3,126 research outputs found

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    Fuzzy jump wavelet neural network based on rule induction for dynamic nonlinear system identification with real data applications

    Get PDF
    Aim Fuzzy wavelet neural network (FWNN) has proven to be a promising strategy in the identification of nonlinear systems. The network considers both global and local properties, deals with imprecision present in sensory data, leading to desired precisions. In this paper, we proposed a new FWNN model nominated “Fuzzy Jump Wavelet Neural Network” (FJWNN) for identifying dynamic nonlinear-linear systems, especially in practical applications. Methods The proposed FJWNN is a fuzzy neural network model of the Takagi-Sugeno-Kang type whose consequent part of fuzzy rules is a linear combination of input regressors and dominant wavelet neurons as a sub-jump wavelet neural network. Each fuzzy rule can locally model both linear and nonlinear properties of a system. The linear relationship between the inputs and the output is learned by neurons with linear activation functions, whereas the nonlinear relationship is locally modeled by wavelet neurons. Orthogonal least square (OLS) method and genetic algorithm (GA) are respectively used to purify the wavelets for each sub-JWNN. In this paper, fuzzy rule induction improves the structure of the proposed model leading to less fuzzy rules, inputs of each fuzzy rule and model parameters. The real-world gas furnace and the real electromyographic (EMG) signal modeling problem are employed in our study. In the same vein, piecewise single variable function approximation, nonlinear dynamic system modeling, and Mackey–Glass time series prediction, ratify this method superiority. The proposed FJWNN model is compared with the state-of-the-art models based on some performance indices such as RMSE, RRSE, Rel ERR%, and VAF%. Results The proposed FJWNN model yielded the following results: RRSE (mean±std) of 10e-5±6e-5 for piecewise single-variable function approximation, RMSE (mean±std) of 2.6–4±2.6e-4 for the first nonlinear dynamic system modelling, RRSE (mean±std) of 1.59e-3±0.42e-3 for Mackey–Glass time series prediction, RMSE of 0.3421 for gas furnace modelling and VAF% (mean±std) of 98.24±0.71 for the EMG modelling of all trial signals, indicating a significant enhancement over previous methods. Conclusions The FJWNN demonstrated promising accuracy and generalization while moderating network complexity. This improvement is due to applying main useful wavelets in combination with linear regressors and using fuzzy rule induction. Compared to the state-of-the-art models, the proposed FJWNN yielded better performance and, therefore, can be considered a novel tool for nonlinear system identificationPeer ReviewedPostprint (published version

    Dynamic non-linear system modelling using wavelet-based soft computing techniques

    Get PDF
    The enormous number of complex systems results in the necessity of high-level and cost-efficient modelling structures for the operators and system designers. Model-based approaches offer a very challenging way to integrate a priori knowledge into the procedure. Soft computing based models in particular, can successfully be applied in cases of highly nonlinear problems. A further reason for dealing with so called soft computational model based techniques is that in real-world cases, many times only partial, uncertain and/or inaccurate data is available. Wavelet-Based soft computing techniques are considered, as one of the latest trends in system identification/modelling. This thesis provides a comprehensive synopsis of the main wavelet-based approaches to model the non-linear dynamical systems in real world problems in conjunction with possible twists and novelties aiming for more accurate and less complex modelling structure. Initially, an on-line structure and parameter design has been considered in an adaptive Neuro- Fuzzy (NF) scheme. The problem of redundant membership functions and consequently fuzzy rules is circumvented by applying an adaptive structure. The growth of a special type of Fungus (Monascus ruber van Tieghem) is examined against several other approaches for further justification of the proposed methodology. By extending the line of research, two Morlet Wavelet Neural Network (WNN) structures have been introduced. Increasing the accuracy and decreasing the computational cost are both the primary targets of proposed novelties. Modifying the synoptic weights by replacing them with Linear Combination Weights (LCW) and also imposing a Hybrid Learning Algorithm (HLA) comprising of Gradient Descent (GD) and Recursive Least Square (RLS), are the tools utilised for the above challenges. These two models differ from the point of view of structure while they share the same HLA scheme. The second approach contains an additional Multiplication layer, plus its hidden layer contains several sub-WNNs for each input dimension. The practical superiority of these extensions is demonstrated by simulation and experimental results on real non-linear dynamic system; Listeria Monocytogenes survival curves in Ultra-High Temperature (UHT) whole milk, and consolidated with comprehensive comparison with other suggested schemes. At the next stage, the extended clustering-based fuzzy version of the proposed WNN schemes, is presented as the ultimate structure in this thesis. The proposed Fuzzy Wavelet Neural network (FWNN) benefitted from Gaussian Mixture Models (GMMs) clustering feature, updated by a modified Expectation-Maximization (EM) algorithm. One of the main aims of this thesis is to illustrate how the GMM-EM scheme could be used not only for detecting useful knowledge from the data by building accurate regression, but also for the identification of complex systems. The structure of FWNN is based on the basis of fuzzy rules including wavelet functions in the consequent parts of rules. In order to improve the function approximation accuracy and general capability of the FWNN system, an efficient hybrid learning approach is used to adjust the parameters of dilation, translation, weights, and membership. Extended Kalman Filter (EKF) is employed for wavelet parameters adjustment together with Weighted Least Square (WLS) which is dedicated for the Linear Combination Weights fine-tuning. The results of a real-world application of Short Time Load Forecasting (STLF) further re-enforced the plausibility of the above technique

    Comparison between unipolar and bipolar single phase grid-connected inverters for PV applications

    Get PDF
    An inverter is essential for the interfacing of photovoltaic panels with the AC network. There are many possible inverter topologies and inverter switching schemes and each one will have its own relative advantages and disadvantages. Efficiency and output current distortion are two important factors governing the choice of inverter system. In this paper, it is argued that current controlled inverters offer significant advantages from the point of view of minimisation of current distortion. Two inverter switching strategies are explored in detail. These are the unipolar current controlled inverter and the bipolar current controlled inverter. With respect to low frequency distortion, previously published works provide theoretical arguments in favour of bipolar switching. On the other hand it has also been argued that the unipolar switched inverter offers reduced switching losses and generates less EMI. On efficiency grounds, it appears that the unipolar switched inverter has an advantage. However, experimental results presented in this paper show that the level of low frequency current distortion in the unipolar switched inverter is such that it can only comply with Australian Standard 4777.2 above a minimum output current. On the other hand it is shown that at the same current levels bipolar switching results in reduced low frequency harmonics

    Comparison between unipolar and bipolar single phase grid-connected inverters for PV applications

    Get PDF
    An inverter is essential for the interfacing of photovoltaic panels with the AC network. There are many possible inverter topologies and inverter switching schemes and each one will have its own relative advantages and disadvantages. Efficiency and output current distortion are two important factors governing the choice of inverter system. In this paper, it is argued that current controlled inverters offer significant advantages from the point of view of minimisation of current distortion. Two inverter switching strategies are explored in detail. These are the unipolar current controlled inverter and the bipolar current controlled inverter. With respect to low frequency distortion, previously published works provide theoretical arguments in favour of bipolar switching. On the other hand it has also been argued that the unipolar switched inverter offers reduced switching losses and generates less EMI. On efficiency grounds, it appears that the unipolar switched inverter has an advantage. However, experimental results presented in this paper show that the level of low frequency current distortion in the unipolar switched inverter is such that it can only comply with Australian Standard 4777.2 above a minimum output current. On the other hand it is shown that at the same current levels bipolar switching results in reduced low frequency harmonics

    Flexible wavelet-neuro-fuzzy neuron in dynamic data mining tasks

    Get PDF
    Запропоновано нову гнучку модифікацію нео-фаззі нейрону та алгоритм навчання усіх параметрів. Запропонований алгоритм навчання дає змогу налаштувати не тільки синаптичні ваги, але й параметри функцій активації-приналежності та її форми, що дає змогу уникнути виникнення «дірок» у вхідному просторі. Запропонований алгоритм навчання має як фільтруючі, так і властивості слідкування, таким чином гнучкий нео-фаззі нейрон може використовуватися для вирішення задач прогнозування, фільтрації та згладжування нестаціонарних стохастичних и хаотичних послідовностей. Перевагами запропонованого підходу є простота обчислення у порівняні з відомими алгоритмами навчання гібридних вейвлет-нейро-фаззі-систем обчислювального інтелекту.Предлагается новая гибкая модификация нео-фаззи нейрона и алгоритм обучения всех его параметров. Предложенный алгоритм обучения позволяет настраивать не только синаптические веса, но и параметры функций активации-принадлежности и ее формы, что позволяет избежать возникновения «дырок» во входном пространстве. Предложенный алгоритм обучения обладает как фильтрующими, так и следящими свойствами, таким образом гибкий нео-фаззи нейрон может использоваться для решения задач прогнозирования, фильтрации и сглаживания нестационарных и хаотических последовательностей. Преимуществом предложенного подхода являются вычислительная простота в сравнении с известными алгоритмами обучения гибридных вэйвлет-нейро-фззи систем вычислительного интеллекта.A new flexible modification of neo-fuzzy neuron (FNFN) and adaptive learning algorithms for the tuning of its all parameters are proposed in the paper. The algorithms are interesting in that they provide on-line tuning of not only the synaptic weights and membership functions parameters, but also forms of these functions, that provide improving approximation properties and allow to avoid the occurrence of ”gaps” in space of inputs. The proposed algorithms have both the tracking and filtering properties, so the FNFN can be effectively used for prediction, filtering and smoothing of non-stationary stochastic and chaotic sequences. A special feature of the proposed approach is its computational simplicity in comparison with known learning procedures for hybrid wavelet-neuro-fuzzy systems of computational intelligence

    Real-Time Machine Learning Based Open Switch Fault Detection and Isolation for Multilevel Multiphase Drives

    Get PDF
    Due to the rapid proliferation interest of the multiphase machines and their combination with multilevel inverters technology, the demand for high reliability and resilient in the multiphase multilevel drives is increased. High reliability can be achieved by deploying systematic preventive real-time monitoring, robust control, and efficient fault diagnosis strategies. Fault diagnosis, as an indispensable methodology to preserve the seamless post-fault operation, is carried out in consecutive steps; monitoring the observable signals to generate the residuals, evaluating the observations to make a binary decision if any abnormality has occurred, and identifying the characteristics of the abnormalities to locate and isolate the failed components. It is followed by applying an appropriate reconfiguration strategy to ensure that the system can tolerate the failure. The primary focus of presented dissertation was to address employing computational and machine learning techniques to construct a proficient fault diagnosis scheme in multilevel multiphase drives. First, the data-driven nonlinear model identification/prediction methods are used to form a hybrid fault detection framework, which combines module-level and system-level methods in power converters, to enhance the performance and obtain a rapid real-time detection. Applying suggested nonlinear model predictors along with different systems (conventional two-level inverter and three-level neutral point clamped inverter) result in reducing the detection time to 1% of stator current fundamental period without deploying component-level monitoring equipment. Further, two methods using semi-supervised learning and analytical data mining concepts are presented to isolate the failed component. The semi-supervised fuzzy algorithm is engaged in building the clustering model because the deficient labeled datasets (prior knowledge of the system) leads to degraded performance in supervised clustering. Also, an analytical data mining procedure is presented based on data interpretability that yields two criteria to isolate the failure. A key part of this work also dealt with the discrimination between the post-fault characteristics, which are supposed to carry the data reflecting the fault influence, and the output responses, which are compensated by controllers under closed-loop control strategy. The performance of all designed schemes is evaluated through experiments

    A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems

    Get PDF
    The use of artificial intelligence (AI) is increasing in various sectors of photovoltaic (PV) systems, due to the increasing computational power, tools and data generation. The currently employed methods for various functions of the solar PV industry related to design, forecasting, control, and maintenance have been found to deliver relatively inaccurate results. Further, the use of AI to perform these tasks achieved a higher degree of accuracy and precision and is now a highly interesting topic. In this context, this paper aims to investigate how AI techniques impact the PV value chain. The investigation consists of mapping the currently available AI technologies, identifying possible future uses of AI, and also quantifying their advantages and disadvantages in regard to the conventional mechanisms
    corecore