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1. Introduction

In the last few years, different linear and non-linear control techniques have been applied by
many researchers on the vehicle suspension system. The basic purpose of suspension system
is to improve the ride comfort and better road handling capability. Therefore, a comfortable
and fully controlled ride can not be guaranteed without a good suspension system. The
suspension system can be categorized as; Passive, Semi-active and Active.

The passive suspension system is an open loop control system consisting of the energy storing
(spring) and dissipating element (damper). The passive suspension performance depends on
the road profile, controlling the relative movement of the body and tires by using various
kinds of damping and energy dissipating elements. Passive suspension has considerable
restriction in structural applications. The features are resolved by the designers with respect
to the design objectives and the proposed application. All the ongoing research in this area
mainly caters the following issues to improve the suspension control;

• minimize the effect of road and inertial disturbances, on human body, caused by cornering
or braking.

• minimize the vertical car body displacement and acceleration.

• good control on all the four wheels of the car for their optimal contact with road.

All the above objectives lead to rapidly changing operating conditions and the passive
suspension system is not as efficient to cope with them by adapting its parameters,
simultaneously. So, there would always be a compromise between comfort and safety for
passive suspension system.

Semi-active suspension system consists of a sensor that identifies bumps on the road and
motion of the vehicle and a controller that controls the damper on each wheel. The semi-active
suspension can respond to even small variations in road area and cornering. It offers quick
variations in rate of springs damping coefficients. This suspension system does not give any
energy to the system but damper is changed by the controller. The controller resolves the rank
of damping based on control approach and automatically changes the damper according to
the preferred levels. Actuator and sensors are attached to sense the road profile for the control
input. The adaptive fuzzy controller for semi-active suspension systems was presented by
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(Lieh & Li, 1997) which shows only the acceleration of the vehicle compared to the passive
suspension.

On the other hand, active suspension consists of actuator. The controller drives the actuator,
which depends on the proposed control law. The active suspension system gives the freedom
to tune the whole suspension system and the control force can be initiated locally or globally
depending on the system state. The active suspension systems provide more design flexibility
and increase the range of achievable objectives. The active suspension passenger seat is
proposed by (Stein & Ballo, 1991) for off-road vehicles. Also, the passenger suspension seat
was considered by (Nicolas et al., 1997) in their control technique to improve ride comfort.
Various control techniques such as optimal state-feedback (Esmailzadeh & Taghirad, 1996),
model reference adaptive control (Sunwoo et al., June 1991), backstepping method (Lin &
Kanellakopoulos, 1997), fuzzy control (Yoshimura et al., 1999) and sliding mode control
(Yoshimura et al., 2001) have been presented in the last few years for optimized control of
the active suspension system.

In order to examine these suspension systems, three types of car model have been introduced
in the literature; Quarter car model, Half car model and Full car model. In car modeling,
quarter car model is the simplest one. Many approaches on quarter car suspension systems
have been carried out by (Hac, 1987; Yue et al., 1988) but do not reveal robustness of
the system. The robustness of quarter-car suspension system based on stochastic stability
has been presented by (Ray, 1991) but this technique needs large feedback gains and an
appropriate phase must be chosen. The best performance estimations of variable suspension
system on a quarter car model are observed by (Redfield & Karnopp, 1988). Various linear
control techniques are applied on a quarter car model in (Bigarbegian et al., 2008) but did
not give any information for large gain from road disturbance to vehicle body acceleration.
The dynamic behavior and vibration control of a half-car suspension model is inspected by
different researchers in (Hac, 1986; Krtolica & Hrovat, 1990; 1992; Thompson & Davis, 2005;
Thompson & Pearce, 1998).

The active control of seat for full car model is examined by (Rahmi, 2003). Some control
approaches have been examined to minimize the vertical motion, roll and also the chassis
motion of vehicle by (Barak & Hrovat, 1988; Cech, 1994; Crolla & Abdel−Hady, 1991). The
PID controller is applied on active suspension system by (Kumar, 2008). The combined
H∞ controller with LQR controller on an active car suspension is given by (Kaleemullah
et al., 2011), but this controller requires the frequency characterization of the system
uncertainties and plant disturbance, which are usually not available. An experimental 1-DOF
microcomputerized based suspension system was presented by (White-Smoke, 2011), using
actuator force as control input. However, the extension of this model to other practical models
is not straightforward.

Fuzzy logic control has been utilized widely for the control applications. Such a control
approach has the definite characteristic of being able to build up the controller without
mathematical model of the system. Therefore, it has been employed to control active
suspension systems (Hedrick & Butsuen, 1990; Hrovat, 1982; Meller, 1978; Smith, 1995).

In (Nicolas et al., 1997), the authors used a fuzzy logic controller to increase the ride comfort of
the vehicle. A variety of simulations showed that the fuzzy logic control is proficient to give
a better ride quality than other common control approaches for example, skyhook control
(Ahmadian & Pare, 2000; Bigarbegian et al., 2008). (Lian et al., Feb. 2005) proposed a fuzzy
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controller to control the active suspension system. The fuzzy control for active suspension
system presented by (Yester & Jr., 1992) considers only the ride comfort. (Rao & Prahlad,
1997) proposed a tuneable fuzzy logic controller, on active suspension system without taking
into account the nonlinear features of the suspension spring and shock absorber, also, the
robustness problem was not discussed. The neural network control system applied on active
suspension system has been discussed by (Moran & Masao, 1994) but does not give enough
information about the robustness and sensitivity properties of the neural control towards the
parameter deviations and model uncertainties. Also, sliding mode neural network inference
fuzzy logic control for active suspension systems is presented by (Al-Holou et al., 2002), but
did not give any information about the rattle space limits. (Huang & Lin, 2003; Lin & Lian,
2008) proposed a DSP-based self-organizing fuzzy controller for an active suspension system
of car, to reduce the displacement and acceleration in the sprung mass so as to improve the
handling performance and ride comfort of the car. (Lian et al., Feb. 2005) proposed a fuzzy
controller to control the active suspension system.

However, it is still complicated to design suitable membership functions and fuzzy linguistic
rules of the fuzzy logic controllers to give suitable learning rate and weighting distribution
parameters in the self-organizing fuzzy controller.

Since, the aforementioned fuzzy logic and neural network controllers on active models, did
not give enough information about the robustness, sensitivity and rattle space limits. These
techniques were combined with wavelets to solve different control and signal processing
problems and collectively known as Fuzzy Wavelet Neural Networks (FWNNs) (Chalasani,
1986; Hac, 1986; Heo et al., 2000; Meld, 1991; Thompson & Davis, 2005; Thompson & Pearce,
1998). The combination of a fuzzy wavelet neural inference system comprises the strength of
the optimal definitions of the antecedent part and the consequent part of the fuzzy rules. In
this study, fuzzy wavelet neural network control is proposed for the active suspension control.
A FWNN combines wavelet theory with fuzzy logic and neural networks. Wavelet neural
networks are based on wavelet transform which has the capability to examine non-stationary
signals to determine their local details. Fuzzy logic system decreases the complexity and
deals with vagueness of the data. Neural networks have self-learning qualities that raises the
precision of the model. Their arrangement permits to build up a system with fast learning
abilities that can explain nonlinear structures. Different structures of FWNN have been
proposed in the literature. Due to its strong estimation and controlling properties FWNN
has found extensive applications in the areas of identification and control of non-linear plants
(Abiyev & Kaynak, 2008; Adeli & Jiang, 2006; Banakar & Azeem, 2008; Yilmaz & Oysal, 2010).

In this chapter, different softcomputing techniques have been combined with wavelets for the
active suspension control of full car model to minimize the vibrations of the vehicle against
the road disturbances. The proposed Adaptive Fuzzy Wavelet Neural Network (AFWNN)
control integrates the ability of wavelet to analyze the local details of the signal with that
of fuzzy logic to reduce system complexity and with the self learning capability of neural
networks, which makes the controller efficient for controlling unknown dynamic plants. The
results of the proposed models have been compared with passive and semi-active suspension
system. The robustness of the system has further been evaluated by comparing the results
with Adaptive PID (APID).

This chapter has been arranged as follows; Section2 gives the structural and mathematical
details of the proposed AFWNN models. In Section 3 the modeling details and closed loop
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system have been discussed. Section 4 gives the simulation results and discussion. Finally,
section 5 concludes our work.

2. Fuzzy wavelet neural network control

Wavelet neural network is a new and innovative network, which is based on wavelet
transforms (Oussar & Dreyfus, 2000). The structural design of the wavelet neural network
is laid on a multilayered perceptron. A discrete wavelet function is applied as node activation
function in the wavelet neural network. Because, the wavelet space is utilized as a feature
space of pattern identification, the feature extraction of signal is recognized by the weighted
sum of the inner product of wavelet base and signal vector. Furthermore, network acquires the
ability of approximation and robustness. The entire estimation is on the logistic infrastructure.
Wavelets can be expressed as follows:

Ψj(x) = |aj|
−1
2 Ψ

(

x − bj

aj

)

, aj �= 0, j = 1, 2, ..., n (1)

Where, Ψj(x) is the family of wavelets, x = x1, x2, ..., xm shows the input values, aj =
a1j, a2j, ..., amj and bj = b1j, b2j, ..., bmj represent the dilation and translation parameters of the
mother wavelet Ψ(x), respectively. The Ψ(x) function is a waveform of limited duration and
has a zero mean value.

Wavelet neural networks are mainly three layered networks using wavelets as activation
function. The output for wavelet neural network is formulated as;

y =
k

∑
j=1

wjΨj(x) (2)

Where, Ψj(x) is the wavelet function of the jth part of hidden layer, because, the wavelet
networks contain the wavelet functions in the hidden layer’s neurons of the network. wj are
the weights connected between the hidden layer and the output layer.

Wavelet functions have capability of time−frequency localization property (Zhang &
Benveniste, 1992). Localization of the ith hidden layer of wavelet neural network is found
by the dilation and translation parameters of the wavelet function. The dilation parameter
controls the spread of the wavelet and the translation parameter determines the center
position of the wavelet (Y. Chen & Dong, 2006).

Normally, two techniques are used for signifying multidimensional wavelets. In the first
technique, they are created by using the product of one-dimensional wavelet functions. This
wavelet neural network technique model is used by (Zhang et al., 1995). In second technique,
the Euclidian norms of the input variables are used as the inputs of one-dimensional wavelets
(Billings & Wei, 2005; Zhang, 1997).

The proposed AFWNN incorporates wavelet functions in the conventional TSK fuzzy logic
system. In the conventional approach, a linear function or constant is used in the consequent
part of the linguistic rules for TSK fuzzy system. In the AFWNN, wavelet functions are used
in the consequent part to enhance the estimation capability and computational strength of the
neuro-fuzzy system by utilizing their time-frequency localization property.
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In a TSK fuzzy model, each rule is divided into two regions, represented by the IF-THEN
statement. In the IF part of the fuzzy rule, membership functions are given, and in the THEN
part of the fuzzy rule a linear function of inputs or a constant is used. These rules are based
on either experts knowledge or adaptive learning. The wavelets can collect the information
globally and locally easily by means of the multiresolution property (Ho et al., 2001). The
proposed AFWNN model has fast convergence and accuracy properties.

The AFWNN rules have the following form;

I f x1 isA11 and x2 is A12 and ... xm is A1mThen y1 =
m

∑
i=1

wi1(1 − q2
i1)e

−
q2
i1
2

I f x1 isA21 and x2 is A22 and ... xm is A2mThen y2 =
m

∑
i=1

wi2(1 − q2
i2)e

−
q2
i2
2

...

I f x1 isAn1 and x2 is An2 and ... xm is AnmThen yn =
m

∑
i=1

win(1 − q2
in)e

−
q2
in
2

Where, x1, x2, ..., xm, y1, y2, ..., yn are the input-output variables and Aij is the membership
function of ith input and jth rule. Wavelet functions are in the consequent part of the rules.
The entire fuzzy model can be attained by finding/learning the parameters of antecedent and
consequent part.

The AFWNN structure has been depicted in Figure 1. This structure comprises of combination
of the two network structures, i.e., upper side and lower side. Where, upper side encloses
wavelet neural network and lower side encloses fuzzy reasoning process.

The whole network works in a layered fashion, as follows;
Layer 1: This is the first layer of fuzzy reasoning as well as the wavelet network. This layer
accepts input values. Its nodes transmit input values to the next layer.

Layer 2: In this layer fuzzification process is performed and neurons represent fuzzy sets used
in the antecedent part of the linguistic fuzzy rules. The outputs of this layer are the values of
the membership functions ‘ηj(xj)’.

Layer 3: In this layer each node represents a fuzzy rule. In order to compute the firing strength
of each rule, and min operation is used to estimate the output value of the layer. i.e.,

µj(x) = ∏
i

ηj(xi) (3)

where, ∏
i

is the min operation and µj(x) are the input values for the next layer (consequent

layer).

Layer 4: In this layer, wavelet functions are represented. The output of this layer is given by;

yl = wlψl(q) (4)

Where, ψl = f (ail , qil) is a functional such that

qil = f (xi, bil , ail)
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Fig. 1. Structure of AFWNN

Here, ‘bil ’ and ‘ail ’ represent the parameters for the ‘ith’ input and ‘lth’ output of the wavelet
function. Where, i = 1, 2, ..., n and l = 1, 2, ..., n.

Layer 5: This layer estimates the weighted consequent value of a given rule.

Layer 6, 7: In these layers, the defuzzification process is made to calculate the output of the
entire network, i.e., it computes the overall output of system. Therefore, the output for the
fuzzy wavelet neural network can be expressed as;

u =

n
∑

l=1
µl(x)yl

n
∑

l=1
µl(x)

(5)

Where, ‘u’ is the output for the entire network. The training of the network starts after
estimating the output value of the AFWNN.

The AFWNN learning is to minimize a given function or input and output values by adjusting
network parameters. Adapted parameters are mean ‘gij’ and variance ‘σij’ of membership
functions in antecedent part, translation ‘bij’ and dilation ‘aij’ parameters of wavelet functions
and weights ‘wij’ are the parameters in the consequent part of the rules.

The AFWNN learning is done by minimizing the performance index. In this study, the
gradient descent technique has been used to speed up the convergence and minimize the
cost function.
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The performance index can be expressed as;

J =
1

2

O

∑
i=0

e2

=
1

2

O

∑
i=0

(ri − ui)
2 (6)

Where, ‘ri’ and ‘ui’ are the desired and current output values of the system, respectively.
‘O’ shows the number of the output values of the system, which is one in our case. The
update parameters ‘wl ’, ‘ail ’, ‘bil ’ of the consequent part of network and ‘gil ’ and ‘σil ’ (i =
1, 2, ..., m, j = 1, 2, ..., n) of the antecedent part of the network can be formulated as follows;

wl(t + 1) = wl(t)− γ
∂J

∂wl
+ λ(wl(t)− wl(t − 1)) (7)

ail(t + 1) = ail(t)− γ
∂J

∂ail
+ λ(ail(t)− ail(t − 1)) (8)

bil(t + 1) = bil(t)− γ
∂J

∂bil
+ λ(bil(t)− bil(t − 1)) (9)

gij(t + 1) = gij(t)− γ
∂J

∂gij
(10)

σij(t + 1) = σij(t)− γ
∂J

∂σij
(11)

Where, ‘γ’ and ‘λ’ represent the learning rate and momentum, respectively. ‘m’ and ‘n’ shows
the input values and rules number of the network such that i = 1, 2, ..., m and j = 1, 2, ..., n.

By using chain rule the partial derivatives shown in the above equations can be expanded as;

∂J

∂wl
=

∂J

∂u

∂u

∂yl

∂yl

∂wl
(12)

∂J

∂ail
=

∂J

∂u

∂u

∂yl

∂yl

∂ψl

∂ψl

∂qil

∂qil

∂ail
(13)

∂J

∂bil
=

∂J

∂u

∂u

∂yl

∂yl

∂ψl

∂ψl

∂ql

∂ql

∂bl
(14)

∂J

∂gij
= ∑

j

∂J

∂u

∂u

∂µj

∂µj

∂gij
(15)

∂J

∂σij
= ∑

j

∂J

∂u

∂u

∂µj

∂µj

∂σij
(16)

Equations (12) to (16) shows the contribution of update parameters for change in error. The
following sections give a brief detail of different configurations of AFWNN, applied to full car
model. Since, the full car active suspension control is a nonlinear problem, the idea is to check
different combinations of wavelets and membership functions to increase the nonlinearity of
the controller as well so that it could efficiently deal with a nonlinear system.
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2.1 AFWNN-1: Structure and parameters update rules for learning

AFWNN-1 structure uses Gaussian membership function in the antecedent part and Mexican
hat wavelet in the consequent part. The gaussian membership function is given by;

ηj(xi) = e−(xi−gij)
2/σ2

ij i = 1, 2, ..., m, j = 1, 2, ..., n (17)

Where, ‘ηj(xj)’ shows the membership function, ‘gij’ and ‘σij’ are the mean and variance of
membership function of the jith term of ith input variable. ‘m’ and ‘n’ are the number of input
signals and number of nodes in second layer, respectively.

The Mexican hat wavelet function is given by;

ψ(qi) =
m

∑
i=1

|ai|
−1/2(1 − q2

i )e
−q2

i /2

where,

qj =
x − bj

aj
(18)

Where, Ψj(x) is the family of wavelets, x = x1, x2, ..., xm shows the inputs values, aj =
a1j, a2j, ..., amj and bj = b1j, b2j, ..., bmj represent the dilation and translation parameters of the
mother wavelet Ψ(x), respectively. Figure 2(a) shows Mexican wavelet function.

(a) Mexican hat (b) Morlet

Fig. 2. Wavelet functions

Referring to equations (12) to (16) and simplifying gives the following results;

∂J

∂wl
= (u(t)− r(t))µl(x).ψ(ql)

/ n

∑
l=1

µl(x) (19)

∂J

∂ail
= δi

(−3.5q2
il − q4

il − 0.5)e−q2
il /2

√

a3
il

(20)

∂J

∂bil
= δl(3qil − q3

il)e
−q2

il /2

/(

√

a3
il

)

(21)
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∂J

∂gij
= ∑

j

(u(t)− r(t))
yj − u

∑
j

µj
µj(xi)

2(xi − gij)

σ2
ij

(22)

∂J

∂σij
= ∑

j

(u(t)− r(t)).
yj − u

∑
j

µj(x)
.uj(xi)

2(xi − gij)
2

σ3
ij

(23)

where,

δl = (u(t)− r(t))µl(x).wl

/ n

∑
l=1

µl(x)

Putting these values in respective equations from equation (7) to equation (11), gives the final
update equations for AFWNN-1 as follows;

wl(t + 1) = wl(t)− γ(u(t)− r(t))µl(x).ψl(q)

/ n

∑
l=1

µl(x) + λ(wl(t)− wl(t − 1)) (24)

ail(t + 1) = ail(t)− γδl

(3.5q2
il − q4

il − 0.5)e−q2
il /2

√

a3
il

+ λ(ail(t)− ail(t − 1))

⇒ ail(t + 1) = ail(t)−
γ(u(t)− r(t))µl(x).wl(q)

n
∑

l=1
µl(x)

(3.5q2
il − q4

il − 0.5)e−q2
il /2

√

a3
il

+ λ(ail(t)− ail(t − 1)) (25)

bil(t + 1) = bil(t)− γδl

[

|ail |
−1/2(−3qil + q3

il)e
−q2

il /2

(

−1

ail

)]

+ λ(bil(t)− bil(t − 1))

⇒ bil(t + 1) = bil(t)−
γ(u(t)− r(t))µl(x).wl(q)

n
∑

l=1
µl(x)

[

|ail |
−1/2(−3qil + q3

il)e
−q2

il /2

(

−1

ail

)]

+ λ(bil(t)− bil(t − 1)) (26)

gij(t + 1) = gij(t)− ∑
j

(u(t)− r(t))
yj − u

∑
j

µj
µj(xi)

2(xi − gij)

σ2
ij

(27)

σij(t + 1) = σij(t)− ∑
j

(u(t)− r(t)).
yj − u

∑
j

µj(x)
.uj(xi)

2(xi − gij)
2

σ3
ij

(28)

The gradient descent method shows convergence on the basis of the learning rate and the
momentum value. The values of the learning rate and momentum are usually taken in interval
[0,1]. If the value of the learning rate is high, it makes the system unstable and if its value
is small the convergence process is slow. The momentum term ‘λ′ speeds up the learning
process.
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2.2 AFWNN-2: Structure and parameters update rules for learning

In AFWNN-2, linear function or constant in the consequent part of the linguistic rules in TSK
fuzzy system are replaced with Mexican hat wavelet function. The Mexican Hat wavelet
function is given by equation (18), as for AFWNN-1. To illustrate the linguistic term, the
Triangular membership function has been used for this neuro-fuzzy system and is given by,

ηj(xi) = 1 −
2 | xi − gij |

σij
i = 1, 2, ..., m, j = 1, 2, ..., n (29)

Where, ‘ηj(xj)’ shows the membership function, ‘gij’ and ‘σij’ are the mean and variance of
membership function of the ‘jith’ term of ‘ith’ input variable. In order to calculate the updated
values for this network simplifying the Equations (12) to (16) give the following results;

∂J

∂wl
= (u(t)− r(t))µl(x).ψ(ql)

/ n

∑
l=1

µl(x) (30)

∂J

∂ail
= δl

(−3.5q2
il − q4

il − 0.5)e−q2
il /2

√

a3
il

(31)

∂J

∂bil
= δl(3qil − q3

il)e
−q2

il /2

/(

√

a3
il

)

(32)

∂J

∂gij
= ∑

j

[(

u(t)− r(t)

)

.
yj − u

∑
j

µj

µj

ηj(xi)
.2

sign(xi − gij)

σij

]

(33)

∂J

∂σij
= ∑

j

[(

u(t)− r(t).

)

yj − u

∑
j

µj
.

µj

ηj(xi)

1 − ηj

σij

]

(34)

By putting these values in Equations (7) to (11) the final update equations are given by;

wl(t + 1) = wl(t)− γ(u(t)− r(t))µl(x).ψl(q)

/ n

∑
l=1

µl(x)

+ λ(wl(t)− wl(t − 1)) (35)

ail(t + 1) = ail(t)− γδl

(−3.5q2
il − q4

il − 0.5)e−q2
il /2

√

a3
il

+ λ(ail(t)− ail(t − 1))

⇒ ail(t + 1) = ail(t)−
γ(u(t)− r(t))µl(x).wl(q)

n
∑

l=1
µl(x)

(−3.5q2
il − q4

il − 0.5)e−q2
il /2

√

a3
il

+ λ(ail(t)− ail(t − 1)) (36)

bil(t + 1) = bil(t)− γδl

[

|ail |
−1/2(−3qil + q3

il)e
−q2

il /2

(

−1

ail

)]

+ λ(bil(t)− bil(t − 1))
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⇒ bil(t + 1) = bil(t)−
γ(u(t)− r(t))µl(x).wl(q)

n
∑

l=1
µl(x)

[

|ail |
−1/2(−3qil + q3

il)e
−q2

il /2

(

−1

ail

)]

+ λ(bil(t)− bil(t − 1)) (37)

gij(t + 1) = gij(t)− γ ∑
j

[(

u(t)− r(t)

)

.
yj − u

∑
j

µj

µj

ηj(xi)
.2

sign(xi − gij)

σij

]

(38)

σij(t + 1) = σij(t)− γ ∑
j

[(

u(t)− r(t).

)

yj − u

∑
j

µj
.

µj

ηj(xi)

1 − ηj

σij

]

(39)

Hence, these are the required equations for the update parameters, ‘wl ’, ‘ail ’, ‘bil ’, ‘gil ’ and ‘σil ’
respectively.

2.3 AFWNN-3: Structure and parameters update rules for learning

In AFWNN-3 the consequent part uses Morlet wavelet function whereas the antecedent part
uses the same Gaussian membership function as that of AFWNN-1. The Morlet wavelet
function has been shown in Figure 2(b) and is given by;

Ψj(x) = cos(5qj)e
− 1

2 (q
2
j ) (40)

The Gaussian membership function is given by equation (17); The output value ‘y’ for the ‘lth’
wavelet network is given by;

yl = wlψl(q), ψl(q) =
m

∑
i=1

cos(5qil)e
− 1

2 (q
2
il)

⇒ yl = wl

m

∑
i=1

cos(5qil)e
− 1

2 (q
2
il)

⇒ yl = wl

m

∑
i=1

cos 5

(

xi − bil

ail

)

e
− 1

2

(

xi−bil
ail

)2

(41)

By using equations (12) to (16), the partial derivatives can be solved as follows;

∂J

∂wl
= (u(t)− r(t))µl(x).ψ(ql)

/ n

∑
l=1

µl(x) (42)

∂J

∂ail
= δl

(

cos(5qil)e
− 1

2 (q
2
il)q2

il + 5qil sin(5qil)e
− 1

2 (q
2
il)

ail

)

(43)

∂J

∂bil
= δl

(

cos(5qil)e
− 1

2 (q
2
il)qil + 5 sin(5qil)e

− 1
2 (q

2
il)

ail

)

(44)

∂J

∂gij
= ∑

j

[(

u(t)− r(t)

)

yj − u

∑
j

µj
µj(xi)

2(xi − gij)

σ2
ij

]

(45)

∂J

∂σij
= ∑

j

[

(u(t)− r(t)).
yj − u

∑
j

µj(x)
.uj(xi)

2(xi − gij)
2

σ3
ij

]

(46)
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Equations (42) to (46) give the required values of ∂J
∂wl

, ∂J
∂ail

, ∂J
∂bil

, ∂J
∂gij

and ∂J
∂σij

, showing the

contribution of each update parameter for error convergence.

The required updates can be calculated using equations (7) to (11) as follows;

wl(t + 1) = wl(t)− γ(u(t)− r(t))µl(x).ψl(q)

/ n

∑
l=1

µl(x) + λ(wl(t)− wl(t − 1)) (47)

ail(t + 1) = ail(t)− γδl

(

cos(5qil)e
− 1

2 (q
2
il)q2

il + 5qil sin(5qil)e
− 1

2 (q
2
il)

ail

)

+ λ(ail(t)− ail(t − 1))

⇒ ail(t + 1) = ail(t)−
γ(u(t)− r(t))µl(x).wl(q)

n
∑

l=1
µl(x)

(

cos(5qil)e
− 1

2 (q
2
il)q2

il + 5qil sin(5qil)e
− 1

2 (q
2
il)

ail

)

+ λ(ail(t)− ail(t − 1)) (48)

bil(t + 1) = bil(t)− γδl

(

cos(5qil)e
− 1

2 (q
2
il)qil + 5 sin(5qil)e

− 1
2 (q

2
il)

ail

)

+ λ(bil(t)− bil(t − 1))

⇒ bil(t + 1) = bil(t)−
γ(u(t)− r(t))µl(x).wl(q)

n
∑

l=1
µl(x)

(

cos(5qil)e
− 1

2 (q
2
il)qil + 5 sin(5qil)e

− 1
2 (q

2
il)

ail

)

+ λ(bil(t)− bil(t − 1)) (49)

gij(t + 1) = gij(t)− γ ∑
j

u(t)− r(t)
yj − u

∑
j

µj
µj(xi)

2(xi − gij)

σ2
ij

(50)

σij(t + 1) = σij(t)− γ ∑
j

u(t)− r(t)
yj − u

∑
j

µj
µj(xi)

2(xi − gij)
2

σ3
ij

(51)

Hence, these are the required equations for the update parameters wl , ail , bil , gil and σil .

2.4 AFWNN-4: Structure and parameters update rules for learning

AFWNN-4 uses Morlet wavelet function along with triangular membership function. The
triangular membership function is given by Equation (29). Using Morlet wavelet function the
output value ‘y‘ for the ‘lth‘ wavelet is given by;

yl = wlψl(q), ψl(q) =
m

∑
i=1

cos(5qil)e
− 1

2 (q
2
il)

⇒ yl = wl

m

∑
i=1

cos 5

(

xi − bil

ail

)

e
− 1

2

(

xi−bil
ail

)2

(52)
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The derivatives given by equations (12) to (16) can be simplified as follows;

∂J

∂wl
= (u(t)− r(t))µl(x).ψ(ql)

/ n

∑
l=1

µl(x) (53)

∂J

∂ail
= δl

(

cos(5qil)e
− 1

2 (q
2
il)q2

il + 5qil sin(5qil)e
− 1

2 (q
2
il)

ail

)

(54)

∂J

∂bil
= δl

(

cos(5qil)e
− 1

2 (q
2
il)qil + 5 sin(5qil)e

− 1
2 (q

2
il)

ail

)

(55)

∂J

∂gij
= ∑

j

[(

u(t)− r(t)

)

.
yj − u

∑
j

µj

µj

ηj(xi)
.2

sign(xi − gij)

σij

]

(56)

∂J

∂σij
= ∑

j

[(

u(t)− r(t)

)

yj − u

∑
j

µj
.

µj

ηj(xi)

1 − ηj

σij

]

(57)

Equations (53) to (57) give the required values of ∂J
∂wl

, ∂J
∂ail

, ∂J
∂bil

, ∂J
∂gij

and ∂J
∂σij

, respectively.

Using Equations (7) to (11) the updates can be found as follows;

wl(t + 1) = wl(t)− γ(u(t)− r(t))µl(x).ψl(q)

/ n

∑
l=1

µl(x)

+ λ(wl(t)− wl(t − 1)) (58)

ail(t + 1) = ail(t)− γδl

(

cos(5qil)e
− 1

2 (q
2
il)q2

il + 5qil sin(5qil)e
− 1

2 (q
2
il)

ail

)

+ λ(ail(t)− ail(t − 1))

⇒ ail(t + 1) = ail(t)−
γ(u(t)− r(t))µl(x).wl(q)

n
∑

l=1
µl(x)

(

cos(5qil)e
− 1

2 (q
2
il)q2

il + 5qil sin(5qil)e
− 1

2 (q
2
il)

ail

)

+ λ(ail(t)− ail(t − 1)) (59)

bil(t + 1) = bil(t)− γδl

(

cos(5qil)e
− 1

2 (q
2
il)qil + 5 sin(5qil)e

− 1
2 (q

2
il)

ail

)

+ λ(bil(t)− bil(t − 1))

⇒ bil(t + 1) = bil(t)−
γ(u(t)− r(t))µl(x).wl(q)

n
∑

l=1
µl(x)

(

cos(5qil)e
− 1

2 (q
2
il)qil + 5 sin(5qil)e

− 1
2 (q

2
il)

ail

)

+ λ(bil(t)− bil(t − 1)) (60)

gij(t + 1) = gij(t)− γ ∑
j

[(

u(t)− r(t)

)

.
yj − u

∑
j

µj

µj

ηj(xi)
.2

sign(xi − gij)

σij

]

(61)

σij(t + 1) = σij(t)− γ ∑
j

[(

u(t)− r(t).

)

yj − u

∑
j

µj
.

µj

ηj(xi)

1 − ηj

σij

]

(62)
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The above equations give the parameters updates for AFWNN-4.

3. System modeling and design

The proposed AFWNN structures have been applied to full car model with eight degree of
freedom, being closer to reality, as shown in Figure 3. The eight degrees of freedom are the
four wheels displacement (Z f ,r, Z f ,l , Zr,r, Zr,l), seat displacement ‘Zs’, heave displacement ‘Z’,
pitch displacement ‘θ’ and roll displacement ‘φ’. The car model comprises of only one sprung
mass attached to the four unsprung masses at each corner. The sprung mass is allowed to have
pitch, heave and roll and the unsprung masses are allowed to have heave only. For simplicity,
all other motions are ignored for this model. The suspensions between the sprung mass and

Fig. 3. Full-Car Model

unsprung masses are modeled as non-linear viscous dampers and spring components and
the tires are modeled as simple non-linear springs without damping elements. The actuator
gives forces that determine by the displacement of the actuator between the sprung mass and
the wheels. The dampers between the wheels and car body signify sources of conventional
damping like friction among the mechanical components. The inputs of full-car model are
four disturbances coming through the tires and the four outputs are the heave, pitch, seat,
and roll displacement. For details of the dynamic model the reader is referred to (Rahmi,
2003). Figure 4 depicts the closed loop diagram of the feedback system. The input to the
plant is the noisy output of controller. The controller parameters are adapted on the basis of
calculated error which is the difference between the desired and actual output of the plant.

The inputs of the plant (full-car model) are four disturbances from the tire. The outputs
are Seat, Heave, Pitch and Roll displacements. The states required for controller come from
displacement sensors which measure the displacement states of four tires and one more sensor
for measuring the displacement of seat. The adaptive control law uses control technique and
adaptation mechanism to adapt the controller itself using proposed algorithms.The general
class of nonlinear MIMO systems is described by;

y(r) = A(x) +
p

∑
i=1

s

∑
j=1

Bij(x)uj +
p

∑
i=1

s

∑
j=1

Gij(x)zj (63)

Where, x = [y1, ẏ1, · · · , y
(r1−1)
1 , · · · , yp, ẏp, · · · , y

(rp−1)
p ]TǫRr is the overall state vector, which
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Fig. 4. Overall control system design

is assumed available and r = r1 + r2 + · · ·+ rp.

u = [u1, u2, · · · , us]TǫRs is the control input vector, y = [y1, · · · , yp]TǫRp is the output vector

and z = [z1, · · · , zs]TǫRs is the disturbance vector. Ai(x), i = 1, · · · , p are continuous
non-linear functions, Bij(x), i = 1, · · · , p; j = 1, · · · , s are continuous non-linear control
functions and Gij(x), i = 1, · · · , p; j = 1, · · · , s are continuous non-linear disturbance
functions.

Let us refer;

A = [A1(x) A2(x) · · · Ap(x)]T (64)

The control matrix is:

B(x) =

⎡

⎢

⎣

b11(x) . . . b1s(x)
...

. . .
...

bp1(x) . . . bps(x)

⎤

⎥

⎦

p×s

The disturbance matrix is:

G(x) =

⎡

⎢

⎣

g11(x) . . . g1s(x)
...

. . .
...

gp1(x) . . . gps(x)

⎤

⎥

⎦

p×s

y(r) = [y
(r1)
1 , y

(r2)
2 , · · · , y

(rp)
p ]T

y(r) = A(x) + B(x).u + G(x).z (65)

A(.) ǫ Rp×p; B(.) ǫ Rp×s; G(.) ǫ Rp×s

The generic non-linear car model is,

ẏ = f (x) + B(x).u + G(x).z
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y = h(x)

Where, f (x) ǫ R(16×16), B(x) ǫ R(16×4), G(x) ǫ R(16×4), state vector x ǫ R(16×1), u ǫ R(4×1) and

z ǫ R(4×1).

These matrices can be shown in state-space form, with state vector x, represented in row
matrix form.

f (x) = [A1(x) A2(x) A3(x) . . . A16(x)]

x = [x1 x2 x3 . . . x16]
T

A1(x) to A8(x) are velocity states and A9(x) to A16(x) are acceleration states of four tires, seat,
heave, pitch and roll.

The disturbance inputs for each tire individually are represented in the form of z matrix.

z = [z1 z2 z3 z4]
T

zn are n disturbances applied to full-car model. un are n control inputs to full-car model, so
to regulate the car model disturbances. yn are n states of car. rn are n desired outputs for the
controller to achieve.

Each controller in this work has two inputs. One of the inputs is ‘rn’ and delay of it is
given to second input . The yn states are fed to the controller as an error, so to adapt the
update adaptation law for the desired regulation. Based on this error the adaptation law is
formulated using AFWNN-1, AFWNN-2, AFWNN-3 and AFWNN-4. The algorithms develop
a back-propagation algorithm for training the controller to achieve the desire performance.

In this work for the full-car model four states of tires are used by the four controllers as an
error to adapt the adaptation law. As the purpose of controller is to regulate the disturbances
so rn’s are zero, the second input of controllers is a delayed version of first input. The
adaptation law of the controller provides the control inputs u1, u2, u3 and u4 to plant so as
to regulate the plant. The four disturbances z1, z2, z3 and z4 are coming from road through
tires into suspension system and to the body of the vehicle.

Two cases have been considered. In the first case, only the states of the four tires y1, y2, y3

and y4 displacement are used as an error to the controller. Which develops the control law
according to that error. These control inputs u1, u2, u3 and u4 are provided to the plant from
each controller (placed on each tire) to achieve the desired performance of the plant (full-car
model) i.e. both better passenger comfort (better seat and heave displacement) and better
vehicle stability (better heave, pitch and roll displacement). In the second case, an additional
controller is applied under the driver seat to improve the passenger comfort. In this case,
another state y5 is used as an error input to the controller. This additional control input will
help in reducing the disturbance effect and improving the passenger comfort.

Table 1 gives the description of different constants and their respective values used for
simulation.

4. Simulation results and discussion

Four different types of fuzzy wavelet neural network control techniques in addition to the
APID and semi-active control have been applied to full car suspension model. AFWNNC-1

162 Fuzzy Logic – Emerging Technologies and Applications

www.intechopen.com



Adaptive Fuzzy Wavelet NN Control Strategy for Full Car Suspension System 17

Constants Description Values Units

k f 1, k f 2 Front-left and Front-right suspension stuffiness, respectively. 15000 N/m

kr1, kr2 Rear-left and rear-right suspension stuffiness, respectively. 17000 N/m

ks Seat spring Constant 15000 N/m

cs Seat damping Constant 15000 N/m

Front-left, Front-right, rear-right and rear-left tire damping,

cs1 − cs4 respectively. 2500 N.sec/m

Front-left, Front-right, rear-right and rear-left tire suspension,

kt1 − kt4 respectively. 250000 N/m

a Distance between front axle suspension and C.O.G. 1.2 m

b Distance between rear axle suspension and C.O.G. 1.4 m

Xs Horizontal distance of seat from C.O.G. 0.3 m

Ys Vertical distance of seat from C.O.G. 0.25 m

M f ,l , M f ,r Front-left and Front-right unsprung mass, respectively. 25 kg

Mr,l , Mr,r Rear-left and rear-right unsprung mass, respectively. 45 kg

Ms Seat Mass 90 kg

M Vehicle body mass 1100 kg

Ix Moment of inertia for pitch 1848 kg.m2

Iy Moment of inertia for roll 550 kg.m2

Cshy1 Shyhook damper constant -2500 N.sec/m

Table 1. Vehicle Suspension Parameters

and AFWNNC-2 use Mexican hat as wavelet in the consequent part and gaussian and
triangular as membership function in the antecedent, respectively. AFWNNC-3 and
AFWNNC-4 use Morlet as wavelet in the consequent part and gaussian and triangular as
membership function in the antecedent, respectively. Two rules each having two membership
functions have been used for simulation. For each AFWNN, 18 parameters have been adapted
being the mean and variance of the antecedent part and translation, dilation and weights of
the consequent part. Three types of road profiles have been examined to check the robustness

Sr. No. Control Algo. Seat Front Rear

Left Right Left Right

1 APID 0.9 1 0.6 0.5 0.8

2 AFWNN-1 0.001 0.4 0.09 0.7 0.2

3 AFWNN-2 0.0054 0.08 0.09 0.08 0.09

4 AFWNN-3 0.003 0.08 0.007 0.009 0.008

5 AFWNN-4 0.003 0.0009 0.001 0.004 0.006

Table 2. Learning rates ‘γ’ for controls

of the applied algorithms. These road profiles have been used in context of roll, pitch, heave
and seat displacement and acceleration. Four controllers have been applied to each car tire
and one has been taken for seat. The learning rates for each controller have been shown in
Table 2. These values have been set for learning rates based on hit-and-trial keeping in view
the fact that a positive change in the error rate leads to increase the value of ‘γ’ and vice versa.
For simplicity of implementation the moment term has been neglected.
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The performance index used for evaluation of different algorithms is given by,

I =
1

2

∫ T

0
(ZT

P QZP)dt (66)

where, ‘Zp’ is the vector for displacement or acceleration, ‘Q’ is the identity matrix. The Root
Mean Square (RMS) value for displacement and acceleration of heave, pitch, roll and seat has
been calculated by,

zrms
disp. =

√

1

T

∫ T

t=0
[h(t)]2 (67)

z̈rms
acc. =

√

1

T

∫ T

t=0
[ḧ(t)]2 (68)

Figure 5 shows different road profiles used for simulation.

(a) Road profile-1

(b) Road profile-2 for front and rear left tires (c) Road profile-2 for front and rear right tires

(d) Road profile-3

Fig. 5. (a) Road profile-1 (b) Road profile-2 (c) Road profile-3
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(a) Heave (b) Pitch

(c) Roll (d) Seat

(e) Front left tire (f) Front right tire

(g) Rear left tire (h) Rear right tire

(i) Seat

Fig. 6. (a) Heave amplitude (b) Pitch amplitude (c) Roll amplitude (d) Seat amplitude (e)-(i)
Update parameters for antecedent and consequent part of AFWNN-4 for all five controllers
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4.1 Road profile-1

Road profile-1 involves one pothole and one bump, each having duration of one second with
a time delay of 8 secs., for front and rear tires. Mathematically, road profile-1 is given by;

z1(t) =

⎧

⎪

⎨

⎪



-0.15 1 ≤ t ≤ 2 and 4 ≤ t ≤ 5

0.15 9 ≤ t ≤ 10 and 12 ≤ t ≤ 13

0 otherwise

(69)

i.e., the road profile contains a pothole and a bump of amplitudes −0.15m and 0.15m,
respectively. This road profile is helpful to calculate heave of a vehicle. Figure 5(a) depicts
the road profile−1. Figures 6(a)-(d) show the regulation results for heave, roll, pitch and seat
displacement for active suspension as compared to passive and semi-active suspension. It
is clear from the figures that there is improvement in the results for active suspension. The
settling time has been reduced and the steady state response is improved. In case of heave
and seat the passive control approaches the rattle space limits whereas AFWNN-4 has optimal
results for all the four cases showing the least variation from steady state.

In passive and semi-active suspension suspension, the maximum values of displacements for
heave is 0.106m and 0.088m, for roll 0.016m and 0.009m, for pitch is 0.075m and 0.061m and for
seat is 0.15m and 0.11, respectively. Due to high nonlinear nature of AFWNN-4 these values
get improved as 0.004m, 0.006m, 0.012m and 0.02 for heave, roll pitch and seat, respectively.

Table3 shows the results for percent improvement and RMS values for displacement and
acceleration, for road profile-1. It can be seen that maximum improvement has been achieved
in case of heave with AFWNN-4. Figures 6(e)-(i) show the antecedent and consequent
parameters variation for AFWNN-4 for all the five controls. Parameters variation for front
and rear right tires is large whereas front and rear left tire has low parameters variation. It
was found that the control effort by front and right tires was greater as compared to seat and
the left side tires controls.

4.2 Road profile-2

Road profile-2 has been taken as two potholes of different amplitudes as shown in Figures
5(b)-(c). The road profile−2 is given as follows:

z2(t) =

⎧

⎪

⎨

⎪



-0.15 1 ≤ t ≤ 2 and 9 ≤ t ≤ 10

-0.10 4 ≤ t ≤ 5 and 12 ≤ t ≤ 13

0 otherwise

(70)

Road profile-2 involves two different potholes of amplitudes −0.15m and −0.10m for front
and rear left and rear and front right, respectively. This road profile is very helpful for the
calculation of pitch and roll of the vehicle.

Figures 7(a)-(d) reveal that APID shows satisfactory results whereas the result are very good
in case of AFWNN-4. The maximum improvement has been found in case of roll for this road
profile, which corresponds to the control of vehicle around horizontal axis. Figures 7(e)-(i)
give the update parameters results for AFWNN-4 showing large variations for rear left and
rear right tires. Table 4 shows the results for road profile-2 in terms of percent improvement
and RMS values of displacement and acceleration. The passive and semi-active suspension
show poor performance in terms of passenger comfort and vehicle stability.
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♯ Road Profile Control Algo. Performance Index RMS % Improvement w.r.t.

Disp. Acc. Passive Semi-active

Heave

Passive 6.03515 0.0404 3.476 - -

Semi-active 5.3037 0.03729 3.2567 - -

APID 4.92835 0.0166 3.1395 70 62

1 AFWNN-1 4.6587 0.0158 3.0524 75 65

AFWNN-2 4.3854 0.0148 2.965 77 65

AFWNN-3 1.9529 0.00403 1.9763 93 89

AFWNN-4 1.8006 0.004 1.8977 94 93

Roll

Passive 1.6822 0.00545 1.8342 - -

Semi-active 1.4578 0.00443 1.7075 - -

APID 1.3194 0.00263 1.6244 53 05

2 AFWNN-1 0.7863 0.0021 1.2540 54 10

AFWNN-2 0.7213 0.0020 1.2011 57 15

AFWNN-3 0.4600 0.0031 0.9590 57 25

AFWNN-4 0.2494 0.0022 0.7063 62 35

Pitch

Passive 3.6786 0.0308 2.7122 - -

Semi-active 3.5407 0.0274 2.6610 - -

APID 2.9947 0.0094 2.4473 50 38

3 AFWNN-1 1.5545 0.01 1.7632 54 40

AFWNN-2 1.1381 0.01004 1.2011 69 62

AFWNN-3 0.9288 0.005 1.3629 80 73

AFWNN-4 0.7834 0.0041 1.2517 84 80

Seat

Passive 3.8449 0.04695 2.7726 - -

Semi-active 1.8379 0.04101 1.9168 - -

APID 0.8508 0.02 1.3043 55 28

4 AFWNN-1 0.7966 0.017 1.2621 70 49

AFWNN-2 0.6492 0.031 1.1319 72 51

AFWNN-3 0.066 0.0052 0.3631 87 77

AFWNN-4 0.0295 0.0039 0.2428 88 81

Table 3. Performance Comparison for road profile-1

4.3 Road profile-3

Road profile-3 is white noise as shown in Figure 5(a).

z3(t) =

⎧

⎪

⎨

⎪



N
∑

i=1
Aisin(Ωis − Ψi) 0 ≤ t ≤ 16

0 otherwise

(71)

Where, value of ‘Ai’ is the road amplitude, ‘Ωi’ is the number of waves and ‘Ψi’ is the phase
angle, i = 1, 2, ..., N ranging from 0 to 2π.

The control problem is that the suspension travel should be | z | less than | z | from the
amplitude of disturbance i.e., ±0.15m. The maximum displacement of the road profile is
±0.15m.
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♯ Road Profile Control Algo. Performance Index RMS % Improvement w.r.t.

Disp. Acc. Passive Semi-active

Heave

Passive 4.2056 0.0339 2.9 - -

Semi-active 3.8635 0.09855 2.778 - -

APID 3.1469 0.01542 2.5087 57 36

1 AFWNN-1 2.9745 0.01397 2.439 60 47

AFWNN-2 3.0190 0.0144 2.453 80 72

AFWNN-3 1.2864 0.0036 1.604 83 78

AFWNN-4 1.1303 0.0040 1.503 87 82

Roll

Passive 1.7504 0.0099 1.8710 - -

Semi-active 1.5832 0.00679 1.7794 - -

APID 1.2140 0.00438 1.5582 36 25

2 AFWNN-1 0.8991 0.0022 1.3410 57 46

AFWNN-2 0.7176 0.0020 1.1980 63 46

AFWNN-3 0.5925 0.0024 1.0886 74 66

AFWNN-4 0.5011 0.0019 1.0010 95 92

Pitch

Passive 2.5485 0.0257 2.2575 - -

Semi-active 2.2184 0.0193 2.1063 - -

APID 1.9173 0.0119 1.9582 60 53

3 AFWNN-1 1.8417 0.0080 1.9190 50 10

AFWNN-2 1.6864 0.0067 1.8365 60 52

AFWNN-3 0.8484 0.0031 1.3026 78 74

AFWNN-4 0.8831 0.0024 1.3290 81 78

Seat

Passive 2.6620 0.0391 2.3011 - -

Semi-active 1.8148 0.03065 1.9049 - -

APID 0.7233 0.1850 1.2026 49 30

4 AFWNN-1 0.7014 0.1631 1.1731 69 40

AFWNN-2 0.7325 0.1432 1.2019 69 43

AFWNN-3 0.0533 0.0046 0.3265 83 69

AFWNN-4 0.0317 0.0024 0.2516 85 72

Table 4. Performance comparison for road profile-2

The time delay between front and rear wheels is given by;

δ(t) =
(s1 + s2)

V
(72)

Where, s1 = 1.2m and s2 = 1.4m are the values of distance between front and rear wheels
and ‘V’ is the vehicle velocity. Figures 8(a)-(d) show the results for displacement for different
car parameters for each algorithm. There is a performance degradation in case of AFWNN-2
for pitch. Figures 8(e)-(i) show the update parameters for consequent and antecedent part
of AFWNN-4. Table 5 shows the performance comparison for road profile-3 for different
parameters. The best results have been obtained in case of AFWNN-4 for seat in this case.
The minimum displacement for seat correspond to the passenger comfort which shows that
AFWNN-4 gives optimal results for passenger comfort for comparatively rough road profiles.
It can be seen that the performance difference between AFWNN-1 and AFWNN-2 is small as
compared to that of AFWNN-1 and AFWNN-3 or AFWNN-4 which shows that incorporation
of Morlet wavelet has improved the performance consistency, significantly.
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(a) Heave (b) Pitch

(c) Roll (d) Seat

(e) Front left tire (f) Front right tire

(g) Rear left tire (h) Rear right tire

(i) Seat

Fig. 7. (a) Heave amplitude (b) Pitch amplitude (c) Roll amplitude (d) Seat amplitude (e)-(i)
Update parameters for antecedent and consequent part of AFWNN-4 for all five controllers
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♯ Parameters Control Algo. Performance Index RMS % Improvement w.r.t.

Disp. Acc. Passive Semi-active

Heave

Passive 34.0666 0.0682 8.254 - -

Semi-active 33.4707 0.06684 8.1815 - -

APID 14.2367 0.0239 5.336 64 53

1 FWNN-1 12.5589 0.02607 5.0117 64 55

FWNN-2 12.8224 0.0262 5.064 65 64

FWNN-3 8.0526 0.0318 4.013 79 73

FWNN-4 5.1264 0.00956 3.202 87 83

Roll

Passive 25.3794 0.0495 7.1243 - -

Semi-active 18.4609 0.0372 6.0762 - -

APID 13.0721 0.0223 5.1131 52 45

2 FWNN-1 0.1497 0.0190 4.5010 65 60

FWNN-2 7.6561 0.1903 3.9085 70 66

FWNN-3 5.0197 0.0430 3.1682 81 78

FWNN-4 3.9790 0.0219 2.8209 88 85

Pitch

Passive 3.8752 0.0216 2.7839 - -

Semi-active 3.1087 0.0192 2.4934 - -

APID 2.1505 0.0073 2.0739 40 44

3 FWNN-1 1.7559 0.0045 1.8760 59 56

FWNN-2 2.0279 0.0060 2.0739 50 45

FWNN-3 1.4126 0.166 1.6808 68 64

FWNN-4 0.7421 0.1403 1.2176 76 73

Seat

Passive 84.3201 0.1233 12.985 - -

Semi-active 60.0559 0.1098 10.9590 - -

APID 14.4606 0.0486 0.0486 65 35

4 FWNN-1 9.3490 0.02607 0.3142 72 45

FWNN-2 6.3870 0.0262 0.0221 73 46

FWNN-3 3.8223 0.0318 0.0278 80 67

FWNN-4 2.2046 0.0102 2.0998 90 92

Table 5. Performance comparison for road profile-3
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(a) Heave (b) Pitch

(c) Roll (d) Seat

(e) Front left tire (f) Front right tire

(g) Rear left tire (h) Rear right tire

(i) Seat

Fig. 8. (a) Heave amplitude (b) Pitch amplitude (c) Roll amplitude (d) Seat amplitude (e)-(i)
Update parameters for antecedent and consequent part of AFWNN-4 for all five controllers
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5. Conclusion

The detailed mathematical modeling of different adaptive softcomputing techniques have
been developed and successfully applied to a full car model. The robustness of the presented
techniques has been proved on the basis of different performance indices. Unlike, the
conventional PID, the proposed algorithms have been compared with each other and APID
controller. The simulation results and their analysis reveal that proposed AFWNNC gives
better ride comfort and vehicle handling as compared to passive or semi-active and APID
control. The performance of the active suspension has been optimized in terms of seat,
heave, pitch and roll displacement and acceleration. The results show that AFWNNC-4 gives
optimal performance for all rotational and translational motions of the vehicle persevering the
passenger comfortability.
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