75 research outputs found

    Adaptive differential amplitude pulse-position modulation technique (DAPPM) using fuzzy logic for optical wireless communication channels

    Get PDF
    In the past few years, people have become increasingly demanding for high transmission rate, using high-speed data transfer rate, the number of user increased every year, therefore the high-speed optical wireless communication link have become more popular. Optical wireless communication has the potential for extremely high data rates of up to tens of Gigabits per second (Gb/s). An optical wireless channel is usually a non-directed link which can be categorized as either line-of-sight (LOS) or diffuses. Modulation techniques have attracted increasing attention in optical wireless communication, therefore in this project; a hybrid modulation technique named Differential Amplitude Pulse-Position Modulation (DAPPM) is proposed to improve the channel immunity by utilizing optimized modulation to channel. The average symbol length, unit transmission rate, channel capacity, peak-to-average power ratio (PAPR), transmission capacity, bandwidth requirement and power requirement of the DAPPM were determined and compared with other modulation schemes such as On-Off Key (OOK), Pulse-Amplitude Modulation (PAM), Pulse-Position Modulation (PPM), Differential Pulse-Position Modulation (DPPM), and Multilevel Digital Pulse Interval Modulation (MDPIM). Simulation result shows that DAPPM gives better bandwidth and power efficiency depending on the number of amplitude level (A) and the maximum length (L) of a symbol. In addition, the fuzzy logic module is developed to assist the adaptation process of differential amplitude pulse-position modulation. Mamdani fuzzy logic method is used in which the decisions made by the system will be approaching to what would be decided by the user in the real world

    A genetic algorithm based remaining lifetime prediction for a VLIW processor employing path delay and IDDX testing

    Get PDF

    Low-power, 10-Gbps 1.5-Vpp differential CMOS driver for a silicon electro-optic ring modulator

    Get PDF
    We present a novel driver circuit enabling electro-optic modulation with high extinction ratio from a co-designed silicon ring modulator. The driver circuit provides an asymmetric differential output at 10Gbps with a voltage swing up to 1.5V(pp) from a single 1.0V supply, maximizing the resonance-wavelength shift of depletion-type ring modulators while avoiding carrier injection. A test chip containing 4 reconfigurable driver circuits was fabricated in 40nm CMOS technology. The measured energy consumption for driving a 100fF capacitive load at 10Gbps was as low as 125fJ/bit and 220fJ/bit at 1V(pp) and 1.5V(pp) respectively. After flip-chip integration with ring modulators on a silicon-photonics chip, the power consumption was measured to be 210fJ/bit and 350fJ/bit respectively

    Low Cost NBTI Degradation Detection and Masking Approaches

    Get PDF
    Performance degradation of integrated circuits due to aging effects, such as Negative Bias Temperature Instability (NBTI), is becoming a great concern for current and future CMOS technology. In this paper, we propose two monitoring and masking approaches that detect late transitions due to NBTI degradation in the combinational part of critical data paths and guarantee the correctness of the provided output data by adapting the clock frequency. Compared to recently proposed alternative solutions, one of our approaches (denoted as Low Area and Power (LAP) approach) requires lower area overhead and lower, or comparable, power consumption, while exhibiting the same impact on system performance, while the other proposed approach (denoted as High Performance (HP) approach) allows us to reduce the impact on system performance, at the cost of some increase in area and power consumption

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Integrated circuit outlier identification by multiple parameter correlation

    Get PDF
    Semiconductor manufacturers must ensure that chips conform to their specifications before they are shipped to customers. This is achieved by testing various parameters of a chip to determine whether it is defective or not. Separating defective chips from fault-free ones is relatively straightforward for functional or other Boolean tests that produce a go/no-go type of result. However, making this distinction is extremely challenging for parametric tests. Owing to continuous distributions of parameters, any pass/fail threshold results in yield loss and/or test escapes. The continuous advances in process technology, increased process variations and inaccurate fault models all make this even worse. The pass/fail thresholds for such tests are usually set using prior experience or by a combination of visual inspection and engineering judgment. Many chips have parameters that exceed certain thresholds but pass Boolean tests. Owing to the imperfect nature of tests, to determine whether these chips (called "outliers") are indeed defective is nontrivial. To avoid wasted investment in packaging or further testing it is important to screen defective chips early in a test flow. Moreover, if seemingly strange behavior of outlier chips can be explained with the help of certain process parameters or by correlating additional test data, such chips can be retained in the test flow before they are proved to be fatally flawed. In this research, we investigate several methods to identify true outliers (defective chips, or chips that lead to functional failure) from apparent outliers (seemingly defective, but fault-free chips). The outlier identification methods in this research primarily rely on wafer-level spatial correlation, but also use additional test parameters. These methods are evaluated and validated using industrial test data. The potential of these methods to reduce burn-in is discussed

    Test and Testability of Asynchronous Circuits

    Full text link
    The ever-increasing transistor shrinkage and higher clock frequencies are causing serious clock distribution, power management, and reliability issues. Asynchronous design is predicted to have a significant role in tackling these challenges because of its distributed control mechanism and on-demand, rather than continuous, switching activity. Null Convention Logic (NCL) is a robust and low-power asynchronous paradigm that introduces new challenges to test and testability algorithms because 1) the lack of deterministic timing in NCL complicates the management of test timing, 2) all NCL gates are state-holding and even simple combinational circuits show sequential behaviour, and 3) stuck-at faults on gate internal feedback (GIF) of NCL gates do not always cause an incorrect output and therefore are undetectable by automatic test pattern generation (ATPG) algorithms. Existing test methods for NCL use clocked hardware to control the timing of test. Such test hardware could introduce metastability issues into otherwise highly robust NCL devices. Also, existing test techniques for NCL handle the high-statefulness of NCL circuits by excessive incorporation of test hardware which imposes additional area, propagation delay and power consumption. This work, first, proposes a clockless self-timed ATPG that detects all faults on the gate inputs and a share of the GIF faults with no added design for test (DFT). Then, the efficacy of quiescent current (IDDQ) test for detecting GIF faults undetectable by a DFT-less ATPG is investigated. Finally, asynchronous test hardware, including test points, a scan cell, and an interleaved scan architecture, is proposed for NCL-based circuits. To the extent of our knowledge, this is the first work that develops clockless, self-timed test techniques for NCL while minimising the need for DFT, and also the first work conducted on IDDQ test of NCL. The proposed methods are applied to multiple NCL circuits with up to 2,633 NCL gates (10,000 CMOS Boolean gates), in 180 and 45 nm technologies and show average fault coverage of 88.98% for ATPG alone, 98.52% including IDDQ test, and 99.28% when incorporating test hardware. Given that this fault coverage includes detection of GIF faults, our work has 13% higher fault coverage than previous work. Also, because our proposed clockless test hardware eliminates the need for double-latching, it reduces the average area and delay overhead of previous studies by 32% and 50%, respectively
    • …
    corecore