
RESEARCH ARTICLE

Fuzzy jump wavelet neural network based on

rule induction for dynamic nonlinear system

identification with real data applications

Mohsen Kharazihai IsfahaniID
1, Maryam Zekri1, Hamid Reza MaratebID

2*, Miguel

Angel Mañanas3,4

1 Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran,

2 Biomedical Engineering Department, Engineering Faculty, University of Isfahan, Isfahan, Iran,

3 Biomedical Engineering Research Centre (CREB), Automatic Control Department (ESAII) Universitat

Politècnica de Catalunya-Barcelona Tech (UPC), Barcelona, Spain, 4 Biomedical Research Networking

Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Spain

* h.marateb@eng.ui.ac.ir

Abstract

Aim

Fuzzy wavelet neural network (FWNN) has proven to be a promising strategy in the identifi-

cation of nonlinear systems. The network considers both global and local properties, deals

with imprecision present in sensory data, leading to desired precisions. In this paper, we pro-

posed a new FWNN model nominated “Fuzzy Jump Wavelet Neural Network” (FJWNN) for

identifying dynamic nonlinear-linear systems, especially in practical applications.

Methods

The proposed FJWNN is a fuzzy neural network model of the Takagi-Sugeno-Kang type

whose consequent part of fuzzy rules is a linear combination of input regressors and domi-

nant wavelet neurons as a sub-jump wavelet neural network. Each fuzzy rule can locally

model both linear and nonlinear properties of a system. The linear relationship between the

inputs and the output is learned by neurons with linear activation functions, whereas the

nonlinear relationship is locally modeled by wavelet neurons. Orthogonal least square

(OLS) method and genetic algorithm (GA) are respectively used to purify the wavelets for

each sub-JWNN. In this paper, fuzzy rule induction improves the structure of the proposed

model leading to less fuzzy rules, inputs of each fuzzy rule and model parameters. The

real-world gas furnace and the real electromyographic (EMG) signal modeling problem are

employed in our study. In the same vein, piecewise single variable function approximation,

nonlinear dynamic system modeling, and Mackey–Glass time series prediction, ratify this

method superiority. The proposed FJWNN model is compared with the state-of-the-art mod-

els based on some performance indices such as RMSE, RRSE, Rel ERR%, and VAF%.

Results

The proposed FJWNN model yielded the following results: RRSE (mean±std) of 10e-5±6e-5

for piecewise single-variable function approximation, RMSE (mean±std) of 2.6–4±2.6e-4 for
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the first nonlinear dynamic system modelling, RRSE (mean±std) of 1.59e-3±0.42e-3 for

Mackey–Glass time series prediction, RMSE of 0.3421 for gas furnace modelling and VAF

% (mean±std) of 98.24±0.71 for the EMG modelling of all trial signals, indicating a significant

enhancement over previous methods.

Conclusions

The FJWNN demonstrated promising accuracy and generalization while moderating net-

work complexity. This improvement is due to applying main useful wavelets in combination

with linear regressors and using fuzzy rule induction. Compared to the state-of-the-art mod-

els, the proposed FJWNN yielded better performance and, therefore, can be considered a

novel tool for nonlinear system identification.

Introduction

System identification is a challenging work in the many fields of engineering, which is con-

cerned with achieving the model of dynamic nonlinear or linear systems based on the input

and output observations, especially from experimental data with prior knowledge or inade-

quate information [1]. In recent years, many studies have been conducted using the combina-

tion of computational intelligence methods for nonlinear dynamic system modeling, function

approximation, and time-series prediction [2–9].

Neural networks (NN) and fuzzy systems as computational intelligence methods are suit-

able tools for modeling expert knowledge and dealing with uncertain nonlinear processes or

time series [8]. Incorporating NNs, wavelets, and fuzzy inference systems offer sophisticated

solutions, named fuzzy wavelet neural networks (FWNN) [3–9]. The FWNN employs the

learning ability of neural networks, time-frequency localization property of wavelets, and

approximate reasoning characteristics of fuzzy systems to present a practical model handling

uncertainty and disturbances in real data for complex hybrid nonlinear-linear problems.

Hence, FWNNs require lower training time and have fewer rules and higher efficiency than

fuzzy systems or neural networks [10].

FWNN model is a traditional Takagi-Sugeno-Kang neuro-fuzzy system in which the conse-

quent part of fuzzy rules is replaced by a wavelet neural network. The antecedent part of each

fuzzy rule in the FWNN model divides the input space into local fuzzy regions, and its conse-

quent part corresponds to a sub-wavelet neural network [11].

In [3], the nonlinear autoregressive moving average with exogenous inputs was identified

by a dynamic time-delay fuzzy wavelet neural network. In [12], a fuzzy wavelet neural network

was proposed for nonlinear function approximation. In that network, a sub-wavelet neural

network consisting of single-scaling wavelets was introduced for the consequent part of each

fuzzy rule. The adaptive type of the network was developed in [8] as a solution for controlling

nonlinear affine systems. Moreover, to identify and regulate nonlinear systems, the summation

form of multidimensional wavelet functions constituted the fuzzy rule consequent part of the

FWNN [4]. In [7], FWNN model membership functions in the antecedent part were wavelets

similar to the activation functions in the consequent part of fuzzy rules.

Despite various FWNN model advantageous, they cannot correctly deal with systems with

both linear and nonlinear dynamics. Also, inappropriate regulation of wavelet parameters

reduces the generalizability of the model [13]. Also as another challenge of the FWNN, it is not
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a simple work to extract effective fuzzy rules [14]. The mentioned challenges are significant

problems, especially in practical applications. For example, FWNN application in blood glu-

cose concentration prediction in [15] has not worked so well in comparison with other types

of neural networks. On the other hand, wavelet-based models for dynamical systems lead to a

large number of neurons and time delay lines. This issue increases the complexity of the net-

work [16].

Therefore, methods such as C-means clustering are used to enhance the FWNN structure

[14, 17]. For example, in Fuzzy wavelet polynomial neural networks described in [17], the

dominant selected wavelets were classified, and then each class was placed in the then-part of a

fuzzy rule. In that study, C-means clustering was implemented in the antecedent of the fuzzy

rules instead of Gaussian membership functions. In a similar example in [14], a self-adapted

fuzzy C-means clustering was used to determine the number of fuzzy rules of the FWNN

model. While promoting the structure of fuzzy rules by applying C-means clustering is sensi-

tive to noise, not comprehensive and only affects the number of fuzzy rules.

This paper presents a new FWNN model named as fuzzy jump wavelet neural network

(FJWNN) for identification dynamic nonlinear-linear systems. The proposed FJWNN pro-

vides modeling by using input regressors and their wavelet transform in the consequent part

of each fuzzy rule. Consequently, each fuzzy rule can locally model both linear and nonlinear

properties of a system. The linear relationship between the inputs and the output is learned by

neurons with linear activation functions whereas nonlinear relationship is locally modeled by

wavelet neurons. The OLS and GA methods are respectively applied to extract dominant wave-

lets exerting the most significant effect on the output. In selecting dominant wavelets, it is sup-

posed that wavelet neurons are along with the linear combination of input regressors. Then, to

optimize the proposed FJWNN structure including the number of fuzzy rules, effective inputs

of each fuzzy rule, and model parameters, fuzzy rule induction is used. The performance of

FJWNN in experimental applications is illustrated by applying the real-world Box-Jenkins gas

furnace system and the electromyographic (EMG) signal modeling problem. Also, well-known

benchmarks in function approximation, identification of dynamic nonlinear systems and time

series prediction are studied to identify the ability of the proposed FJWNN model, in compari-

son with the state-of-the-art models. The main features of the FJWNN model proposed in this

work are:

1. In our approach, it is possible to handle real data problems of large dimensions because the

effective procure of choosing wavelets used in OLS method is not very sensitive to the input

dimension. It is worth noting that the role of GA combined with OLS is on selecting the

most influential wavelets. While in most reported neuro-fuzzy models such as [9, 18, 19],

GA is determined to train unknown parameters.

2. The proposed FJWNN utilizes input regressors, and their wavelet transforms in the conse-

quent part of each fuzzy rule. Consequently, wavelets with different scale values combined

with input regressors under fuzzy rules are fully used to capture different global or local

behaviors of dynamic nonlinear-linear systems.

3. By applying fuzzy rule induction [20], it is possible to assign a weight to each fuzzy rule,

which determines the importance of each fuzzy rule. Consequently, when defining a proper

threshold, insignificant rule is removed and it leads to a more straightforward structure.

Also, in comparison with [14, 17], in our research, fuzzy rule induction prunes unnecessary

inputs from each of the fuzzy rules.

This paper is organized as follows. The materials and methods section introduces bench-

marks and presents the FJWNN model. FJWNN modeling results and their interpretation in

Fuzzy jump wavelet neural network using rule induction
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comparison with the state-of-the-art models are provided in the results and discussion section.

The final section provides some concluding remarks.

Materials and methods

Materials

The study materials consist of simulated benchmark examples and experimental problems.

Function approximation, identification of dynamic nonlinear systems and time series prediction

as machine learning problems and Box-Jenkins gas furnace system and the EMG signal model-

ing problem as input-output measurements of real datasets are taken into account in this study

to identify the ability of the proposed FJWNN model, compared to the state-of-the-art models.

Simulated datasets

Multiple simulated benchmarks including a piecewise single variable function, five nonlinear

dynamic plants with various nonlinear structures, and the chaotic Mackey Glass time series

(with different signal to noise ratio (SNR) and various chaotic degrees) are considered to verify

the effectiveness of the proposed FJWNN model. Comparing simulation results in the follow-

ing examples, the conditions are considered similar to their corresponding references.

Example 1—Function approximation. The piecewise single variable function, which has

been studied in the literature frequently [5, 6, 12], is described as follows:

f ðxÞ ¼

� 2:186 x � 12:864 ;

4:246 x ;

10 e� 0:05 x � 0:5sin½ð0:03 x þ 0:7Þ x� ;

� 10 � x < � 2

� 2 � x < 0

0 � x � 10

8
>>><

>>>:

ð1Þ

The training data is composed of 200 input-output pairs uniformly sampled in the region

[–10, 10], as mentioned in [5, 6, 12].

Example 2—Dynamic nonlinear system identification. Illustrating the ability of pro-

posed approach in identification of dynamic nonlinear systems, five systems are considered in

the following. In these examples, multiple different nonlinearity structures are used.

This example (Example 2–1) is a nonlinear dynamic system defined, which has been stud-

ied in the literature frequently [4, 11, 21–23], as follows:

yðkÞ ¼ 0:72 yðk � 1Þ þ 0:025 yðk � 2Þ uðk � 2Þ

þ 0:01 uðk � 3Þ
2
þ 0:2 uðk � 4Þ

ð2Þ

The input training signal is an independent and identically distributed uniform sequence

over [–2,2] for about half of the 900 time steps and a sinusoid given by 1.05sin(πk⁄45) for the

remaining time. Also, the following input signal is used as the test input signal:

uðkÞ ¼

sin ðp k=25Þ ;

þ 1:0 ;

� 1:0 ;

0:3 sin ðp k=25Þ þ 0:1 sin ðp k=32Þ þ

0:6 sin ðp k=10Þ

;

k � 250

250 < k � 500

500 < k � 750

750 < k � 1000

8
>>>>>>>>><

>>>>>>>>>:

ð3Þ
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In the following plants [24–27], different structures including nonlinearity in relative to

input and its delays, output delays or both of them are considered (Examples 2–2, 2–3, 2–4

and 2–5) respectively

yðkÞ ¼ 0:3yðk � 1Þ þ 0:6yðk � 2Þ þ 0:6sinðpuðkÞÞþ

0:3sinð3puðkÞÞ þ 0:1sinð5puðkÞÞ
ð4Þ

yðkÞ ¼
yðk � 1Þyðk � 2Þ½yðk � 1Þ þ 0:5�½yðk � 2Þ � 1�

1þ y2ðk � 1Þ þ y2ðk � 2Þ
þ uðkÞ ð5Þ

yðkÞ ¼
yðk � 1Þ½yðk � 1Þ þ 0:3�

1þ y2ðk � 1Þ
þ

uðk � 1Þ½uðk � 1Þ þ 0:8�½uðk � 1Þ � 0:5�

ð6Þ

yðkÞ ¼
yðk � 1Þyðk � 2Þyðk � 3Þuðk � 2Þ½yðk � 3Þ � 1�

1þ y2ðk � 2Þ þ y2ðk � 3Þ
ð7Þ

For all these four plants, training input signal was taken from a 1000 time step uniformly

distributed random signal over the interval [-1,+1] and test input signal is a 600 time step sinu-

soidal signal as given by

uðkÞ ¼

sin
2pk
250

� �

;

0:8sin
2pk
250

� �

þ 0:2sin
2pk
25

� �

;

0 � k � 250

250 � k � 600

8
>>>><

>>>>:

ð8Þ

Example 3—Predicting chaotic time series. This simulation example is the Mackey-

Glass time series, which is considered as a prediction problem used in [28–33] as a benchmark

example. The Mackey–Glass system was introduced as a white blood cell production model

[34]. This time series is obtained from the following delay differential equation:

d xðtÞ = dt ¼ ½ 0:2 x ðt � tÞ � = ½ 1 þ x10ðt � tÞ � � 0:1 x ðtÞ ð9Þ

with x(0) = 1.2, τ = 17, and x(t) = 0 for t < 0 and regardless of the noise. 1200 input-output

data points were generated while data pairs with t = 124 to 1123 were chosen for system identi-

fication. The first 500 points were used for training, and the remaining data were used for test-

ing. Similar to [28–33], the following input regressors were selected to identify the output x(t).

½xðt � 6Þ xðt � 12Þ xðt � 18Þ xðt � 24Þ� ð10Þ

In following steps, the Mackey-Glass time series for other different values of tau (τ = 13,

τ = 30 and τ = 100) and also corrupted data by uniformly-distributed stationary additive noise

(SNR = 0 dB, SNR = 10 dB and SNR = 20 dB) are considered.

The real dataset

Example 4—Real-world Box-Jenkins gas furnace system. The Box-Jenkins system [35]

is a complicated nonlinear system. The benchmark dataset consists of 296 input-output mea-

surements of a real-world gas furnace process. The measurements as a time series data include

the gas flow rate u(k) and the CO2 concentration y(k). In [1], y (k-1), y(k-2), y(k-3), u(k),

Fuzzy jump wavelet neural network using rule induction
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u(k-1), u(k-2) are chosen as the model inputs. The number of 296 samples is equally divided

into two parts which the first part is used for training, and the second is used for testing.

Example 5—EMG signal modeling problem. In this example, the EMG signal modeling

is considered. This application is a necessary step in the load-sharing problem, a suitable solu-

tion for movement analysis, described in [36–38]. This problem estimates the individual

mechanical contribution of the muscles acting on the same joint based on their electromyogra-

phy (EMG) and the total torque [39]. Data related to the physiological processes during muscle

contraction is provided in surface electromyography (sEMG) envelops. Since the force pro-

duced by a particular muscle cannot be measured, it is usually estimated from sEMG envelops

[40, 41]. The problem is the estimation of the torque exerted on a joint using the EMG signals

of the contracted muscles.

In this study, the dataset provided in [36] was used. The inclusion criteria of the participants

were no sign of the previous neuromuscular disorders. Also, the sampling method was conve-

nience non-random sampling. Five healthy males (age: 21.3 ± 2.8 years; height 174.3 ± 2.6 cm;

body mass 71.0 ± 3.4 kg) performed three series of flexion-extension force ramps. Each series

lasted 25 s, and contrariwise (with n = 30, 50, 70) involved four isometric extension (e) and

flexion (f) ramps from n% eMVC to n% fMVC. Data used in this study was obtained from a

previous study [36], where written informed consent in accordance with the declaration of

Helsinki was confirmed by each participant and the experimental protocol was approved by

the ethical committee of the Politecnico di Torino.

Isometric voluntary flexions (extensions with elbows flexed at 90˚) stored sEMG signals

from the Biceps Brachii (BB), Brachioradialis (BR), and lateral and medial heads of the Triceps

Brachii (TBL and TBM). The signals were acquired from BR, TBL, and TBM with three linear

arrays of 8 electrodes (5-mm inter-electrode intervals). Moreover, an isometric brace, used for

limb fixation, was used for measuring the torque signal. Then, the signal was amplified using

Force Amplifier MISO-II (LISiN, Politecnico di Torino, Italy) and then sampled at 2048 Hz.

Single differential (SD) and double differential (DD) signals were calculated along with

Fiber direction. A non-causal digital low-pass filter (1 Hz, 4th-order Butterworth filter) derived

the envelope of sEMG signals from rectified signals. The spatial mean of the recorded signals

of each muscle was considered the global envelope for the muscle. The mean number of data

samples for each experiment was 796. The data was provided in Figshare (https://figshare.

com/s/6c772ef829faf53240c0).

The proposed fuzzy jump neural network model

In this section, the new fuzzy wavelet neural network model intended for system identification

is introduced. The overall schematic diagram of the proposed FJWNN structure is shown in

Fig 1. The structure is based on sub-jump wavelet neural network (sub-JWNN), fuzzy infer-

ence, and rule induction.

First, we focus on the sub-JWNN and its structure, as depicted in Fig 1(A). The sub-

JWNNs, linear combinations of input regressors and wavelet neurons reside in the consequent

parts of fuzzy rules in the proposed FJWNN model. The wavelet neurons include wavelets

most effective on the output selected from a lattice of wavelets. The lattice of wavelets consists

of different wavelets generated from a mother wavelet whose scale and shift parameters change

at intervals [42]. In this study, the single-scale multi-dimensional Mexican hat wavelet is used

as the mother wavelet:

φðUÞ ¼ ðm � kUk2
Þexpð� kUk2

=2Þ ð11Þ

whereU and m are the input regressor vector and its dimension. The scaled and shifted variant

Fuzzy jump wavelet neural network using rule induction
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of the Mexican hat wavelet was obtained using the following equation:

φai ; BiðUÞ ¼ φð2
� ðai m=2Þð2aiU � BiÞÞ ð12Þ

where a is the scale parameter, B is the shift parameter vector. In the simulations of this paper,

the values of scale parameters of the lattice of wavelets ranged from −4 to 4.

The main effective wavelets have the greatest impact on system modeling and hence are

chosen from the wavelet lattice while in line with input linear regressors. This selection is ini-

tially made through the orthogonal least squares (OLS) method multiple times. Each time, a

different number of main effective wavelets are selected, and the wavelets are combined with

linear input regressors to model the training data. After choosing the best number of wavelets

that minimized the root mean square error (RMSE) of the validation data, the genetic algo-

rithm (GA) is used to search for different main effective wavelets. The best number is selected

by replacing the initially selected wavelets with various wavelets from the wavelet lattice based

on linear regressors, checking the validation RMSE, and choosing the best ones. The initial

Fig 1. (A) The sub-JWNN structure and (B) the proposed FJWNN model structure. In this figure, where u1, u2, . . .,

um are inputs, φ1, φ2, . . ., φn are the selected dominant wavelet neurons,W1,W2, . . .,Wn+m are weights of the sub-

JWNN output layer, JWNN1, JWNN2, . . ., JWNNna are na sub-JWNN made from n dominant selected wavelets, η1,
η2, . . .,ηna are outputs of the na sub-JWNN, v1,v2,. . ., vna are na weights of fuzzy rules, m1; m2; . . . ;mna are the

membership function values of each rule in FJWNN modeling, and PH is the prediction horizon.

https://doi.org/10.1371/journal.pone.0224075.g001
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wavelets in the GA are main effective wavelets selected by OLS in the initial step. In our experi-

ments, other GA parameters are selected as (population size = 1000, Generation steps = 40 and

tolerance = 1e-5).

Having chosen the most effective wavelets, the wavelets are classified with the same scale

parameter. For example, if ith group has ni wavelets with the same scale parameter ai, the out-

put of the sub-JWNN is calculated using the following equation:

ysub-JWNN ¼
Xni

j¼1

wj φai; BiðUÞ þ
Xm

j¼1

wuj
uj ð13Þ

where ai is the scale parameter, Bi = [b1i, b2i, . . ., bmi] is the vector of the shift parameters of

the ith dominant wavelet and U = [u1, u2, . . ., um] is the input regressor vector. Hence, the sub-

JWNN was made of a linear combination of input regressors with wavelets with the same scale

parameter chosen from the selected dominant wavelets.

The proposed FJWNN model structure, which is based on the sub-JWNN, is depicted in

Fig 1(B). The structure is composed of different layers which models the input-output relation.

In the first layer, the inputs u1, u2, . . ., um are entered into the fuzzification layer. The fuzzifica-

tion step includes na fuzzy rules (Rl, l = 1, . . ., na) to produce the final output model.

Rl : IF u1 is Al1 AND u2 is Al2 AND . . . AND um is Alm
THEN Zl ¼ ysub-JWNNl

ð14Þ

where each fuzzy rule corresponds to a single-scale parameter sub-JWNN, na is the number of

rules (equal to the number of unique scale parameters of the selected dominant wavelets), the

AND operator is the multiplication, and Alj are Gaussian fuzzy membership functions calcu-

lated as follows:

Al
j ¼ exp �

1

2

uj � mulj
sulj

 !2 !

; l ¼ 1; 2; . . . ; na ; j ¼ 1; 2; . . . ; nl ð15Þ

wheremulj and sulj are mean and standard deviation of Gaussian fuzzy membership functions.

The lth sub-JWNN hasml inputs, (nl +m) nodes in the hidden layer, and one output (ηl).
In this study, to simplify the proposed FJWNN model and reduce the number of its param-

eters, fuzzy rule induction is applied through the imperialist competitive algorithm (ICA)

[43]. Fuzzy rule induction consists of optimizing the structures of the antecedent part of fuzzy

rules and allocating a weight for each rule to differentiate between fuzzy rules of different

significance.

The antecedent part of a fuzzy rule includes an input membership function per input. Each

input has na membership functions. In this study, the optimization of the structure of the ante-

cedent part of fuzzy rules means firstly doubting the role of all inputs in the antecedent part of

all fuzzy rules, and secondly choosing the optimal membership function among the na possible

membership functions for an effective input in the antecedent part of each fuzzy rule. In the

fuzzy rule induction procedure, for each fuzzy rule, there is an input vector and a correspond-

ing antecedent vector, which specifies how the input vector participates in any of the rules.

The antecedent vector members {cai} can be 0, 1, . . ., na. The zero value implies that the corre-

sponding input does not play any role in that rule antecedent part, and nonzero numbers refer

to the corresponding input membership function.

In (6), to determine the firing strength of the lth fuzzy rule, the geometric mean of the mem-

bership functions of input variables which contribute in each rule antecedent is calculated,

Fuzzy jump wavelet neural network using rule induction
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instead of just multiplying the functions in common neuro-fuzzy models.

ml ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAl
1
Þ
cl
1 � ðAl

2
Þ
cl
2 � . . .� ðAlmÞ

clmdl
q

ð16Þ

where dl ¼
Pm

i ¼ 1
cli and cliðl ¼ 1; 2; . . . ; na ; i ¼ 1; 2; . . . ;mÞ are antecedent assignments

represented as 0 or 1. The antecedent assignments are calculated as follows:

cli ¼ signðcaliÞ ð17Þ

For weight assignment, a continuous weight vi (i = 1, 2, . . ., na) ranging from 0 to 1 is allo-

cated to each of na fuzzy rules. This weight sets the significance of the rule in the proposed

FJWNN model. Then, fuzzy rules with weights of smaller than a threshold are eliminated from

the FJWNN model. Next, the defuzzification step is implemented, and the final output is calcu-

lated using the following equation:

ŷFJWNNðkþ PHÞ ¼
Xr

l¼1

vlmlZl ð18Þ

where PH is the prediction horizon and

ml ¼
mlXn

j¼1
mj

ð19Þ

The unknown parameters of the FJWNN model include the mean and standard deviation

parameters of Gaussian fuzzy membership functions and the weights of fuzzy rules adjusted

using ICA and the weights of sub-JWNNs learned by the LS method [Table 1]. It should be

noted that the scale and shift parameters of the dominant wavelets extracted by the OLS and

the GA methods are fixed by ICA in the training phase. The dominant wavelets are selected

from the wavelet lattice in the initial steps by the OLS and GA methods.

ICA is a computational method that is used to solve optimization problems. This method

does not need the gradient of the cost function in its optimization process [43]. In our experi-

ments, ICA parameters are selected as (Maximum Number of Iterations = 60, Population

Size = 500, Number of Empires/Imperialists = 5, Selection Pressure = 1, Assimilation

Coefficient = 1.5, Revolution Probability = 0.5, Revolution Rate = 0.3, Colonies Mean Cost

Coefficient = 0.2).

The flowchart of the proposed FJWNN modeling steps is presented in Fig 2.

Performance metrics

The performance of the FJWNN model was evaluated in terms of the goodness-of-fit. Since

the results of the multiple examples are compared with those of previous studies based on

different performance metrics, the following performance metrics are first introduced:

RMSE, root relative square error (RRSE), relative error (rel ERR%) and variance accounted for

(VAF%).

Table 1. Different methods used to train the unknown parameters of the proposed FJWNN model.

Unknown variables Training method

1 Means and standard deviations of Gaussian fuzzy membership functions ICA

2 Weights of fuzzy rules ICA

3 Weights of sub-JWNN LS

https://doi.org/10.1371/journal.pone.0224075.t001
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The RMSE between the predicted (y hat) and measured output (y) is calculated using the

following equation:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyi � ŷiÞ
2

s

ð20Þ

In addition to RMSE, three fair performance indexes were used (RRSE, Rel ERR%, and

VAF %). RRSE provides the RMSE of the predictions relative to the standard deviation of the

measured output, and is obtained as follows:

RRSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i¼1

ðyi � ŷiÞ
2

" #

=
Xn

i¼1

ðyi � yÞ
2

" #v
u
u
t ð21Þ

The Rel ERR% provides the RMSE of the predictions relative to the mean square of the

measured output, and is calculated using the following equation:

Rel ERR% ¼ 100 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i¼1

ðyi � ŷiÞ
2

" #

=
Xn

i¼1

ðyiÞ
2

" #v
u
u
t ð22Þ

Fig 2. The proposed FJWNN modeling flowchart.

https://doi.org/10.1371/journal.pone.0224075.g002
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The VAF% provides the RMSE of the predictions relative to the mean square of the mea-

sured output, and is defined as follows:

VAF% ¼ 100 � ð1 � varðy � ŷÞ=varðyÞÞ ð23Þ

Results and discussion

In this section, the effectiveness of the proposed FJWNN model is evaluated using simulated

and experimental examples. In examples 1–3, for each data set, ten independent runs are per-

formed, and the mean and standard deviations (std) values of the accuracy metrics are calcu-

lated for both training and testing data. Correspondingly because of using rule induction

method, for the number of rules (NOR) and parameters (NOP), in each case mean and std val-

ues are reported.

In this research, initial parameters of fuzzy membership functions are chosen, so that mean

initial values are chosen randomly, and standard deviation initial values are chosen as 0.2. Ini-

tial fuzzy rules weights are set 0.7 and all initial antecedent parameters are set 1.

For our evaluation, we used a PC with Intel(R) Core(TM) i7-4700MQ CPU @ (2.40 GHz)

and 8 GB RAM. All the methods were realized by MATLAB 7.12.

Example 1—Function approximation

In this example, the proposed FJWNN model is evaluated on the piecewise single variable

function formulated as (1). Moreover, the comparison between the present results and those

obtained using the state-of-the-art models is provided in Table 2.

According to the results, the proposed FJWNN model showed better performance com-

pared to other models. Fig 3 shows how the cost function value reduced during epochs in the

training procedure.

The original piecewise single variable function and the FJWNN model output for the test

data are depicted in Fig 4.

Example 2—Dynamic nonlinear system identification

For dynamic nonlinear system identification, in the present study, five plants with different

nonlinearity structure described in (2)–(6) are considered. For example, 2–1, in Table 3,

the RMSE value of its FJWNN modeling is presented along with the corresponding values

reported for recent models with the excitation signal as that in the present study. As can be

seen in this table, the RMSE value of the FJWNN model is lower than those of other models.

Table 2. The performance of different approximation methods in Example 1.

Method NOR NOP Epoch RRSE

1 The proposed FJWNN 6 45±5

(mean±std)

100 0.00010±0.00006

(mean±std)

2 T2FWNN [44] 4 24 200 0.01000

3 FWN [45] - - 27 300 0.00228

4 FWNNII [46] 3 - - - - 0.00140

5 T2WNN [5] 4 - - - - 0.00060

6 T2FWNN (multi-input) [44] 4 84 200 0.00052

7 FWNN [47] 4 20 200 0.00044

NOR, Number of rules; NOP, Number of model parameters; RRSE, Root relative square error; FJWNN, Fuzzy jump wavelet neural network; 2FWNN, Type 2 fuzzy

wavelet neural network; FWNNII, Fuzzy wavelet neural network II; T2WNN, Type 2 wavelet neural network; FWNN, Fuzzy wavelet neural network; - - No information

is mentioned in the reference.

https://doi.org/10.1371/journal.pone.0224075.t002
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Fig 3. Cost function trend in ICA training procedure of FJWNN model for Example1 for ten independent runs.

https://doi.org/10.1371/journal.pone.0224075.g003

Fig 4. Comparison between the original piecewise single variable function and its FJWNN model output for the

test data for ten independent runs.

https://doi.org/10.1371/journal.pone.0224075.g004
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Fig 5 shows the dynamic nonlinear system output and the output of the FJWNN model

with three rules. Also, the cost function during the ICA training of the proposed FJWNN

model is presented in Fig 6.

According to Table 3, the proposed FJWNN produced more acceptable results than other

analyzed methods.

In the following, modeling of the other four nonlinear dynamics (examples 2–2 up to 2–5)

are considered as system identification problem. In each case, in the training phase, a uni-

formly distributed random 1000 time steps signal over the interval [–1,1] is applied to the

plant. While in [25], the training procedure continued for 50000 iterations during training

phase. The comparison with other research works is summarized in Table 4.

Table 3. Comparison between the simulation results of different methods, for Example 2–1.

Method NOR NOP Training RMSE Test

RMSE

1 FJWNN 3 41±2

(mean±std)

0.000023±0.000014

(mean±std)

0.000026±0.000026

(mean±std)

2 FWNN [4] 3 27 0.0197 0.0226

3 FWNN [4] 3 43 0.0187 0.0202

4 PRWNN [48] - - 48 - - 0.0102

5 Type-2 FWNN with FCM [44] 4 33 0.0167 0.0187

6 FWNN[11] 2 30 0.0067 0.0163

NOR, Number of rules; NOP, Number of model parameters; RMSE, Root mean square error; FWNN, Fuzzy wavelet neural network; PRWNN, Pipeline recurrent

wavelet neural network; FCM, Fuzzy C-means clustering; - - No information is mentioned in the reference.

https://doi.org/10.1371/journal.pone.0224075.t003

Fig 5. Comparison between the dynamic nonlinear system Example 2–1 and its FJWNN model estimation for the

test data for ten independent runs.

https://doi.org/10.1371/journal.pone.0224075.g005

Fuzzy jump wavelet neural network using rule induction

PLOS ONE | https://doi.org/10.1371/journal.pone.0224075 December 9, 2019 13 / 26

https://doi.org/10.1371/journal.pone.0224075.t003
https://doi.org/10.1371/journal.pone.0224075.g005
https://doi.org/10.1371/journal.pone.0224075


The dynamic nonlinear examples and their FJWNN predictions for the test data are illus-

trated in Figs 7 up to 10.

Simulation results for nonlinear dynamic identification systems described in (2)–(6) show

that the proposed FJWNN leads to acceptable accuracy based on RMSE and RRSE metrics.

Example 3—Predicting chaotic time series

This example dealt with the prediction of the chaotic Mackey-Glass time series to compare

the prediction ability of the proposed FJWNN model with those of previous models in the

presence of different SNR. The Mackey-Glass time series and its FJWNN prediction for the

test data are illustrated in Fig 11, and the prediction error is shown in Fig 12.

Fig 6. The cost function during ICA training of the proposed FJWNN model for Example 2–1 for ten independent runs.

https://doi.org/10.1371/journal.pone.0224075.g006

Table 4. Comparison between the simulation results of different methods for Examples 2–2 up to 2–5.

RRSE of different Methods for test data Example 2–2 Example 2–3 Example 2–4 Example 2–5

1 FJWNN 0.00020±0.00003

(mean±std)

0.0013±0.0010

(mean±std)

0.0114±0.0078

(mean±std)

0.0040±0.0002

(mean±std)

2 PFLARNN [27] 0.0453 0.0238 0.0198 0.0331

3 FLARNN [26] 0.0624 0.0379 0.0436 0.0428

4 MLP [24] 0.0773 0.1178 0.1607 0.0950

RRSE, Root relative square error; FWNN, Fuzzy wavelet neural network; PFLARNN, Pipelined functional link artificial neural network; PLARNN, Functional link

artificial neural network; CFLANN, Chebyshev functional link artificial neural networks; MLP, Multiple layer perceptron;

https://doi.org/10.1371/journal.pone.0224075.t004
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Fig 7. Comparison between the Example 2–2 and its FJWNN model estimation for test data for ten independent

runs.

https://doi.org/10.1371/journal.pone.0224075.g007

Fig 8. Comparison between the Example 2–3 and its FJWNN model estimation for test data for ten independent

runs.

https://doi.org/10.1371/journal.pone.0224075.g008
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Fig 10. Comparison between the Example 2–5 and its FJWNN model estimation for test data for ten independent

runs.

https://doi.org/10.1371/journal.pone.0224075.g010

Fig 9. Comparison between the Example 2–4 and its FJWNN model estimation for test data for ten independent

runs.

https://doi.org/10.1371/journal.pone.0224075.g009
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Fig 11. Comparison between the Mackey-Glass time series and its FJWNN prediction for the test data for ten

independent runs.

https://doi.org/10.1371/journal.pone.0224075.g011

Fig 12. Mean of the test data prediction error of the proposed FJWNN model for Example 3 for ten independent

runs.

https://doi.org/10.1371/journal.pone.0224075.g012
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The results of the comparison between the present model and some recent fuzzy neural

and wavelet models are presented in Table 5. This table shows that the RMSE obtained by the

FJWNN prediction is smaller than those obtained using the state-of-the-art models.

Chaotic degree (τ) from Mackey–Glass series is used as an uncertainty source and variated

to compare the performance of the proposed FJWNN model with state-of-the-art models. Cor-

responding results are reported in Table 6. It shows FJWNN architecture performs better than

ANFIS and IT2FNN when uncertainty degree is increased.

In the next step, the Mackey-Glass time series are corrupted with noise levels of 0dB, 10 dB,

and 20 dB of SNR (signal-to-noise ratio) as a high source of uncertainty. Table 7 shows that

when different levels of noise are added, FJWNN model performs better than ANFIS and

IT2FNN. This is because FJWNN model handles noise better because of choosing dominant

wavelets in the proposed structure optimization procedure.

Table 5. Comparison of different methods results for Example 3.

Method NOR NOP Epoch Training

RMSE

Test

RMSE

1 FJWNN 5±1

(mean±std)

78±13

(mean±std)

100 0.00164±0.00044

(mean±std)

0.00159±0.00042

(mean±std)

2 ASOA-FNN [49] 6 - - - - 0.00910 0.00540

3 IT2FNN-3 [28] 16 - - 50 - - 0.00200

4 AWN (first order) [31] - - 96 4000 0.00183 0.00178

5 Locally liner neural fuzzy [33] - - 47 neurons 47 - - 0.00788�

6 FWNN [47] 3 51 70 - - 0.00300

NOR, Number of rules; NOP, Number of model parameters; RMSE, Root mean square error; FJWNN, Fuzzy jump wavelet neural network; AESN, Adaptive echo state

network; IT2FNN, Interval type-2 fuzzy neural networks; ASOA-FNN, Adaptive second-order algorithm-based fuzzy-neural-network; FWNN, Fuzzy wavelet neural

network; DOS-FCM, Distance orientation similarity-based fuzzy C-means algorithm; - - No information is mentioned in the reference;

� The prediction error in its reference was described in RRSE metric.

https://doi.org/10.1371/journal.pone.0224075.t005

Table 6. The noise-free Mackey–Glass chaotic time-series prediction (τ = 13, 30, 100).

Model RMSE for τ = 13 RMSE for τ = 30 RMSE for τ = 100

1 FJWNN 7.5140e-4±1.419e-4 0.0975±0.0059 0.1564±0.0165

2 ANFIS [30] 2.0196e-4 0.1792 0.4678

3 IT2FNN [28] 2.0014e-4 0.1165 0.2132

FJWNN, Fuzzy jump wavelet neural network; ANFIS, Adaptive neuro-fuzzy inference system; IT2FNN, Interval

type-2 fuzzy neural networks, Root mean square error; τ, Chaotic degree;

https://doi.org/10.1371/journal.pone.0224075.t006

Table 7. Corrupted by uniformly-distributed stationary additive noise Mackey–Glass chaotic time series prediction (τ = 17).

Model RMSE forSNR = 0 RMSE for SNR = 10 RMSE for SNR = 20

1 FJWNN 0.0904 ±0.0109 0.0415±0.0007 0.0153±0.0006

2 ANFIS [30] 0.2506 0.1031 0.3333

3 IT2FNN [28] 0.2125 0.0722 0.0143

τ, Chaotic degree; SNR, Signal noise ratio; FJWNN, Fuzzy jump wavelet neural network; ANFIS, Adaptive neuro-fuzzy inference system; IT2FNN, Interval type-2 fuzzy

neural networks, Root mean square error;

https://doi.org/10.1371/journal.pone.0224075.t007
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Furthermore, the proposed FJWNN consists of fuzzy rules with different weights as their

importance optimized in the training procedure to make fuzzy rule induction plausible. Dur-

ing the training procedure, the fuzzy rules with weights of smaller than a given threshold

(0.05) were eliminated from the FJWNN model by setting their weights to zero, as for one of

FJWNN models shown in Table 8.

Example 4—Real-world Box-Jenkins gas furnace system

In this real application, the proposed FJWNN model is evaluated on the gas furnace bench-

mark dataset. Moreover, the comparison between the present results and those obtained using

the state-of-the-art models is provided in Table 9.

The gas furnace output and its FJWNN prediction for the test data are illustrated in Fig 13.

To compare these results with existing models that have been applied to the same process, the

root mean square error (RMSE) is used. The comparison results in Table 9 indicate that the

FJWNN model can achieve higher accuracies.

Example 5—EMG signal modeling problem

In this example, the proposed FJWNN model was used to model EMG torques using experi-

mental data. Fig 14. presents recorded and estimated torques and sEMG envelopes for the

third participant. Considering this participant, an epoch of 47 sec was used for training, and

the remaining time was used for testing the proposed FJWNN. As shown in Fig 14, the esti-

mated torque signal followed the measured signal very well (Rel Err% = 7.13).

Table 10 provides the results of Rel Err% on SD records for 5 participants during elbow

flexion-extension isometric ramps at 30%, 50%, and 70% MVC in comparison with the results

obtained by [36].

Table 11, on the other hand, presents the comparison between the VAF% results of the

present study (in terms of mean±std) and those obtained in [38, 52].

Furthermore, the cross-checking results of the FJWNN model torque estimation on SD and

DD records for elbow flexion-extension at 30% and 70% MVCs are presented in Table 12. The

cross-checking test included training the proposed model by records for elbow flexion-exten-

sion at 50% MVC, and testing the model by the records for elbow flexion-extension at 30%

and 70% MVCs.

Table 8. Different weights of the FJWNN model for Example 3.

Rule number 1 2 3 4 5

Fuzzy rule weights 0.0127 0.0276 0.0210 0.7790 0.7445

Modified weights 0 0 0 0.7790 0.7445

https://doi.org/10.1371/journal.pone.0224075.t008

Table 9. Comparison of different methods results for Example 4.

Method NOR NOP Epoch Training

RMSE

Test

RMSE

1 FJWNN 2 25 100 0.1581 0.3421

2 ANFIS-FCM [25] 2 - - - - 0.1600 0.4900

3 FNN-GSA [50] 3 - - - - 0.1225 0.3834

4 FNN-APTGA [51] 2 - - - - 0.1400 0.3700

5 FBLS [1] 4 - - - - 0.1618 0.3479

https://doi.org/10.1371/journal.pone.0224075.t009
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An overview of the number of cross-modeling parameters is presented in Table 13. For

proposed FJWNN model, the number of fuzzy rules, number of antecedent parameters and

total number of parameters with and without using fuzzy rule induction are compared. As

shown, the effect of using fuzzy rule induction in reducing the number of model parameters is

observed.

Fuzzy rule induction is also used to organize the antecedent parts of the fuzzy rules, reduc-

ing the number of parameters. For example, in Table 13, less unknown parameters are to be

determined for FJWNN model for the antecedent parts of fuzzy rules. In the same case, if the

generation of the Gaussian membership functions for a TSK neuro-fuzzy model with four

input, one output, and an equal number of fuzzy rules is intended, then the number of model

parameters is expected to be more as [38]. So the number of parameters is significantly

decreased for the present FJWNN model proposed for EMG cross-modeling.

The proposed fuzzy model resulted in %VAF (mean ± std) = 98.24 ± 0.71 for all trial signals.

The best performance of the model in [38] yielded the %VAF (mean ± std) of 96.40 ± 3.38.

Thus, the proposed FJWNN model improved torque modeling results. Overall, there is an

improvement in the reconstructed torque performance criterion of the proposed FJWNN,

compared to those of the models in [36, 38, 52].

One of the limitations of the proposed FJWNN method is its running time during the learn-

ing procedure. For example, the average running time of its Matlab implementation for the

examples 1, 2–1, 2–2, 2–3, 2–4, 2–5, 3, 4, and experimental EMG signals were 27±10, 77±12, 3

±4, 23±1, 23±10, 1±1, 44±14, 4±1, and 11±5 (in minutes). This implementation, in its current

form, is not thus suitable for online applications. The Vectorization packages with C++ imple-

mentation could be used to reduce the running time, which is the focus of our future work.

The running time of the trained system on the test set is, however, acceptable. For example,

the running time of analyzing the test set for the first example was 0.02±0.23 (in sec).

Fig 13. Comparison between the gas furnace output and its FJWNN prediction for the test data.

https://doi.org/10.1371/journal.pone.0224075.g013
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Now, a comparison of the performance of the proposed FJWNN with those of the state-

of-the-art models was presented, evidencing the superior performance of the proposed

model. For nonlinear systems, using models with fewer parameters lead to missing essential

relationships in the data, while using models with many parameters makes parameter esti-

mation difficult. However, in most cases, many model terms are redundant, and only a few

significant terms with a specific accuracy are necessary. In the present study, the OLS and

Fig 14. 50% MVC elbow flexion-extension isometric ramps of the third participant. (A) recorded torque (solid blue) and

estimated torque (dotted red) for each muscle (upper), and (B) the corresponding SD sEMG envelopes (bottom). The two sections of

sEMG envelopes and recorded torque separated by thick black lines were used to train and test correspondingly.

https://doi.org/10.1371/journal.pone.0224075.g014

Table 10. The rel ERR% results of FJWNN model estimation on SD records obtained through elbow flexion-extension isometric ramps (test dataset) for five partic-

ipants at 30%, 50%, and 70% maximum voluntary contractions (MVC).

Rel Err % S1 S2 S3 S4 S5

30% Ref [36] 14.60 10.60 13.90 - - 22.20

FJWNN 14.06 8.98 12.17 18.99

50% Ref [36] 12.30 10.30 11.10 11.40 24.00

FJWNN 11.70 10.97 10.25 12.27 15.80

70% Ref [36] 14.70 - - 16.40 - - 11.30

FJWNN 12.65 10.84 12.29

Rel Err, Relative error; - - There were missing data in the dataset.

https://doi.org/10.1371/journal.pone.0224075.t010
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GA methods were used to select dominant wavelets which described nonlinear behavior,

delivering a restricted number of wavelets in the sub-JWNN model. Accordingly, the num-

ber of wavelet classes decreased, and the structure of the proposed FJWNN model became

noticeably simpler.

Table 11. The VAF% (mean±std) results of FJWNN modeling on SD records obtained through elbow flexion-extension isometric ramps (test dataset) for all partici-

pants at 30%, 50%, and 70% MVCs.

MVC percentage VAF%

mean±std minimum Maximum

30% Nonlinear dynamic model [52] 80.86±13.12 65.92 92.82

Neuro-fuzzy model [38] 95.58±2.85 91.38 97.55

FJWNN 97.73±1.33 96.20 99.18

50% Nonlinear dynamic model [52] 91.06±6.14 83.44 96.30

Neuro-fuzzy model [38] 98.54±0.78 97.57 99.19

FJWNN 98.39±0.59 97.44 98.92

70% Nonlinear dynamic model [52] 89.74±5.16 86.08 96.4

Neuro-fuzzy model [38] 94.64±5.37 88.50 98.48

FJWNN 98.61±0.22 98.41 98.83

VAF, Variance accounted for; MVC, Maximum voluntary contractions; std, standard deviation; FJWNN, Fuzzy jump wavelet neural network; - - There were missing

data in the dataset.

https://doi.org/10.1371/journal.pone.0224075.t011

Table 12. Cross-checking Rel Err% results of FJWNN model estimation in comparison with the results of [36] on SD and DD records obtained through elbow flex-

ion-extension isometric ramps for five participants at 50% MVC (for model training) and 30% and 70% MVCs (for model testing).

Test Rel Err% S1 S2 S3 S5 mean±std

SD FJWNN 30% MVC 18.03 10.52 18.02 25.98 13.21±3.39

70% MVC 16.41 - - 17.80 17.70

[36] 30% MVC 23.80 13.70 21.90 35.10 25.30±6.70

70% MVC 28.10 - - 26.10 28.40

DD FJWNN 30% MVC 17.45 11.87 18.45 36.26 17.49±7.56

70% MVC 22.40 - - 24.54 17.66

[36] 30% MVC 29.70 16.40 15.20 42.20 28.70±10.00

70% MVC 37.00 - - 30.90 29.50

Rel Err, Variance accounted for; MVC, Maximum voluntary contractions; std, standard deviation; SD, single differential signal; DD, double differential signal; FJWNN,

Fuzzy jump wavelet neural network; - - There were missing data in the dataset.

https://doi.org/10.1371/journal.pone.0224075.t012

Table 13. The number of rules (NOR), the number of fuzzy rule antecedent parameters (NOA), and the number of parameters (NOP) for FJWNN modeling on SD

records in the cross-checking.

Methods S1 S2 S3 S5

NOR NOA NOP NOR NOA NOP NOR NOA NOP NOR NOA NOP

FJWNN with fuzzy rule induction 5 26 41 6 30 46 5 26 41 3 14 27

FJWNN without fuzzy rule induction 5 40 55 6 48 64 5 40 55 3 24 37

TSK neuro-fuzzy model with four input, one output� 5 40 65 6 48 78 5 40 65 3 24 39

NOR, Number of rules; NOA, number of fuzzy antecedent parameters; NOP, number of parameters;

�, The proposed fuzzy linear TSK system has four inputs and one output and all of the input fuzzy membership functions are Gaussian; TSK, Takagi-Sugeno-Kang.

https://doi.org/10.1371/journal.pone.0224075.t013
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Moreover, choosing dominant wavelets using the OLS and GA methods can reduce the ini-

tial values of the cost function (See Figs 3 and 6). In the presented approach, fuzzy rule induc-

tion removes ineffective parameters or rules to simplify the proposed FJWNN model. Based

on the overall analysis using the simulation and real data, it can be concluded that the pro-

posed FJWNN model has high precision and less complexity, compared to the state-of-the-art

models.

According to the performance of the FJWNN model for the real data in examples 4 and 5,

the proposed FJWNN model employs the learning ability of neural networks, time-frequency

localization property of wavelets and approximate reasoning characteristics of fuzzy systems to

present the effective technique to deal with uncertainty and disturbances in real data for com-

plex hybrid nonlinear-linear problems.

Conclusions

In this paper, FJWNN combined with rule induction as a new wavelet-based identification

model was proposed for the identification of real data dynamic nonlinear-linear systems.

In the proposed approach, OLS and GA methods are respectively used to choose dominant

wavelets along with the linear combination of input regressors. Fuzzy rules including wavelets

with various scale parameters (different resolutions) can capture different behaviors (global

or local) of the systems. Then, by applying fuzzy rule induction and assigning a weight to each

fuzzy rule, which determines the importance of each fuzzy rule, insignificant rule is removed.

Also fuzzy rule induction prunes unnecessary inputs from each of fuzzy rules. The obtained

results of simulation and experimental examples demonstrate that the proposed model is quite

useful in dynamic nonlinear system identification. Overall, the proposed FJWNN model can

be considered a promising tool for EMG-Torque modeling. Possible future work will be the

utilization of the FJWNN model in on-line identification of dynamic nonlinear systems with

real data applications.
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