open-source PACS called dcm4chee (73). This
PACS contains a DICOM image receiver and a programming
interface that permits the ePAD Web Services to manage imag-
ing studies within ePAD. The DICOM image database provides a
temporary storage depot for images for image display and an-
notation in ePAD. The AIM annotations and DICOM segmenta-
tion objects in ePAD are saved indefinitely, however, as these
annotations comprise the user-generated data in ePAD. Because
DICOM images are large, the ePAD back end converts them into
a lossless compressed PNG image object (“packed PNG”) that
takes each 16-bit pixel in a DICOM image and packs it into a
PNG color channel before returning it to the ePAD viewer, where
it is unpacked. This approach significantly reduces the volume
of data provided by the server and speeds performance of the
ePAD viewer. To further speed image display performance,
ePAD supports the Web-Accessible DICOM Objects [WADO (79)]
protocol to retrieve lossy JPG images, while the lossless packed
PNGs are initially loading.

4. Annotation Database. As the user makes annotations on
images in ePAD viewer, it creates AIM files. All AIM annotations
are stored in an XML database [eXist (80)]. The AIM annotation
database is accessible via functions in the ePAD Web Services,

Figure 1. Architecture of the
ePAD platform, which comprises
an image database (dcm4chee
PACS as a cache for images), a
database of image annotations
(AIM XML database), the ePAD
Viewer (a web application), ePAD
Web Services that communicate
data between the image and an-
notation databases and the ePAD
Viewer, and back-end (server-
side) and front-end (client-side)
plugins enabling the community to
extend the ePAD platform.
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and it is the key resource that ePAD queries for lesion tracking
and summarizing longitudinal changes in cancer treatment re-
sponse, as described in Section “Clinical Decision Support Tool
for Treatment Response Assessment.”

5. Plugin Modules. Developers can create server-side and
client-side plugins to access the data collected by ePAD to
provide a new functionality. The server-side code can be written
in a variety of languages, such as MATLAB, python, C/C��, or
Java. We and other groups have created plugins to build a
variety of features to address the challenges of (1) computing
novel imaging biomarkers of cancer treatment response, (2)
providing workflow management and study oversight features
for assessing new image biomarkers, (3) creating clinical deci-
sion support tools for treatment response assessment using cur-
rent and new imaging biomarkers, and (4) permitting research-
ers to aggregate evidence needed to show that new imaging
biomarkers predict survival, which can be useful in qualifying
them as surrogate endpoints in clinical trials.

Plugins currently available in ePAD are listed in the following
sections.

JJVector Feature Extraction Plugin. JJVector is a 2D feature
extraction plugin we developed that analyses closed-shape an-
notations and extracts 2D radiomics features based on the in-
tensity values from the ROI and the surrounding tissue of its
associated organ (81). The plugin saves the calculated feature
values in an AIM file that can be downloaded in different
formats from ePAD, such as an excel summary sheet to be used
in other applications such as training machine learning models.

ADLA Biomarker Plugin. The Attenuation Distribution across
the Long Axis (ADLA) plugin implements the ADLA semiquan-

titative imaging biomarker for assessing treatment response in
solid malignancies and a measure of intralesional heterogeneity.
We built this plugin in collaboration with prior works that
created it (82, 83). ePAD calculates the standard deviation
along the long axis to compute ADLA and saves it in the AIM
file to be used for analyses such as response assessment as an
alternative imaging biomarker. ePAD also generates an ADLA
histogram of pixel values within the ROI when the long axis
is selected (Figure 3).

Perfusion Analysis Plugin. A contributor developed an ePAD
plugin deploying an algorithm for computing T1 perfusion maps
on dynamic contrast-enhanced studies based on his prior work
(84). The plugin analyses the multiframe MRI images having
different phases of dynamic contrast enhancement and calcu-
lates a T1 map for the imaged volume. The plugin scales the T1
map to 8 bits to save as a standard DICOM object (a probability
DICOM Segmentation object) and paints the mask on the image
using a color lookup table (Figure 4).

Riesz Texture Feature Plugin. A contributor developed an
ePAD plugin that computes image texture features based on
Riesz wavelets (85). The latter are a subtype of convolutional
approaches that can quantify image derivatives of any order and
at multiple scales. The image derivatives are aligned along
dominant local orientations, allowing characterization of the
local organization of the image direction, with invariance to the
local orientation of anatomical structures. These image deriva-
tives have an intuitive interpretation, and the Riesz features
have shown to provide valuable imaging measurements in var-
ious medical applications.

Figure 2. ePAD viewer and annotation window. Images are displayed in the ePAD web viewer, and the user records
image annotations in using drawing tools (eg, to create an ROI, shown on the left) and an annotation window (to re-
cord qualitative image features, shown on right).
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Quantitative Image Feature Engine (QIFE). QIFE is an open-
source feature-extraction framework we created that computes
3D radiomics features for ROIs that are created as DICOM seg-
mentation objects (86). ePAD stores these image features in an
AIM file for further analysis in radiomics studies or as alterna-
tive imaging biomarkers of response.

Quantitative Feature Explore (QFExplore) Plugin Suite. The
Quantitative Feature Explore (QFExplore) is a suite of plugins we

developed for the ePAD platform, enabling the exploration and
validation of imaging biomarkers in a clinical environment (85).
Imaging features that can be extracted using QFExplore include
histogram bins of Pixel Intensity Distributions (PID), statistical
moments of PIDs (ie, mean, standard deviation, skewness, kur-
tosis), gray-level co-occurrence matrices (GLCMs), and Riesz
wavelets (87). Figure 5 illustrates QFExplore plugin suite’s fea-
ture comparison functions in action. The ROIs are visualized on

Figure 3. ADLA histogram on a
line annotation on a cancer lesion
created and visualized in ePAD.

Figure 4. T1 perfusion map gen-
erated by ePAD plugin derived
from the algorithm in Jarrett et
al.’s study (112), with the map
overlaid on magnetic resonance
(MR) image using a color lookup
table.

ePAD Image Annotation and Quantitative Analysis Platform

174 TOMOGRAPHY.ORG | VOLUME 5 NUMBER 1 | MARCH 2019

http://WWW.TOMOGRAPHY.ORG


the left, while color-coded gray-level co-occurrence matrices
values are displayed in a chart on the right.

Quantitative Feature Pipeline (QIFP). We created the QIFP, a
cloud-based platform for building processing pipelines of image
analysis algorithms (88). It provides a Docker library of image
analysis algorithms for preprocessing, segmentation, and fea-
ture extraction that can be assembled into pipelines. The QIFP is
integrated with ePAD so that any processing pipeline for gen-
erating quantitative imaging biomarkers can be executed in
ePAD (or ePAD annotations can be consumed and used in QIFP
processing pipelines).

ePAD APPLICATIONS
ePAD includes several applications that are part of the platform
and accessible via menu tabs in the ePAD viewer.

Computing and Comparing Imaging Biomarkers
A need that is critical for research is its ability to compute a
variety of alternative imaging biomarkers besides linear dimen-
sion (used in RECIST and similar criteria). In a given clinical
trial, patient response to treatment can be computed using a
variety of imaging biomarkers, and a sizeable collection of data
can be amassed if this is done across clinical trials that could
ultimately be useful in comparing and evaluating alternative
imaging biomarkers as secondary endpoints of response. Differ-
ent imaging biomarker algorithms are written in different lan-
guages, and ePAD enables incorporating them into its image
analysis workflow through its plugin mechanism described
above. These plugins can execute source code modules written
in MATLAB, Java, C/C��, or other languages, letting bio-

marker algorithm developers add their existing code to ePAD
easily.

When users make annotations on images, ePAD automati-
cally analyzes each annotation to generate the image biomark-
ers that the user chooses, and it saves them in AIM format. It also
computes the minimum, maximum, standard deviation and
mean for all the pixels that are inside the ROI. If the ROI is a line,
ePAD calculates the length. If the ROI comprises 2 perpendicular
lines, ePAD will calculate the length of the long axis and short
axis. Additional features and biomarker candidates can be cal-
culated by various plugins.

Workflow Management and Study Oversight
The ePAD viewer includes an application that provides a sum-
mary panel of annotations designed to streamline the task of
summarizing for the radiologist all prior measurements and
images in prior studies of each patient to convey the list of
lesions previously measured, and which need to be measured on
the current study. To populate this summary display, the ePAD
viewer queries ePAD’s annotation database to find all the lesions
from the prior exams and list them for the user. This provides the
user with a worklist of lesion measurements that need to be
made for each imaging study. It also links each measurement to
the image from which it was obtained. When the user clicks on
a measurement, the corresponding image is retrieved and the
measurement is displayed.

ePAD also facilitates oversight and managing image read-
ings for clinical trial researchers and study administrators via
user roles, worklists, and study progress monitoring. Project
owners and administrators can create users and assign them

Figure 5. QF Explore Plugin Suite: gray-level co-occurrence matrix feature extraction and comparison chart. The user
can compare the feature values for various regions of interest (ROIs). GLCM contrast and correlation is higher for vascu-
lar ROIs (85).
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specific roles to control their access to imaging data and anno-
tations created by other users. Users or study supervisors can
create worklists for people and assign to a reader. Using
worklists allows the supervisors to divide the readings to mul-
tiple readers. A study progress monitoring application module in
ePAD monitors the status of image annotations made in clinical
trials and summarizes them in a table in the ePAD viewer. Study
administrators can follow the image annotations made in mul-
tiple studies by group of users assigned to a particular study. The
application can also track the progress of the annotation process
by identifying which subjects/studies are fully annotated by all
the annotators, which annotators have completed the annota-

tion process for each subject and which subjects/studies have
not yet been annotated yet (Figure 6). This functionality has
been helpful the MGH/HST Martinos Center for Biomedical
Imaging used this for MEDICI project (89), which used ePAD.

Clinical Decision Support Tool for Treatment Response
Assessment
ePAD has applications to assist decision-making based on image
biomarker assessments in the following 2 major cancer research
tasks: determine treatment response in patients (ePAD longitu-
dinal annotation report) and evaluate treatment effectiveness by
determining the cohort-based treatment response (ePAD water-
fall plot). We built these applications using ePAD Web services
to retrieve AIM annotations and their associated images to track
target lesions and compute cancer treatment response according
to selected imaging biomarkers.

Longitudinal Annotation Reporting. ePAD supports longitu-
dinal annotation tracking, which provides a summary of quan-
titative image features across time. This is the basis for RECIST
and other reports of response assessment. However, ePAD can
generate such reports bases on any quantitative imaging bio-
marker it can collect from image annotations. It analyzes all the
annotations of a subject and populates 3 dropdown menus to
facilitate selecting them by shape, template, and measurement
type (Figure 7). Users can select the basis for the longitudinal
annotation report based on the selected measurement types. If a
measurement is not present for a particular time point of a
lesion, the table display it as a missing value. The summary
section of the report will be filled automatically for the mea-
surement type.

ePAD can generate a RECIST report by querying the annota-
tions that are of linear type (Figure 7) and calculating sum of
lesion dimensions on the images of each time point. RECIST
report generation supports line and perpendicular lines annota-
tions, as well as an image-based response rate (the percentage
change in the sum of lesion dimensions compared with base-
line). ePAD applies the RECIST rules to classify the response rate
to determine the response category (ie, stable disease, partial
response, complete response, and progressive disease). This in-
formation is displayed with the lesion measurements in the
ePAD viewer (Figure 7). ePAD also checks the consistency of the
annotations to determine if the anatomic location of the lesion

Figure 6. Progress view of ePAD visualizing a
particular project (“Liver”) that contains 5 patients.
The status column shows the overall status for that
series/study or patient, and the user statuses col-
umn shows the status of annotations that have
been created by each ePAD user associated with
that project.

Figure 7. A tumor burden report (using linear measurement as the imaging biomarker and RECIST response criteria)
and a longitudinal annotation report of a patient having 4 time points and 3 lesions. This report is automatically gener-
ated from ePAD’s image annotations and enables clinicians to determine image-based treatment response in the patient.
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is specified consistently on different time points of the patient;
otherwise, the measurement will be marked as error to notify the
user. The report also marks missing annotations for a lesion as
error. The user can open the annotation in the ePAD viewer by
clicking on the annotation measurement on a specific time
point. The user can also open all annotations of the lesions on all
time points by clicking the lesion name.

Besides using longitudinal measurement of lesions, ePAD can
generate reports of lesion response based on other imaging
biomarkers, such as the ADLA biomarker (82). The report eval-
uates the progress of the disease using the sum of ADLA scores
for each timeline, similar to RECIST.

Waterfall Plots. Waterfall plots are bar graphs showing the
response of a cohort of patients to the same cancer treatment.
The height of the bars represents the best overall response the
patient had during the course of treatment, and each bar (pa-
tient) is ordered from best to worst response, which resembles a
waterfall. These plots are highly useful for seeing how well a
patient cohort responded to treatment, with the percentage of
patients with positive response indicating effective treatment.
ePAD generates waterfall plots of user-specified patient cohorts
by computing the longitudinal annotation-based response in
each patient in the cohort and ordering the response from best to
worst response (Figure 8). The plot can be based on longitudinal
measurement of lesions as the basis of evaluating response (ie,
RECIST), but importantly, it can also be based on using newer
imaging biomarkers of response such as ADLA or other imaging
biomarkers that have been recently introduced by researchers. If
the user selects to use RECIST, the waterfall plot module ana-
lyzes every subject in the cohort, generates the RECIST tables,
gets the best response for each subject, and plots it in a decreas-
ing order forming a waterfall plot. If the user selects to use
ADLA, a waterfall plot is generated based on an ADLA table that
ePAD computes for each subject, using the standard deviation of
the line annotations on lesions as the measurement type (82).
Then, the best response from the ADLA table for each patient is

used to create the waterfall plot. Users can drill down to more
granular data within the waterfall plot; the user can access the
table that is used to make the best response rate computation by
clicking the specific bar in the waterfall plot.

Application for Aggregating Evidence for Evaluating
New Imaging Biomarkers
As noted earlier, ePAD has plugins to compute a variety of
image biomarkers. Some of these plugins assume that cancer
lesions are circumscribed, and if the images input into these
biomarker plugins were annotated using only line annotations
(eg, as part of RECIST measurements), ePAD can generate ROIs
that circumscribe lesions automatically by executing image seg-
mentation plugins that use the line or point annotations as
seeds. In addition to segmentation, there are quantitative image
analysis plugins that may operate on the entire image, and ePAD
supports those as well. Current automated segmentation plugins
and other analysis plugins available in ePAD are listed in the
following sections.

Automated Segmentation in PET Images. The plugin invokes
automated segmentation of cancer lesions seen on PET images
(90). It is triggered with a seed point ROI within the lesion. It
analyzes the image volume to create a 3D ROI enclosing the
lesion and creates a DICOM segmentation object marking the
volume of the lesion. The DICOM segmentation object is added
to ePAD with its associated AIM annotation file and displayed
on the image series as a mask.

Automated 2D Lesion Segmentation. ePAD has a 2D lesion
segmentation plugin, LesionSeg. The plugin is triggered with
drawing a polygon or a long axis line within a lesion. It analyzes
the image and creates a polygon ROI stored as an AIM file
containing the contours of the lesion (91).

Automated Image Segmentation of QF Explore Plugin Suite.
The QFExplore plugin suite has a plugin for automatically seg-
menting lungs in a DICOM image volume (85). The plugin

Figure 8. Waterfall report plot based on linear measurement as the imaging biomarker of response and RECIST as the
response criteria, showing the best response score for each patient in the study cohort. This plot enables researchers to
assess the effectiveness of cancer treatment in the cohort, and a variety of these plots can be generated using different
imaging biomarkers of response (upper left corner).
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analyses the volume, segments the lung volume, and creates a
DICOM segmentation object.

ePAD USAGE
To track usage statistics, ePAD collects anonymous data from all
ePAD machines that are connected to internet (if the statistics
are not disabled by the user). The statistics consist the number
of users, projects, patients, studies, series, AIM annotations,
DICOM segmentation objects, plugins, and templates that exist
on the ePAD instances. Figure 9 shows the ePAD usage statistics
collected from 2015 to 2018. For plugins and templates, the
maximum number of entities is reported, as many are the same
versions of the plugins and templates across ePAD instances. For
all the other entities, the values reported by each ePAD instance
are computed by getting the latest reported values for each year
and summing them to obtain the total number. For example, in
2018, over 19,000 imaging studies were hosted in various ePAD
instances worldwide, and over 55,000 annotations were created
in ePAD on those imaging studies. As ePAD collects only the
number of entities for privacy purposes, the numbers are cumu-
lative; that is, this does not mean 55,000 annotations were
created during 2018, but it means that at the end of 2018, 55,000
annotations existed on ePAD instances. In addition, currently
there are a maximum of 11 plugins and 35 templates that are
being used across all ePAD instances.

INTEROPERABILITY
One of the key aims of ePAD is to facilitate collaborations
among research sites and repurposing of their existing data,

which we achieve by supporting standards and interoperability
for images and annotations.

ePAD saves all image annotations that it collects using
existing standards, in particular AIM (63) and DICOM segmen-
tation objects (64), for volumetric ROIs. ePAD also supports the
DICOM-SR standard via the dcmqi library (92) for volumetric
ROI annotations. Recently AIM was harmonized with the DICOM
standard, which provided DICOM-SR support of AIM annotation
types under Supplement 200 with specifications for saving AIM
in DICOM-SR (68, 69). ePAD also supports DICOM radiation
therapy (DICOM-RTs) and tiff image files. ePAD analyses the
DICOM-RT objects and extracts its ROI contours using the
DICOM file interface library developed by MAASTRO (93). It then
creates a DICOM segmentation object for each contour and saves it
and an AIM file. ePAD also supports uploading tiff files and creates
a DICOM image series from them using the patient identification
number, patient name, study description, and series description
supplied by the user. The file list is analyzed, and a DICOM file is
created for each tiff file. The instance numbers of the DICOM files
are ordered in the alphabetical order of tiff filenames.

ePAD also has migration tools that were developed in col-
laboration with various laboratories that enable ePAD to lever-
age the existing annotations created by other software tools,
including ROIs exported from Osirix (94) and Mint Lesion (53).
Specifically, ePAD analyzes the exported proprietary file from
Osirix via ExportROIs plugin and creates an AIM file for each
ROI in the file. ePAD also creates AIM files from JavaScript
Object Notation (JSON) objects that are created from the Mint
Lesion commercial system.

Figure 9. Cumulative ePAD statistics collected from ePAD instances between 2015 and 2018.
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USE CASES FOR ePAD IN QIN AND OTHER
RESEARCH
Many research studies in that require viewing and annotating
radiology images for making measurements of lesions or extracting
radiomics features from them could benefit from using ePAD.
Clinical trials of cancer treatments can be particularly helped given
ePAD’s workflow support and multireader support features, its
support of interoperability standards, as well as its ability to
compute many imaging biomarkers seamlessly within routine
image annotation workflow. ePAD has been used by many
researchers worldwide to support clinical research and clini-
cal trials, and it has supported many published studies (75,
81, 85, 95-110), and it has been shown to improve the
workflow of measuring target lesions (111). We briefly high-
light support it has provided several projects in NCI’s QIN.

Vanderbilt QIN. In collaboration with Vanderbilt QIN, “Quanti-
tative MRI for Predicting Response of Breast Cancer to Neoadjuvant
Therapy” in which this group developed algorithms for computing
quantitative perfusion maps of MRI images to deduce biomarkers
of treatment response (112), we deployed their biomarker algo-
rithms as a plugin to ePAD. As these researchers incorporate these
perfusion analyses into clinical trials, ePAD will be able to deploy
them as part of the image interpretation workflow.

Dana Farber Cancer Institute QIN. The QIN project at Dana
Farber, “Genotype and Imaging Phenotype Biomarkers in Lung
Cancer (113),” developed pyRadiomics, a flexible platform that
extracts a large panel of predefined features from medical im-
ages and is useful in characterizing cancer lesions. We incorpo-
rated pyRadiomics into ePAD as a Docker module that runs on
the QIFP platform (88) (see above) so that users can invoke
generation of these image features as part of image analysis
workflows in clinical trials.

ECOG-ACRIN QIN. The QIN project within the ECOG-ACRIN
cooperative group, “ECOG-ACRIN-Based QIN Resource for Ad-
vancing Quantitative Cancer Imaging in Clinical Trials,” is le-
veraging ePAD as a testbed for evaluating the deployment of
imaging biomarkers into clinical trials. Currently this project is
comparing ability of ePAD to evaluate a variety of quantitative
imaging biomarkers as part of the routine workflow of image
viewing and annotation in clinical trials.

American College of Radiology (ACR) Core Laboratory. The
ACR has a data archive and research toolkit called DART Portal
(114) that operates as a gateway to browse and query data for
research, quality improvement, and clinical study operational
purposes. They are adding ePAD as an interface to DART to
enable collecting image annotations as part of clinical trials in
AIM format and storing that in DART.

DISCUSSION
Response assessment in patients with cancer in clinical trials is
based on analysis of CT and magnetic resonance images (115).
Objective criteria, such as RECIST, are critical to evaluation of
response assessment in clinical trials, but lesion measurements
vary with user experience, and they are often inconsistent or
incomplete (105). There is a pressing need to recognize signals in
radiology images that optimally assess and predict response to
treatment. Tumor shrinkage is the hallmark of response to cy-
totoxic cancer therapies (4), and thus, linear measurement of
target cancer lesions is the imaging biomarker used in current
response criteria such as RECIST and International Harmoniza-
tion Criteria (10). However, new targeted, noncytotoxic thera-

pies arrest cancer growth and improve progression-free survival
without necessarily shrinking tumors (11-14); thus, simple
linear measurement may underestimate treatment response
(15-18), and may not be the best proxy for tumor activity. To
address these limitations, researchers are developing quantita-
tive imaging biomarkers that may better assess the benefit of
new treatments, but they have been challenging to introduce
into clinical trial workflows.

In the paper, we have presented ePAD from 4 different viewpoints
to highlight how it addresses key challenges for incorporating quan-
titative imaging biomarkers into clinical trials. First, it provides a
platform for computing a variety of imaging biomarkers. Second, it
provides a workflow management and study oversight tool enabling
oversight for assessingnew imagebiomarkers in clinical trials. Third, it
provides clinical decision support tools to help clinical researchers
assess treatment response using current and new imaging biomarkers.
Fourth, ePAD provides infrastructure to permit researchers to aggre-
gate evidence about how well imaging biomarkers predict response,
which may help in qualifying them as surrogate endpoints in clinical
trials.

There are many existing commercial and freely available tools
available for medical image viewing and annotation, and although
ePAD provides similar capability in terms of image viewing and
drawing shapes on images, it provides many unique features that
address many unmet needs in evaluating images clinical research.
Osirix (94) and ClearCanvas (55) are 2 medical image annotation
applications that provide similar image viewing capabilities, al-
though they depend on a thick client, limiting collaboration as they
are platform-dependent, while ePAD is a web-based viewer and
requires no installation for users other than hosting a single in-
stance of the ePAD machine for all users. In addition, Osirix saves
its annotations in propriety format and supports exporting ROIs
using ExportROIs plugin. On the other hand, ePAD and ClearCan-
vas supports AIM format. ePAD also supports the new DICOM-SR
AIM object. Beyond the open-source tools, we recognize that sev-
eral commercial tools are available for image viewing and analysis
to enable response assessment. These tools were developed to en-
able evaluating established criteria such as RECIST in clinical trials;
however, such tools are not optimal for research studies that wish to
include novel imaging biomarkers of treatment response (eg, those
being developed by NCI’s QIN). This gap was a primary motivator
for developing the ePAD system.

3D Slicer (56, 116), ImageJ (117), and MIPAV (118) are
additional freely available desktop applications. 3D Slicer is a
cross-platform open-source software for visualization and im-
age computing. It has a plugin architecture to enable researchers
to develop their algorithms via C�� plugins and Python
scripted modules. It supports DICOM standard for the volumetric
annotations and DICOM Structured Report (DICOM-SR) for the
measurements collected from the ROIs. ImageJ and MIPAV are
both Java applications that can run on any Java-enabled oper-
ating system, and researchers can develop their own plugins
using Java language. Imagej2, an extended version of ImageJ,
supports writing plugin scripts in various programming lan-
guages. ImageJ saves the labels and annotations as modified
versions of the images or propriety ROI file formats, and MIPAV
uses an Extensible Markup Language (XML) format they intro-
duced in an effort to make their format readable by researchers.
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Although all 3 applications are cross-platform, they are desktop
applications for a single user, which makes multiuser collabo-
ration more difficult.

The Open Health Imaging Foundation (OHIF; http://
ohif.org/) is a full-stack Javascript platform, which enables
creating a zero-footprint web page and various applications
using it. The OHIF Viewer provides web-based image viewing
similar to ePAD. The OHIF LesionTracker enables users to anno-
tate and track long-axis and short-axis lesions for oncology
workflow; however, it does not save the image annotations in a
standard format like AIM.

ePADwasdeveloped to facilitate collectingannotations andmea-
surements on target lesions in compliancewith standards in the cancer
imaging community. ePAD makes sharing code, data and annotations
easy being a web application and saving the collected annotation data
in well-documented and standardized formats [DICOM segmentation
objects (64) and AIM (63) in particular].

In addition to providing standards-based storage of annota-
tions, ePAD enables user-defined templates for flexible capture of
information in the form of data collection templates as part of the
annotations. The ePAD platform is also extensible via plugins that
lets researchers implement analysis codes as server-side modules in
MATLAB or other languages. Many plugins for segmentation and
quantitative image biomarker computation are included with
ePAD, and users can add additional biomarker modules.

Other functionalities of ePAD that differentiates it from
similar existing image viewing applications is that ePAD
supports important features unique to image analysis in clin-
ical trial workflow. Specifically, ePAD provides tools en-
abling oversight of annotations as part of clinical trials, and
it lets the users create a collaborative environment by creat-
ing projects and assigning users appropriate rights to limit
their access facilitating large studies with multiple annota-
tors. ePAD also provides decision support tools—longitudinal
annotation summary and waterfall plots—that help research-
ers evaluate individual patient and cohort population treat-
ment response, respectively. Finally, by computing a variety
of image biomarkers on cohorts of patients, ePAD can accu-
mulate a substantial amount of data that can permit studies
comparing effectiveness of different imaging biomarkers as
indicators of treatment response.

An ultimate metric of the success of ePAD will be in-
creased use of the newer imaging biomarkers in clinical trials.
This will require clinical trial groups to include computation
of the biomarkers into their study protocols. As the commu-
nity becomes aware of the potential of these methods and of
the facility of tools such as ePAD to include them in clinical
trials, we expect these methods will be more commonly used.
Certainly, the amount of research studies undertaken to date
using ePAD suggests promising future directions.
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Glioblastoma has poor prognosis with inevitable local recurrence despite aggressive treatment with surgery
and chemoradiation. Radiation therapy (RT) is typically guided by contrast-enhanced T1-weighted magnetic
resonance imaging (MRI) for defining the high-dose target and T2-weighted fluid-attenuation inversion recov-
ery MRI for defining the moderate-dose target. There is an urgent need for improved imaging methods to
better delineate tumors for focal RT. Spectroscopic MRI (sMRI) is a quantitative imaging technique that en-
ables whole-brain analysis of endogenous metabolite levels, such as the ratio of choline-to-N-acetylaspartate.
Previous work has shown that choline-to-N-acetylaspartate ratio accurately identifies tissue with high tumor
burden beyond what is seen on standard imaging and can predict regions of metabolic abnormality that are
at high risk for recurrence. To facilitate efficient clinical implementation of sMRI for RT planning, we devel-
oped the Brain Imaging Collaboration Suite (BrICS; https://brainimaging.emory.edu/brics-demo), a cloud
platform that integrates sMRI with standard imaging and enables team members from multiple departments
and institutions to work together in delineating RT targets. BrICS is being used in a multisite pilot study to
assess feasibility and safety of dose-escalated RT based on metabolic abnormalities in patients with glioblas-
toma (Clinicaltrials.gov NCT03137888). The workflow of analyzing sMRI volumes and preparing RT plans
is described. The pipeline achieved rapid turnaround time by enabling team members to perform their dele-
gated tasks independently in BrICS when their clinical schedules allowed. To date, 18 patients have been
treated using targets created in BrICS and no severe toxicities have been observed.

INTRODUCTION
The standard-of-care treatment for glioblastoma, the most com-
mon adult primary malignant brain tumor, consists of maximal
safe surgical resection of tumor followed by high-dose radiation
therapy (RT) with concomitant temozolomide chemotherapy
(1-4). The standard high-dose prescription of 60 Gy is delivered
over 30 fractions to regions of enhancement on T1-weighted
contrast-enhanced (CE-T1w) MRI, in which enhancement rep-
resents areas of tumor with leaky neovasculature. A lower dose
of RT (typically 46–54 Gy) is delivered to areas of hyperintensity
on T2-weighted fluid-attenuation inversion recovery (FLAIR)
MRI (5). FLAIR hyperintensity corresponds to a nonspecific
combination of tumor and nontumor pathologies, including

inflammation and vasogenic edema (6). Despite improvements
in maximal resection, concurrent and adjuvant chemotherapy,
and RT, the median overall survival still remains poor at 15
months (7, 8), with median progression-free survival at only
4–6 months (9). Recurrent glioblastoma is very difficult to treat,
often being resistant to further radiation and inaccessible for
secondary surgical resection (10). The location of recurrent dis-
ease can also vary: within the original 60-Gy RT target, within
the intermediate dose area, or to regions several centimeters
away, including crossing the midline (11). Both local and distant
recurrences need to be addressed to improve progression-free
survival. In a phase II study where glioblastomas were treated
with high-dose proton therapy up to 90 cobalt-gray equivalent,
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it was observed that almost all disease recurred in regions
receiving �70 cobalt-gray equivalent (12). Thus, it appears
that dose escalation may provide sufficient tumoricidal doses
to achieve local control. However, doses �70 Gy need to be
applied selectively to prevent toxicity that could result from
excess volumes of normal brain receiving doses of that mag-
nitude.

Spectroscopic magnetic resonance imaging (sMRI) is an
evolution of magnetic resonance (MR) spectroscopy (MRS) that
enables 3-dimensional (3D) whole-brain volumes of metabolite
levels to be obtained in vivo without contrast agents or radio-
active tracers (13, 14). Two metabolites of particular interest in
patients with glioblastoma include choline-containing com-
pounds (Cho), the building blocks of the cell membrane that
increase in proliferating tumor cells, and N-acetylaspartate
(NAA), a biomarker found in healthy neurons, which diminishes
owing to neuronal displacement and death from glial infiltra-
tion (13, 15). It has been previously shown via histological
correlation that the ratio of Cho to NAA is significantly elevated
in glioblastoma owing to the opposing changes in these metab-
olites; in particular, a two-fold increase in Cho/NAA compared
to healthy tissue in contralateral normal-appearing white matter
(NAWM) was able to correctly identify tumor in 100% of cases,
even when tissue samples were biopsied from regions outside of
contrast-enhancement per CE-T1w or FLAIR hyperintensity
(16).

A combination of dose escalation guided by sMRI, includ-
ing regions of occult tumor normally left untreated by high-dose
RT, could potentially delay recurrence of disease by delivering a
cytotoxic dose of radiation to regions of metabolically abnormal
tumor even if these areas are not detected using standard imag-
ing techniques. However, the use of sMRI in clinical practice has
been hampered by data processing requirements and limited
integration into the RT planning workflow. In previous studies,

several time-intensive manual processing steps were required to
import metabolite volumes into clinical imaging software so
that they could be used in the operating room or for RT planning
(17, 18). To enable integration of sMRI into clinical practice, we
have developed a software platform designed specifically for the
integration of sMRI into the RT planning workflow. In this
paper, we describe its architecture and show its features on
several sample cases. We show feasibility of this software for
collaborative use in a prospective multi-institutional clinical
study to target dose-escalated RT based on sMRI. Several chal-
lenges in integrating this imaging modality into the clinical
workflow are addressed, and a sample case from the ongoing
study is presented to show that RT to high-risk regions can be
targeted by quantitative imaging techniques such as sMRI.

MATERIALS AND METHODS
Software Architecture
To assist with a collaborative clinical study across institutions,
we developed the Brain Imaging Collaboration Suite (BrICS), a
web-based software designed specifically to integrate sMRI with
clinical MRI volumes, enabling physicians to evaluate relevant
metabolite levels and the underlying spectra used for this quan-
titation, and to delineate target volumes for RT planning based
on this information (19). BrICS consists of 2 components: a
centralized server and a lightweight browser client (Figure 1A).
The server performs computations necessary to analyze and
display whole-brain spectroscopy; it consists of modules written
in C�� and the PHP server-side scripting language to take
advantage of well-established image processing and linear al-
gebra libraries (20, 21). The lightweight browser client written in
JavaScript can run on all modern hardware, including thin
clients such as laptops and tablets. This browser-based approach
offers the following benefits over standalone software clients:
(1) improves repeatability and standardization by ensuring data

Figure 1. A cloud platform for
spectroscopic magnetic resonance
imaging (sMRI)-guided radiation
therapy (RT). The Brain Imaging
Collaboration Suite (BrICS) consists
of a centralized server which per-
forms image processing, and a
lightweight browser client (A).
BrICS imports spectroscopy and
Digital Imaging and Communica-
tion in Medicine (DICOM)-format
MRI volumes, and can export RT
targets to other clinical software
(B). sMRI volumes are blended with
clinical MRI, and users can per-
form tasks such as evaluating un-
derlying spectra and contouring
based on sMRI abnormalities.
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are processed on the same hardware; (2) reduces user variability
and bias; (3) enables real-time deployment of software updates
across all clients; (4) prevents the need for every end-user to
download massive sMRI data sets onto a local computer; (5) runs
without the need for the user to download any software beyond
a web browser, which is of key importance, as physicians often
use restricted hospital workstations; and (6) allows information
and images to be easily shared with patients who wish to be
better informed of their clinical management.

BrICS imports data from spectroscopy processing software,
such as the Metabolite Imaging and Data Analysis Software
(MIDAS, University of Miami, Miami, FL), and from other im-
aging systems/software using the Digital Imaging and Commu-
nication in Medicine (DICOM) file format. All volumes are
coregistered using a rigid transformation and resampled using
trilinear interpolation into a high-resolution T1w image space,
enabling overlays of metabolic information onto anatomic MRI.
Users can then delineate target volumes based on both anatomic
and spectroscopic information. These targets can be exported as
DICOM RT structure sets (DICOM RT) or binary DICOM masks
and imported into RT planning systems to deliver therapy to
patients (Figure 1B). A video showing the features of BrICS is
available in online Supplemental Video 1 PLAY VIDEO , which are
described in detail in the following subsections.

Visualization and Contouring
The main interface of BrICS is shown in Figure 2. sMRI vol-
umes—either individual metabolites or metabolite ratios—are
overlaid on anatomic volumes (eg, T1w MRI), enabling visual
assessment of metabolic changes in spatially dependent manner.
For MR spectroscopists and radiologists familiar with MRS tech-
niques, selection of a voxel will bring up the corresponding
spectrum. Because sMRI is a quantitative imaging technique,
voxel intensities can be reliably interpreted across subjects, and
decision-making can be based on specified thresholds. This
ability is built-in to the contouring module; physicians can
make contours based on the values in sMRI maps (Figure 3 and
online Supplemental Video 1 PLAY VIDEO ). For example, the Cho/
NAA volume abnormality index (16) can be used, as shown, to
generate a contour around all voxels which have a Cho/NAA

abnormality index above a given threshold. Users can select this
threshold and automatically generate contours of increasing or
decreasing sensitivity of disease detection. Radiologists can then
review these contours and make changes to them using built-in
editing tools (painting, erasing, or selection of connected-com-
ponents). Once contours are generated, they can be visualized as
3D volumes, enabling visual quality assessment and correspon-
dence with anatomy. Statistics such as contour volume and
number of connected components are also reported.

Normalization of Metabolite Values
Cerebral concentrations of several macromolecules, including
Cho and NAA, are known to vary based on a subject’s age,
gender, and anatomic location of brain being sampled (22). To
account for these variations in baseline metabolism, metrics
such as the Cho/NAA abnormality index (16) and the Cho-NAA
index (23) take into account relative changes in these metabo-
lites compared to normal tissue, typically contralateral NAWM
(24). For this trial, we use the Cho/NAA abnormality index,
defined as the Cho/NAA of a given voxel divided by the mean
Cho/NAA value in contralateral NAWM. In previous works
(16-18), NAWM was manually contoured on a clinical T1w
volume by a neuroradiologist using commercial software, then
the mask exported and applied to sMRI data to determine the
mean Cho/NAA value. To expedite this process, remove reliance
on commercial software, and mitigate user bias, we have imple-
mented an algorithm in BrICS to automatically contour the
NAWM based on a Gaussian mixture model (25) (Figure 4). First,
all voxels from the cerebrum are masked using an anatomic
atlas. Next, all cerebral Cho/NAA voxels are modeled as a
bimodal Gaussian distribution, with voxels arising from the
second, higher-mean Gaussian population representative of tu-
mor pathology. These voxels are then masked, and the side
with largest contiguous abnormal segment is selected as the
side of tumor; voxels in the contralateral hemisphere are
segmented into gray and white matter based on fractional
water content (26) calculated by MIDAS, and then the mean is
reported as the normalizing factor for the subject’s abnormal-
ity index calculations.

Figure 2. The main user inter-
face for BrICS. sMRI metabolite
and metabolite ratio maps are
overlaid on top of anatomic mag-
netic resonance (MR) volumes.
Selection of a given voxel brings
up the underlying spectrum.
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Automated Segmentation of Residual Contrast
Enhancement
Additional algorithmic modules can be built into BrICS to assist
with other routines that are regularly performed by clinicians.
One such module automatically contours residual contrast en-
hancing tissue (Figure 5), so as to differentiate true unresected
tumor with leaky neovasculature from blood products owing to
surgical resection (27). The module requires a precontrast T1w

MRI, a CE-T1w MRI, and a T2w or FLAIR MRI, all of which are
coregistered into the same imaging space and resampled to an
axial view. The pre- and postcontrast MR images are histogram
normalized and subtracted to generate a difference map; Otsu
thresholding with four classes is used to identify residual en-
hancement (28, 29). Otsu thresholding is applied to the FLAIR
map to automatically identify hyperintensity; the single largest
connected component is used as a bounding mask for the T1w

Figure 3. Contouring of target volumes. The
contouring module enables identification of tar-
get volumes based on either anatomic or metab-
olite images (A). For quantitative imaging tech-
niques like sMRI, users can automatically delin-
eate contours using threshold values. A series of
targets based on thresholding of the Cho/NAA
abnormality index; target volumes can be ren-
dered in 3D for visual inspection prior to being
exported to other clinical software (B). A sum-
mary of the volumes generated for varying Cho/
NAA abnormality indices (C).

Figure 4. Normalization of metabolite maps by baseline metabolism. High-level schematic of a Gaussian mixture
model used to identify regions of normal-appearing white matter (NAWM), which is used as a personal metabolic base-
line for the patient. NAWM is typically contoured manually by radiologists; this algorithm can perform the same con-
touring automatically in just a few seconds.
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residual volume. Finally, morphological opening and closing
filters are applied to the bounded T1w residual volume to re-
move islets and thin anisotropic components, e.g. blood vessels.
The entire algorithm can be run in �10 seconds on the BrICS
server and yields a final contour, which can be evaluated and
manually edited, if necessary, by a neuroradiologist—saving
valuable clinician time and providing a reproducible starting
point for all users.

Patient Enrollment and Imaging
To assess the feasibility and safety of sMRI-guided RT, a multi-
site clinical study funded by NCI was initiated (Clinicaltrials.gov
NCT03137888). Three institutions are participating in this pilot
study—Emory University, the Johns Hopkins University, and the
University of Miami—and a total of 30 patients with newly
diagnosed glioblastoma will be enrolled. Patients are enrolled
after undergoing maximal safe surgical resection or biopsy at
the discretion of the neurosurgeon. Enrolled patients were �18
years of age, had a Karnofsky Performance Score � 60, and were
willing to undergo dose-escalated RT to 75 Gy.

An sMRI scan was obtained within 2 weeks prior to starting
RT � temozolomide. A 15-minute echo planar spectroscopic
imaging (EPSI) pulse sequence combined with GRAPPA [parallel
imaging (30)], was performed on a 3 T scanner (Siemens Medical
Solutions, Erlangen, Germany) with a 32-channel or a 20-chan-
nel head coil array (echo time � 50 milliseconds, repetition
time � 1551 milliseconds, flip angle � 71°). During the same
session, a high-resolution T1w magnetization prepared rapid ac-
quisition gradient echo (MP-RAGE) sequence was obtained at the
same orientation and position as the EPSI. Raw EPSI data were
transformed into spatial-spectral data, coregistered with the MP-
RAGE volume, and the relative metabolite concentration values
were obtained by spectral fitting using MIDAS (22, 30).

RT Planning
An outline of the workflow for patients in this study is shown in
Figure 6. The EPSI/GRAPPA and MP-RAGE volumes, in addition
to the most recent clinical CE-T1w and FLAIR MRI, were im-
ported into BrICS. Automated contours for Cho/NAA abnormal-
ity index of 2.0 and residual contrast-enhancing tissue were
generated using the algorithms described above. Using BrICS, 2
MR spectroscopists from different institutions collaboratively
reviewed the underlying raw and fitted spectra within the Cho/
NAA abnormal contour and removed voxels with poor spectral
quality. Meanwhile, a neuroradiologist reviewed and edited the
residual contrast-enhancing volume to ensure accurate delinea-
tion of the target volume. The 2 contours were then merged to
form a single target volume for high-dose RT. Next, an external
radiation oncologist (from a nontreating site) edited and ap-
proved the volume based on anatomy and dose safety concerns.
Finally, the treating-site radiation oncologist made final edits
based on his/her discretion and validated the volume for RT
treatment. To ensure patient safety and to enable retrospective
review of this study, all user edits were tracked in BrICS in a
digital audit trail.

The final contour generated in BrICS was defined as gross
tumor volume 3 (GTV3). The clinical target volume 3 (CTV3) was
defined as equal to GTV3 with no margin. In this pilot feasibility
study, a maximum volume of 65 cm3 was allowed for CTV3,
approximately adhering to the 5-cm-diameter boost volume
limit used in the NRG Oncology BN001 phase II trial on RT dose
escalation for glioblastomas (31). The CTV3 contour was ex-
ported from BrICS as a DICOM RT structure set on the high
resolution T1w MP-RAGE volume into additional contouring or
treatment planning software such as VelocityAI (Varian Medical
Systems, Palo Alto, CA), MIM Maestro (MIM Software Inc,
Cleveland, OH), Eclipse (Varian Medical Systems, Palo Alto, CA),

Figure 5. Automated residual contrast enhancement contouring. BrICS takes a postcontrast T1-weighted (T1w) MRI
(top), precontrast T1w MRI (middle), and a FLAIR MRI (bottom) volume, and follows the shown algorithm to rapidly con-
tour residual contrast enhancement postsurgical resection. This volume can then be edited manually by the neuroradiolo-
gist or radiation oncologist as desired to define a dose-escalated volume.
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Pinnacle (Philips Healthcare, Best, Netherlands), etc., per the
routine of the treating site. Additional standard treatment vol-
umes were generated including GTV2, defined as the surgical
cavity with residual contrast enhancement, and GTV1, de-
fined as hyperintensity on FLAIR MRI. Five millimeter of
anatomically constrained margins were added to GTV2 and
GTV1 to produce CTV2 and CTV1, respectively. A 3-mm
margin was added to all 3 CTVs to produce the planning
target volumes (PTV3, PTV2, and PTV1). A simultaneous
in-field boost IMRT plan was generated to treat PTV3, PTV2,
and PTV1 to 75 Gy, 60 Gy, and 50.1 Gy, respectively, respect-
ing standard organs-at-risk constraints (Table 1).

RESULTS
A demo of BrICS is available at https://brainimaging.emory.edu/
brics-demo with a few curated and deidentified data sets. A
video describing the platform and its features is presented in the
online Supplemental Video 1 PLAY VIDEO . In addition to the dose-
escalated RT study described above, BrICS is currently being
used for the following clinical projects internally at Emory
University: targeting of biopsies in patients with nonenhanc-
ing low-grade gliomas, monitoring therapeutic response of
patients with glioblastoma receiving a histone-deacetylase
inhibitor in addition to standard chemoradiation, identifica-
tion of metabolite abnormalities associated with melanoma
brain metastasis, and a pilot study evaluating the benefit of
sMRI for patients with mild traumatic brain injury. In addi-
tion, BrICS served as the platform for testing new imaging
processing algorithms such as a neural network for identify-
ing spectral artifacts (32) and autoencoder-based spectral
fitting (unpublished data).

RT plans from 1 patient who underwent dose escalation as
per this study’s protocol are presented in Figure 7. The patient is
a 21-year-old woman diagnosed with a frontal glioblastoma
and enrolled in the trial 1 month after undergoing surgical

Table 1. Summary of Target Volume Definitions and Dose Prescription for This Clinical Study

Target Name Definition
CTV

Margin (mm)
PTV

Margin (mm)
Dose
(Gy)

GTV3 Cho/NAA abnormality index � 2 � residual contrast enhancement 0 3 75

GTV2 Contrast enhancing tissue � resection cavity, per standard of care 5 3 60

GTV1 FLAIR hyperintensity, per standard of care 5 3 50.1

In addition to standard chemoradiation (GTV1 and GTV2), a boost is given to areas of sMRI abnormality and residual contrast enhancement (GTV3). All
doses are delivered over 30 fractions.

Figure 6. RT planning workflow. After patients
are enrolled and consented, their imaging data
are processed and edited in BrICS. The central-
ized platform enables reliable and repeatable
processing, with documented edits made by physi-
cians and spectroscopists to prepare the final
treatment plan.

Figure 7. Example treatment plan for study pa-
tient. The patient is a 21-year-old woman with
newly diagnosed glioblastoma with a near-total
resection of the tumor (A). However, the Cho/
NAA map indicates metabolically active tumor
expanding outward from the resection cavity (B).
A boosted dose of 75 Gy (PTV3) was successfully
planned and delivered to this patient (C).
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resection of her tumor. sMRI volumes were obtained and pro-
cessed in MIDAS and in BrICS per the protocol. The neuroradi-
ologists, MR spectroscopists, and radiation oncologists accessed
BrICS remotely for several minutes each, when time was
available during their busy schedules. Segmentation of resid-
ual contrast enhancement by the automated algorithm, fol-
lowed by neuroradiologist review, identified a 1.6-cm3 nod-
ular residual contrast-enhancing lesion on the posterior bor-
der of the surgical cavity remaining after surgery, typical of
patients who underwent near total resections (Figure 7A).
However, the Cho/NAA abnormality was much greater with a
volume of 50.6 cm3, expanding laterally, anteriorly, and
posteriorly from the surgical cavity (Figure 7B). GTV3 was
planned on the union of these 2 contours, and targeted for a
75-Gy boost. The contour for GTV3 was exported as a DICOM
RT structure and imported into Eclipse for dose planning
(Figure 7C). Dose constraints based on RTOG guidelines to all
organs at risk were met, with �95% of the prescribed dose
delivered to each PTV.

DISCUSSION
Current treatments for glioblastoma are insufficient in achiev-
ing local control. This is felt to be due in part to limitations of
standard imaging methods in identification of infiltrating tumor
margins, which show no contrast enhancement, potentially
leaving these high-risk regions undertreated. Improvements in
treatment options, such as with higher radiation doses, can only
be beneficial if all high-risk tumor regions (both enhancing and
nonenhancing) are properly targeted. In this work, we develop a
software platform that successfully enables sMRI integration
into the RT planning workflow. The EPSI/GRAPPA sequence
can be used on standard 3 T instrumentation, and the current
version of the sequence is available for several different

Siemens models (eg, PRISMA, Trio, and Skyra); expansion to
other vendors is an ongoing project. The data can then be sent
to a centralized server for processing. Because it is web-
based, BrICS can be used by multiple users and institutions
without the need for additional software, data, or processing.
BrICS was successfully used as the infrastructure for an ongoing
multi-institutional clinical study assessing the feasibility of dose-
escalated radiation guided by sMRI in patients with glioblastoma;
to date, 18 patients have been treated on this protocol, and no
toxicities have been observed. Thus, there is an urgent need for
improved quantitative imaging biomarkers that can not only iden-
tify these regions but also be readily incorporated into clinical
practice.

sMRI has been shown to delineate infiltrating tumor beyond
standard MRI but has thus far been used in only retrospective
analyses owing to the complexity of integrating it with clinical
volumes, the requirement for an on-site MR spectroscopist to
manually review spectra in individual voxel, and variability in
acquisition and processing across institutions. A web platform
such as BrICS provides solutions for these challenges by
enabling centralized data storage and analysis, allowing cli-
nicians from multiple institutions to use sMRI without the
need for local experts or software. Users will always have the
latest version of BrICS without needing to download addi-
tional software or data sets and can access BrICS from any
computer browser. BrICS is currently being used in a multisite
clinical study assessing the feasibility of sMRI guidance for
RT and will continue to be developed as infrastructure for
future consortium-level trials.

Supplemental Materials
Supplemental Video 1: http://dx.doi.org/10.18383/j.tom.2018.

00028.vid.01
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Quantitative features are generated from a tumor phenotype by various data characterization, feature-extrac-
tion approaches and have been used successfully as a biomarker. These features give us information about
a nodule, for example, nodule size, pixel intensity, histogram-based information, and texture information
from wavelets or a convolution kernel. Semantic features, on the other hand, can be generated by an experi-
enced radiologist and consist of the common characteristics of a tumor, for example, location of a tumor,
fissure, or pleural wall attachment, presence of fibrosis or emphysema, concave cut on nodule surface. These
features have been derived for lung nodules by our group. Semantic features have also shown promise in
predicting malignancy. Deep features from images are generally extracted from the last layers before the
classification layer of a convolutional neural network (CNN). By training with the use of different types of
images, the CNN learns to recognize various patterns and textures. But when we extract deep features,
there is no specific naming approach for them, other than denoting them by the feature column number (po-
sition of a neuron in a hidden layer). In this study, we tried to relate and explain deep features with respect
to traditional quantitative features and semantic features. We discovered that 26 deep features from the
Vgg-S neural network and 12 deep features from our trained CNN could be explained by semantic or tradi-
tional quantitative features. From this, we concluded that those deep features can have a recognizable defi-
nition via semantic or quantitative features.

INTRODUCTION
Lung cancer is one of the most common causes of malignancy
worldwide, with a 5-year survival rate of 18% (1). The American
Cancer Society estimates 14% of new cancer cases will be
lung cancer cases for 2018, making it the second most detected
cancer in the United States. They also estimate 154,050 deaths
from lung cancer, which is the most in the United States in 2018
(2). As lung cancer typically remains undetected during the
initial stages, �75% of patients with lung cancers are first
diagnosed at the advanced stages (III/IV) (3). As a result, early
detection and diagnosis is a high priority.

Low-dose computed tomography (LDCT) is a noninvasive
and widely used imaging technique for detecting lung nodules.
By analyzing CT scans, radiologists can generate specific fea-
tures from one’s lung nodule, which could provide guidance for
detection and diagnosis. These distinctive features are named

semantic features. They can be categorized into the following
different groups: shape (eg, lobulation), location (eg, lobe loca-
tion), margin (eg, spiculation), external (eg, peripheral emphy-
sema). With CT scans, cavitation is discovered in 22% of primary
lung cancers and often the cavities in benign nodules mimic the
cavities of malignant nodules, which makes precise diagnosis
difficult (4). In another study (5), it was found that the risk of
lung cancer can be increased 3- to 4-fold owing to emphysema
among heavy smokers. Nodule size also influences cancer diag-
nosis and treatment (6). Hence, semantic features can be used in
creating a predictor of lung cancer.

Using CT scans, quantitative information from a lung nod-
ule can be generated and analyzed using statistics, machine
learning, or high-dimensional data analysis. This approach is
termed radiomics (7). These quantitative features can be catego-
rized into the following different groups: texture (eg, Law’s
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texture features, wavelet features), size (eg, longest diameter,
volume), location (eg, attached to the pleural wall, distance from
the boundary). These traditional quantitative features can be
used to create a biomarker for tumor prognosis, analysis, and
prediction (8-10).

Deep learning is an emerging approach mainly applied in
recognition-, prediction-, and classification-related tasks. Prop-
agating data through multiple hidden layers will eventually help
a neural network to learn and build a representation of data,
which can be used further for prediction or classification. For
image data, a convolutional neural network (CNN) typically uses
several convolutional kernels to extract different textures and
edges before propagating the extracted information through
multiple hidden layers. For lung nodule analysis, CNNs have
been used effectively in recent years (11). In the medical imag-
ing field, data are currently scarce; so, as an alternative to
building a new model, transfer learning has been used (12).

Convolution layers of CNNs, after learning, contain repre-
sentations of edge gradients and textures, and when propagated
through fully connected layers, various high-level features are
posited to have been learned by the network. From fully con-
nected layers, deep features (the outputs of units in the layer) are
extracted and denoted by the number of the feature from the
learning tool (the position of a neuron in a hidden layer row
vector).

Two pretrained CNNs were used in the work described in
this paper for extracting the following deep features: the Vgg-S
network (13), which was trained on the ImageNet data set (14) of
color camera images and our designed CNN (15), which was
trained on lung nodule images. There were 23 traditional quan-
titative features [RIDER subset features (16)] used in this study
along with 20 semantic features, which were generated by an
experienced radiologist from Tianjin Medical University Cancer
Institute and Hospital, China. This study is an extension of our
previous study (17), which analyzes the similarity between deep
features and semantic features. In this current study, we also
focused on traditional quantitative features, that is, analyzed the
similarity of deep feature(s) to traditional quantitative features.
The analysis was conducted by replacing �1 deep features with
traditional quantitative or semantic feature(s). The goal was
to show that equivalent classification performance can be
achieved. That means those deep features contained information
similar to that of the semantic or traditional quantitative fea-

tures. We can equate those deep features with the name of the
corresponding semantic or traditional quantitative feature.

We found that location-based semantic features are difficult
to replace, but size-, shape-, and texture-based semantic fea-
tures can be replaced by deep feature(s). Therefore, shape and
texture quantitative features can be used to explain deep fea-
ture(s). By “explain,” we mean the features can replace deep
features and a classifier will achieve the same accuracy. We
successfully explained 26 deep features from the Vgg-S network
out of 4096 features and 12 deep features from our trained CNN
by semantic and traditional quantitative features. This provides
a semantic meaning for the deep features.

METHODOLOGY
Data Set
A subset of cases from the LDCT-arm of the NLST (National Lung
Screening Trial) data set was chosen for this study. The NLST
study was conducted over 3 years: 1 baseline scan (T0) and 2
following scans (T1 and T2) in 2 subsequent years with an
interval of �1 year (18) between scans. For this study, a subset
of nodule-positive and screen-detected lung cancer (SDLC) cases
(years later) from the baseline (T0) scans were chosen, and the
patient data were deidentified under an IRB-approved process.
These subsets of cases were further divided into the following 2
categories: cohort 1 and cohort 2. Cohort 1 consisted of cases
with a baseline scan (T0), which had a follow-up scan after 1
year (T1), wherein some of the nodules became cancerous.
Whereas, cohort 2 consisted of nodules that became cancerous
after 2 years (T2 scan) from the baseline scan (T0). Selection of
cohorts is shown in Figure 1. Only Cohort 2 (SDLC, 85; positive
control cases, 152) was chosen for our study. Between the SDLC
and control-positive cases, there is no statistically significant
difference with respect to sex, race age, ethnicity, and smoking
(19). Nodule segmentation was performed using the Definiens
software suite (20). From our initial set of cases, 52 cases were
excluded owing to �1 of the following reasons: multiple ma-
lignant nodules, inability to identify the nodule, or unknown
location of the tumor. So, finally, 185 cases (SDLC, 58; control-
positive cases, 127) were selected for our study.

Semantic Features
Semantic features were described from the CT scan of a lung
tumor, by an experienced radiologist. They can be used further

Figure 1. Selection of cohort 1 and cohort 2.
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for diagnosis. An experienced radiologist (Y.L.) with 7 years of
experience from Tianjin Medical University Cancer Institute and
Hospital, China, described 20 semantic features (21-24) on a
subset of cases that intersected Cohort 2. Semantic features can
be categorized into the following groups: shape, size, location,
margin, external attenuation, and associated findings. These
features have been derived with respect to lung nodules by our
group. Table 1 shows a detailed description of our semantic
features.

Traditional Quantitative Features
Definiens software (20), along with help from a radiologist, was
used to segment lung nodules. Then 23 Rider stable features (16)
were extracted using Definiens software. Table 2 shows a de-
tailed description of the “traditional” quantitative features.

Deep Features from Vgg-S Network
Nowadays CNNs are used effectively for image classification
and prediction (11, 13). A CNN has many layers of convolution
kernels along with multiple hidden layers, which makes the
network architecture deeper, and features extracted from such a
network are called “deep features.” In the medical imaging field,
there is typically not enough original data available to train a
CNN. As a result, transfer learning (12) is an alternative option.
Applying previously learned knowledge from 1 domain to a new
task domain is called transfer learning. To extract deep features
from a CT scan, the 2-dimensional slice, which has the largest
nodule area, was chosen for every case. We extracted only the
nodule region by incorporating the largest rectangular box
around the nodule. Bicubic interpolation was used to resize the
nodule images to 224 � 224, which was the required input size
of the Vgg-S network. Figure 2 shows a lung image with nodule

Table 1. Description of Semantic Features

Characteristic Definition Scoring

Location

1. Lobe Location Lobe location of the nodule Left lower lobe (5), left upper lobe (4), right
lower lobe (3), right middle lobe (2), right
upper lobe (1)

Size

2. Long-Axis Diameter Longest diameter of the nodule NA

3. Short-Axis Diameter Longest perpendicular diameter of nodule in the same
section

NA

Shape

4. Contour Roundness of the nodule 1, round; 2, oval; 3, irregular

5. Lobulation Wavy nodule’s surface 1, none; 2, yes

6. Concavity Concave cut on nodule surface 1, none; 2, slight concavity; 3, deep concavity

Margin

7. Border Definition Edge appearance of the nodule 1, well defined; 2, slight poorly; 3, poorly
defined

8. Spiculation Lines radiating from the margins of tumor 1, none; 2 yes

Attenuation

9. Texture Solid, non-solid, part solid 1, non-solid; 2, part solid; 3, solid

10. Cavitation Presence of air in the tumor at the time of diagnosis 0, no; 1, yes

External

11. Fissure Attachment Nodule attaches to the fissure 0, no; 1, yes

12. Pleural Attachment Nodules attaches to the pleura 0, no; 1, yes

13. Vascular Convergence Convergence of vessels to nodule 0, no significant convergence; 1, significant

14. Pleural Retraction Retraction of the pleura towards nodule 0, absence of pleural retraction; 1, present

15. Peripheral Emphysema Peripheral emphysema caused by nodule 1, absence of emphysema; 2, slight present;
3 severely present

16. Peripheral Fibrosis Peripheral fibrosis caused by nodule 1, absence of fibrosis; 2, slight present;
3 severely present

17. Vessel Attachment Nodule attachment to blood vessel 0, no; 1, yes

Associated Findings

18. Nodules in Primary Lobe Any nodules suspected to be malignant or intermediate 0, no; 1, yes

19. Nodules in Nonprimary Lobe Any nodules suspected to be malignant or intermediate 0, no; 1, yes

20. Lymphadenopathy Lymph nodes with short- axis diameter greater than 1 cm 0, no; 1, yes

Explanation of Deep Features

194 TOMOGRAPHY.ORG | VOLUME 5 NUMBER 1 | MARCH 2019

http://WWW.TOMOGRAPHY.ORG


and the extracted nodule region. The Vgg-S network was trained
using natural camera images, which were 3-channel (R, G, B),
but the nodule images were grayscale (no color component and
voxel intensities of the CT images were converted to 0-255). So,
the same grayscale nodule image was used 3 times to mimic an
image with 3 color channels and then normalization was per-
formed using the appropriate color channel image. The deep
features were generated from the last fully connected layer after
applying the ReLU activation function. The size of the feature
vector was 4096.

Deep Features from Our Trained CNN
We also experimented by extracting deep features from our
designed CNN network (15). Augmented nodule images of Co-
hort 1 were used to train our CNN architecture. Each nodule
image was augmented first by being flipped horizontally and
vertically and then all images were rotated by 15°. Keras (25)
with a Tensorflow (26) backend was used to train our CNN. We
used the same 2-dimensional slice from a nodule for training the
CNN and for transfer learning using the Vgg-S network. The
input image size for the CNN architecture was 100 � 100 pixels.

The augmented data set was divided into the following 2 parts:
70% of the data for training and the remaining 30% for valida-
tion. The CNN was trained for 100 epochs with 0.0001 learning
rate with RMSprop (27) optimization and binary cross-entropy
as loss function. A batch size of 16 was chosen for training and
validation. L2 regularization (28) along with dropout (29) was
used to reduce overfitting of our small and shallow CNN net-
work. Our designed CNN is described in detail in Table 3. The
deep features were extracted from the last layer before the

Figure 2. (Left) lung image with nodule inside
outlined in blue (nodule pixel size �0.74 mm),
with box used for extracted nodule in red, (Right)
extracted nodule.

Table 3. Our Designed CNN architecture

Layers Parameter
Total

Parameters

Left branch

Input Image 100 � 100

Max Pool 1 10 � 10

Dropout 0.1

Right branch

Input Image 100 � 100

Conv 1 64 � 5 � 5, pad 0, stride 1

Leaky ReLU alpha � 0.01

Max Pool 2a 3 � 3, pad 0, stride 3 39,553

Conv 2 64 � 2 � 2, pad 0, stride 1

Leaky ReLU alpha � 0.01

Max Pool 2b 3 � 3, pad 0, stride 3

Dropout 0.1

Concatenate Left Branch
� Right Branch

Conv 3 � ReLU 64 � 2 � 2, pad 0, stride 1

Max Pool 3 2 � 2, pad 0, stride 2

L2 regularizer 0.01

Dropout 0.1

Fully Connected 1 1 sigmoid

Table 2. Description of Rider Stable
Traditional Quantitative Features

Characteristic Features

Size

1. Long-axis diameter

2. Short-axis diameter

3. Long-axis diameter � short-axis
diameter

4. Volume (cm)

5. Volume (pixel)

6. Number of pixels

7. Length/width

Pixel Intensity
Histogram

8. Mean (HU)

9. Stand deviation (HU)

Tumor Location

10. 8a_3D_ is attached to pleural
wall

11. 8b_3D Relative border to lung

12. 8c_3D_Relative border to
pleural wall

13. 9e_3D_Standard deviation_
COG to border

14. 9g_3D_max_Dist_COG to
border

Tumor Shape
(Roundness)

15. 9b-3D circularity

16. 5a_3D- MacSpic

17. Asymmetry

18. Roundness

Run-length and
Co-occurrence 19. Avg_RLN

Law’s Texture Feature

20. E5 E5 L5 layer 1

21. E5 E5 R5 layer 1

22. E5 W5 L5 layer 1

23. L5 W5 L5 layer 1
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classification layer. The size of the feature vector was 1024.
After applying the ReLU activation function, some features will
be all zeros because ReLU truncates the negative feature values
to zero. We removed such features, and as a result, the final
number of feature vectors from Vgg-S pretrained CNN and our
trained CNN became 3844 and 560, respectively.

Experiments and Results
This section describes the procedure of representing deep fea-
ture(s) using semantic or traditional quantitative features.

Wrapper feature selection (30) was applied on traditional
quantitative or semantic features of Cohort 2 to select the best
subset of features with maximum accuracy. Backward feature
selection using the best first strategy and random forests clas-
sifier (31) with 200 trees was applied using the wrapper ap-
proach. Tenfold cross-validation was used for selecting the best
subset of features. We analyzed quantitative features and se-
mantic features separately. A subset of 9 quantitative features
was chosen and it enabled a maximum accuracy of 84.32%
(AUC 0.87), whereas a subset of 13 semantic features were
selected, enabling a maximum accuracy of 83.78% (AUC 0.84).
Here, we aim to use semantic features or traditional quantitative
features to interpret/explain deep feature(s).

Explaining Deep Features With Respect to
Semantic Features
The chosen semantic features (13) were location, long-axis diam-
eter, short-axis diameter, lobulation, concavity, border definition,
spiculation, texture, cavitation, vascular convergence, vessel at-
tachment, perinodule fibrosis, and nodules in primary tumor lobe.

After selecting the best subset of semantic features, the
correlation coefficient (Pearson correlation coefficient) was cal-
culated for each semantic feature with the deep features, and the
5 most correlated features for each semantic feature were se-
lected. We then replaced each semantic feature with the corre-

lated deep feature(s) and checked whether the same classifica-
tion accuracy of 83.78% could be achieved.

Our purpose for the study was to determine if semantic
features could explain deep features. To do this, we replaced
each semantic feature by �1 deep features to see if the same
classification accuracy could be achieved. We replaced 1 seman-
tic feature at a time from the subset of 13 features and substi-
tuted that semantic feature by, at first, the most correlated deep
feature and, then 2 most correlated deep features and proceeded
similarly to add features until the 5 most correlated deep fea-
tures had been used as replacements. The accuracy was calcu-
lated using a random forests classifier with 200 trees using
10-fold cross-validation. Deep features from Vgg-S pretrained
CNN and our trained CNN were examined separately. Figure 3
shows the approach taken for the analysis.

After replacing a feature with deep features extracted from
the Vgg-S pretrained CNN, we secured the same original classi-
fication accuracy of 83.78% for the following 8 semantic fea-
tures: long-axis diameter, lobulation, concavity, spiculation,
texture, cavitation, vascular convergence, and peripheral fibro-
sis. Using the deep features acquired from our trained CNN, we
achieved the same original classification accuracy of 83.78% for
the following 4 semantic features: long-axis diameter, concav-
ity, cavitation, nodules in primary tumor lobe. We found that 3
semantic features (long-axis diameter, concavity, cavitation)
could be used to explain both deep features from Vgg-S and our
trained CNN. Five semantic features could be used to explain
only deep features from Vgg-S, and only 1 semantic feature
could be used to explain deep features from our trained CNN.
The Vgg-S network was trained on camera images from at least
1000 classes of objects, but not lung nodule images. The large
training set helped the network to develop general features and
which in turn were explained by texture, spiculation, lobulation,
vascular convergence, and peripheral fibrosis. The replacement

Figure 3. Overview of the ap-
proach taken in this study.
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of the first 3 and the last feature appear to result from training
on lots of images of different types.

Table 4 shows the performance of each semantic feature
after removing 1 semantic feature at a time from the subset of 13
features. So, we only calculated classification performance of 12
features at a time using random forests classifier using 10-fold
cross-validation, to check whether by removing each feature,
there was a change in classification accuracy. In Table 4, we
show only the semantic features out of the chosen 13 feature
subsets that could be used to explain deep feature(s). Table 5
shows the explainable deep features and their equivalent se-
mantic feature(s). We also show the correlation value of each
deep feature with a semantic feature in Table 5.

After replacing semantic features with deep feature(s), similar
classification performance was obtained for 9 semantic features.
For example, 2 deep features (3353 and 526) from the Vgg-S
network could achieve the same classification performance of
83.78% if used in place of cavitation. The deep features 3353 and
526 had the correlation of 0.388 and 0.3551, respectively, with the
semantic feature cavitation. Whereas, the deep feature 395 from
our trained CNN, which had a correlation coefficient of 0.2748, was
explained by cavitation. Similarly, 2 deep features (3353 and 2135)
from the Vgg-S network and 1 deep feature (230) using the features
from our trained CNN were explained long-axis diameter by pro-
viding equivalent performance.

Explaining Deep Features Using Traditional
Quantitative Features
The 9 traditional quantitative features that enabled the best
accuracy were: Mean (HU), 8a-3D_is_attached to pleural wall,
8c-3D_Relative border to pleural wall, 9b-3D circularity, Asym-
metry, Roundness, Volume, E5W5L5, and L5W5L5. The Pearson
correlation coefficient was calculated for each traditional quan-
titative feature with the deep features and the top 5 correlated
deep features were selected to replace each traditional quanti-
tative feature. We replaced each traditional quantitative feature
by �1 deep features to try to achieve the same classification
accuracy of 84.32%. After replacing deep features extracted

from the Vgg-S pretrained CNN, we got the same original clas-
sification accuracy of 84.32% for the following 3 traditional
quantitative features: 9b-3D circularity, roundness, and L5W5L5
layer 1. Hence, they can be used to explain what the deep
features that replaced them have learned. Traditional quantita-
tive features consist of tumor size, tumor shape, Law’s texture
features, tumor location, etc. As we have seen earlier for seman-
tic features, deep features could be explained by shape-based
quantitative features.

In Table 4, we only show the 3 quantitative features that can
be replaced (used to explain) deep feature(s). Table 5 shows the
quantitative features, their equivalent deep feature(s), and cor-
relations.

DISCUSSION
We showed that some deep features can be explained by a
semantic feature or traditional quantitative feature. From a lung
nodule CT image, experienced radiologists generated semantic
features of different types of information regarding a lung
nodule, for example, size, shape, location of nodule, the bound-
ary of the nodule, attachment to the vessel, fibrosis information,
etc. These features were shown to provide useful information
toward the prognosis and diagnosis of lung cancer. From a
tumor phenotype, quantitative information can be extracted
using various data characterization approaches, and these fea-
tures are called traditional quantitative features.

Deep features are extracted from a CNN, generally from the
last layer before the final classification layer. For this study,
deep features were extracted from the last fully connected layer
of the following 2 pretrained CNNs: the Vgg-S network, which
was trained on the ImageNet data set, and our designed CNN,
which was trained on LDCT lung nodule images. The Vgg-S
architecture is a network with 5 convolution layers followed by
3 fully connected layers. Our designed CNN is a small and
shallow network with 3 convolution layers and 1 fully con-
nected layer. As the Vgg-S network was trained on a large set of
classes of camera images, various textures and other features

Table 4. Classification performance After Features Removal

Features Feature Names Accuracy

Semantic Features

Long-axis diameter 82.70 (0.82)

Lobulation 82.70 (0.83)

Concavity 83.24 (0.83)

Spiculation 83.24 (0.83)

Texture 82.70 (0.83)

Cavitation 82.70 (0.83)

Vascular convergence 83.24 (0.84)

Peripheral fibrosis 82.70 (0.83)

Nodules in primary lobe 81.62 (0.83)

Traditional Quantitative Features

9b-3D circularity 82.16 (0.86)

Roundness 82.70 (0.87)

L5W5L5 layer 1 82.70 (0.87)

These features were from our chosen subset of features, leaving 12 features for training/testing.
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were extractable, which can be used effectively for tumor clas-
sification. Our trained CNN was trained with LDCT lung nodule
images and gave us better performance than transfer learning in
our previous study (15).

In this study, we attempted to explain deep features using
semantic or traditional quantitative features. A subset of fea-
tures was chosen from the semantic or traditional quantitative
features using a wrapper with a random forests classifier. For the
semantic features, the best subset had 13 features with an accu-
racy of 83.78% (AUC 0.84), whereas from traditional quantita-
tive features, the size of the best subset was 9 features with an
accuracy of 84.32% (AUC 0.87). The Pearson correlation coeffi-
cient was calculated with each of the chosen semantic features
or traditional quantitative features and the deep features. For
every semantic or traditional quantitative feature, the top 5 most
correlated deep features were chosen. Now, from our chosen
subset of semantic or traditional quantitative features, 1 feature
was removed, and it was substituted by the most correlated deep
feature and classification performance was calculated. With a
single substituted deep feature, if we can achieve the classifica-
tion performance then stop; otherwise, substitute that semantic
feature or traditional quantitative feature by the 2 most corre-
lated features and continue this process until the 5 most corre-
lated deep features have been used. In total, 26 deep features

from the Vgg-S network and 12 deep features from our trained
CNN were explained by 9 semantic features and 3 traditional
quantitative features. From this, we hypothesized that those
deep features can have a recognizable definition from semantic
or quantitative features. That is, those deep features can be given
some meaningful definition.

We also trained our CNN on cohort 2 (all 237 cases) and
then extracted deep features for only the subset of 185 cases for
which semantic features were available. The deep feature vector
size was 1024. We removed all zero features to get 699 features
from cohort 2. We then used these deep features to represent
semantic and quantitative features. We found that some addi-
tional semantic features could be used to explain deep features
from our CNN trained on cohort 1 (shown in Table 5) in addition
to the ones previously found useful. Lobulation, spiculation,
vascular convergence, perinodule fibrosis and border definition
could explain features from our new deep feature set (CNN
trained on cohort 2 data only). Among these semantic features,
“border definition” was found to explain 4 deep features (147,
160, 504, and 372) and it could not explain any deep features
from Vgg-S or our CNN (trained on cohort 1).

For this study, we extracted only the nodule region from a
CT slice. As the nodule region was extracted the information
regarding pleural wall attachment, fissure attachment, relative

Table 5. Semantic and Traditional Quantitative Features and Corresponding Deep Feature(s)

Features Feature Names Deep Features from Vgg-S With
Correlation Value

Deep Features from Our Trained CNN
With Correlation Value

Semantic
Features

Long-axis
diameter

3353 2135 230

0.4334 0.42 0.3055

Lobulation
3534 1372 2975 2111 NA

0.5742 0.5614 0.5611 0.5520

Concavity
3534 2975 1372 2111 3246 547 440

0.5 0.4839 0.4837 0.475 0.4612 0.1776 0.1514

Spiculation
2811 NA

0.4111

Texture
1201 3350 NA

�0.3119 0.2936

Cavitation
3353 526 395

0.3888 0.3551 0.2748

Vascular
convergence

1464 2115
NA

0.7052 0.701

Peripheral fibrosis
3305 3064 NA

0.2076 0.2043

Nodules in primary
lobe NA

425 57

0.1871 0.1836

Traditional
Quantitative
Features

Roundness
1395 2510 160 20

0.3 0.27 0.16 0.13

9b-3d circularity
1395 1757 3401 2777 160 20

0.24 �0.234 �0.2069 �0.2069 0.14 0.13

L5W5L5 layer 1
51 66 163 476 928 547 169 265 309

0.77 0.75 0.69 0.69 0.69 0.28 0.27 0.26 0.26
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border to the lung, or distance was lost. However, deep features
from our trained CNN were explained by only 1 location-based
semantic feature (nodules in primary lobe). For training the
CNN, we performed data augmentation by rotation and flipping,
which enabled the extracted deep features to achieve compara-
ble accuracy. The deep features capture the boundary and shape
information quite well because that information could be ob-
tained from the extracted nodule region, and thus, 2 traditional
quantitative features (9b-3D-circularity and roundness) and 3
semantic features (lobulation, concavity, and spiculation) were
able to explain deep features. Deep features are known to grasp
texture-based information as well. As a result, L5W5L5 Law’s
texture feature and cavitation were useful for explaining deep
features. We also found out that deep features 3353, 3534, 1372,
2975, and 2111 from the Vgg-S network were correlated with
and explained by �1 semantic features, and feature 1395 was
correlated with and explained by 2 traditional quantitative fea-
tures (roundness and 9b_3D_circularity). Deep features 160 and
20 from our trained CNN network were explained by 2 tradi-
tional quantitative features (roundness and 9b_3D_circularity).

In this work, the 5 most correlated features were used to
replace a semantic or radiomics feature. Our requirement was some
nonzero correlation. Now, with all the comparisons, there will
potentially be some spurious correlations. Hence, the Bonferroni
correction was used to look at the significance of correlations
between deep features and every semantic (or radiomics) feature.
As an example, cavitation could be replaced by 2 deep features
from the Vgg-S network. Fea 1 (3353) had an original P value �
4.8651e-08 and fea 2 (526) had an original P value � 7.0822e-07.
After the Bonferroni correction, the P value of fea 1 was 9.73e-08
and that of fea 2 was 1.4164e-06. Now both Bonferroni-corrected
P-values were less than the more rigorous significance level. How-
ever, when combined, they added more information to our model
and hence appear to be associated with cavitation.

After using the Bonferroni correction, we found some of the
features with the 5 highest correlation values did not have a

significant correlation with a semantic or radiomics feature.
Nonetheless, the weakly correlated features were able to explain
some CNN features. We interpret this to mean that insignificant,
but nonzero, correlations taken together can provide insight
into (some) deep features.

In total, 26 deep features from the Vgg-S network and 12
deep features from our trained CNN were explained by 9 seman-
tic features and three traditional quantitative features.

CONCLUSIONS
The recent success of CNNs in various classification-type tasks
leads to the question of what they have learned. Here, deep
features are explained with respect to semantic features and
traditional quantitative features.

In this study, we found explanations for 26 deep features
from the Vgg-S network out of 4096 features and 12 deep
features from our trained CNN by semantic and traditional
quantitative features. One can also look at this as providing
semantic information about deep features. Although there
has been some research (32-39) regarding semantic under-
standing of natural scenes using deep CNN features, to our
knowledge, this is the first work to explain deep features with
respect to traditional quantitative features and semantic fea-
tures extracted from a lung nodule. In the future, deep fea-
tures with semantic meaning can be included in biomarkers
for tumor prognosis and diagnosis of lung nodules from CT
scans, along with semantic features and traditional quanti-
tative features.

There were 2 limitations in our study, first, only 10-fold cross-
validation was used to evaluate the performance as we had a
limited set of expensive to obtain semantic information. The second
limitation of our study was using a single slice for every patient to
extract deep features, whereas semantic information was generated
from multiple slices. In the future with more semantic annotated
data, we will investigate deep features from a 3D CNN.
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We compared the performance of different Deep learning-convolutional neural network (DL-CNN) models for
bladder cancer treatment response assessment based on transfer learning by freezing different DL-CNN lay-
ers and varying the DL-CNN structure. Pre- and posttreatment computed tomography scans of 123 patients
(cancers, 129; pre- and posttreatment cancer pairs, 158) undergoing chemotherapy were collected. After
chemotherapy 33% of patients had T0 stage cancer (complete response). Regions of interest in pre- and
posttreatment scans were extracted from the segmented lesions and combined into hybrid pre -post image
pairs (h-ROIs). Training (pairs, 94; h-ROIs, 6209), validation (10 pairs) and test sets (54 pairs) were ob-
tained. The DL-CNN consisted of 2 convolution (C1-C2), 2 locally connected (L3-L4), and 1 fully connected
layers. The DL-CNN was trained with h-ROIs to classify cancers as fully responding (stage T0) or not fully
responding to chemotherapy. Two radiologists provided lesion likelihood of being stage T0 posttreatment.
The test area under the ROC curve (AUC) was 0.73 for T0 prediction by the base DL-CNN structure with
randomly initialized weights. The base DL-CNN structure with pretrained weights and transfer learning (no
frozen layers) achieved test AUC of 0.79. The test AUCs for 3 modified DL-CNN structures (different C1-C2
max pooling filter sizes, strides, and padding, with transfer learning) were 0.72, 0.86, and 0.69. For the
base DL-CNN with (C1) frozen, (C1-C2) frozen, and (C1-C2-L3) frozen, the test AUCs were 0.81, 0.78, and
0.71, respectively. The radiologists’ AUCs were 0.76 and 0.77. DL-CNN performed better with pretrained
than randomly initialized weights.

INTRODUCTION
Bladder cancer is the fourth most common cancer in men. The
American Cancer Society estimates that in 2018, 81 190 (men,
62 380; women, 18 810) new cases of bladder cancer will be
diagnosed in the United States, with 17 240 (men, 12 520;
women, 4720) deaths (1). Early treatment of bladder cancer is
important to reduce morbidity and mortality, as well as reduce
costs.

Radical cystectomy is considered the gold standard for
treatment of patients with localized muscle-invasive bladder
cancer. However, about 50% of such patients develop metasta-
ses within 2 years after cystectomy and subsequently die of the
disease (2). Neoadjuvant chemotherapy of muscle-invasive
operable bladder cancer has been shown to be beneficial for
treating micrometastases and improving resectability of larger
neoplasms before radical cystectomy (3-5). Chemotherapy in-
volving methotrexate, vinblastine, doxorubicin, and cisplatin
(MVAC) followed by radical cystectomy increases the probabil-
ity of finding no residual cancer at surgery compared with

radical cystectomy alone and improves survival among patients
with locally advanced bladder cancer (6, 7). In clinical trials,
downstaging with drugs before surgery was shown to have
significant survival benefits (7, 8). Current standard of care uses
the neoadjuvant protocol consisting of 12 weeks of chemother-
apy preceding radical cystectomy.

Although patients with advanced disease can benefit from
neoadjuvant chemotherapy, there are drawbacks. Chemother-
apy with the MVAC regimen has substantial toxicity and side
effects (9). Significant toxicities, primarily leucopenia, culture-
negative fever at the time of granulocytopenia, sepsis, and
mucositis are associated with MVAC combination chemotherapy.
Side effects such as nausea, vomiting, malaise, and alopecia are
common. In addition, chemotherapy is expensive. However, be-
cause no reliable method yet exists for predicting the response of an
individual case to chemotherapies such as MVAC, some patients
may suffer from adverse reactions to the drugs without achieving
beneficial effects, often also missing the opportunity for alternative
therapy when their physical condition deteriorates.
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Early assessment of therapeutic efficacy and prediction of
failure of the treatment would help physicians decide whether to
discontinue chemotherapy at an early phase and thus reduce
unnecessary morbidity and improve the quality of life of the
patient, and reduce costs. The ultimate goal is to improve sur-
vival for those with a high risk of recurrence while minimizing
toxicity to those who will have minimal benefit.

The development of an accurate predictive model for the
effectiveness of a specific therapy and clinical evaluation of the
predictive model are of critical importance for patients with
bladder cancer. In addition, if a patient can be reliably identified
as having complete response to treatment, the treatment option
of preserving the bladder may be considered, which would
drastically reduce the morbidity of the patient and improve
his/her quality of life as compared to the current standard
treatment by cystectomy.

Pathologic evaluation performed at the time of radical cys-
tectomy is considered a “gold standard” for estimation of treat-
ment response. However, this method cannot be used during the
course of chemotherapy. Noninvasive evaluation of the treat-
ment response can be performed during the course of chemo-
therapy (after 1 or 2 cycles) with computed tomography (CT) or
magnetic resonance imaging (MRI) by measuring tumor size. CT
provides accurate anatomical images of the tumor and is be-
coming the main tool for evaluation of bladder cancer.

We are developing a computerized decision support system
(CDSS-T) for monitoring of bladder cancer treatment response.
Machine learning techniques are used to integrate the image
information into an effective predictive model. The purpose of
the CDSS-T is to provide noninvasive, objective, and reproduc-
ible decision support for identifying nonresponders so that the
treatment may be stopped early to preserve their physical con-
dition or to identify full responders for organ preservation.

DL-CNN can be used to build pattern recognition models
using large image data sets (10-12). There are an increasing
number of DL-CNN applications in medical imaging field for
lesion segmentation, characterization, and diagnosis of diseases
in different organs (13).

Cha et al. (14) proposed DL-CNN-based method for treat-
ment response assessment of bladder cancers. In their paper, the
DL-CNN was trained directly on a pre- and posttreatment set of
82 patients with 87 bladder cancers and deployed on a test pre-
and posttreatment set of 41 patients with 43 cancers.

In medical imaging where training image data sets are
generally small, a commonly used approach for building robust
DL-CNN models is transfer learning (15). This approach uses a
large data set from a different domain (for example, natural
scene images) to initially train the DL-CNN. Then most of the
structures and the parameters of the DL-CNN are kept fixed and
only a small part of the DL-CNN is retrained with the smaller
data set from the specific domain of the task at hand, for which
the model is designed. This approach has shown a lot of promise
in a number of medical imaging applications (16-18).

In this study we have explored different DL-CNN models for
bladder cancer treatment response assessment based on transfer
learning by freezing different DL-CNN layers and varying the
DL-CNN structure. We also compared the DL-CNN models to
radiomics-based models.

METHODS
Data Set
Pre- and posttreatment CT scans of 123 patients (with 129 total
cancers) undergoing chemotherapy were collected with IRB ap-
proval. In total, 33% of patients were determined to have T0
stage cancer (complete response) after chemotherapy.

After the chemotherapy treatment, each patient underwent
cystectomy. The final cancer stage after treatment was deter-
mined on the basis of the pathology obtained from the bladder at
the time of the surgery. The pathological cancer stage was used
as the reference standard for response to treatment: complete
response (stage T0) or not complete response (stage � T0).

The CT scans were acquired with GE Healthcare LightSpeed
MDCT scanners (120 kVp; 120–280 mA). The pixel size range
was 0.586 to 0.977 mm and the slice thickness range was 0.5 to
7.5 mm.

The lesions on the pre- and posttreatment scans were seg-
mented using our previously developed autoinitialized cascaded
level sets system (19). ROIs of pre- and posttreatment scans of
these patients were extracted from segmented lesions as 32- �
16-pixel images, and pre- and posttreatment images of patients
were combined to make hybrid pre–post image pairs in the form
of 32- � 32-pixel image ROIs. Figure 1 gives an example of a
�T0 lesion pair and how it is generated. Multiple ROIs were
extracted from pre- and posttreatment images of the lesion and
combined to obtain a number of hybrid pre–post image pairs for
the same lesion. Each hybrid ROI was labeled as T0 (complete

Figure 1. Example of a prepost
lesion pair generated ROI. In this
example the case was stage T2 in
pretreatment, and stage T1 in
post-treatment, resulting in a label
of �T0.
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Figure 3. TensorFlow graph of base deep learning-convolutional neural network (DL-CNN) structure with different lay-
ers marked. The hybrid pre–post lesion pair ROIs were input to the DL-CNN, which then predicted a likelihood score of
a complete response (T0) as an output.

Figure 2. Subset of 6209 total regions of
interest (ROIs) used in training set. Cases with
complete response (T0) to treatment (A).
Cases that did not fully respond (�T0) to
treatment (B).
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response after treatment) or �T0 (the cancer did not respond
completely after treatment) as determined by pathology.

The data set was split into training, validation, and test sets.
The training set consisted of 77 lesions from 73 patients, where
19 lesions were stage T0, and 58 lesions were stage �T0. The 77
lesions formed 94 lesion pairs, and 6209 hybrid ROIs were
generated. The validation set consisted of 10 lesions (stage T0, 5;
stage �T0, 5) that formed 10 pre- and posttreatment cancer
pairs and generated 521 hybrid ROIs. The test set was composed
of 42 lesions from 41 patients, where 12 lesions were stage T0,
and 30 lesions were stage �T0. The 42 lesions formed 54 pre-
and posttreatment cancer pairs. Figure 2 displays 2 mosaics of
different pre–post lesion pairs used in the training, with the left
mosaic (Figure 2A) containing T0 pairs and the right (Figure 2B)
containing �T0 pairs.

Two experienced radiologists, blinded to the clinical treat-
ment outcome, also evaluated each pair of pre- and posttreat-
ment CT scans in the test data set, displayed on 2 medical-grade
monitors side by side, and provided ratings for the likelihood of
the posttreatment lesions being stage T0 cancer.

Network Structures
The DL-CNN structure used in this study was based on AlexNet
(10) and implemented and validated in the TensorFlow frame-
work. The base structure of the DL-CNN consisted of 2 convo-

lution layers (C1 and C2) followed by 2 locally connected layers
(L3 and L4) and a fully connected layer (FC10). The output from
the DL-CNN was trained to classify cases as fully responding
(stage T0) or not fully responding (stage � T0) to chemotherapy
based on the hybrid ROIs. Within C1 and C2, convolution filter-
ing with 64 “5 � 5” kernels and a stride of 1 was performed,
followed by local response normalization and max pooling with
a 3 � 3 filter of stride 2. Layer L3 consisted of 64 “3 � 3” kernels,
and L4 consisted of 32 “3 � 3” kernels. The output from L4 was
input to the FC10, which was a softmax linear layer. The FC10
layer produced a numerical likelihood score from 0 to 1, with 0
corresponding to a stage � T0 case, and 1 corresponding to a
stage T0 case. Figure 3 shows a labeled map of the DL-CNN
generated by TensorBoard, a visualization tool for TensorFlow.

We first trained the DL-CNN with randomly initialized
weights. We then explored the use of transfer learning. The
DL-CNN with pretrained weights from the CIFAR10 image set
were used. The CIFAR10 image set consists of 10 classes (air-
plane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck) and 60 000 total 32 � 32 images collected by Krizhevsky
et al. Each class contains 6000 images (20). We also performed
alterations to the DL-CNN structure to study its effect on the
DL-CNN performance. The modifications of the structures took
place in layers C1 and C2, and these involved the filter size, filter

Table 1. Modifications in Layers C1 and C2 for Each Structure Variation

Base DL-CNN-1 DL-CNN-2 DL-CNN-3

C1

Convolution

Size 5 � 5 5 � 5 5 � 5 5 � 5

Stride 1 1 2 1

Max Pooling

Size 3 � 3 5 � 5 3 � 3 3 � 3

Stride 2 2 2 2

Padding Valid Valid Valid Same

C2

Convolution

Size 5 � 5 5 � 5 5 � 5 5 � 5

Stride 1 1 1 1

Max Pooling

Size 3 � 3 2 � 2 2 � 2 4 � 4

Stride 2 1 1 2

Table 2. Test AUC Values for DL-CNN Models with Modified Structures

DL-CNN Type

Base DL-CNN
Structure

(Random Weights)

Base DL-CNN
Structure

(Pretrained Weights) DL-CNN-1 DL-CNN-2 DL-CNN-3

AUC 0.73 	 0.08 0.79 	 0.07 0.72 	 0.08 0.86 	 0.06 0.69 	 0.09
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stride, and padding type of the convolutions and max pooling
performed in each layer. Three different structures were studied
(DL-CNN-1, DL-CNN-2, and DL-CNN-3), and the modifications
performed can be observed in Table 1.

In addition, we trained the network with one (C1) or more
(C1, C2, L3) layers frozen. Freezing a layer during training
prevents its weights from being altered, and it may be necessary
to preserve the starting weights for some layers of the network to
optimize training results (21). All of the experiments with frozen
layers used the CIFAR10 transfer learning and the original
DL-CNN network structure.

Training and Testing Process
The DL-CNN models were trained first for 10 000 epochs by
using the training data set. For every 100 epochs, the trained
DL-CNN model was deployed on the validation set. The area
under the ROC curve (AUC) was calculated as a performance
measure, and the validation AUC results were recorded. To
reduce the likelihood of overfitting, a line plot of the validation
AUC results was created and a training epoch number around
where the validation AUCs peaked (usually around 2000 epochs)
was selected. The final DL-CNN model was trained on the com-
bined training set (comprising the merged training and valida-
tion sets) up to the selected epoch. The trained DL-CNN model
was then deployed on the test set and the AUC was estimated.

Training for 10 000 epochs for 1 experiment typically took
about 8.3 hours with an NVidia GeForce GTX 1080 Ti GPU. Final
training with the combined set took about 1.7 hours. Deploy-
ment on the test set took less than 1 minute per case.

Evaluation
The AUC results of our experiments were compared with those of
the 2 radiologists, as well as those from 2 radiomics feature-
based classification methods (RF-SL and RF-ROI) by Cha et al.
(14). The radiomics-based methods involved predicting the re-
sponse of cases based on the estimated changes in automatically
extracted features (including morphological, gray level, and
texture features) between lesions in pre- and posttreatment
scans. Cha et al. (14) also evaluated the performance of a simi-
larly structured DL-CNN. The results of the variations in the
DL-CNN structure and the transfer learning schemes were com-
pared with those of the base structure. We generated ROC curves
for each experiment and used 2 statistical significance tests,
ROC-kit from the University of Chicago, and the DeLong Test, to
estimate the statistical significance of the differences between
AUC values of the corresponding experiments. In addition, us-
ing the ROC curves, we calculated the sensitivity and accuracy
of the test results at specificity of 80%, and statistical signifi-
cance of the differences was also estimated. The specificity of

Table 3. Test AUC Values for DL-CNN Models with Transfer Learning and Different Frozen Layers

DL-CNN Type
Base DL-CNN Structure
(Pretrained Weights) C1 Frozen C1, C2 Frozen C1, C2, L3 Frozen

AUC 0.79 	 0.07 0.81 	 0.07 0.78 	 0.08 0.71 	 0.08

Figure 4. Test ROC curves of different DL-CNN models. ROC graph comparing base DL-CNN model (base structure) to
DL-CNN models with modified structure (A). ROC graph comparing base DL-CNN model (base structure) with pretrained
weights but no frozen layers to DL-CNN models with frozen layers (B).
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80% was selected by an experienced urologist (A.W.), as a
possible clinically meaningful value.

RESULTS
The AUCs for our experiments are shown in Tables 2 and 3, and
the ROC curves are shown in Figure 4. For the base DL-CNN
structure with randomly initialized weights, the test AUC for T0
prediction was 0.73 	 0.08. For the base DL-CNN structure, with
transfer learning using CIFAR10 pretrained weights and no
frozen training layers, the test AUC was 0.79 	 0.07. The test AUCs
for the DL-CNN-1, DL-CNN-2, and DL-CNN-3 modified structures
(with transfer learning and no frozen layers) were 0.72 	 0.07,
0.86 	 0.06, and 0.69 	 0.09, respectively. The only statistical
significance difference observed was between DL-CNN-2 and DL-
CNN-3 (P � .007, DeLong; P � .006, ROC-kit).

With the first layer (C1) of the base DL-CNN frozen, the test
AUC was 0.81 	 0.07. With the first 2 layers (C1 and C2) frozen,
the test AUC was 0.78 	 0.08. With the first 3 layers (C1, C2, and
L3) frozen, the test AUC was 0.71 	 0.08. None of the differences
in AUC between the DL-CNN with frozen layers and the base
structure with no layers frozen reached statistical significance.

Table 4 shows the AUC of the base DL-CNN with randomly
initialized weights versus the radiologists and methods from the
Cha et al. study (14). The AUCs of radiologist 1 and radiologist 2
were 0.76 	 0.08 and 0.77 	 0.08, respectively. The AUCs of the
radiomics-based methods RF-SL and RF-ROI were 0.77 	 0.08
and 0.69 	 0.08, respectively. The network structure used in the
study by Cha et al. achieved an AUC of 0.73 	 0.08.

Table 5 shows the sensitivity and accuracy of each model at
a specificity of 80%. The corresponding sensitivities ranged
from 41.7% to 75.0%, while the corresponding accuracies
ranged from 64.1% to 78.9%. Neither of the differences in
sensitivities and accuracies between models reached statistical
significance.

DISCUSSION
The results of this study show the feasibility of DL-CNN in
estimating bladder cancer treatment response in CT. The DL-
CNN performed better with pretrained weights from the CI-
FAR-10 image set than with randomly initialized weights, while
the AUC from the randomly initialized weights matched that
of the network structure used in the previous Cha et al. study
(14). The base DL-CNN and its modified structures all performed
similarly to the radiologists, and in a few cases, performing
better with higher AUCs. The AUCs of the base DL-CNN and its
variations were comparable to the AUCs of the radiomics-based
methods from the Cha et al. study. Only 1 network variation
(DL-CNN-2) resulted in a statistically significant improvement
in performance compared to the base structure.

Figure 5 shows examples of pre- and postlesion pairs pre-
dicted correctly and incorrectly by the base DL-CNN with
CIFAR10 weights.

The performance of the DL-CNN generally decreased as
more training layers were frozen. Freezing layer C1 resulted in a
slight, but not statistically significant, improvement in perfor-
mance. According to a study by Yosinski et al. (22), the first
layer of neural networks trained on natural images aims, in
general, to capture more universal features (such as edges and
curves), while proceeding layers aim to capture features more
specific to the input image set (in this case, bladder lesions). As
a result, allowing the first layer to train and change its weights
may have minimal or adverse effects on the results of the
training. Such a phenomenon may have been observed in our
experiments, given the performance increase in our network
with layer C1 frozen.

Similar trends were observed by Samala et al. (23) for the
task of classification of malignant and benign breast masses on
mammograms and tomosynthesis.

In our statistical significance tests, we found that one of our
structure modifications, DL-CNN-2 (with the highest AUC value
of all structures), achieved statistically significant improvement
in performance compared to DL-CNN-3 (with the lowest AUC
value of all structures). We will perform further testing to con-
firm the validity of our results and measure the performance of
the structure with a larger data set.

There are limitations in this study. We are currently working
with a relatively small data set in training, validation and testing
of our DL-CNN models, which may also be a reason for achiev-

Table 4. Test AUC Values for Radiologists and Methods Used in Cha et al. Study

DL-CNN Type

Base DL-CNN
Structure

(Random Weights) Radiologist 1 Radiologist 2 DL-CNN (Cha) RF-SL RF-ROI

AUC 0.73 	 0.08 0.76 	 0.08 0.77 	 0.08 0.73 	 0.08 0.77 	 0.08 0.69 	 0.08

Table 5. Test Sensitivity and Accuracy of
DL-CNN Models at a Specificity of 80%

Sensitivity (%) Accuracy (%)

Base Structure
(Pretrained weights) 59.5% 64.1%

Base Structure
(Random Weights) 41.7% 71.5%

Structure Modifications

DL-CNN-1 50.0% 73.3%

DL-CNN-2 75.0% 78.9%

DL-CNN-3 50.0% 73.3%

Layer Freezing

C1 Frozen 58.3% 75.2%

C1, C2 Frozen 58.3% 75.2%

C1, C2, L3 Frozen 58.3% 75.2%
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ing statistical significance for only 1 comparison. In the
future, we will continue to collect a larger data set with new
cases (both T0 and non-T0) in our networks. Another limita-
tion is that we have evaluations from only 2 radiologists on
the test set. Additional classifications from different radiol-
ogists would be needed to study the variability in the accu-
racy of such readings.

Our network was trained using the CIFAR-10 data set,
which produces favorable results, but is not relevant in the field
of medical imaging. A better approach for training with transfer
learning would be to use CT scan images, ideally bladder scans,
as pretrained weights. Several networks pretrained using CT
scans exist, and we may, in the future, explore the use of such
networks in training with our data set.

The pixel sizes of the CT scans used in our data set vary in
the range of 0.586 to 0.977 mm2, and slice thicknesses vary from
0.5 to 7.5 mm. While the nonuniform nature of the scans may be
seen as a limitation, in that it may bias the training results,
learning different sizes would help the network better handle
variability which would be present in real clinical applications.
While scans would ideally take place under the same conditions
using the same scanner, this is very difficult to achieve in

clinical settings. Nevertheless, we may try in the future to match
voxel sizes of scans using methods such as interpolation.

It is important to accurately assess a bladder cancer’s re-
sponse to treatment based on pre- and posttreatment lesion
scans to determine what further treatment a patient will require,
if any at all. While our current network structure has shown to
classify cases with considerable accuracy, we will further im-
prove the model and validate its generalizability in unknown
cases. Because of the small data set, we used DL-CNNs of rela-
tively small structures in this study. We will investigate if deeper
DL-CNN models such as GoogLeNet Inception (24) and ResNet
(25) may provide better performance when a large data set
becomes available.

In conclusion, our results showed that DL-CNN can effec-
tively predict the response of a bladder cancer lesion to chemo-
therapy, with many of our experiments comparing favorably
to the performance of the radiologists. Adjusting the structure of
the base network and freezing certain layers of the network
during training may further improve the performance. This
study suggests that the DL-CNN may be useful in conjunction
with medical professionals as decision support for bladder can-
cer treatment response assessment.
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Quantitative kinetic parameters derived from dynamic contrast-enhanced (DCE) data are dependent on sig-
nal measurement quality and choice of pharmacokinetic model. However, the fundamental optimization
analysis method is equally important and its impact on pharmacokinetic parameters has been mostly over-
looked. We examine the effects of those choices on accuracy and performance of parameter estimation us-
ing both computer processing unit and graphical processing unit (GPU) numerical optimization implementa-
tions and evaluate the improvements offered by a novel optimization approach. A test framework was devel-
oped where experimentally derived population-average arterial input function and randomly sampled
parameter sets {Ktrans, Kep, Vb, �} were used to generate known tissue curves. Five numerical optimization
algorithms were evaluated: sequential quadratic programming, downhill simplex (Nelder–Mead), pattern
search, simulated annealing, and differential evolution. This was combined with various objective function
implementation details: delay approximation, discretization and varying sampling rates. Then, impact of
noise and CPU/GPU implementation was tested for speed and accuracy. Finally, the optimal method was
compared to conventional implementation as applied to clinical DCE computed tomography. Nelder–Mead,
differential evolution and sequential quadratic programming produced good results on clean and noisy input
data outperforming simulated annealing and pattern search in terms of speed and accuracy in the respective
order of 10�8%, 10�7%, and �10�6%). A novel approach for DCE numerical optimization (infinite impulse
response with fractional delay approximation) was implemented on GPU for speed increase of at least 2
orders of magnitude. Applied to clinical data, the magnitude of overall parameter error was �10%.

INTRODUCTION
Obtaining a better understanding of a (personalized) tumor or
disease microenvironment is quickly becoming a driving force
in a whole range of medical scenarios from earlier disease
diagnosis to image-based assessment of treatment efficacy (1).
In this context, dynamic contrast-enhanced (DCE) imaging is
increasingly used to help quantify vascular and tissue properties
as to inform on the functionality and dynamic behavior of the
disease and/or normal tissue. In terms of tissue perfusion and
permeability, this is typically achieved with the additional use of
tracer kinetic models that describe the flow of contrast agents
through the tissue (2).

DCE computed tomography (CT) and magnetic resonance
imaging (MRI) have been widely investigated, and despite their

obvious differences in methodology to measure dynamic con-
trast enhancement curves, they share the same parametric anal-
ysis approach: both use low-molecular-weight contrast agents
and as such they share mostly the same pharmacokinetic models
that are applied after the imaging signal is converted to contrast
concentration data (3). The delivery of the contrast agent to the
organ or region of interest (eg, a tumor) is reflected in the arterial
input function (AIF). Using the contrast enhancement curves in
the organ or region of interest as a response on the AIF, an
estimation of the tracer kinetic model parameters can be ob-
tained. An example of this would be the widely used 2-compart-
mental modified Tofts model (2).

Whereas increasing efforts are in place to help standardize
the acquisition and analysis methods of DCE imaging in both CT

RESEARCH ARTICLE

A
B
ST

R
A

C
T

© 2019 The Authors. Published by Grapho Publications, LLC This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
ISSN 2379-1381 http://dx.doi.org/10.18383/j.tom.2018.00048

TOMOGRAPHY.ORG | VOLUME 5 NUMBER 1 | MARCH 2019 209

mailto:Catherine.Coolens@rmp.uhn.ca
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.18383/j.tom.2018.00048
http://WWW.TOMOGRAPHY.ORG


(4) and MRI (5), the solution of these tracer kinetic models is not
necessarily trivial and requires an optimization method to solve
for parameters in heterogeneous volumetric data. The effect of
image noise and voxel-based analysis has also been reported on,
showing a marked improvement in parameter robustness that
can be achieved by balancing preprocess filtering with informa-
tion loss (6). Regardless, parameters must be extracted given the
nonuniform, discrete, limited-time measurements. Implement-
ing the parameter estimation algorithm involves many other
design decisions including choice of data processing rate, con-
tinuous-to-discrete system mapping approach, and numerical
optimization algorithm. To the best of our knowledge, no inves-
tigations have been reported on the impact of the optimization
method used on resulting parametric maps. Yet, it is well-known
from other areas of research that significant differences can be
found in between optimization methods in their ability to ade-
quately resolve multiple variables simultaneously.

Given the large amount of data involved in processing DCE
parametric maps, it is further increasingly important that these
processes are as automated as possible to allow for useful inte-
gration into clinical workflows with a nearly real-time experi-
ence. Current implementations of kinetic models rely on manual
or semiautomated estimations of the fractional delay in contrast
arrival time at the region of interest. Not only is this a time-
limiting factor for a fully automated workflow, it will be shown
that lack of inclusion of this parameter in the optimization
process creates larger estimation errors. For this reason, moving
the optimization processes to a graphical processing unit (GPU)
offers known speed improvements over standard computer pro-
cessing unit (CPU) implementation of a fully inclusive optimi-
zation approach.

Having recently shown the improved correlation between CT-
and MRI-based perfusion parameters (7) when using a common
analysis platform to process DCE data regardless of the imaging
modality, the purpose of this paper is now to (1) quantify the effects
of system design choices (eg, processing sampling rate) and noise
(both aliasing and background) present in the data on accuracy and
speed of various CPU and GPU numerical optimization implemen-
tations and (2) to obtain a better understanding of parameter
accuracy in clinically relevant DCE-CT data.

METHODS
Continuous Time Model and Problem Statement
Various models exist to describe contrast solute exchange of iodine
or gadolinium-based DCE imaging methods. The modified Tofts
model is by far the most widely implemented technique and as such
it was felt worthwhile to investigate the design variations to better
understand the largest available literature of pharmacokinetic met-
rics reported. The modified Tofts model describes a linear time-
invariant first-order system. Data are acquired by the scanner,
which can be expressed as tissue concentration function Ct[n]Wc[n]
and AIF Ca[n]Wc[n] for n � {nonuniform discrete time points}.
Wc[n] is a rectangular window function that takes on the value 1 at
0  n � c � T and 0 otherwise, where T is the sampling period. The
window function represents the fact that acquisition of measure-
ments stops after a certain time � c seconds.

The 2-compartmental model of tissue enhancement that
takes into account contributions from intravascular and the
interstitial space (which is what’s measured by the scanner) is
given by the following linear time-invariant system (2):

Ct(t)� Ca(t)	�� Ktrans

1�HCT
e�Kep(t��)u(t��)�Vb�(t��)�

� Ca(t)	H(t)
(1)

The parameters used in the model are summarized in Table 1.
The continuous-time system must be approximated by a dis-
crete-time system to carry out the computation of the output,
making use of the discrete measurements – like the ones ac-
quired from a scanner – as input to the system. The field of
digital signal processing (DSP) offers many methods to accom-
plish this. It therefore helps to examine the model in the fre-
quency domain by applying the continuous-time Fourier trans-
form resulting in equation (2).

Ct(j�) � Ca(j�)H(j�)

H(j�)
� ��

Ktrans

1 � HCT


Kep � j�
� Vb�e��j�

H(j�) � �H1(j�) � H2(j�)�H3(j�)

(2)

Table 1. Tofts Model Parameters

Variable Description Units

Ct Tissue concentration of contrast agent as a function of time HU

Ca AIF representing the arterial concentration of contrast agent as a
function of time

HU

Ktrans Transfer constant from blood plasma into the EES mL/g/min

Kep Transfer constant from EES back to the blood plasma mL/g/min

Vb Blood volume per unit of tissue mL/g

t Time variable second

� Time delay from time of contrast injection to contrast arriving at
region of interest

second

HCT Hematocrit—fraction of red blood cells in blood. Value of 0.4 is
used during this investigation.

Fraction
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Examining the model in frequency allows the overall system
to be broken down into the following 3 simpler parts: sum-
mation of constant gain Vb with a first-order system, H1(j�)
and an overall delay element H3(j�). Note, the delay element
is required because the measurement site is upstream to the
input and it will take some amount of time for the contrast
agent to arrive at the measurement site. Frequency domain
analysis offers several discretization approaches—mainly fi-
nite impulse response (FIR) approximation and infinite im-
pulse response (IIR).

The objective is to find parameters Ktrans, Kep, Vb, � given the
measurements Ct[n]Wc[n] and Ca[n]Wc[n]. This is done using
constrained nonlinear numerical optimization attempting to
minimize the sum of square errors.

f(Ktrans, Kep, Vb, �) � �
n�0

c⁄T
�Ĉt[n]Wc[n] � Ct[n]Wc[n]�2

0 Ktrans �5
0 Kep �10
0� Vb �1
0� � �c

(3)

Where Ĉt�n� represents samples of system output for a given set
of parameters Ktrans, Kep, Vb, � and a particular AIFCa[n]Wc[n].
The summation limits reflect the fact that our measurements are
cut off after n � c/T samples. The optimization constraints were
chosen to be within reasonable physical limits, and to aid certain
optimization algorithms converge quicker.

Note that to compute Ĉt�n� the model (2) must be dis-
cretized. The discretization step introduces its own set of
errors. In particular the choice of sampling rate and contin-
uous-to-discrete mapping approach affect how well the dis-
crete-time system resembles the continuous-time system at
the range of frequencies of interest. The accuracy of fitted
parameters depends greatly on the accuracy of the system
approximating Ĉt�n�.

Discrete Approximation Methods and Sampling Rates
There are 2 main methods evaluated in this paper to approxi-
mating the continuous-time system by a discrete system. The
first method is the FIR using the window approach to filter
design and the second is IIR using bilinear transformation (also
known as Tustin’s method). How well the discrete system ap-
proximates the continuous-time system depends largely on the
sampling rate used during approximation (see online supple-
mental Appendix).

Although acquiring data at very high sampling rates is not
clinically feasible, this section discusses the ideal signal process-
ing case. Two factors affect the selection of appropriate sam-
pling rate, both of which depend on the cutoff frequency - i.e.,
the point in the frequency domain where the signal is zero.
Nyquist requires sampling rate to be at least 2x the cutoff
frequency to avoid aliasing error (8). The second factor for selecting
sampling rate is to ensure the discrete-time system matches the
continuous system closely up to the cutoff frequency. Even if
Nyquist rate criteria is satisfied, the discrete approximation may
not match the continuous system up to the cutoff frequency and
additional error may be introduced. In certain circumstances the

acquired data should be up-sampled and processed at a higher rate
to avoid introducing this additional error.

When the signals are not band limited and do not reach zero
past any frequency, like in this case, a cutoff frequency is
selected based on desired precision and computational feasibil-
ity. A low pass filter (LPF) is used prior to digitizing the signal to
attenuate components past the cutoff frequency. The degree of
attenuation in the stop band of the LPF depends on the noise
floor, which is the background noise that is technically infeasi-
ble to get rid of in the system.

In the ideal simulation case where population average AIF is
computed and then in turn used to generate signals, the noise
floor is due to errors in floating point arithmetic. Studying the
signals involved in the Tofts model, the cutoff frequency for the
ideal case can be determined based on when the frequency
components reach below the noise floor level (as if the low pass
filter was applied). It was determined that to achieve precision
on the order of single floating point arithmetic error, sampling
rate of 3500 Hz is required (more detail can be found in the
online supplemental Appendix).

Efficient Fractional Delay Approximation
As mentioned earlier, there is a delay between the time when the
contrast agent is injected and when it arrives at the measure-
ment site. This can be expressed as a continuous-time system
H3(j�). To account for this delay, the DCE analysis implemen-
tation could ask the user to visually evaluate the curves and
supply the delay value when the tissue response curve begins to
increase and optimize the other 3 kinetic parameters of the
model; this approach would be tedious for a user to perform
repeatedly for each voxel, error prone, as visual analysis could
differ between users, and error prone if the user specifies the
same delay value for a large physical area, which does not
account for the fractions of seconds that it took for tracer to
arrive at a further upstream site. Another approach to account
for the delay could involve analyzing tissue response curves
automatically based on the curve slope to determine the onset
time, and then optimize the other 3 kinetic parameters (6).
Heuristic search based on slope is susceptible to noise if there are
noisy spikes before the true onset or if the onset occurs between
samples. For this DCE analysis implementation, it was decided to
numerically optimize all 4 kinetic model parameters, including
the delay.

The discretization approaches, FIR and IIR, described in
previous sections can deal with only delay by whole number of
samples. For example if the system’s sampling period is 1 s, only
integer delay may be computed. This coarse approximation of
delay can lead to poor fit in other parameters—Ktrans, Kep, Vb. The
sampling rate can be increased to allow for a broader range of
delay values—for example, 10 Hz would allow for any delay that
is a multiple of 0.1 s—but at a proportional cost to memory
requirements and processing time. This problem can be allevi-
ated with the use of fractional delay approximation, which
allows for estimation of the output signal for any floating point
delay value (9). In our investigation the first-order Thiran filter
considerably improved the results with negligible additional
run-time cost. The delay in seconds can be implemented by
the following 2 operations: Delay By Whole # of Samples
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N � �� � T� followed by Fractional Delay FD � � � T � �� � T�. The
first-order filter is provided in equation (4)

Hthiran(z) �
a1 � z�1

1 � a1z
�1

a1 �
1 � FD

1 � FD

(4)

Testing Framework Design and Investigation Goals
The following were the investigation goals when designing the
test framework:

1. Derive theoretical background for the ideal case to validate
algorithm implementation and calibrate values for the
basic numerical optimization algorithm parameters.

2. Investigate and demonstrate the effects of discretization
method, sampling rates used during processing, noise, and
fractional delay approximation filters on the resulting ac-
curacy of the kinetic model parameters.

3. Investigate achievable accuracy of kinetic parameters ex-
tracted from clinical data set.

An experimentally derived functional form of population-aver-
age AIF (10) was sampled at 3500 Hz based on theoretical
discussion in the section with the heading “Discrete Approxi-
mation Methods and Sampling Rates” in this paper. A uniformly
distributed pseudorandom number generated was used to sam-
ple parameters Ktrans, Kep, Vb, � from the minimization con-

straints range (8). The tissue curves were then calculated for
each parameter set by a discrete-time system approximating the
continuous model at 3500 Hz.

The ideal generated tissue curves proceed to a measurement
stage where ideal high sampling rate signals are decimated and
additional Gaussian white noise may be added. A summary of
data sets analyzed and their canonical names used throughout
the paper are summarized in Table 2.

In this setup, the ground truth parameters for data sets 1 and
2 are known. The generated signals at 3500 Hz represent the
ideal case and it should be possible to recover the original
parameters used to generate the signals to within tolerances of
single floating point precision arithmetic. Running numerical
optimization on the ideal signals was used to calibrate and
configure the algorithms, as well as validate all additional cus-
tom code. The optimization algorithms evaluated in the simu-
lation include: sequential quadratic programming (SQP) (11),
downhill simplex (Nelder–Mead) (12), pattern search (PS) (13),
simulated annealing (SA) (14), and differential evolution (DE)
(15). Matlab (v2015b) optimization and global optimization
toolbox’s implementation of SQP, Nelder–Mead, PS, and SA
were used. Price et al. implementation of DE was used for the
experiments (15).

The algorithm parameters and values configured during
calibration are described in Table 3. To overcome problems of
local minima, SQP, Nelder–Mead, PS, and SA were initialized to

Table 3. Algorithm Parameters

Algorithm # Start Points Max Iterations

Exit Criteria

TolFun TolX

SQP 32 1000 10�8 10�8

Nelder–Mead 32 1000 10�8 10�8

CUDA Nelder–Mead 32 1000 10�8 10�8

PS 32 1000 10�8 NA

SA 32 1000 10�8 NA

DE 64 1000 10�8 NA

CUDA DE 512 1000 10�8 NA

Table 2. Data Sets Analyzed

Name Samples Duration Gaussian Noise

Data set 1 200 samples 1-second interval 200 seconds None

Data set 2 9 samples 2-second interval 209 seconds Added: � � 0

19 samples 5-second interval � � 6HU

9 samples 10-second interval

DCE-CT Brain Scan 9 samples 2-second interval 209 seconds Estimated: � � 0

19 samples 5-second interval � � 6HU

9 samples 10-second interval
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quasi-random starting points generated using the Halton se-
quence (16). A quasi-random sequence was used to avoid the
probability of generating tight clusters of starting points that
could arise when using a distribution generated by a pseudo-
random number generator. Each algorithm was configured to
exit based on the maximum number of iterations, a minimum
change in objective function (TolFun), and a minimum change
in estimated parameter (TolX) to avoid infinite run-time. DE
operates on a population of candidates that can conceptually be
considered as the number of starting points. Furthermore, the DE
objective function–based exit criteria was chosen such that the
algorithm would exit when the difference between minimum
and maximum values of the current objection function across
the population was found to be below the TolFun threshold. All
algorithm parameters were tweaked experimentally until the
accuracy of the results were within the maximum accuracy
allowable by a single floating point precision arithmetic or the
results produced by the algorithm did not show any further
improvement indicating numerical optimization algorithm lim-
itations.

After calibration of the algorithm parameters (TolX, TolFun,
etc.) and after having established an accuracy baseline, changes
to objective function calculation in the form of adding frac-
tional delay, changing discretization methods, and sampling
rate were implemented. The validity of such code changes was
verified by ensuring that at ideal processing rates, the accuracy
matched the baseline accuracy. Then, data sets 1 and 2 were
processed and the performance of each change was analyzed for
its impact on accuracy and speed.

Analyzing the impact results, 2 algorithms were ported to
CUDA to run on the GPU. In case of DE, the population size was
increased to 512 compared to its CPU counterpart to take ad-
vantage of the multithreaded GPU architecture and have each
optimization converge faster. Data sets 1 and 2 and an addi-
tional clinical DCE-CT brain scan were analyzed using this
numerical optimization implementation under an institutionally
approved REB protocol. The analysis was performed on CPU and
GPU.

In terms of underlying hardware and timing analysis, the
simulations were performed on several Xeon E5-2690 CPUs, and
for comparison, on Tesla K40m GPU. A high-throughput com-
puting cluster HTCondor was used; however, to narrow the
analysis to only the algorithm performance, the overhead of
data serialization, network transfer, and start-up time on remote

nodes were discarded—only the main algorithm run-time was
recorded.

In summary, earlier theoretical discussion led us to design
for the ideal case under a single floating point precision. The
algorithms were calibrated to perform within tolerances speci-
fied by the ideal case. With established confidence in correctness
of implementation and calibration parameters, 2 artificial data
sets were generated and run through the testing framework,
while several other parameters were changed including the sam-
pling rate and discretization method used on the Tofts model
and the use of fractional delay approximation versus rounded
delay for estimating the contrast arrival time at the site.
Because, the second data set had the same sampling and noise
profile of a scanned DCE-CT brain scan data set, when nu-
merical optimization was carried out on the clinical data set,
a conclusion on the accuracy of the extracted parameters
could be determined.

RESULTS
Algorithm Calibration
The percent relative error for each parameter is defined as
� � 100	|xtrue � xapprox| � |xtrue|. The percent relative errors
for each of the 4 parameters was combined into a single array of
errors and the mean statistic along with 95% confidence interval
was calculated and summarized in Table 4. Note that these
calibrations are processed at very large sampling rates as dis-
cussed in the section with the heading “Discrete Approximation
Methods and Sampling Rates” in this paper.

The SQP algorithm hits its optimization accuracy limit at
percentage errors 1 and 2 orders of magnitude below DE and
Nelder–Mead algorithms; decreasing tolerances and increasing
sampling rates did not produce better results for SQP. The likely
reason for this has to do with the fact that SQP is a gradient
approach and the function is quite flat around the optimal point.
This conclusion lead us to investigate nongradient-based ap-
proaches. From these approaches, Nelder–Mead and DE per-
formed quite well. However, PS and SA could not be configured
to achieve optimization values anywhere close to other algo-
rithms; further modifications of algorithm parameters (such as
increasing the number of starting points) produced marginally
better results at a cost of much higher run-times. Because of
these calibration results, long run-times and poor-accuracy PS
and SA algorithm were discarded as viable numerical optimiza-
tion candidates for this particular problem.

Table 4. Algorithm Calibration at 3500 Hz: Median of Percent Error and Timing

Algorithm Overall %Error Time (sec./voxel)

SQP 8.97 � 10�6 	 4.66 � 10�7 1030	16

Nelder–Mead 5.69 � 10�8 	 2.32 � 10�9 522 	 23.7

CUDA Nelder–Mead (IIR) 1.07 � 10�7 	 1.27 � 10�8 (14.5 	 9.82) � 10�3

DE 3.27 � 10�7 	 2.20 � 10�8 1230 	 12.3

CUDA DE (IIR) 3.35 � 10�7 	 2.59 � 10�8 (34.0 	 5.33) � 10�3

PS 2.79 	 1.04 13300 	 284

SA 3.85 	 1.23 2960 	 32.5
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Fractional Delay Analysis
Figure 1 shows the mean relative percent errors and the mean
run-time sec./voxel with 95% confidence interval for results
extracted from data set 1. IIR approximations at 1 Hz and 5 Hz
were used. Using rounded delay approximation, SQP performs
very poorly with the mean of the overall relative error at 56.9%
regardless of the sampling rate used to process the data. One
explanation for this is SQP exits criteria based on the objective
function change is triggered because the gradient is constant for
a range of delay values when rounding is used. Similar problems
with rounded delay can be seen with DE and Nelder–Mead
algorithm. With fractional delay approximation, instead of
rounding, the error was reduced from 10% to 0.4% for DE and
Nelder–Mead algorithms, and from 56.9% to 0.4% for the SQP
algorithm.

An alternative to approximating the fractional delay is to
use higher sampling such as 5 Hz. Somewhat surprisingly, SQP
showed no improvement when using rounded delay compared
to 1 Hz with the error still at 56.9%. The other numerical
optimization algorithms did show a significant improvement
where the overall error was 2.83%. However it should be noted
that increasing the sampling rate by some factor increases the
memory requirement by the same factor. Better accuracy can be

achieved at 1 Hz with fractional delay approximation (0.4%)
than at 5 Hz and using rounded delay (2.83%).

Figure 2 shows the fractional delay analysis run on data set
2, which has coarse, nonuniform sampling and additional � �
0, � � 6HU Gaussian noise added. Similar behavior can be
observed for the SQP algorithm—it exits prematurely, causing
very large errors (56.9%). Because of large amount of noise there
(aliasing and artificial), there was no significant improvement in
accuracy when using fractional delay approximation. It should
be noted that in this case, the addition of the fractional delay
approximation did not add significant amount of overall com-
putation time.

In general, fractional delay approximation greatly improves
accuracy of gradient-based numerical optimization algorithms
such as SQP. When the noise profile of the data permits, it also
improves accuracy significantly without having to process at
higher sampling rates. Because of this, fractional delay approx-
imation was added to all further analysis simulations and to the
algorithms used to analyze clinical data.

Discrete Approximation and Sampling Impact Analysis
Figure 3 shows the means of relative percent errors across all
parameters, as well as the mean logarithm of sec./voxel with

Figure 1. Data set 1. Impact of rounded delay vs fractional delay analysis processed at 1-Hz and 5-Hz infinite impulse
response (IIR) on the mean overall %error and mean run-time per voxel.
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95% confidence interval. The simulation compares 2 discrete
approximation methods—FIR and IIR—and the effect of up-
sampling data set 1 and using the more accurate discrete ap-
proximations that are a direct result of higher sampling rate.
Fractional delay approximation was used during this analysis.

In terms of accuracy, the algorithms perform almost iden-
tically across sampling rates and discretization methods. Data
set 1 was sampled at 1 Hz; the high-frequency information is
lost forever regardless of how much the signals are up-sampled.
However, if the signals were processed at 1 Hz, additional error
would be introduced owing to the discrete-system poorly ap-
proximating the continuous-time system at this low rate. Figure
3 shows that accuracy can be increased by up-sampling the data
and processing at higher rates. It is also evident that IIR approx-
imation of the Tofts continuous-time system is more accurate
than the FIR approximation at lower sampling rates, as the
accuracy achieved by IIR approximation at 1 Hz is slightly better
than the overall accuracy achieved by FIR approximation at 5
Hz. The mean of errors for each individual parameter when
using IIR approximation at 1 Hz is {0.27%, 0.10%, 8.81%,
0.13%} for the parameters {Ktrans, Kep, Vb, �}, respectively. The
overall mean error across all parameters is 2.33%. By switching
to IIR approximation at 5 Hz, the overall mean of errors reduces

to 0.40%, or individually, the error for each parameter becomes
{0.46%, 0.16%, 0.84%, 0.12%}, showing large improvements
for Vb parameter as a result of changing discretization method
and increasing the sampling rate.

The run-time for the algorithm is shown as a log plot. For all
sampling rates, IIR runs faster than FIR. The reason for this has
largely to do with the fact that for this particular system, the IIR
can be implemented in a single loop over the input data, so the
complexity is 0(M), where M is the size of the signal. On the
other hand, direct convolution requires 2 nested loops and has
complexity 0(M2). When signal size is large (such as when
higher sampling rate is used), convolution implementation can
be sped up by zero-padding the signals, computing the fast
Fourier transform (FFT), multiplication of frequency bin values,
and IFFT (17), in which case the complexity is 0(Nlog(N)), where
N is the size of padded signals. The implementation used during
simulation uses the FFT approach, which handles larger signals
much better than convolution. The algorithm complexity related
to input size is evident in the timing plot, where FIR versions
increase steadily as the sampling rate (and hence signal size)
grows, whereas the IIR versions remain relatively flat.

The combination of better scalability as a result of algo-
rithm complexity and the lower memory footprint requirement

Figure 2. Data set 2. Impact of rounded delay vs fractional delay analysis processed at 1-Hz and 5-Hz IIR on the mean
overall % error and mean run time per voxel.
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owing to better accuracy at lower sampling rates were the main
reasons for using IIR approximation of the system in the CUDA
implementation of DE and Nelder–Mead algorithms. The highly
optimized CUDA implementation of the numerical optimization
algorithms ran 2 orders of magnitude faster than their CPU
counterparts.

Data set 2 was sampled nonuniformly, coarsely (average
sampling rate 0.18) and had additional Gaussian noise (� �
0, � � 6HU). Although the accuracy improvements from in-
creased sampling and IIR approximation are very small, they are
still evident. This analysis conveys the fact that data sets such as
these need to be processed at only 1 Hz, as no further accuracy
improvements can be gained by up-sampling to ensure the
discrete-time system better approximates the continuous-time
system. As a result of this analysis, the IIR approximation was
chosen as the best discretization approach for this problem.

Figure 4 shows the results of the error analysis for data set
2 as a result of a changing the data sampling times. The resulting
mean percentage error in parameter estimation was the smallest
for the 1-s interval sampling interval and it increased with the
increasing sampling rate. The clinical scan intervals varied de-
pending on which part of the enhancement curve was being
measured and the percentage errors therefore roughly corre-

spond to the error values closest to the 3- and 5-s sampling
intervals.

GPU Implementation and Clinical Data Analysis
Discrete approximation and sampling impact analysis showed
that regardless of the optimization algorithm, IIR filter approx-
imation produced more accurate results at lower sampling rates.
In addition, fractional delay approximation allows for greater
accuracy at lower sampling rates. Owing to excellent calibration
accuracy, Nelder–Mead and DE, using IIR approximation and
fractional delay filter, were chosen to be implemented in CUDA
to run on the GPU. The calibration results from Table 4, along
with identical accuracy compared to CPU counterparts (Figures
3 and 4), serve as verification that the algorithm implementation
in CUDA is correct.

The best and fastest implementation (CUDA Nelder–Mead,
with IIR filter and fractional delay approximation) was used to
analyze a clinical DCE-CT brain scan. By analyzing CT scan
areas that should contain a uniform CT number value, it was
determined that the scanner may be adding as much as � � 6HU
noise to the data. The noise was assumed to be Gaussian distrib-
uted (18) and the same population AIF was used as for the
simulated curves. From earlier analysis on data set 2, which had

Figure 3. Overview of the impact of choice of sampling and discretization method on mean percentage overall error
and mean run-time per voxel for Data set 1.
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the same sampling and noise profiles as this CT data set, it can be
concluded that the overall accuracy of parameters estimated
from the CT data set is less than 10%.

Figure 5 shows a volume rendering of Vb parameter on the
left, and the onset delay parameter rendering color coded such
that red corresponds to earlier onset time and blue corresponds
to later onset time.

Figures 3 and 4 show the GPU-based algorithm achieves
speed improvements of 2 orders of magnitude compared with
their CPU counterparts when run on generated data. Tables 5
and 6 show speed improvement when processing CT brain scan
data. The first row is the baseline CPU implementation that uses
FIR discretization of the Tofts model. The second row shows a
modest speed increase because of changing the discretization to
IIR. Finally the benefits of implementing the algorithm to run on
a GPU are shown in the last row.

DISCUSSION AND CONCLUSIONS
Numerical optimization algorithms were carried out by design-
ing for the ideal signal processing case at single floating point

precision accuracy limits. Nelder–Mead, DE, and SQP produced
good results under ideal conditions, achieving overall relative
error 5.69�10�8%, 3.27�10�8%, and 8.97�10�6%, respec-
tively. SA and PS were found to be unsuitable for this problem
because the lowest overall relative error that could be achieved
was 3.85% and 2.79%, respectively.

The algorithms were designed and implemented to extract
parameters from data sets with a wide range of sampling and
noise profiles—ranging from the ideal and clinically infeasible
data sets without noise to noisy and sparsely sampled CT brain
data sets. To accomplish this, the thresholds for exit criteria were
chosen to be of the order of 10�8%. For very noisy data sets, this
most likely creates a large amount of unnecessary processing
that costs extra time; however, that is the trade-off to be able to
achieve high accuracy for low-noise data sets as well. In cases of
high-noise data sets, the numerical optimization exit is triggered
when change in candidate parameter drops below threshold,
rather than objective function target threshold. This is why for
DE, the exit criteria were based on thresholding the difference
between minimum/maximum objective function values across

Figure 4. Data set 2, sampling analysis. Impact of data sampling on parameter estimation accuracy for (Ktrans,
Kep, Vb, �).
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the population. Furthermore, numerical optimization algorithms
that find local minima (compared to algorithms designed with
global optimization in mind such as DE) were restarted many
times at different initial starting points. Although the continu-
ous objective function described in equation (3) may not have
multiple minima, the discrete implementation of the objective
function has many regions that would cause a numerical opti-
mization algorithm to exit without reaching a point that would
result in a better fit. For example, if rounded delay is used at
1-Hz sampling, the objective function is constant for all � � (0,
0.5), creating a saddle point which could cause numerical opti-

mization to exit. This is especially evident in the gradient-based
approach early termination summarized in Figures 1 and 2.
Therefore as many as 32 starting points were used; using fewer
starting points yielded poorer accuracy in the ideal optimization
case. Having designed an algorithm that is capable of achieving
best results in terms of accuracy for a very wide range of data,
and a framework under which to conduct tests, it is possible to
design a faster algorithm (by increasing thresholds of the exit
criteria) that is able to achieve best results for the specific
clinical data set.

Once numerical optimization algorithms were working to
within designed tolerances of single floating point precision,

Table 5. Nelder–Mead Numerical
Optimization CPU vs GPU Run-Time CT Brain
Scan

Algorithm
Mean Time
sec./Voxel

Relative
Speed

CPU FIR 1 Hz 4.37 1.0

CPU IIR 1 Hz 3.05 1.4

CUDA IIR 1 Hz 0.0026 1680.8

Table 6. DE Numerical Optimization CPU vs
GPU Run-Time CT Brain Scan

Algorithm
Mean Time
sec./Voxel

Relative
Speed

CPU FIR 1 Hz 2.51 1.0

CPU IIR 1 Hz 1.93 1.3

CUDA IIR 1 Hz 0.0068 369.1

Figure 5. Volume rendering of Vb (left) and onset delay (right) parameters.
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experiments were conducted to vary other data processing steps
and digital signal processing filters. It was shown that using
fractional delay approximation filter stabilized gradient-based
numerical optimization approaches and allowed the algorithm
to produce accurate results instead of terminating early. Fur-
thermore, fractional delay approximation allowed the discrete-
time approximation for the Tofts model at lower sampling rates.

It was also shown that IIR discrete approximation of con-
tinuous-time Tofts model produces more accurate results at
lower sampling rates. The recursive filter implementation has
lower complexity compared to FIR discrete approximation,
which requires convolution. This translates to lower memory
footprint and faster processing times.

The clinical DCE-CT brain scan volume of interest contains just
over 6 million voxels to analyze, after delineating and discarding
areas outside the patient and bone. Combination of the 2 conclu-
sions above led to an efficient port of the CPU-based algorithms
into CUDA to run on the GPU. The framework can be used inde-
pendent of image segmentation and run on every voxel or within a
specific region of interest. The improvements in correlation be-
tween CT- and MRI-based measurements of tumor perfusion pa-
tients when a common analysis platform is used falls outside the
scope of this article but is being reported on elsewhere (4).

To obtain entire brain perfusion maps required 4.3 hours
(based on run-times in Table 5) on a single GPU; the same
computation would take 179 days when processing on a single
CPU (based on run-times reported in Table 6). If volume of
interest is narrowed down further, for example, to only the

tumor and surrounding tissue, which span 5 cc or just over
100,000 voxels, then kinetic model parameters can be computed
in 4.3 min. Several orders of magnitude improvements such as
these were also reported by Wang et al. (17) who achieved an
even better 0.00025 s/voxel (compared to 0.0026 s/voxel) com-
putation times using the block-FFT approach (FIR approxima-
tion of the Tofts model) on a less powerful GPU than Tesla K40.
It should be noted that the implementation used for this paper
used 32 starting points (effectively attempting to optimize each
voxel 32 times to ensure global minimum) and stringent exit
criteria. During CUDA code optimization attempts, it was found
that the largest remaining barrier to even further speed optimi-
zation was noncoalesced memory access as a result of the delay
parameter �. In particular, on NVIDIA GPUs, the best speed can
be achieved when the following holds: if a thread N reads
memory location M, then thread N � 1 reads memory location
M � 1 for all threads executing within a scheduled block. When
implementing the delay which offsets the index of variables
being read/written, coalesced memory access optimization does
not apply, causing performance decrease.

A test framework such as this can further be used to determine
the sampling rate required to process clinical data and gauge the
magnitude of error that should be expected from the computed
parameters, as well as calibrate numerical optimization algorithms
to ensure best possible accuracy has been achieved.
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Quantitative imaging biomarkers are increasingly used in oncology clinical trials to assist the evaluation
of tumor responses to novel therapies. To identify these biomarkers and ensure smooth clinical transla-
tion once they have been validated, it is critical to develop a reliable workflow-efficient imaging plat-
form for integration in clinical settings. Here we will present a web-based volumetric response-assess-
ment system that we developed based on an open-source image viewing platform (WEASIS) and a
DICOM image archive (DCM4CHEE). Our web-based response-assessment system offers a DICOM im-
aging archiving function, standard imaging viewing and manipulation functions, efficient tumor segmen-
tation and quantification algorithms, and a reliable database containing tumor segmentation and mea-
surement results. The prototype system is currently used in our research lab to foster the development
and validation of new quantitative imaging biomarkers, including the volumetric computed tomography
technique, as a more accurate and early assessment method of solid tumor responses to targeted and
immunotherapies.

INTRODUCTION
The use of imaging biomarkers to monitor responses of tumors
to treatment has attracted increasing interest in recent years.
Despite the accelerated pace of new drug discoveries, and the
availability of treatment options in oncology, methods for as-
sessing tumor responses remain almost unchanged over the past
few decades, that is, using tumor diameter to gauge tumor
change with therapy (1, 2). This is particularly challenging for
targeted and immune therapies, as efficiencies of these therapies
may be better reflected by tumor density changes than by tumor
size shrinkage.

Researchers, including us, have been developing novel
quantitative response-assessment methods including volume
measurements and the use of more complex radiomic features to
measure tumor changes (3). To foster the development and
validation of quantitative imaging biomarkers, we developed a
portable response-assessment system, based on an open-source
WEASIS (4, 5). This system has a PACS-like user interface,
which allows radiographic images to be viewed and manipu-
lated efficiently. We integrated our homegrown segmentation
tools into this system to facilitate efficient and accurate tumor
segmentation and quantification.

The portable response-assessment system consists of a data-
base server and a response-assessment application. The database
server stores and manages tumor segmentation and measurement
results, whereas the application consists of the following key com-
ponents: (1) a WEASIS viewer module that allows the program’s
user to open, display, and manipulate radiological images, (2) an
algorithm module that integrated our tumor segmentation algorithms
and editing tools, and (3) a database module that allows users to
communicate with the database server. The WEASIS response-assess-
ment application is installed on each of the PCs in the lab.

However, shortcomings of the portable response-assess-
ment system are obvious: (a) the application is hard to maintain,
upgrade, and distribute and (b) (deidentified) DICOM images
need to be transferred to and stored in each PC for tumor
measurements. To address these 2 shortcomings of the portable
response-assessment system, we upgraded our response-assess-
ment system by tuning the response-assessment application so
that it was web-based, and by adopting DCM4CHEE as the
DICOM image archive. DCM4CHEE is a free, stable, feature-rich
DICOM image archive (6). In the Methods section of this report,
we will explain in detail how we designed and implemented our
web-based response-assessment system.
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METHODS
Segmentation Algorithms and Editing Tools
As shown in Figure 1, our web-based response-assessment sys-
tem has several segmentation algorithms, such as: a lung nodule
segmentation algorithm (7); a liver tumor segmentation algo-
rithm (8); a lymph nodule segmentation algorithm (9); and a
brain tumor segmentation algorithm (10). The initialization pro-
cedure for each algorithm has been implemented and integrated
into the system. The system also provides editing tools that are
designed to efficiently modify and optimize the segmentation
contours. It consists of some basis operators, such as refine,
smooth, expand, and shrink functions, which can automatically
modify the segmentation contours based on energy-minimiza-
tion segmentation methods. It also provides propagation func-
tions, which can propagate a segmentation result from 1 slice to
the neighboring slices while automatically finding the optimal
contour for each slice.

All the algorithms are written in C�� or Matlab computer
language and compiled into dynamic link libraries (DLLs). Be-
cause the WEASIS platform is programmed in JAVA language,
we use the Java Native Interface (JNI) to call these algorithms/
functions in the libraries.

Segmentation Results and Storage Methods
Lesions will be semiautomatically delineated using the integrated
3D lesion segmentation tools developed in our research lab. Once
the lesions are segmented, lesion diameters and volumes (as well as
other radiomic features once the feature extraction methods are
integrated into the platform) can be computed automatically. Our
tumor segmentation results are binary images in which a back-
ground voxel has a value of 0 (zero) and a lesion voxel has a value
of 1 (one). The compressed binary images and tumor measurement
values of UNI (the maximal in-plane diameters), BI (product of the
maximal diameter and its maximal perpendicular diameter), and

Figure 1. Web-based response assessment system with integrated tumor segmentation and quantification algo-
rithms (A). Lung, liver, and lymph node segmentation algorithms integrated into the WEASIS response assessment
system (B).
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volumetry are sent to and stored in a relational database that is an
industry standard. The database structure we designed is published
in our previous paper, which reported our portable response-as-
sessment system (4).

System Hardware Architecture
Figure 2 shows the hardware architecture diagram of our web-
based response-assessment system. It consists of the following 2
rack servers: (1) a DICOM image archive server, hosting a
DCM4CHEE and a web-based response-assessment application
and (2) a dedicated database server storing tumor segmentation
and measurement results in a MySQL database. The web-based
response-assessment system resides in the intranet of our uni-

versity hospital. The two servers are inside the private network
of our university hospital, and public access is prevented by a
firewall; while the client PCs, where users of the response-
assessment system work, are within the public network of our
university hospital. The deidentified DICOM images are stored in
the image archive server and are remotely accessed by client PCs
through a web browser and a web-based response-assessment
application.

System Software Framework
Figure 3 shows the major components of the web-based re-
sponse-assessment system, which is divided into the following 4
layers: an interface layer, an application layer, a service layer,

Figure 2. The hardware architec-
ture diagram of our web-based
response assessment system work-
ing in the intranet of our university
hospital.

Figure 3. The layered software
framework of the web-based re-
sponse assessment system.
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and a system layer. The components in the DICOM archive
server are: (A.1) a DCM4CHEE–web user interface, (A.2) a
DCM4CHEE-JBoss server application, (A.3) a web-based re-
sponse-assessment application, and (A.4) a MySQL database for
DCM4CHEE. The component in the tumor segmentation and
measurement server is a MySQL database for tumor segmenta-
tion and measurement results (B.1). We will now describe the
details of each component in the web-based response-assess-
ment system.

DCM4CHEE–Web User Interface (A.1). DCM4CHEE is a col-
lection of open-source applications and utilities for managing
and archiving DICOM imaging. It was developed in the Java
programming language. The DCM4CHEE application uses the
DICOM, HL7 services and interfaces to provide storage, retrieval,
and workflow of DICOM imaging.

The DCM4CHEE–web user interface (shown in Figure 4) runs
entirely in web browsers of client PCs. It can search for patients
or studies, browse the archived DICOM information listed in a
patient-study-series-image layout, and launch the response-
assessment application.

DCM4CHEE-JBoss Server Application (A.2). The DCM4CHEE-
JBoss server application consists of a collection of open-source
applications and utilities that have been developed in the Java
programming language for improved performance and portabil-
ity. It contains the Health Level 7 (HL7) and Digital Imaging
Communication in Medicine (DICOM) services and interfaces
that are required to provide storage, retrieval, and workflow to a
healthcare environment. A DCM4CHEE-JBoss server application
is prepackaged and deployed within the JBoss application
server. By taking advantage of many JBoss features, such as
JMS (Java Message Service), EJB (Enterprise Java Beans), Servlet
Engine, etc., and assuming the role of several IHE (Integrating
the Healthcare Enterprise) actors for the sake of interoperability,
the DCM4CHEE-JBoss server application provides the following
services: (1) DICOM Storage, acting as an archive to store DICOM
images to standard file systems, with compression if necessary;
(2) DICOM Query/Retrieve, querying the archive for DICOM
images, and retrieving them; and (3) WADO (Web Access to
DICOM Objects) and RID (Retrieve Information for Display),
supporting web access to the archived data.

Web-Based Response-Assessment Application (A.3). The web-
based response-assessment application is based on WEASIS, a
versatile open-source DIOM viewer. The framework of the re-
sponse-assessment application is explained in detail in Yang et
al. (4). The response-assessment application can be easily pack-
aged for portable distribution or web-based distribution. In our
system, we use the web-based distribution.

The web-based response-assessment application is hosted by
the DCM4CHEE-JBoss in the DICOM archive server, and
launched by the DCM4CHEE-Web. It does not persistently retain
user information. Thus, the database of DCM4CHEE and the
database of tumor segmentation and measurement keep exactly
the same user information. In other words, to register a user, the
user’s information should be saved into both databases. This is a
prerequisite for the web-based response-assessment application
to be able to retrieve tumor segmentation and measurement
results and review tumor contours using the WEASIS viewer.

MySQL Database for DCM4CHEE (A.4). The MySQL database
for DCM4CHEE manages all the user information of DCM4CHEE
and DICOM information, for example, user credentials, user
access rights, and the path of a DICOM image in the DICOM
storage.

MySQL Database for Tumor Segmentation and Measurement
Results (B.1). The MySQL database storing and managing tumor
segmentation and measurement results in a dedicated server
with superior data protection and twice-daily data backup,
rather than in the DICOM image archive sever with inferior data
protection and monthly data backup.

We keep the tumor segmentation database and the
DCM4CHEE database independent for the purpose of easy up-
grade and backup. Also, the user table of the DCM4CHEE data-
base is used more often than the tumor segmentation database.
We thus store the user registration information in two databases.
We synchronize the 2 user registration databases by a program
so that a change in one registration database will be automati-
cally made to the other registration database.

Workflow
Figure 5 shows a sequence diagram of the workflow that users
use to login to the system and views selected DICOM images.

Figure 4. User interface of
DCM4CHEE-Web and the link
(arrow) to launch response
assessment application.
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When a user logs in to the system in a web browser, the
DCM4CHEE-JBoss server application records the IP address of
the user’s PC and the user’s credentials in the MySQL database
for DCM4CHEE, as shown in the upper part of Figure 5. Once
approved by the DCM4CHEE-JBoss server application, the user
will see the DCM4CHEE–web user interface shown in Figure 4.
Then the user may choose DICOM images of patients, studies, or
series and click the link (highlighted in Figure 4) to web-based
response-assessment application to view them.

The web-based response-assessment application can re-
trieve DICOM images archived by DCM4CHEE, because the
DCM4CHEE-JBoss server application supports web access of
DICOM images. A middle ware, called a WEASIS-PACS-connec-
tor, streamlines the process of retrieving DICOM images. When
the user requests viewing the selected DICOM images, using the
DICOM Query service of DCM4CHEE-JBoss, the middle ware
collects the necessary information to launch the web-based
response-assessment application.

After the response-assessment application is launched, it
gets the DICOM image archived by DCM4CHEE, through the
WADO Service of DCM4CHEE-JBoss. Next, the response-assess-
ment application gets a user ID from the client PC’s IP address
from the DCM4CHEE-JBoss server application, as both user ID
and client PC’s IP address have been recorded by the
DCM4CHEE-JBoss server application. Later, using user id and
DICOM series UIDs of DICOM images, the response-assessment
application gets tumor segmentation and measurement from the
MySQL database for tumor segmentation and measurement re-
sults. Last, the response-assessment application displays DICOM
images and their associated tumor segmentation.

Finally, the response-assessment application shows the
selected DICOM images. The user can use response-assess-
ment applications to segment tumors immediately. Only re-
sponse-assessment applications and the database of tumor
segmentation and measurement results are involved in the
process of tumor segmentation, which was detailed in our
previous paper (4).

DISCUSSION
We have developed a web-based imaging system to support the
development and validation of quantitative imaging biomarkers
for improved assessment of (solid) tumor responses to therapies,
particularly novel targeted therapy and immunotherapy. The
web-based response-assessment application of this system is
based on the open-source DICOM image viewer WEASIS. To
manage DICOM images, the response-assessment imaging sys-
tem incorporates DCM4CHEE, an open-source DICOM image
archive. The system consists of 2 interdependent servers with a
Linux operating system: 1 hosts the DICOM image archive and
web-based response-assessment application and the other hosts
image biomarkers, for instance, tumor segmentation and unidi-
mensional and volumetric measurement results. Users can log in
to the web-based response-assessment imaging system using a
web browser, and browse data on patients or on studies, and
remotely access DICOM images and tumor segmentation on
them.

The web-based response-assessment has many advantages
over the previous portable response-assessment system: (1) ar-
chiving the DICOM images in a server rather than on a local hard
disk of the client’s PC, the system promotes the management of

Figure 5. The sequence diagram
of the workflow that user uses to
log in to the system and view se-
lected DICOM images.
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DICOM images, for example, access control and storage of the
DICOM images increase and (2) the system facilitates the dis-
tributing, updating, and upgrading of the response-assessment
application by configuring the application to be web-based and
to be hosted in a server.

As mentioned earlier, our objective is to develop an ad-
vanced imaging platform to accelerate the development and
validation of novel quantitative imaging biomarkers for tumor
response assessment by providing efficient tumor measurement
tools. Our research system to assess tumor response is built
based on an open-source, the WEASIS, platform. It is a PACS-
like workstation that has basic image-viewing and manipulation
functions. We customized it specifically for the assessment of
advanced quantitative imaging biomarkers by (1) developing an
industrial standard, novel relational database structure to store
segmented tumor contours and measurements (4); (2) integrat-
ing our homegrown advanced tumor segmentation and editing
tools so that tumor contours can be delineated more accurately
and efficiently; (3) providing lesion tracking tools to reduce
human error in tumor measurements at multiple scan time-
points; and (4) making the system more user-friendly across
multiple platforms and various screen sizes, and more accessible
from different locations. Most importantly, our system is de-
signed with an extendable architecture, so that other image-
based quantitative tasks (eg, body fat quantification) can be
easily added to the system.

We are aware that there exist many open-source and com-
mercially available tools that provide similar functionality for
lesion segmentation and/or lesion tracking. For example, there
are 3D Slicer (11), ePAD (12), ITK-SNAP (13), OsiriX MD (14),
and ClearCanvas (15). 3D Slicer is an open-source software
platform and widely used by researchers worldwide for medical

image processing (eg, lesion segmentation) and 3-dimensional
visualization. However, 3D Slicer is not developed specifically
for tumor response assessment, and thus, when using it for this
purpose, it will not be as efficient as ours. For example, the 3D
Slicer does not provide any lesion tracking tools that would be
important when measuring lesions on longitudinal scan time
points. ePAD is a web-based image viewer and annotator for
quantitative image analysis. The system uses Annotation and
Image Markup (AIM) file for tumor segmentation and measure-
ment results and stores these files in an AIM Annotation Data-
base. The AIM Annotation Database is an XML database that is
known to be inefficient and unreliable for storing and maintain-
ing large volumes of data. As to commercially available systems,
such as OsiriX MD and ClearCanvas, the significant advantage
of our system over them lies in its great capability to be ex-
tended. For example, we can add radiomic feature extraction
methods easily to our system, whereas a commercial system has
a hard time doing so.

Our response-assessment system has shown value in its
ability to efficiently obtain/measure tumor size, particularly
tumor volume, at serial scan time points in clinical trial settings
to help monitor changes in total tumor burden—a potentially
better imaging biomarker of response.

We will integrate our custom-developed radiomics features
into our response-assessment system, so that it can be used to
explore tumor imaging phenotypes for therapy response predic-
tions and patient stratification for future clinical trials. We also
plan to extend this system for exploring the data of DICOM
images and tumor segmentation results, such as using artificial
intelligence to automatically identify target lesions on baseline
scans and new lesions on follow-up scans.
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We studied the reliability of radiomic features on abdominal computed tomography (CT) images reconstructed
with multiple CT image acquisition settings using the ACR (American College of Radiology) CT Phantom. Twenty-
four sets of CT images of the ACR CT phantom were attained from a GE Discovery 750HD scanner using 24
different image acquisition settings, combinations of 4 tube currents (25, 50, 100, 200 Effective mAs), 3 slice
thicknesses (1.25, 2.5, 5 mm), and 2 convolution kernels (STANDARD and SOFT). Polyethylene (�95 HU) and
acrylic (120 HU) of the phantom model were selected for calculating real feature value; a noise-free, computer-
generated phantom image series that reproduced the 2 objects and the background was used for calculating ref-
erence feature value. Feature reliability was defined as the degree of predicting reference feature value from real
feature value. Radiomic features mean, std, skewness, kurtosis, gray-level co-occurrence matrix (GLCM)-energy,
GLCM-contrast, GLCM-correlation, GLCM-homogeneity were investigated. The value of R2 � 0.85 was consid-
ered to be of high reliability. The reliability of mean and std were high across all image acquisition settings. At
200 Effective mAs, all features except GLCM-homogeneity showed high reliability, whereas at 25 Effective mAs,
most features (except mean and std) showed low reliability. From high to low, reliability was ranked in the follow-
ing order: mean, std, skewness, kurtosis, GLCM-energy, correlation, contrast and homogeneity. CT image acquisi-
tion settings affected the reliability of radiomic features. High reliable features were attained from images recon-
structed at high tube current and thick slice thickness.

INTRODUCTION
Medical imaging plays an ever greater role in disease diagnosis
and patient care. One of the most exciting new areas related to
cancer diagnosis, treatment planning, and response assessment
is the field of radiomics, which involves the extraction and
analysis of a large number of quantitative imaging features from
medical images for characterization of tumor and tissue pheno-
types (1, 2).

Owing to the associations between tumor phenotypes and
underlying biological processes, radiomic features (RFs) or RF-
derived phenotypes can act as biomarkers that convey informa-
tion about disease to help with the management of therapies. To
date, radiomics has shown promise in improving cancer diag-
nosis and prognostic assessment in several tumor types includ-
ing lung (3-5), brain (6), breast (7), liver (8-10), kidney (11), and
esophagus (12) cancers. Moreover, RFs also exhibit correlations
with genetic mutation status (5) and disease recurrence (13), as
well as therapeutic response (14) and survival (15) in lung
cancer.

While serving as an imaging biomarker for oncology, the
influence of image acquisition settings on RFs should be well
understood before the biomarker can be fully utilized (16).
Until now, numerous studies have been conducted on the
“reproducibility” of RFs (17-20), which refers to whether
feature values could remain the same when reimaged using
different equipment and different image acquisition settings.
To the best of our knowledge, with the exception of studies on
the accuracy of volume measurements (21, 22), there has been
no report to date exploring the “reliability” of RFs. “Reliabil-
ity” refers to whether true feature value could be maintained
when imaged using different scanners and image acquisition
settings. The true feature value in our study was defined as
the feature value that was calculated on computed tomogra-
phy (CT) image within which the CT number of each tissue
composition was equal to its theoretical CT number at 120
kVp, for example, air equals to �1000 HU, and water equals
to 0 HU. Thus, true feature value was also called as reference
value in our study.
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The challenge of such a reliability study lies in the fact that
reference values for RFs are generally quite difficult to obtain,
especially for in vivo lesions, because of unknown tissue com-
position, as well as anatomic, physiologic, and even positional
variations among different patients. In view of this point, we
aimed to carry out a pilot study on RF reliability using the ACR
CT phantom (American College of Radiology CT accreditation
phantom) (23). The ACR CT phantom is a widely used CT QC
phantom, and has a well-defined CT number for each object
inside module 1.

In this study, we attained CT images of the phantom under 24
image acquisition settings using a GE Discovery 750HD scanner
(GE Healthcare, Waukesha, WI). The reliability of 8 widely used
RFs—mean, std, skewness, kurtosis, GLCM [gray-level co-occur-
rence matrix (24)]-energy, GLCM-contrast, GLCM-correlation, and
GLCM-homogeneity—was investigated on the 24 sets of CT images.

METHODS
Scanning the ACR CT Phantom
A Gammex CT ACR 464 phantom was scanned on a GE Discov-
ery 750HD scanner using a routine adult abdomen protocol at 4
different tube currents (25, 50, 100, 200 Effective mAs). The CT
images were then reconstructed with 3 different slice thicknesses
(1.25, 2.5, 5 mm) and 2 convolution kernels (STANDARD, SOFT),
resulting in a total of 4 � 3 � 2 � 24 sets of CT images. The CT
scanning parameters used in this study are listed in Table 1.

Preparation of Image Region and ROIs for Extracting
Real Feature Value
The ACR CT phantom is composed of 4 modules and primarily
constructed from water-equivalent materials (23). Each module
contains several components made of different materials. In our
study, 2 circular objects from module 1, made of polyethylene
and acrylic each, were selected to create image patterns for
feature extraction. Polyethylene and acrylic are materials with
CT numbers of �95 HU and 120 HU at a 120-kVp setting falling
within the ranges of the abdominal CT window.

For each object, a 2-dimensional region of 45 � 45 mm
containing the object was cropped from the CT image located at
the center of module 1 along the axial direction. Within the

cropped region, 100 regions of interest (ROIs) were randomly
generated. The criteria to generate ROIs included the following:

(1) The center of the ROI should be located inside the object.
(2) ROI shall cover part of the object and part of the back-

ground outside the object, for the purpose of studying
radiomic features on nonhomogenous patterns rather
than only on homogenous patterns, such as that derived
from cartridge phantoms filled with paper/rubber in the
literature (19).

(3) The size of the ROI must range from 12 � 12 mm to 18 �
18 mm; the sizes of the cropped region and ROIs were
empirically determined on the basis of the physical size of
the object (a cylinder with diameter � 25 mm and depth �
4 cm as provided in the manual of ACR CT phantom). The
process of preparing the cropped region and ROIs is illus-
trated in Figure 1.

Preparation of Computer-Generated Images for
Extracting Reference Feature Value
A noise-free digital image series to simulate module 1 of the
ACR CT phantom was generated for the extraction of reference
feature values. The 2 selected objects (polyethylene and acrylic)
were reproduced via an image-processing algorithm on the basis
of designated parameters (eg, location, size, shape, and density
in CT number) provided in the phantom manual (23). The rest of
the computer-generated images were defined as water-equiva-
lent background with a CT number � 0. The image region and
ROIs for feature extraction from the computer-generated images
were copied from those used in the scanned phantom images to
guarantee that they were identical so that variations introduced
by position misalignment and density difference could be min-
imized and the bias of real value to reference value would be
purely because of the different image acquisition settings.

Extraction of Feature
In our study, 8 2D RFs were investigated, including 4 histogram-
based features—mean, std (standard deviation), skewness, and
kurtosis—and four texture-based GLCM features (24), GLCM-
energy, GLCM-contrast, GLCM-correlation, and GLCM-homoge-
neity. Mean, std, skewness, and kurtosis are first-order statistic
features to characterize an histogram of image intensity. GLCM
features are textural features characterizing the gray-tone spa-
tial dependencies of an image, that is, quantifying the relation-
ship between pixels within an ROI. Details of definitions of the 8
RFs are provided in the online Supplemental Material.

In the implementation, the 8 RFs were calculated on each
ROI by using an in-house feature extraction algorithm pro-
grammed on the MATLAB 2016b platform (MathWorks, Natick,
MA). Before feature calculation, images were interpolated into
isotropic pixel spacing of 0.5 � 0.5 mm2.

Reliability of Feature
In our study, feature reliability was defined as the degree of
predicting reference feature value from real feature value. Ref-
erence feature value was the feature value extracted from noise-
free computer-generated phantom images, while real feature
value is the feature value extracted from CT images attained
from the physical ACR phantom. High predictability means that

Table 1. Image Acquisition Parameters

Scanner
GE Discovery

750HD (64 slices)

kVp 120

Display field of view (cm) 22

Pitch 1.375

Tube Currents (effective mAs) 25, 50, 100, 200

Rotation time (second) 0.7

Beam width (mm) 40 (64x0.625)

Slice thickness (mm) 1.25, 2.5, 5

Overlap (%) 0

Reconstruction algorithms STANDARD, SOFT

TOMOGRAPHY.ORG | VOLUME 5 NUMBER 1 | MARCH 2019 227

http://WWW.TOMOGRAPHY.ORG
http://dx.doi.org/10.18383/j.tom.2016.00005.sup.01


a change in reference feature value can be correctly reflected by
a proportional change in the real feature value. If an RF exhib-
ited high predictability under a certain image acquisition set-
ting, then the RF calculation was believed to be reliable.

Consequently, R2, a statistical metric widely used to assess
the proportion of variance in the dependent variable that is
predictable from the independent variable, was adopted to
quantify feature reliability. An R2 value of 1 indicated that the
reference feature value could be predicted by a real feature value
to a degree of 100%, whereas an R2 value of 0 indicated that
there was no relation between reference feature value and real
feature value. The R2 equation can be defined as follows:

R2 � 1 �

�
i�1

n

�xi � y��2

�
i�1

n

(yi � y� )2

(1)

Where xi represents real feature value extracted from the ith ROI
on the ACR CT phantom images, yi represents reference feature
value extracted from the corresponding ith ROI on the comput-
er-generated phantom images, y� represents the mean of refer-
ence feature values extracted from 200 ROIs, and n equals 200
(100 ROIs from each of the 2 ACR objects).

Figure 2 shows an example of how to use R2 to assess
feature reliability under certain image acquisition setting.
The graphs (A) and (B) in Figure 2 present the skewness
values, one of the histogram-based RFs, calculated from ROIs
under the image acquisition settings of “convolution ker-
nel � STANDARD, slice thickness � 1.25 mm, and Effective
mAs � 200” and “convolution kernel � STANDARD, slice
thickness � 1.25 mm, Effective mAs � 25,” respectively. The
feature data used to estimate R2 value consisted of 200 pairs of
skewness values, corresponding to the reference and real skew-
ness values calculated on the 200 ROIs on the computer-gener-

ated and physical phantom images, respectively. As shown in
Figure 2, high reliability (R2 � 0.9575) indicated that reference
skewness values approximated the real skewness values mea-
sured at high tube current, while low reliability (R2 � 0.4021)
indicated reference skewness values diverged from real skew-
ness values measured at low tube current.

RESULTS
Figure 3 shows the reliability values for the 8 RFs under 24
image acquisition settings, combinations of 4 tube currents (25,
50, 100, 200 Effective mAs), 3 slice thicknesses (1.25, 2.5, 5 mm),
and 2 convolution kernels (STANDARD and SOFT). Overall, we
were able to observe that feature reliability decreased with a de-
crease in tube current, features were more reliable on 5-mm CT
images than on 1.25- and 2.5-mm CT images, there was little
difference in feature reliability between CT images of STANDARD
and SOFT convolution kernels, and histogram-based RFs are more
reliable than textural RFs.

We averaged the reliability values across individual image
acquisition parameters to further investigate their influence
(Table 2). For example, when investigating the influence of “200
Effective mAs,” we averaged the feature reliability values of
“STANDARD_ST125_EffmAs200,” “STANDARD_ST250_Effm
As200,” “STANDARD_ST500_EffmAs200,” “SOFT_ST125_
EffmAs200,” “SOFT_ST250_EffmAs200,” and “SOFT_ST500_
EffmAs200” together as presented in Figure 3.

To facilitate the analysis, we empirically set R2 � 0.85 as
high reliability. As shown in Table 2, in the case of tube current,
100 Effective mAs could be regarded as a threshold to guide the
application of RFs, that is, using tube current �100 Effective
mAs resulted in more reliable RFs, especially the histogram-
based RFs, while using tube current �100 Effective mAs pro-
duced only a few reliable RFs. For slice thickness, 5-mm CT
images yielded more reliable RFs. For convolution kernel, the
STANDARD and SOFT showed similar influence on feature re-

Figure 1. Example of an ACR CT phantom image being prepared for feature extraction. One region containing the
object (yellow frame of 45 � 45 mm) is selected from the ACR CT phantom image (A). Samples of 100 randomly gen-
erated nonhomogenous ROIs of the object (B). Each ROI was a 2-dimensional square with random location and random
size ranging from 12 � 12 mm to 18 � 18 mm.
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liability. The feature mean and std showed extremely high reli-
ability across all image acquisition settings.

We observed an obvious unusual trend that the average reli-
ability of GLCM-energy at slice thickness of 1.25 mm was higher
than that at slice thickness of 2.5 mm (see Table 2). As we turned to
the details of reliability presented in Figure 3, we found that the

unusual trend was caused by a great drop of reliability at tube
current 25 Effective mAs, a very low dose condition for the slice
thickness of 2.5 mm. Actually, based on our results, low tube
current easily led to unusual trends for some RFs, for example,
GLCM-homogeneity at 50 and 25 Effective mAs and GLCM-homo-
geneity at 1.25- and 2.5-mm slice thicknesses in Table 2.

Figure 2. Reliability of the skewness feature at high tube current (A) and low tube current (B), respectively. Each point
on the plot corresponds to the values calculated from one randomly generated ROI on the computer-generated (X-axis)
and the physical phantom images (Y-axis), respectively. There are a total of 200 points on each plot corresponding to
the 200 randomly generated ROIs from the two selected objects in the phantom.

Figure 3. Reliability of 8 radiomic features under 24 image acquisition settings. Top panel with pink title: reconstructed
using Standard kernel; Bottom panel with yellow title: reconstructed using Soft Kernel. For example, the number of
0.998 in the top-left cell is the R2 value of the feature mean calculated between the computer-generated image and CT
scan image obtained at 200 Effective mAs and reconstructed using STANDARD kernel, 1.25 mm slice thickness.
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DISCUSSION
In this study, we introduced the concept of RF reliability and
evaluated the RF reliability of 8 commonly used RFs under 24
different image acquisition settings. The 24 image acquisition
settings involved 3 image acquisition parameters, for example,
tube current, slice thickness, and convolution kernel, and cov-
ered a wide range of imaging protocols for abdominal CT imag-
ing. Moreover, our study was based on heterogeneous ROIs, that
is, ROIs containing both object and background, which is an
advantage over previous studies using homogenous ROI phan-
toms, for example, paper/rubber-filled cartridges (19).

Overall, for the ACR CT phantom, tube current affected
reliability the most, slice thickness the second, and convolution
kernel the least. The small effect of convolution kernels was due
to the similarity of the 2 “smooth” kernels used in this abdom-
inal study. The histogram-based RFs showed much higher reli-
ability than textural RFs.

For tube current, 200 Effective mAs represented high-dose
CT imaging, while 25 Effective mAs represented low-dose CT
imaging. It is quite intuitive that CT images derived from high-
dose scanning would yield more reliable RFs as it produced
higher quality images than low noise scanning. Therefore, to
obtain high RF reliability, high-dose CT imaging is recom-
mended, especially for those radiomic studies using textural
RFs. When keeping all other imaging acquisition parameters
unchanged, increasing the slice thickness from 1.25 mm to 5
mm can reduce image noise by 50%. It is reasonable to believe
that thick-section CT imaging yielded more reliable RFs. How-
ever, thick-section CT imaging introduces larger partial volume
effect than thin-section CT imaging. In clinical practice, partial
volume effect is one of the main negative effects that lowered
image resolution and thus blurred fine structures within/around
lesions, for example, small vessels, boundary of tumor margin,
etc. It will also affect some RFs extracted from thick-section CT
images. Therefore, the selection of RFs and slice thickness
should depend on the aim of the radiomic study. Because the 2
convolution kernels, STANDARD and SOFT, both belonged to
smooth soft-tissue kernels which yielded low-noise image, their
influence on RF reliability was similar. Also, our results showed

that smooth soft-tissue kernels used by abdominal CT scans had
little impact on RF reliability.

In this study, 2 categories of RFs, histogram-based and the
textural, were investigated. Histogram-based RFs showed much
higher reliability than textural RFs, especially the mean and std.
It is actually one of the basic requirements for a CT scanner that
mean should be reliable across different image acquisition set-
tings. Our results showed this. For the std, its high reliability was
somewhat due to the use of the polyethylene and acrylic objects
to create image patterns, which possessed dozens of Hounsfield
unit (HU) intensity different from the water-equivalent back-
ground. Nevertheless, according to this finding, it is quite reli-
able to apply std in charactering tumor lesions with dozens of
HU difference from the background, such as liver metastasis of
colorectal cancer [mean, 68 HU; range, 40–115 HU as reported
in the CRYSTAL clinical trials (25, 26)] and gastrointestinal
stromal tumors [mean, 72 HU; range, 46–156 HU as reported in
the Choi criteria study (27)].

In contrast to histogram-based RFs, more attention should
be paid to the use of textural RFs. Textural RFs are easily
affected by tube current, which is an imaging parameter directly
proportional to patient radiation dose. High tube current guar-
antees high reliability of textural RFs, but leads to high patient
dose. Therefore, the use of textural RFs should depend on the
aim of a study. For example, it is inadvisable to use textural RFs
in a low-dose CT screening study (28), whereas it might be safe
to use textural RFs in a CT-based radiation therapy study (29).

There were several limitations of our pilot study. First, the
created image patterns were simple, involving only 2 materials
for each pattern, polyethylene, and a water-equivalent back-
ground, or acrylic and a water-equivalent background. Second,
only a small set of RFs from 2 feature categories were investi-
gated. Third, only 1 CT scanner was used. To address these
limitations, we propose future studies, including designing more
sophisticate phantoms that mimic in vivo lesions with the help
of 3D-printing technique (30), using a high-throughput analysis
method to evaluate a large scale of RFs (20), and involving
multiple scanners from multiple institutions to attain CT images
under more image acquisition settings (19).

Table 2. Average of Reliability Values Under Individual Image Acquisition Parameters

Features

Tube Current Slice Thickness Convolution Kernel

All
200 Effective

mAs
100 Effective

mAs
50 Effective

mAs
25 Effective

mAs
1.25
mm

2.5
mm

5.0
mm STANDARD SOFT

Mean 0.997 0.998 0.998 0.995 0.997 0.997 0.997 0.997 0.997 0.997

Std 0.989 0.987 0.977 0.970 0.975 0.981 0.987 0.980 0.982 0.981

Skewness 0.973 0.922 0.767 0.592 0.703 0.811 0.927 0.786 0.841 0.813

Kurtosis 0.961 0.922 0.816 0.666 0.753 0.841 0.931 0.818 0.864 0.841

GLCM-energy 0.940 0.942 0.887 0.675 0.877 0.819 0.885 0.870 0.852 0.861

GLCM-contrast 0.914 0.792 0.389 0.371 0.529 0.551 0.770 0.583 0.650 0.616

GLCM-correlation 0.880 0.817 0.802 0.792 0.804 0.826 0.839 0.818 0.828 0.823

GLCM-homogeneity 0.758 0.658 0.167 0.338 0.429 0.419 0.592 0.473 0.487 0.480
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CONCLUSION
In this study, we explored the reliability of RFs on multiple CT
image acquisition settings. To the best of our knowledge, this is
the first study investigating RF reliability by comparing real
feature values calculated from scanned phantom images and
reference feature values computed from computer-generated
phantom images. We found that CT image acquisition settings

influenced RF reliability to varying degrees. Therefore, attention
should be paid when using RFs for CT-based radiomic studies,
especially textural RFs.

Supplemental Materials
Supplemental Material: http://dx.doi.org/10.18383/j.tom.
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