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Abstract 
 
Interventional Radiology (IR) is a subspecialty of radiology that performs invasive procedures 

driven by diagnostic imaging for predictive and therapeutic purpose. The development of arti-

ficial intelligence (AI) has revolutionized the industry of IR. Researchers have created sophis-

ticated models backed by machine learning algorithms and optimization methodologies for 

image registration, cellular structure detection and computer-aided disease diagnosis and prog-

nosis predictions. However, due to the incapacity of the human eye to detect tiny structural 

characteristics and inter-radiologist heterogeneity, conventional experience-based IR visual 

evaluations may have drawbacks. 

Radiomics, a technique that utilizes machine learning, offers a practical and quantifiable solu-

tion to this issue. This technology has been used to evaluate the heterogeneity of malignancies 

that are difficult to detect by the human eye by creating an automated pipeline for the extraction 

and analysis of high throughput computational imaging characteristics from radiological med-

ical pictures. However, it is a demanding task to directly put radiomics into applications in IR 

because of the heterogeneity and complexity of medical imaging data. Furthermore, recent ra-

diomics studies are based on static images, while many clinical applications (such as detecting 

the occurrence and development of tumors and assessing patient response to chemotherapy and 

immunotherapy) is a dynamic process. Merely incorporating static features cannot comprehen-

sively reflect the metabolic characteristics and dynamic processes of tumors or soft tissues. 

To address these issues, we proposed a robust feature selection framework to manage the high-

dimensional small-size data. Apart from that, we explore and propose a descriptor in the view 

of computer vision and physiology by integrating static radiomics features with time-varying 

information in tumor dynamics. The major contributions to this study include: 
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Firstly, we construct a result-driven feature selection framework, which could efficiently re-

duce the dimension of the original feature set. The framework integrates different feature se-

lection techniques to ensure the distinctiveness, uniqueness, and generalization ability of the 

output feature set. In the task of classification hepatocellular carcinoma (HCC) and intrahepatic 

cholangiocarcinoma (ICC) in primary liver cancer, only three radiomics features (chosen from 

more than 1, 800 features of the proposed framework) can obtain an AUC of 0.83 in the inde-

pendent dataset. Besides, we also analyze features’ pattern and contributions to the results, 

enhancing clinical interpretability of radiomics biomarkers. 

Secondly, we explore and build a pulmonary perfusion descriptor based on 18F-FDG whole-

body dynamic PET images. Our major novelties include: 1) propose a physiology-and-com-

puter-vision-interpretable descriptor construction framework by the decomposition of spatio-

temporal information into three dimensions: shades of grey levels, textures, and dynamics. 2) 

The spatio-temporal comparison of pulmonary descriptor intra and inter patients is feasible, 

making it possible to be an auxiliary diagnostic tool in pulmonary function assessment. 3) 

Compared with traditional PET metabolic biomarker analysis, the proposed descriptor incor-

porates image’s temporal information, which enables a better understanding of the time-vari-

ous mechanisms and detection of visual perfusion abnormalities among different patients. 4) 

The proposed descriptor eliminates the impact of vascular branching structure and gravity ef-

fect by utilizing time warping algorithms. Our experimental results showed that our proposed 

framework and descriptor are promising tools to medical imaging analysis. 
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CHAPTER 1. Introduction 

 

1.1 Research Motivations 

Future breakthroughs in medical decision-making procedures will demand an ever-closer rela-

tionship with information systems [2]. Artificial intelligence (AI) has the potential to advance 

science in radiology, and it has recently been applied to Interventional Radiology (IR), a med-

ical sub-domain that performs a variety of invasive operations under the guidance of medical 

imaging for diagnostic and prognostic purposes.  

The contributions of IR start with the initial diagnosis and planning of cancer, then extend to 

the management of malignancy (procedural targeting, monitoring and control) and postproce-

dural assessment [3]. Research shows that a growing number of IR-based histopathological 

diagnoses are made through biopsies using minimally invasive methods [4]. IR also plays an 

important role in intraprocedural: more than two million central access devices are implanted 

annually in the US, which traditionally implanted by surgeons are now often sited using IR 

methods [5]. Besides, malignancy-related issues, which may arise from the disease itself or as 

a side consequence of treatment, have also assumed an important position in IR care [6]. 

The visual analysis of medical images is an indispensable technical means in IR, which has 

many applications like lesion recognition in diabetic retinal fundus images [7]. However, due 

to the incapacity of the human eye to detect tiny structural characteristics and inter-radiologist 

heterogeneity, physicians cannot offer accurate diagnosis based on conventional experience-

based IR visual evaluations. 

To provide a feasible and quantitative solution to address similar issues, radiomics, supported 

by big data technology and computer-aided diagnosis, are developed for applications of IR, 
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which are not limited to tumor detection, differential diagnosis, pathological typing and grad-

ing, prediction and evaluation of chemotherapy efficacy [8].  

The radiomics pipeline generally consists of: 

(1) Medical image acquisition,  

(2) Segmentation and feature extraction,  

(3) Biomarker mining and interpretation.  

Biomarker mining is a major component in these steps, which is actively being improved using 

machine learning techniques. However, there are two inevitable challenges of biomarker min-

ing in medical imaging applications. One is high-dimensional small-size problem, the other is 

the integration of dynamic image information. We will give more details in the following sec-

tions. 

1.2 Challenges in biomarker mining  

1.1.1 High-dimensional small-size data problem 

Quantitative imaging biomarkers are usually based on mathematical definitions, which require 

high-throughput analyses. Besides, it’s commonplace to encounter high-dimension small-size 

medical imaging dataset because of the confidentiality agreement, law issue and various ac-

quisition protocols [9], making it difficult to find the informative biomarkers.  

Larger feature space is a strong guarantee for achieving an accurate output, but it will unavoid-

ably result in the presence of several duplicate and inappropriate features. Besides, it is more 

likely to induce the Curse of Dimensionality [10], that is, as the dimensionality grows, the time 

complexity rises significantly while the efficiency of the algorithm plummets. Besides, 
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conventional machine learning methods may fail because of the limited sample size, and it’s 

more likely to encounter the overfitting problem. 

Chapter 3 of this study was motivated by limitations mentioned above. We proposed a result-

driven feature selection framework for prognostic prediction of primary liver cancer.  Specifi-

cally, the algorithms were designed by three criterions to address the high-dimensional small-

size data problem in biomarker mining applications. The first criterion is correlation, which 

means the selected features should be relevant with clinical labels. Filter methods such as Ran-

dom Forest tree importance and statistical analysis, are used here to exclude noisy and irrelated 

features. The second criterion is non-redundancy. Introducing highly correlated features could 

unnecessarily increase the dimensionality and cause overfitting problem. Dynamic feature se-

lection algorithms are utilized to exclude highly correlated features to ensure the discovered 

feature set is discriminative. The last standard is robustness. Nested validation strategies were 

applied to ensure the reproducibility and generalization ability of discovered biomarkers 

through different imaging devices and institutions. The framework could reduce features di-

mensions in an effective way (only three features were selected from more than 1800 features) 

and make feature combinations informative (AUC>0.8).  

1.1.2 Integrates dynamic medical image information 

Discovering more radiomics features is important for evaluating prospective influencing ele-

ments that may be effective in diagnostic and prognostic predictions. Many efforts have been 

made to explore and extract new radiomics features. No matter the feature extraction approach 

used, the results provided by the current methodologies are mostly dependent on static medical 

images. However, the formation and development process of cancer are a dynamic process and 

cannot be comprehensively captured solely by static features.  
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Studies show that dynamic imaging techniques could provide quantitatively metabolic and 

pharmacokinetic analysis for different kinds of cancers. For example, dynamic contrast-en-

hanced magnetic resonance (DCE-MR) imaging [11] is a technique for acquiring  images by 

the administration of contrast, which improve the sensitivity for tumors detection. Dynamic 

PET/CT [12] is a technique that acquiring data in a dynamic way, collecting tracer dynamic 

information that typical static methods do not capture. It can avoid the influence of uptake 

kinetics, drug injection imaging time and BMI factors, and can be used to quantitatively eval-

uate tumor metabolism. In some clinical scenarios, taking medical images of different thera-

peutic phases may also be useful to evaluate patient's response to immunotherapy or chemo-

therapy. However, conventional analysis of dynamic medical images is based on kinetic mod-

elling and pharmacokinetics, demanding sophisticated parametric calculation and professional 

software [13].  

Recently, Delta Radiomics [14] and Dynamic Radiomics [15] are proposed based on static 

images acquired from subsequent examinations, which provide potential applications in the 

diagnosis and prognosis evaluation of liver and lung diseases. However, compared to model-

ling techniques based on dynamic imaging, these static-image-based methods hardly capture 

the pharmacokinetics characteristics of tumours, lacking in interpretability of relationships be-

tween metabolic variations and pathological processes. 

With the development of high-res dynamic whole-body PET/CT Scanner [16], dynamic-im-

age-based radiomics is a promising research topic with the potential to provide a computa-

tional-efficient and pathologically explainable solution to precise diagnosis and treatment plan-

ning. 

Chapter 4 in this study was motivated by the topic mentioned above. Inspired by dynamic 

descriptor in the computer vision area. We build radiomics-based dynamic descriptor on 18F-
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FDG dynamic whole-body PET/CT images. The descriptor can reflect visually uneven perfu-

sion of patients’ lung in a quantitative way. It also has potential to provide a more comprehen-

sive assessment of patients’ pulmonary diseases. 

1.2 Thesis Contributions 

The aim of this thesis is to give solutions to radiomics-based medical image biomarker analysis. 

Our major contributions to this thesis can be summarized as below:  

A result-driven feature selection framework. It’s common to encounter high-dimensional 

small size problem in medical imaging dataset. We construct a result-driven feature selection 

framework, which could efficiently reduce the dimension of the feature space and simultane-

ously avoid overfitting. The framework integrates different feature selection techniques to en-

sure the distinctiveness, uniqueness, and generalization ability of the output feature set. In the 

task of phenotype classification in primary liver cancer, only three features (choose from more 

1800 features) can obtain an AUC of 0.83 in the independent dataset. Besides, we also analyze 

features’ pattern and contribution to the results, enhancing clinical interpretability of radiomics 

biomarkers. 

A computer-vision-based dynamic lung perfusion descriptor. Considering that medical im-

age biomarker scarcely integrates temporal information, we explore and build a perfusion index 

based on FDG dynamic PET in the view of computer vision descriptor. Novelties include 1) 

propose a physiology-and-computer-vision-interpretable descriptor construction framework by 

the decomposition of spatiotemporal information into three dimensions: shades of grey levels, 

textures, and dynamics. 2) The quantitative comparison of descriptor intra and inter patients is 

feasible, making it possible to be an auxiliary diagnostic tool in pulmonary function assess-

ment. 3) Compared with traditional PET metabolic biomarker analysis, the proposed descriptor 
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incorporating image’s temporal information, which enables a better understanding of the time-

various mechanisms and a more sensitive detection method of visual perfusion abnormalities 

among different patients. 4) The proposed descriptor eliminates the impact of vascular branch-

ing structure and gravity effect by utilizing time warping algorithms. 
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1.3 Thesis Organization 

 

The remainder of this thesis is organized as follows: Chapter 2 provides a literature review of 

the recent progress in radiomics, feature selection method and the development in image 

Figure 1-1 Thesis Organization 
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descriptors. Chapter 3 presents our radiomic analysis for classifying and predicting microvas-

cular invasion in hepatocellular carcinoma and intrahepatic cholangiocarcinoma, which utiliz-

ing the feature selection framework we proposed. Chapter 4 presents the construction and anal-

ysis of computer-vision-based lung perfusion descriptor. Chapter 5 is conclusion and future 

work for medical image biomarker analysis. 
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CHAPTER 2. Literature Review 

 

In this chapter, we first summarize the literature review on general framework of artificial-

intelligence-based radiomics, which includes image acquisition, image segmentation, image 

features mining, feature selection, model construction and evaluation. Then, recent progress 

and challenges are discussed for each specific topic. 

Image acquisition and segmentation are two important pre-processing steps deciding the inputs 

in biomarker mining algorithms. With the development of imaging technologies, more accurate 

and reliable information could be extracted, giving multi-dimensional training data for machine 

learning models. For medical image features, it can be categorized into static features and dy-

namic features according to whether the time variable is introduced. Image Biomarker Stand-

ardization Initiative[17] gives a comprehensive definition of static medical features, which ma-

jor interest in conventional computer-vision-based descriptors. Traditional features well depict 

the areas of interest to physicians in many clinical scenarios, and furthermore provide analyti-

cal information that cannot be recognized by the naked human eyes. However, medical images 

of one single time point allow only limited information, especially for studies on pharmacoki-

netics of tumours. Lately, studies on dynamic medical image features mainly focus on Delta 

Radiomics [14] and Dynamic Radiomics [15], compensating the shortcomings of static fea-

tures, strengthening the clinical interpretability of radiomics biomarkers. Besides, high-dimen-

sional small-size data is easy to encounter in biomarker mining. Appropriate and interpretable 

feature selection methods are particularly important because it not only diminished impact of 

curse of dimensionality and algorithm’s time complexity but retain the biomedical character-

istics of original images. Methods on feature engineering are basically summarized as four 

major categorizes by algorithms’ evaluation functions, which include filter method, wrapper 
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method, embedded method, and ensemble method. Modelling and evaluation are established 

to explore and analyze potential relationships between discovered biomarkers and its biological 

information. A trusted as well as robust machine learning framework is needed in this step. 

This chapter is organized as follows: Radiomics Framework is summed up in section 2.1, Im-

age Acquisition and Image Segmentation are introduced in section 2.2 and 2.3. Literatures in 

related to Image Features and Feature Selection are summarized in section 2.4 and 2.5. Finally, 

we give a presentation on Modelling and Evaluation on section 2.6. 

2.1 Radiomics Framework 

Radiomics studies are widely applied in survival prediction, tumor treatment response assess-

ment, viral status analysis, etc. For instance, Microvascular Invasion (MVI), an important bi-

omarker for assessing recurrence of liver cancer, is typically determined by biopsy, which may 

raise the patient's risk and may not reveal the whole tumor status [18]. Radiomics, on the other 

hand, might use non-invasive imaging features to aid in the detection of MVI. Figure 2-1 illus-

trates the radiomics analysis methodology for this specific task. 
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First, high throughput radiomics features are extracted from volume of interests (VOIs) on 

images. The machine learning classifier is then developed and trained based on the specified 

features. Third, pre-trained models predict the MVI status. Lastly, model interpretability 

strengthening via studying the connection between radiomics features and physiological indi-

cators. We will cover the details of these steps in the following sections. 

2.2 Image Acquisition 

In most circumstances, medical imaging relates to a range of procedures for non-invasively 

creating pictures of the human body's anatomical structure, metabolic data, and malignant 

symptoms. Essentially, medical imaging might be viewed as the solution to mathematical in-

vertible issues, which means that the cause (the metabolism of tumors) may be deduced from 

the result (the pixel value). Three widely used medical imaging techniques (Table 2-1) are 

described in the following paraphrase.  

Figure 2-1 Workflow of Radiomics 
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Computerized Tomography (CT). Using a revolving X-ray tube and a series of detectors, a 

CT scanner analyzes X-ray attenuations by various tissues inside the body. The computer then 

applies tomographic reconstruction methods to the numerous X-ray observations to generate 

tomographic pictures of a body. CT images are suitable for anatomical imaging for its high 

resolution in human body’s structure [19]. CT also has several limitations, including its high 

radiation as well as the low contrast in tissue with high metabolism.  

Magnetic Resonance Imaging (MRI). MRI employs a powerful magnetic field to create im-

ages that represent the anatomy and physiology of the body. MRI does not employ X-rays or 

any other kind of ionizing radiation, which makes it a painless and safer solution for medical 

analysis. Besides, MRI gives superior contrast for imaging soft tissue, e.g. in the brain or car-

diac [20] [21]. However, the drawbacks of MRI include its high cost and patients may perceive 

it uncomfortable due to the long acquisition time, claustrophobic environment, and loud noise. 

Table 2-1 Comparison for different medical images 

Modality CT MRI PET 

Mechanism X-ray attenuation Strong magnetic 
field 

Photon emission 

Spatial 
Resolution 

<1 mm 
 

1-2mm <1 mm 
 

Acquisition  
Time 

20-30 min 30-60 min 30-90 min 

Advantages 1) Good structure im-
aging 

2) Short acquisition 
time 

1) Safer and more 
comfortable 

2) Better contrast in 
soft tissue than 
CT 

1) High sensitivity in 
metabolic activities 

Disadvantages 
 

1) Low contrast in 
tissue 

2) High radiation 
dose exposure 

1) Expensive 
2) Uncomfortable 

acquisition 
method 

1) Expensive 
2) High radiation dose 

exposure 
3) Low resolution 

Major  
Applications 

1) Bone imaging 1) Brain imaging 
2) Cardiac imaging 

1) Tumor imaging 
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Positron Emission Tomography. Different from CT and MRI, PET [22] utilizes radioactive 

materials to identify changes in metabolic activity and other physiological processes, including 

blood flow, absorption, and regional chemical properties. It is possible for PET imaging to 

detect metabolic processes taking place in the target body regions through the changes in bio-

chemical substances, enabling the detection of disease progression, which may not be visible 

with anatomical imaging. PET may be used in a wider range of clinical and scientific situations 

than CT and MRI. The approach is widely used in the fields of oncology, neurology, and bio-

distribution studies to scan for tumors and the existence of metastases [23]. However, the high 

initial cost and low resolution of a PET scanner are its main disadvantages. 

PET/CT & PET/MR. A composite PET/CT system, which combines the diagnostic infor-

mation of two modalities, was introduced in 2000, replacing traditional PET scanners. By com-

bining structural and functional tomographic imaging modalities, hybrid imaging technology 

provides superior information. 

Dynamic whole body Positron Emission Tomography (dPET). Dynamic whole-body posi-

tron emission tomography (dPET) method is often utilized in scientific research projects be-

cause it requires special software and takes a long time to perform. dPET/CT has shown im-

provements over conventional static PET/CT by using methodologies of quantitatively extract-

ing biological and kinetics knowledge from a tracer in tissue [24]. The major improvements 

are: 

(1) With a dynamic image (Figure 2-2), one can capture the kinetics of the tracer over time 

instead of just recording it at a specific point after the tracer has been injected. In addi-

tion to being able to visualize specific tracer uptake compared to background uptake, it 

may be able to produce more accurate quantitative measures of disease. [25]. 
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(2) The total body coverage. PET scanners with short axial fields of view (AFOV), which 

are often used in clinical settings, have some limitations, such as long acquisition times, 

and a high radiation exposure. Conventional scanners still need more than six bed po-

sitions to acquire whole body PET images. The total body system has an AFOV of 2m, 

which has a higher spatial resolution by covering the entire body with single bed [26].  

 

 

2.3 Image Segmentation 

The first step in the analysis and understanding of an image is usually to extract the image 

features of the object or object component from the image, such as extracting the boundary of 

the object component, or dividing the area where each component of the object is located. This 

process is called image segmentation. The aim of image segmentation is to divide different 

Figure 2-2 The initial three minutes of maximum-
intensity projections of dynamic whole body PET im-

ages 
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parts of objects in an image to facilitate subsequent classification, identification, and interpre-

tation of image objects. 

Published medical image segmentation methods can be summarized into four categories [27]: 

Spatial and geometric prior knowledge. Statistical Shape Models (SSMs) [28] are conven-

tional statistical-shape-analysis-based method for medical image segmentation. Statistical 

shape analysis refers to the analysis of some set of shapes using statistical methods to determine 

its geometrical properties. Its major aspects include estimation of shape consistency within 

samples and mean shapes from (possibly random) samples. 

Local image features with context layout. Graph Cut (GC) methods is a technique that utilize 

image’s local information. Generally, GC segments the image into background and target area, 

and the voxels in the image are all represented by a set of vertex points. Probabilistic atlas (PA) 

is a classical model that analyzes images in a statistical way. The probability maps of PA are 

anatomical atlases containing statistically weighted fusions of many specimens[29]. 

Local image features with voxel-wise classification. This kind of method utilize machine 

learning classifiers to identify location and boundaries of target area and intuitive deformation 

for segmentation optimization. Zheng et al. [30] applied AdaBoost and random walk algo-

rithms to do voxel-wise liver segmentation. 

Neural networks. The heavy reliance on prior knowledge limited generalization capabilities 

of conventional algorithms, making it challenging to get acceptable results. Deep learning tech-

nologies then propelled advancements in biomedical segmentation. The traditional neural net-

work model used histogram features for segmentation, depending extensively on preprocessing 

to eliminate unnecessary regions beforehand and guarantee clean boundaries by subsequently 

morphological operations [31]. Today, Convolutional Neural Networks (CNN) [32] has ac-

complished pixel-level classification by acquiring classification information for each pixel and 
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is frequently employed in medical imaging for automatic semantic segmentation tasks that do 

not rely on hand-crafted features. Ronneberger et al. [33] firstly proposed U-Net structure, 

which employs skip connections technology by merging the respective low-level detailed fea-

ture and the high-level feature. Recent studies showed that U-Net architecture is widely used 

for medical image segmentation and has already demonstrated its efficacy and effectiveness in 

many clinical applications [34].  

2.4 Image Features 

An image feature is a vector that contains several image-specific characteristics. It is a succinct 

representation that can be used to distinguish between images. We classify image features into 

two categories (Figure 2-3): static and dynamic, for different image modalities.  

 
 

2.4.1 Static features 

In this section we mainly discuss static image features extracted from static medical images. 

According to Image Biomarker Standardization Initiative ‘s definition [17], image features can 

be categorized as morphological features, intensity features, texture features, and high-order 

Figure 2-3 Categories of image features 
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features. The static feature extraction methods will be automatically used when the area of 

interests (ROIs) within the images are defined. It is highlighted that the proper picture pre-

processing methods, such as image intensity discretization [35], should be used to reduce noise 

and make it easier for feature computation. For improved consistency of the features, the most 

popular methods for image discretization employ a fixed bin count or fixed bin width [36].  

2.4.1.1 Shape features 

Morphological features represent the formation and geometry-related properties of the concen-

trated area of interest (ROI). Such as perimeter, maximum diameter, centroid, etc. For example, 

Sphericity (equation 2.1) is a measurement of the sphereness of the ROI. The value range is 0 

to 1, and value 1 represents an absolute sphere. 

 

 Sphericity  = √"#$%!"

&
  (2.1) 

 
where 𝑉 is the volume of the mesh in cubic millimeter, and 𝐴 is the surface area of the mesh 

in square millimeter. 

2.4.1.2 First order/Intensity features 

First-order statistics/Intensity features, including the mean, median, skewness, and kurtosis, 

are computed from the distribution of voxel intensities without considering voxels’ spatial lay-

outs [36]. Intensity features do not require discretization and can be used to depict continuous 

distributions. Variance is a first order feature (equation 2.2), which describes the average value 

of the squared distances of each grey level value from mean. Variance represents the homoge-

neity of ROI, and a higher value represents a higher homogeneity. 
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Variance = '
(#
∑ (𝑿(𝑖) − 𝑋)))(#
*+'   (2.2) 

 

where 𝐗 is a group of 𝑁𝑝 in the ROI.  

2.4.1.3 Second-order features 

Second-order feature/texture feature is frequently employed to represent heterogeneity by ex-

ploiting the pixels' grey levels distribution of a co-occurrence matrix [37], i.e., Gray Level Size 

Zone Matrix (GLSZM), Gray Level Run Length Matrix (GLRLM), and Gray Level Depend-

ence Matrix (GLDM).  

Grey Level Co-occurrence Matrix (GLCM). GLCM is a matrix that describes the joint dis-

tribution of discretized intensities (grey levels) of neighboring pixels, or voxels in a 3D volume 

[37]. The value of (i, j) 𝑡ℎ element of GLCM is the count of combination of i and j that exists 

in distance m along the angle 𝜃. Figure 2-4 gives an instance of GLCM calculation with four 

discrete grey levels (set distance m = 1 and θ = 0). The element (2,1) of the GLCM is 1 because 

there exists only one pair of voxels with intensity values of 2 and 1 in the direction of θ = 0. 

GLCM features include Autocorrelation, Joint Average and Cluster Prominence etc. 

 

Figure 2-4 An example of GLCM computation 
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Grey Level Dependence Matrix (GLDM). The GLDM describes the voxel-wise dependen-

cies in a grey level image [37]. The grey level dependency is that, within a distance of m,	the	

counting	of	connected voxels which are dependent on the center voxel. Two adjacent voxels 

are dependent[38] (with grey level i and j, respectively) if |𝑖−𝑗	|≤ 𝛼	(𝛼	is	a	given	scalar). The 

value of (i, j) 𝑡ℎ element of GLDM is the count that the center voxel with grey level 𝑖 has 𝑗 

dependent adjacent voxels. Figure 2-5 gives an instance of GLDM calculation with four dis-

crete grey levels (set m = 1 and α = 0). The element (2, 3) of the GLDM is 1 because there 

exists only one center voxel with value 2 and two dependencies. GLDM features include Small 

Dependence Emphasis and so on.  

 

Grey Level Run Length Matrix (GLRLM). GLRLM is the quantification format of grey 

level runs, which represents the number of pixels comprising a sequence of pixels with the 

Figure 2-5 An example of GLDM computation 

Figure 2-6 An example of GLRLM calculation 
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same gray level value [39]. The value of (i, j) 𝑡ℎ element of GLRLM is the counting of runs 

with grey level i and run length j in the image of an angle θ. Figure 2-6 gives an instance of 

GLRLM calculation with four discrete grey levels (set m = 1 and θ = 0).  

The element (2, 3) of the GLRLM is 1 because there is only one run with the grey level 2 and 

length 3 in the θ = 0 direction. GLRLM features include Short Run Emphasis [40], Long Run 

Emphasis (LRE) and Run Percentage (RP), etc. 

Grey Level Size Zone Matrix (GLSZM). Similar to GLRLM, GLSZM is the quantification 

format of an image’s gray level zones, which is defined as the counting of voxel combinations 

that have identical gray level values [41]. The (𝑖, 𝑗) 𝑡ℎ element of GLRLM shows the number 

of zones with the size 𝑗 and intensity value 𝑖. Figure 2-7 gives an instance of GLSZM calcula-

tion with four discrete grey levels (set m = 1 and θ = 0). The element (3, 3) of the GLSZM is 1 

because there exists only one zone with grey level three and size three. GLSZM features in-

clude Zone Variance (ZV), Zone Entropy [1] and Low Gray Level Zone Emphasis (LGLZE), 

etc. 

 

 

Figure 2-7 An example of GLSZM computation of an image with four grey levels. 



 

 
34 

Neighboring Grey Tone Difference Matrix (NGTDM). NGTDM is the quantification format 

of variance of a grey value and the mean grey value of its pixel combinations within the dis-

tance m [42]. The matrix stores the total value of absolute differences for gray level. Figure 2-

8 gives an instance of NGTDM calculation with four discrete grey levels (set m = 1 and θ = 0). 

GLCM features include Coarseness, Contrast and Busyness. 

 

2.4.1.4 High-order features 

High-order feature consists of first-order features, second-order features, and texture features 

from Laplacian of Gaussian (LoG) and wavelet pictures, which are designed to perform noise 

reduction and capture subtle information from images at different frequency domains. More 

specifically, LoG transformations exhibit remarkable performance for regions with hazy bor-

ders, metric descriptions, and capturing texture information at various coarse levels, while 

wavelet features use different frequency bands to disclose more useful subtle traits based on 

the original images. 

 

 

Figure 2-8 An example of a 2D NGTD matrix calculation 
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2.4.2 Dynamic features 

Dynamic images are common in medical scenarios, such as minimally invasive surgery [5] 

videos, dynamic PET/CT imaging, and time-related tomographic images in multi-stage chem-

otherapy evaluation [43]. Compared to static image features, there is no generally accepted 

definition of dynamic features based on medical images. We summarize the state-of-art dy-

namic feature (descriptor) techniques in computer vision field and classify dynamic features 

into three categories: dynamic radiomics features, dynamic content-based descriptors and dy-

namic texture-based descriptors. 

2.4.2.1 Dynamic radiomics features 

Most of the published studies on dynamic radiomics features are based on subsequent static 

medical images obtained from different time points. Delta Radiomics [17] [44] DR is a tech-

nique to assess the initial differentiation of FDG-PET radiomics features to predict therapeutic 

response for patients with non-small cell lung cancer (NSCLC). Dynamic radiomics features 

are calculated in the format of percentage change between two static scans. This method can 

offer more details to recognize and predict treatment-induced changes throughout therapy[14, 

45, 46]. Recently, Qu et al. [15] extend DR with  a more sophisticated dynamic radiomics 

framework, which can convert the static imaging features from different acquisition periods 

into dynamic features. The workflow and mathematical paradigm of this method could repre-

sent static radiomics features with time-varying characteristics and has been shown to achieve 

higher accuracy in prediction of gene mutation status and axillary lymph node.  
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2.4.2.2 Dynamic content-based descriptor 

Computer aided surgery allowing surgeons to do sophisticated minimally invasive surgery[47], 

has been popular nowadays. Dynamic content-based descriptors are usually used in surgical 

video retrieval tasks, which need to describe motion and temporal information of a series of 

images.  

Primus et al. [48] employ multiple key point detection methods and Support Vector Machines 

(SVM) methodology to segment video information. DeMenthon et al. [49] propose a descriptor  

that makes use of the position, color, and dynamics of independently moving patches over 

consecutive frames. Deep learning algorithms have made tremendous developments over the 

past few years. The Similarity-Adaptive Deep Hashing (SADH) approach [50] uses training 

algorithms to learn similarity-preserving binary patterns from original images photos. 

Chitajallu et al. [51] used pre-trained 3D CNN models to learn features in dynamic frames and 

interact  with users to iteratively enhance the model outputs. 

2.4.2.3 Dynamic texture-based descriptor 

Most statistical-based dynamic texture description methodologies extend the analysis of con-

ventional spatial texture methods to the space-time domain by adapting standard spatial texture 

methods. In both static and dynamic texture analysis, Local Binary Pattern (LBP) has been 

extensively studied and refined because of its computational simplicity, invariance, and high 

performance. Ojala et al. (1996) [40] presented the fundamental principle of LBP. Since then, 

further development been suggested. Several research have suggested extending LBP to cap-

ture 3D textures and patterns for 3D pictures. The Local Phase Quantization on Three Orthog-

onal Planes (LPQ-TOP) [52] is an approach that measures the locally periodic properties of the 

Fourier Transform (FT) and is robust to blurry images.  
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Using system identification theory, some model-based texture presentation approaches charac-

terize the layout properties and dynamics of a scene by estimating the parameters of a linear 

dynamical system (LDS) [53]. Recently, LBP descriptor and LDS techniques showed promis-

ing results by integrating together to examine the texture layout, spatial organization, and dy-

namics of image sequences. 

2.5 Feature Selection 

 

From an algorithmic point of view, feature selection from high-dimensional small size data is 

a transformation-based method. Feature selection does not alter the original distribution of fea-

tures. It simply picks certain suitable features to create a new low-dimensional space that re-

tains the majority of the original feature space's attributes. A solid feature selection strategy 

may eliminate unnecessary and redundant features, limit the influence of noisy data on the 

Figure 2-9 The general procedure of feature selection framework 
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performance of the classifier, and make the chosen features more interpretable for high-dimen-

sional, small-size data, which is prevalent in medical picture analysis. 

The general procedure of feature selection framework (Figure 2-9) has four elements: 

1. Formation of Subset 

2. Assessment of Subset  

3. Stopping Criteria 

4. Confirmation of Output 

According to different evaluation functions, the feature selection methods consist of four cat-

egories: filter method, wrapper method, embedded method, and ensemble method.  

2.5.1 Filter Method 

Filter methods (Figure 2-10) evaluate the categorization ability of a feature by assessing its 

internal properties, which is irrespective of whatever classifier is ultimately employed. Typi-

cally, such systems require a scoring index or a threshold. It can be separated further into the 

feature ranking approach (Table 2-2) and the spatial search method based on the various ways 

of formatting feature subsets. Generally, filtering algorithms may overlook features that are not 

valuable on their own but can be quite beneficial when paired with other feature selectors. 

Figure 2-10 depicts the graphical depiction of the filter model. 
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Table 2-2 Filter method by ranking index 
Filter Evaluation 

Criteria 

Description Examples 

Statistics method Measure the distribution dif-

ference between samples of 

class by statistical methods 

t-test [54] 

Fold-change Ratio [55] 

Bayesian framework [56] 

Mutual information [57] 

Information Theory 

method 

Measure the information con-

tained in the target feature 

through information entropy 

Information gain [58] 

Log Likelihood ratio [59] 

Quasi-Poisson coefficient [60] 

Correlation 

Method 

Identify the relationship be-

tween desired attributes and 

categories 

Kendall rank [61] 

Linear Discriminant Analy-

sis[62] 

 
 

Figure 2-10 The feature filter model 
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In order to choose the feature subset from the whole feature set that has the greatest information 

and the least amount of redundancy, the spatial search approach primarily employs an optimi-

zation strategy, such as Correlation-based Feature Selection (CFS) [63] and Maximum Rele-

vance Minimum Redundancy (MRMR) [64]. 

The majority of ranking techniques are univariate. The spatial search approach, on the other 

hand, is a multivariate method whose algorithm considers not only the connection between 

feature subsets and class labels, but also the connection between feature subsets. The precision 

of spatial search methods is usually high but the computational consumption of locating opti-

mum subsets under high-dimensional settings is intensive. 

2.5.2 Wrapper Method 

 The feature selection technique and classification model that make up the wrapper method, 

which encapsulates several categorization models. According to the results of the classifier on 

the feature subset, the wrapper method evaluates the selected features and adjusts  

 

the subset through some optimized search strategies, and finally obtains the approximate opti-

mal subset. Genetic Algorithm (GA) [65] is often used to build classification models. The 

Figure 2-11 The wrapper model 
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number of potential feature subsets is 2N for a dataset with N features. Finding the optimal 

subset of features has been shown to be NP-Hard problem  [66]. The wrapper algorithm is 

shown in Figure 2-11. Approximately, sequential search and heuristic search are the two cate-

gories that the wrapper technique falls under: 

(1) Sequential search algorithm. 

The sequential search method begins with an empty feature subset and adds (or removes) fea-

tures until the feature subset provides the optimal performance for the evaluation function. 

Some conditions for halting the search will be provided to expedite the selection of feature 

subsets, ensuring that the smallest number of feature subsets are chosen as the evaluation func-

tion continues to improve and reaches the best performance. Meanwhile, to improve temporal 

performance, Nakariyakul et al. [67] presented a novel feature selection approach known as 

the recursive feature elimination (RFE) method: adding features from the candidate feature set 

each time, examining the difference between the chosen  features, and then eliminating the 

features least important to the class labels substantially improves the algorithm's time perfor-

mance.  

(2) Heuristic search algorithm. 

From the whole collection of feature candidates, a random feature subset is generated as the 

starting point for the heuristic search algorithm, which then uses heuristic criteria to progres-

sively move toward the ideal answer. This approach has a high level of search uncertainty, but 

the quality of the resulting feature subset is acceptable. Emmanouilidis et al. [68] employ an 

evolving genetic algorithm to overcome the challenge of feature selection in picture recogni-

tion. By adjusting the iteration threshold, the number of feature subsets that need to be iterated 

are sometimes decreased.  
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Due to the nature of the sequential search method, a secondary selection cannot be performed 

on the rejected features, nor can the picked features be discarded. It is simple to get trapped in 

local optima, often known as nesting effects. These issues may be effectively addressed by 

heuristic search methods. Additionally, it has been shown that the computational cost of paral-

lel heuristic search methods is much lower than that of sequential selection algorithms. [69]. 

2.5.3 Embedded Method 

The Embedded approach was created primarily to solve the time-consuming issue of wrapper 

method in processing large datasets. Embedded method has gradually become a hot spot for 

feature selection due to its efficient spatiotemporal performance and better accuracy.  Figure. 

2-12 depicts the graphical depiction of the embedded model. 

 

 

 

There are two popular embedded methods: SVM-based model [70] and Least Absolute Shrink-

age Selection Operator (LASSO) [71]. SVM is widely used in handling high-dimensional small 

size feature selection problem. One explanation is that SVM may strike a compromise between 

model complexity and learning capacity on the basis of a small number of examples. Besides, 

Figure 2-12 The embedded model 
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it can also effectively eliminate redundant features. Regularized sparse models can remove 

many redundant or noisy features and select a subset of features with good interpretability [72]. 

The representative algorithm of regularized sparse model is LASSO, which was proposed by 

Tibshirani in 1996 [73]. The main concept is to add coefficient absolute value as a punishment 

term to the least squares estimate such that the total absolute value of the coefficient is below 

or equal to a predetermined limit. 

2.5.4 Ensemble Method 

Ensemble learning is a technique that uses a number of feature selection strategies for learning 

and combines the learning outcomes according to a set of rules in order to achieve superior 

learning effects compared to single feature selection methods. This method has a lower com-

putational complexity than the wrapper method since it interacts directly with the learning pro-

cess. It considers not just the relationship between an input feature and an output feature, but 

also looks locally for traits that allow for more local discrimination. The ensemble approach 

has been employed in certain instances to increase the stability of feature selection algorithms. 

Li et al. [74] introduced a new method for selecting features that employs methods for 

resampling to disturb the data. It creates many training sets and test sets, continually invokes 

recursive decision tree, and picks features using classification error rate as the evaluation index. 

Dutkowski et al. [75] utilized multiple feature selection techniques for gene selection and com-

bined them via an optimization approach, with the outputs of each algorithm composing the 

final subset of features. Sais et al. [76], Abil et al. [77] proposed an ensemble feature selection 

framework by bagging method. Saeys et al. [78] fuses the outcomes of numerous methods to 

finish the feature subset integration. Using sample resampling technology, Abeel et al. [79] 
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generates several feature subsets and achieves excellent performance on various high-dimen-

sional small sample data sets.  

2.6 Modeling and Evaluation 

2.6.1 Model building 

As a branch of AI, machine learning has advanced impressively quickly in medical imaging 

field [80]. In fields of research, machine learning demonstrates its distinctive talents. It func-

tions as a crucial link between computer science studies and medical research [81]. Machine 

learning techniques used for medical imaging data analysis can help us better understand dis-

eases and therapies, as well as produce individualized medicines and successful treatments 

[82]. A variety of difficult clinical tasks have applied machine learning algorithms, including 

brain tumor segmentation [83], detection Alzheimer disease with MR imaging [84], differen-

tiation of liver tumor phenotypes [85], breast cancer detection and diagnosis [86], etc. There 

are two primary categories for ML algorithms: supervised learning and unsupervised learning.  

2.6.1.1 Supervised Learning 

Supervised learning algorithms learn or create a pattern from training data and infer output 

based on the learned pattern. A supervised learner is tasked with predicting the output with pre-

labeled training data, which consists of classification problem and regression problem in data 

mining. 

Support Vector Machines (SVM) Classifier. SVM [87] is a binary classifier. One advantage 

of SVM is that it doesn’t need to calculate all samples and uses less computer memory when 

dealing with high-dimensional data. However, because SVM classifier needs to map low-
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dimensional disordered data into high-dimensional feature space through a kernel function, and 

separate it through a hyperplane, the computational cost is relatively high. 

K Nearest Neighbors (KNN) Classifier KNN [88] is a frequently used supervised classifica-

tion algorithm. An object's categorization is decided by the majority vote of its neighbors, and 

it is assigned to the class with the highest percentage of members among its k nearest neighbors. 

KNN is a parameter-less training model which is simple to use and requires very little pro-

cessing time. However, the calculation time and storage space will rise exponentially as the 

data size increases. 

Logistic Regression Classifier Logistic Regression [89] is a model for binary classification 

with clarity and interpretability, which is also frequently utilized in the medical industry. The 

fundamental idea of logistic regression is to utilize maximum likelihood estimation to estimate 

parameters while supposing that the data follow a certain distribution. Logistic regression can 

be solved in two ways: the exact analytical solution and the Stochastic Gradient Descent (SGD) 

[90] algorithm estimation. Typically, we use analytical solutions when accuracy is required, 

and SGD iterations when time efficiency is required. 

Decision Tree Classifier (DT) Decision Tree [91] is a tree-structure-based decision-making 

model  It classifies data sets using several conditional discrimination methods and then 

achieves the desired outcomes. It classifies data sets using various conditional discriminating 

techniques before arriving at the desired outcomes. The decision tree's root node serves as its 

structural starting point, internal nodes represent intermediate decision-making steps, and leaf 

nodes represent the outcomes of categorization. Decision Tree has low data quality require-

ments and good interpretability but is very time-consuming. 

Random Forest Classifier Random Forest [92] is an algorithm that integrates multiple deci-

sion trees, and it essentially belongs to a major branch of machine learning called Ensemble 
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Learning [93]. With the ability to handle input samples with high dimensional features and 

produce an internal, unbiased assessment of the generalization error as the forest building pro-

cess moves along, RF classifiers perform well in huge datasets. However, similar to other en-

semble learning algorithms, RF’s outcomes are unpredictable and sensitive to probability.  

Linear Regression In the analytical method of linear regression [94] the connection between 

one or more independent and dependent variables is modeled using least squares functional. 

Linear regression assumes that the data subject a linear distribution, limiting the generalization 

ability of the model because few data are strictly subject to the linear distribution in the real 

world. 

2.6.1.2 Unsupervised Learning 

Unsupervised learning [95] is a type of machine learning that automatically categorizes incom-

ing data without given pre-labeled training examples. This learning technique helps identify 

the common characteristics inside a dataset that cannot be validated by specialists. In order for 

the algorithm to be able to model the input-output relationships, the final classes and labels are 

required. In order to extract useful insights and enhance data interpretability for users, these 

algorithms use approaches to mine the potential pattern input data, identify underlying infor-

mation and describe or group comparable data elements. The main applications of unsuper-

vised learning include cluster analysis, association rule [96], and dimensionality reduce [97]. 

K-means Clustering. K-means clustering [98] is a centroid-based technique, in which each 

cluster is described by a central vector. Many K-means algorithms need the hyper parameter, 

K, to be predetermined, which is regarded as one of their most significant disadvantages. More-

over, since they always assign an element to the closest centroid, the algorithms select clusters 
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with nearly comparable sizes. Therefore, the clusters edges are frequently erroneously 

chopped. 

Hierarchical clustering. The major assumption of hierarchical clustering [99] is that things 

are more closely connected to one another than to distant objects. Based on the distance be-

tween elements, these algorithms link them to create clusters. The maximum distance required 

to connect cluster members can be used to characterize the cluster to a large extent. These 

methods will provide a hierarchy rather than a unique division of the data set. Hierarchical 

clustering is more sensitive to outliers and may result in new clusters or even the merging of 

previous clusters.  

Evaluation metrics There exist many evaluation methods for clustering results. For internal 

assessment, the clustering is summarized as an evaluation score, such as Davies–Bouldin index 

and Silhouette coefficient [100]. External evaluation, in which the clustering is compared to an 

existing ground truth includes measurements like Purity [40] and confusion matrix [101]. 

2.6.2 Model Evaluation 

Model Evaluation. Several factors may be taken into consideration when evaluating how suc-

cessful classification models are. In medical studies, it is essential to distinguish between false 

positive (FP) and false negative (FN) misclassification. A sample's correct categorization is 

indicated by the terms of true positive (TP) and true negative [64] [48] in classification predic-

tion. On the contrary, false positive (FP) and false negative (FN) are index representing mis-

classification. The receiver operating characteristic curve (ROC) is an exhaustive, objective 

indicator that represents the ongoing variations in sensitivity and specificity. It uses the com-

position technique to illustrate the connection between sensitivity and specificity. Multiple crit-

ical values for continuous variables are used in the ROC calculation, and the resulting series of 
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sensitivity and specificity are plotted on a curve with the ordinate representing the sensitivity 

and the abscissa representing the specificity. The accuracy of the diagnosis increases as the 

Area Under the Curve (AUC) increases. 

Cross validation. The primary principle behind cross-validation is to group the original data 

(dataset) under specified circumstances, with one half serving as the training set and the other 

as the validation set or test set. Cross-validation techniques are performed to boost the gener-

alization ability of the machine learning model. There are various cross-validation strategies 

such as S-Folde Cross Validation, Leave-One-Out Cross Validation etc., and nested cross-val-

idation methods are prone to be effective in small and unbalanced datasets to avoid overfitting. 

Bootstrap Replacement sampling is usually utilized in the bootstrap approach. First, a sample 

set as large as the original size is obtained for training, and then the unsampled data is used for 

testing. The probability that a sample is never taken in m samples is: 

lim
!→#

?1 −
1
𝑚C

!

=
1
𝑒 ≈ 0.368. (𝐸𝑞𝑢𝑡𝑖𝑜𝑛	2.3) 

 

Hence, bootstrap method may change the data distribution and will bring errors. On the other 

hand, the S-Folder Cross Validation, Leave-One-Out Cross Validation method etc. are com-

monly used when the sample size is sufficient.  
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CHAPTER 3. 18F-FDG PET/CT Radiomic Analysis for Classi-

fying and Predicting Microvascular Invasion in Hepatocellular 

Carcinoma and Intrahepatic Cholangiocarcinoma 

 

3.1 Introduction 

Liver cancer is a high-risk malignancy which 5-year survival rate is only 10%[102]. Hepato-

cellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC)account for over 95% of 

primary liver cancer and have significant differences in clinical treatment and prognosis[103-

105]. Even in those cases when a radical resection is feasible, the probability of intrahepatic 

recurrent cancer and extrahepatic metastases is still very high[106]. HCC and ICC tend to in-

vade vascular structures. Macrovascular invasion [104] refers to tumor invasion of larger ves-

sels, and the most common is the portal vein tumor thrombus (PVTT), while microvascular 

invasion (MVI) refers to the presence of tumor cells within the portal or hepatic venous sys-

tem[107]. The diagnostic gold standard of MVI positive in histopathology is defined as 5 or 

more tumor clusters visible within the peritumoral vascular (usually covered by endothelium) 

only on microscopy [108]. Previous studies have identified MVI as a major risk factor for early 

recurrence after liver resection [109-111]. However, lacking effective early diagnostic strate-

gies, and with highly heterogeneous in clinical features and histological morphology [112, 

113], liver cancer is difficult to distinguish from HCC and ICC as well as identify MVI status 

before surgery. Biopsy is a solution with invasive examination, yet it increases the risk of me-

tastasis and cannot provide the whole status of tumors [114]. Therefore, there is an urgent need 

for a non-invasive quantitative evaluation method in vivo clinically, which can accurately 
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distinguish pathological subtype and reflect the biological characteristics of the whole tumor 

before surgery. 

Radiomics, served as a quantitative high-throughput analysis method for mining medical im-

ages with high dimensional extractable data, has attracted increasing attention in recent years 

[115-117]. PET/CT (Positron Emission Tomography/ Computed Tomography)-based radi-

omics combined with medical imaging and molecular imaging could potentially be used as 

predictive or prognostic biomarkers for tumor diagnosis, treatment, efficacy evaluation and 

prognosis prediction before surgery[7, 118]. Some studies[119-121] have shown that PET/CT 

radiomics applications have obtained encouraging results, for instance, in differentiating be-

nign and malignant tumors, identifying tumor stages. 

Contrast-enhanced ultrasound (CEUS) is commonly used in HCC and ICC differentia-

tion[122]. Besides, researchers have been making great efforts to find more precise ways to 

predict MVI status before surgery. MRI is widely used for detection the presence of MVI in 

ICC and HCC[123, 124]. Compared to CEUS and MRI, PET/CT scans noninvasively reflect 

tumor metabolism and molecular level changes in vivo and monitor tumor biological charac-

teristics [125]. Cassim et al. stated that most HCC tumor cells were hypermetabolic activity 

stemming from an increased metabolic plasticity, which can be identified by PET/CT [126]. 

Lei et al. recently reported that FDG accumulation correlated with the degree of ICC differen-

tiation [127]. Hence, PET/CT-based radiomics are expected to have great potential for predict-

ing HCC and ICC type and MVI status with the advantages of high sensitivity, high specificity, 

repeatability.  

Encouraged by the aforementioned promising applications, we attempted to explore 18F-FDG 

PET/CT imaging’s potential capability in auxiliary diagnosis of its additional application in 

HCC and ICC classification, as well as detection in MVI presence before surgery. It’s efficient 
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and convenient for patients to obtain a comprehensive quantification assessment of liver tumors 

after a single preoperative 18F-FDG PET/CT examination. Our aim of this chapter is to build 

a feasible and robust machine learning model with radiomics biomarkers and clinical charac-

teristics that may provide preoperative prediction of HCC and ICC classification and MVI sta-

tus in patients with primary liver cancer by using 18F-FDG PET / CT images.  

3.2 Material and Methods 

3.2.1 Dataset Description 

The study was carried out in compliance with the International Guidelines for Human Research 

Protection of the Declaration of Helsinki (as revised in 2013) and International Conference on 

Harmonization in Good Clinical Practical (ICH-GCP). This retrospective study was approved 

by the Ethics Committee of Fudan University Shanghai Cancer Center and individual consent 

for this retrospective analysis was waived. We collected clinicopathological indicators and 

PET/CT images of 112 patients (58 females and 54 males) with liver cancer who underwent 

18F-FDG PET/CT scan between January 2016 and December 2019 at Fudan University Shang-

hai Cancer Centre (Shanghai, China).   

Inclusion criteria were as follows:(1) pathological diagnosis of either HCC or ICC confirmed 

by partial hepatectomy of primary liver lesion; (2) validation of 18F-FDG PET/CT scan images 

within two weeks before surgery; (3) with normal hematologic, renal, and hepatic function; (4) 

complete clinical characteristics and pathology immunohistochemistry results. Exclusion cri-

teria included: (1) metastatic liver tumor; (2) preoperative PET/CT showed portal vein tumor 

thrombosis (PVTT); (3) incomplete clinical characteristics and pathology 
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immunohistochemistry results, including only performed liver biopsy; (4) blood glucose levels 

over 7.78 mmol/L or with abnormal laboratory indexes. 

Preoperative tumor staging followed the Barcelona Clinic Liver Cancer (BCLC) criteria re-

vised by American Association for the Study of Liver Diseases (AASLD) in 2010. Postopera-

tive pathological classification and the presence of MVI and number of satellite node were 

confirmed by two experienced pathologists. MVI positive is defined as 5 or more tumor clus-

ters visible within the peritumoral vascular (usually covered by endothelium) only on micros-

copy. The selected serum AFP and CA-199 levels were measured within one week before sur-

gery. The threshold value of serum AFP and CA-199 level was 20 ng/mL and 37u/ml respec-

tively. 

3.2.2 PET/CT imaging acquisition and reconstruction parameters 

18F-FDG was produced by an RDS Eclipse ST medical cyclotron (Siemens Healthiness, Knox-

ville, TN, USA) and an Explore FDG4 synthesis module.18F-FDG radiochemical purity was 

> 95%. Blood glucose levels of all patients were less than 7.78 mmol/L. Patients fasted for at 

least 6 hours prior to injection. After intravenous administration of 18F-FDG (3.7 MBq/kg), 

all patients laid in a bed for one hour and imaged by a Biograph 16HR PET/CT scanner (Sie-

mens Medical Systems, Erlangen, Germany). First, an unenhanced low-dose whole-body CT 

scan was performed from head to the top of the thighs (tube voltage, 120 kV; tube current, 

80~250 mA; rotation time, 0.5 s; helical pitch 3.6; slice thickness,5 mm; matrix, 512 × 512). 

Images were performed for attenuation correction. Then, whole-body PET scan was acquired 

over the same extent at three minutes per bed position for a total of 6~7 bed positions. PET 

data were reconstructed using iterative protocols with gaussian-filter iterative method 
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(iterations, 4; subsets, 8). The PET and CT images were imported into the Siemens workstation 

for analysis. 

3.2.3 Volume of interest (VOI) segmentation  

To provide an accurate segmentation, the VOI of primary liver tumors was first semi-automat-

ically delineated using the Grow Cut algorithm [128] implemented on 3D Slicer 

(https://www.slicer.org) based on PET standardized-uptake-value (SUV) data, which shows 

high reproducibility. For the instances where SUV data of tumors were similar with adjacent 

structures, LLC model [129] and an improved edge detector were used to separate the tumor 

from the background and highlight the regions with weak boundaries. All results were cor-

rected by manual adjustment and validated independently by two senior nuclear medical phy-

sicians to ensure reproducibility and reliability. All masks were reshaped to the same pixel 

spacing as original PET-CT images and checked based on PET-CT fusion image on 3D Slicer. 

Besides, pixel value of PET image was replaced by SUVbw to eliminate the effects of patients’ 

absorption differences. Conventional PET metrics were also considered as radiomics features. 

On the 18F-FDG-PET, the SUVmax (standardized uptake value of the highest-uptake voxel 

within a VOI) and MTV (metabolic tumor volume) were automatically calculated on the Sie-

mens workstation. TLG was calculated as follows: TLG= MTV × SUVmean. 
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3.2.4 Radiomics feature selection and machine learning 

 

The workflow of radiomic analysis by machine learning method is shown in Figure. 3-1, which 

consists of four key steps. At first, we obtain discriminative radiomics features from VOIs by  

using reproducible feature selection method; then the supervised machine learning classifier 

was constructed by random forest algorithm, which contributed to two tasks: HCC and ICC 

classification and MVI prediction; besides, we analyze potential correlations between radi-

omics and clinical features as well as each feature’s contribution to model’s results. Especially, 

for MVI prediction task, we divided all patients into HCC group and ICC group before feature 

selection step, then trained the MVIs identification models for each group separately. 

Totally 1815 radiomics features including 918 CT features and 897 PET features were ex-

tracted for each patient. PyRadiomics (version 3.0), an open-source Python software package 

Figure 3-1 Outline of the workflow from feature acquisition, model construction, model 
output and results analysis.  
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was used to pre-process image and extract features, which is compliant with the Imaging bi-

omarker standardization initiative as well. The matrix size of CT was 512 × 512 with the voxel 

size 1.0 × 1.0 × 3.3 mm3. The matrix size of PET was 128 × 128 with the voxel size 5.5 × 5.5 

× 3.3 mm3. The images were discretized with a fixed bin size of 40 HU and 30 of SUV, and 

the mask images were resampled to the same pixel spacing as PET and CT images. From this 

package, we applied three filters for each PET and CT image before extraction: original chan-

nel, Laplacian of Gaussian (LoG) channel and wavelet channel. The extracted features reflected 

tumors’ traits including intensity distribution, morphological characteristic, and texture pattern. 

The intensity feature is a first-order feature, which includes the maximum, mean, and average 

absolute deviation of the voxel values. The shape feature includes tumors’ geometry properties 

such as edges and angles. Texture feature is a second-order feature and is used to express tu-

mor’s heterogeneity by the distribution of some common matrix, i.e., Gray Level Co-occur-

rence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), Gray Level Run Length Ma-

trix (GLRLM), and Gray Level Dependence Matrix (GLDM). High-order feature includes 

first-order features, second-order features and texture features from LoG and wavelet images, 

which aimed to reduce noises and obtain the subtle information from image at different fre-

quency domains[130]. 

At feature selection part (Figure. 3-2), we aim to build a reproducible feature set. Take features’ 

high dimensionality into consideration, we first eliminated statistical insignificant by Wilcoxon 

test (p-value < 0.05 was considered significant). Then we use uni-variable random forest fea-

ture selection to choose relevant features. Key features with tree importance greater than 0.001 

were included. To further keep feature set discriminative, we use partwise Pearson Correlation 

matrix. We first identified pairs of related features (|r| ≥ 0.7 for PET and CT features), then the 

feature with higher prediction ability (higher AUC using random forest classifier) will be in-

cluded. Next, we utilize Sequential Forward Floating Algorithm[131-133] to recursively find 
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optimal feature combinations and avoid overfitting. We perform same steps for both HCC and 

ICC classification task and MVI prediction task for feature selection. 

 
 

 

 

 

 

 

 

 

 

 

 

 

3.2.5 Modeling and Validation 

The model was evaluated with cross validation and independent validation to achieve robust-

ness and stability (Figure. 3-3). For HCC and ICC classification task (127 patients in total), 

they were randomly split into training (100 out of 127) and validation (27 out of 127) cohort. 

For MVI prediction in HCC (76 patients in total), there were 60 patients for training and 16 

patients for validation; for MVI prediction in ICC (51 patients in total), there were 40 patients  

for training and 11 patients for validation. The proportion of positive and negative samples in 

the training and test sets is roughly the same as the proportion in the original dataset. 

The feature selection procedure and random forest classifier were built on the entire training 

cohort. In the processes of model establishment, 20 times of stratified 10-fold (9-fold for train-

ing and 1-fold for testing) cross-validations were performed on training cohort for hyper 

Figure 3-2 Outline of feature selection process 
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Figure 3-3 Flowchart for cohort divisions 

parameter searching. The performance analysis of machine learning models applied receiver 

operating characteristic curve, sensitivity, specificity, positive predictive value (PPV), and neg-

ative predictive value (NPV) in the independent validation cohort.Statistical analyses were per-

formed with ‘Scipy 1.3.0’, and ‘math’ packages in Python 3.6.8 programming language and 

environment. 
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3.3 Results 

3.3.1 Clinical characteristics of patients 

Patients’ characters with split details are shown in Table 3-1 and 3-2. Totally 112 (55.5±28 

years old) patients were included. The clinical indicators include Alpha-Fetoprotein (AFP), 

Carbohydrate Antigen 19-9 (CA19-9), age, tumor size, stage, tumor amount, and number of 

satellite nodes. 

 

 

Demographic and clinical characteristics of patients 
 Total HCC/ICC p-value 

Number of patients 112 70/52 - 
Age(yrs), me-

dian(range) 
55 (±28) 54 (±28)/61 (±25) 0.211 

Gender   0.194 
male 79 58/21  

female 33 11/22  
AFP (ng/mL)   0.029 

>=20 39 37/2  
<20 73 33/40  

CA19-9 (u/ml)   0.802 
<=37 74 52/22  
>37 38 18/20  

Tumor Size [134]    0.001 
3 21 16/5  
5 34 23/11  
10 38 17/21  

>10 21 14/7  
Tumor Stage   0.001 

A 33 25/8  
B 46 32/14  
C 33 13/20  

Tumor Amount   0.112 
multiple 12 10/2  
single 100 60/40  

Satellite Node   0.154 
None 81 44/37  
1～3 41 26/15  
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Table 3-1 Demographic & Clinical Characteristics of 112 paients for HCC and ICC task 
*Abbreviations: AFP, Alpha-Fetoprotein. CA19-9, Carbohydrate antigen 19-9. HCC, Hepatocel-

lular carcinoma. ICC, intrahepatic cholangiocarcinoma (ICC). 
 

 
Demographic and clinical characteristics of patients 

 Total MVI present/MVI 
absent 

p-value 

Number of patients 112 64/48 - 
Age(yrs), me-

dian(range) 
55 (±28) 55 (±28)/56(±27) 0.486 

Gender   0.347 
male 79 48/31  

female 33 16/17  
AFP (ng/mL)   0.1 

>=20 39 21/18  
<20 73 43/30  

CA19-9 (u/ml)   0.399 
<=37 74 43/31  
>37 38 21/17  

Tumor Size [134]   0.0009 
3 21 9/12  
5 34 16/18  
10 38 25/13  

>10 21 14/7  
Tumor Stage   0.090 

A 33 11/22  
B 46 30/16  
C 33 23/10  

Tumor Amount   0.031 
multiple 12 10/2  
single 100 54/46  

Satellite Node   0.359 
None 81 32/49  
1～3 41 32/9  

 
Table 3-2 Demographic & Clinical Characteristics of 112 patients for MVI task 

*Abbreviations: AFP, Alpha-Fetoprotein. CA19-9, Carbohydrate antigen 19-9. MVI, Microvas-
cular invasion. 

 

3.3.2 Radiomics features and performance of predictions 

The most predictive feature combinations selected by feature engineering and corresponding 

explanation are shown in Table 3-3. 
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Task Feature Name Feature Explanation 
HCC 

and 
ICC  

wavelet-LHL_Me-
dian_ct 

The median gray level intensity within the VOI. A 
higher value means higher density in the image. 

wavelet-HHL_Vari-
ance_pet 

Variance is the mean of the squared distances of each 
intensity value from the Mean value. This is a measure 
of the spread of the distribution about the mean. 

Formula: 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 	
1
𝑁𝑝V(𝑿(𝑖) − 𝑋Y)$

%&

'()

 

log-sigma-3-0-mm-
3D_ShortRun-
HighGrayLevelEm-
phasis_pet 

Short run high gray level emphasis 
(SRHGLE) measures the joint distribution of shorter 
run lengths with higher gray-level values. 

Formula: 

𝑆𝑅𝐻𝐺𝐿𝐸 = 	
∑ ∑ 𝑃(𝑖, 𝑗|𝜃)𝑖$

𝑗$
%*
+()

%,
'()

𝑁𝑟(𝜃)  

MVI: 
HCC 

log-sigma-3-0-mm-
3D_Range_pet 

The range of gray values in the VOI. 
Formula: 

𝑟𝑎𝑛𝑔𝑒 = max(𝑿) − min	(𝑿) 
wavelet-HHH_To-

talEnergy_pet 
Total Energy is the value of Energy feature scaled by 
the volume of the voxel in cubic mm. 

Formula: 

𝑡𝑜𝑡𝑎𝑙	𝑒𝑛𝑒𝑟𝑔𝑦 = 𝑉-./01V(𝑋(𝑖) + 𝑐)$
%&

'()

 

wavelet-LLH_En-
tropy_pet 

Here, 𝜖 is an arbitrarily small positive number 
(≈2.2×10−16≈2.2×10−16). 
Entropy specifies the uncertainty/randomness in the 
image values. It measures the average amount of infor-
mation required to encode the image values. 

Formula: 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 	−V𝑝(𝑖)𝑙𝑜𝑔$(𝑝(𝑖) + 	𝜖)
%,

'()

 

MVI: 
ICC 

 

wavelet-HLL_Mini-
mum_pet 

𝐗 be a set of 𝑁𝑝 voxels included in the VOI. 
Formula: 

𝑚𝑖𝑛𝑚𝑢𝑚 = min	(𝑿) 
wavelet-HLL_To-
talEnergy_pet 

The same as wavelet-HHH_TotalEnergy_pet 
Formula: 

𝑡𝑜𝑡𝑎𝑙	𝑒𝑛𝑒𝑟𝑔𝑦 = 𝑉-./01V(𝑋(𝑖) + 𝑐)$
%&

'()

 

 
Table 3-3 Feature selection results 

*Abbreviations: VOI, volume of interest. HCC, Hepatocellular carcinoma. ICC, intrahepatic 
cholangiocarcinoma (ICC). MVI, microvascular invasion. LLH, low, low, and high frequency. HLL, 
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high, low, and low frequency. Np is voxels included in ROI, Ng is the discrete intensity levels, and c 
is the voxel array shift. 

 

We compare five categories of features: (1) clinical characteristic only; (2) optimal CT features 

only; (3) optimal PET features only; (4) optimal PET and CT features combination; (5) best 

PET, CT, and clinical characteristic combination that selected by feature engineering. Figure 

3-4 gives the results of model performances in testing cohort in five categories. There were 2 

PET features and one CT feature that gave the most prognostic value when working with HCC 

and ICC classification task (AUC = 0.86). As to MVI prediction tasks, three PET features and 

tumor stage shown great ability in HCC group (AUC = 0.88), meanwhile two PET features and 

CA19-9 performed well in ICC group (AUC = 0.90).  

 

 

 

 

For HCC and ICC classification task, PET features show an AUC of 0.83. CT features also 

gave valuable information (AUC = 0.81), enhancing the results of PET-CT features combina-

tion (AUC = 0.86). But clinical features fail to give useful information (AUC = 0.56), which 

worse the results of combination as well (AUC = 0.80).  

On the other hand, the results of MVI prediction tasks show that PET and clinical features 

outperform than CT features. For HCC in MVI task, three PET features plus one clinical feature 

(tumor stage) gave model highest AUC at 0.88. Only PET features can achieve AUC of 0.84, 

but CT features have AUC of 0.61. Since CT features’ AUC is much lower than PET’s, they 

Task AUC Accuracy Sensitivity Specificity NPV PPV 
HCC and ICC 
classification 
MVI (HCC) 
MVI (ICC) 

0.86 0.82 0.78 0.88 0.91 0.88 

0.88 0.78 0.88 0.60 0.80 0.60 
0.90 0.77 0.75 0.80 0.75 0.80 

Table 3-4 Model performances of optimal category of features 
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not only fail to give useful information, but worsening the results of PET-CT features (AUC = 

0.71).  

For ICC in MVI task, two PET features and CA19-9 can achieve AUC of 0.90. PET features 

also gave impressive AUC of 0.88. Meanwhile clinical features and CT features have AUC of 

0.67 and 0.66 respectively, which are unable to give results in high accuracy, worsening the 

results of combinations. Table 4 shows detailed performances in optimal feature category for 

three tasks. 

We also analyze the radiomics features’ category. As it illustrated in Figure 3-5 and Figure 3-

6, for all three tasks, PET features outperformed than CT features because only one CT feature 

was included. Besides, due to the spatial resolution of PET/CT is relatively low, and it has less 

advantages in defining the tumor boundaries all selected radiomics features were intensity as 

well as texture feature, which means shape features failed to give predictive information for 

both tasks. In Figure. 7, we show four representative patient examples. 

 

 
 
 
 

Figure 3-4 Model performance in training cohort (feature combination’s category as x-axis, 
and feature combination’s AUC (0~1) value as y-axis). [1] HCC and ICC classification task. 

(B) MVI prediction for HCC. [1] MVI prediction for ICC. Combined is the best feature 
combination of radiomics features and clinical features.*Abbreviations: HCC, Hepatocellular 

carcinoma. ICC, intrahepatic cholangiocarcinoma (ICC). MVI, microvascular invasion. 
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3.3.4 Correlation with Clinical and Conventional PET features 

We also made use of Pearson correlation matrix to discovery potential relationships between 

radiomics features and clinical as well as conventional PET features. Figure. 8 shows the results 

of Pearson partwise correlations with four conventional PET features and six clinical features. 

p value <0.05 was considered significant. We found that for all three tasks, the selected feature 

combinations had significant relationships with metabolic indicators, tumor size and tumor 

stage. 

Figure 3-5 Selected feature’s types three tasks. Blue are PET features; purple are CT features and 
pink are clinical features. *Abbreviation: MED, Median. SRH, Short Run High Gray Level 

Emphasis. VAR, Variance. TE, Total Energy. RAN, Range. ENT, Entropy. MIN, 
Minimum.PET, positron emission tomography. CT, computed tomography. 

HCC, Hepatocellular carcinoma. ICC, intrahepatic cholangiocarcinoma (ICC). MVI, 
microvascular invasion. 

 

Figure 3-6 Feature importance in three tasks. 
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3.4 Discussion 

HCC and ICC are two common subtypes in primary liver cancer with distinctive prognosis 

[135]. The metastasis and recurrence are the two major obstacles to improve the prognosis of 

liver cancer patients. More importantly, MVI status is an indicator of tumor’s aggressiveness 

and an independent risk factor of metastasis and recurrence[115]. Hence, to provide precise 

information and appropriate treatment, the prediction of HCC and ICC classification and MVI 

Figure 3-7 Correlation analysis of radiomic features with clinical features. *Strong correlation, 
p ≤ 0.05; red color denotes positive correlation, blue denotes a negative correlation, and the 

shade of the color indicates the correlation intensity. 
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statues before surgery is crucial. CEUS is commonly used in HCC and ICC differentiation and 

achieves an AUC of 0.92[122], and MRI for MVI detection can achieve an AUC of 0.86 for  

HCC[123], an AUC of 0.81 for ICC[125]. Though the specialized medical imaging could give 

relatively high accuracy in detection, it’s a great burden for patients to do many examinations. 

Encouraged by PET’s promising applications, we aimed to explore whether 18F-FDG PET/CT 

imaging could provide a potential possibility for playing an auxiliary diagnosis and additional 

contribution for HCC and ICC classification and MVI before surgery, so that patients can ob-

tain the comprehensive quantification of tumor phenotypes after a single preoperative 18F-

FDG PET/CT examination for guiding oncologists or surgeons to establish a personalized ther-

apeutic strategy. Generally, there are two findings in our study: we constructed a prediction 

model for HCC and ICC classification and MVI statues in primary liver cancer based on 18F-

FDG PET/CT radiomics features and clinical factors. Moreover, we found that PET features 

had an impressive prediction capability in HCC and ICC classification and MVI, which out-

performed than CT and clinical characteristics.  

Raman et al. [136] described that radiomics features using computed tomography texture anal-

ysis can detect different liver lesion types and normal liver tissue. Our results showed that PET 

and CT radiomics features achieved achieved AUC of 0.86 (compared to 0.92 in CEUS) and a 

specificity of 0.88 for HCC and ICC classification, which has potential for informative refer-

ence. We also found that factors related to tumor intensity and texture were the most important 

components in predicting histological classification. This is partly in agreement with the find-

ings of Minghui et al. [137]. Specifically, tumor intensity and texture features can reflect subtle 

information from PET/CT images. For instance, Median and Variance represented tumor area’s 

degree of heterogeneity. Short Run High Gray Level Emphasis, as a texture feature, revealed 

joint distribution of dark small areas in VOIs. PET/CT radiomics provides molecular-based 
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image features and intratumoral heterogeneity [138], which could be an effective diagnostic 

tool in histological classification for primary liver cancers. This finding is contributed to the 

evaluation of differentiation between HCC and ICC, especially in cases that differentiation 

using conventional medical imaging methods is difficult. 

Previous studies [139, 140] validated that MVI worsened the prognosis of liver cancer. Emerg-

ing studies have focused on the relationships of contrast-enhanced CT features and MVI status 

[138, 141]. But prediction model of MVI based PET/CT radiomics features has never been 

reported. In our study, three PET features integrating tumor clinical stage in HCC and two PET 

features integrating one clinical factor in ICC were selected for MVI prediction. The compound 

(PET, CT, and clinical characteristic) radiomics predictors can identify more than 0.77 of the 

MVI-positive cases with the AUC of 0.88~0.90 (compared to 0.86 and 0.81 in MRI). Our 

model exhibited better performance with the MRI model in both HCC and ICC. Besides, PET 

features were more important than clinical features, and intensity features seemed to perform 

better than texture features. One possible interpretation is that tumor intensity and texture fea-

tures implied a range of discrete tumor activity and intratumor heterogeneity. Another is that 

PET/CT’s spatial resolution is relatively low, and it has less advantages in defining the tumor 

boundaries. The greater values of these factors, the higher probability of MVI. This finding is 

consistent with the previous report [142] that the radiomics signature, nonsmoothed tumor mar-

gin, hypoattenuating halos and internal arteries were significantly associated with MVI status. 

We also found a positive association between some higher-order PET radiomics features 

(Range, Total Energy, Total Energy) and the 18F-FDG uptake activity (SUV max, SUV mean, 

TLG) of the lesion. This part of results is important since it may be an indicator of disease 

extent and tumor staging, especially in cases where evaluation using conventional clinical im-

aging methods might have been overlooked.  
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      Figure 3-8 The lesions of all four patients are located in the right lobe of the liver. [1] patient a is 
a 43-year-old man with HCC and patient b is a 61-year-old woman with ICC. Both A and B 
showed high uptake and correctly predicted by machine learning model. (B) is a joint distribution 
of three selected radiomic features in a 3D space. There is a relatively clear distinction between 
HCC and ICC. [1] patient c is a 37-year-old man with MVI positive and patient d is a 69-year-old 
man with MVI negative. Both C and D showed moderate uptake and were correctly predicted by 
machine learning model. [1] is a joint distribution of three selected radiomic features in a 3D space. 
There is a relatively clear distinction between MVI+ and MVI-. *Abbreviation: HCC, 
Hepatocellular carcinoma. ICC, intrahepatic cholangiocarcinoma (ICC). MVI, microvascular 
invasion. 
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Notably, our model exhibited equivalent or superior performance with the CEUS and MRI 

model in HCC and ICC classification and MVI prediction. Therefore, 18F-FDG PET/CT im-

aging would contribute to its key role in evaluating and staging tumors and potential value in 

differentiating ICC and HCC and detecting MVI before surgery, which could help to provide 

an earlier indication of liver cancer to select a more appropriate treatment and relieve the med-

ical burden of patients. Interestingly, our model revealed that PET features had dominant pre-

dictive power in HCC and ICC classification and MVI, which outperformed than CT and clin-

ical characteristics. In this study only one CT feature was selected by in HCC and ICC classi-

fication task. The reasons may be as follows: CT scanning in PET/CT is unenhanced low-dose 

CT, which only provides limited information and is not capable for sufficient tumor detection 

or distinction. While PET reflects the metabolic activity of a whole tumor [134]. Though the 

importance of features in unenhanced low-dose CT has been validated in many studied[143, 

144], such as HCC surveillance analysis[145], esophageal cancer[146] and lymphoma[147] , 

the value of CT features on HCC and ICC differentiation still requires a larger sample for 

further validation. Further, CT features were not included in the MVI model. One potential 

explanation is that MVI detection is relevant to find out the presence of tumor cells in inside 

portal or hepatic venous systems[107] , and most hepatic cancer cells were hypermetabolic 

activity stemming from an increased metabolic plasticity, which can be identified by 

PET/CTscan, especially in PET images. Hence unenhanced low-dose CT is insufficient in MVI 

detection in this study.  

Our study has some limitations. Firstly, most clinical characteristics of patients cannot add the 

accuracy of the predictive model. It might be attributed to the small sample and a potential 

selection bias in this single-center retrospective study. Multicenter and larger clinical studies 

are necessary to be designed for validating our radiomics model. Nonetheless, our findings are  
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still reasonable and important. Cochran’s formula[148] : if it’s assumed 50% of patients are 

positive in 95% confidence level and 5% margin error, the ideal sample size for 382. Besides, 

machine learning models require around 50 patients for algorithm’s training and validation to 

avoiding overfitting. Further, for PET/CT studies, Chalkidou et al.[149] found that for one 

radiomic feature, 10 to 15 patients are the minimum requirement. For three different tasks, 

though the idea sample size of 382 wasn’t achieved, our feature selection model reduced the 

number of features to 3 (out of 127 patients), 4 (out of patients) and 2 (out of 51 patients), 

which suggests that our results are relatively valid with the minimum false detection rate. In 

addition, prognosis information with histologic MVI were not collected to investigate the pre-

dictive effectiveness of the model. The prediction model based on 18F-PET/CT radiomics fea-

tures that widely used for liver cancer will be continually explored in future studies. 

3.5 Chapter Summary 

We construct a result-driven feature selection framework, which could efficiently reduce the 

dimension of the feature space and simultaneously avoid overfitting. The framework integrates 

different feature selection techniques to ensure the distinctiveness, uniqueness, and generaliza-

tion ability of the output feature set. 
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CHAPTER 4. Quantitative Dynamic Descriptor in Regional Pul-

monary Perfusion Visualization and Anomaly Detection 

4.1 Introduction 

Recent developments in lung imaging have a significant influence on the capacity to diagnose 

and quantify pulmonary diseases, giving both structural and functional data. Moreover, with 

the advent of digital chest radiography, AI-assisted diagnosis is becoming increasingly practi-

cal and significant[150]. Pulmonary metabolic process alterations, as well as those involving 

blood flow, regional chemical composition, and absorption, may be seen and measured by Pos-

itron Emission Tomography (PET) [22], a functional imaging method that employs radioactive 

chemicals called as radiotracers. 

However, most PET studies are based on visual evaluation on static images (usually 60min 

after injection) and calculation of SUV values. In contrast, dynamic whole-body positron emis-

sion tomography/computed tomography (dPET/CT) scanner can provide more information by 

extracting physiological and pharmacokinetics properties from a tracer in tissue or tumours, 

allowing tracer kinetics to be recorded over time, not just at a certain point in time after the 

tracer is injected in a static image manner [151, 152]. 

Compared to conventional PET scanner with short axial field-of-view (AFOV), the total-body 

scanner with coverage of approximately 200 mm provides a higher sensitivity, a higher signal-

to-noise ratio (SNR) and a lower radiation dose in human body imaging [153-155]. 

18F-FDG PET/CT has gained widespread clinical acceptability for its use in the care and eval-

uation of patients suffering from a range of pulmonary diseases. By analysing dynamic 18F-

FDG PET images, we observed that the dynamic PET image series present discernible perfu-

sion patterns among patients. It also has been validated that [156] lung perfusion indicators, 
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such as: permeable surface area product (PS), blood flow (BF), tumor micro vessel density 

(MVD) is significantly correlated with SUV in FDG PET (p<0.05). Hence, from patients’ 18F-

FDG dynamic PET images, a computer-vision based descriptor is expected to build for pulmo-

nary perfusion analysis. 

In this study, we explore and build a perfusion index based on 18F-FDG dynamic PET in the 

view of computer vision descriptor. The descriptor can reflect visually uneven perfusion of 

patients’ lung in a quantitative way. It also has potential to provide a more comprehensive 

assessment of patients’ pulmonary diseases. 

4.2 Material and Method 

4.2.1 Dataset description 

Patients with Non-small cell lung cancer (NSCLC) were included in this study. Inclusion cri-

teria were as follows:(1) untreated confirmed NSCLC; (2) between 18 and 75 years; (3) had 

unresectable stage IIIA-IV disease according to the 8th edition of the American Joint Commit-

tee on Cancer staging system; (4) expectancy of life ≥12 weeks. 

4.2.2 Image Acquisition and Reconstruction Parameters 

Patients were asked to avoid strenuous exercise 24 hours before each study and fast for up to 

6 hours prior to PET/CT imaging. The image was acquired from head to toe between 0 ~ 60 

minutes after the injection of 3.0 MBq/kg of FDG administered through the patient’s feet. The 

methodology for total-body FDG-PET/CT imaging entails 60 minutes of dynamic capture right 

after the FDG injection and 10 minutes of delayed static acquisition two to three hours later. 

Prior to each PET acquisition, the Attenuation Correction Computed Tomography (ACCT) is 
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obtained, and a diagnostic CT is scanned before the dynamic PET scan. The acquisition of each 

PET scan occurs in list mode. In this study, we found perfusion-like patterns only exist in the 

initial image sequences, thus only the first 25 frames were selected for image analysis. 

4.2.3 Quantitative Dynamic Descriptor Representation and Appli-

cation 

As shown in the Figure 4-1, the construction of descriptor includes some main steps. Based on 

patients’ 18F-FDG PET images, since the visual perfusion pattern only appears in the initial 

uptake time, the first 3-min dynamic series of a 60-min data acquisition protocols are discussed. 

Figure 4-1 Workflow of descriptor construction 
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Firstly, visual modeling analysis of 4D image serious was performed. Secondly, the VOIs were 

defined by automatic deep-learning-based segmentation. Then the texture representation was 

defined by a time-warping algorithm and dynamic analysis, based on which the descriptor was 

constructed. At last step, we performed unsupervised clustering and voxel-wise imaging for 

pulmonary anomaly detection compared to static image features. 

4.2.3 Visual Modelling Analysis for Dynamic PET/CT Images 

While searching for effective descriptors to represent dynamic picture sequences, it is reason-

able to consider the sorts of features that humans employ to understand visual information. 

Generally, grey level shades, textural, and dynamics are three fundamental dimensions for hu-

man to interpret  images [157]. Spectral features indicate the average total changes in separate 

bands of the visible and infrared sections of an electromagnetic spectrum, while textural fea-

tures describe the spatial distribution of tonal variations within a band [157].  

 

 

Figure 4-2 demonstrated a hot MIP of total-body FDG PET images from 0min to 3min. The 

overall spatiotemporal pattern of pulmonary in dynamic PET/CT images perceived by human 

Figure 4-2 Hot MIP of total-body FDG PET images from 0min to 3min 
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eyes tends to be a coherent process: the uptake in lung area gradually accumulated and then 

diminishes. That’s because, for soft tissue in lung, 18F-FDG will be initially absorbed and then 

metabolized. Besides, previous studies [158] have validated that the ventilation and vasculari-

zation of the lung parenchyma are correlated with the 3D textural features of the pulmonary 

soft tissue, and pulmonary embolism results in wedge-shaped pleura-based zones of heteroge-

neous enhanced attenuation. This study mainly focuses on pulmonary visually uptake pattern 

rather than the vanishing process. 

Hence, in the view of computer vision and graphics, we have the assumption that the descriptor 

modeling capturing varying shades of grey levels, texture, and dynamics, is adequate for anal-

ysis. 

4.2.4 3D U-net segmentation for VOI definition.  

The first step to build a visual descriptor is to give the definition of its VOI. In this study, the 

descriptor needs to reflect visually uneven perfusion of patients’ lung in a quantitative way. 

Hence, to ensure accuracy and robustness, we define the region (or VOI) of descriptor as a 

single lobe in the lung. Basically, the left lung contains the upper and lower lobes, and the right 

lung contains the upper, middle, and lower lobes. The descriptor calculation is based on one 

single lobe. A robust deep learning-based segmentation method (U-net, LTRCLobes_R231) 

[159] was performed on CT to generate lung masks. The model uses a single slice to extract 

the left and right lungs separately, including air pockets, tumors, and effusions. Trachea will 

be excluded in the segmentation. 

 

4.2.4 Time-warping Texture pattern representation.  
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The second step is to give the representation of descriptor’s region. Generally, we have two 

choices: describe an area in terms of its external attributes (its boundaries) or its internal attrib-

utes (such as the pixels that make up the area). In this study, the description of perfusion in-

volves changes in VOIs’ texture. From segmented VOIs of lungs, totally fifty texture features 

were extracted with the PyRadiomics package which is compliant with the Imaging Biomarker 

Standardization Initiative [17].  

Before quantitative analysis, we need to select the feature that could best qualitatively describe 

visual changes in lobes’ uptake. In this study, we utilized a general inductive framework and 

physiological analysis. The time series curves of all intensity and texture features extracted in 

the previous step are drawn. For every feature, there are five curves representing five different 

VOIs: left upper lobe, left lower lobe, right upper lobe, right middle lobe, and right lower lobe. 

According to the curves, we give feature’ inclusion criteria: 

(1) Based on lung tissue’s physiological characteristics and visually analysis (slow uptake, 

fast uptake, and slow uptake to stable, see figure 4-2), the feature’s curves are generally 

in the shape of a logistic growth (S-shape). 

(2) The feature’s curves can distinguish visually uneven perfusion between right and left 

lung. 

(3) The feature’s curves can distinguish visually uneven perfusion among upper, middle, 

lower lodes of unilateral lung. 

 

To achieve criteria (1), we perform distribution detection for all features. The skewness-kurto-

sis plot proposed by Cullen and Frey [98] is an effective method to check the distribution. The 

skewness could reflect symmetry, while the kurtosis reveals tails’ weight compared to normal 
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distribution. The skewness, sk and kurtosis, kr [99] and their unbiased estimator from (𝑋')' 	~	𝑋 

with observations (𝑥')	' are: 
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  (Equation 4.1) 
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(Equation 4.2) 

where m1, m2, m3, m4 denote empirical moments. 

Besides, a nonparametric bootstrap procedure is performed to ensure estimators’ robustness 

[160]. The boot was set to 500. Based on Cullen and Frey graph, we can find the feature that 

fits the shape of Logistic Curve. Statistical analyses were performed with ‘Scipy 1.3.0’, and 

‘math’ packages in Python 3.6.8 programming language and environment. 

To achieve criteria (2) and (3), we need to calculate the similarity between different curves. 

Due to pulmonary vascular structure and gravity effects [161], the curves don’t need to align. 

Therefore, we utilized Dynamic Time Warping (DTW) distance[162] , which does not give 

low similarity score for curves with similar shape and different phase, for all curves pairs of 

every feature to calculate curves’ similarity. For a good feature, its’ curves pairs with same 

perfusion pattern should have shorter DTW distance. Otherwise, the curves paired with differ-

ent perfusion patterns should have longer DTW distances.  The DTW distance is calculated by 

dynamic programming: 

𝐼𝑛𝑝𝑢𝑡: 𝑇𝑖𝑚𝑒	𝑠𝑒𝑟𝑖𝑒𝑠	𝑄	𝑎𝑛𝑑	𝐶	𝑤𝑖𝑡ℎ	𝑠𝑎𝑚𝑒	𝑙𝑒𝑛𝑔𝑡ℎ	𝑛	𝑤ℎ𝑒𝑟𝑒	   
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Algorithm.1 Pseudo Code for DTW distance calculation 

 

For qualitative descriptor construction step, GLCM joint entropy is selected as the best repre-

sentative feature. GLCM is a matrix (Figure 4-3) that describes the joint distribution of discre-

tized intensities (grey levels) of neighboring pixels, or voxels in a 3D volume [37]. 

GLCM Joint entropy reflects the variability in neighbourhood intensity values. The definition: 

𝑗𝑜𝑖𝑛𝑡	𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 	−∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔)	(𝑝(𝑖, 𝑗) 	+ 	𝜖)
(%
8+'

(%
*+'   (Equation 4.3) 

The ROI is defined by 𝑷(𝑖, 𝑗|𝛿, 𝜃). The (𝑖, 𝑗)23 element in GLCM represents the value of times 

the levels 𝑖 and	𝑗 occur in two pixels, which separated by pixels’ 𝛿  distance of 𝜃 angle. A 

greater value of GLCM-joint entropy implies more texture pattern heterogeneity. 

Dynamics pattern representation. After we have determined the optimal features, we need 

to quantitatively reflect the pattern of perfusion procedure.  
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+
(,! ) 

 

𝑆𝑡𝑒𝑝	3: 𝑆𝑜𝑙𝑣𝑒	𝑡ℎ𝑒	𝑝𝑟𝑜𝑏𝑙𝑒𝑚	𝑏𝑦	𝑠𝑜𝑙𝑣𝑖𝑛𝑔	𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒	𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 

𝛾(𝑖, 𝑗) = 𝑑R𝑞&,𝑐'S +𝑚𝑖𝑛	(	𝛾(𝑖 − 1, 𝑗 − 1), 𝛾(𝑖 − 1, 𝑗), 𝛾(𝑖, 𝑗 − 1)) 
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The logistic growth function with time t:  

𝑃(𝑡) = 45!0"#

465!(0"#8))
		(Equation 4.4) 

The two parameters r and Κ are calculated based on fitting the parameter Logistic Curve by 

least squares regression equation method. 

 

 

 

A two-dimensional dynamic descriptor. Since the feature curve is generally consistent with 

Logistic Growth, we build the two-dimensional perfusion descriptor D (r, K) by GLCM-joint 

entropy, in which: 

Figure 4-3 GLCM in 2D and 3D 
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(1) r represents lung tissue’s visually uptake speed for tracers. 

(2) K represents lung tissue’s visually capacity for tracers. 

Unsupervised K-means Clustering for learning local lobe’s patterns. Patients were classi-

fied into distinct classes using an unsupervised K-Means clustering approach. The algorithm 

was performed using scikit-learn package (https://scikit-learn.org). Descriptor value (r, Κ) ex-

tracted from VOIs were evaluated. 

Voxel-wise imaging for perfusion anomaly detection. A voxel-wise descriptor was also per-

formed for pulmonary anomaly detection. GLCM joint entropy, which characterize texture 

heterogeneity, has been validated as one of repeatable voxel-wise features in improvements in 

providing structurally different information, and correlates better with the tumor biology and 

clinical outcomes [163]. We represent each voxel with descriptor calculated in its closest eight 

neighborhood pixels. A distance between two descriptors is calculated by entropy weight [164] 

sum of squares for visualization. 

4.3 Results 

4.3.1 Demographics of Patients 

A total of thirty newly diagnosed stage IIIA-IV NSCLC patients were prospectively enrolled 

between September 2020 and December 2020. The clinical characteristics of twenty patients 

were summarized in table 4-1. Of all patients, the median age at diagnosis was 57 years (range, 

41-68). Twenty cases (87%) were males and three were females (13%). Twenty-one patients 

(91.3%) had stage III and two (8.7%) had stage IV diseases. There were ten cases (43.5%) with 

squamous cell carcinoma and eleven cases (47.8%) with adenocarcinoma. The median FEV1 

for all the patients was 2.3L (range, 0.99-3.39). 
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Characteristics Number (%) 
Age, years 57 (41-68) 
Gender  
    Male 20 (87.0) 
    Female 3 (13.0) 
ECOG  
    0 5 (21.7) 
    1 18 (78.3) 
Smoking  
    Yes 12 (52.2) 
    No 11 (47.8) 
Tumor location  
    Left upper  9 (39.1) 
    Left lower  3 (13.0) 
    Right upper  7 (30.4) 
    Right middle  1 (4.3) 
    Right lower  2 (8.7) 
    Mediastinum 1 (4.3) 
Histology  
    Squamous  10 (43.5) 
    Adenocarcinoma 11 (47.8) 
    Lymphoepitheli-

oma-like 
1 (4.3) 

    NSCLC-NOS 1 (4.3) 
Stage  
    IIIA 5 (21.7) 
    IIIB 12 (52.2) 
    IIIC 4 (17.4) 
    IV 2 (8.7) 
FEV1, L 2.3 (0.99-

3.39) 
Table 4-1 Clinical characteristics of patients 

 

4.3.2 Unsupervised K‐means clustering for descriptor patterns 

classification  

A K-means cluster algorithm was performed by descriptor D (r, K) for categorizing lobes into 

different visual patterns. The Elbow Method was used by the Python Sklearn module to estab-

lish the ideal number of clusters into which the data may be divided. The distortion and inertia 
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values for each value of k in the specified range may be calculated by iterating over the values 

of k from 2 to 14 (Figure 4-4). We choose the value of k at the point when distortion and inertia 

start to linearly diminish. Therefore, we infer that the best number of clusters for the given data 

is five. 

 

 

The preliminary grouping criterion is based on lobe distribution for each pattern. Since pattern 

1, pattern 4 and pattern 5 all include five lobes, we classify it as whole lung patterns. Pattern 2 

only includes left upper lobe and pattern 3 only includes right upper lobe, hence we classify 

them as single lobe patterns. 

Figure 4-5 Visualization of clustering results 

Figure 4-4 Elbow method for K-means clustering 
(k) 
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We performed a further grouping based on visual uptake speed (Figure 4-6). For whole lung 

patterns, pattern 1(r = 1.868), 4 (r = 1.973) and 5(r = 1.827) were defined as whole lung slow  

 

pattern (WLSP), whole lung medium pattern (WLMP) and whole lung slow pattern (WLSP), 

respectively. For single lobe patterns, pattern 2 (r = 0.859) and pattern 3 (r = 0.843) was defined 

as right upper lobe slow pattern (RUSP) and left upper lobe slow pattern (LUSP).  

 
 

 

 

 

 

 

 
Table 4-2 Mean and standard deviation for each pattern 

 

 

Figure 4-6 shows a detailed lobe distribution in descriptor patterns. Table 4-2 shows mean and 

standard deviation of D (r, K) for each pattern. WLFP exists most in the right lower lobe, and 

it also has fast visual uptake speed (r = 1.973) and higher visual uptake capacity (K = 6.956). 

WLMP exists most in left upper lobe, while it has relatively moderate visual uptake speed (r = 

Pattern R  K  
 Mean stdev Mean stdev 
WLFP 1.97301018 0.97263815 6.95690717 1.14150983 
WLMP 1.82744345 1.00800428 6.5324481 1.14861448 
WLSP 1.60836739 0.00085102 5.37051834 0.00636746 
RUSP 0.84326999 0.04347414 5.3136795 0.09855066 
LUSP 0.85943405 0.04801155 5.36724245 0.13398052 

Figure 4-6 Lobe distribution in different descriptor patterns 
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1.827) and visual uptake capacity (K = 6.532) compared to WLFP. All five lobes have an 

average amount of WLSP, which has substantially slower visual absorption rates (r = 1.60) and 

poorer visual uptake capacities (K = 5.37). With a similar pattern of WLSP, RUSP and LUSP 

are found in a single upper lobe and have sluggish visual uptake capacities (K = 5.313 and K 

= 5.367) as well as slow visual uptake speed (r = 0.843 and 0.859). 

4.3.3 Case Studies for Whole Lung Patterns and Single Lobe Pat-

terns 

Figure 4-7 Whole lung perfusion patterns 
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As illustrated in Figure 4-7, descriptor D (r, K) could discriminate visually different perfusion 

pattern of whole lung in a quantitative way. For patient A with WLFP, the descriptor value for 

his left upper lobe, left lower lobe, right upper lobe, right middle lobe, right lower lobe is (3.41, 

8.39), (2.38, 7.67), (3.16, 8.21), (3.01, 8.41), (3.38, 8.62), respectively. For patient B with 

WLMP, the descriptor value for his left upper lobe, left lower lobe, right upper lobe, right 

middle lobe, right lower lobe is (3.41, 8.39), (2.38, 7.67), (3.16, 8.21), (3.01, 8.41), (3.38, 8.62), 

respectively. For patient C with WLSP, the descriptor value for his left upper lobe, left lower 

lobe, right upper lobe, right middle lobe, right lower lobe is (1.78, 8.12), (1.30, 7.34), (1.58, 

7.91), (1.49, 8.05), (1.60, 7.94), respectively. Figure 8a and Figure 8b show that WLFP and 

WLMP share similar uptake speed, but WLFP has larger capacity than WLMP. On the other 

hand, WLSP in Figure 8c represents slower uptake speed and smaller capacity than WLFP and 

WLMP. 

Figure 4-8 Right/left upper lobe slow pattern 
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Figure 4-8 shows descriptor D (r, K) could discriminate visually different perfusion pattern of 

single lobe in a quantitative way. For patient D with RUSP, the descriptor value for his left 

upper lobe, left lower lobe, right upper lobe, right middle lobe, right lower lobe is (0.86, 5.37), 

(0.86, 5.36), (0.63, 4.14), (0.79, 5.20), (0.90, 5.52), respectively. For patient E with LUSP, the 

descriptor value for his left upper lobe, left lower lobe, right upper lobe, right middle lobe, right 

lower lobe is (0.71, 5.49), (1.99, 7.66), (1.99, 7.63), (1.82, 7.63), (2.02, 7.82), respectively. 

Figure 9a shows that RUSP and LUSP both have slower uptake speed and smaller capacity 

than WLFP, WLMP and WLSP. 

4.3.3 Voxel wise imaging for unilateral lung and bilateral lung 

perfusion anomaly  

 
Figure 4-9 Voxel-wise imaging of pulmonary perfusion maps 
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Figure 4-9 demonstrates descriptor’s voxel-wise imaging in axial, coronal, and sagittal views 

of uniform perfusion (first column), bilateral lungs anomaly (second column), unilateral 

lung(R) anomaly (third column) and unilateral lung(L) anomaly (fourth column). Table 4-3 

shows descriptor value of single lobe for uniform and anomaly patterns. Compared to uniform 

perfusion, the bilateral lungs anomaly and unilateral lung anomalies all have abnormal lobes 

with descriptor value (r, K) lower than other lobes  

  
Uniform 

Perfusion 
Bilateral 

lungs anomaly 
Unilateral 

lung(R)  
anomaly 

Unilateral 
lung(L)  

anomaly 

Left upper  
lobe 

(3.2, 7.6) (0.7, 5.4) (2.78,8.2) (0.81, 5.49) 

Left lower  
lobe 

(3.0, 7.3) (0.5, 4.8) (3.2, 8.8) (1.89, 7.6) 

Right upper 
lobe 

(2.9, 7.2) (3.7, 8.3) (0.8, 5.7) (1.99, 7.2) 

Right Mid-
dle lobe 

(3.0, 7.8) (3.5, 8.3) (2.8, 8.4) (1.82,7.2) 

Right lower 
lobe 

(2.8,7.6) (3.5, 8.6) (2.5, 7.1) (2.02, 7.8) 

Table 4-3 Descriptor value for uniform and anomaly patterns 

 

Comparison with static PET metabolic metrics of visual perfusion abnormality detection. 

As shown in Figure 4-10, the descriptor value of uniform perfusion is significantly higher than 

unilateral lung abnormality (p-value = 0.023, p<0.05) and bilateral lung abnormality (p-value 

= 0.017, p<0.05). However, for traditional PET metabolic metrics, there is no significant dif-

ference among uniform perfusion, unilateral lung abnormality and bilateral lung abnormality.  
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4.4 Discussion 

In this prospective study, we explore and build a pulmonary perfusion descriptor based on 18F-

FDG whole-body dynamic PET images in the view of physiology and computer vision. Our 

major finding includes: 1) We proposed a descriptor construction framework which is inter-

pretable in the perspective of both physiology and computer vision. 2) The quantitative com-

parison of descriptor intra and inter patients is feasible, making it possible to be an auxiliary 

diagnostic tool in pulmonary function assessment. 3) Compared with traditional PET metabolic 

biomarker analysis, the proposed descriptor incorporating image’s temporal information, 

which enables a better understanding of the time-various mechanisms and visual perfusion 

Figure 4-10 The comparisons of descriptor value and SUVmean, 
SUVmax, MTV and TLG among uniform perfusion, unilateral and 

bilateral abnormality 
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abnormalities detection among different patients. 4) The proposed descriptor eliminates the 

impact of vascular branching structure and gravity effect by utilizing time warping algorithms. 

The first finding of this study is that the proposed descriptor can reflect dynamic textural vari-

ations, as well as physiological changes in patient's pulmonary uptake. High imaging sensitiv-

ity is a substantial benefit of the whole-body PET/CT scanner [165]. By analysing dynamic 

image series from 0~3 minutes of patients with lung cancers, we model the descriptor by the 

observation that pulmonary uptake of different individuals exhibited various ‘lung perfusion’ 

patterns, which also represented glucose uptake of pulmonary tissue [166]. The trustworthiness 

of automated selected texture feature in descriptor, GLCM-Joint Entropy, could be further re-

inforced by its feasibility in previous texture analysis in lung tissue and soft tissue. For instance, 

the roughness of pulmonary texture exhibited a decreasing trend in entropy for normal lung, 

followed by embolism and then emphysema, indicating an association with the degree of per-

fusion[167], and GLCM also shown great performance in micro texture representation [168]. 

Secondly, the lobe's uptake phenotype might be stratified based on the proposed description 

into whole lung patterns and single lobe patterns, which may associate with the patient's pul-

monary function. Three whole lung patterns exist in all five lobes and represented higher D (r, 

K) values than two single lobe patterns (table 2), which is also consistent with the visual illus-

tration in figure 8 and figure 9. Similar to previous finding [166], the speed of perfusion may 

reveal patients’ response to treatments. Patients with whole lung patterns shared analogous 

tumour shrinkage to varying degrees after chemotherapy and immunotherapy a few months 

after examination, while patients shared single lobe patterns showing no obvious changes in 

tumour size. One possible interpretation is that a faster perfusion pattern reflects better pulmo-

nary vascular permeability, and the therapeutic result could be enhanced by increased capillary 

permeability.  
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Besides, compared with static SUVmean and other traditional PET metrics, the descriptor can 

significantly (p<0.05) distinguish visual perfusion abnormalities among different patients in a 

quantitative way. The voxel-wise imaging (figure 10) demonstrated descriptor’s sensitivities 

in discriminating normal perfusion, bilateral lungs anomaly and unilateral lung anomaly. Re-

cently published articles also pointed out that underlying perfusion heterogeneity may be illus-

trated by impaired hypoxic pulmonary vasoconstriction in infected lung regions [169]. Alt-

hough computed tomography (CT) scans served as primary workhorse in pulmonary imaging 

[170] for its accurate assessment of morphological changes in the lung parenchyma, empow-

ered by total-body coverage scanner, dynamic PET imaging achieve more than 40-fold gain in 

in effective sensitivity [171]. Our proposed descriptor explored additional capability in auxil-

iary diagnosis of dynamic whole-body PET in assessing patients’ pulmonary diseases. 

Further, parameters in descriptor are adjusted by utilizing time warping algorithm to eliminate 

the influence of gravity and other factors on perfusion. Passive mechanisms include vascular 

branching structure and the effect of gravity on ventilation and perfusion have effects on the 

distribution of pulmonary blood flow [161]. This mechanism causes two lobes with the same 

perfusion pattern to have different time-intensity curves of trajectories but similar curve shapes. 

Hausdorff distance [172] , Euclidean distance and other comparab methods are insensitive to 

temporal information. In contrast, we utilize time warping distance to address this issue by 

eliminating the influences of lag points on the curves, obtaining better discrimination between 

different modes of perfusion. 

Our study has some limitations. First, only twenty patients were included in this study, and the 

results should be validated with a larger and multi-centre dataset. Secondly, the modelling of 

dynamics was not validated with kinetic characteristics. Third, the results were not validated 

in oncological patients. 
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4.6 Chapter Summary 

We explore and build a pulmonary perfusion descriptor based on 18F-FDG whole-body dy-

namic PET images in the view of physiology and computer vision. Compared to traditional 

static radiomics features, the descriptor incorporating image’s temporal information. Moreo-

ver, it can quantitatively and visually reflect pulmonary perfusion abnormality without the in-

fluence of passive mechanism. We suggest that the descriptor may serve as an auxiliary diag-

nostic tool for the comprehensive assessment of patients’ pulmonary diseases. 
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CHAPTER 5. Conclusion and Future Work 

5.1 Conclusion 

Radiomics studies are widely used for biomarker mining in medical image analysis. Due to the 

multi-modality of medical data, there are two challenges in biomarker mining: one is dimen-

sionality reduction of features when the number of features is significantly larger than the sam-

ple size, and the other is the integration of temporal information in dynamic medical images.  

In this thesis, we proposed one results-driven feature selection framework for handling high-

dimensional small-sample data. We applied this framework on two medical challenges when 

selecting representative radiomics features, including the preoperative prediction of Hepato-

cellular carcinoma (HCC) and Intrahepatic cholangiocarcinoma (ICC), and Microvascular In-

vasion (MVI) status identification for patients with primary liver cancer. We also build a fea-

sible and robust machine learning model with selected radiomics features and clinical charac-

teristics.  

Besides, we explore and build a pulmonary perfusion descriptor for non-small-cell primary 

lung cancer (NSCLC) patients on 18F-FDG whole-body dynamic PET/CT images. Compared 

to traditional static radiomics features, the descriptor could reflect a dynamic computer-vision-

based pattern within and between patients in a quantitative way. We also explored different 

slow/fast perfusion patterns by unsupervised machine learning algorithm. Furthermore, voxel-

wise imaging by proposed descriptor in regional pulmonary perfusion visualization offers po-

tentially application for anomaly detection. 
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5.2 Future Work 

Future study should concentrate on improving the interpretability of retrieved space-temporal 

information and adding more complete information for accurate decision making. As a result, 

radiomics in the medical field might help physicians make judgments that are more accurate 

and reliable, which would also enhance patient care and the course of therapy. 

Enhancement of radiomics research' generalizability and repeatability 

The ineffectiveness of radiomic feature quantification quality control is a significant drawback 

of radiomics. Due to the sensitivity of radiomics characteristics to various picture modalities, 

normalization techniques, filter settings, and reconstruction techniques. The incorporation of 

fuzzy logics into the process of acquiring radiomic feature sets is another prospective future 

development in fuzzy radiomics, which aims to create a stable and repeatable radiomic feature 

combination. 

More sophisticated tumor segmentation algorithms 

VOIs were currently segregated manually, which took a lot of time and effort. Automatic seg-

mentation may be strengthened and made more dependable by using a hybrid technique. By 

integrating the benefits of several segmentation techniques, many segmentation faults may be 

corrected.  Defining the right normal boundary on normal scans may be quite challenging for 

radiologists. Due to the diverse looks of the tumor's perimeter, automated systems have an even 

more difficult time detecting it. By accepting that some scans may be too tough to automatically 

segment, error detection takes on a new significance. Indicating to the radiologist which scans 

need manual editing. The inclusion of this to current clinical segmentation techniques might 

be practically beneficial. 

 

 



 

 
93 

Involvement of deep learning in whole body dynamic radiomics analysis  

The majority of early-learn descriptors were still created manually, and machine learning was 

only utilized to determine the ideal set of parameters. Recently, neural networks that can learn 

almost any descriptors, detect the probable response important to the final output, and display 

the complicated structures and information of high-dimensional spatial-temporal pictures were 

developed. Deep-learning-enhanced technology may improve the robustness and reproducibil-

ity of dynamic radiomics analysis. 
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Glossary 

Alpha-Fetoprotein 
AFP, 56 

American Association for the Study of 
Liver Diseases (AASLD) 
AASLD, 50 

area of interests 
ROIs, 27 

Area Under the Curve 
AUC, 46 

artificial intelligence 
AI, 3 

axial fields of view 
AFOV, 24 

Barcelona Clinic Liver Cancer 
BCLC, 50 

blood flow 
BF, 70 

Carbohydrate Antigen 19-9 
CA1-99, 56 

Computerized Tomography 
CT, 22 

Contrast-enhanced ultrasound 
CEUS, 48 

Convolutional Neural Networks 
CNN, 26 

Correlation-based Feature Selection 
CFS, 38 

Decision Tree Classifier 
DT, 43 

dynamic contrast-enhanced magnetic 
resonance 
DCE/MR, 16 

Dynamic whole body Positron Emission 
Tomography 
dPET, 24 

false negative 
FN, 45 

false positive 
FP, 45 

Genetic Algorithm 
GA, 39 

Graph Cut 
GC, 26 

Gray Level Dependence Matrix 
GLDM, 29 

Gray Level Run Length Matrix 
GLRLM, 29 

Gray Level Size Zone Matrix 
GLSZM, 29 

hepatocellular carcinoma 
HCC, 4 

International Conference on 
Harmonization in Good Clinical 
Practical 
ICH-GCP, 49 

Interventional Radiology 
IR, 3 

intrahepatic cholangiocarcinoma 
ICC, 4 

K Nearest Neighbors 
KNN, 43 

Laplacian of Gaussian 
LoG, 32 

Least Absolute Shrinkage Selection 
Operator 
LASSO, 40 

left upper lobe slow pattern 
LUSP, 82 

linear dynamical system 
LDS, 35 

Local Binary Pattern 
LBP, 34 

Local Phase Quantization on Three 
Orthogonal Planes 
LPQ-TOP, 35 

Magnetic Resonance Imaging 
MRI, 22 

Maximum Relevance Minimum 
Redundancy 
MRMR, 38 

Microvascular Invasion 
MVI, 21 

negative predictive value 
NPV, 55 

non-small cell lung cancer 
NSCLC, 33 

permeable surface area product 
PS, 70 

portal vein tumor thrombus 
PVTT, 47 
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positive predictive value 
PPV, 55 

Positron Emission Tomography 
PET, 23 

Probabilistic atlas 
PA, 26 

receiver operating characteristic curve 
ROC, 46 

recursive feature elimination 
RFE, 39 

right upper lobe slow pattern 
RUSP, 82 

signal-to-noise ratio 
SNR, 69 

Similarity-Adaptive Deep Hashing 
SADH, 34 

standardized-uptake-value 
SUV, 51 

Statistical Shape Models 
SSM, 25 

Stochastic Gradient Descent 
SGD, 43 

Support Vector Machines 
SVM, 34 

true negative 
TN, 45 

true positive 
TP, 45 

tumor micro vessel density 
MVD, 70 

volume of interests 
VOIs, 21 

whole lung medium pattern 
WLMP, 82 

whole lung slow pattern 
WLSP, 82

 


