23,272 research outputs found

    Studies of molecular mechanisms integrating carbon metabolism and growth in plants

    Get PDF
    Plants use light energy, carbon dioxide and water to produce sugars and other carbohydrates, which serve as stored energy reserves and as building blocks for biosynthetic reactions. Supply of light is variable and plants have evolved means to adjust their growth and development accordingly. An increasing body of evidence suggests that the basic mechanisms for sensing and signaling energy availability in eukaryotes are evolutionary conserved and thus shared between plants, animals and fungi. I have used different experimental approaches that take advantage of findings from other eukaryotes in studying carbon and energy metabolism in plants. In the first part, I developed a novel screening procedure in yeast aimed at isolating cDNAs from other organisms encoding proteins with a possible function in sugar sensing or signaling. The feasibility of the method was confirmed by the cloning of a cDNA from Arabidopsis thaliana encoding a new F-box protein named AtGrh1, which is related to the yeast Grr1 protein that is involved in glucose repression. In the second part of the study, plant homologues of key components in the yeast glucose repression pathway were cloned and characterized in the moss Physcomitrella patens, in which gene function can be studied by gene targeting. We first cloned PpHXK1 which was shown to encode a chloroplast localized hexokinase representing a previously overlooked class of plant hexokinases with an N-terminal chloroplast transit peptide. Significantly, PpHxk1 is the major hexokinase in Physcomitrella, accounting for 80% of the glucose phosphorylating activity. A knockout mutant deleted for PpHXK1 exhibits a complex phenotype affecting growth, development and sensitivities to plant hormones. I also cloned and characterized two closely related Physcomitrella genes, PpSNF1a and PpSNF1b, encoding type 1 Snf1-related kinases. A double knockout mutant for these genes was viable even though it lacks detectable Snf1-like kinase activity. The mutant suffers from pleiotropic phenotypes which may reflect a constitutive high energy growth mode. Significantly, the double mutant requires constant high light and is therefore unable to grow in a normal day/night light cycle. These findings are consistent with the proposed role of the Snf1-related kinases as energy gauges which are needed to recognize and respond to low energy conditions

    Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism

    Get PDF
    The first enzyme of the phenylpropanoid pathway, Phe ammonia-lyase (PAL), is encoded by four genes in Arabidopsis thaliana. Whereas PAL function is well established in various plants, an insight into the functional significance of individual gene family members is lacking. We show that in the absence of clear phenotypic alterations in the Arabidopsis pall and pal2 single mutants and with limited phenotypic alterations in the pall pal2 double mutant, significant modifications occur in the transcriptome and metabolome of the pal mutants. The disruption of PAL led to transcriptomic adaptation of components of the phenylpropanoid biosynthesis, carbohydrate metabolism, and amino acid metabolism, revealing complex interactions at the level of gene expression between these pathways. Corresponding biochemical changes included a decrease in the three major flavonol glycosides, glycosylated vanillic acid, scopolin, and two novel feruloyl malates coupled to coniferyl alcohol. Moreover, Phe overaccumulated in the double mutant, and the levels of many other amino acids were significantly imbalanced. The lignin content was significantly reduced, and the syringyl/guaiacyl ratio of lignin monomers had increased. Together, from the molecular phenotype, common and specific functions of PAL1 and PAL2 are delineated, and PAL1 is qualified as being more important for the generation of phenylpropanoids

    Carcinoembryonic Antigen Gene Family

    Get PDF
    The carcinoembryonic antigen (CEA) gene family belongs to the immunoglobulin supergene family and can be divided into two main subgroups based on sequence comparisons. In humans it is clustered on the long arm of chromosome 19 and consists of approximately 20 genes. The CEA subgroup genes code for CEA and its classical crossreacting antigens, which are mainly membrane-bound, whereas the other subgroup genes encode the pregnancy-specific glycoproteins (PSG), which are secreted. Splice variants of individual genes and differential post-translational modifications of the resulting proteins, e.g., by glycosylation, indicate a high complexity in the number of putative CEA-related molecules. So far, only a limited number of CEA-related antigens in humans have been unequivocally assigned to a specific gene. Rodent CEA-related genes reveal a high sequence divergence and, in part, a completely different domain organization than the human CEA gene family, making it difficult to determine individual gene counterparts. However, rodent CEA-related genes can be assigned to human subgroups based on similarity of expression patterns, which is characteristic for the subgroups. Various functions have been determined for members of the CEA subgroup in vitro, including cell adhesion, bacterial binding, an accessory role for collagen binding or ecto-ATPases activity. Based on all that is known so far on its biology, the clinical outlook for the CEA family has been reassessed

    Exploring plant tolerance to biotic and abiotic stresses

    Get PDF
    Plants are exposed to many stress factors, such as drought, high salinity or pathogens, which reduce the yield of the cultivated plants or affect the quality of the harvested products. Arabidopsis thaliana was used as a model plant to study the responses of plants to different sources of stress. With Agrobacterium T-DNA mediated promoter tagging, a novel di-/tripeptide transporter gene AtPTR3 was identified as a wound-induced gene. This gene was found to be induced by mechanical wounding, high salt concentrations, bacterial infection and senescence, and also in response to several plant hormones and signalling compounds, such as salicylic acid, jasmonic acid, ethylene and abscisic acid. Atptr3 mutants of two Arabidopsis ecotypes, C24 and Col-0, were impaired in germination on media containing a high salt concentration, which indicates that AtPTR3 is involved in seed germination under salt stress. Wounding caused local expression of the AtPTR3 gene, whereas inoculation with the plant pathogenic bacterium Erwinia carotovora subsp. carotovora caused both local and systemic expression of the gene. Atptr3 mutants showed increased susceptibility to infection caused by bacterial phytopathogens, E carotovora and Pseudomonas syringae pv. tomato, and the P. syringae type III secretion system was shown to be involved in suppression of the AtPTR3 expression in inoculated plants. Moreover, the Atptr3 mutation was found to reduce the expression of the marker gene for systemic acquired resistance, PR1 and the mutants accumulated reactive oxygen species (ROS) following the treatment of the plants with ROS generating substances. Overall results and observations suggest that the AtPTR3 is a novel and versatile stress responsive gene needed for defence reactions against many stresses. In a second part of the study, the yeast (Saccharomyces cerevisiae) trehalose-6-phosphate synthase gene (ScTPS1) was utilized to improve the drought tolerance of Arabidopsis. This gene codes for the first enzyme in the trehalose biosynthesis pathway of yeast, and expression in plants leads to improved drought tolerance but also growth aberrations. In this study, the ScTps1 protein was expressed in Arabidopsis using the constructs containing chloroplast targeting transit peptide sequence that facilitated the import of the ScTps1 into the chloroplast. The drought tolerance and growth phenotypes of Arabidopsis transgenics transformed with ScTPS1 with or without transit peptide, were characterized. The plants with cytosolic localization of the ScTps1 protein showed aberrant root phenotype, but the plants with the chloroplast targeted ScTps1 protein caused no aberration in root morphology. Even though both the transgenic lines showed enhanced drought tolerance, the relative water content of the lines was found to be similar to the wild type control. Moreover, both the transgenic lines showed slightly better water holding capacity or reduced water loss over time compared to wild type plants. The overall results indicated that the growth aberrations caused by cytosolic localization of ScTps1 could be uncoupled from the enhanced drought tolerance in the transgenic plants when the ScTps1 was targeted to chloroplast

    Functional characterization of hexokinases in the moss Physcomitrella patens

    Get PDF
    Carbohydrates are important nutrients and structural components in all living organisms. In plants they affect the developmental and metabolic processes throughout the plant life cycle. However, the mechanisms by which plants recognise and respond to carbohydrates are mainly unknown. Hexokinase, an enzyme that mediates the first catalytic step in hexose metabolism, has recently been suggested to be involved in sugar sensing and signalling in plants. The moss Physcomitrella patens has recently emerged as a powerful model system in plant functional genomics following the discovery that gene targeting works in it with frequencies comparable to those in yeast. The aim of this thesis was to learn more about the function of plant hexokinases, both as key metabolic enzymes and in their putative role as sensors in sugar signalling, using Physcomitrella patens as a model system. Five hexokinases from Physcomitrella patens were cloned and studied with respect to their subcellular localizations. PpHxk1 and PpHxk5 are located in the stroma of chloroplasts and are dependent on N-terminal transit peptides for correct localization. PpHxk2 and PpHxk3 both contain hydrophobic membrane anchors that localize the proteins to the outer envelope of chloroplasts. PpHxk4 contain neither a transit peptide nor an anchor, and is found in the cytosol. A targeted knockout revealed that PpHxk1 is the major hexokinase in Physcomitrella, accounting for 80% of the glucose phosphorylating activity. Consistent with this, the knockout mutant exhibits an artificial starvation phenotype with altered sensitivities to plant hormones and a disturbed development

    Substrate induction and glucose repression of maltose utilization by Streptomyces coelicolor A3(2) is controlled by malR, a member of the lacI-galR family of regulatory genes

    Get PDF
    malR of Strepomyces coelicolor A3(2) encodes a homologue of the Lacl/Galr family of repressor proteins, and is divergently transcribed from the malEFG gene cluster, which encodes components of an ATP-dependent transport system that is required for maltose utilization. Transcription of malE was induced by maltose and repressed by glucose. Disruption or deletion of malR resulted in constitutive, glucose-insensitive malE transcription at a level markedly above that observed in the parental malR+ strain, and overproduction of MalR prevented growth on maltose as carbon source. Consequently, MalR plays a crucial role in both substrate induction and glucose repression of maltose utilization. MalR is expressed from a single promoter with transcription initiating at the first G of the predicted GTG translataion start codon

    How do nematodes transfer phosphorylcholine to carbohydrates?

    Get PDF
    An unusual aspect of the biology of nematodes is the attachment of phosphorylcholine (PC) to carbohydrate. The attachment appears to play an important role in nematode development and, in some parasitic species, in immunomodulation. This article considers the nature of the biosynthetic pathway of nematode PC-containing glycoconjugates and, in particular, the identity of the final component in the pathway - the enzyme that transfers PC to carbohydrate (the 'PC transferase'). We offer the opinion that the PC transferase could be a member of the fukutin family (fukutin refers to the mutated gene product that causes Fukuyama congenital muscular dystrophy), a group of enzymes with apparent phosphoryl-ligand transferase activity that are found in organisms ranging from bacteria to humans

    Glycerate kinase of the hyperthermophilic archaeon Thermoproteus tenax: new insights into the phylogenetic distribution and physiological role of members of the three different glycerate kinase classes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The presence of the branched Entner-Doudoroff (ED) pathway in two hyperthermophilic Crenarchaea, the anaerobe <it>Thermoproteus tenax </it>and the aerobe <it>Sulfolobus solfataricus</it>, was suggested. However, so far no enzymatic information of the non-phosphorylative ED branch and especially its key enzyme – glycerate kinase – was available. In the <it>T. tenax </it>genome, a gene homolog with similarity to putative hydroxypyruvate reductase/glycerate dehydrogenase and glycerate kinase was identified.</p> <p>Results</p> <p>The encoding gene was expressed in <it>E. coli </it>in a recombinant form, the gene product purified and the glycerate kinase activity was confirmed by enzymatic studies. The enzyme was active as a monomer and catalyzed the ATP-dependent phosphorylation of D-glycerate forming exclusively 2-phosphoglycerate. The enzyme was specific for glycerate and highest activity was observed with ATP as phosphoryl donor and Mg<sup>2+ </sup>as divalent cation. ATP could be partially replaced by GTP, CTP, TTP and UTP. The enzyme showed high affinity for D-glycerate (K<sub>m </sub>0.02 ± 0.01 mM, V<sub>max </sub>of 5.05 ± 0.52 U/mg protein) as well as ATP (K<sub>m </sub>of 0.03 ± 0.01 mM, V<sub>max </sub>of 4.41 ± 0.04 U/mg protein), although at higher glycerate concentrations, substrate inhibition was observed. Furthermore, the enzyme was inhibited by its product ADP via competitive inhibition. Data bank searches revealed that archaeal glycerate kinases are members of the MOFRL (multi-organism fragment with rich leucine) family, and homologs are found in all three domains of life.</p> <p>Conclusion</p> <p>A re-evaluation of available genome sequence information as well as biochemical and phylogenetic studies revealed the presence of the branched ED pathway as common route for sugar degradation in Archaea that utilize the ED pathway. Detailed analyses including phylogenetic studies demonstrate the presence of three distinct glycerate kinase classes in extant organisms that share no common origin. The affiliation of characterized glycerate kinases with the different enzyme classes as well as their physiological/cellular function reveals no association with particular pathways but a separate phylogenetic distribution. This work highlights the diversity and complexity of the central carbohydrate metabolism. The data also support a key function of the conversion of glycerate to 2- or 3-phosphoglycerate via glycerate kinase in funneling various substrates into the common EMP pathway for catabolic and anabolic purposes.</p
    corecore