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“To my mother, my grandmother, and the other 1 in 8 women diagnosed with breast cancer.” 
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ABSTRACT 
COMPUTATIONAL IMAGING BIOMARKERS FOR PRECISION MEDICINE: 

CHARACTERIZING HETEROGENEITY IN BREAST CANCER 

Rhea Devang Chitalia 

Despina Kontos 

In the United States, 1 in 8 women are diagnosed with breast cancer. Breast tumor 

heterogeneity is well-established, with intratumor heterogeneity manifesting spatially and 

temporally. Increased heterogeneity is associated with adverse clinical outcomes. Current 

critical disease treatment decisions are made on the basis of biomarkers acquired from 

tissue samples, largely under sampling the heterogeneous disease burden. In order to 

drive precision medicine treatment strategies for cancer, personalized biomarkers are 

needed to truly characterize intratumor heterogeneity. Medical imaging can provide a 

non-invasive, whole tumor sampling of disease burden at the time of diagnosis and 

allows for longitudinal monitoring of disease progression. The studies outlined in this 

thesis introduce analytical tools developed through computer vision, bioinformatics, and 

machine learning and use diagnostic and longitudinal clinical images of breast cancer to 

develop computational imaging biomarkers characterizing intratumor heterogeneity. 

Intrinsic imaging phenotypes of spatial heterogeneity, identified in dynamic contrast 

enhanced magnetic resonance imaging (DCE-MRI) images at the time of diagnosis, were 

identified and validated, demonstrating improved prognostic value over conventional 

histopathologic biomarkers when predicting 10-year recurrence free survival. Intrinsic 

phenotypes of longitudinal change in spatial heterogeneity in response to neoadjuvant 

treatment, identified in DCE-MRI were identified and leveraged as prognostic and 
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predictive biomarkers, demonstrating augmented prognostic value when added to 

conventional histopathologic and personalized molecular biomarkers. To better 

characterize 4-D spatial and temporal heterogeneity, illuminated through dynamic 

positron emission tomography imaging, a novel 4-D segmentation algorithm was 

developed to identify spatially constrained, functionally discrete intratumor sub-regions. 

Quantifying the identified sub-regions through a novel imaging signature demonstrated 

the prognostic value of characterizing intratumor heterogeneity when predicting 

recurrence free survival, demonstrating prognostic improvement over established 

histopathologic biomarkers and conventional kinetic model derived parameters. 

Collectively, the studies in this thesis demonstrate the value of leveraging computational 

imaging biomarkers to characterize intratumor heterogeneity. Such biomarkers have the 

potential to be utilized towards precision medicine for cancer care. 
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Chapter 1 : Introduction to dissertation 

 
Breast cancer is currently the most common malignancy and second leading cause 

of cancer-related death in women, with 1 in 8 women likely to develop breast cancer 

during their lifetime1,2. Cancer is a heterogeneous disease, with inter-tumor heterogeneity 

manifesting as variations between breast tumors across patients or as multifocal or 

multicentric tumors, and intratumor heterogeneity manifesting as variations within a 

single tumor3,4. Breast tumor heterogeneity is increasingly recognized as a key prognostic 

and predictive factor4-8.  Genetic alterations and adaptive changes in response to dynamic, 

microenvironment specific stressors can result in sub-clonal populations with distinct 

stromal architecture and physiologic behavior8,9. This can continue to evolve throughout 

cancer progression and lead to functionally distinct sub-populations8,10. Increased 

intratumor heterogeneity is associated with adverse clinical outcomes11,12 and tumor 

progression driven by aggressive subpopulations has been shown to be a mechanism for 

recurrence and therapy resistance8.  

Intratumor heterogeneity can manifest as spatial heterogeneity or temporal 

heterogeneity. Spatial heterogeneity can result in differences in blood flow, vessel 

permeability, and proliferation across the tumor volume and may be appreciated through 

pharmacokinetic dynamic variations. Temporal heterogeneity is due to longitudinal 

changes in the tumor that may arise in response to therapy leading to altered biomarker 

expression or to the acquired resistance by specific sub-clones during treatment4,13.  
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Medical imaging is currently used during breast cancer screening14,15, 

diagnosis16,17, and treatment management18,19. Imaging modalities can allow for the non-

invasive, whole tumor assessment of disease burden, including spatial and temporal 

heterogeneity, allowing for 4-D visualization8. Functional imaging modalities can yield 

parametric images illuminating various physiologic behaviors. In particular, dynamic 

contrast enhanced magnetic resonance imaging (DCE-MRI) is highly sensitive for 

primary lesion detection with the added ability to assess tumor vasculature17,20. Dynamic 

positron emission tomography (PET) imaging can also quantify specific facets of tumor 

molecular biology7,19,21 and provide information beyond that of static imaging22,23.  

Advances in computer vision and machine learning have allowed for a 

transformation in the quantitative assessment of medical images24-27. Computational 

image analytic techniques and algorithms have been developed to leverage mineable, 

high dimensional information from medical images. The field of “radiomics” has 

introduced multi-parametric imaging features extracted with high throughput 

computational analysis from medical imaging data28. Such features, which may not be 

appreciable by the human eye, can provide complementary information to routine, 

qualitative clinical analysis.  Medical imaging offers an opportunity to fully sample 

disease burden and characterize the extent of intratumor heterogeneity. Furthermore, 

leveraging computational analytic techniques can enable medical images to serve as 

novel non-invasive tumor assays. 
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Currently, critical disease treatment decisions for breast cancer patients are 

mainly made on the basis of markers typically acquired from core biopsy or surgical 

excision, which usually represents a small fraction of the tumor. Histologic assessment of 

such tissue samples determine common prognostic markers including tumor size, shape, 

grade, and nodal status, while estrogen receptor (ER) status, progesterone receptor (PR) 

status, human epidermal growth factor receptor 2 (HER2) status, and proliferative (Ki67) 

status are typically determined via immunohistochemistry14,29,30. Additionally, 

commercial prognostic molecular profiling tests such as MammaPrint (Agendia) and 

Oncotype DX Recurrence Score (Genomic Health) have been developed to measure 

mRNA and assess gene expression profiles respectively, in order to predict a tumor’s risk 

of recurrence—however, they are expensive and are not always implemented in routine 

diagnosis31. Such conventional clinical prognostic biomarkers and prognostic molecular 

tests are largely dependent upon biopsy derived tissue, may be limited by spatial 

sampling, and therefore, fall short of characterizing a heterogeneous tumor volume. 

Furthermore, such biomarkers determined at the time of diagnosis may overlook temporal 

shifts due to dynamic breast cancer progression or response to therapy. As such, they may 

be inadequate for characterizing 4-D intratumor heterogeneity.  

Qualitative descriptors of radiographic images are widely implemented in clinical 

settings, with observations of tumor morphology and “hot spots” utilized to classify 

malignant lesions8,16,17. Quantitative measurements describing static and kinetic lesion 

behavior in dynamic imaging are largely region-averaged prior to quantitative 

assessment, which assumes regions are functionally homogenous32. Beyond these clinical 
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uses of medical imaging, numerous radiomics studies have established relationships 

between conventional imaging biomarkers and clinically utilized prognostic markers 

from histology and genomics, as well as molecular subtypes33. While these studies have 

shown high prognostic capabilities, the derived imaging features are generally averaged 

over the entire tumor under the assumption that while heterogeneous, tumors are “well-

mixed”28,34. Additionally, conventional radiomic features largely disregard 4-D 

differences in the tumor by utilizing spatial or temporal information, alone. Higher order 

radiomics features also often lack interpretability, thus limiting their clinical utility.  

The goal of this work is to develop novel imaging biomarkers that characterize 

spatial and temporal 4-D functional tumor heterogeneity towards the development of 

personalized prognostic biomarkers and the non-invasive, in vivo characterization of 

functionally heterogeneous tumor biology.  The first two studies discussed in this work 

focus on evaluating 4-D heterogeneity in DCE-MRI by assessing spatial differences 

across the tumor volume by combining whole-tumor assessment with dynamic imaging, 

as well as assessing the longitudinal, temporal changes in such 4-D heterogeneity. We 

then develop a novel method to identify functionally discrete, spatially constrained sub-

regions in tumors and an imaging signature to characterize these sub-regions. We 

leverage the improved functional sampling afforded by dynamic PET imaging to evaluate 

4-D spatiotemporal heterogeneity as a prognostic biomarker. Lastly, we explore 

extending the developed imaging biomarkers to pre-cancerous breast lesions and explore 

additional future directions. This work has been described further in the following 

chapters: 
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1. Explore spatial heterogeneity in DCE-MRI images of breast tumors at baseline by 

identifying imaging phenotypes. This study will utilize conventional radiomic 

features and evaluate the prognostic value of imaging phenotypes of tumor 

heterogeneity as a complement to conventional histopathologic biomarkers 

(Chapter 3). 

 

2. Explore longitudinal changes in spatial heterogeneity in DCE-MRI images of 

breast tumors undergoing neoadjuvant chemotherapy through imaging phenotypes 

of change in intratumor heterogeneity. This study will evaluate the prognostic 

value of such longitudinal change as a complement to conventional 

histopathologic biomarkers and personalized molecular signatures (Chapter 4).  

 

3. Develop a computational method to characterize 4-D pharmacokinetic spatial 

heterogeneity in dynamic PET imaging. This methodology leverages both spatial 

and temporal information and is evaluated using simulated dynamic PET image 

phantoms (Chapter 5). 

 

4. Develop imaging features summarizing 4-D spatiotemporal heterogeneity and 

evaluate these features as a prognostic biomarker. This study is evaluated in 

dynamic PET images of women diagnosed with locally advanced breast cancer 

(Chapter 6). 
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5. Explore the feasibility of developing an unsupervised method to summarize 4-D 

pharmacokinetic spatial heterogeneity.  This study will evaluate the performance 

of this methodology on dynamic PET image phantoms simulating tumor 

heterogeneity (Chapter 7). 

 

6. Explore extended applications of quantifying lesion heterogeneity and examine 

additional future directions of this thesis work (Chapter 8). 

 

 

 



7 
 

Chapter 2 : Background 
 

Subsections of this chapter have been adapted from the following: 

Chitalia, R.D. and Kontos, D., 2019. Role of texture analysis in breast MRI as a cancer 

biomarker: A review. Journal of Magnetic Resonance Imaging, 49(4), pp.927-938. 

 

Liao, G.J., Henze Bancroft, L.C., Strigel, R.M., Chitalia, R.D., Kontos, D., Moy, L., 

Partridge, S.C. and Rahbar, H., 2020. Background parenchymal enhancement on breast 

MRI: a comprehensive review. Journal of Magnetic Resonance Imaging, 51(1), pp.43-61. 
 

2.1. Introduction 

       Breast cancer is a malignancy originating through ductal hyper proliferation leading 

to in situ, invasive carcinoma, and potential metastatic disease5. Breast cancer displays 

the hallmarks of cancer shared across organ sites, defined as sustained proliferative 

signaling, evasion of growth suppressors, resistance of cell death, enablement of 

replicative immortality, increased angiogenesis, and invasion and metastasis35. Breast 

cancer has been established as a heterogeneous disease, and such heterogeneity can 

manifest both between tumors (inter-tumor heterogeneity) as well as within a single 

tumor (intratumor heterogeneity). 

2.2. Tumor heterogeneity  

Inter-tumor heterogeneity in breast cancer has been illuminated through the 

variations in seen across breast tumors36, and has resulted in discrete molecular subtypes. 

Breast cancer molecular classification has been largely dictated by the presence or 

absence of the immunohistochemistry derived expressions of three main receptors: 

estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 
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receptor 2+ (Her2). The increased presence of ER and PR suggests an increased 

dependency of the tumor on estrogen and progesterone steroids for growth, while Her2 

tumors have an overexpression of the ERBB2 oncogene.  As such, luminal breast tumors 

are positive for ER and PR, or hormone receptor (HR) status positive, Her2 enriched 

breast tumors are HER2+, and basal like breast tumors lack HR and HER2 and are 

considered to be triple-negative breast cancers (TNBC)37,38. Incidence rates, metastatic 

potential, disease progression, and patient outcome can all be stratified along these 

molecular subtypes36,38. 

Intratumor heterogeneity refers to the differential properties displayed across 

cancer cells, within a tumor4. Such properties and traits can be related to tumorigenesis 

including angiogenic, invasive, and metastatic potential4. Given the current understanding 

of breast tumor formation, intratumor heterogeneity may stem from the branched 

evolution of clonal cells, leading to the generation of multiple sub-clonal populations39,40. 

These sub-clonal populations may emerge during the malignancy conversion of non-

malignancy cells, due to genetic and epigenetic alterations, or in response to 

microenvironment specific stressors as an adaptive response4,6. Intratumor heterogeneity 

remains dynamic through tumor progression as tumor properties may change in response 

to treatment due to de-novo or acquired resistance. Additionally, the acquired resistance 

by aggressive sub-clonal populations may drive recurrence or metastases40. As such, 

increased heterogeneity is associated with adverse clinical outcomes, with higher degrees 

of intratumor heterogeneity suggesting inferior responses to targeted treatments and 

anticancer therapies39,41-45. Various studies have demonstrated this heterogeneity through 



9 
 

single cell and whole-genome sequencing, RNA and microRNA sequencing, 

histopathology, and imaging modalities8,46-50.  

Intratumor heterogeneity can be spatial—resulting in variations in tumor 

properties across the volumetric disease burden, or temporal—resulting in variations in 

time seen through dynamic or longitudinal changes in tumor properties4-6,39.  Spatial 

heterogeneity can often be appreciated through differences in tumor blood flow9, 

metabolism51, or proliferation52 across the tumor volume. Temporal heterogeneity may 

include the dynamic heterogeneity demonstrated by tumors over shorter periods of time 

in response to a pharmacokinetic agent, or longitudinal changes in tumor behavior 

following natural disease progression or therapy.         

2.3. Clinical management of breast cancer 

Breast cancer is most commonly detected through screening mammograms or 

through a palpable breast mass. Of breast lesions diagnosed in the United States, 

approximately 62% are confined to the breast, 31% have spread to regional lymph nodes, 

and 6% are metastatic at the time of diagnosis53. Breast cancer is most commonly 

diagnosed through histopathologic assessments from fine-needle aspiration, core biopsy, 

or surgical excision, and molecular biomarkers evaluated during this assessment often 

define treatment paradigms. For non-metastatic breast tumors, the goal of tumor 

eradication usually involves surgical resection and removal of axillary lymph nodes. In 

addition to this, therapy can include neoadjuvant (prior to surgery) or adjuvant (post-

surgery) chemotherapy, radiation, and targeted therapies to prevent metastases or 

recurrence. Current conventional targeted therapies are specific to the molecular 
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receptors identified during histopathologic assessment. Endocrine therapy is suggested 

for HR+ tumors, such as anti-estrogen or aromatase inhibitory treatment. Antibody 

therapy is suggested for HER2+ tumors; Herceptin, a monoclonal antibody specifically 

targeted for HER2 receptor was developed to block intracellular signaling pathways, 

promote apoptosis, and promote cell proliferation54. A greater understanding of breast 

tumor biology has led to the identification of numerous molecular targets and targeted 

therapeutics, including inhibitors of growth factor tyrosine kinase, inhibitors of signaling 

pathways, and anti-angiogenic strategies55,56.  

 Medical imaging allows for the non-invasive, whole tumor sampling of disease 

burden, with the ability to longitudinally monitor response to treatment16,17.  Magnetic 

Resonance Imaging (MRI) is highly sensitive for primary lesion detection, particularly 

for high risk women17. Specific MRI sequences such as diffusion weighted (DW) MRI 

and dynamic contrast enhanced (DCE) MRI can provide further insight into tissue 

architecture and vascularization within and around the tumor20,57.  In particular, DCE-

MRI involves the injection of a contrast agent with small molecular weight, followed by 

sequential imaging over the first ten minutes to assess extravasation of the agent from 

vascular to interstitial spaces. Such imaging can illuminate tumor perfusion and 

microvascular permeability58. Current clinical analysis of MR images is largely 

qualitative, using DCE-MRI to identify tumor regions with contrast uptake or to monitor 

morphologic appearance59. DCE-MRI offers advantages over other imaging methods that 

can measure vasculature, including increased signal to noise ratio and spatial resolution, 

and does not involve radiation exposure60.  
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 Positron emission tomography (PET) imaging is most commonly clinically 

performed for breast staging of stage IIIB/C or IV disease21.  PET imaging can also be 

used for staging patients with metastasis, or monitoring response to treatment61. PET 

imaging works to detect radiotracer—a radioisotope paired with a molecule—  

distribution in the body after injection. The most commonly used radiotracer in cancer 

imaging is 18F-fluorodeoxyglucose, which pairs a glucose analog to the 18F radioisotope. 

Use of this radiotracer can provide insight into tumor metabolism as tumors have been 

observed to utilize large amounts of glucose for energy generation through the anaerobic 

process of glycolysis, known as the Warburg effect62. This is in contrast to normal tissue 

which utilizes oxidative metabolism. Clinically, the most common quantitative parameter 

derived from PET imaging is the standardized uptake value (SUV), or the estimated 

amount of radiotracer per volume of radiotracer dose, scaled by patient weight. While 

static imaging is most commonly utilized in the clinic, recent advances in PET 

applications have demonstrated the added value of dynamic imaging of breast tumors22.  

 While other imaging modalities such as X-Ray and Ultrasound are implemented 

in breast cancer clinical imaging21, they are used largely for screening purposes and are 

not used as often as MRI for staging and treatment response monitoring due to radiation 

exposure or poor spatial resolution. Computed tomography (CT) imaging is often paired 

with PET imaging to provide a structural image in addition to the functional image.  

2.4. Precision medicine and radiomic analysis 

 Precision medicine aims to tailor disease prognosis and treatment based on 

specific genotypic and phenotypic characteristics of an individual. Recent advances in 
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medical image analysis have highlighted the implementation of computer vision 

principles and analytic techniques used to quantify and describe medical images towards 

precision disease prognosis and prediction24-27,33.  

 Image texture has been previously defined as repeating patterns of local variations 

in gray-level intensities25,63. Texture analysis has most broadly been used to characterize 

the spatial distribution of gray-level intensities within an image, capturing image patterns 

usually unrecognizable or undistinguishable to the human eye. The original utilization of 

texture analysis can trace back to computer vision applications for surface inspection and 

orientation, image and object classification, and shape determination, while current 

applications extend even beyond medical image analysis 63-65. Within the scope of breast 

imaging, texture analysis has emerged as a quantitative, surrogate measure for breast 

parenchymal pattern when applied to images taken during mammographic and 

tomographic screenings serving to augment conventional measures of breast percent 

density in breast cancer risk assessment66.     

 Many studies aiming to analyze imaging presentations of breast lesions for 

diagnostic, prognostic, and treatment applications have expanded the number and type of 

features extracted to include morphology, texture, and pharmacokinetic features, allowing 

for a thorough and quantitative characterization of all tumor properties. This has 

developed into the new field of radiomics, broadly defined as the extraction of high 

throughput quantitative features from images obtained from medical imaging modalities 

28,67,68. For the analysis of breast lesions, texture features are often extracted from a region 

of interest (ROI) selected within a segmented lesion, or from the whole lesion itself. 
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Additionally, recent studies have shown clinical associations of texture within the peri-

tumor region as well, emphasizing the importance of the tumor microenvironment69,70. 

The most commonly used radiomics features can be stratified by the statistical order of 

the voxel information encoded within the image. Specifically, first order radiomic 

features include common statistical measures derived from a gray-level histogram, such 

as mean, median, and skewness. Second order radiomic features are often derived from 

the co-occurrence matrix, as determined by Haralick et al.71, and the run-length matrix72, 

while higher order radiomic features encode structural and frequency based texture 

information (Figure 2.1.).  
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Figure 2.1. Visual example of radiomic features. Representative 5 x 5 pixel image with 6 possible gray-

levels (0-5) (A). Gray-level histogram generated from representative image (B). Gray-level co-occurrence 

matrix generated for 0˚. The co-occurrence matrix encodes the frequency that two pixels are located a 

specific distance (1 pixel) away from one another (C). Run-length matrix generated for 0˚. Run-length 

matrix encodes the coarseness of an image in a specified linear direction (D). This figure was adapted from 

Chitalia et al. Journal of Magnetic Resonance Imaging, 2019. 

2.5. First order: Gray-level histogram features 

A gray-level histogram can be generated by calculating a frequency count of the 

number of voxels of each gray-level intensity value, where the total number of discretized 

gray-levels is often a user-selected parameter. From the resulting histogram, first order 

statistical features may be derived, including the mean, median, and variance. Higher 

moment features can also be extracted from the histogram including skewness, the 

measure of the histogram distribution symmetry, and kurtosis, a measure of the histogram 
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distribution shape. While many descriptors can be extracted from the histogram, they 

often provide cursory insight into the underlying texture, do not account for gray-level 

intensity spatial relationships within an image, and are dependent upon user-selected 

parameters. (Appendix Table A1) 

2.6. Second order: Gray-level co-occurrence matrix and run length features 

Gray-level co-occurrence matrix (GLCM) features are among the most commonly 

extracted radiomics features for MR imaging quantification. A gray-level co-occurrence 

matrix  encodes the frequency that two voxels of specific gray-level intensities are 

positioned a specified distance away from each other in a specified image orientation 71. 

GLCM features are most often quantified in the four diagonal image orientations of 0°, 

45°, 90°, and 135°. Second order features can then be extracted from the co-occurrence 

matrix. Examples of such features include contrast, a descriptor of the intensity contrast 

between a pixel and its neighbor as determined by the distance parameter, correlation, a 

descriptor of the linear gray-level dependence, and homogeneity, a descriptor of the 

closeness of distribution in the co-occurrence matrix to the matrix diagonal. Other second 

order features such as energy, a descriptor of the certainty of gray-level co-occurrence 

respectively, and cluster shade, a descriptor of asymmetry in gray-level values, can also 

be extracted.  Entropy, or the randomness of the GLCM, is another commonly extracted 

feature, often indicating image heterogeneity (Appendix Table A2). Run-length features 

measure the coarseness of an image in specified linear directions 72-74 (Appendix Table 

A3).  
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2.7. Higher order: Structural and transformation-based features 

Structural features capture the intensity variations between central voxels and 

surrounding neighboring voxels75 (Appendix Table A.4). Extending radiomic analysis 

beyond the spatial orientation of gray-level intensity values, transformation based 

radiomics features capture texture information encoded in a different space, such as the 

frequency space. Transformation based methods include the Fourier transform, Gabor 

transform, and Wavelet transform76-78. The wavelet transform, in particular, is commonly 

used due to its ability to capture MR images’ frequency content both at varying image 

scales and multiple specified directions.  

2.8. Morphology features 

Morphologic radiomic features aim to quantify the lesion’s physical 

characteristics, either in 2-D or 3-D space. Such features may include volume, area, and 

perimeter, as well as eccentricity, spiculation, or flatness. Variations of morphologic 

features may account the entire lesion volume or consider only enhancing portions of the 

tumor.  

2.9. Radiomic analysis in breast lesions- MRI  

Benefitted by the whole-tumor sampling and visualization of tumor vasculature 

afforded by MRI, one of the largest aims in radiomics is to accurately characterize and 

quantify intratumor heterogeneity 4,7,8.  As such, radiomic information extracted from 

medical images can have high clinical relevance 79-87. As compared to a global or 

qualitative report of breast tumor appearance, radiomic analysis can provide a refined, 

local description of tumor complexity, heterogeneity, and kinetic behavior as seen in 
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medical imaging. This quantitative characterization can have specific applications 

towards the diagnosis, prognosis, and treatment of breast cancer. As MRI is the most 

commonly utilized imaging modality for breast cancer diagnosis and treatment 

management16,88, most advances in breast tumor radiomics have been implemented in 

MR imaging34. 

2.9.1. Radiomics applications in breast computer aided diagnosis 

Computer aided diagnosis (CAD) of breast tissue was one of the earliest 

applications of radiomic analysis in the breast 89. Gibbs et al. 90  was one of the first to 

apply radiomic analysis towards classifying breast lesions as benign or malignant. The 

authors reported using 2D DCE-MR images from a cohort of 79 women, of which 45 

were diagnosed with breast cancer. Within each lesion ROI, a co-occurrence matrix was 

determined for adjoining pixels in 0°, 45°, 90°, and 135° directions. Radiomic features of 

variance, sum entropy, and entropy were concluded to be the most significant when 

discriminating between benign and malignant lesions, suggesting that features 

quantifying image texture could be a useful tool in lesion delineation. Subsequent studies 

have followed this preliminary, yet promising, conclusion by utilizing more complex 

measures of image texture to diagnose breast lesions as benign or malignant 91-97. This 

idea was extended by Chen et al. 96, who extracted 3D GLCM features from a 3D breast 

lesion segmentation. The 3D GLCM features yielded a higher diagnostic accuracy than 

2D GLCM features extracted from a 2D ROI, when distinguishing between malignant 

and benign breast lesions, showing an advantage for 3D breast lesion characterization. 
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2.9.2. Beyond CAD: Radiomic analysis for histopathologic and molecular 

subtype classification 

The promising conclusions of MRI radiomic analysis in breast cancer diagnosis 

suggests an architectural difference between the imaging presentation of benign and 

malignant lesions that can be quantified using radiomic features.  Recent studies have 

begun extending this idea, hypothesizing that underlying tumor biological differences can 

be imaged using MRI and characterized using radiomic analysis. Consequently, many 

groups have employed radiomic analysis to distinguish between the heterogeneous 

histopathologic 70,93,95,98 and molecular 99-102 subtypes of breast cancer, with a larger goal 

of utilizing image texture features to provide a personalized diagnosis.  

In an attempt to distinguish between Invasive Lobular Carcinoma (ILC) and 

Invasive Ductal Carcinoma (IDC),  Holli et al. 95 extracted a total of 277 histogram, 

GLCM, run-length, and wavelet features. The authors found that of these, only GLCM 

related features characterizing lesion complexity and randomness were significantly 

different between ILC and IDC lesions. Similar conclusions were reported by Waugh et 

al.98, who found that entropy, a measure of pixel distribution randomness, was 

significantly different between lobular and ductal lesions, suggesting a difference in 

underlying growth patterns and tumor heterogeneity. 

Increasing the scope of radiomic analysis to include the surrounding 

microenvironment in additions to the breast lesion, Wang et al.70 investigated the role of 

kinetic contrast uptake texture in differentiating between histopathologic subtypes of 

breast cancer. Radiomic features were extracted from pharmacokinetic parametric maps 
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generated from DCE-MR images of the tumor and surrounding parenchyma. Adding 

radiomic features characterizing heterogeneous uptake in the breast parenchyma to a 

model containing lesion texture features allowed for the identification of triple negative 

breast cancers (TNBC). The study concluded that the characterization of heterogeneity, 

both within the lesion as well as the surrounding parenchyma, could provide noninvasive 

insight towards heterogeneous tumor behavior associated with more aggressive subtypes. 

These results were similar to those found in previous studies 103,104, indicating the clinical 

value of lesion and peri-tumoral contrast uptake quantification. Radiomic features 

quantifying lesion heterogeneity have also shown to aid in delineating between molecular 

subtypes of breast cancer. Studies have shown a radiomic difference between the MR 

presentation of luminal A and luminal B subtypes, with luminal B lesions having a more 

quantifiably heterogeneous appearance99,102. 

2.9.3. Radiomic analysis for breast cancer prognosis and therapy response 

prediction 

Recent studies have shown promising conclusions when exploring the 

relationship between breast lesion appearance and risk of recurrence, and the value 

radiomics as a non-invasive prognostic biomarker 93,105-109. Kim et al. performed a 

retrospective analysis of 203 women diagnosed with invasive breast cancer, extracting 

histogram uniformity and entropy features from both T2-weighted MR images and T1-

weighted DCE-MRI. Univariate and multivariate associations between these texture 

features and disease-free survival determined that increased tumor heterogeneity in T2-

weighted MRI could be used to stratify patients more at risk for recurrence. This study 

suggested that tumor heterogeneity, as quantified by lesion texture, could be used in MR 
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imaging as an independent prognostic marker. Similar conclusions were drawn by Park et 

al. 107 who generated a multivariate feature vector based on morphologic, histogram 

texture, and GLCM texture features, from which specifically GLCM cluster tendency, 

GLCM variance, and GLCM sum variance were selected for in a model stratifying 

patients at risk for recurrence. Mahroongy et al. 108,109 extracted wavelet features from 

within tumor sub-regions partitioned by pharmacokinetic behavior and concluded that the 

spatial frequency texture pattern captured using wavelets within the heterogeneous sub-

regions could serve as a strong prognostic biomarker for predicting risk of tumor 

recurrence (AUC= 0.88). 

The potential for radiomic analysis in breast cancer treatment has been 

demonstrated in recent studies, showing the potential for MRI-extracted radiomic 

features to serve as non-invasive predictive biomarkers 69,73,104,105,110-120. In order to 

predict response to treatment, some studies utilize first-order statistical measures 

extracted from the tumor ROI. Specifically, Johansen et al. 119 calculated three first-order 

statistical features of mean, standard deviation, and prediction from a relative signal 

intensity histogram generated from pre-chemotherapy DCE-MRI scans. Of these, 

skewness and kurtosis were found to be strongly correlated with complete response to 

therapy. Similarly, Padhani et al. 120 conducted a retrospective study of 25 women 

diagnosed with primary invasive cancer, imaged using DCE-MRI before and after the 

first cycle of treatment. Leveraging contrast enhancement, the authors generated a 

histogram from a pharmacokinetic parametric map of the full lesion ROI, and concluded 
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that responsive patients displayed a decrease in pharmacokinetic range, and proposed that 

this could be attributed to a decrease in heterogeneity after the first cycle of treatment. 

While histogram texture can provide useful information regarding the distribution 

of gray-level intensity values, it is limited when capturing spatial heterogeneity within a 

lesion as it largely ignores the spatial relationships between voxels. Studies extracting 

higher-order radiomic features can further quantify the relation between tumor 

heterogeneity and response to therapy. To this end, Teruel et al. extracted second-order 

statistical GLCM features from pharmacokinetic maps generated from DCE-MRI images 

of women diagnosed with locally advanced breast cancer. Eight GLCM features were 

found to significantly differ between responders and non-responders, and GLCM sum 

variance was able to predict response to treatment with an AUC of 0.77.  Similar 

conclusions were drawn by Thibault et al. 111, who expanded this 2D analysis by 

extracting 3D GLCM features from DCE-MR pharmacokinetic parametric maps in order 

to predict response to neo-adjuvant chemotherapy (NAC). The 3D GLCM features were 

particularly significant in identifying early responders to NAC, with results showing non-

responders having higher microvascular heterogeneity. In a retrospective study of 36 

women who underwent NACT, the change in tumor heterogeneity between pre-treatment 

and mid-treatment, as calculated by entropy and uniformity changes, was predictive of 

pCR with an AUC of 0.84 113. Comparing this performance to change in tumor size 

(AUC= 0.66) demonstrates a greater sensitivity for lesion texture in characterizing early 

response to pCR. 
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Current clinical predictions for achieving pathologic complete response (pCR) are 

based on tumor histopathologic characteristics. As intratumor heterogeneity is associated 

with adverse clinical outcomes, the limited tissue taken during biopsy may be inadequate 

for a whole tumor based prediction 7,8. Michoux et al. 114 performed a retrospective 

analysis on the DCE-MR scans of sixty-nine patients diagnosed with IDC, undergoing 

NAC. For each woman, texture, kinetic, and morphology-based features were extracted 

from within the pre-treatment lesion ROI. The authors concluded that only four 

parameters—three features (GLCM inverse difference moment, grey-level 

nonuniformity, and long run high gray level emphasis), and the wash-in slope kinetic 

feature —were found to classify non-responders with 84% sensitivity. Of particular note, 

clinically utilized histopathologic predictive biomarkers such as estrogen receptor (ER) 

status, progesterone receptor (PR) status, Ki67 status, and human epidermal growth factor 

receptor 2 (HER2), along with tumor grade, were not significant when classifying early 

response, further highlighting the utility of radiomic analysis. Similarly, Golden et al. 112 

extracted GLCM based features from pharmacokinetic parametric maps generated from 

DCE-MR images of women diagnosed with TNBC, in order to predict pCR, residual 

lymph node metastases, and residual tumor with lymph node metastases.  The predictive 

performance of GLCM texture features was compared to ‘patterns of response’, a 

qualitative description of lesion appearance before and after chemotherapy, as determined 

by a radiologist. The GLCM features extracted from pre-chemotherapy MR images could 

predict pCR and residual lymph node metastasis with a reported AUC of 0.68 when 

classified in a logistic regression model. In contrast, the radiologist determined ‘patterns 

of response’ did not predict any of three outcome measures. 
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The conclusions drawn from studies implementing radiomic analysis for breast 

cancer diagnosis, prognosis, and treatment suggest that radiomic features demonstrating 

increased lesion heterogeneity are associated with aggressive growth, unfavorable 

prognosis, and poor treatment outcomes69,105,109,115,121-123. In addition, they propose a 

method for non-invasively quantifying the underlying biology of tumor sub-regions 

driving recurrence, response, and resistance to therapy (Figure 2.2). 

 

Figure 2.2 Representative images of a non-recurrent and recurrent breast tumor. (A). Examples of texture 

features maps showing distributions of histogram texture features (B), co-occurrence matrix texture 

features (C), and structural texture features (D). This figure was adapted from Chitalia et al. Journal of 

Magnetic Resonance Imaging, 2019. 

2.10. Novel applications of breast radiomics 

While most advances in radiomic analyses of breast cancer have been made 

utilizing MRI images, there are few studies investigating radiomic analysis of molecular 

imaging modalities such as PET124. For the diagnosis of breast lesion as benign or 
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malignant, Vogl et al. investigated MRI and PET radiomic features. The author found 

that only MRI-based texture features were predictive in lesion classification. Conversely, 

Ou et al. found that SUV and radiomic features from FDG PET could stratify breast 

cancer from breast lymphoma125. 

As PET imaging leverages biologically targeted radiotracers, radiomic analysis of 

PET imaging has been used for the biological characterization of breast tumors. 

Lemarignier et al. found that radiomic features  of image texture extracted from FDG 

PET imaging were significantly associated with histological subtypes of breast cancer126. 

However, other studies looking at associations between radiomic features from FDG PET 

and histological subtypes found no significant associations127-130. Studies have also 

examined the correlation between PET radiomic features and molecular subtypes of 

breast cancer128,130-132, finding associations between features and receptor status131,133, and 

proliferative status129.  

PET radiomic analysis has also been explored for treatment response prediction. 

Numerous studies have found associations between PET-derived radiomic features and 

pathological complete response to NCT129,132,134-136. Lastly, PET radiomic analysis has 

been utilized to predict patient outcome including progression-free survival (PFS)136, 

disease-free survival (DFS)132, overall survival (OS)127, and recurrence-free survival 

(RFS)128. 

While DCE imaging and PET imaging are not utilized as often as other modalities 

for breast cancer screening, recent studies have suggested associations between radiomic 
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analysis and characterizations of the whole breast, such as background parenchymal 

enhancement (BPE) from DCE-MRI137-139. With respect to personalized breast cancer 

diagnosis and treatment response monitoring, studies have demonstrated that increasing 

the scope of radiomic analysis to include surrounding BPE within the peri-tumoral region 

has allowed for improved diagnostic and predictive performance69,70,140,141. Mazurowski 

et al.140 demonstrated that radiomic features characterizing the texture and 

pharmacokinetic behavior of breast lesions and the surrounding parenchyma were highly 

associated with the luminal B subtype, suggesting that quantitative characterization of 

BPE could provide personalized diagnoses. Similar conclusions were reported by Wang 

et. al 70, where features characterizing texture were extracted from pharmacokinetic maps 

generated from DCE images of the tumor and surrounding parenchyma. Augmenting a 

classification model of lesion radiomic features with BPE radiomic features improved 

performance for the identification of triple negative breast cancers (TNBC). Radiomic 

analysis has the potential to provide quantitative insight into parenchymal enhancement 

patterns to further understand the role of BPE in personalized clinical decision making.  

Leveraging high-throughput genomic, molecular, and sequencing data alongside 

imaging data may provide complementary insight into patient-specific diseases for the 

improvement of precision cancer care. This has developed into the field of 

“radiogenomics”, which aims to find associations between imaging and genomic streams 

of information for the combined prediction of patient outcomes and the biological 

interpretation of imaging features142,143. Advances in breast tumor radiomics has led to 

associations between radiomic signatures and molecular subtypes144-146, combined 
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radiogenomic models for outcome prediction101,147,148, and radiomic signatures correlated 

with biological pathways123,149-151. 

2.11. Radiomic analysis study designs 

Effective use of radiomic analysis on medical images of breast cancer is highly 

dependent upon appropriate study design and statistical evaluation. There are numerous 

methods for radiomic feature extraction, resulting in a myriad of ways to quantify an 

image’s texture. Consequently, having a high-dimensional radiomic feature set as 

compared to a relatively smaller sample size can result in the overfitting of a statistical 

learning model, resulting in false positive classification and over- or under- estimated 

statistical associations. Additionally, redundant radiomic features can often decrease 

performance accuracy. To alleviate this, methods such as principal component analysis or 

independent component analysis can be used to reduce the dimensionality of the radiomic 

feature set152. Feature selection methods can also be used to reduce radiomic feature 

redundancy and promote relevant features for analysis. Statistical correction methods, 

such as the Benjamini-Hochberg correction153, can be used to reduce false positives in 

statistical association conclusions. Ideally, results should be validated using an 

independent dataset, to ensure veracity of the radiomic analysis. While finding 

comparable independent datasets is not always feasible, splitting the initial dataset into 

discovery and validation sets is an alternative solution to ensure repeatability. Similarly, 

cross-validation can be used to identify robust conclusions. Lastly, utilization of publicly 

available datasets and detailed methodology of specific radiomic parameters used during 

feature extraction, can allow for study repeatability.  
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2.12. Future Directions 

Radiomic analysis is currently limited by user-defined feature parameters, such as 

selecting the number of discretized gray-levels within an image, image acquisition 

protocol, and image quality25,96,154. As such, literature largely lacks repeated studies 

performed on the same datasets with standardized radiomic feature extraction. 

Additionally, while radiomic features provide quantitative measures of breast tumor 

texture, the direct biological interpretation of specific radiomic feature values remains 

largely uncertain. Leveraging the specific properties of various functional MRI and PET 

imaging techniques, radiomic analysis can be used to quantify different tissue properties. 

Radiomic analysis applied to DCE-MRI or DW-MRI could provide insight on the 

distribution or longitudinal development of tumor vascularization and diffusion, 

respectively. Radiomic analysis applied to PET images utilizing biologically targeted 

radiotracers could provide insight into specific tumor physiology. Similarly, statistical 

associations between image derived radiomic features and histopathologic or genomic 

expression data could allude to a biological basis for tumor imaging presentations.  

Further work is needed to explore the relationships between specific radiomic features 

and underlying biology. Additionally, leveraging radiomic information from alternative 

imaging modalities in combination with that acquired from MRI could augment breast 

tumor characterization155.  Advances in computational processing power such as 

increased memory and GPUs, have allowed for implementation of deep learning 

architectures for the analysis of breast tumors. Deep learning has the potential to use 

automated features and provide insights beyond “hand-crafted” radiomic features, which 
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are dependent upon user derived parameters. Using such technology however requires 

large datasets for training and may lack interpretability due to the higher order nature of 

resulting prognostic or predictive features. 

Moving forward, computational medical image analysis has the potential for use 

in fully characterizing tumor biology to serve as a non-invasive quantitative tumor assay, 

complementing proteomic and genomic tumor analyses for a more comprehensive and 

personalized understanding of breast cancer. 
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Chapter 3 : Spatial heterogeneity in dynamic contrast enhanced 

magnetic resonance imaging 
 

This chapter has been adapted from the following: 

Chitalia, R.D., Rowland, J., McDonald, E.S., Pantalone, L., Cohen, E.A., Gastounioti, 

A., Feldman, M., Schnall, M., Conant, E. and Kontos, D., 2020. Imaging phenotypes of 

breast cancer heterogeneity in preoperative breast dynamic contrast enhanced magnetic 

resonance imaging (DCE-MRI) scans predict 10-year recurrence. Clinical Cancer 

Research, 26(4), pp.862-869. 

3.1. Introduction 

This chapter provides details of exploring spatial heterogeneity in DCE-MRI 

images of breast tumors at baseline. We identify imaging phenotypes and aim to 

understand their relationship with conventional prognostic markers and patient outcomes 

to propose a non-invasive assessment of cancer.  

Currently, critical disease treatment decisions are made on the basis of biomarkers 

acquired from tissue samples, typically obtained via core biopsy or surgical excision. 

Histopathologic assessment of this sample determines common prognostic markers 

including tumor size, shape, grade, nodal status, and metastasis. The prognostic and 

predictive markers derived from the limited diagnostic tissue samples may under-sample 

spatially heterogeneous breast tumors as well as overlook temporal shifts due to breast 

cancer progression or exposure to therapy. Therefore, there is a clinical need to develop 

prognostic and predictive markers of intratumor heterogeneity that may augment 

established biomarkers for personalized disease diagnosis, staging, management, and to 

assess treatment response to neoadjuvant therapy.  
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 Medical imaging is currently used for breast cancer diagnosis, staging, and 

treatment response assessment, providing a means for longitudinal, non-invasive, whole-

tumor evaluation of disease burden16,17,57. Dynamic contrast enhanced magnetic 

resonance imaging (DCE-MRI), in particular, is highly sensitive for primary lesion 

detection and staging, with the ability to assess tumor vascularization with contrast 

enhancement17,20. The field of “Radiomics” has shown promise in quantifying the 

imaging presentation of underlying tumor biology8,28,101,109,116,156. Identifying intrinsic 

radiomic phenotypes of breast cancer and understanding their relationship with patient 

outcomes and other histopathologic factors could complement conventional prognostic 

and predictive biomarkers. The purpose of this study was to identify and validate such 

intrinsic DCE-MRI radiomic phenotypes of breast cancer tumor heterogeneity and 

evaluate their independent prognostic performance in predicting 10-year recurrence, and 

their performance in augmenting established, histopathologic prognostic factors. 

3.2. Discovery cohort: Study population and imaging protocol 

Breast DCE-MRI scans were retrospectively analyzed from a previously 

completed, multimodality imaging trial conducted at our institution (2002- 2006; 

National Institutes of Health; P01CA85484) designed to evaluate an array of different 

breast imaging modalities in cancer staging, diagnosis, and screening. The study was 

Health Insurance Portability and Accountability Act-compliant, approved by the 

institutional review board at our institution, and in accordance with U.S. Common 

Rule. The trial originally recruited 901 women, including women with newly diagnosed 

breast cancer presenting for staging, women with a mammographically detected 
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suspicious finding or suspicious palpable mass directed to biopsy, and women eligible for 

high-risk screening. Informed written consent was obtained prior to trial participation. 

From these, 317 women were diagnosed with primary breast cancer, of which 231 were 

diagnosed with invasive breast cancer. From this subset of 231 women, 177 women had 

DCE-MRI images available for analysis. An additional 72 women were excluded for not 

receiving a consistent imaging protocol of fat-suppressed, T1-weighted DCE-MRI with at 

least two post contrast scans available for analysis. Lastly, 3 women were excluded on 

the basis of image quality, determined by biopsy artifacts and fiduciary markers, or the 

presence of diffuse disease in order to prevent inaccurate ROI segmentation, and 7 

women were excluded due software algorithm output resulting in incomplete values 

during radiomic feature extraction. Therefore, a total of 95 women diagnosed with 

primary invasive breast cancer and imaged with a consistent T1-weighted DCE-MRI 

protocol with a first and second post-contrast acquisition, prior to any treatment, were 

included in our analysis. For this retrospective analysis, the requirement of informed 

consent was waived under institutional review board approval. 

Following intravenous administration of gadolinium contrast, DCE-MRI images 

were acquired sagitally via a T1-weighted 3D protocol. Images were acquired with a 45-

degree flip angle over a 16-18 cm field of view, with 2-2.5 mm slice thickness. Women 

subsequently underwent surgery for tumor removal. Histopathologic analysis of surgical 

specimens evaluated hormone receptor (HR) status, consisting of ER and PR status, 

HER2 status, clinical stage, size (cm) as determined from pathology sample, and surgical 

margins. Stage, Modified Bloom Richardson grade (MBRG), lymph invasion status, 

nuclear grade, and presence of ductal carcinoma in situ (DICS) were also documented.  
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Post-surgery therapy included a variable combination of chemotherapy, hormone therapy, 

and radiation. Recurrence-free survival (RFS) was monitored for all women over a 10-

year follow-up period. Survival was determined as the date of breast cancer diagnoses to 

death or more recent follow-up. Patients without an event were censored at the date of 

last follow-up. In the discovery cohort, 11 women (12%) had recurrence events, and 84 

women (88%) were event-free until their last available follow-up (Table 3.1).  Clinical 

stage was statistically significantly associated with recurrence events (p = 0.02) (Table 

3.1). 
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Table 3.1. Summary of patient characteristics from the discovery cohort.  

Primary Invasive Cancers 

(n=95) 

 
Non-recurrent 

cases at the time 

of last follow-up 

84 (88% of total) 

Recurrent cases 

11 (12%) 

Significance 

tested using 

Chi-square 

analysis 

Malignant Pathology 
  

p=0.48 

Invasive Ductal Carcinoma 

(IDC) 

65 (77% of NR) 8 (73% of R) 
 

Invasive Lobular Carcinoma 

(ILC) 

8 (10%) 1 (7%) 
 

IDC/ILC 9 (11%) 2 (14%) 
 

Receptor Status 
  

p= 0/37 

Hormone Receptor Positive 61(73%) 9 (82%) 
 

HER2  Positive 20 (24%) 2 (18%) 
 

Triple Negative 11 (13%) 1 (9%) 
 

Clinical Stage 
  

p=0.02 

Early Stage (1) 35 (41%) 1 (9%) 
 

Advanced Stage (2-3) 45 (54%) 10 (91%) 
 

DCIS 
  

p=1 

Present 67 (80%) 9 (82%) 
 

Margins 
  

p=0.07 

Positive 40 (48%) 6 (55%) 
 

Negative 40 (48%)  5 (45%) 
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3.3. Validation cohort: Study population and imaging protocol 

An independent validation cohort was acquired from a subset of the ISPY-

1/ACRIN 6657 trial (2002-2006)157. Women diagnosed with T3 breast tumors measuring 

3cm or larger were enrolled in this trial, and underwent anthracycline-based neoadjuvant 

chemotherapy. DCE-MRI scans were acquired for women in this study as previously 

described158. The pre-treatment and pre-operative DCE-MRI images of 222 women were 

publicly available via The Cancer Imaging Archive159. From this, 15 women were 

excluded for having incomplete DCE acquisition or variability in imaging protocol. A 

further 43 women were excluded for having missing histopathologic data, RFS outcome, 

or pre-treatment DCE-MRI scans, and 1 woman was excluded due software algorithm 

output resulting in incomplete values during radiomic feature extraction.  In all, 163 

women were included in the validation cohort for this study; validation analysis utilized 

the scans that were both pre-treatment and pre-operative. Clinical information including 

HR status and HER2 status were available for each woman in the validation cohort. RFS 

status, defined as the time between first chemotherapy treatment and disease recurrence, 

was also available. A total of 44 women in the validation cohort (27%) had recurrent 

tumors (Table 3.2). A comparison between the two cohorts via chi-square analysis 

indicated a statistically significant difference between number of recurrent cases (p = 

0.02), number of HR positive cases (p = 0.02), and clinical stage of tumors (p < 0.001) 

(Table 3.2).  
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Table 3.2. Summary of patient characteristics from the validation cohort (a). Statistical 

comparison between discovery and validation cohorts for covariates common in the two 

datasets (b). 

 

3.4. Radiomic feature extraction 

For each woman in the discovery cohort, the primary lesion was selected by a 

radiologist from the pre-treatment, pre-operative DCE-MRI scan, and manually 

segmented from the most representative slice, as determined by the largest tumor volume. 

This manual segmentation served as the initialization for 3-D tumor volume 

segmentation, which was performed using a previously validated, automated method160 

and visually verified by an expert after segmentation. Images were pre-processed using 

N3 bias-field normalization161 and histogram normalization in order to correct for low 

frequency bias field signal or outliers that may induce artifacts within the image. Using 

the first (I1) and second (I2) post-contrast images, a signal enhancement ratio (SER) map 



36 
 

was generated(23) for the entire tumor volume, defined as the voxel-wise ratio between 

the first and second post contrast images: 

 

Eq. 3.1 

The first and second post-contrast images were acquired in succession at an average 

approximation of 90 seconds after contrast injection and first-post contrast scan, 

respectively. A multi-parametric, radiomic feature vector was extracted from the SER 

map for each woman, including a) previously validated morphologic features of tumor 

perimeter, area, ellipticity, and convexity, shown to be associated with disease 

progression20,162, and b) radiomic features capturing structural75, run-length72-74, co-

occurrence matrix71, gray-level histogram, and gray-level size zone matrix textures111, 

which were extracted and summarized over the primary lesion. Briefly, structural features 

capture intensity variations between central voxels and neighboring voxels. Run-length 

features measure the coarseness of an image in specific linear directions. Co-occurrence 

features analyze the spatial distribution of voxel intensity values by capturing frequency 

information of gray-level intensity values within a neighborhood of voxels in a specific 

linear orientation. Gray level histogram features are first order statistical features 

assessing the distribution of gray-level voxel intensities within an image. Gray level size 

zone features capture the connectedness of varying intensity levels within an image. 

Additionally, the mean and standard deviation of SER values of the tumor were 

calculated. Consequently, a total of 60 radiomic features were extracted. All features 

were extracted using the publicly available software, Cancer Imaging Phenomics Toolkit 

(CaPTk) (ver. 1.7.1, Univ. of Pennsylvania) (https://cbica.github.io/CaPTk/) 163. 

https://cbica.github.io/CaPTk/
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3.5. Discovery of intrinsic imaging phenotypes 

Prior to phenotype identification, the multi-parametric radiomic features extracted 

from the pre-operative DCE-MRI scans were z-score normalized164. Furthermore, z-

scored features with extreme skewness or extremely low variations in distributions across 

women, defined as interquartile range (IQR) < 1 or kurtosis > 15, were excluded from 

further analysis to prevent a biased analysis.  This resulted in a total of 22 features 

concatenated to form the final feature vector. Given the definition of each radiomic 

feature in the final feature vector, features were standardized such that a greater feature 

value indicates greater image heterogeneity. A tumor heterogeneity index was then 

generated for each woman, defined as the statistical average of z-score normalized, 

standardized features in the final feature vector. Thus, a higher heterogeneity index 

corresponds to higher intratumor heterogeneity whereas a lower heterogeneity index 

corresponds to increased intratumor homogeneity.  

To identify intrinsic imaging phenotypes, unsupervised hierarchical clustering 

was performed on the extracted, multi-parametric feature vectors for women in the 

discovery cohort36. The k clusters obtained from the unsupervised hierarchical clustering 

algorithm are interpreted as intrinsic imaging phenotypes in the population. Briefly, an 

agglomerative approach was used to create a hierarchical clustering of women, using 

Euclidean distance for the distance between feature vectors and Ward’s minimum 

variance method as the clustering criterion165. The optimal number of distinct 

phenotypes, k, was determined by assessing the stability and significance of each 

phenotype for each value of k that was considered. The optimal number of stable 
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phenotypes was determined using consensus clustering166, where the dataset was 

subsampled and cluster arrangements were determined using varying numbers of k. For 

each number of k phenotypes, the proportion that two women occupied the same 

phenotype cluster out of the number of times they appeared in the same subsample was 

determined and stored in a symmetric consensus matrix, from which a cumulative 

distribution function (CDF) was determined. Cluster stability, as determined by the area 

under the CDF curve, was evaluated for each increase in k phenotype, with a change in 

stability less than 10% deemed insignificant. Statistical significance of the identified, 

stable phenotypes was evaluated using the SigClust method167. Here, the significance of 

the cluster index, defined as the sum of within- cluster sums of squares about the cluster-

mean divided by the total sum of squares about the overall mean, was tested against a 

null distribution, simulated using 10,000 samples from a Gaussian distribution fit to the 

data. The test was performed at each phenotype split to determine statistical significance 

(p<0.05).  

 

3.6. Independent validation of intrinsic imaging phenotypes 

Tumor segmentation for cases from the validation cohort was performed per the 

ISPY-1/ACRIN 6657 protocol158. The 22 features identified from the discovery cohort 

were extracted from segmented tumors in the validation cohort using the same feature 

pre-processing steps outlined above, to form the final feature vectors for hierarchical 

unsupervised clustering analysis. These features were normalized using the mean and 

standard deviation values of each respective feature’s distribution in the discovery cohort, 
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to standardize feature ranges. To validate identified phenotype reproducibility, women in 

the validation cohort were assigned to the discovery cohort- identified phenotypes by 

minimizing the Euclidian distance between each validation cohort feature vector and the 

discovery cohort-identified phenotype centroid. The significance and reproducibility of 

phenotype assignment in the validation cohort was assessed using Consensus Clustering 

and the SigClust methods (Figure 3.1).  
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Figure 3.1. Study design. Radiomic features were extracted from SER maps generated from preoperative 

DCE-MRI scans from women in the discovery cohort (n = 95). Feature selection resulted in a 22-feature 

feature vector. Unsupervised hierarchical clustering was used to identify intrinsic imaging phenotypes, 

which were assessed for statistical significance and stability. The same 22 features were extracted from the 

preoperative DCE-MRI scans of 163 women in an independent validation cohort. Women in the validation 

cohort were assigned to a phenotype identified in the discovery cohort by minimizing the distance between 

their 14-feature feature vector and the corresponding phenotype centroids. The independent and additional 

prognostic values of heterogeneity phenotypes were assessed via Kaplan–Meier RFS analysis and Cox 

proportional hazards models when compared with a baseline model of established histopathologic 

biomarkers. 
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3.7. Prognostic value of imaging phenotypes 

We assessed the distribution of histopathologic, prognostic covariate values for 

women assigned to each heterogeneity phenotype using chi-square tests for categorical 

biomarker values and Kruskal-Wallis tests for continuous biomarker values. The 

distributions of post-surgery therapy received by each woman (i.e., chemotherapy, 

hormone therapy, and radiation therapy) and recurrence-free survival were assessed 

across phenotypes to identify any associations between therapy and RFS or heterogeneity 

phenotypes. 

RFS probabilities across heterogeneity phenotypes within the discovery and 

validation cohorts were evaluated using Kaplan-Meier curves, with log-likelihood 

statistical tests used to assess their significance and determine their independent 

prognostic value. To determine the additional value categorizing tumor heterogeneity 

phenotypes, a baseline Cox proportional hazards model was built using the established 

histological prognostic factors of HR and HER2 status. Performance of this model in 

predicting RFS was tested both with and without phenotype cluster assignment, coded as 

a categorical variable.  

3.8. Study results: Discovery of intrinsic imaging phenotypes 

  Three statistically significant phenotypes were identified in the discovery cohort 

via unsupervised hierarchical clustering and found to be statistically significant via the 

SigClust methods (p < 0.01) (Figure 3.2). Ordering the heterogeneity indices of the 

corresponding centroids for the identified phenotypes in ascending order allowed for the 

identified phenotypes to be interpreted as phenotypes of low, medium, and high 
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intratumor heterogeneity (Figure 3.3). The number of recurrences were statistically 

significantly different across the heterogeneity phenotypes via chi-square analysis (p = 

0.01). 

Kaplan-Meier RFS curves for women stratified by heterogeneity phenotype 

assignment were found to be statistically significantly different, as determined using the 

log-rank test (p < 0.05). A baseline Cox-proportional hazards model consisting of HR 

status and HER2 status resulted in a c-statistic of 0.55 when predicting 10-year RFS. 

Adding heterogeneity phenotype assignment to the baseline model resulted in a c-statistic 

of 0.73 A log-likelihood test showed statistically significant improvement in the 

augmented model performance (p = 0.007) (Figure 3.2).  
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Figure 3.2. Identification of intrinsic imaging phenotypes of tumor heterogeneity. Unsupervised 

hierarchical clustering of SER features identifies three intrinsic phenotypes in the discovery cohort (A). 

RFS curves for women stratified by imaging heterogeneity phenotype show that heterogeneity phenotype is 

statistically significant (P < 0.05) when predicting RFS (B). Adding phenotype information to Cox 

regression model shows an improvement in c-statistic when predicting recurrence events (C). 
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Figure 3.3. Representative cases from heterogeneity phenotypes. Representative slice, tumor region, and 

SER map from a pre-menopausal woman diagnosed with primary stage-I, HR+, HER2- , node-negative 

breast cancer assigned to the low heterogeneity phenotype (top), a peri-menopausal woman with primary 

stage-II, HR-, HER2+, node- negative breast cancer assigned to the medium heterogeneity phenotype 

(middle), and a pre-menopausal woman with primary stage-II, ER-, HER2-, node-positive breast cancer 

assigned to the high heterogeneity phenotype (bottom). 

 

Analysis of clinical covariate significance across heterogeneity phenotype status 

showed that differences in tumor MBRG, estrogen receptor percentage, and tumor 

mitotic stage were statistically significant across heterogeneity phenotypes (p = 0.03, 

p=0.001, and p=0.02, respectively). Of poorly differentiated (MBRG 8-9) tumors, 80% 

were assigned to the medium or high heterogeneity phenotypes, and 20% were assigned 

to the low heterogeneity phenotype (Figure 3.4a). Tumors assigned to the low and 

medium heterogeneity phenotypes had median estrogen receptor percentages of 75% and 
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70% respectively, while tumors assigned to the high heterogeneity phenotype had median 

estrogen receptor percentages of 40% (Figure 3.4b).  Of tumors with high mitotic stages, 

81% were assigned to the medium or high heterogeneity phenotypes, and 19% were 

assigned to the low heterogeneity phenotype (Figure 3.4c). 

 

 

Figure 3.4. Associations between histopathologic prognostic markers and heterogeneity phenotypes. 

Associations between histopathologic prognostic markers and heterogeneity phenotypes identified in the 

discovery cohort. Degree of phenotypic heterogeneity in well, moderately, and poorly differentiated tumors 

(A). Percent of estrogen receptor distribution for women in low, medium, and high heterogeneity 

phenotypes (B). Degree of phenotypic heterogeneity in tumors with low, moderate, and high mitotic stage 

(C). 
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3.9. Study results:  Validation of intrinsic imaging phenotypes 

Women in the discovery cohort assigned to the low, medium, and high 

heterogeneity phenotypes had average heterogeneity indices of -0.09, -0.03, and 0.16, 

respectively (Figure 3.5a). Women in the validation cohort assigned to the low, medium, 

and high heterogeneity phenotypes had average heterogeneity indices of -0.05, -0.24, and 

0.21, respectively (Figure 3.5b).   

 

Figure 3.5. Heterogeneity index* distributions of women in low, medium, and high heterogeneity 

phenotypes in the discovery (A) and validation (B) cohorts. *Defined as the statistical average of z-score 

normalized, heterogeneity standardized features in the final feature vector for each tumor in the discovery 

and validation cohorts. 

The heterogeneity phenotypes were found to be reproducible and statistically 

significant in the validation set using the SigClust methods (p = 0.01). Kaplan-Meier RFS 

curves for women stratified by phenotype clustering assignment were statistically 

significantly different (p = 0.01) (Figure 3.6). A baseline Cox-proportional hazards model 

consisting of HR status and HER2 status resulted in a c-statistic of 0.61 when predicting 

10-year RFS. Adding heterogeneity phenotype assignment to the baseline model resulted 

in a c-statistic of 0.67 A log-likelihood test showed statistically significant improvement 

in the augmented model performance (p = 0.01). 



47 
 

 Analysis of clinical covariate significance across heterogeneity phenotype status 

showed that differences in progesterone receptor status were statistically significant 

across heterogeneity phenotypes (p = 0.03).  

 

Figure 3.6. Independent validation of intrinsic imaging phenotypes of tumor heterogeneity. Phenotypes 

identified in the discovery cohort are significantly reproducible in the validation cohort (A). RFS curves for 

women stratified by imaging heterogeneity phenotype show that heterogeneity phenotype is statistically 

significant (p = 0.01) when predicting RFS (B). 

 

3.10. Discussion 

Our results indicate that distinct imaging phenotypes exist within invasive breast 

tumors which correspond to different degrees of intratumor heterogeneity, suggesting that 

radiomic features can non-invasively characterize such heterogeneity patterns. The 

identification and validation of distinct image heterogeneity phenotypes show that the 

phenotype clusters identified are both interpretable and meaningful. Most notably, the 
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validated heterogeneity phenotypes show independent prognostic value when predicting 

10-year RFS, indicating that intrinsic imaging phenotypes can potentially identify 

intratumor heterogeneity features driving aggressive tumor behavior. Women assigned to 

the high heterogeneity phenotype demonstrated decreased probabilities of RFS over the 

10-year follow-up period, corroborating the hypothesis that heterogeneous tumors are 

associated with aggressive tumor behavior and treatment resistance.  

Of particular note, the medium heterogeneity phenotype encompasses a wide 

range of tumors, as evidenced by the differences in Kaplan-Meier survival analysis 

between women assigned to the medium heterogeneity phenotype in the discovery and 

validation cohorts.  While both cohorts represent populations of women diagnosed with 

invasive breast cancer, all women in the validation cohort were diagnosed with advanced 

stage disease, and therefore eligible for neoadjuvant therapy. As the discovery cohort 

consists of more diverse disease stages, women in the validation cohort assigned to the 

low heterogeneity phenotype may have higher degrees of tumor heterogeneity as 

compared to women in the discovery cohort also assigned to the low heterogeneity 

phenotypes and may therefore be more similar to tumors assigned in the discovery cohort 

as having a medium heterogeneity phenotype. This is supported by the similarity of the 

average heterogeneity indices for women in the validation cohort assigned to the low 

heterogeneity phenotype versus women in the discovery cohort assigned to the medium 

heterogeneity phenotype (-0.05 and -0.03, respectively). Consequently, survival 

probabilities for women in the validation cohort assigned to the low heterogeneity 

phenotype may be more similar to women in the discovery cohort originally assigned to 
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the medium heterogeneity phenotype, as compared to women in the low heterogeneity 

phenotype. A statistical comparison between cohorts suggests women in the validation 

cohort had a statistically significantly higher proportion of HR negative tumors, thereby 

suggesting more aggressive tumor behavior and outcome (Table 3.2).  

Imaging phenotypes of intratumor heterogeneity also provide additional 

prognostic value when augmenting established histopathologic prognostic biomarkers. 

The independent and additional prognostic value of phenotype assignment suggests that 

imaging phenotypes can provide unique information about underlying tumor behavior, 

and therefore, complement clinically utilized prognostic markers for personalized 

prognosis and decision making.  

Higher degrees of imaging phenotype heterogeneity were shown to be associated 

with poorly defined tumors as per the MBRG and tumors with higher mitotic grades. The 

increased mitotic grade of tumors in the higher heterogeneity phenotypes may contribute 

to the genetic diversity and sub-clonal evolution thought to increase intratumor 

heterogeneity39. These results suggest that tumor characteristics such as nuclear 

pleomorphism and increased mitotic rates, which are characteristic of aggressive tumor 

behavior, may be captured by the imaging phenotypes of tumor heterogeneity. 

Additionally, tumors with lower percentages of estrogen receptors displayed statistically 

significantly higher imaging phenotype heterogeneity, correlating with established 

hypotheses that estrogen positive tumors are associated with more positive 

prognoses168,169. The statistically significant associations of histopathologic prognostic 
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covariate distributions across heterogeneity phenotypes indicate that image heterogeneity 

may correlate with underlying tumor biology. 

We have identified intrinsic imaging phenotypes of intratumor heterogeneity in 

primary invasive breast cancer that can independently predict 10-year recurrence and 

have validated these findings in an independent cohort. While previous studies have 

utilized hierarchical clustering analysis to identify imaging phenotypes or have 

investigated relationships between radiomic features and histopathologic and genomic 

tumor characteristics, most of these studies have used surrogate measures of recurrence 

or were limited by a lack of independent validation101,147. 

Limitations to our study should be noted. For this exploratory analysis, we chose 

a fixed set of radiomic features. The independent validation cohort utilized for this study 

consisted of only advanced stage tumor diagnoses with a limited availability of 

histopathologic prognostic biomarkers, as opposed to the discovery cohort which 

consisted of both early and advanced stage tumors and a wide array of histopathologic 

prognostic biomarker information available for each woman. As both cohorts included 

women diagnosed with invasive breast cancer and follow-up information, we determined 

that validating our heterogeneity phenotypes with a more niche cohort can still 

demonstrate the added value and generalizability of tumor imaging heterogeneity 

phenotypes. Additionally, we limited the histopathologic prognostic biomarkers used for 

baseline model regression analysis of the discovery cohort to match those covariates 

available in the validation cohort. Future work will aim to expand this analysis to a larger 
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cohort. Lastly, we will seek to further explore the added prognostic value of imaging 

phenotypes to that of emerging prognostic molecular profiling assays.  

  In conclusion, our results demonstrate that intrinsic imaging phenotypes of tumor 

may heterogeneity exist, with independent and additional prognostic value in predicting 

RFS. Additionally, these heterogeneity phenotypes show associations with established 

histopathologic prognostic biomarkers, suggesting that image heterogeneity phenotypes 

non-invasively capture underlying tumor biology. 
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Chapter 4 : Longitudinal changes in spatial heterogeneity in dynamic 

contrast enhanced-magnetic resonance imaging in response to breast 

neoadjuvant chemotherapy 
 

This work is under review. 

 

Rhea Chitalia1,2, Marios Miliotis3,4, Nariman Jahani2, Spyros Tastsoglou3,4, Elizabeth 

S. McDonald2, Vivian Belenky2, Eric A. Cohen2, David Newitt5, Laura J. van 't 

Veer6, Laura Esserman6, Nola Hylton5, Angela DeMichele7, Artemis 

Hatzigeorgiou3,4, Despina Kontos2§ 

 

Departments of 1Bioengineering, 2Radiology, and 7Medicine, Division of 

Hematology/Oncology, University of Pennsylvania, Perelman School of Medicine 3400 

Spruce Street, Philadelphia, PA 19104, USA, 3Department of Computer Science and 

Biomedical Informatics, University of Thessaly, Lamia, Greece 4DIANA-Lab, Hellenic 

Pasteur Institute, Athens, Greece, 5Department of Radiology and Biomedical Imaging, 
6Department of Surgery and Oncology, University of California at San Francisco, USA. 

4.1. Introduction 
 

Breast cancer heterogeneity is well-established, with intratumor heterogeneity 

arising due to genomic and transcriptomic variations leading to heterogeneous 

subpopulations driving prognosis and response to therapy4,11,39,170,171. As such, increased 

heterogeneity is thought to be associated with adverse clinical outcomes6. 

Neoadjuvant chemotherapy (NACT) is an established course of treatment for 

locally advanced breast cancer (LABC) and can promote breast conserving surgeries by 

reducing tumor size21. Additionally, women achieving pathologic complete response 

(pCR) after completing neoadjuvant chemotherapy may have improved survival 

outcomes172,173. Early prediction of response to neoadjuvant treatment can allow for 

personalized changes to treatment plans, including targeted therapies, and early 
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discontinuation of inactive therapies174,175. Intratumor heterogeneity is thought to change 

in response to neoadjuvant chemotherapy, leading to altered biomarker expressions176. 

Such changes may arise due to the acquired resistance of specific sub-clones during 

treatment177. Early, noninvasive characterization of such changes may indicate response 

versus resistance to treatment, enabling early treatment changes prior to treatment 

completion. 

Personalized gene expression based molecular assays, such as the 70-gene 

MammaPrint microarray assay (Agendia BV) and the 50-gene PAM50 risk of recurrence 

score assay (ROR-S), provide risk stratification for future recurrence178,179. p53 mutation 

status is an established predictor for more aggressive tumor biology and therefore a worse 

prognosis in terms of recurrence free survival (RFS)180. Such precision medicine 

predictors may improve clinical decision making by deviating from the “one size fits all” 

approach to treating breast cancer. However, as such assays, mutation statuses, and 

established histopathologic biomarkers are determined largely from selective tissue 

sampling acquired by biopsy, they may fall short in fully capturing heterogeneous disease 

burden. 

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) can allow 

for longitudinal, non-invasive monitoring of heterogeneous tumors during the course of 

neoadjuvant chemotherapy. Previous studies have demonstrated the role of longitudinal 

patterns for tumor response during neoadjuvant chemotherapy and have examined their 

associations with treatment response and overall survival69,104,181,182. Hylton et al. 

demonstrated the prognostic and predictive value of measuring functional tumor volume 
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(FTV) at various longitudinal time points during neoadjuvant chemotherapy183. Jahani et 

al. developed registration-based biomarkers for the early prediction of pCR and 

recurrence free survival (RFS) in tumors from baseline to early treatment time points184. 

While much progress has been made, these studies may be limited by not examining the 

associations between aggregate changes in intratumor heterogeneity that arise in response 

to therapy and the complementary information provided by genomics-based 

information113. 

The purpose of this study was to identify imaging phenotypes of early changes in 

intratumor heterogeneity in DCE-MRI and evaluate their prognostic value in augmenting 

FTV measures and molecular profiling signatures scores for predicting RFS after breast 

NACT. 

4.2. Discovery cohort 
 

DCE-MR images of women enrolled in the ACRIN 6657/I-SPY 1 trial, diagnosed 

with advanced invasive breast cancer from May 2002 through March 2006, were 

retrospectively analyzed157,159. Per the inclusion criteria of ACRIN 6657/I-SPY 1, women 

diagnosed with stage 2 or 3 breast cancer were selected for the study and underwent an 

anthracycline-cyclophosphamide NACT. Longitudinal DCE-MRI was performed using a 

1.5 T scanner at four time points: prior to the start of neoadjuvant therapy (T1), at least 2 

weeks after the first cycle of chemotherapy (T2), between treatments (T3), and after the 

completion of chemotherapy, before surgery (T4). Data acquisition was as described in 
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the ACRIN 6657/I-SPY 1 protocol182. The first and second post-contrast images were 

acquired 2.5 and 7.5 minutes after contrast injection. 

Of the 222 trial participants with publicly available data157,159, we retained the 143 

women for whom both complete clinical data and T1 and T2 DCE-MR imaging were 

available. For analyses involving gene expression, we used the subset of 100 women for 

whom gene expression information was available through the Gene Expression 

Omnibus185,186, under the accession number GSE22226187. Clinical and histopathologic 

data including age, hormone receptor (HR) status, human epidermal growth factor 

receptor 2 (HER2) status, and pCR status were available for each woman. Functional 

tumor volume at T2 (FTV2), previously shown to have significant association with 

RFS183, was also calculated for each woman. RFS times were available, defined as time 

to recurrence (event), or time to death or last follow-up (censor). 

4.3. Validation cohort  
 

A validation cohort of 92 women was formed from the remaining 43 women from 

the original cohort (n=143) for whom gene expression data was not publicly available, 

and a separate dataset of 49 women from the publicly available Breast MRI NACT Pilot 

study 188. This study had similar inclusion criteria as the I-SPY 1 trial, and participants 

underwent a similar treatment and imaging protocol as the I-SPY 1 trial. Clinical 

information on age, HR status, and HER2 status and 3-year RFS information was 

available for each woman in the validation cohort. 
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4.4. Approximation of gene expression based molecular profiling signatures 
 

Molecular profiling of the I-SPY 1 enrolled women with gene expression 

information was built as previously described189. Specifically, we re-created three gene 

signatures in order to classify tumors regarding their metastatic potential, risk of 

recurrence, and p53 oncogene mutation status: the 70-gene signature 

(MammaPrint)190,191, PAM50 risk of recurrence (ROR-S)192,193, and p53 mutation 

signature194, respectively. Briefly, MammaPrint classification was achieved by 

calculating the cosine similarity of the expression of the 70-gene signature for each 

sample against a “good prognosis” sample set190, using thresholds as defined in the 

original study191. ROR-S sample categorization was determined by computing the 

weighted sum of the correlation coefficients193 of each sample against the intrinsic 

subtype sample sets of the PAM50 gene signature study192. Lastly, p53 mutation status 

was estimated by calculating the proximity of the I-SPY 1 samples and the p53 mutation 

signature centroids (wildtype vs. mutant) as Spearman’s correlation values, as described 

in the p53 gene signature study194. The integrity of our classification was examined by 

comparing our results with the original results of the Esserman et al. study187. We 

confirmed that our recreated results corresponded to the original results by comparing the 

numbers of individuals attributed to each class in the overall cohort. 

4.5. Delta radiomic feature extraction 
 

For each woman in the discovery cohort, the 3-D primary lesions at pre-treatment 

(T1) and early-treatment (T2) time points were selected by first identifying the functional 
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tumor volume (FTV) within the publicly available bounding region, as previously 

reported158. The largest contiguous volume of voxels included in the FTV was selected as 

the location for the primary lesion; this volume was then further refined using manual 

segmentation to remove isolated voxels and include voxels within the primary tumor 

lesion volume which were not initially selected by the FTV threshold158. Final tumor 

segmentations for T1 and T2 were visually confirmed by a board-certified and fellowship 

trained breast imaging radiologist (ESM). Images were preprocessed by N3 bias-field 

normalization to correct for bias field signal161. 

For each woman in the discovery cohort, at T1 and T2 time points, four voxel-

wise kinetic image maps were calculated within the segmented tumor, the peak 

enhancement (PE) (Eq. 4.1), signal enhancement ratio (SER) (Eq. 4.2), wash-in slope 

(WIS) (Eq. 4.3), and wash-out slope (WOS) (Eq. 4.4) images, to quantify the 

enhancement patterns over the dynamic scans using the signal intensity for the pre-

contrast, first post-contrast, and second post-contrast time points (  and , 

respectively).  

 

 

 
 

Eq. 4.1 

 

 

 

Eq. 4.2 
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Eq. 4.3 

 

 

 

Eq. 4.4 

  

All kinetic image maps and tumor segmentations were resampled by linear 

interpolation to a spatial resolution of 256 x 256 voxels, the lowest resolution of the data 

cohort, to ensure consistent resolution across all scans. A total of 104 radiomic features 

characterizing lesion intensity, texture patterns, and morphology were extracted from the 

entire tumor region, from each kinetic map at each treatment time point, resulting in a 

total of 416 features at each time point for each woman. All features were extracted using 

the publicly available Cancer Imaging Phenomics Toolkit (CaPTk; v.1.7.1; University of 

Pennsylvania; https://cbica.github.io/CaPTk/)163. Features at each treatment time point 

(fT1 and fT2) were subsequently sign-adjusted such that increasing feature values 

corresponded to increasing lesion heterogeneity as per each feature’s definition. 

Subsequently, the change in each radiomic feature between the baseline and early 

treatment time points, or delta feature Δf, was calculated as:  

 

 

 

Eq. 4.5 

These delta features were subsequently z-score normalized and features with 

extreme skewness or low interquartile range (i.e., skewness>5, IQR<1) were excluded 

https://cbica.github.io/CaPTk/
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from further analysis. Features characterizing tumor texture or morphology in only 2-D 

image dimensions were also excluded to allow for a whole-tumor, 3-D analysis. This 

resulted in a total of 42 delta features included in our final analysis. To reduce 

dimensionality and identify correlated delta features, features were clustered in an 

agglomerative hierarchical manner using Pearson’s correlation as the distance metric, 

with highly correlated features being grouped together. Consensus clustering was used to 

determine the optimal number of stable delta feature groups, with each feature group 

consisting of highly correlated delta features. Within each feature group, principal 

component analysis (PCA) was performed and principal components (PCs) totaling 

greater than 85% explained variance were retained to represent each feature group195. As 

higher values for each delta radiomic feature prior to PCA indicated increasing 

heterogeneity from T1 to T2, higher values of a PC incorporating primarily positive 

contributions of features were interpreted as increasing heterogeneity, and one with 

negative contributions were interpreted as decreasing heterogeneity196. The PCs found, 

and their subsequent use in identifying imaging phenotypes of tumors, could serve to 

characterize tumors as having radiomic signatures indicating increasing or decreasing 

heterogeneity. 

4.6. Identifying imaging phenotypes of early change in tumor heterogeneity  
 

To identify imaging phenotypes of early changes in tumor heterogeneity, tumors 

in the discovery cohort were classified via unsupervised hierarchical clustering, using the 

retained principal components to represent each tumor. The clusters identified through 

unsupervised clustering were interpreted as phenotypes of changes in heterogeneity seen 
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in the study population. An overview schematic for how imaging phenotypes were 

generated can be found in Figure 4.1. An agglomerative hierarchical approach was used 

to cluster tumors, using Euclidean distance as the distance metric between the retained 

principal components for each tumor. Ward’s minimum variance method was used as the 

clustering metric165. To determine the optimal k number of clusters, consensus 

clustering166 was used to determine the number of stable phenotypes by repeatedly 

subsampling the data, performing unsupervised hierarchical clustering, and noting the 

proportion of subsamples in which every pair of tumors occupied the same cluster when 

they appeared in the same dataset. As such, a cumulative distribution function (CDF) was 

determined for each increase in k, and the stable number of clusters was determined to be 

the k at which the area under the CDF increased less than 10%. SigClust167 methods were 

used to determine the number of significant phenotypes by calculating the significance of 

the cluster index, a metric defined as the sum of within cluster sum of squares about the 

overall mean, tested against a null distribution at each cluster division. The significance 

of each phenotype split was tested at p < 0.05 (Figure 4.1). 
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Figure 4.1. Identification of change in heterogeneity phenotypes. Primary lesion volume segmented from 

pre-treatment (T1) and early-treatment (T2) DCE-MRI images (A). Four voxel wise kinetic image maps are 

created for peak enhancement (PE), signal enhancement ratio (SER), wash-in slope (WIS), and wash-out 

slope (WOS) images to quantify enhancement patterns over each dynamic scan from T1 and T2 images 

(B). Radiomic features are extracted from each kinetic image map from both T1 and T2 images (C). Delta 

radiomic features are calculated for each extracted feature (D). Delta radiomic features are clustered based 

on correlation, and consensus clustering is used to determine the optimal number of stable feature clusters 
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(E). Within each feature cluster, PCA is performed and the number of principal components is selected to 

account for >85% of explained variance (F). Selected principal components are concatenated across all 

feature clusters to form the final feature vector for each woman. Unsupervised hierarchical clustering of the 

final feature vectors is performed to identify imaging phenotypes seen in the study population (G). 

4.7. Prognostic value of early change in heterogeneity phenotypes-statistical 

analysis 
 

Distributions of clinical and histopathologic covariate values and molecular 

profiling scores were assessed for differences across radiomic phenotypes using Chi-

square and Kruskal-Wallis tests for categorical and continuous covariates, respectively. 

Statistical corrections for multiplicity were made using the Bonferroni correction197. 

RFS times across phenotypes were evaluated using Kaplan-Meier survival curves, 

in both the whole cohort and within strata of HR status, HER2 status, TN status, and 

greater than and less than median FTV2 values, with the log rank test used to determine 

statistical significance. RFS was also modeled via Cox proportional-hazards regression. 

Eight models were evaluated: univariable models for each molecular signature; the 

baseline model — using the covariates age, HR status, and HER2 status; baseline + 

FTV2; baseline + FTV2 + radiomic phenotype; and baseline + FTV2 + all molecular 

signatures, both with and without the addition of radiomic phenotype. All models were 

evaluated using 5-fold cross validation and averaged over 100 replicates. 

The prognostic value of radiomic phenotypes was further evaluated by generating 

a risk score for each woman, defined as the prediction score of covariates weighted by the 

corresponding Cox-proportional hazard’s coefficients. Kaplan-Meier survival was 

analyzed split on the median risk calculated by the Cox model using baseline factors and 

FTV2. 
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Lastly, confusion matrices for the categories of RFS event/censor were generated 

to assess the predictive performance of radiomic phenotypes compared to MammaPrint 

scores, ROR-s, and p53 mutation status. 

4.8. Validation of early change in heterogeneity phenotypes 
 

Tumor segmentations for cases in the validation cohort were generated similarly 

to those in the discovery cohort. Delta radiomic features were calculated using the same 

feature preprocessing methods used in the discovery cohort. The same delta features 

selected in the discovery cohort were also selected for the validation cohort. These 

resulting delta features were normalized using the mean and standard deviation values 

from the delta feature values in the discovery cohort to standardize feature ranges. 

Features were subsequently grouped together based on the cluster assignment of 

correlated features determined from the discovery cohort. Within each validation feature 

cluster, features were projected into the discovery cohort feature groups’ principal 

component space to determine component values. The same numbers of PCs 

summarizing each feature group retained in the discovery cohort were selected from the 

validation cohort to form the validation cohort principal-component vectors. 

To determine phenotype assignment in the validation cohort, each tumor was 

assigned to the discovery cohort-identified phenotypes by minimizing the Euclidean 

distance between each validation cohort principal component vector and the discovery 

cohort phenotype centroid, defined as the average of the principal component vectors 

across all tumors in each phenotype. 
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4.9. Results 

4.9.1. Discovery cohort 

 

A total of 28 (28%) women included in the discovery cohort had future events of 

recurrence while 72 (72%) women did not have future events of recurrence (Table 4.1). 

Median RFS time was 3.9 years (range, 0.5–6.9 years)158. Neoadjuvant and radiation 

therapy information was available for women in the discovery cohort (Table 4.2). 

Table 4.1 Selected patient characteristics for discovery cohort.  
 

No future event of 

recurrence (n=72) 

Future event of 

recurrence (n=28) 

Hormone Receptor 

positive 

28 (53%) 17 (61%) 

HER2+ positive 23 (32%) 11 (39%) 

pCR  23 (32%) 4 (14%) 

Age (min-max) 48.15 (33.18-

64.33)    

46.31 (28.76-

65.39) 
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Table 4.2. Selected treatment characteristics for discovery cohort.  

Locally advanced cancers (n=100) 

 
No future event 

of recurrence 

(n=72) 

Future event 

of recurrence 

(n=28) 

p-value 

Neoadjuvant Chemotherapy      > 0.99  

  

  

  

  

Anthracycline-Cyclophosphamide 

(AC) only 

 1(1.4%)  0 (0%) 

AC + Tamoxifen  62 (86%)  24 (86%) 

AC + Tamoxifen + Herceptin  8 (11%)  3 (11%) 

AC + Tamoxifen + Other  1 (1.4%)   1 (4%) 

        

 Herceptin  8 (11%) 3 (11%)  > 0.99 

Radiation Therapy   58 (81%) 19 (68%)  0.21 

4.9.2Validation cohort 

Of the women included in the validation cohort, 27 (29%) women had future 

events of recurrence while 65 (71%) did not (Table 4.3). Median RFS time was 4.13 

years (range, 0.28-8.79 years). 
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Table 4.3.  Selected patient characteristics for validation cohort. 
 

No future event 

of recurrence 

(n=65) 

Future event of 

recurrence 

(n=27) 

Hormone Receptor positive 37 (57%) 10 (37%) 

HER2+ positive 19 (29%) 10 (37%) 

pCR  16 (25%) 4 (15%) 

Min. age 27.85 31.01 

Max. age 71.47 63.8 

Mean age 48.58 46.18 

 

 

 

4.9.3. Gene expression signatures classification 

 

Recreated classifications closely approximated the original results, considering 

minor differences regarding the sample cohorts (Appendix Tables B1-B3). Following 

that, gene expression data were matched to the available imaging data for each patient. 

The recreated methods were then utilized to classify each tumor in the discovery cohort. 

Classifications are shown in Table 4.4. Further details regarding the recreated analysis are 

available in Appendix B. 
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Table 4.4. Molecular profiles in the discovery cohort.  

Gene 

signature 

Distribution rates (n = 100) 

MammaPrint 13 (low risk) 
 

87 (high risk) 

p53 score 37 wildtype) 
 

63 (mutant) 

PAM 50 

ROR-S 

32 (low risk) 31 (int. risk) 37 (high risk) 

 

 

4.9.4. Delta radiomic feature extraction 

 

Four stable groups of correlated features were determined by consensus 

clustering. Selecting the PCs totaling greater than 85% explained variance from each 

group, a total of six principal components were identified to summarize change in 

heterogeneity for each primary lesion. 

4.9.5. Imaging phenotypes of early change in tumor heterogeneity 

 

Two radiomic phenotypes of early change in intratumor heterogeneity were 

identified using unsupervised hierarchical clustering and shown to be statistically 

significant using the SigClust method (p<0.01). Comparing the average of the six 

radiomic PC values observed for tumors in each phenotype allowed the two phenotypes 

to be interpreted as decreasing (Phenotype 1, n=58) and increasing (Phenotype 2, n=42) 

intratumor heterogeneity from T1 to T2 (Figure 4.2). A Bonferroni statistical correction 

resulted in a p-value of less than or equal to 0.007 to signify statistical significance in 

clinical covariate distribution across phenotypes. The number of future recurrences was 
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significantly different across phenotypes (p < 0.001), with proportionally more 

recurrences in Phenotype 2 (increasing heterogeneity) than Phenotype 1 (decreasing 

heterogeneity), via the Chi-square test. Other clinical and histopathologic covariates, and 

molecular signatures, were not significantly different across phenotypes (Figure 4.3). 

Additionally, neoadjuvant treatment paradigms and targeted treatment paradigms were 

not significantly associated with radiomic phenotypes. Kaplan Meier RFS curves were 

also significantly different between phenotypes (p < 0.001).  
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Figure 4.2. Unsupervised hierarchical clustering of tumors in the discovery cohort identified two 

phenotypes of early changes in intratumor heterogeneity: decreasing heterogeneity from T1 to T2 

(Phenotype 1, in blue) and increasing heterogeneity from T1 to T2 (Phenotype 2, in red) (A). Kaplan-Meier 

curves for RFS of patient groups split by phenotype show significant separation, with tumors showing 

increase in intratumor heterogeneity after initiation of neoadjuvant therapy (Phenotype 2) having worse 

recurrence outcomes (B). 
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Figure 4.3. Distribution of molecular profiling scores across phenotypes. Significant distributions across 

the phenotypes were not seen in the three molecular profiling scores. 

 

Within molecular subtypes of breast cancer, splitting women by radiomic 

phenotype assignment showed no significant difference in RFS for the HR+/HER2- 

subgroup (p = 0.3) and significant differences within the HER2+ and Triple Negative 

subtypes (both p = 0.02) (Figure 4.4). 

 

 

Figure 4.4. Kaplan Meier RFS curves split by phenotype assignment for (A) HR+/HER2-, (B) HER2+ and 

(C) Triple Negative molecular subtypes of breast cancer in the discovery cohort. 
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Kaplan Meier RFS curve separation by phenotype, within strata of FTV2 value 

(less than/greater than median FTV2) also demonstrated significant differences; curve 

separation on FTV2 itself was not significant (Figure 4.5). 

 

 

 

Figure 4.5. Kaplan Meier RFS curves for the discovery cohort split by median FTV2 value (A) versus split 

by phenotype within strata of less than median FTV2 (B) and greater than median FTV2 (C). RFS split by 

above/below median FTV2 does not show p < 0.05 for separation. Within each stratum of FTV2, the split on 

phenotype is significant (B and C). 

  

Kaplan-Meier curve separation of tumors split on the median risk score generated 

from a Cox proportional hazards model using baseline model covariates (age, HR status, 

and HER2 status) and FTV2 was significant (p=0.04). Within the low-risk tumors, further 

separation on phenotype demonstrated no significant curve differences. For high-risk 

tumors, separation by phenotype was significant (p < 0.01) (Figure 4.6). 
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Figure 4.6. Survival versus risk score for the discovery cohort calculated by a Cox model using baseline 

model covariates (age, HR status, and HER2 status) and FTV2. Split on above versus below median risk 

(A). Split on phenotype within the low-risk stratum (B). Split on phenotype within the high-risk stratum 

(C).  

Univariable Cox regression models based on each of MammaPrint, ROR-S, and 

p53 scores resulted in c-statistics of 0.64, 0.64, and 0.66, respectively. Kaplan Meier 

survival curves for MammaPrint, ROR-S, and p53 scores were not significant (Figure 

4.7).  

 

Figure 4.7. Kaplan Meier survival curve for molecular profiling scores. 

 

A baseline model (model 1) based on age, HR status and HER2 status resulted in 

a cross validated, averaged over 100 replicates, c-statistic of 0.55. Adding FTV2 to the 

baseline model (model 2) improved the c-statistic to 0.67 and adding molecular 

signatures to the baseline and FTV2 model (model 3) resulted in a c-statistic of 0.61. A 



73 
 

model of baseline, FTV2, and radiomic phenotype assignment (model 4) resulted in a c-

statistic of 0.73 and a combined model of baseline, FTV2, molecular profile scores, and 

radiomic phenotype assignment (model 5) demonstrated improved discriminatory 

capacity with a c-statistic of 0.79. The improvement in the final combined model was 

significant compared to the baseline, FTV2, and molecular signature score model, as 

determined by the log-likelihood test (p<0.01) (Table 4.5).  
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Table 4.5. Univariable and multivariable Cox models of RFS within the discovery 

cohort.  
Model c-statistic 95% CI 

for c-

statistic 

Model p1 p 

versus 

nested 

model 

MammaPrint 0.61 0.59-0.63 0.2 
 

ROR-S 0.64 0.63-066 0.1 
 

p53 score 0.58 0.56-0.60 0.06 
 

Model 1: Baseline  

(age, HR status, 

HER2 status) 

0.55 0.55-0.56 0.7 
 

Model 2: Baseline, 

FTV2 

0.67 0.66-0.68 0.06 0.0052 

Model 3: Baseline, 

FTV2, molecular 

signatures 

0.61 0.59-0.62 <0.05 0.133 

Model 4: Baseline, 

FTV2, phenotype 

0.73 0.72-0.74 < 0.01 0.013 

Model 5: Baseline, 

FTV2, molecular 

signatures, phenotype 

0.79 0.78-0.81 <0.001 0.0024 

 1. p versus null model of equal hazard for all patients. 

2. p versus Model 1, log-likelihood test. 

3. p versus Model 2, log-likelihood test. 

4. p versus Model 3, log-likelihood test. 
 

 

 

Confusion matrices for associations between molecular profile scores and 

radiomic phenotypes and RFS event/censor were generated. Overall positive predictive 

values (PPV) and negative predictive values (NPV) for MammaPrint, ROR-S, p53 
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mutation status and radiomic phenotype assignment demonstrated that radiomic 

phenotype status had the highest PPV and NPV out of the four models (Figure 4.8). 

 

Figure 4.8. Confusion matrices for RFS prediction models within the discovery cohort using MammaPrint 

score (A), ROR-S (B), p53 mutation status (C), and radiomic phenotype (D). 

 

The two radiomic phenotypes identified in the discovery set were replicated in the 

validation cohort and found to be statistically significant via the SigClust method 

(p=0.04). Kaplan-Meier curves of tumors in the validation cohort split by phenotype also 

had a statistically significant difference (p<0.01). A Bonferroni statistical correction 

resulted in a p-value of 0.008 to mean statistical significance in clinical covariate 

distribution across phenotypes.  The proportional number of recurrences was significantly 

different across phenotypes (p=0.004) using the Chi-square test, with Phenotype 2 

(increasing heterogeneity) having proportionally more recurrence evens than Phenotype 1 

(decreasing heterogeneity) (Figure 4.9).  
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Figure 4.9. Replication of radiomics phenotypes in the validation cohort found to be significant (p=0.04) 

(A). Kaplan-Meier curves for RFS split on radiomic phenotype show significant separation (p = 0.002) (B). 
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4.10. Discussion 
 

Two intrinsic radiomic phenotypes of early change in intratumor heterogeneity in 

response to neoadjuvant chemotherapy for locally advanced breast cancer were identified 

and validated. Interpretation of the two radiomic phenotypes as capturing an increase and 

decrease in intratumor heterogeneity from pre-treatment to early-treatment showed that 

tumors assigned to the phenotype with increasing intratumor heterogeneity had a greater 

number of future recurrences. This was further supported by significant separation in 

Kaplan Meier curves when stratifying women by phenotype assignment. Additionally, 

the stratification of women within FTV subgroups by phenotype demonstrates the added 

value of radiomic analysis in modeling prognosis (Figure 4.5). Augmenting established 

clinical and histopathological prognostic factors with molecular signature scores and 

radiomic phenotypes resulted in better prediction of RFS. This suggests that leveraging 

the complementary information provided by genomic and radiomic data can allow for a 

more comprehensive assessment of tumors and personalized therapy selection.  

There may be certain plausible explanations for our observations. By capturing 

changes in kinetic maps of the DCE-MRI data, the identified phenotypes could reflect 

changes in tumor composition and angiogenic properties in response to neoadjuvant 

chemotherapy. Increased heterogeneity may in turn reflect tumor plasticity, which can 

lead to acquired resistance. The imaging phenotype demonstrating increased 

heterogeneity from baseline to early-treatment exhibited an increased number of 

recurrence events, thus supporting the hypothesis that more heterogeneous tumors may 

result in more adverse clinical outcomes. In contrast, the radiomic phenotype 
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demonstrating decreasing heterogeneity from pre-treatment to early-treatment included a 

higher number of tumors achieving pCR, which may suggest a relationship between 

decreased intratumor heterogeneity and an improved response to neoadjuvant 

chemotherapy (Figure 4.2). 

Interpreting the radiomic phenotypes of change in tumor heterogeneity through 

the lens of tumor biology may provide further insight into the biologic changes occurring 

within the tumor in response to neoadjuvant chemotherapy. As an example, two 

representative tumors from women with similar age, receptor status, FTV2 values, and 

ROR-S scores indicating low risk of recurrence were assigned to separate imaging 

phenotypes based on their early change in heterogeneity. The tumor assigned to 

Phenotype 2, with an increase in intratumor heterogeneity after initiation of treatment, 

actually had a future event of recurrence while the tumor assigned to Phenotype 1, having 

a decrease in intratumor heterogeneity, did not have a future event of recurrence (Figure 

4.10). For these two representative cases, both women were of similar age with similar 

histopathologic status (HR+/HER2-). While ROR-S scores for both women characterized 

their tumors as “low risk of recurrence”, the women had different MammaPrint and p53 

status and were assigned to separate phenotypes based on their early change in their 

intratumor heterogeneity. In this particular example, the woman classified as “high risk” 

by MammaPrint score, went on to have no future recurrence event, while the woman 

classified as “low risk” did have a future event of recurrence. As MammaPrint status and 

p53 status assignments were not significantly associated with phenotype assignment 

across the cohort (Figure 4.3), this suggests that the complementary information provided 
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by radiomic and genomic analysis could allow for increased confidence in treatment 

planning and clinical decision making. Furthermore, examining the principal component 

feature values for each woman suggests that quantitative imaging characterizations could 

reflect differences in these two tumors that may predict future outcomes. Of the six 

principal components used to cluster all tumors into the two phenotypes, C1-PC1, C4-

PC1, and C3-PC1 distributions were found to be statistically significant tested against a 

p-value of 0.05 using Significance Analysis of Microarrays Test198. Examining the delta 

radiomics features comprising each feature cluster from which the principal components 

were generated could provide more insight into the specific quantitative differences in 

tumors in each phenotype. Specifically, as all radiomic features were extracted from the 

voxel-wise kinetic images, they provide a quantitative characterization of tumor 

angiogenesis and perfusion related properties. C1-PC1 consists largely of features 

characterizing changes in tumor morphology across all kinetic images, including ellipse 

diameter and sphericity. In the representative images, the tumor assigned to Phenotype 2 

has a greater value of this feature, suggesting that it had an increase in ellipse diameter 

and more irregular volume moving from T1 to T2. C4-PC1 consists of features 

characterizing changes in mean contrast intensity, specifically from the WOS image. As 

this image quantifies the rate of “wash-out” of contrast agent, the representative image in 

Phenotype 2 may have an increase in tumor wash-out from T1 to T2, suggesting an 

increase in leaky vasculature due to increased angiogenesis, a characteristic of more 

aggressive tumors199. Lastly, C3-PC1 consists of features summarizing morphologic 

flatness across all four kinetic images. Both representative tumors have similar values for 
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this feature suggesting that both tumors decreased in morphologic flatness from T1 to T2 

(Table 4.6). 

 

Figure 4.10. Representative tumors from Phenotype 1 (early decrease in intratumor heterogeneity) and. 

Phenotype 2 (early increase in intratumor heterogeneity) shown in DCE-MRI scans at T1 and T2 from the 

discovery cohort. (A) Representative 2D DCE-MRI slice and tumor region for T1 and T2 images from a 

woman, age 50, with an HR+/HER2-, ROR-S low risk, p53 wildtype (low risk), and MammaPrint score of 

-0.18 (high risk) tumor with no pCR and no future event of recurrence assigned to Phenotype 1. (B) 

Representative 2D DCE-MRI slice and tumor region for T1 and T2 images from a woman aged 42, with an 

HR+/HER2-, low risk ROR-S, p53 mutant (high risk), and MammaPrint score of -0.41 (low risk) tumor 

with no pCR and a future event of recurrence assigned to Phenotype 2. (C) Representative 2D images of 

PE, SER, WIS, and WOS voxel-wise maps for T1 and T2 for the tumor in phenotype 1. (D) FTV at T2 

overlay for these representative tumors from phenotype 1 and 2. (E) Representative 2D images of PE, SER, 

WIS, and WOS voxel-wise maps for T1 and T2 for the tumor in phenotype 2. (F) FTV at T2 values for 

each representative tumor. Values for features (G) C1-PC1, (H) C4-PC1, and (I) C3-PC1, for each 

representative tumor. These representative cases provide an example where imaging characterizations of 

changes in each tumor’s heterogeneity provided a stratification related to future outcomes. In this example, 

established clinical covariates did not provide such stratification. 



81 
 

 

 

Table 4.6. Radiomic features comprising significant feature cluster principal 

components.  
Cluster 1- PC1 Cluster 4- PC1 Cluster 3- PC1 

PE Intensity Quartile Coefficient of Variation WOS Histogram Ninetieth Percentile PE Morphologic Flatness 

PE Morphologic Ellipse Diameter Axis 0 WOS Histogram Root Mean Square SER Intensity Interquartile Range 

PE Morphologic Ellipse Diameter Axis 1 WOS GLCM Entropy SER Morphologic Flatness 

PE Morphologic Ellipse Diameter Axis 2 WOS GLRM Short Run High Grey Level 

Emphasis 

WIS Morphologic Flatness 

PE Morphologic Equivalent Spherical Radius WOS GLSZM Grey Level Mean WOS Morphologic Flatness 

SER Morphologic Ellipse Diameter Axis 0 
  

SER Morphologic Ellipse Diameter Axis 1 
  

SER Morphologic Ellipse Diameter Axis 2 
  

SER Morphologic Equivalent Spherical 

Radius 

  

WIS Intensity Quartile Coefficient of 

Variation 

  

WIS Morphologic Ellipse Diameter Axis 0 
  

WIS Morphologic Ellipse Diameter Axis 1 
  

WIS Morphologic Ellipse Diameter Axis 2 
  

WIS Morphologic Equivalent Spherical 

Radius 

  

WOS Morphologic Ellipse Diameter Axis 0 
  

WOS Morphologic Ellipse Diameter Axis 1 
  

WOS Morphologic Ellipse Diameter Axis 2 
  

WOS Morphologic Equivalent Spherical 

Radius 

  

WOS GLSZM Zone Size Nonuniformity 
  

 

Significant separation of women by radiomic phenotype assignment by Kaplan-Meier 

curves for women with HER2+ and triple-negative breast cancers may further highlight 

the known sub-clonal diversity within these subtypes (Figure 4.4)200-202. Our findings 

suggest that tumors within these subgroups that become more heterogeneous as an early 
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response to neoadjuvant chemotherapy may be more aggressive, resulting in increased 

likelihood of recurrence. 

Confusion matrices for RFS prediction using molecular signatures and radiomic 

phenotype assignment demonstrate a greater PPV and NPV when using radiomic 

phenotypes (Figure 4.8). However, a limitation of using only radiomic phenotypes can be 

seen when comparing the predictive value of radiomic phenotypes alone against the 

MammaPrint assay. Seven women in Phenotype 1 went on to have recurrence despite 

decreasing heterogeneity on imaging whereas only 2 women, identified as a MammaPrint 

“low risk”, had a recurrence. Leveraging the complementary information from both 

personalized molecular signatures and incorporating longitudinal data about tumor 

heterogeneity resulted in the most accurate predictive model in our study. 

Limitations to our study should be noted. First, our exploratory analysis included 

a relatively small sample size, as we restricted it to publicly available data from the 

ACRIN 6657/I-SPY 1 trial with both DCE-MRI and gene expression data available. In 

addition, the validation cohort utilized for this study did not include gene expression data 

which prevented us from validating the prognostic benefit of the molecular profiling 

scores. The publicly available microarray data used to generate the molecular profiling 

scores was also limited by older acquisition protocols and technology. Additionally, 

image analysis was limited by the older image acquisition protocol and technology used 

in this study. However, the scan duration used for the dataset deriving from the I-SPY 1 

trial was 4.5 minutes, which is similar to the current American College of Radiology 

(ACR) recommendation of <= 4 minutes203. Moreover, the datasets used in this study for 
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discovery and validation are among the only publicly available datasets with true long-

term follow up available following NAC. Ultimately, given the encouraging, exploratory, 

and proof of concept results with these older MRI protocols, we can hypothesize that the 

performance of the proposed radiomic features may be better with newer MRI protocols. 

Future work will include expanding our analysis to larger cohort sizes with images 

acquired with newer, more clinically utilized MRI acquisition protocols, as well as 

exploring relationships between early changes in tumor heterogeneity via radiomic 

phenotyping and differentially expressed genes with related molecular pathways. 

Additionally, utilization of Next Generation Sequencing (NGS) techniques which, in 

contrast with microarrays, do not depend on specific probes for the quantification of the 

expression of pre-specified genes, will allow for deeper analyses. 

In conclusion, our exploratory results demonstrate that early changes in 

intratumor heterogeneity in response to neoadjuvant chemotherapy as captured by 

radiomic analysis of DCE-MRI may provide improved prediction of RFS for locally 

advanced breast cancer. Longitudinal non-invasive assessment of tumor phenotypes via 

imaging may allow for monitoring of heterogeneity and underlying tumor biology. 

Augmenting clinical, histopathologic, and molecular covariates with imaging phenotypes 

may allow for personalized risk stratification and early adaptation of treatment strategies. 
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Chapter 5 : Developing a 4-D segmentation method to characterize 

intratumor heterogeneity  
 

5.1. Introduction 
 

Given the current hypotheses of linear and branched evolution for breast tumor 

progression, sub-clonal populations are thought to be spatially contiguous regions of 

shared physiologic function.  Partial volume effects introduced during medical image 

reconstructions result in an image blurring effect, caused by the finite spatial resolution of 

an imaging system following a 3D convolutional operation of the source with a point 

spread function204. Additionally, voxel sampling as a 3-D grid suggests that neighboring 

voxels may share underlying tissue structure, or that a single voxel may summarize the 

signal of multiple tissue structures, a phenomenon known as the “tissue fraction 

effect”204. As such, it is hypothesized that imaging representations of intratumor 

heterogeneity would result in spatially contiguous voxels sharing similar physiological 

behavior. 

Conventional radiomic features largely aim to quantify the spatial distribution of 

voxel intensities28. While informative when paired with imaging modalities with high 

spatial resolutions, some imaging modalities, such as PET, may be limited in spatial 

resolution. Instead, novel methods to characterize intratumor heterogeneity by leveraging 

the molecular specificity provided by PET imaging should be leveraged. 



85 
 

Preliminary work suggests that established unsupervised parcellation 

techniques205 are inadequate for identifying spatially constrained, functionally similar 

sub-regions. Such methods (e.g. k-means clustering, hierarchical clustering) assume that 

dynamic data extracted from each voxel is independent from its surrounding voxels. 

While many segmentation techniques exist, a novel paradigm is required to perform an 

unsupervised segmentation of spatially constrained, non-rigid, and arbitrarily shaped 

regions with discrete functional behavior. Other established segmentation techniques are 

designed for segmenting well defined anatomical structures or require manual 

initialization or well-defined control points206-208. Probability based clustering methods209 

require an user-defined threshold for segmentation and therefore may not account for 

partial volume effects204. We hypothesize that a segmentation method incorporating both 

spatial and temporal image information would have improved segmentation accuracy 

over established methods utilizing only temporal dynamics or spatial information alone. 

Incorporation of spatial constraints to a segmentation method may account for tissue 

fraction and partial volume effect 

We have developed a method to characterize 4-D functional tumor heterogeneity 

(FTH) by aiming to capture aspects of both spatial and kinetic tumor heterogeneity as 

seen in dynamic imaging. Identifying functionally discrete sub-regions within a single 

tumor region may allow for characterizing the extent of intratumor heterogeneity and 

may lead to studies monitoring sub-region growth and response to treatment. Leveraging 

the improved dynamic sampling and molecular specificity afforded by dynamic PET 

imaging may allow for non-invasive, novel prognostic and predictive markers to 
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characterize tumor molecular biology. The developed method is agnostic to the specific 

radiotracer utilized and does not depend on complex kinetic modeling assumptions. 

Instead, the approach is data driven in terms of identifying intrinsic 4-D patterns of 

molecular tumor heterogeneity. 

5.2. Simulated image phantoms  
 

Algorithm development and training was carried out using simulated 4-D PET 

data. With the goal of developing a method with broad applicability, agnostic to 

radiotracer or disease site, we chose to perform these algorithm trainings using a tracer 

with broadly similar tracer kinetics to fluorodeoxyglucose (18F-FDG) (FDG), a 

commonly used radiotracer in cancer staging. Simulated dynamic PET images based on 

data from fluorothymidine (18F-FLT) (FLT) PET210 were utilized for method 

development and validation. FLT was chosen as a representative tracer with kinetics 

similar to other trapped cancer-relevant radiotracers to assess the generalizability of our 

method. All simulations were done using Geant4 Application for Tomographic Emission 

(GATE)211. The scanner simulations were based on the PennPET Explorer212 with 70-cm 

axial field of view. Based on prior human studies of FLT data from patients with lung 

cancer210, kinetic parameters were selected to emulate low, medium, and high KFLT 

lesions (ml/cm3/sec) and the blood input curve was derived from an FLT PET patient 

dataset and fit to a tri-exponential model. Details on simulated image generation have 

been previously described213. The simulated images were cropped to a region-of-interest 

(ROI) comprising the simulated regions and surround background area to a total size of 

64x69x9 voxels x 45 frames. The simulated images consisted of two regions modeling 
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low tracer uptake (10mm and 13mm sphere diameter), two regions modeling medium 

tracer uptake (10mm and 13mm sphere diameter), two regions modeling high tracer 

uptake (10mm and 13mm sphere diameter), a blood region, and a background region 

(Figure 5.1).  

 

Figure 5.1. Dynamic FLT-PET simulation images used for method development and validation. (A) Input 

data used to generate dynamic simulations. (B) Labels for all regions in simulated image. (C) Center slice 

images from representative simulation frames. (D) Average TACs for simulation sphere and blood curve 

regions. 

5.3. Limitations of existing methods 
 

Unsupervised segmentation analysis allows for the intrinsic grouping of 4-D 

functional data without prior knowledge of voxel labels. Mapping histopathologic ground 
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truth to imaging representations of sub-clonal regions is often limited by the non-

isotropic resolution of voxels and tissue deformation that can occur between resection 

and fixation for histology analysis7,21. 

Developing a method to identify functionally discrete sub-regions began by 

evaluating the performance of established unsupervised clustering algorithms for time 

activity clustering and by adding spatial constraints to these established methods. Use of 

the simulated image phantoms allowed for evaluating method performance when 

segmenting spatially constrained, functionally discrete sub-regions. Initial method 

performance was evaluated using visual inspection of the resulting segmentation of 

simulated spheres image, allowing for iterative improvements to be made. 

The first evaluated unsupervised technique was hierarchical clustering, grouping 

together voxels within the image based on the Euclidean distance between time activity 

curves. Ward’s method for minimum variance was used as the clustering criteria. 

Qualitative assessment of the resulting segmentation suggested a need for adding a spatial 

weight to ensure that minimum variations in time activity behavior within a region, 

causing neighboring voxels to be classified with different labels, could be offset by 

spatial proximity. 

A spatially weighted clustering method for hierarchical clustering was then 

implemented to promote within cluster minimization based on voxel spatial location and 

functional behavior, as seen in Eq. 5.1. 
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 Eq. 5.1 

Here, df represents the within cluster Euclidean distance between time activity curves  

between voxels i and j. Similarly, ds represents the within-cluster Euclidean distance 

between spatial coordinates for voxels i and j.  The term α is used to control the degree of 

influence either functional similarity or spatial similarity has on the minimization. Use of 

this minimization function was implemented with hierarchical clustering and assessed 

qualitatively. 

Next, dynamic time warping (DTW) was used instead of Euclidean distance, to 

identify alignment between voxels’ time activity curve behaviors214. DTW is a technique 

used to find the optimal alignment between two time-dependent sequences that have been 

sampled at equidistant points in time. Briefly, the pairwise distance between time series, 

X and Y, are first calculated. Within this, the algorithm aims to find and alignment path 

through low-cost areas of the distance matrix215.  The resulting segmentation performance 

of using hierarchical clustering with DTW as a distance metric in the time domain was 

assessed qualitatively. 

Spectral clustering is a clustering algorithm utilizing graph-based segmentation 

techniques. This algorithm calculates the distance between all voxels and then uses the 

top eigenvectors of this distance matrix to form groupings. Briefly, an adjacency matrix 

is created in which each element is the pairwise adjacency between two voxels, xi and xj, 

defined as: 
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Eq. 5.2 

 

Here, df represents the within cluster Euclidean distance between time activity curves  

Between voxels xi and xj. From this, a degree matrix, a diagonal matrix with degrees 

d1,…,dn calculated along the diagonal is calculated as: 

 

Eq. 5.3 

For each voxel i, summing over all voxels adjacent to i. The non-normalized 

Laplacian L, is then calculated as L= D- W. From this, the first k eigenvectors 

summarizing L are calculated, and then k-means clustering is used to cluster the 

eigenvectors into sub-groups216. Spectral clustering was used to segment the simulated 

image with voxels represented as time activity curves, and segmentation performance 

was qualitatively assessed. 

A spatial constraint was then added to the spectral clustering adjacency matrix as 

previously identified, by multiplication of an exponential spatial weight: 

 

Eq. 5.4 

where ds represents the within-cluster Euclidean distance between spatial coordinates for 

voxels xi and xj. This exponential spatial weight was added to penalize clustering 

assignment by spatial location, such that voxels grouped together according to functional 
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data would also be spatially contiguous. Segmentation performance was qualitatively 

assessed. 

Lastly, wavelet decomposition analysis was explored to reduce the dimensionality 

of time activity curves prior to clustering. The segmentation performance of representing 

voxels by their first wavelet decomposition was qualitatively assessed. Representative 

segmentations of the central 2-D slice of the simulated image phantoms from all 

evaluated techniques can be seen in Figure 5.2. These evaluated methods did not 

qualitatively result in successful segmentation of the simulated image. 

 

Figure 5.2. Segmentation performance for various evaluated techniques applied to the simulated phantom 

images. Segmentation performance was qualitatively assessed by visually comparing performance to the 

true segmentation labels. 
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Overall, these experiments suggested the need for improved representation of 

similarities in time activity behavior along with a spatial weight in order to segment the 

simulated images in 4-D.   

5.4. Radiomic functional intratumor (Rad-FIT) clustering 
 

Due to the limitations of existing unsupervised voxel parcellation methods and in 

order to better assess both the spatial and temporal heterogeneity seen in breast tumors, 

Radiomic Functional Intratumor (Rad-FIT) clustering was developed as a 4-D-

segmentation method to segment tumors into spatially constrained, functionally discrete 

sub-regions (Table 5.1).  

In characterizing intratumor heterogeneity, the assumption of voxel 

independence8, upheld in many conventional unsupervised clustering studies, does not 

hold due to overwhelming evidence suggesting that neighboring voxels share physiologic 

similarity39. Therefore, a method incorporating a voxel’s spatial neighborhood in its own 

label assignment was incorporated. Further, Rad-FIT clustering does not require manual 

initialization or defined control points. Instead, we utilized a randomly initiated k-means 

clustering for initialization. Compared to other clustering algorithms that determine hard, 

spherical or compact clusters (e.g. k-means clustering), or prevent adjustment once a 

cluster merge or split decision has been executed (e.g. hierarchical clustering), Rad-FIT 

clustering allows for an iterative, probability-based label assignment with no prior 

assumption about sub-region shape. Lastly, Rad-FIT clustering allows for easier 

interpretation of within sub-region similarities and between sub-region differences, as 
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compared to other graph-based segmentation approaches, due to summarizing time 

activity information into dominant modes of variation. 

For a given voxel v within a 3-D ROI, the 4-D functional behavior can be 

represented as v(x,y,z,y,t) given a 3-D spatial location x,y,z  and t representing the temporal 

signal from a set of dynamic frames. The temporal signal of an ROI over dynamic PET 

scans is first summarized using functional principal component analysis (FPCA). 

Functional principal component analysis (FPCA) is a method used to determine modes of 

variation in functional data. Principal component analysis (PCA) is a well-established 

method for dimensionality reduction and capturing dominant modes of variation in high 

dimensional data through a set of orthonormal vectors. Similarly, FPCA extends this idea 

to continuous functions in time, where the dominant modes of variation in the time 

curves are represented as eigenfunctions, and data points are projected into this space 

represented by functional principal components. Use of FPCA allows for the 

dimensionality reduction of time series data for each voxel while retaining the variance of 

its temporal information. The dynamic scan is then reduced, with each voxel represented 

using functional principal components (FPC) capturing greater than 85% of the variance 

seen in its dynamic behavior (vx, y, z, f).   

A Markov Random Field (MRF) segmentation paradigm is applied to the voxel 

data.  Here, ignoring the independence assumption between image voxels, the prior 

probability of a label z for pixel  vx,y,z,f   is then modeled using a simple state prior model 

(Eq. 5.5) 217.  



94 
 

 

Eq. 5.5 

 

where k is the number of possible labels, β is a floating parameter controlling the 

influence of neighboring voxels, and Nx,y,z defined as a 3x3x3 voxel grid surrounding 

vx,y,z,f. The likelihood model of vx,y,z,f is modeled as a multivariate Gaussian distribution 

(Eq 5.6).  

 

 

Eq. 5.6 

 

Initialization of mean and standard deviation values for each label k is performed using 

K-means clustering with a predetermined number of k labels. The posterior distribution 

for all labels, k, and all n pixels within the ROI is modeled by, 

 

 

Eq. 5.7 

 

 and parameters  are updated by the following equations (Eq 5.8, Eq 5.9):  
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Eq. 5.8 

         

                                 

 

Eq. 5.9 

 

where j is the number of FPCs selected. The optimization problem and parameter 

estimation is then solved using the expectation maximization (EM) algorithm218.   
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Table 5.1. Radiomic functional intratumor (Rad-FIT) clustering  

 

5.5. Initialization of Rad-FIT clustering 
 

K-means clustering was chosen as the initialization technique for Rad-FIT 

clustering to determine an initial parameter estimation for the conditional distribution. K-

means clustering is well established as an initialization method for probability-based 

clustering using the EM algorithm. Use of k-means clustering as an initialization method 

over random initialization resulted in improved performance of Rad-FIT clustering 

(Figure 5.3). 

 

Algorithm 1 — Radiomic functional intratumor (Rad-FIT) clustering 
 

Input: Vi ∈ R3×t,   (floating parameter), k (number of sub-regions) 

Output:  z ∈ [0,1]K (Clustering Assignment) 

       Initialization: Initialize z,  by K-means clustering algorithm 

       Step 1: Functional principal component analysis (retain components with 85% of 

variance:                       

                     V(x,y,z,t) » V(x,y,z,f) 

       Loop- Repeat (t) until convergence 

• Fix z,  — Solve for   

• Fix  —  

• Solve for  
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Figure 5.3. Comparison of initialization techniques. Segmentation performance of (A) K-means clustering 

as an initialization method for (B) Rad-FIT clustering as compared to (C) random initialization as an 

initialization method for (D) Rad-FIT clustering. Initialization approaches were evaluated for 2-class 

segmentation, 3-class segmentation, and 5-class segmentation. Varying colors represent how the image has 

been segmented into discrete classes. 

 

5.6. Value of dynamic imaging versus static imaging 

 
Previous studies have demonstrated the improved prognostic and predictive value 

of utilizing dynamic PET imaging over static imaging22. However, static imaging is more 

widely implemented in a clinical setting than a more conventional PET imaging 

protocol219. To determine whether temporal sampling over a 60 min dynamic imaging 

scan offered additional information to that from a static image, or an image with a sub-

sampled number of temporal frames when identifying 4-D sub-regions, the performance 

of Rad-FIT clustering was evaluated on the final frame of the 60-minute scan as well as 

using the first, middle, and final frames over the 60-minute scan. (Figure 5.4). The 
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resulting segmentation performances were qualitatively assessed and demonstrated the 

additional information provided by leveraging the entire dynamic scan. 

 

Figure 5.4. Rad-FIT clustering performance when only a static scan or a sub-sampled dynamic scan is 

utilized. Qualitative assessment suggests the full dynamic scan offers information beyond that of a static or 

sub-sampled scan required for more accurate segmentation performance. Varying gray scale colors 

represent different classes each image has been segmented into.  

 

5.7. Signal to noise ratio experiments 
 

The floating parameter β used in the MRF-based prior probability in Rad-FIT 

clustering controls the degree of influence a voxel’s spatial neighborhood has on its own 

label assignment.  In order to select the optimal value of β, we assessed an array of values 

ranging from 0 to 3 to determine which resulted in the best segmentation performance 

when used in Rad-FIT clustering. These values were selected empirically based on the 

high degree of variation in clustering performance seen when using this range of β and 

also based on prior studies demonstrating use of a spatial weight of similar value220. To 

model the effects of spatial noise often seen in PET images due to variations in image 

reconstruction techniques, we utilized images of the same simulated image phantom 

reconstructed with one-half and one-quarter of the counts derived from simulated 
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positron annihilation events to effectively model one-half or one-quarter of the 

radiotracer signal, resulting in images with increased signal to noise ratio (SNR). For 

these simulated images, the original 45 frames (full dose of 4.0 mCi (148 MBq), were 

subsampled to roughly correspond to emulated doses of 2.0 mCi (74 MBq) for the one-

half simulation and 1.0 mCi (18.5 MBq) for the one-quarter simulation213.  Use of the 

varying SNR images also allowed us to evaluate the optimal value of β that would allow 

for neighboring voxels of shared functionality to be grouped together independent of 

image noise. The value of β (β =2.6) that resulted in the highest Dice score with minimal 

variation across the three simulated image SNR conditions was selected as the optimal 

value (Figure 5.5). 

 

Figure 5.5. Optimal value of β across simulations of varying signal to noise ratio. 
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5.8. Evaluating method performance on simulated image phantoms 
 

To evaluate the performance of segmenting spatially contiguous regions of 

heterogeneous tracer activity with Rad-FIT, the following segmentation assessments were 

performed.  

First, the improved value of summarizing temporal information from dynamic 

voxel behavior using FPCs was evaluated. The segmentation performance of Rad-FIT 

when simulation voxels were represented by their original time activity curves was 

compared to the performance when simulation voxels were represented by their FPC 

scores.  

 The segmentation performance of Rad-FIT was then evaluated for its ability to 

segment the high, medium, and low uptake 13mm spheres from each sphere’s 

surrounding background region, respectively. All segmentation performances were 

compared against the performance of established unsupervised segmentation algorithms 

including K-means clustering, hierarchical clustering, and spectral clustering216. K-means 

clustering and hierarchical clustering are well-established unsupervised clustering 

techniques used to find intrinsic groupings within data structures. As spectral clustering is 

a graph-based segmentation method relying on the functional similarity and adjacency 

between voxels to identify image partitions, it allowed for more equal comparisons in 

segmentation performance.  

Average signal to background ratios for the low, medium, and high uptake 

spheres were 1.78, 6.95, and 11.89, respectively. When segmenting low, medium, and 
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high uptake spheres from their surrounding background region, segmentation 

performance for all segmentation methods improved when simulation voxels were 

represented by the FPCs capturing greater than 85% of TAC variability as opposed to 

using the TACs. Additionally, Rad-FIT clustering demonstrated the highest segmentation 

performance when segmenting low, medium, and high uptake sphere regions from its 

surrounding backgrounds when evaluated using the Dice score221 (Table 5.2) and Jaccard 

index (Table 5.3).  Both the Dice score and Jaccard index are established statistical 

metrics used to determine the degree of overlap between the true regions and resulting 

regions from the segmentation algorithm. Both Dice scores and Jaccard indices include 

values ranging from 0 to 1, with a value of 1 indicating perfect similarity between true 

and segmented regions. Segmentation performance of each algorithm on a representative 

center slice (2-D) for the high sphere region (Figure 5.6), medium sphere region (Figure 

5.7), and low sphere region (Figure 5.8) can be seen below.  
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Table 5.2. Average segmentation performance over ten replicates evaluated using the Dice scores 

when segmenting low, medium, and high uptake simulated sphere regions from surrounding 

backgrounds. Standard deviation in parentheses. 

 

 

 

 
 Dice scores 

Segmentation 

region 

 Voxel 

representation 

Hierarchical 

clustering  

Spectral 

clustering  

K-means 

clustering 

Rad-FIT 

clustering  

Low uptake 

sphere 

Time activity 

curves 
0.15 (0) 0.04 (0.001) 

0.13 

(0.06) 
0.24 (0.07) 

FPC 0.67 (0) 0.16 (0.03) 
0.65 

(0.02) 
0.70 (0.01) 

Medium 

uptake sphere 

Time activity 

curves 

0.77 

(<0.001) 
0.06 (0.01) 0.44 (0.4) 0.73(< .001) 

FPC 0.78 (0) 0.20 (0.18) 
0.84 

(0.03) 
0.85 (0) 

High uptake 

sphere 

Time activity 

curves 
0.72 (0) 0.18 (0.07) 

0.52 

(0.40) 
0.66 (0) 

FPC 0.83 (0) 0.17 (0.03) 0.84 (0) 0.86 (0) 
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Table 5.3. Average segmentation performance over ten replicates evaluated using the 

Jaccard index when segmenting low, medium, and high uptake simulated sphere regions 

from surrounding backgrounds. Standard deviation in parentheses. 

 

  Jaccard indices 

Segmentation 

region 

Voxel 

representation 

Hierarchical 

clustering  

Spectral 

clustering 

K-means 

clustering 

Rad-FIT 

clustering  

Low uptake 

sphere 

Time activity 

curves 
0.08 (0) 0.01 (0.01) 

0.07 

(0.03) 
0.14(0.05) 

FPC 0.50 (0) 0.09 (0.03) 0.55 (0.2) 0.54 (0) 

Medium 

uptake sphere 

Time activity 

curves 
0.64 (0) 0.015(0.02) 

0.30 

(0.37) 
0.58 (0) 

FPC 0.65 (0) 0.12 (0.17) 
0.72 

(0.04) 

0.74 

 (< .01) 

High uptake 

sphere 

Time activity 

curves 
0.56 (0) 0.52 (0.04) 

0.44 

(0.36) 
0.52 (0) 

FPC 0.71 (0) 0.08 (0.01) 0.73 (0) 0.75 (0) 
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Figure 5.6. Segmentation performance of Rad-FIT clustering and established unsupervised clustering 

algorithms when segmenting representative center-slice (2-D) of high uptake sphere ROI from background. 

(A) True labels for high uptake sphere ROI. (B) Time activity curves for voxels in ROI and background. 

(C) Segmentation performance of algorithms when voxels are represented as time activity curves. (D) 

Segmentation performance when voxels are represented as FPCs. 
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Figure 5.7. Segmentation performance of Rad-FIT clustering and established unsupervised clustering 

algorithms when segmenting representative center-slice (2-D) of medium uptake sphere ROI from 

background. (A) True labels for medium uptake sphere ROI. (B) Time activity curves for voxels in ROI 

and background. (C) Segmentation performance of algorithms when voxels are represented as time activity 

curves. (D) Segmentation performance when voxels are represented as FPCs. 
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Figure 5.8. Segmentation performance of Rad-FIT clustering and established unsupervised clustering 

algorithms when segmenting representative center-slice (2-D) of low uptake sphere ROI from 

background.(A) True labels for low uptake sphere ROI. (B) Time activity curves for voxels in ROI and 

background. (C) Segmentation performance of algorithms when voxels are represented as time activity 

curves. (D) Segmentation performance when voxels are represented as FPCs. 

The k-means clustering algorithm had the second highest segmentation 

performance across the evaluated unsupervised clustering algorithms when segmenting 

individual sphere regions from its surrounding background. This algorithm was 

subsequently used to compare performance against the Rad-FIT clustering algorithm to 

segment the simulated image into three regions: background, blood, and all spheres. The 

Rad-FIT clustering algorithm was able to segment the low uptake spheres from its 

surrounding background region and resulted in lower mean percent error in the average 

sphere time activity curve (Figure 5.9). 
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Figure 5.9. Comparing segmentation performances-three class labels. (A) Representative center slice 

image of true segmentation labels (left), segmentation results using K-means clustering (middle), and 

segmentation results using Rad-FIT clustering (right) when segmenting simulation images into three 

classes: background, blood, and spheres. (B) Average time activity curves for true simulation regions (left), 

K-means clustering identified regions (middle), and Rad-FIT clustering (right) identified regions. (C) Mean 

percent error and dice scores for segmentation results. The K-means clustering algorithm fails to segment 

the low uptake spheres from the background region. 
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The k-means clustering algorithm was subsequently used to compare performance 

against the Rad-FIT clustering algorithm to segment the simulated image into five 

regions: background, blood, low uptake spheres, medium uptake spheres, and high uptake 

spheres. The Rad-FIT clustering algorithm was able to segment the low uptake spheres 

from its surrounding background region and identify the five regions of distinct tracer 

uptake (Figure 5.10). In comparison, the K-means clustering algorithm was unable to 

identify and segment the low uptake spheres as a distinct region from its surrounding 

background.  
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Figure 5.10. Comparing segmentation performances-five class labels. (A) Representative center slice 

image of true segmentation labels (left), segmentation results using K-means clustering (middle), and 

segmentation results using Rad-FIT clustering (right) when segmenting simulation images into five classes: 

background, blood, and low, medium, and high uptake spheres. (B) Average time activity curves for true 

simulation regions (left), K-means clustering identified regions (middle), and Rad-FIT clustering (right) 

identified regions. (C) Mean percent error, generalized Dice score, and Jaccard indices for segmentation 

results. The K-means clustering algorithm fails to segment the low uptake spheres from the background 

region, and instead segments the blood region to two separate classes. 
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Overall, the Rad-FIT clustering algorithm demonstrated improved segmentation 

over the K-means clustering algorithm, as demonstrated by decreased mean percent error 

and increased Dice score and Jaccard index for each individual region’s segmentation as 

well as segmenting the overall simulated image, measured over ten replicates. Due to this 

improved segmentation performance, the Rad-FIT clustering algorithm was utilized as a 

4-D unsupervised clustering method towards characterizing functional tumor 

heterogeneity as a prognostic biomarker for women diagnosed with locally advanced 

breast cancer.  
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Chapter 6 : Evaluating the prognostic value of characterizing 4-D 

pharmacokinetic functional tumor heterogeneity 

 

This chapter has been adapted from the following: 

Chitalia, R., Viswanath, V., Pantel, A.R., Peterson, L.M., Gastounioti, A., Cohen, E.A., 

Muzi, M., Karp, J., Mankoff, D.A. and Kontos, D., 2021. Functional 4-D clustering for 

characterizing intratumor heterogeneity in dynamic imaging: evaluation in FDG PET as a 

prognostic biomarker for breast cancer. European Journal of Nuclear Medicine and 

Molecular Imaging, pp.1-12. 
 

 

6.1. Introduction 
 

Molecular and functional imaging modalities permit 4-D sampling of disease 

burden, capturing both spatial and temporal information that could illuminate various 

physiologic behaviors. Dynamic positron emission tomography (PET) imaging can 

quantify specific facets of tumor molecular biology 7,19,222 and can provide information 

beyond that of static imaging 22,23.  In particular, dynamic PET imaging of the glucose 

analog, 18F-fluorodeoxyglucose (FDG), can provide simultaneous information on 

substrate delivery and metabolism 22. Current clinical characterization of malignant 

lesions using PET imaging largely utilizes qualitative descriptors 8 and quantitative 

measures based on static radiotracer uptake (e.g. SUVmax) 223.  

The emerging field of radiomics has introduced multi-parametric imaging features 

extracted with high-throughput computational analysis 33,101,196,224. Previous work by Eary 

et al. quantified spatial heterogeneity of radiotracer uptake in static PET imaging and 
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demonstrated improved prognostic performance over established clinical markers 225. 

Stoyanova et al. identified sub-regions within pre-clinical dynamic contrast enhanced 

(DCE)-MRI images of prostate tumors 226. Similarly, Cherezov et al. identified tumor 

habitats using established radiomic texture features 227. While such studies demonstrate 

the prognostic potential of characterizing 3-D spatial heterogeneity, and are in line with 

studies showing differential physiologic functionality across the whole tumor 228,229, these 

studies do not fully utilize the combined spatial and kinetic (e.g., 4-D) heterogeneity 

information available using imaging probe kinetics from modalities with high temporal 

imaging resolution.  

The advantages of utilizing kinetic information from dynamic PET imaging have 

been demonstrated in breast cancer.  Previous studies have demonstrated predictive 

improvement when FDG delivery (K1) and FDG flux (Ki), in combination with [15O]-

water imaging, were utilized with static SUV measures as markers for neoadjuvant 

chemotherapy response in patients with locally advanced breast cancer 22,230,231. However, 

these conventional kinetic parameters derived from FDG PET imaging at baseline alone 

were unable to show association to disease free survival, likely limited by being derived 

from the most metabolically active portion of the tumor, and therefore not fully capturing 

intratumor heterogeneity 22.  

 We have developed a method to characterize 4-D functional tumor heterogeneity 

(FTH) by capturing aspects of both spatial and kinetic tumor heterogeneity seen in 

dynamic imaging. The improved dynamic sampling and molecular specificity available in 

dynamic PET as compared to other imaging modalities may allow for non-invasive, 
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novel prognostic and predictive markers to characterize tumor molecular biology. The 

developed method is agnostic to the specific radiotracer utilized and does not depend on 

complex kinetic modeling assumptions. Instead, the approach is data driven in terms of 

identifying intrinsic 4-D patterns of molecular tumor heterogeneity. We present a clinical 

proof-of-principle by applying our algorithm on dynamic FDG PET imaging scans of 

primary locally advanced breast cancer. We also investigate the role of imaging 

signatures as a prognostic biomarker for locally advanced breast cancer and the improved 

predictive value of FTH characterization compared to standard dynamic and static 

analytic methods for FDG PET. 

6.2. Study Cohort 
 

 To investigate the role of intratumor segmentation when characterizing functional 

heterogeneity, the prognostic value of functional tumor heterogeneity imaging signatures 

was explored on a previously published data set where serial dynamic FDG PET was 

shown to be predictive of response and recurrence using standard static uptake and 

kinetic analysis 22,230,231. The goal was to test functional tumor heterogeneity imaging 

signatures extracted from dynamic FDG PET scans of women with locally advanced 

breast cancer imaging prior to treatment and compare their predictive value to standard 

approaches.  

We used an anonymized data set consisting of women presenting at the University 

of Washington Breast Cancer Specialty Center with histologically confirmed breast 

carcinoma who underwent dynamic FDG PET imaging prior to neoadjuvant 
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chemotherapy and were followed for disease recurrence. The research protocol was 

approved by the institutional review board and patients studied provided informed 

consent prior to imaging and follow-up. The data set for this analysis was taken from a 

study first reported for 35 patients 230. An additional 30 patients were later studied and 

added to a follow-up report of the data 22,231. From this pooled data set of 65 women with 

complete baseline dynamic FDG PET scans who also completed neo-adjuvant 

chemotherapy and post-therapy surgery, two women were excluded for electing not to 

receive chemotherapy, three women were excluded for electing for medical care 

elsewhere, four patients were excluded for being unwilling to undergo mid-therapy 

imaging, two patients were excluded due to distant disease, and one patient was excluded 

due to little or no tracer uptake upon pre-therapy examination resulting in a total of 53 

women. Of these, two women were excluded due to image artifacts and one woman was 

excluded due to incomplete survival information, resulting in a total of 50 women 

included in this study. Dynamic FDG PET images from these 50 women comprised our 

study sample reported here. Details of the patient population have been previously 

described231.  

Of the 50 women included in the data set, 17 women (34%) had recurrence 

events. A total of 47 (94%) women were diagnosed with infiltrating ductal carcinoma and 

3 (6%) women were diagnosed with infiltrating lobular carcinoma.  

Of the non-recurrent cases, 58% were ER positive, 52% were PR positive, and 

18% were HER2 positive. Of the recurrent cases, 59% were ER positive, 59% were PR 

positive, and 35% were HER2 positive (Table 6.1). 
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Table 6.1. Selected study cohort characteristics.  

 
Non-recurrent cases 

(n=33,66%) 

Recurrent cases  

(n=17, 34%) 

Age 
  

30-39  5 (15%) 6 (35%) 

40-49 14 (43%) 6 (35%) 

50-59 13 (39%) 1 (6%) 

60-69 1 (3%) 3 (18%) 

70-79 0 (0%) 1 (6%) 

Histologic subtype    

Infiltrating ductal 31 (94%) 16 (94%) 

Infiltrating lobular 2 (6%) 1 (6%) 

Receptor subgroup   

ER + /HER2 + 2 (6%) 5 (29%) 

ER+/ HER2 - 16 (48%) 4 (24%) 

ER- /HER2 + 2 (6%) 3 (18%) 

ER-/HER2- (Triple negative) 11 (33%) 5 (29%) 

pCR   

Complete response 8 (24%) 3 (17%) 

ALN positivity   

Max, min, average 18, 0 , 2.26 18, 0 , 5.52 

Baseline tumor size   

Max, min, average (cm) 11, 1.1, 5.2 cm 10, 1.9, 4.9 cm 

Ki67 status 27 cases 14 cases 

Low 2 (7%) 4 (27%) 

Intermediate 2 (7%) 5 (33%) 

High 23 (85%) 7  (47%) 
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Each woman had undergone 60-minute dynamic FDG PET centered over the 

breast prior to neoadjuvant chemotherapy and breast surgery. All women were imaged in 

the supine position and no positioning devices for immobilization were utilized. Women 

were infused with 218-396 MBq of FDG over 2 minutes in a 7-10 mL volume, with an 

intended injected dose of 370 MBq. Images for all women were acquired on an Advanced 

Tomograph (General Electric Medical Systems, Waukesha, WI) using the same image 

acquisition protocol. Dynamic images were acquired (25 image frames: 1- min pre-

injection frame, 4 x 20 s, 4 x 40 s, 4 x 40 s, 4 x 1 min, 4 x 3 min, 8 x 5 min). Images were 

reconstructed into 35 x 128 x 128 voxel matrices with a spatial resolution of 10-12 

mm230. Clinical information collected as part of the study included hormone receptor 

(HR) status consisting of estrogen receptor (ER) and progesterone receptor (PR), human 

epidermal growth factor receptor 2 (HER2), clinical stage, tumor size, proliferation 

(Ki67), pathologic complete response (pCR), axillary lymph node (ALN) positivity, and 

age at diagnosis (Table 6.1). In the study, recurrence free survival (RFS) was tracked for 

each patient, defined as date of known recurrence, date of death, or date of most recent 

clinical follow-up with no evidence of disease, following the patient’s date of surgery. 

Patients received standard of care follow-up including routine period imaging of CT 

scans, blood marker analysis (CA2729), and follow-up visits to check for symptoms.  

Established ROI-based measures of uptake and kinetics for dynamic FDG PET – 

summed imaged standardized uptake value (SUV), and the kinetic parameters of FDG 

blood-to-tissue transport (K1) and FDG trapping flux (Ki) - were calculated based on 

kinetic modeling of dynamic data for each woman and have been previously 
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reported22,230. These kinetic parameters were measured for each tumor from a 1.5 cm-

diameter circle VOI surrounding the area of maximal tumor FDG uptake seen on the 30-

60m summed image. 

6.3. Functional tumor heterogeneity (FTH) signature extraction 

 
A 3-D bounding region surrounding each unifocal lesion was manually identified 

by a radiologist blinded to the outcome of each patient using the final of the summed 

FDG images for the 25 imaging frames (30-60 minutes post-injection) and guided by 

ROIs previously used for extraction of SUV, K1, and Ki for consistency. An established 

segmentation approach was applied to the TACs generated from the 25 imaging frames 

of each voxel within the bounding region to segment the tumor from its surrounding 

background217. 

 Within the segmented 3-D tumor region, Rad-FIT clustering was applied to 

segment each tumor region into three, spatially constrained sub-regions with distinct 

functional behavior. Three sub-regions were selected based on the rationale that there are 

currently three major subtypes of breast tumors broadly recognized: hormone receptor 

positive, HER2 positive, and triple negative4. The three sub-regions within each tumor 

were ranked in order of descending mean value of the first FPC to allow for consistent 

comparisons across tumors. 

The resulting Rad-FIT clustering within each tumor was summarized using 

metrics describing sub-region compactness and separation. These metrics were chosen to 

summarize how well the functional behavior of each tumor will cluster into three groups 
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and to allow for comparisons of intratumor heterogeneity across women. Compactness 

was measured using the between cluster sum of squares (BCSS) scaled by the total sum 

of squares (TSS) :                                                                 

 
Eq. 6.1 

where K represents the 3 sub-regions and N is the total number of voxels within each 

tumor. The separation between sub-regions was determined using the Bhattacharya 

distance 232 to calculate the distance between FPC distributions of two sub-regions, 

represented as ϕ and defined as:  

 Eq. 6.2 

 

Use of this distance allows for a similarity measure between the distributions of FPC 

values within two sub-regions. 

Based on the definitions above, a total of four features summarizing intratumor 

heterogeneity from Rad-FIT clustering results were extracted to form an FTH signature 

(Figure 6.1): (1) BCSS/TSS, (2) distance between sub-region 1 and 2 (ϕ(1,2)), (3) 

distance between sub-region 2 and 3 (ϕ(2,3)), and (4) distance between sub-region 1 and 

3 (ϕ(1,3)).  
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Figure 6.1. FTH signature extraction. (A) 3-D tumor region identified by a radiologist shown in green. (B) 

Automated 3-D segmentation of tumor from background with pixels represented using time activity curves. 

(C) Rad-FIT clustering performed, identifying three, spatially contiguous sub-regions. (D) Cluster 

compactness and cluster separation distances are calculated to form features in FTH signature. (E) 

Intratumor heterogeneity summarized using the FTH signature.  

  BCSS/TSS provides a measure of how compact the resulting clusters are; the 

more compact each cluster is, the greater heterogeneity between the identified sub-

regions. Calculating the distance between the distributions of FPC values of two sub-

regions provides a metric for how separated the clusters are; a greater distance between 

sub-regions indicates greater heterogeneity within the whole tumor region. This FTH 

signature can be used to interpret how distinct the three identified sub-regions are within 

each tumor. As such, the average value of the FTH signature, or FTH signature index, 

can provide a metric for intratumor heterogeneity across tumors. 

6.4. Statistical Analysis: Evaluation of FTH signatures as a prognostic 

biomarker  
 

Our goals in this proof of principal study were to test the prognostic value of FTH 

signatures from dynamic breast cancer FDG PET and to assess for incremental value 

compared to standard clinical parameters and conventional FDG PET static and dynamic 

analysis measures used in prior published analyses. FTH signatures were first z-score 

normalized across all women. Time-to-event analysis was then used to assess the 

prognostic value of the FTH signatures in predicting recurrence-free survival (RFS). To 
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this end, a three-fold cross validated (CV) Cox proportional hazards model was used to 

compare improved prognostic discriminatory capacity over baseline models of 

established prognostic factors consisting of ER status, PR status, tumor size, pCR, and 

ALN positivity and kinetic parameters consisting of the SUV, K1, and Ki. These 

prognostic factors were chosen based on the available data as well as the intent to 

compare analysis results to prior published data 22,230,231.  

Model performance was evaluated using an averaged C-statistic over the test sets 

for all three folds and the log-likelihood statistical test. 

The prognostic value of the FTH signature was evaluated via Kaplan-Meier 

survival analysis using each patient’s risk core, dichotomizing patients into high and low 

risk groups. The risk score for each patient was defined as the patient’s FTH signature 

weighted by the corresponding coefficients from each of the three test sets from a 3-fold 

cross validated model for each covariate in the FTH signature 184,224. Risk scores 

generated from baseline features of ER status, PR status, tumor size, pCR, and ALN 

positivity and from baseline and kinetic features were also assessed. Statistical 

significance of Kaplan-Meier stratification was evaluated using the Log Rank Test. 

Lastly, an exploratory unsupervised hierarchical clustering was performed on the 

extracted FTH signatures from each tumor. The resulting c clusters obtained from the 

hierarchical clustering algorithm were interpreted as c intrinsic FTH phenotypes seen in 

this study population.  
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The optimal number of stable FTH phenotypes was determined using consensus 

clustering166. Statistical significance of the identified, stable FTH phenotypes was 

evaluated using the SigClust method167.  

The distribution of histopathologic and kinetic prognostic covariate values across 

tumors assigned to each of the FTH phenotypes was assessed using chi-square tests for 

categorical biomarkers and one-way analysis of variance test for continuous biomarkers. 

6.5. Results Evaluation of the FTH signature as a prognostic biomarker 
 

Representative tumor images after Rad-FIT clustering demonstrate intratumor 

heterogeneity within breast tumors (Figure 6.2). Tumors with increased intratumor 

heterogeneity can be identified as having sub-regions with distinct time activity curve 

behaviors, while tumors with decreased intratumor heterogeneity display little distinction 

between the time activity curve behavior of the identified sub-regions. 
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Figure 6.2. Representative images for the primary tumors of two women diagnosed with locally advanced 

breast cancer with future tumor recurrence (top) or tumor non-recurrence (bottom). (A) representative slice 

from an early frame at less than 5 minutes after tracer injection, (B) representative slice from middle frame 

at 15 minutes after tracer injection, and (C) representative slice from final frame taken at 60 minutes after 

tracer injection of a 57-year old, post-menopausal woman with a high grade, ER-, PR+, HER2-, tumor who 

had disease recurrence upon follow-up (top). (D) Three sub-regions identified using Rad-FIT clustering 

labeled as region 1 (red), 2 (blue), and 3 (green), and (E) average TACs for each identified sub-region. (F) 

A representative slice from an early frame at less than 5 minutes after tracer injection, (G) slice from 

middle frame at 15 minutes after tracer injection, (H) and representative slice from final frame taken at 60 

minutes after tracer injection of a 36-year old, pre-menopausal woman with a high grade, ER+, PR-, HER2-

, tumor with no disease recurrence (bottom). (I) Three sub-regions with distinct 4-D behavior identified 

using Rad-FIT clustering labeled as region 1 (red), 2 (blue), and 3 (green), and (J) average time activity 

curves for each identified sub-region. 

 

As expected, in a full multivariate Cox proportional hazards model after adjusting 

for ER status, PR status, tumor size, pCR, and ALN positivity (Table 6.2), ϕ(1,2) and 

ϕ(2,3) were associated with disease free survival (Table 6.3). 
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Table 6.2. Risk of breast cancer recurrence in Hazzard Ratios (HR) associated with 

baseline model.  

Covariate HR 95% CI  p-value 

ER status 1.17 0.24-9.98 0.87 

PR status 0.51 0.05-4.8 0.55 

Tumor size 0.99 0.82-1.22 0.99 

pCR 1.12 1.01-1.21 0.01 * 

ALN positivity 0.85 0.23- 3.15  0.81 

 

Table 6.3. Risk of breast cancer recurrence associated with FTH imaging signature 

adjusting for baseline and kinetic features.  

Covariate HR 95% CI  p-value 

BCSS/TSS 1.08 0.62-1.89 0.77 

ϕ(1,2) 0.04 0.002-0.66 0.02* 

ϕ(1,3) 0.82 0.48-1.39 0.46 

ϕ(2,3) 14.08 2.41-21.18 0.003* 

 

 

 A baseline, three-fold CV Cox proportional hazards model consisting of ER 

status, PR status, tumor size, pCR, and ALN positivity resulted in a mean C-statistic of 

0.51 when predicting RFS. Adding SUV, K1, and Ki parameters to the baseline model 

resulted in a mean CV C-statistic of 0.54. Adding the FTH signature to the baseline 

model improved the mean CV C-statistic to 0.74 (p < 0.01) (Figure 6.3A).  
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Dichotomizing patients into low- and high-risk groups based on the baseline 

model risk scores (Figure 6.3B) and baseline plus the kinetic model risk scores (Figure 

6.3C) demonstrated no statistically significant separation between Kaplan-Meier curves. 

Patient dichotomization into low- and high-risk groups based on the baseline plus FTH 

signature risk scores (Figure 6.3D) resulted in a statistically significant separation 

between Kaplan- Meier curves (p< 0.05) for RFS probability. 

 

 

Figure 6.3. FTH survival analysis. (A) Cross validated c-scores and Kaplan-Meier survival curves for 

baseline (ER status, PR status, tumor size at baseline, pCR, and ALN positivity), baseline plus kinetic (ER 

status, PR status, tumor size at baseline, pCR, ALN positivity, SUV, K1, Ki) and baseline plus FTH 

signature models. Kaplan-Meier curves generated when patients are stratified by risk scores generated from 

(B) the baseline model, (C) baseline plus kinetic features model, and (D) baseline plus FTH signature 

model. 

 

Unsupervised hierarchical clustering of women based on the extracted FTH 

signatures from each tumor identified two clusters which were interpreted as FTH 
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phenotypes seen in the study population and found to be statistically significant via the 

SigClust method (p=0.04) (Figure 6.4A). 

As a higher FTH signature index suggests greater separation between the three 

sub-regions’ FPC values and can therefore be interpreted as greater intratumor 

heterogeneity, the identified FTH phenotypes were ranked based on the mean FTH 

signature index found across all women assigned to each phenotype. The resulting FTH 

phenotypes 1 and 2 were interpreted as a low FTH versus high FTH phenotypes, 

respectively, with tumors in phenotype 1 having lower mean FTH signature indices (blue 

color in Figure 6.4A), versus tumors in phenotype 2 which had on average higher FTH 

signature indices (red color in Figure 6.4A).  
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Figure 6.4. FTH phenotypes. (A) Unsupervised hierarchical clustering of FTH signatures identifies 2 

significant phenotypes of FTH, with clinical covariate distribution across identified phenotypes displayed 

in the bottom legend. The resulting cluster dendrogram can be seen above a heatmap in which each row 

represents a feature within the FTH signature, and each column represents a tumor (B) Distributions of Ki 

across the identified phenotypes were found to be statistically significant (p<0.05).  

 

Tumor PR status was found to be statistically significantly different across the 

two FTH phenotypes (p<0.05), with tumors in the low FTH phenotype having a higher 

proportion of PR positive tumors. Other clinical covariates including ER status, HER2 

status, Ki67 status, pCR, ALN positivity, and tumor grade were not statistically 

significant across identified phenotypes. From the FDG PET covariates, Ki was found to 

be statistically significantly different across the two phenotypes (p<0.05), with tumors in 

the high FTH phenotype having a greater interquartile range (0.025) and greater variance 
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(0.0003) than tumors in the low FTH phenotype (interquartile range: 0.004, variance: 

3.27e-5) (Figure 6.4B). K1 and SUV values were not found to be statistically significant 

across the identified phenotypes. 

6.6. Discussion 
 

Our results suggest that incorporation of both spatial and kinetic information in a 

4-D dynamic activity curve clustering paradigm allows for improved segmentation of 

dynamic PET imaging data over established unsupervised clustering techniques utilizing 

kinetic information alone. Established unsupervised voxel parcellation techniques largely 

assume voxel independence8, and as such, may be inadequate for identifying spatially 

constrained, functionally similar sub-regions under the hypothesis that sub-clonal 

populations can occupy spatially contiguous regions with common biologic properties 39. 

Along these lines, partial volume effects seen in imaging modalities suggest that 

neighboring voxels may share information regarding underlying tissue structure due to 

the spatial limitations of the imaging device204. Therefore, analyzing imaging 

presentations of intratumor heterogeneity requires a fully 4-D approach.   

We had the goal of developing methodology broadly applicable to PET tracers 

with similar kinetic features. With this in mind, dynamic simulations utilized for Rad-FIT 

development and validation (Chapter 5) were based on FLT simulated data and used to 

select an approach which was then applied to a previously collected FDG patient dataset 

to examine the role of FTH as a prognostic biomarker. The rationale was that while 

simulation curves were generated using kinetic parameters specific to FLT (flux between 

0.03-0.1 mL/min/g), these kinetics curves have parameters similar to FDG PET curves 
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(flux between 0.02 - 0.09 mL/min/g), and they can be generalized to all tracers fit to a 

two-compartment model, including FDG, as long as the model and range of parameters 

has overlap with these tracers. Additionally, and as our algorithm is in principle agnostic 

to the type of tracer used or any related kinetic modeling parameters, utilizing simulated 

images of a different two-compartment radiotracer during Rad-FIT development allowed 

for a more generalizable algorithm that was not biased towards a single specific tracer in 

subsequent analyses. 

Extending the Rad-FIT clustering algorithm to characterize intratumor 

heterogeneity has the potential to identify intratumor sub-regions with discrete functional 

behavior. This is supported by the average TACs from the identified sub-regions in 

representative tumors (Figure 6.2), where the tumor with disease recurrence clustered 

into three sub-regions with distinct curve patterns. The tumor with no disease recurrence 

and characterized as ER+, demonstrated mostly low uptake and non-rising curves in the 

identified sub-regions. 

Quantifying intratumor heterogeneity using the FTH imaging signature 

demonstrates prognostic value when predicting RFS. Cox-regression models 

incorporating FTH signatures added to a baseline model demonstrated a statistically 

significant improvement in C-statistic. While the dichotomization of baseline risk scores 

based on known prognostic features did not demonstrate significant Kaplan-Meier curve 

separation in this relatively small sample size, consistent with previous analyses of this 

study cohort22,231, improvement over models combining baseline and kinetic features 

emphasizes the added prognostic value of utilizing quantitative features summarizing 
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dynamic tumor behavior over the entire volume. Additionally, risk scores generated using 

the baseline features and FTH signature resulted in statistically significant patient 

dichotomization into low- and high-risk groups for RFS using Kaplan-Meier survival 

analysis as compared to risk signatures generated from the baseline model and baseline 

plus kinetic model. 

While prior studies have shown prognostic value for measures obtained from 

serial dynamic FDG PET using standard kinetic analysis methods231, pre-therapy FDG 

dynamic data were not significantly predictive. Similarly, prior studies demonstrated the 

predictive value of pre-therapy measures of FDG flux and tumor blood flow obtained 

from combined 15O-water PET and FDG PET studies 230,231, but pre-therapy FDG kinetic 

measures alone were not significantly predictive of RFS. In this preliminary analysis, use 

of the Rad-FIT clustering algorithm extracted significantly prognostic 4-D signatures 

from pre-therapy dynamic FDG PET data that did predict RFS, a notable incremental 

improvement on standard approaches to dynamic PET analysis of considerable potential 

significance.  

Additionally, our results suggest that intrinsic imaging phenotypes may exist 

within locally advanced breast tumors corresponding to FTH. In particular, statistically 

significant differences in the FDG flux constant, Ki, were seen across the two phenotypes 

with tumors corresponding to higher degrees of FTH having higher values of Ki. This 

finding suggests that the tumor characteristic of increased metabolic rate may be captured 

within the FTH imaging signature generated from the 4-D clustering performed using 

Rad-FIT and may have prognostic significance when expanded to a larger study cohort. 
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Interestingly, compared to tumor clinical and histopathologic features we found 

significant differences across the FTH phenotypes in PR expression, a marker shown to 

be an indicator of tumor ER functionality and a more differentiated breast cancer biologic 

phenotype 233. 

Limitations of our study should be noted. First the Rad-FIT clustering algorithm 

utilizes K-means clustering as an initialization to the method, which can allow for 

sensitivity to cluster initialization due to K-means clustering identifying local optima. 

Future studies will be conducted to evaluate segmentation performance when random 

cluster initializations are selected. Additionally, our study utilized a relatively small 

sample size of patients. To account for potential model overfitting, we utilized three-fold 

CV in our time-to-event analysis, to ensure model robustness. The identification of FTH 

phenotypes within the study population is limited by a lack of independent validation and 

instead was conducted as an exploratory analysis. Future work will include expanding 

this initial, exploratory analysis to a larger cohort as well as validating the identified FTH 

phenotypes. While the Rad-FIT clustering paradigm identified three clusters within each 

tumor, the optimal number of functionally discrete sub-regions may vary across tumors. 

In this exploratory study, the selection of three for the number of subtypes was chosen 

empirically, guided by the three major subtypes of breast cancer (ER+/PR+, Her2+, 

Triple negative). Future work will also include optimization of the Rad-FIT clustering 

algorithm such that an optimal number of clusters is identified within each tumor. In 

addition, we have evaluated only the pre-therapy time point in this initial analysis. All 

women included in our study underwent neoadjuvant chemotherapy and repeat mid-
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therapy imaging. To account for the effect of treatment on intratumor heterogeneity and 

corresponding FTH signatures, we plan to expand our analysis to dynamic FDG PET 

images taken also during the midpoint of each woman’s therapy in a future study. Lastly, 

alternative approaches exploring a linear analysis of 4-D dynamic PET using a mixture-

based approach have been previously reported 234,235. Future work will include expanding 

our analysis to compare methodologies and potentially include a mixture-based 

component. Lastly, we developed and applied this method on simulated dynamic images 

and clinical dynamic scans of breast cancer patients, with a larger goal of extending this 

method towards analyzing other solid tumors and different PET tracers in future work. 

6.7. Conclusion 
 

In conclusion, we have developed a 4-D clustering and segmentation algorithm to 

identify functionally discrete, spatially constrained sub-regions within breast tumors that 

was able to generate prognostic measures from pre-therapy dynamic FDG PET of locally 

advanced breast cancer not previously identified by ROI-based kinetic analysis. Our 

results demonstrate that quantifying functional tumor heterogeneity can provide 

independent and additional prognostic value and may provide a non-invasive- 4-D 

characterization of breast tumors towards personalized decision making. 
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Chapter 7 : Extended functionalities of Rad-FIT clustering: exploring 

the feasibility of an unsupervised method to summarize 4-D 

pharmacokinetic spatial heterogeneity  
 

 

7.1 Introduction  

We have explored extending the functionalities of a novel 4-D clustering 

approach to model spatially constrained, functionally discrete sub-regions within breast 

tumors and extract factors that summarize this heterogeneity. We have previously 

assessed the initial clinical applications of this approach in developing personalized 

prognostic imaging signatures characterizing breast tumor heterogeneity by using a fixed 

number of sub-regions236.  In this preliminary work, we remove this constraint by using a 

multivariate Kullback-Leibler divergence-based minimization approach to automatically 

determine the optimal number of sub-regions for each tumor. We then perform an 

evaluation of this unsupervised 4-D segmentation algorithm using simulated image 

phantoms modeling heterogeneous breast lesions. We compare the segmentation 

performance of the developed algorithm against established unsupervised clustering 

algorithms.  

7.2 Rationale for unsupervised method 

Initial development and applications of using Rad-FIT clustering to summarize 

intratumor heterogeneity involved a pre-determined number of sub-regions for the 

algorithm to identify (Chapters 5 and 6)236. Preliminary exploration of FTH as a 

prognostic biomarker resulted in predefining the number of intratumor sub-regions to 
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three, assuming the three broad receptor subtypes for breast cancer (Chapter 6)236. 

However, the degree of intratumor heterogeneity across breast tumors may vary and as 

such, we wanted to extend Rad-FIT clustering to determine the optimal number of sub-

regions within a single tumor in an unsupervised manner. Furthermore, molecular 

heterogeneity may go above and beyond the three broad histopathologic subtypes 

(ER+/PR+, Her2+, Triple negative), and we aimed to develop an approach where this 

determination could be more data driven. Identifying the number of functionally discrete 

sub-regions, unique to a tumor, may also allow for precise longitudinal monitoring of 

changes in intratumor heterogeneity, including identifying potentially emerging 

heterogeneity due to de-novo treatment resistance.   

7.2 Heterogeneity phantom images 

Four sets of large heterogeneous lesions were simulated using GATE v8.1211 and 

cropped into four separate 4-D images with dimensions of 71 x 71 x 68 x 70 frames. Each 

image consisted of a set of three 10-cm-diameter spheres, with centers placed in the same 

axial location 5 cm apart from each other to form an equilateral triangle. This allowed for 

overlap of the edges of the spheres to emulate a large heterogeneous lesion, where 

overlapping areas had the combined activity of each sphere. The four sets of spheres had 

the following activity to background ratios at 60-min post-injection: Simulation 1) 2:1, 

2:1, 2:1; Simulation 2) 2:1, 3:1, 4:1; Simulation 3) 4:1, 6:1, 8:1; and Simulation 4) 10:1, 

20:1, 30:1 (Figure 7.1).  
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Figure 7.1. Diagrams of simulated heterogeneity phantoms demonstrating sphere overlap and the resulting 

flux scales for overlapping regions in simulation 1 (A), simulation 2 (B), simulation 3 (C), simulation 4 

(D). 

 

Time activity curves (TACs) within each of the simulated images were based on 

previous FLT dynamic simulations where the background TAC is based on muscle data 

and the 2:1, 4:1, and 8:1 contrast spheres were based on previously shown213 low, 

medium, and high flux spheres, respectively. Higher contrast spheres were simulated 

based on scaled TACs of the high flux sphere. Simulated data were binned into 70 frames 

(17 x 1.2 s, 10 x 2.4 s, 12 x 4.8 s, 4 x 12 s,  11 x 30s, 4 x 60s, 6 x 180s, 6 x 300s ), 

reconstructed using list-mode TOF OSEM237 and binned into 2 mm isotropic voxels. The 

true number of discrete functional regions was determined based on the spatial location 

and average activity value of the region, resulting in: Heterogeneity simulation 1: three 

clusters, Heterogeneity simulation 2: five clusters, Heterogeneity simulation 3: seven 

clusters, Heterogeneity simulation 4: six clusters (Figure 7.2). 
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Figure 7.2. The discrete sub-regions within each heterogeneity simulation. The number of regions within 

the heterogeneity image based on the flux scaling of overlapping sphere regions and corresponding voxel 

time activity curves and mean time activity curves for each individual region in simulation 1 (A), 

simulation 2 (B), simulation 3 (C), and simulation 4 (D). 

7.3 Determining optimal number of clusters 

In order to select the optimal number of clusters within each tumor, we amended 

the methodology initially presented by Eloyan et al.220 to incorporate multivariate 

Gaussian distributions of voxel representations and Markov Random Field (MRF)-based 

prior probabilities for each voxel.  
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The goal for determining an empirical estimation of true voxel labeling 

assignment is to minimize the distance between the estimated probability function of a 

distribution with its true underlying distribution. To that end, when the optimal number of 

cluster sub-regions, unique to a specific tumor, is determined, the Kullback-Leibler (KL) 

divergence between true  and estimated final 

probability density will be 0. 

However, as the true probability density for the tumor image is unknown, the 

difference in this KL divergence moving from k to k+1 clusters is leveraged such that: 

 

 

 

Eq. 7.1 

 

This ratio can be empirically estimated for each voxel moving from k to k+1 clusters as: 

 

Eq. 7.2 

  

and summarized over all voxels as: 

  

 

Eq. 7.3 
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This metric is calculated across an array of values for k, and the value K at which a 

minimum is reached is selected as the optimal number of sub-regions. 

 

7.4 Beta parameter selection  
 

 While previously implemented Rad-FIT clustering utilized a set value for 

the floating parameter, β, based on signal to noise variation across the simulated images, 

it is likely that the optimal value of β will vary across tumors. This is due to variations in 

image acquisition and reconstruction protocols resulting in varying image signal to noise 

ratios and varying partial volume related effects seen across clinical images. As such, the 

dependency of a voxel’s sub-region classification on its surrounding neighborhood may 

vary. 

  A previous study by Eloyan et al220. assessed parameter values of 4, 6, and 

12 and found no significant difference in the resulting image clustering. Ultimately, the 

authors selected the smallest value of beta that prevented losing image sharpness. When 

evaluating the final number of sub-regions within tumors from a previously analyzed 

cohort of dynamic FDG PET images of invasive breast cancer236 when beta parameter 

values ranged from 0.75 to 3, we saw large variations in the resulting number of sub-

regions as well as their spatial distribution within a tumor (Figure 7.3).  
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Figure 7.3. Representative breast lesion segmented using U-Rad-FIT clustering at varying values of beta. 

Representative frame of dynamic PET image (A) and lesion ROI (B). Resulting cluster segmentations and 

each region’s average time activity curves when using beta = 0.75 (C), beta= 1(D), beta =2 (E), and beta =3 

(F). Smaller values of beta result in varying numbers of sub-regions, likely picking up image noise.  

 

 This suggested that not only is selection of an optimal value required for 

each tumor, but also that the value of the beta parameter should be larger to avoid 

characterizing image noise as unique sub-regions. When larger values of beta are selected 

(e.g. beta= 6) resulting average time activity curves from the U-Rad-FIT derived sub-

regions demonstrate discrete curve behavior and result in more anatomically realistic sub-

regions in relation to the lesions’ size (Figure 7.4). 
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Figure 7.4. Representative lesion segmented using U-Rad-FIT clustering using a beta value of 6 (A). Each 

identified sub-region’s average time activity curves (B), and all voxels represented as FPCs (C). Using a 

larger value of beta allows for a more physiologically likely number of identified sub-regions, as larger 

spatial weights on prior probabilities may result in less sensitivity to image noise. 

 

Therefore, to account for variations in signal to noise across images and to select the 

optimal value of the floating beta parameter unique to each lesion, we implemented a 

selection criterion for choosing a value of beta which maximizes inter-cluster separation 

and minimizes intra-cluster variance in time (functional principal component) and space 

domains. To implement this, we leveraged the Calinski-Harabasz (CH) index238 

calculated for both FPCs and spatial coordinates: 
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Eq. 7.4 

 

 

 

Eq. 7.5 

 

 

 

 

 Eq. 7.6 

 

where  is the number of points in cluster k,  is the FPC centroid of the entire data 

set, is the fpc centroid of cluster k, and is the fpc value for voxel, , in cluster 

k. Similarly,  is the spatial coordinates of the centroid of the entire data set,  

is the spatial coordinates of the centroid of cluster k, and is the spatial 

coordinates for voxel, , in cluster k. The total number of voxels is defined as n and K is 

the total number of clusters. 

 The value of β resulting in the highest modified CH index ( , was 

selected as the optimal value for that tumor. This would result in selecting the value of β 

that resulted in the most compact and well-separated clusters in time and space. 
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7.5 Unsupervised Radiomic Functional Intratumor (U-Rad-FIT) clustering 
 

 As a result of determining the optimal number of sub-regions using the 

optimized value for the floating parameter, β, the algorithm for Rad-FIT clustering has 

been extended to Unsupervised Radiomic Functional Intratumor (U-Rad-FIT) clustering, 

and can be defined as follows in below in Algorithm 1: 
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Algorithm 7.1. Unsupervised Radiomic functional intratumor (U-Rad-FIT) clustering 

Input: Vi ∈ R3×t,  (floating parameter),   (number of sub-regions) 

Output:  z ∈ [0,1]K (Clustering Assignment) 

Step 1: Functional principal component analysis (retain components with 85% of    variance: 

V(x,y,z,t) » V(x,y,z,f)                    

for k = 1…Κ 

for  

Rad-FIT Clustering: 

Initialization: Initialize z,  by K-means clustering algorithm 

Loop- Repeat (t) until convergence 

Expectation step: Fix z,   

  

  

  

Solve for  
 

Maximization step:  

  

  

 

end 

  (see Eq. 4 and 5) 

Rad-FIT Clustering (  

Calculate KL divergence metric from k and k+1:   

end 

 

 

while  

calculate   

for   
 

7.6 Evaluating performance of U-Rad-FIT clustering 
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The performance of U-Rad-FIT clustering in identifying and segmenting the 

number of discrete functional regions was evaluated in each heterogeneity image and 

compared against the performance of K-means clustering with voxels represented both as 

time activity curves and as functional principal components (FPCs). Segmentation 

performance was evaluated using the Dice score, with generalized and region-based Dice 

scores evaluated for each image. K-means clustering was applied using the optimal 

number of clusters identified by U-Rad-FIT clustering to ensure robust comparisons. 

Using the methodology outlined above for U-Rad-FIT clustering, the optimal 

number of functional clusters, in heterogeneity images 1 through 4 was determined to be 

three, five, six, and six, respectively. The overlap of spheres in each of the simulated 

images, with varying activity to background ratios, results in heterogeneous lesions with 

varying difficulties of separability.  

When comparing the generalized segmentation performance of U-Rad-FIT 

clustering against K-means clustering with voxels represented as time activity curves and 

FPCs and segmenting the tumor into the same number of clusters, U-Rad-FIT clustering 

demonstrated the highest performance overall (Figure 7.5). All three segmentation 

approaches performed similarly on heterogeneity simulation 1. In heterogeneity 

simulations 2-4, which represented more challenging spatial and functional 

heterogeneity, U-Rad-FIT clustering demonstrated better performance. 
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Figure 7.5. Generalized Dice score performance for each simulated heterogeneity image. True 

segmentation labels of 3 cluster-regions, K-means clustering results with voxels represented as TACs, K-

means clustering results with voxels represented as FPCs, and U-Rad-FIT clustering results for 

Heterogeneity simulation 1 (A). True segmentation labels of 5 cluster-regions, K-means clustering results 

with voxels represented as TACs, K-means clustering results with voxels represented as FPCs, and U-Rad-

FIT clustering results for Heterogeneity simulation 2 (B). True segmentation labels of 6 cluster-regions, K-

means clustering results with voxels represented as TACs, K-means clustering results with voxels 

represented as FPCs, and U-Rad-FIT clustering results for Heterogeneity simulation 3 (C). True 

segmentation labels of 6 cluster-regions, K-means clustering results with voxels represented as TACs, K-

means clustering results with voxels represented as FPCs, and U-Rad-FIT clustering results for 

Heterogeneity simulation 4 (D). 

 

Comparing region-based segmentation performances on each the four heterogeneity 

simulations, against K-means clustering with voxels represented as FPCs, which was the 

higher performing control segmentation, U-Rad-FIT clustering demonstrated improved 

Dice scores for each region (Figure 7.6). 
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Figure 7.6. Region based Dice scores for each heterogeneity simulation image using K-means clustering 

with voxels represented as FPCs and U-Rad-FIT clustering.  

 

7.7 Conclusion 
 

This exploratory work demonstrates an initial extension of Rad-FIT clustering to 

be unsupervised, without a predefined number of sub-regions to segment. Initial 

experiments in developing U-Rad-FIT clustering suggests an improved segmentation 

performance when identifying and segmenting the true number of functionally discrete 

sub-regions as compared to conventional unsupervised clustering techniques. Also, 

preliminary experiments in selecting the optimal β parameter controlling the spatial 

influence in segmentation suggest that varying lesions may have a varying optimal 

parameter based on image signal to noise ratios. U-Rad-FIT clustering may be used in its 

originally developed format in which the number of sub-regions to identify is pre-
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determined, or further validation of U-Rad-FIT clustering may result in identifying the 

optimal number of sub-regions in breast lesions. Further work is required to validate the 

identified sub-regions through ground truth histology/immunohistochemistry mapping for 

a physiologic interpretation of the kinetic variations displayed across the different sub-

regions.  

Potential applications of U-Rad-FIT clustering may include longitudinal 

monitoring of changes in the number of sub-regions or sub-region kinetic properties over 

the course of chemotherapy for detection early response or non-response to treatment, 

including the emergence of de-novo treatment resistance. Longitudinal changes in the 

number of sub-regions within a lesion may allow for non-invasive characterization of an 

increase or decrease in lesion heterogeneity, or for identification of more aggressive or 

resistant sub-clonal populations. Lastly, sub-regions identified using U-Rad-FIT 

clustering may be spatially registered to histological or other radiographic images for a 

multi-modal understanding of physiological differences across tumor sub-clones.  
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Chapter 8 : Extended applications of quantifying lesion heterogeneity 

and future directions 

 

8.1 Future directions: extending applications to pre-cancerous lesions 

towards personalized medicine 

 
While the scope of this thesis has been largely aimed towards exploring predictive 

and prognostic imaging biomarkers for invasive breast cancer, these methods to quantify 

lesion heterogeneity may be extended to invasive lesions in varying anatomic site and to 

pre-cancerous breast lesions. While the incidence rate of invasive breast cancer remains 

high for women,  diagnoses of  pre-invasive intra-ductal proliferations such as ductal in-

situ carcinoma (DCIS), have increased as a result of increased breast cancer screening, 

and comprise approximately 25% of diagnosed breast cancers239. Treatment of DCIS 

largely follows that of invasive breast cancer: radiation treatment and/or endocrine 

therapy. However, it is estimated that less than 40% of diagnosed DCIS cases will 

progress to invasive disease240. As such, improved stratification of low-risk and high-risk 

DCIS cases is required to allow for personalized treatment strategies to reduce over 

treatment by local and systemic therapies. Current histopathologic biomarkers may be 

limited in stratifying low-risk vs high-risk cases due to inadequate sampling of disease 

burden and heterogeneity. 
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8.1.1 Discovery study cohort and feature generation  

 

As a preliminary analysis to explore the potential of imaging phenotypes of DCIS 

heterogeneity, we retrospectively analyzed of cohort of 163 women from the previously 

conducted E4112 trial by the American College of Radiology Imaging Network 

(ACRIN).  For each woman, DCE-MRI imaging was performed, with images acquired 

across 34 different sites following a standardized study protocol. The in-plane resolution 

of the images ranged from 0.35-1.25 mm/pixel, and were acquired on either 1.5T or 3T 

scanners. For this preliminary analysis, the pre-treatment, pre-operative images were 

evaluated for each woman. Clinical covariates including DCIS score, lesion grade, and 

comedonecrosis were available for each woman. First, all images were preprocessed 

using N4 bias field normalization241. For each case, the 3-D primary lesion was 

segmented by a trained radiologist from the first-post contrast image. To promote 

comparability in analysis across images from varying clinical sites, all images were 

resampled using a linear interpolation to the lowest resolution scan in the dataset. Within 

each lesion in the first-post contrast image, 95 radiomic features were extracted using the 

Cancer Imaging Phenomics Toolkit (CaPTk)163. All extracted features were z-score 

normalized across all tumors and features were sign normalized such that increased 

feature value indicates increased tumor heterogeneity. To avoid bias from non-uniform or 

heavily skewed features in this exploratory analysis, features were selected with the 

relatively strict criteria of having IQR >1 and skewness >5. This resulted in a total of 32 

radiomic features.   
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8.1.2 Imaging phenotypes of DICS heterogeneity  

 

To identify intrinsic imaging phenotypes of DCIS, unsupervised hierarchical 

clustering was performed on the extracted, 32-feature feature vector for tumors in the 

discovery cohort. The k clusters obtained from the unsupervised hierarchical clustering 

algorithm were interpreted as imaging phenotypes seen in the population. Clustering was 

performed using the Euclidean distance between tumor feature vectors and Ward’s 

minimum variance method was used as the clustering criterion.  Two statistically 

significant phenotypes were identified in the discovery cohort and found to be stable 

using Consensus Clustering166 and significant via SigClust167 methods (p<0.001) (Figure 

8.1).  Distributions of DCIS score, lesion grade, and necrosis were evaluated across the 

identified imaging phenotypes with necrosis found to be statistically significant (p=0.02) 

(Figure 8.2).  
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Figure 8.1. Identification of intrinsic imaging phenotypes of DCIS tumor heterogeneity. Unsupervised 

hierarchical clustering of SER features identifies three intrinsic phenotypes in the discovery cohort. 
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Figure 8.2. Associations between histopathologic prognostic markers and heterogeneity phenotypes 

identified in the discovery cohort. Distribution of DCIS scores across heterogeneity phenotypes (A). 

Number of grade 1, grade 2 and grade 3 lesions across heterogeneity phenotypes(B). Number of low, 

intermediate, and high DCIS scores across heterogeneity phenotypes (C). Number DCIS lesions with and 

without comedonecrosis across heterogeneity phenotypes (D).  

8.1.3 Validation study cohort 

 

A retrospective, exploratory validation cohort242, provided by the University of 

Washington, was utilized in this analysis to validate the DCIS imaging phenotypes. The 

validation cohort consisted of 20 patients with DCIS who underwent preoperative DCE-

MRI at the University of Washington between 2004 and 2014 with ipsilateral recurrence 

more than 6 months after definitive surgical treatment were retrospectively identified. 
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For each patient, a control subject with DCIS that did not recur was identified and 

matched on the basis of clinical, histopathologic, and treatment features including, age, 

menopausal status, presence of a high risk genetic mutation, DCIS Van Nuys Pathologic 

grade, presence of comedonecrosis, estrogen receptor status, final surgical margins, 

postsurgical endocrine therapy, and postsurgical radiation therapy. Therefore, of the 20 

patients included in the validation cohort, 10 patients had a future event of recurrence and 

10 did not. Median time to recurrence was 14 months, and median follow-up for control 

subjects was 102 months.  

8.1.4 Validation of imaging phenotypes of DCIS lesion heterogeneity  

 

In order to validate the imaging phenotypes of DCIS lesion heterogeneity 

identified in the discovery cohort, the first post-contrast DCE-MRI images from the 

validation cohort were preprocessed as detailed above. From the resampled first post-

contrast lesions, the same 32 radiomic features as selected from the discovery cohort 

were extracted using CapTK.  Features in the validation cohort were first z-score 

normalized across tumors and sign normalized such that an increasing feature value 

corresponded to an increase in lesion heterogeneity. Unsupervised hierarchical clustering 

was then applied to the validation cohort tumors using the 32-feature feature vector. Two 

significant imaging phenotypes were also identified in the validation cohort through 

clustering analysis and determined to be stable and significant (p=0.0001) using 

ConsensusClustering and SigClust methods, respectively. The in-group proportion (IGP) 

statistic243 was used to determine whether the imaging phenotypes identified in the 

discovery cohort existed in the validation cohort. Imaging phenotypes were found to have 
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high consistency between the discovery and validation cohorts with IGP values of 90% 

and 99% for Phenotype 1 and Phenotype 2, respectively. The IGP for Phenotype 2 was 

found to be significant (p=0.02) (Figure 8.3). 

 

Figure 8.3. Independent validation of intrinsic imaging phenotypes of tumor heterogeneity. Phenotypes 

identified in the discovery cohort (A) are significantly reproducible in the validation cohort (B).  
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8.1.5 Associations between radiomic features and recurrence 

 

In order to explore the prognostic value of imaging features in predicting 

recurrence case/control for the validation set, we performed univariate logistic regression 

on features found to be significant across the imaging phenotypes using the Significance 

Analysis of Microarrays (SAM) algorithm198. SAM is a nonparametric statistical 

algorithm designed to identify significant variables associated with a specific trait (e.g. 

phenotype assignment). This exploratory analysis resulted in three imaging features, 

histogram variance (AUC = 0.72), histogram uniformity (0.74), and morphologic 

roundness (AUC= 0.70) demonstrating high discriminatory capacity for predicting case 

from control in the 20 tumors, case/control matched for clinical and histopathological 

covariates, in the validation cohort (Figure 8.4). 



155 
 

 

Figure 8.4. Independent prognostic value of radiomic features from the validation cohort when predicting 

recurrence case from matched controls. ROC curve for Histogram variance (A), ROC curve for histogram 

uniformity (B), ROC curve for Morphologic roundness (C), and ROC curve for combined prediction using 

variance, uniformity, and roundness (D). 

 

8.2. Future directions: Feature harmonization  
 

In order to explore the generalizability of radiomic features extracted from images 

with varying voxel resolutions and from varying scanner modalities (e.g. manufacturer, 

field strength), ComBat analysis may be subsequently employed to harmonize extracted 

radiomic features. ComBat244,245 is a harmonization technique originally developed for 
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genomic studies that aims to correct for variation in radiomic features due to image 

parameter related batch effects using empirical Bayes to estimate location and scale 

parameters to eliminate such variation. The impact of radiomic feature variation 

introduced by image resolution and acquisition parameters such as field strength may be 

mitigated using a nested ComBat246 approach. Future analysis for this work could 

examine the potential effects of harmonized features when performing unsupervised 

hierarchical clustering, and further explore the generalizability of harmonized features 

when extending the imaging phenotypes to independent validation cohorts. 

 

8.2 Future directions: Radiogenomic analysis 
 

Radiogenomic analysis aims to leverage high-throughput genomic, molecular, and 

sequencing data alongside high-throughput imaging data towards the advancement of 

cancer precision care. In order to further understand the biological basis of imaging 

phenotypes of tumor heterogeneity, one could explore potentially differential genomic 

and proteomic expressions across imaging phenotypes to better understand the 

physiologic mechanisms driving tumor image heterogeneity. This work196 has identified 

associations between imaging phenotypes of spatial heterogeneity, which may capture 

differential vascularization and angiogenic properties across the tumor lesion, and ER 

percentage, cell differentiation, and mitotic stage. Future work may aim to further 

illuminate more mechanistic properties of such spatial heterogeneity through 

personalized genomic analyses. Additionally, the complementary information provided 

by radiogenomic analyses may further improve prognostic performance when using an 
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augmented model that integrates imaging biomarkers with established and emerging 

molecular prognostic markers in stratifying women at higher risk of tumor recurrence, as 

demonstrated in Chapter 4 of this work, thus allowing for improved personalization of 

treatment strategies. Future work towards this aim may utilize a larger prospective trial in 

which DCE-MRI images are acquired for woman diagnosed with locally advanced breast 

cancer. Concurrently, FFPE primary tumor blocks may be analyzed for RNA extraction 

and subsequent RNA-Seq data processing. Such analyses could allow for associations 

between imaging phenotypes and biomarkers and intrinsic molecular biomarkers 

including Claudin-low phenotypes, or PAM50 derived subgroups. 

8.3 Future directions: Histopathologic spatial mapping 
 

The validation of Rad-FIT clustering using simulated image phantoms allowed for 

method development and validation, as well as demonstrated the added value of 

incorporating spatial and temporal information for tumor voxel clustering as compared to 

conventional methods utilizing spatial or temporal information, alone. Future work to 

further understand the physiological differences in identified tumor sub-regions could 

incorporate whole tissue histopathological analysis and leverage multi-modality spatial 

registration to spatially align dynamic PET images with digital pathology images. Such 

work could leverage the information afforded by histopathologic analysis to explore the 

biological differences between Rad-FIT identified sub-regions and such longitudinal 

analysis may provide insight into how the metabolic demands of tumor sub-populations 

change in response to treatment. Furthermore, incorporation of spatially mapped-

histopathologic images would allow for biological validation of imaging heterogeneity 
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beyond that of biopsy derived histopathologic clinical covariates. This would have the 

potential to explore whether spatially corresponding imaging and histopathologic 

biomarkers capture similar physiology at varying resolutions or capture complementary 

information. Lastly, such mapping could allow for insight into metabolic heterogeneity 

within the tumor microenvironment as seen in FDG dynamic PET imaging.  

8.4 Future directions: Multi-modality image analysis and deep learning 
 

 Medical imaging has the potential to be clinically leveraged as a non-invasive 

assay during breast tumor diagnosis and treatment monitoring. Leveraging the differential 

physiologic insights provided through modalities such as MRI and PET can allow for 

whole-tumor analyses of targeted biology. Registering PET images to DCE-MR images 

can localize regions of specific biological activation, as seen using targeted radiotracers 

in PET, from which quantitative image features can be extracted from DCE-MR images. 

This would provide an in vivo validation for heterogeneity features extracted from sub-

regions within the tumor that may differ in underlying biology. Additionally, this 

methodological development could be extended to understand the mechanisms of 

additional types of cancer formation and development.  

Work presented in this thesis largely focused on leveraging “hand-crafted” 

features, either summarizing spatial heterogeneity through computer vision derived 

features, or through features developed in order to summarize 4-D heterogeneity through 

tumor sub-region analysis. Future work in exploring 4-D tumor heterogeneity could 

leverage deep learning techniques in a myriad of ways. For example, autoencoders may 
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be utilized to better summarize dynamic PET voxel time activity behavior by projecting 

information non-linearly into a lower dimensional space, thereby providing additional 

insight in identifying functionally discrete tumor sub-regions. Additionally, deep learning 

visualization techniques, including deconvolutional networks247, may be used following a 

model trained to predict recurrence free survival using longitudinal imaging, to provide 

insight into more aggressive tumor regions driving recurrence and highlight what aspects 

of tumor imaging properties are most predictive of this response. Such work may be used 

to drive targeted radiation treatments with additional emphasis placed on these spatial 

regions. Lastly, deep learning models could be utilized for non-linear combinations of 

multi-modality imaging features or radiogenomic datasets for the development of 

improved prognostic and predictive imaging biomarkers. 
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Chapter 9 : Conclusions 

 

Precision medicine aims to tailor disease prognosis and treatment based on 

specific genotypic and phenotypic characteristics of an individual. Advances in 

genomics, proteomics, and high-throughput sequencing have allowed for a personalized 

understanding of breast tumor behaviors. Medical imaging is uniquely suited for 

characterizing lesion heterogeneity through the ability to non-invasively image the entire 

disease burden, and is routinely acquired throughout breast cancer care. 

Characterizing intratumor heterogeneity may allow for personalized prognostic 

and predictive biomarkers and provide complementary information to other precision 

medicine assays, allowing for tailored patient treatment. Identifying imaging phenotypes 

of tumor heterogeneity may allow for improved patient prognostic and predictive 

stratification. Characterizing imaging representations of heterogeneous tumor sub-clones 

may be used to select informative biopsy sites or direct treatment strategies. This work 

demonstrates that computationally derived imaging biomarkers can provide non-invasive, 

quantitative insight into breast tumor biology.  

 First, we identified imaging phenotypes of intratumor spatial heterogeneity in 

DCE-MRI images of invasive breast cancer using radiomic analysis, as outlined in 

Chapter 3. We reproduced and validated these imaging phenotypes in an independent, 

publicly available cohort. We then evaluated the prognostic value of such imaging 

phenotypes in predicting 10-year recurrence free survival (RFS), and found that tumors 
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that had increased amounts of spatial heterogeneity prior to treatment or surgery, had an 

increased likelihood of tumor recurrence. This may support the hypothesis that 

heterogeneous tumors are associated with more aggressive tumor behavior and treatment 

resistance. Furthermore, we found that high degrees of imaging heterogeneity were 

associated with poorly defined tumors and tumors with higher mitotic grades, potentially 

contributing to genetic diversity and sub-clonal evolution within these primary lesions. 

Lastly, we determined that imaging phenotypes augmented prognostic models utilizing 

conventional histopathologic biomarkers. 

 We then developed imaging biomarkers characterizing longitudinal changes in 

spatial heterogeneity as presented in DCE-MRI images, as described in Chapter 4. Here 

we calculated imaging features characterizing changes in the kinetic behaviors of primary 

invasive breast lesions from baseline to an early-time point during the course of 

neoadjuvant chemotherapy. These imaging features characterized heterogeneity induced 

by a tumor’s change in vasculature or angiogenic properties in response to treatment. We 

identified two intrinsic imaging phenotypes of such change in heterogeneity and 

determined the prognostic value of these phenotypes when adding phenotype assignment 

to established personalized molecular signatures. Interpretation of the two radiomic 

phenotypes as capturing an increase and decrease in intratumor heterogeneity from pre-

treatment to early-treatment showed that tumors assigned to the phenotype with 

increasing intratumor heterogeneity had a greater number of future recurrences. 

Additionally, with the stratification of women within functional tumor volume (FTV), a 

previously described and broadly established imaging prognostic biomarker, subgroups 
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by phenotype demonstrated the added value of radiomic analysis of change in intratumor 

heterogeneity in modeling prognosis. We illuminated that augmenting clinical, 

histopathologic, and molecular covariates with imaging phenotypes may allow for 

personalized risk stratification and early adaptation of treatment strategies.  

 Together, this work demonstrates novel phenotypic differences in clinical imaging 

representations of primary breast tumors at diagnosis as well as phenotypic differences in 

how tumor imaging presentations of heterogeneity change in response to treatment. This 

work also explored prognostic and predictive clinical imaging biomarkers to character 

this heterogeneity. These imaging biomarkers captured spatial and temporal 

heterogeneity through dynamic clinical imaging modalities using baseline diagnostic 

clinical imaging and also explored longitudinal changes in tumor heterogeneity in 

response to neoadjuvant treatment.  

 We then further aimed to characterize spatial and temporal heterogeneity in 

primary breast lesions by identifying intratumor regions of varying functional behaviors. 

We leveraged the improved dynamic image sampling afforded through dynamic PET 

imaging to understand the potentially differential kinetic patterns across a single tumor 

following contrast tracer injection. To do so, we developed a tracer agnostic segmentation 

algorithm, Radiomic Functional Intratumor (Rad-FIT) clustering, that identifies spatially 

constrained, functionally discrete sub-regions. This algorithm can be applied to non-rigid, 

arbitrarily shaped regions without manual initialization or defined control points. 

Development and validation of this segmentation algorithm in Chapter 5 demonstrated 

improved performance over established unsupervised clustering algorithms when 
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segmenting simulated image phantoms. The results from these experiments showed that a 

segmentation algorithm incorporating both spatial and temporal information had 

improved 4-D segmentation accuracy over established methods using only temporal 

dynamics or spatial information, alone. 

 Using this developed 4-D segmentation algorithm, we identified three sub-regions 

within locally advanced breast lesions imaged with dynamic FDG-PET in a retrospective 

analysis. In order to summarize the metabolic heterogeneity within each tumor by 

characterizing the three sub-regions, we developed a functional tumor heterogeneity 

(FTH) imaging signature describing how compact and separate the detected sub-regions 

were. We found that quantifying intratumor metabolic heterogeneity using this FTH 

imaging signature augmented established histopathologic covariates in Cox-regression 

models predicting RFS. This work, outlined in Chapter 6, suggested that imaging 

characteristics of 4-D metabolic functional heterogeneity may be leveraged as a 

prognostic biomarker by providing information not previously identified by ROI-based 

kinetic analyses. 

 In Chapter 7 we explored extending Rad-FIT clustering to be completely 

unsupervised, or Unsupervised Rad-FIT (U-Rad-FIT) clustering. We explored methods to 

determine the optimal number of spatially constrained functionally discrete sub-regions 

within a single lesion towards developing precision medicine-based imaging biomarkers. 

We evaluated algorithm performance using novel dynamic imaging phantoms simulating 

a heterogeneous lesion.  
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 Lastly, we explored the extension of the techniques and imaging biomarkers 

developed throughout this thesis to images of pre-cancerous breast lesions and discussed 

future directions and ongoing experiments for the continued development and validation 

of imaging biomarkers of intratumor heterogeneity. 

This thesis provides evidence that imaging biomarkers have the potential to be 

utilized towards precision medicine for cancer care. While this work focused on breast 

cancer, future work should also seek to evaluate the developed approaches to other cancer 

sites. Further developments in the standardization, interpretation, and validation of such 

biomarkers are required for ultimately translating quantitative imaging biomarkers from 

development in a research setting to implementations in oncologic clinical practice.  
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Appendix A: Radiomic features 
 

Table A.1. Gray-level histogram texture features 

Gray-level 

histogram 

features 

Qualitative description Mathematical description  

 Mean Mean gray-level value   

 Min Min gray-level value Min(k) 

 Max Max gray-level value  Max(k) 

 5th 

Percentile 

Histogram bin that 5% of 

grey level values are less 

than or equal to 

k: 5% of values ≤ k 

 Mean 5th Mean value of gray-level 

values that 5% of grey 

level values are less than 

or equal to 

 for k ≤ fifth percentile 

95th 

Percentile 

Histogram bin that 95% 

of grey level values are 

greater  than or equal to 

  k: 95% of values ≥ k 

Mean 95th Mean value of gray-level 

values that 95% of grey 

level values are greater 

than or equal to 

 for k ≥ ninety- fifth percentile 

Sum Sum of gray-level values   

Sigma Measure of variation of 

gray-level values around 

the mean 

  

 Entropy Measure of histogram 

nonuniformity 
  

 Kurtosis Measure of histogram 

flatness 

  

Skewness Measure of histogram 

symmetry 
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Table A.2. Representative gray-level co-occurrence matrix texture features 

Co-occurrence 

matrix features

  

Qualitative description Mathematical description  

Contrast Intensity contrast between 

pixel and its neighbor 
 

Correlation Linear gray-level dependence 

 

Homogeneity Closeness of distribution in 

co-occurrence matrix to 

matrix diagonal  

Energy Certainty of gray-level co-

occurrence 
 

Entropy Uncertainty of gray-level co-

occurrence 
 

Inverse Difference 

Moment (IDM) 

Local homogeneity in gray-

level co-occurrence 
 

Cluster Shade Asymmetry in gray-level 

values 
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Table A.3. Run-length texture features  

Run-length 

features 

  

Short run 

emphasis (SRE) 

Emphasis on short runs 

 

(Long run 

emphasis (LRE) 

Emphasis on long runs 

 

Gray level 

nonuniformity 

(GLN) 

Degree of gray-level run 

dissimilarity  

 

Run length 

nonuniformity 

(RLN) 

Dissimilarity in length of runs 

 

Run percentage 

(RP) 

Distribution of runs 

 

Low gray level 

run emphasis 

(LGRE) 

Emphasis on low gray-level 

values 

 

High gray level 

run emphasis 

(HGRE) 

Emphasis on high-gray-level 

values 

 

Short run low 

gray level 

emphasis 

(SRLGE) 

Emphasis on short runs with 

low-gray-level values 

 

Short run high 

gray level 

emphasis 

(SRHGE) 

Emphasis on short runs with 

high-gray-level values 

 

nr is the total number of runs, R(i,j) represents the number of runs with pixels of gray-level 

intensity value, i, and length of run, j. 128 gray-levels were used. Estimated by averaging over 0°, 

45°, 90°, and 135° orientations. 
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Table A.4. Structural texture features 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structural feature Qualitative 

description 

Local Binary Pattern (LBP) Intensity variation 

between a pixel and its 

neighboring pixels. 

Mathematical description 

 

  

Ic and Ip are gray-level intensity values for pixel (xc,yc) and pixel (xp,yp). q= indicator 

function, 0 for negative inputs and 1 for non-negative inputs.Q, P= parameters to set pixel 

neighborhood size, set to 1 and 8, respectively39,40. 
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Appendix B: Personalized molecular signatures 
 

Table B.1. Recreated MammaPrint classification results compared to the original 

Esserman et al. classification results. 
 

Low risk High risk 

Esserman’s overall results 11 109 

Recreated overall results 10 108 
   

Esserman’s PCR (positive) results 0/11 25/105 

Recreated PCR (positive) results 2/10 26/108 
   

Esserman’s RCB (0 or I class) 

results 

1/9 31/99 

Recreated RCB (0 or I class) 

results 

2/10 36/108 

 

Table B.2. Recreated p53 mutation gene signature classification results compared to the 

original Esserman et al. classification results. 
 

p53 wildtype p53 mutant 

Esserman’s overall results 59 61 

Recreated overall results 57 61 

Esserman’s PCR (positive) results 5/58 20/58 

Recreated PCR (positive) results 8/57 20/61 

Esserman’s RCB (0 or I class) 

results 

10/53 22/55 

Recreated RCB (0 or I class) 

results 

15/57 23/61 

 



170 
 

 

 

 

Table B.3. Recreated PAM50 ROR-S gene signature classification results compared to 

the original Esserman et al. classification results. 
 

Low risk Intermediate 

risk 

High risk 

Esserman’s overall results 32 42 46 

Recreated overall results 31 41 46 

Esserman’s PCR 

(positive) results 

2/32 7/40 16/44 

Recreated PCR (positive) 

results 

3/31 11/41 14/46 

Esserman’s RCB (0 or I 

class) results 

5/28 9/38 18/42 

Recreated RCB (0 or I 

class) results 

6/31 14/41 18/46 

 

B.1. Molecular signatures 
Gene expression data were obtained from Gene Expression Omnibus (GEO)185,186 using 

the publicly available samples from the Esserman et al. study (accession GSE22226)187 

that match the ACRIN 6657/I-SPY 1 MRI data of the discovery cohort TCIA dataset. 

Samples have been analyzed using two microarray platforms and can be found in GEO 

under accessions GPL1708 (n = 130) and GPL4133 (n = 20). Initially, gene signature sets 

were validated by recreating the Esserman et. al study. Afterwards, the final gene 

signatures set were used solely and in combination with the MRI information of patients 

to assess their classifying value. 
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Recreation of Esserman et al. study 

Samples were filtered as in Esserman et al.187 down to n = 120 (initially 121, but one 

entry was removed due to incomplete data). Briefly, only patients with both microarray 

expression data and HR/HER2 status, RCB and negative trastuzumab treatment status 

were kept in the final set. Trastuzumab status was taken directly from the GEO 

phenotype information, while RCB class and HR/HER2 status were extracted using the 

Clinical and Outcome Data found at: 

https://wiki.cancerimagingarchive.net/display/Public/ISPY1. Minimal differences in 

clinical data may be explained due to different updates in the various data sources, as the 

ACRIN 6657/I-SPY 1 clinical trial was an extended, long-term prospective study. 

Microarray intensity values provided in GSE22226 are expressed as  Lowess-

normalized mean ratio values. 

Molecular profiling was built using three of the four gene signatures that are mentioned 

in Esserman et al. study i.e. 70-gene signature (MammaPrint)190,191, p53 mutation 

signature194 and PAM50 risk of recurrence (ROR-S)192,193. The wound-healing response 

gene signature248 recreation proved to be unsuccessful due to unavailability of the 

original supplementary data and microarray probes that comprise the signature gene set. 

Annotation of the probes was extracted automatically from the latest GEO platform 

annotation found in the NCBI GEO repository. 

https://wiki.cancerimagingarchive.net/display/Public/ISPY1
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B.2. MammaPrint 

The original experiment consisted of 98 primary breast cancer human samples, of which 

78 were metastasis-free. 44/78 were recurrence-free for more than 5 years, constituting 

the “good prognosis group”. In short, the authors performed hierarchical clustering using 

significantly regulated genes (two-fold change, p < 0.01), Pearson correlation coefficient 

calculation between the prognostic category and the log expression ratio across all 

samples and Monte Carlo randomization of the association between the expression ratio 

and prognosis category to discern the best candidate genes (n = 231) to predict 

recurrence-free survival (RFS). After leave-one-out cross validation for different subsets 

of genes, the authors ended up with the 70-gene signature. 

Classification is achieved by calculating the cosine similarity between the MammaPrint 

gene signature expression values of the sample to be classified and the average of the 

MammaPrint gene signature expression values of the “good prognosis group” in the 

original study. A value greater than -0.4 (threshold suggested by the MammaPrint 

authors) is considered to classify the sample as “high risk” with respect to future 

recurrence191. 

The MammaPrint 70-gene signature consists of 70 microarray probes. Original analysis 

was performed using 25K human oligonucleotide two-color microarrays developed by 

Rosetta. The 70 probes correspond to 56 genes and 14 Expressed Sequence Tags (ESTs). 

Expression values provided in supplementary data are calculated as  mean ratio 

with median background intensity subtraction. Specifically: 
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In our study, the cosine similarities were calculated using the genefu R package249. Probe 

matching between Esserman et al. microarray annotation and MammaPrint was done 

using Entrez IDs, resulting into a shrinkage of the probes number (52/70). A possible 

explanation for this is due to updated annotation information related to the genes 

overlapping those probes. Furthermore, in order to make the two platform intensities 

comparable, the Esserman et al. expression values were recalculated to match the 

MammaPrint values.  and NA values (introduced due to background subtraction) 

were converted to 0 prior to cosine similarity estimation.  

B.3. p53 mutation signature 

The p53 mutation gene signature consists of 52 microarray probes derived from the 

unsupervised clustering of datasets with known p53 mutation status, which is used to 

classify samples’ status as p53 wildtype or p53 mutant. Tumor suppressor p53 mutations 

are found more frequently in aggressive breast cancers. In the original study, a SAM250 

derived gene list along with a false discovery rate of less than 5% was given as input to 

an average linkage hierarchical cluster analysis. The analysis was conducted using 

Pearson correlation in the Cluster program. This gene list was then refined by comparing 

the p53-associated gene lists between tumor samples and cell lines, leading to a robust 

list of 52 genes that were common to both data sets (in vitro and in vivo). 

According to Troester et al.194, classification was performed by calculating the 

Spearman’s correlation metric between the samples under examination and the training 
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set centroids, similar to the MammaPrint method. Centroids are represented as vectors of 

the mean average of each gene expression in the p53 signature, one per p53 status group 

(wildtype vs. mutant). Greater correlation to one of the centroids classifies the sample as 

such. 

The training dataset used to create the centroids consists of 66 microarray samples from 

Sorlie et al. 251 (2001), which are deposited in GEO under accession GSE3193. In the 

experiment, 4 different microarray platforms were used i.e. GPL180, GPL2776, 

GPL2777, GPL2778. Microarray platform/source systematic biases between them were 

originally corrected using the Distance Weighted Discrimination (DWD) algorithm. Due 

to lack of an R package that implements DWD, in our study we used the ComBat 

function found in the SVA R package252, which utilizes an Empirical Bayes approach. 

Three groups were designated for batch removal (A: Sorlie et al. (2001) data, B: 

Esserman’s GPL1708 data, C: Esserman’s GPL4133 data). Non-finite values were 

ignored. 

47/52 probes were common in all datasets by matching their Entrez IDs, which 

comprised the final p53 gene signature used for the recreation analysis. The same 

rationale as in the MammaPrint section applies here: and mean ratio and 

median background intensity subtraction were used in the different Sorlie et al. (2001) 

microarray datasets, thus every raw intensity was transformed into mean ratio 

values, including the microarray intensity values from Esserman et al..  
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B.4. PAM50 ROR-S 

Risk of recurrence score is used to classify patients into three categories (low, medium 

and high risk of relapse) according to an estimated risk value, using predefined 

thresholds. The original study progressively identified a 50-gene set through hierarchical 

clustering and the single sample predictor algorithm (SSP), which was used to cluster 189 

breast cancer and 29 normal samples into 5 intrinsic subtypes (Luminal A, Luminal B, 

HER2-enriched, Basal-like and Normal-like) by employing the Prediction Analysis of 

Microarray (PAM) centroid-based clustering algorithm. Distance to each subtype was 

calculated using Spearman’s rank correlation, representing the proximity of each sample 

to each category. Then, the authors performed univariate and multivariate analyses to 

determine the significance of those subtypes and trained a multivariable Cox model using 

the Ridge regression fit to the node-negative, untreated subset of the van de Vijver 

cohort253. In order to classify a sample into one of the risk categories, one needs to 

calculate the resulting weighted sum of the intrinsic subtype Spearman’s rank coefficients 

using the following equation: 

 

We utilized the genefu R package (rorS function) to classify our samples. Probe matching 

between the two gene sets was successfully done using Entrez IDs, which resulted in a 

complete 50/50 annotation. As in MammaPrint, the two platforms’ intensities were 

incomparable. Thus, the Esserman et al. intensities were recalculated with no background 

subtraction and no Lowess normalization and expressed using log2 mean ratios. 

Predefined ROR-S thresholds were used i.e. low  29, 29  moderate  53, high ≥ 53.  
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