
 Eindhoven University of Technology

MASTER

Definition of a description language for IDDQ monitors

Waayers, T.F.

Award date:
1995

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/8abf7c41-96b3-4b8b-86ec-b5bfc999dd79

Definition of a description language
for I DDQ monitors

by

T.F. Waayers

June 1995

£B S}J

supervisor:
mentor:
advisor:

Prof. ir. M.T.M. Segers
M. Sc. K. Baker
Ir. F.G.M. Bouwman

© Philips Electronics N. V. 1995
All rights reserved. Reproduction in whole or in part is

prohibited without written consent of the copyright owner.

Definition of a description language
for I DDQ monitors

Abstract

This report describes the development of a language based on VHDL intended to simplify the
use of IDDQ instrumentation in production testing. This language called 'Monitor Description
Fonnat' or MDF, is part of the development by QTAG (Quality Test Action Group) of an in­
frastructure for quiescent current testing. The MDF can be used with commercial supported
QTAG monitors (lDDQ measurement equipment) to create a 'Plug & Play' environment for
IDDQ testing. Prior to the definition of MDF, first all known available IDDQ monitors and
QTAG proposals are discussed since developments in monitor design have a great deal of im­
pact on the semantics and syntax of MDP. Furthennore, MDF integration in the Philips Test­
development flow is discussed. This integration reveals some interesting shortcomings of to­
days Test-development tools with respect to I DDQ testing.

Keywords

CMOS testing, quiescent current, IDDQ monitoring, Automatic Test Equipment, QTAG

Preface

This work was perfonned in partial fulfilment of the requirements to become Master of Elec­
trical Engineering at the Eindhoven University of Technology. It was perfonned in the group
'VLSI Design Automation and Test' at Philips Research Laboratories during the period from
October 1994 up to June 1995.

Acknowledgements

I would like to thank a number of people in supporting me in this project. My mentor Keith
Baker for his excellent guidance and advice. Frank Bouwman for his advice on software de­
velopment, his punctual report reviewing and his overall support. Math Verstraelen for his
support on testing in general. Furthennore, I would like to thank my supervisor Prof. ir. Rene
Segers and Eric van Utteren for giving me the opportunity to carry out this project at Philips
Research. I would also like to thank my roommates and fellow students who made my stay at
the Philips Research Laboratories very pleasant.

Note

Section 2.2 of this report has been taken from [Bouwman, 95].
Section 6.8 of this report has been taken from [Baker, 95].

Philips Research Laboratories,

Eindhoven, June 1995

ii

Contents
1 Introduction 1
2 IC Design and Testing 3

2.1 Introduction 3
2.2 The IC development flow 3
2.3 Structural test 6

3 IDDQ testing 9
3.1 Introduction 9
3.2 Basic concept of IDDQ testing 9
3.3 Advantages of current testing 9
3.4 Limitations of current testing 12

4 Automatic Test Equipment 15
4.1 Introduction 15
4.2 What ATE is 15
4.3 Testing overview 17
4.4 Functional testing 18

5 Quality Test Action Group (QTAG) 23
5.1 Introduction 23
5.2 Goals of QTAG 23
5.3 QTAG monitor classes 25
5.4 QTAG monitor types 27
5.5 QTAG monitor pins 28
5.6 Monitor Description Format (MDF) requirements 28

6 IDDQ monitors 31
6.1 Introduction 31
6.2 Monitor principles 32
6.3 QuiC-Mon v3.2 33
6.4 QuiC-Mon v5.0 35
6.5 OCIMU 37
6.6 IDUNA-2 39
6.7 LTX IDDQ monitor 41
6.8 The Fully Digital Interface 43

7 MDF definition 47
7.1 Introduction 47
7.2 QTAG pin classes 47
7.3 The entity description 49

8 Using MDF in Philips CAD-Test flow 57
8.1 Introduction 57
8.2 Computer Aided Test (CAT) system 57
8.3 TASS 58
8.4 Philips IDDQ Test-development flow 59
8.5 MDF2TASS 62
8.6 MDF2TASS example 65

9 Conclusions 71
10 Future development 73

iii

Appendix A BNF conventions 75
Appendix B MDF entity description in BNF 77
Appendix C MDF standard package 81
Appendix D Lexical elements of MDF (and BSDL) 83
Appendix E Files MDF2TASS example 85

E.l PAT file: 'testdut.pat' 85
E.2 CTR file: 'testdut.tass' 85
E.3 A'fF file: 'testdut.atf' 86
E.4 CTR file: 'mdf2tass.tass' 86
E.5 TDL file: 'mdf2tass.tdl' 87
E.6 A'fF file: 'mdf2tass.atf' 88

Appendix F Examples MDF 91
F.l MDF: IDUNA-2 91
F.2 MDF: QUICKMON V5.0a 92
F.3 MDF: LlX_IDDQ 93

iv

1 Introduction

Testing of Integrated Circuits (ICs) has become a major issue in research and development of
Very Large Scale Integration (VLSI). ICs have been growing continuously in number of tran­
sistors and complexity. This has caused an increase in the probability of design errors. To
prevent design errors, the design must be checked at several stages of the design. It is not
possible to prevent manufacturing faults. Because the market asks for reliable, zero defect
ICs every single IC produced must pass several tests. One of these tests is the structural test.
The idea of structural test is that all structures, created on the silicon surface, must be tested
for correctness against known models for failing the process. The problem of structural test­
ing of ICs is complicated by the enormous amount of possible faults, and the limited accessi­
bility of parts of the ICs via the IC pins.

To detect as much faults as possible during structural test, it is generally believed that already
during the design phase of the IC, testability has to be taken into account. This is referred to
as Design for Testability (OfT). In OfT, methods are developed which give greater controlla­

bility and observability to VLSI circuits under test. In case of combinatorial logic, this can be
achieved by automatic test pattern generation tools, using algorithms based upon fault mod­
els. The complexity of getting high controllability and observability within sequential cir­
cuits demands for extra precautions during the design trajectory of an IC. The sequential
controllability and observability is achieved by memory elements which can be used in two
modes, called a scannable memory element. In normal mode, it acts as a conventional memo­
ry element. In test mode, the input of the memory element is directly under control of the
vector generation by test software. All scannable memory elements in test mode form a shift
register, called a scan path, which can be filled with stimuli data. After a period in normal
mode, in which the device acts according its specification, the contents of all scanable mem­
ory elements can be shifted out in test mode.

When the scan test OfT technique is used during the design phase the testability of the design
improves drastically, resulting in high fault coverage within relative short test times. This is
very important because structural test should be performed on every individual IC produced.

While testing, stimuli are applied to the IC bringing it into a predefined state. After a 'nor­
mal' period, resulting values are captured and compared with known responses. rcs failing
this comparison intend to be defect. The generation of test stimuli and related expected data
is done according to fault models, for example the stuck-at model in which every fault on the
input or output of a gate is assumed to behave as if it is shorted to fixed logic values. In the
case of CMOS, many defects do not cause stuck-at behaviour. Other models like 'bridging
and open fault model' are needed to generate tests with high fault coverage.

Conventional testing is done by so called voltage testing. During this type of testing respons­
es of the device under test (OUT) are captured and compared with expected data, as men­
tioned above. To achieve higher fault coverage with CMOS VLSI ICs, another test method
called current testing is used. This method is based on the fact that CMOS rcs cause very low
power supply current during the logic quiescent period. This current, IDDQ , can be nanoam-

© Philips Electronics N.V. 1

peres for VLSI circuits and much less for smaller scale ICs. In CMOS ICs, stuck-at faults and
most other types of defects cause state-dependent elevated IDDQ. Consequently, IDDQ meas­

urement is a very efficient test technique for CMOS ICs. To achieve highly reliable ICs, IDDQ
should be measured at each test vector in a test set that achieves 100% node toggling [Ra­

jsuman, 95]. Despite its effectiveness, CMOS IC test methods at most companies usually
measure IDDQ at only a few test vectors or not at all. This is partially due to the lack of com­

mercial instrumentation for high-speed IDDQ measurements (current monitors) and partially
due to the difficult technique: "Hearing a pin fall after a cannon shot !".

At the present time, development of a current monitor is an open problem. A number of com­

panies are developing current monitors independently to match with their existing test equip­
ment and production lines. Considering the present difficulties in current-monitoring systems

and the mismatch in various equipment, the IEEE technical committee on test technology has
initiated the development of a standard for current monitors. The proposed name for this

standard is QTAG (Quality Test Action Group). One issue of this standard is the so called
'Monitor Description Format' (MDF), a description language that uses the syntax of VHDL,

IEEE Std 1076, in the way BSDL (Boundary Scan Description Language) does [Parker, 90]
to describe the functionality of the IDDQ monitoring hardware. MDF is needed to allow the

monitor to be described in a machine and human readable format, so that different monitors
could be used with different test systems, and would allow the test engineer to efficiently and

effectively utilize the monitor in the application.

This report deals with the definition of the MDF and the use of MDF in the IDDQ test devel­
opment flow to create a 'Plug&Play' environment for IDDQ monitors. To show the possibili­

ties of MDF, a compiler has been written using LEX and YACC. This compiler has been
integrated in the Philips test-development flow by the developed MDF2TASS software, using

the possibilities of the Philips test assembler software TASS [CAT team, 94].

In the first three chapters of this report an introduction to testing and testing hardware is giv­
en for those who are not familiar with testing. In the next chapter QTAG and its proposals are

introduced. After these introductory chapters a start for the development of the 'Plug&Play'
environment is made in chapter 6 by mapping the currently available monitors. In chapter 7

the definition of MDF is described. The following chapters describe the IDDQ test-develop­

ment flow and the development of the MDF2TASS software used in the Philips test-develop­

ment flow. Also results of an example are given. In the last chapters conclusions are drawn

from the MDF2TASS results and subjects for further research are mentioned.

2 © Philips Electronics N.V.

2 Ie Design and Testing

2.1 Introduction

Before an IC can be delivered to a customer, its correctness must be determined. This implies
that each individual IC must operate conform to its specifications. Since the design of ICs is
done in a number of phases, it must be checked that no errors are introduced (an error mean­
ing a difference between implementation and specification). After manufacturing the IC must
be tested to assure its functionality conform its specification. The term defect is used to mean
those physical occurrences which give rise to some circuit malfunction. A fault is the logical
manifestation of a defect. In this chapter we will first discuss the IC design process in more
detail. Secondly, we will take a look at the IC testing process, which is closely related to the
design process and verification as opposed to production testing will be explained.

2.2 The Ie development flow

The implementation of a concept at system level into one or more ICs consists of many small
steps [Claassen, 89][Bruls, 94]. One way of representing this development is illustrated in
Figure 2-1. The figure shows the flow from high-level to low-level specifications, the manu­
facturing, and the various levels of testing.

2.2.1 Design

Developments start with a concept for a system. Once the partitioning of the system in the
various ICs is done, a requirements specification can be written for each IC. This is often not
a formal description using a specific hardware description or programming language, but a
plain textual description of the high-level behaviour of the complete IC.

The second step is to translate this requirements specification into a formal functional de­

scription. On this level, the functionality of the complete IC is described on a level of, for ex­
ample, adders, multipliers, and registers. For this purpose, formal hardware description
languages, such as VHDL, or other programming languages (Pascal, C) are used. The func­
tional specification can be simulated to verify the correctness. However, the step between re­
quirement and functional specification is a weak point in the flow and remains a source of
concern because formal verification of this step is impossible due to a lacking formal require­
ments specification.

The formal description at the functional level can be used to generate the structural specifica­
tion (gate-level description) and finally a layout. It is common practice to apply commercial­
ly available synthesis tools for these last translation steps. Verification of the correctness of
these steps is possible as a result of the formal approach.

© Philips Electronics N.V. 3

2.2.2 Manufacturing

The resulting layout specification has to be implemented on silicon. For this purpose each
layer of the layout is handled separately and several processing steps are required for each of
them. It is important to notice here that, due to the complexity and sensitivity to disturbances
of various processing steps, it is possible for an IC to contain a defect causing it to fail one or
more specifications [Maly, 88a]. Depending on the size of the chip and the stage of develop­
ment of the IC as well as the process, the percentage of fault-free processed VLSI circuits,
Le. the production yield, can virtually have any value. For complex innovative ICs and im­
mature processes it may be low, 10% or even less, while for mass-produced ICs in a mature
process the production yield may be as high as 95% or even more .

Test
trajectory

••••••••••

••••••••••

••••••••••

Design
trajectory

Manufacturing

Figure 2-1: The Ie design and test flow

4 © Philips Electronics N.V.

2.2.3 Testing

To assure that the manufactured ICs perform the specified tasks, various tests are applied.
Depending on the product development stage (e.g. prototype or mass-production), this test
can be very extensive or just minimal to check the correctness of the production process. The
three types of tests which can be distinguished are:

• Validation test: This test checks whether the device actually implements the specified
functionality and can be applied in the complete system. Once the device has been
shown to be functionally correct, it does not need to be validated again. The horizontal
arrows in Figure 2-1 represent the validation processes.

• Characterization test: This test checks under which conditions the IC is able to perform
according to the requirements. It includes checks on process variability, temperature
variations, and power supply changes. This test is performed on a small sample size
and only needs to be carried out once for a design and a given process.

• Production test: This test checks that no abnormal processing conditions or local distur­
bances occurred during the manufacturing process, causing a particular IC to malfunc­
tion. Because such a defect can occur on any device, each IC has to be tested for its
correctness with respect to the processing.

Validation and characterization tests both are part of what is called verification. Production
tests are not part of the verification trajectory!

Each of these three tests can be performed at various levels of abstraction, which are indicat­
ed in Figure 2-1. At the lowest level of abstraction, one should test whether the layout as
specified by the designer is actually realized on silicon, bearing in mind certain process mar­
gins. Despite the direct relationship between a layout test and the detection of defects, this
level of testing is only starting to be applied because of the relatively computation-intensive
technique of fault list generation and test vector generation.

For production testing, the structural level is used in most situations. Because of the available
fault models, which are an abstraction of the electrical impact of the defects on the corre­
sponding level of design description, and corresponding efficient algorithms for test vector
generation and evaluation, structural tests offer an excellent opportunity to derive a metric
for the effectiveness of a test set (fault coverage). For the application of these structural tests,
the scan technique often is used as simple controllability and observability improvement for
the sequential circuit elements.

During the 80s and begin 90s, the stuck-at fault model has been the de-facto standard for a
large part of the industry in classifying the test effectiveness. However, it should be remarked
that the limited accuracy of the available fault models, especially the stuck-at fault model, in
representing the behaviour of actual defects and the limitations of the static behaviour of a
scan based test are becoming more evident and it is becoming more and more difficult to

© Philips Electronics N.V. 5

meet the ever-increasing quality requirements. Additional and alternative test methods are
considered to overcome these problems. These vary from voltage stress measurements to sup­

ply current measurements in the quiescent mode of a circuit (IDDQ or ISSQ)'

Structural tests concentrate on finding spot defects and not on parametric defects. For exam­
ple, as a result of a local processing disturbance, the signal propagation delay between two
points on an IC might be increased, causing the IC to fail the functional specification, al­
though the structure of the connections is not changed. Therefore, some tests also need to be
carried out at the functional level.

On top of this level, it might be necessary to test the operation of the device in the way it is
supposed to function in the system it is designed for. This is known as application mode test.
Here the issue to be checked is not whether the IC implements a certain algorithm, but wheth­
er the implementation of that algorithm in combination with the other part of the system per­
forms the expected tasks. In order to obtain enough controllability over the various
conditions which might need to be varied also an application mode test is preferably applied
on an automatic test equipment (ATE) instead of a bench implementing the application. How­
ever, this implies some requirements with respect to the availability of the right input signals
and processing of the output signals [Bouwman, 95]. Application mode testing is generally
only applied for validation and characterization purposes. For production testing this ap­
proach is too costly and will only be used if the quality demands of the customer are high.

The area of interest to us in this thesis is structural testing. Therefore, we look at this kind of
testing more closely in the following section.

2.3 Structural test

The higher density of modem circuits results in an enormous set of possible fault cases. The
main problem in structural testing is how to detect such faults, given the limited accessibility
via the IC pins.

The requirements for a structural test are strict. The test should be fast because it is per­
formed on every individual IC, and it must still have a high fault coverage since customers do
not accept faulty ICs. Furthermore, it is important to be able to generate this test in a relative
short time in order to prevent lengthy design times. It is generally believed that these require­
ments can only be met if already during the design phase the IC testability is taken into ac­
count. This is referred to as design for testability.

2.3.1 Design for Testability

Testability can be defined as follows [Bennetts, 84] : "An electronic circuit is testable if test­
patterns can be generated, evaluated, and applied in such a way as to satisfy pre-defined lev­
els of performance (v.g. detection, location, application) within a pre-defined cost budget and
time scale".

6 © Philips Electronics N.V.

Using this definition Design for Testability (DIT) can then be defined as the design effort that
is specifically employed to ensure that a device is testable.

There are two important attributes related to testability, namely controllability and observa­
bility. Controllability is the ability to establish a specific signal value at each node in a circuit
by setting values on the circuit's inputs. Observability is the ability to determine the signal

value at any node in a circuit by observing its outputs.

data in

scan in

data
out

scan
out

Figure 2-2: Scannable D-flipflop

When the scan test DIT technique is used during the design phase the testability of the design
improves drastically by creating an extra test mode for the design. In normal mode, the de­

sign operates just as it is supposed to, according to its specification. In test mode, the memory
elements will be connected into one or more scan paths. To achieve this, the memory ele­

ments must be replaced by versions that are equipped with such a test mode (this version is
called scannable variant). In Figure 2-2 a scannable D-flipflop (DFF) is shown. The multi­
plexer (MUX) directs data either from data-in or scan-in to the D-input of the flipflop de­
pending on the logic state of the test signal, which denotes if the scannable flipflop is used in

test mode or in normal mode. In test mode the input of the DFF is directed from scan-in.

clock

'.,....~~ ~n"-.~ scan out

.. ;:: ;.;.::::::::::::::::::.:.:.: :.:.:.:.:.:-::;::::::::.:.:.:...;.:.. .
primary~.:.'.,.,.,."""""',.""":"""'" ,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.;.,.:-,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,. :@i? ":;::',',',,.,., ,.,~u primary
I·nputs ~:....U.'...,•..·.•.. :., •..•.,·'.•••..•.,·., •.. ·.,'....'...,:., •.,•.,•..•.!.'..•..•.'. ..'.'.•,.,.,.,.,•.•. ,.,.,.,.,.,.,.,.,•.,.,.,.,.,.,¢,.,',.,.,O,.,.,.",.,fub.,.".,.".,.,~ij~~9m~lJQg~£ .,....:.: •••••••):-. outputs-. - _ :::::::rrr ::::::;:::::::::: ~:)f{{{:~:~:~:~:~::::::::::::::::::::::: ~

I 1:::=. • i I
.. :~:f::::::::·:··,:- ::: .. :fft ..

:!·i~IJ~~·'
scan in -~~:m--I.~~1I::::.... I I I I I III

test

Figure 2-3: Scan path during test mode

When connecting scan-in and scan-out of different scannable flipflops, a potential scan path
arises. A scan path is a shift register that only exists during test mode. Test patterns can be

shifted in this register and applied to the rest of the circuit (controllability), which now only

contains combinatorial logic, see Figure 2-3. After applying the test patterns during normal

© Philips Electronics N.V. 7

mode, responses can be captured at the primary outputs of the circuit and the inputs of the
memory elements. Switched back in test mode, captured responses in the memory elements

can be shifted out of the scan path and gathered by the tester (observability). In this way, test
pattern generation has only to be done for the combinatorial part of the circuit, this eases the
process of structural testing.

2.3.2 Increasing fault coverage

The conventional methodology for testing digital CMOS circuits is the execution of a test se­

quence which exercises as many of the internal nodes and transistors as possible. A test pat­

tern sequence should be able to detect, as a minimum, any stuck at 1 or stuck at 0 fault. On
very complex VLSI devices, the development of the test pattern to achieve 100% fault cover­

age can be very tedious and extensive, resulting in many millions of vectors being generated.
Even then, the level of fault coverage may not be sufficient to provide the degree of quality

desired.

Quality level is a function of total fault coverage, of which the single stuck-at is simply an

estimator. To maintain a given quality level, fault coverage must increase with increasing
chip size (assuming the defect density of the fabrication process remains constant) [Maxwall,

92]. Since stuck-at tests by themselves are inadequate, the detection of other fault types
needs to be quantified in order to obtain a good estimate of total fault coverage.

One method of getting higher total fault coverage is by adding functional test vectors to the

structural test. As mentioned before signal propagation delay between two points on an IC
might be increased, causing the IC to fail the functional specification, although the structure

of the connections is not corrupted. In chapter 4, in which automatic test equipment is de­
scribed, the term functional testing is used for both structural and functional test. From a test­

er point of view there is no difference.

Another method to obtain higher fault coverage is a test method based upon power supply

current measurement. This method, also known as I DDQ testing, is capable of detecting phys­

ical defects such as bridging, gate-oxide shorts, and spot defects in CMOS circuits. It is im­
portant to realize that at present time IDDQ testing is supplemental to voltage testing. To

verify functionality, voltage testing is still required. However, reliability can be significantly
improved by I DDQ testing.

8 © Philips Electronics N.V.

3 IDDQ testing

3.1 Introduction

Current testing is a method for enhancing the quality of IC tests by monitoring the level of
power supply current. It is primarily applied to CMOS circuits where the quiescent power
supply current, IDDQ, in a defect-free device is very low. In the presence of a defect, IDDQ

can be orders of magnitude higher. Thus by monitoring the power supply current, it is possi­
ble to detect defects and achieve a higher device quality.

3.2 Basic concept of IDDQ testing

A CMOS gate consists of an NMOS pulldown network and a complementary PMOS pullup
network. In a fault-free situation for any given inputs, only one part conducts, connecting the
output node to either the VDD or the Vss node. The gate output voltage is well defined at ei­
ther logic level 1 or 0, and the circuit does not provide a conducting path from VDD to Vss.
Thus in the fault-free situation, steady-state current in the circuit is negligible. The circuit
contains only some junction leakage current. The magnitude of this leakage current is in the
order of nA for VLSI and for all practical purposes it can be neglected.

In the presence of various physical defects, the steady-state current in a CMOS circuit no
longer remains negligible. The magnitude of the power supply current increases in the pres­
ence of a fault. Thus, by monitoring the power supply current it may be determined whether
or not a circuit contains a fault.

3.3 Advantages of current testing

IC manufacturing involves many critical steps such as metal depositions of a few thousand
angstroms thick, sub-micron photolithography, and etching contact holes a few tenths of a
micrometer wide. Small imperfections during these steps can cause randomly distributed de­
fects in the IC such as shorts between metal lines or open contacts between the input signal
and the polysilicon gate control. IDDQ can be used to detect these defects using test vectors

based upon other fault models than the stuck-at fault model.

3.3.1 Total observability

IDDQ can also be used to detect faults that can be found with voltage testing, using shorter

test vectors. This is a result of the total observability IDDQ offers. The benefit of IDDQ total
observability above voltage testing will be shown by example.

© Philips Electronics N.V. 9

In Figure 3-1 a test pattern' A= 1, B= 1, C=O, D= 1' is necessary to detect a short between out­
put Z1 and the power supply. The first two bits (A= I, B= 1) of the test pattern are necessary to
activate the defect so that a faulty behaviour is produced. In this example the test pattern is
designed to produce a "0" on a non-defective Z1 and power will force the output value to be a
"1". A "1" in place of the expected "0" identifies a defect.

M

-""*-VDD

C ~':::::::::f----------'

D f:§::§::I---------------'

B

Figure 3-1: Test circuit with output Zl shorted to power

The remaining part of the test pattern (C=O, D=I) is necessary to propagate the defective be­
haviour to the primary output M, where a tester can observe the signal and compare it to the
expected value. In the case of a sequential circuit, a sequence of test patterns is necessary to
sensitize and propagate the defect.

B=1 ::;

Short

Vss

Figure 3-2: Fault detection with current testing

In current testing, the defective behaviour of a circuit is observed by measuring its power

supply current rather than by propagating the fault to the primary output. In this case, a short­
er test pattern (A=I, B=I) is required to detect the short shown in Figure 3-1. This is illustrat­
ed in Figure 3-2. A "0" on output Z1 causes elevated quiescent current to flow from the power
supply to ground in the presence of a short.

10 © Philips Electronics N.V.

The faulty behaviour need not be propagated to an output since the power supply acts as an

observation point on all gates simultaneously. This makes the test program generation task

much simpler: only fault activation patterns need to be generated. It is found that fault activa­

tion is very similar to logic verification and that the simulation patterns used for verification

are very effective at achieving high fault coverage with current testing.

3.3.2 Enhanced defect detection

Another advantage of current testing is its ability to detect defects that are not detected by the
voltage detection technique that rely on stuck-at fault models. In stuck-at fault models. it is

assumed that every defect causes the input or output of a gate to behave as if it is shorted to

power or to ground. In the case of CMOS. many defects do not cause stuck-at behaviour. Fig­

ure 3-3 shows two examples of defects that are not characterized by stuck-at behaviour. i)

short between two signal lines. and ii) an open contact on a FET.

(b)

A

Vss

V DD ---,...-.-----.---

Short

(a)

Figure 3-3: Examples of defects not covered by stuck-at testing

With current testing it is possible to detect many of the defects that escape stuck-at testing. In

Figure 3-4 the tests for detecting the defects in Figure 3-3 are shown. In order to detect a

short. complementary signal values are generated at the two ends of the suspected short. An
elevated quiescent current will then flow through the power supply if a short exists.

o
1

1---+----l
1---+----,

(a)

Short

VDD -----,__r------.r---

1

Vss
(b)

Figure 3-4: Detection of non-stuck-at defects with current testing

© Philips Electronics N.V. 11

The detection of opens is more complicated. In this case a test pattern is applied that causes a
net to float. In Figure 3-4 (b) this is achieved by applying a test pattern (A= 1, B=O) that turns

off the transistors P2 and N1. If transistor PI is open due to a defect, the output floats. Initial­
ly the voltage on the output stays at a 1 or a 0 depending upon the charge stored on the output
capacitance. However, if enough time elapses, leakage currents in reverse biased FET junc­
tions cause the output voltage to drift to an intermediate value between logic 1 and O. When

that happens the logic gates controlled by the floating signal start to conduct D.C. current,
causing an IDDQ test failure. How much time should be allowed for sufficient I DDQ to devel­

op depends upon the capacitance on the node, the leakage current, and the size and threshold
voltages of the FETs being driven by the floating node.

In addition to detecting shorts and opens, current test can also detect small leakage currents

which may indicate long term reliability problems. For example, excessive gate leakage (cur­
rent flowing through the gate oxide to substrate) may not cause an immediate fault, but it can
lead to long term failure.

3.4 Limitations of current testing

Current testing is an 'inexpensive' and effective way to enhance the quality of CMOS ICs.

However, it has several limitations that must be kept in mind. Two most important limitations
are the signal to noise ratio and the test time.

To avoid failing good devices it is necessary to have a good signal to noise ratio. The signal
is the D.C. current flow caused by a defect. If the defect is a short to power supply or a short

between two nets, the signal would be of the order of several hundred microamperes or even
a few milliamperes. However, some of the defects create a much smaller signal. The noise

current is caused by the valid leakage current through the reverse biased junctions in each
transistor on the IC. In addition, current transients caused by switching can have very long

time constants, approaching several milliseconds. Any noise on the power supply or input
signals can also cause current to flow through the device. For example, a 50 mV noise on the

ground can cause 5 to 10 microamperes of noise in moderately dense ICs. As the number of
transistors and wires on a chip increase, the noise continues to grow; at very high gate counts,

the noise level is so high that it often masks defects.

The other limitation of current testing is the long measure time. Enough time should be al­
lowed for i) the power supply transient currents to die down; and ii) the floating nodes to drift

sufficiently to cause a current flow. For example, a floating node with 1 pF capacitance could

take over 50 milliseconds to change its value from 5 to 3 Volts. Test economics limits the

amount of time that can be spent on the number of measurements that can be made.

Selecting which vectors to perform IDDQ testing has been a problem until recently. IDDQ test­
ing detects many common classes of process defects, such as bridges and opens, in a much

more direct fashion than functional or scan test. However, the industry is accustomed to
measuring fault coverage via the stuck-at fault. If IDDQ testing is not based on a fault model

then testing many tens of thousands of vectors with a functional test maybe the only alterna-

12 © Philips Electronics N.V.

tive. If the industry could agree to measure fault coverage for IDDQ on the basis of a common
model, it would be possibly to reduce the number of IDDQ vectors for VLSI Ies to a few thou­
sand possible a few hundred.

How many vectors are necessary for efficient IDDQ testing is a serious question. However, it
is a problem surrounded by controversy. One fact that is widely accepted is that current Auto­

matic Test Equipment (ATE) systems are too slow, and that ten to twenty IDDQ vectors are the
limit without adaptations. So IDDQ can only be used as a supplementary test with today's in­

strumentation. If the industry had an accepted fault model, it is possible that IDDQ vector se­
lection could be minimized to a few hundred vectors. In combination with faster

measurement hardware this could lead to acceptance of IDDQ as a general test method.

© Philips Electronics N.V. 13

4 Automatic Test Equipment

4.1 Introduction

While testing, stimuli data has to be applied to the Device Under Test (DUT) and resulting re­
sponses have to be captured and compared with expected data. The equipment that translates
the stimuli data into voltages that are set on the right times on the right pins and that observes
output pins to compare with expected data is called Automatic Test Equipment (ATE).

4.2 What ATE is

ATE is computer-controlled equipment that is used to verify certain parameters of a DUT and

to identify defects that may be present in the DUT. It may, in its most general form, be block
diagrammed as shown in Figure 4-1.

Device Under Test

Figure 4-1: Block diagram of generic ATE system

At the heart of the system is the "control section". The control section consists of the compu­
ter (CPU), its peripherals, and its software. The computer executes application-specific soft­
ware that directs the stimulus, measurement, and switching resources of the system in a

manner that will yield the desired test results and data.

The stimulus section provides vectors to the DUT. The measurement section evaluates the
DUT's response to the vectors from the stimulus section. The switching section may be
thought of as the programmable path network between the stimulus and the measurement sec­
tion. The control part then operates upon the information obtained from the measurement
section to determine the next course of action (e.g., abort the test, issue a failure message, or
issue a "test pass" message).

The ATE system is interfaced to the DUT via an interface adapter which is often DUT-specif­
ic. This interface adapter may be as simple as wires between the ATE system and the DUT, or

it may contain extensive electronics for level shifting, signal translation, and special signal
conditioning.

© Philips Electronics N.V. 15

Typical stimulus devices for electronics ATE for large-scale integration (LSI) and very­
large-scale integration (VLSI) integrated circuits and the printed circuit board assemblies
(PCBAs) include programmable power supply units (PSUs), signal generators, and data driv­
er pins. Typical measurement devices include parametric measuring units (PMUs), digital
multimeters, timer-counters, and data receiver pins. Typical switching systems may be con­
structed of either relays or solid-state logic circuits, depending on the levels and types of sig­
nals to be routed. The stimulus, measurement, and switching devices and circuitry may be
configured as individual items interfaced to the control section central processor unit, or may
be designed as integrated, multifunction electronic assemblies.

Pass/fail parameters are typically programmed into the system when the application test pro­
gram is written. This situation is illustrated in Figure 4-2. Immediately prior to test program
execution, digital drive levels are set on the stimulus pins and digital receive thresholds are
set on the measurement pins. Then the speci fic functional" l"s and "O"s are driven into the
OUT and sensed from the OUT by the tester electronics. On the measurement side, if a signal
exceeds the logic" 1" threshold, it is assumed to be valid logic" 1". If it is below the set logic
"0" threshold, it is assumed to be logic "0". If the signal is between the two thresholds, it is
deemed to be a defective level and indicates that the OUT is not functioning correctly.

PASS/FAIL

Device
Under
Test•Stimulus

--------- Measurement-----

Figure 4-2: Schematic diagram of digital pin electronics

The only other indication of non functionality is if a "1" is received when a "0" was expect­
ed, or vica versa. Some testers allow for the programming of a time limit by which the re­
sponse must be received, and others allow for the sensing of driver pins to ensure that the
stimulus signal was actually able to drive the OUT. Regardless of the level of sophistication
of the electronics and the software, if the tester does not provide specific parametric values as

part of the test results, it is considered a functional tester.

16 © Philips Electronics N.V.

Figure 4-3: Circuit diagram of DC parametric measurement

Adding parametrics involves adding enough hardware and software to provide actual meas­
urements in engineering units (e.g. volts, amps, and seconds).The term DC parametrics (see

Figure 4-3) refers to such parameters as input current, output VOltage, and supply current.
The term AC parametrics refers to such parameters as rise time, fall time and propagation de­
lay (e.g. time between input stimulus and output response). It is possible for a functional

ATE to provide go/no-go (pass/fail) indication of parameters without providing actual meas­

urements in parametric units. For DC parametric approximations, one way that this is accom­

plished is by running the ATE with drive levels, thresholds, and loading conditions set as
close as possible to the parametric limits of the OUT.

4.3 Testing overview

First goal with testing is to insure that the OUT operates according to its truth table. Figure 4­
4 shows the general structure for testing logic devices.

::::::::::::::::.:.:.: .

Figure 4-4: Block diagram of testing process

The truth table is loaded into the tester in the form of patterns (vectors or F-data). To get the
data to the device, stimulus data is output from the pattern memory. It is passed through the

formatter, which combines the data with timing edges to form a waveform. The waveform is
passed to a driver, which converts the data levels to programmed voltage values. The voltage
values called "input references", are supplied by the test engineer in the test program. The to­
tal waveform is passed to the device through the interface. The interface consists of a load-

© Philips Electronics N.V. 17

board, which connects to the tester head, and a socket which is wired to the loadboard. The
device respond with an output, which is passed through the loadboard to a comparator in the
testhead. Expected data is converted by output voltage references and compared with device
output. Naturally there is a driver and comparator for each pin. The pattern memory is also
used to pass a sequence of patterns to condition the device to a state where the DC parametric
measuring unit can be connected, under software control, to various pins for making voltage
and current measurements.

4.4 Functional testing

Functional testing refers to the process of accessing the normal input/output (I/O) interface of
the OUT (its package pins) and providing stimulus patterns and measurement verifications
that the OUT is functioning. Functional testing relies on the assumption that if the OUT func­
tions, no process-induced problems exist.

4.4.1 Truth table

Logic devices are tested by two types of testers, Golden Device and truth table (stored re­
sponse). Golden Device testers compare the OUT with a known good device. They are only
used during production or incoming inspection. The most common tester is the stored re­
sponse or truth table tester. It stores the truth table for a device in its memory, formats the da­
ta, and applies the data to the device. One line of a truth table is called pattern or vector, they
are applied to the device one at a time. Each vector or pattern consists of stimuli and expect
data. Vectors are stored in the high-speed pattern memory of the tester.

The test program loads vectors into the pattern memory and applies its pattern data to the de­
vice. Each test program will call several vector loads to test the different functions of the
OUT. The pattern data must be formatted before it is passed on to the OUT. This means that it
must have timing and voltages assigned to it.

4.4.2 Creating stimuli data

Truth table / pattern data alone is a poor method to stimulate the device, because of the weak
control of timing. The pattern data must be formatted and passed to the device through the
tester driver. This is illustrated in Figure 4-5. The formatter couples the pattern data with tim­
ing generators (TGs) or timing edges. At the device, data appears as a timing diagram.

VIH

VIL

I/O
III

I
"'..-----~ DUTpin

I
III

18

Figure 4-5: Schematic of tester hardware which creates input waveforms

© Philips Electronics N.V.

Each cycle begins at time zero, To, with respect to the device, and lasts for a certain length of
time specified in the test program. Most testers have a number of timing generators or clocks
that are shared by all the pins. Figure 4-6 illustrates the timing parameters used in testing.

To

Delay-l........-Width

Period or cycle--------~

Figure 4-6: Timing parameters used in testing

A waveform is the output of the formatter. Waveforms are individually specified for each pin.
The common waveforms are shown in Figure 4-7. Some testers define timing with edges (or
phases).

Common edge definitions would be:

AEDGE: Data transition edge
BEDGE: Leading edge of pulse
CEDGE: Trailing edge of pulse

The formatter couples the edges with the pattern data to form the standard waveforms.

pattern
data

TG

RZ

RTO

using timing generator

pattern
data

RZ

using edge generator

Figure 4-7: Common input waveforms created by formatter

© Philips Electronics N.V. 19

Depending on the tester, the flexibility of its timing generators to create waveforms will vary.
The common waveforms illustrated in Figure 4-7 have the following properties:

NRZ:Nonreturn to zero or straight data. When coupled with a TG, the data transition

is delayed from To, but the data level remains for the length of a complete period.

RZ: Return to zero. When pattern data is "I", a pulse equal to the assigned TG is

created. The level remains low for pattern data "0".

RTO:Return to one. When pattern data is "0", a negative pulse equal to the assigned
TG is created. The level remains high for pattern data "1".

XOR:Exclusive OR (surrounded by complement). Positive pulse on pattern data "1".

Negative pulse on pattern data "0".

Although the above four waveforms are used in the majority of applications, the possible

waveforms available on modern VLSI testers will not be limited to them. The formatter cre­

ates the waveform and passes it to the driver, which converts the logical levels to voltages.

4.4.3 Comparing DUT output against expected data

A comparator is used to compare the output of the OUT with the expected pattern data. A

schematic of the comparator is given in Figure 4-8. The OUT output is passed to the compa­

rator through the loadboard connector. The pattern data (expected data) selects the high or

low level of the output reference assigned to that pin. There is a choice of at least two output

reference pairs that can be assigned to each comparator. The level is compared with the OUT

output and the result is passed to the next stage of the pin electronics for pass/fail determina­

tion.

to comparison
V~:H process. I

~haJlll~IIf-----~----1:~ ~i ~
VOL I DUTpin

Figure 4-8: Schematic of tester comparator hardware

A failure is recorded only if the comparison is incorrect at a specified time as determined by

a strobe. There are two types of strobes, edge and window. With edge strobe an instantaneous

latch of comparison results occurs. Failure is recorded only at a specified instant in the cycle.

Using window strobe, the comparator result is observed during an interval. Any failure of the

comparison during the interval is a failure; i.e., the OUT output must be at the correct level

during the entire interval.

20 © Philips Electronics N.V.

For various reasons it may be desirable to mask the failure results for certain cycles or pins.

Although the comparator is always attached to the pin, the comparator results are not moni­

tored for input pins. Also during input cycles of I/O pins the comparator is disabled. The user
must be given the option of masking the failure results for any cycle, known as a "don't care"

cycle. Thus, to have complete control, the following has to be possible on a cycle-by-cycle

basis:

1. Switch driver from driving to Hi-Z.

2. Enable and disable comparator results.

This is accomplished on modem testers by embedding the I/O control and masking within the
pattern data. The pattern data for each pin will have a minimum of five states as shown in Ta­

ble 4-1.

Table 4-1: Minimum tester states

1 drive one disabled

o drive zero disabled

H Hi-Z compare against high level

L Hi-Z compare against low level

x Hi-Z disabled

The results of the comparator can be masked for an input-only pin by not assigning a strobe

to that pin. This is obvious from the complete diagram of the comparison process, given in

Figure 4-9.

FPF

lehosen by expected data::....."T"""'""-=---,

REF DUT>REF T P/F
DDT

Figure 4-9: Diagram of output to expected data comparison process

The expect data selects an output reference level, which is compared with the DUT output.

The comparison results are passed through some logic for decoding, as represented by the

truth table after the comparator. Depending on the expect data, a pass or fail is passed on as a

© Philips Electronics N.V. 21

"0" or" 1". The failure can be masked by the pattern data. The pass, "0" or fail, "1" is latched
into the results register by the strobe. Notice that the default condition in the results register
is a "0"; i.e., a pass is assumed unless otherwise shown.

Finally a mechanical relay must be closed to connect the pin electronics to the device. Differ­
ent methods are used to close the relay in different testers. Some require at least one driver
register to have a "1" in it for that pin; some require a direct closing statement; and others
close it whenever a pin is defined. The point is that it can be controlled.

22 © Philips Electronics N.V.

ATE
pins

5 Quality Test Action Group (QTAG)

5.1 Introduction

QTAG was proposed at a public meeting of the IC test engineering community at the Interna­
tional Test Conference in 1993 (ITC 93). The need for QTAG has arisen from the rapidly ris­
ing quality demands that the cutsomers of CMOS ICs are making on IC vendors. In general,
the experience of the IC vendors has been that significant improvements in overall realistic
fault coverage, using the classical stuck-at fault model, cannot be expected. Adopting more
advanced fault models based on realistic defect probabilities leads the test engineering de­
partment to adopting IDDQ based test methods for advanced CMOS devices [Baker, 90].

Experience over a number of years with IDDQ testing within Philips Semiconductors and re­
ports from development centres in the industry indicate that IDDQ testing has its drawbacks.
Measurement of a significant number of IDDQ vectors is excessively time consuming with
conventional automatic test equipment (ATE) systems. In the past ATE vendors have been
pressed to improve the performance of the ATE based IDDQ facilities, but in general the facil­

ities provided have not been widely used. For some CMOS products Philips has developed
and maintained special test systems for IDDQ testing. Such a discrepancy between the needs
for IDDQ testing and the capabilities of the ATE systems is heading for a "finger-pointing"
crisis between the test engineering departments and the ATE vendors. Action is needed to
avoid this crisis. QTAG's aim is to develop a de-facto standard for test fixture based IDDQ

monitors. The standard should allow the monitor vendors to develop innovative products
with the functionality that will create a small, but active market-place for their monitors.

5.2 Goals ofQTAG

The original proposals for QTAG made at ITC 93, had the aim of focusing the attention of the
industry on the problem of IDDQ production testing. The proposal was made to the industry
that the solution was to be found in the so called "Little-Foot" monitors.

~--=-D~O--1I:II:I::II:':I:IIIIIII~tlllllllllllllilillilliiilill
l-_----""t---D~I.........~::::::::::::JuQp.nQ.f\:::::::r:::m

Vss 1----------'

Figure 5-1: QTAG IDDQ monitor with bypass option

© Philips Electronics N.V. 23

These monitors are based on the technology developed for Built-In Current (BIC) sensors,
see Figure 5-1, but packaged in such a manner as to be used on any test fixture. Two major
modes are provided, the normal IDDQ current monitor mode and the bypass mode. If bypass
mode is activated a short circuit resistance is provided between VDDPSU and VDDDUT.
Measurement during this period is not possible. In monitor mode measurements are made.
The idea of the Little-Foot was that the physical foot-print on the test fixture was so small
that it could even be used on probe-cards, see Figure 5-2. This requirement for small physical
size, demands that the pin count be small « 10 pins). An acceptable package is the SO-8, de­
manding less than O.5cm2 with SMD decoupling capacitors.

IOcm...

~II~~ QTAG Monitor

t
Control

Figure 5-2: QTAG monitor on a probe card

Given that the monitor is to be driven by an ATE system virtually any digital interface based
on three or four pins can be created. Originally, a simple two mode interface was proposed at
ITC 93. However, it is better to allow a more complex interface to be defined which gives the
capability to control more monitors with the same pins and permits much more functionality
to be built in to future monitors [Hales, 94a]. At the same time the standard has to be realistic
about the capabilities of monitors that could be designed in a reasonable timescale.

After ITC 93 a second class of monitor was defined. These are the so-called Big-Foot moni­
tors. This class of monitor, probably not based on BIC sensor technology, requires a signifi­
cantly larger area on the test fixture, so would not be as useful in production testing.
However, given the known performance of such monitors, and the need to provide a measure­
ment capability for engineering applications it was decided to cover them within the standard
as a separate class. The idea being that such monitors could also be driven by the same ATE
driver software.

24 © Philips Electronics N.V.

A set of goals of QTAG was defined by Keith Baker of Philips Research and Chuck Hawkins
of the University of New Mexico. These goals were re-stated in the Philips proposals for
QTAG [Baker, 93] and have been reproduced below:

• 1. A definition of a "minimal-pin" configuration package for a monitor whose
specific design may differ for any manufacturer. That such a monitor allows any
digital test system to drive and receive information appropriate for IDDd ISSQ

testing.

• 2. A defined pin configuration that demands packaging in a minimal number of
package types to cover most applications needs.

• 3. A standard ATE interface definition and physical form that allows all common
test fixtures to be used: DUT board, probe-card and contactors.

• 4. A standard that defines both VDD and VSS line monitor configurations.

• 5. A standard that would recommend or define multiple monitors and multiple
power pin configurations.

• 6. Definition of a Monitor Description Format (MDF) that would allow different
monitor implementations to be easily driven by ATE hardware and software.

• 7. A standard that allows tester selection of a variable IDDQIISSQ threshold.

• 8. A standard that allows robust physical construction and reliable operation in a
stressful Electro Static Discharge (ESD) environment.

5.3 QTAG monitor classes

In its proposal, Philips developed the original goals of QTAG into a structure with three
classes of monitor. Details of the three classes are given in Table 5-1. Class 1 would be the
original Little-Foot monitors. These would be tightly standardized monitors which would be
the central thrust of the QTAG activity. From the specification of Class 1 the MDF would be
created. The other two classes form the Big-Foot monitor types.

Progress during the Monitor Standard Definition phase of QTAG has been very uneven for
the two different types of monitors. For the Little-Foot monitors, the semiconductor vendors
have produced a very clear definition of the function and physical format of the monitor. For
the Big-Foot monitors, the progress has been less rapid because of the lack of a clear champi­
on for the concept among the semiconductor vendors.

© Philips Electronics N.V. 25

Table 5-1: Overview of QTAG Monitor Classes

••0.8 x 1 production 8 •SO-8

SO-8L

SO-14

2

3

2x2

4x4

production 24

engineering

engineering 24

any

any

5.3.1 Proposals for Little-Foot monitors: Class 1

Texas instruments (TI) also made a proposal to QTAG in a much more detailed form than

Philips. This developed the concept of the class 1 monitor in a definitive architecture. The TI

proposal built on the original Little-Foot concept addressing many of its shortcomings. Main
issues are using multiple monitors, providing a truly digital interface, giving a measurement

option etc. [Hales, 94a]. These issues were originally not addressed by Philips [Baker, 93].

After the completion of the Monitor Standard Definition phase it is clear that the semicon­

ductor vendors proposals for class 1 monitors give this class a leading role in development of

the standard.

After bi-Iateral discussions between Philips and TI, a common proposal based on the umbrel­

la format from Philips and the class 1 specific proposal from TI has been put forward [Hales,

94b]. Philips would then develop a prototype QTAG class 1 monitor on the basis of this spec­

ification. This prototype would be a proof of concept study for QTAG [Baker, 94b].

A second European group, Alcatel Bell-Telephone, Technical Highschool of Ostend and the

University of Hull, have also supported the development of the class-l monitor by the devel­

opment of a IDDQ monitor based on discrete components. However, the pinning and function­
ality would be compatible with the general proposal for the class-l [Manhoeve, 94].

5.3.2 Proposals for Big-Foot monitors: Class 2/3

None of the major semi-conductor vendors has made more detailed proposals for class 2 or 3

monitors. Given the lack of interest in these classes from those parts of the industry that

could create a demand for a marketable product, the most direct solution would be to scrap

them from the standard. Further enquiries reveal that there are groups developing such moni­

tors, however, they have not found the time to fully participate in QTAG.

26 © Philips Electronics N.V.

The Quic-Mon circuit, originally developed by Sandia Labs but further developed by one of
the original authors with Philips Semiconductors, falls very clearly into the Big-Foot catego­

ry. This monitor is without doubt the most popular type published todate and QTAG must en­
sure that users of this monitor are not excluded from support on ATE systems [Wallquist, 93].

5.4 QTAG monitor types

The QTAG monitor classes are based on pin count, function and physical size. The monitors
can also be distinguished in capability. This is done by the QTAG monitor type definitions. In
the next subsections the two basic types of monitor are discussed:

• Threshold: return a simple pass-fail, or analog value

• Measurement: returns a digital value

Current monitors can be divided in semi-digital and fully-digital versions. Semi-digital mon­

itors are controlled by a mixture of digital and analog pins. These monitors are the majority
of QTAG monitors in development at this time. Fully digital monitors are much simpler to in­

terface to a digital tester because they have only digital control pins. Moreover, the binary
control codes for digital monitors must be inserted in the test vectors of the OUT, which is an
extra step. Semi-digital monitors do not need those codes in the test vectors. Digital monitors
have an internal architecture that must either be standardized or defined within the MDF to

allow the ATE to control the monitor. Also a distinction can be made in IDDQ and ISSQ moni­
tors. The difference between these two types is the current observation point. In case of IDDQ
the measure pin will be connected to the OUTs VDD pins, whereas with ISSQ the measure pin
will be connected to the OUTs V55 pins.

5.4.1 Threshold monitors

The threshold monitor is the simplest of the QTAG monitors. In case of a digital output, it

simply tests if the quiescent current (lDDQ / IssQ) value is above or below a user-specified or
fixed threshold value. The result of this comparison is returned to the tester as a binary pass/
fail value (DO output). When multiple monitors are chained this signal will be forwarded by

a chain of OJ and DO pins. In case of an analog output value, this will be directed to the pin
electronics comparator, which requires the digital tester to determine the pass or fail by com­

paring the input voltage to a known reference voltage set on the pin electronics comparator.

5.4.2 Measurement monitors

Measurement monitors provide either a parallel or serial digital word to one or more test sys­
tem pin electronics comparators. In case of serial data, timing of the data is determined via a

separate digital clock pin on the monitor driven by a pin electronics driver. With analogue
testers or by using an ADC on the test fixture it is possible to create a measurement capability
on threshold monitors with an analog output. When using an analog threshold monitor in this
way it is called a measurement monitor.

© Philips Electronics N.V. 27

5.5 QTAG monitor pins

The standard pins of a QTAG IDDQ monitor are listed below in Table 5-2. The first three pins
are power supply connections to the tester's power supply, and the fourth pin is the VDD sup­
ply to the DDT. The other four pins form the interface which the tester uses to communicate
with the QTAG monitor. The MODE, CLK and DI pins are outputs from the tester to the
QTAG monitor, and the DO pin is an output from the monitor back to the tester. Multiple
monitors can be connected by chaining together their DI and DO pins and connecting the
MODE and CLK outputs from the tester to the MODE and CLK input pins of all of the QTAG
monitors.

Table 5-2: QTAG I DDQ monitor pins

VDD_MON

VSS

MODE

CLK

DI

DO

VDD supply for the QTAG monitor

VSS supply for the QTAG monitor

VDD supply for the DDT from the tester

VDD output from the QTAG monitor to the DDT

Mode select

Clock

Data input

Data output

5.6 Monitor Description Format (MDF) requirements

One of the QTAG goals is definition of a Monitor Description Format. At the initial meeting
of QTAG the concept of the MDF was outlined. MDF was needed to allow the monitor to be
described in a machine and human readable format, so that different monitors could be used
with different test systems, and would allow the test engineer to efficiently utilize the moni­
tor in the application.

It was a stated goal that the MDF should be so broadly formulated as to allow monitors not
fully compliant with the QTAG standard to be used. This may seem strange at first. However,
the QTAG document [Baker, 94a] makes it clear that this is essential. For example, the QTAG
monitor proposal will allow monitors to be daisy-chained to allow two or more monitors to
be used in conjunction. However, this demands that a pin is available as digital input pin, DI,
but for so-called semi-digital monitors in stand-alone applications this would waste a valua­
ble monitor pin. So flexibility is needed to provide a standard that maximizes the potential of
the individual monitors.

28 © Philips Electronics N.V.

The semantics of the MDF language are based on the resources provided by a simple digital
tester, Le. pin memories, pin driver, pin comparators, PSU, PMU, and a test program execut­
ed on a computer. Each of these resources is assumed to be under control of the test program.
A test program is a computer program executed by the control computer of the test system. It
is assumed that the test program has access to a set of standard routines to control the moni­
tor. Furthermore it is assumed the files of test vectors loaded by the test program into the pin
memories and pin timing generators have been so modified by an external program that all
the control, triggering and timing of the monitor and DUT are correct.

QTAG monitor

··buoc •.·
testfiles

QTAG monitor
APPEND

CAD

TESTING

TeStprogram
geneI-ator

Testprogram

vectors &
timing

Figure 5-3: QTAG Design-test flow

Using the semantic model described above, the MDF has to contain the information for two
functions, as shown in Figure 5-3. First the MDF must contain the information needed to al­
Iowa filter function called Append, to modify the Computer Aided Design (CAD) generated

test data to include the monitor timing and vectors. Second, the MDF must provide input to
an automatic test program generator to create the correct test programs to control the tester
resources.

MDF is not a general purpose hardware description language. It is intended solely as a means

of describing the key aspects of the implementation of IDDQ/ISSQ monitors used in conjunc­
tion with ATE systems. MDF is not a simulation model.

Features Described by MDF:

• Pin declarations and pin definitions for monitors

• Definition of architecture of digital monitors

• Definitions of monitor actions

• View of monitor for test fixture

© Philips Electronics N.V. 29

Features not described by MDF:

• How chains of monitors are linked on a test fixture

• Test programming or test functions

• Input format from CAD tools for ATE

The MDF is best served by a simple fonnat specifically created for the application. So that
the general behaviour of the implementation is defined in the standard and only the device

specifics are provided in MDF. In this the role model of BSDL used by IEEE std 1149.1,
which specifically excludes extraneous details is followed.

In chapter 7 MDF is defined according to the requirements stated in this chapter and the
needs that followed from the stock taking of present available I DDQ monitors and detailed
proposals for future development in chapter 6. The architecture of digital monitors has not
been defined in MDF so far, due to the lack of a standard digital interface. This part of MDF

will be future work. The MDF defined yet covers all QTAG monitors known and expected in
the future, including the digital monitors without specific interface infonnation needed to

control this type of monitor.

30 © Philips Electronics N.V.

6 IDDQ monitors

6.1 Introduction

Developments in monitor design have a great deal of impact on the semantics and syntax of
MOE At this time, the only monitors actually in development are simple types that use only
a semi-digital interface. This requires that the ATE system must be able to supply analogue
signals or accept analog input signals. In this chapter first two measurement principles are
described in section 6.2. In the following sections an overview is given of the current moni­
tors developed and published in the literature. Each monitor will be described, mentioning
details that are used while defining MOE This implies that the controlling part of the moni­
tors will be main issue. In section 6.8 a fully digital interface that was proposed to the
QTAG-group is discussed. Below is a short summary of the monitors presently available:

• QuiC-Mon v3.2
Developed by the university of New Mexico and Sandia Labs, this is one of the best
defined IDDQ monitors so far published in the literature. It is a complex monitor that

provides a digital measurement capability to the test system. It is suited to the task
of device characterization and analysis.

• QuiC-Mon v5.0
A new version of the original QuiC-Mon monitor, further developed by one of the
original authors with Philips Semiconductors. This is a simpler monitor, that can be
used for both IDDQIISSQ, but provides an analogue value to evaluate as pass/fail.

• OCIMU
Developed by Alcate1-Bell and Technical School Ostende to demonstrate the
feasibility of QTAG monitors for IDDQ testing. It is capable of performing a

relatively high speed (measurement time can be less than 30 Ils for a 21lF load)
current measurement especially when driving a high capacitive load (severaIIlF). It
provides a digital pass/fail to the test system.

• IDUNA-2
A demonstration QTAG class I monitor developed by Philips Research and
Lancaster University in Application Specific Integrated Circuit (ASIC) form. It
provides a digital pass/fail to the tester based on a fixed internal threshold current,
that can be altered through a analog pin.

• LTX I DDQ monitor
This monitor is a stand alone option of a LTX test system. It has been designed to
integrate into the current test systems. The LTX trillium test head is modified to
accept the IDDQ monitor. It provides a digital measurement capability to the test

system. Internal threshold can be set by a binary value on four digital pins.

© Philips Electronics N.V. 31

6.2 Monitor principles

The problem of measuring IDDQ current is basically measuring the current flowing into the
DUT after all transients have settled to a steady state. It is important that the monitoring de­

vice should not influence the DUT. This implies that the I DDQ monitor should be transparent
at the moment the logic state of the circuit changes. Finally the monitor should be placed as

close as physically possible to the DUT (actually on the loadboard) to minimize environmen­
tal influences. Especially since during the test of an IC a lot of signal activity takes place in

the testhead to which the loadboard is attached. Test signals with rising and falling times less
than 1 ns are not uncommon, this generates a lot of high frequency switching noise which can

disturb other signals and thus create a hostile signal environment. As a result and because of
the noise accurate measurements of voltage levels below 1 mV are not feasible, connection
wires are to be kept as short as possible.

To measure DC currents two basic principles can be used. The first one is based on a current
to voltage conversion by placing a resistive sensing element in the current path and applying
Ohm's law. The second principle is based upon a voltage to time conversion by measuring the
time needed to let the voltage across a given capacitor drop by a predefined amount. This

method is based upon the discharging of the capacitor over a load resistance when it is dis­
connected from the supply voltage, this is known as Keating-Meyer principle [Keating;Mey­

er,87].

The main drawback of the first method is that the introduction of a resistive element in the

current path of the DUT inevitably causes a voltage drop across it. To be of any use, the volt­
age drop caused by the sensing element should be either negligible (even for large currents)

or be made invisible to the DUT. The DUT will always see a well/stabilised supply voltage.
Ensuring that the voltage drop is negligible, even for large currents, implies that a low ohmic

sensing element should be used. This implies also that the voltage drop caused by small cur­
rents will also be very small. To measure this very accurate low voltage measuring tech­
niques are required. Application of such techniques may either not be feasible due to a hostile

signal environment or take too much time. The second drawback is that the sensing element
also needs to pass the switching transients. To avoid a large voltage drop during the tran­
sients, the measuring device should be bypassed during the transients.

The advantage of the Keating-Meyer principle is that no special action needs to be taken in

relation to transients, as the principle is relying on the parasitic capacitance of the DUTs sup­
ply pin and (if present) on the decoupling capacitance connected to the supply pin. The main

drawback of the Keating-Meyer principle is that the supply of the DUT is left floating during
the measurement phase. This would not cause any problem if it could be guaranteed that the

voltage drop during the measurement phase is in all cases negligible. A negligible voltage
drop once again requires very accurate very low voltage measurements. If the overcurrent is

too high then it is possible that the supply voltage drops too much, leaving the circuit in an

unknown state. Another drawback is that the measuring speed is function of the total capaci­
tance.

32 © Philips Electronics N.V.

6.3 QuiC-Mon v3.2

In this section a printed wiring bord called QuiC-Mon (Quiescent Current Monitor) version
3.2 is described. QuiC-Mon, developed by the university of New Mexico and Sandia Labs,
reports an eight-bit value that may be converted into an absolute current measurement. It uses
the Keating-Meyer method of IDDQ measurement. This technique requires knowledge of the
DUT Voo pin capacitance (Coo), see Figure 6-1; QuiC-Mon makes independent Coo meas­
urements up to 4 oF in the same vector as the IOOQ measurement. The IooQ range is program­
mable, but typically up to 25 JlA may be measured with the onboard Analog-to-Digital
Converter (ADC) for a target IDDQ resolution of 100 nA. IDDQ values that fall outside the
measurement range are signalled by a overrange output from the ADC. Range can be doubled
through ADC cascading.

QuiC-Mon v3.2 circuit Boundary

VINJ -+-­
VIMB-+--

VA 11.....-..+----,(---digital out

-=- DUT

Figure 6-1: Block diagram of QuiC-Mon v3.2

Maximum test frequencies depend upon several factors, a primary one being the DUT power
supply current (100) transient settling time. Measurement rate also depends heavily on capac­
itance contributed by the DUT and load board. QuiC-Mon switches out most of the loadboard
capacitance. Higher capacitance environments in the JlF range slow 100 measurements con­
siderably, primarily because of RC time constants on the Voo node introduced by QuiC-Mon.
Despite these degradations, vector rates of over 250 kHz have been achieved on smaller
VLSI devices with QuiC-Mon [Wallquist et-al, 93].

If the Transmission Gate switch is closed, the DUT draws current from the Tester Power Sup­
ply (VTPS in Figure 6-1). If the Transmission Gate switch is opened, the DUT draws current
from its own capacitance (Coo). As a result, voltage on Voo (and Vom) drops causing VA to
increase linearly. For typical IDDQ measurements, the voltage drop in Voo is on the order of
10 mV; in this range, it is assumed that even resistive defect loads will be linear. After a pre­
defined discharge time has elapsed, the amplifier output is converted to a digital value repre­
senting measured IDDQ .

© Philips Electronics N.V. 33

closed openopen, TG closed
~

I

:~ .'...

TG

.....~ r '10 0 ----I. ._... _..,..J_'.. .~:

: 1-----,1.0...-_.............._-::
- --T'l-~--;---__--tl·..------;_""":'""__-.;.;lVOO ~

I I I I

VA,;;;;,.........:.'..;:_.......,;;;;,.....;....;..;j,I..------1b~
I

~:~ .'~ .:
Normal IDDQ cycle High I DDQ cycle

Figure 6-2: Typical Keating-Meyer Waveforms

, ,
i

I
I

I I
I I

..
1 I
! !

I J I
I I I

V1MB : .Ir--------t'""
CLK --"TI----.....,.~:---,U:
~~~itall:!H):!H!:X~ ....!---C-D-D---1-

, , ,

I
CHG I

Ir-- _

VINJ ---.J
100~..... .....,_...,.._..,... ~..,...-..;;.J

VA

Figure 6-3: Typical QuiC-Mon v3.2 timing waveforms

• QTAG class & type: The QuiC-Mon v3.2 monitor clearly belongs to class 2 or 3, because
of using a wiring board, limiting its physical size. It is a semi-digital measurement type
monitor, because of its analog pins and external measurement equipment used for Coo

measurement.

• Monitor control: In literature describing QuiC-Mon v3.2 the typical Keating Meyer
Waveforms (see Figure 6-2) are used to explain the measurement part [Wallquist et-al,
93]. In this figure the relation of 100 and VA is shown. In Figure 6-3 typical QuiC-Mon
timing waveforms are shown. The CLK signal is used to latch the ADC output. The
CHG input is a inverted version of TG described above. CHG is used in the final hard­
ware version of QuiC-Mon. Note that the digital output is used for both IDDQ measure­
ment and Coo measurement. Controlling this type of monitor fully automated is
difficult. This is caused by the critical timing (floating Voo) and continuous Coo meas­
urements needed for accurate I DDQ measurements.

34 © Philips Electronics N.V.



6.4 QuiC-Mon v5.0

This section decribes a new version of QUiC-Mon, further developed by one of the original
authors with Philips Semiconductors. This monitor can be used for both IDDQlIssQ' Version
5.0 of QuiC-Mon takes the Keating-Meyer concept one step farther then version 3.2. The
QuiC-Mon v3.2 allowed a simple calculation of the quiescent current (For a constant IDDQ,

the slope of the voltage drop at the node is constant) by measuring the amount of voltage
drop after a predefined period of time, if Coo was known. However, measuring current in this

way has its drawbacks. The most obvious being a reliance on timing accuracy, as strobing at
different times results in what can be considered different current gains. Longer wait times
result in higher current resolution. Unless timing is guaranteed accurate, incorrect IDDQ read­
ings can result.

Instead of a direct voltage comparison, in Quic-Mon v5.0 a two stage measurement circuit is
used. The first stage amplifier takes the derivate of the voltage at Vss. This converts the con­
stant slope waveform into a step function, producing a host of side benefits. The timing sen­
sitivity is removed, and strobe placement is relaxed. Also, circuit settling time is improved
significantly, allowing much faster measurement rates.

r - - - - ..-: - ...,
I ·····,··,'··"'1

I 1
I
I
I

: Vss
I

~lll1I~-

Figure 6-4: Model of QuiC-Mon v5.0 during I ssQ measuring

One of the major drawbacks of QuiC-Mon v3.2 was the requirement of per-vector capaci­
tance measurement. Version 5.0 overcomes this hurdle. A simplified model of QuiC-Mon
v5.0 is shown in Figure 6-4. The variable gain, depending on the capacitance Css, can be
avoided by making C1 large with respect to Css [Wallquist, 94]. Quic-Mon's gain is now only

dependent on the accuracy of the resistors, whose tolerance can be controlled to I %. A side
benefit is that small variations in DUT capacitance can now be tolerated.

© Philips Electronics N.V. 35



BYPSS --I~-~
.A

NE) SENSE

Bypass
relay

QuiC·Mon vS.O circuit Low Pass Filter!
Clamp

Figure 6-5: Block diagram of QuiC-Mon v5.0

In Figure 6-5 the block diagram of Quic-Mon v5.0 is shown. The bypass relay controls pri­

mary operation of the QuiC-Mon circuit. In its nonnally closed state, V55 (the DDT V55 pin)
is shorted to ground. This allows full speed operation. When the relay is opened, QuiC-Mon

becomes active. The Low Pass Filter/Clamp part is designed to protect the tester channel
from excessive voltages and to reduce noise if I ssQ is particularly noisy.

I I I I

~I"""""'""""\~ .·.11 t :1"""""'""""\
DUTclk ----:r/.< ~r-------·";';<:Tr-·..;,;·:·+T..;,;""··:..;,;···· ....;,;.......,.:....,<, .. \

'I I I II
I I I· . ..l. I
I,·. I.

, II...

I I I

CHG J:: .~ rr+:---
I I I I ,

SENSE """\....:_>__+- ··....:........r k"",:_~_

I... ~I '... ~IlI , • I I
I Transient phase Measurement phase I.... ~.

One vector cycle

Figure 6-6: Typical QuiC-Mon v5.0 timing diagram

• QTAG class & type: QuiC-Mon v5.0 is build using a wiring board. This means it is a class
2 or 3 monitor, depending on its physical size. The analog output is used as pass/fail, so
it is a semi-digital threshold monitor type.

• Monitor control: Timing on QuiC-Mon v5.0 is not as critical as in previous versions. In
fact, setting up tests is actually quite simple. In Figure 6-6 a typical timing setup is

demonstrated. One note should be made: Because the V ss voltage is close to ground

and may drop to a negative voltage with the charge injection onto V ss after driving

CHG low, the low drive voltage of CHG should be set below -2V.

The transient phase (See Figure 6-6) extends from the first part input transition until

36 © Philips Electronics N.V.



the power supply current settles. During this time, no measurements can be made. The
length of this phase is entirely dependent on the OUT.

The measurement phase begins by driving CHG low and lasts until the amplifiers settle
out. This can be as little as 700 ns (potentially longer if an output noise filter is used).
Sampling of SENSE is done 50 ns before this phase ends.

6.5 OCIMU

The Off Chip Current Measurement Unit (OCIMU) is a monitor circuit developed by Alcatel­
Bell and Technical School Ostende. The circuit differs from other available monitors in that
it is capable of performing a relatively high speed (measurement time can be less than 30J.ls
for a 2J.lF load) current measurement especially when driving a high capacitance load (up to
several J.lF). The circuit is also able to deliver transient currents up to 10 amperes. Further­
more the circuit requires only a minimum of easily performed calibration and delivers a well­
regulated supply voltage to the OUT never leaving the OUT supply pins floating.

The OCIMU circuit handles the problem of measuring IDDQ in a hierarchical way. Before a
detailed current measurement, the monitor circuit first decides if the actual IDDQ current is
within the lJ.lA - lmA measuring range. Only when current is within the range, the measure­
ment is activated. Otherwise an overcurrent indication is given, allowing the testing proce­
dure to be speeded up. The OCIMU delivers a pass/fail output. The used threshold level can
be set by a voltage level. For diagnostic reasons it has also an analogue output which is di­
rectly proportional to the IDDQ current drawn by the OUT. A strobe signal delivered by the
tester is used to trigger the monitor circuit to bypass the transient switching currents during
OUT state changes.

Trigger

Vref

Viddq

PasslFail

Diag (analog)

OCIMU circuit boundary

Figure 6-7: Basic building blocks of OCIMU circuit

The OCIMU circuit contains four basic building blocks, see Figure 6-7. These are a Current
Bypass Unit (CBU), a Overcurrent Detection Unit (ODU), a Current Measurement Unit
(CMU) and a ThresHold Unit (THU). The circuit has three inputs: Vref, Trigger and Viddq,
and three outputs: Vdut, Pass/Fail and an analog diagnostic output (Diag). Vref is the refer-

© Philips Electronics N.V. 37



CBU

ODU

CMU

ence for the regulating circuit, dictating the actual value of Vdut. Trigger is a control signal,
supplied by the tester, which is used to activate a measurement cycle or to keep the monitor
in bypass mode. Viddq is the programmable voltage reference for the pass/fail IDDQ compar­
ison. Vdut is the stable DUT supply voltage, Pass/Fail is a digital output indicating if the de­

vice passes or fails.

No Overcurrent; Overcurrent 1 No Overcurrent

Trigger h .. . .fA/n .. .....
---I 1 """""'""'""-"'""-"'""-"'""-~I

<:>.~< :~. ············:······>n···
';;;;;;o...-';;;;;;TI;;"·;;., -,;;;;;;--

1 I-"'""-_.;..-i:~;...._.. "'""-"'""-_···;..···..·~"'""- _----r----~l
I 1__......:nl..--__---Ll:nl..--_
1

Figure 6-8: OCIMU circuit operation diagram

The OCIMU circuit operation is illustrated in Figure 6-8 and can be summarised as follows:
The CBU is first activated by the high state of the externally provided Trigger signal. When
the trigger signal is deactivated (changing to low) the CBU switches out in favour of the
ODU which is active for a predefined minimum time, dictated by a monostable circuit. The

ODU then performs a first measurement of the IDDQ of the DUT and determines the order of
magnitude. When the measured current is below the ImA level then the ODU is switched out

and the CMU is switched in to perform an accurate measurement in the lilA - ImA range and
a comparison is made with a programmed reference value (Viddq) to generate a pass/fail out­
put. If the current is above the ImA level the ODU stays on and forces the Pass/Fail output
into the fail state.

• QTAG class & type: OCIMU is a class 2 QTAG monitor that offers a digital pass/fail out­
put but also uses analog pins (Vref, Viddq). This type of monitor is called a semi-dig­
ital threshold monitor.

• Monitor control: Controlling this type of monitor is easy. The signalling between the
internal blocks is done without external signals. When Vref an Viddq are set, only a
trigger signal as shown in Figure 6-8 has to be applied. This starts IDDQ measurement
and pass/fail information can be read after a predefined amount of time.

38 © Philips Electronics N.V.



6.6 IDUNA-2

The IDUNA-2 monitor is a demonstration QTAG class I monitor developed by Philips Re­
search and Lancaster University in ASIC form. It is a development from the original IDUNA­
I circuit, designed for on-chip IDDQ monitoring, but adapted to match the requirements of the
QTAG class I standard. The basic circuit has been improved to take advantage of both a
modem CMOS process and better analog design methods.

IREF DI TRIGGER

VDD PSU--+-"'--_---"'-...........

BYPASS ----+-~,

VREF --+---I---~

VDD DUT I---~

DO

Figure 6-9: Top-Level block diagram of IDUNA-2

Functionality of the IDUNA-2 monitor is divided between a number of blocks as shown in
Figure 6-9 and the interaction between these blocks changes according to what mode of oper­
ation the monitor is in. Two major modes are provided, the normal threshold based IDDQ cur­
rent pass/fail mode and the bypass mode.

If bypass mode is activated the Bypass block provides a short circuit resistance of typically
two Ohms between VDD_PSU and VDD_DUT. Measurement of the current passing through
the VDD_DUT pin by IDUNA-2 monitor is not possible in this mode although a pass/fail sig­
nal may still be generated which is not meaningful. Voltage regulation of the VDD_DUT pin
is lost during bypass mode, the low resistance short means that the DC voltage of VDD_DUT
will be close to that of VDD_PSU. Care must be taken when leaving bypass mode to set the
VDD_DUT pin to the VREF voltage level. The lack of a large pull-down current internal to
the IDUNA-2 monitor in addition to the large capacitance at the VDD_DUT pin means that
un-assisted recovery time may be of the order of ImS or more.

In measure mode current passing through the VDD_DUT input pin is passed through the
Front block. The primary operation of this block is to mirror the current and passing the re­

sulting current to a subsequent block of the monitor, the Back block. The current passed from
the Front to Back block is compared with a current reference derived from an internal current
reference cell. An asynchronous pass/fail decision regarding the current level of IDDQ current

© Philips Electronics N.V. 39



input is provided by a high impedance node that compares both currents. Adding or subtract­
ing current from the IREF pin will alter the current threshold of the monitor. This is permissi­
ble as long as stated current limits are not exceeded.

The Front circuit is also used to regulate the voltage of the VDD_DUT pin to the externally
set value of VREF irrespective of the magnitude of the current drawn through the VDD_DUT
pin by the device. In this fashion, IDUNA overcomes one of the objections to the Keating­
Meyer method, because the device's Voo node is continuously driven. A potential problem
with Keating-Meyer is that the Voo pin is isolated from the PSU source.

Once the asynchronous pass/fail signal has been generated it is read by the Output block and
may be latched to give synchronous pass/fail decisions using the Trigger input. The pass/fail
signal may also be ANDED with previous pass/fail signals from other monitors using the DI
input. This feature allows a daisy-chain of monitors to be created with a global pass/fail sig­
nal

I DD A......__...JA.......__...-JA.............--...;;..----JA""'"-__

TRIGGER---n n nL.....---fL
I

BYPASS

DI

DO
I I I I I I I I I

1·2a\'ALID[Ej.j:2~ VALID ~ill:2'2"j3 VALlDfl.22283 VALID ~8ili[
• • I I I I I I •

Previous monitors pass ... ! • Previous monitors fail

Figure 6-10: Typical IDUNA-2 synchronous timing diagram

• QTAG class & type: IDUNA-2 is a class 1 compliant IDDQ monitor and is a semi-digital
threshold monitor because both IREF and VREF signals must be set using either analog
voltages or currents.

• Monitor control: The interface of IDUNA-2 to the test system follows closely the provi­
sional QTAG standard interface of which pins are declared in section 5.5. The func­
tions MODE, DI and DO are the same for all class 1 monitors [Hales, 94a], but for this
monitor the MODE control signal, is in fact an explicit BYPASS control signal. More
importantly, the IDUNA-2 monitor has an optional pin IREF that can be used to pro­
gram the current threshold externally. However, if this pin is not connected the monitor
uses the fixed internal current source. Similarly, the pass/fail flag data can be clocked
by the TRIGGER pin where it is latched in a flip-flop. Figure 6-10 shows a typical
IDUNA-2 timing diagram.

40 © Philips Electronics N.V.



6.7 LTX IDDQ monitor

The LTX IDDQ monitor is a stand alone option of a LTX test system. It has been designed to
integrate into the current test systems. The LTX trillium test head is modified to accept the
IDDQ monitor. The unit will be made with precision components that will not require calibra­
tion [LTX, 94].

Trigger

[ 1IEfmt...,---4"""4>-- Source and
Comparator

Ij..I.I.l.~.:._t..~.'·J--.'-_"""_f£~ence
...............:::::\: :..•..:.: .

LTX I DDQ monitor

Figure 6-11: LTX I nnQ monitor block diagram

Through the load board, the LTX IDDQ monitor is connected to a standard OOPS (power sup­
ply). Non monitored VDD pins bypass the monitor and monitored VDD pins pass through the
monitor. Figure 6-11 shows a basic functional block diagram of the I DDQ monitor being used.
Large decoupling capacitors (l/lf - lOO/lf) are placed before the monitor. If any small decou­
pling capacitors (O.I/lf - O.OI/lf) are needed, they are applied after the monitor as close to the
OUT as possible. Capacitors placed before the IDDQ monitor will not affect the circuit per­
formance.

Under normal vector operation the monitors FET is closed and IDD is supplied from the
OOPS.

On an IDDQ vector an arming signal (See Figure 6-13) on the 'Trigger Source and Compara­
tor' pin is applied from an unused tester channel. This arming signal opens the FET and after
a delay, arms the sample and hold. This locks the VDD voltage on input 1 of the operational
amplifier. The IDDQ pass/fail decision depends on two currents:

• The reference current

• The OUT IDDQ

© Philips Electronics N.V. 41



If the reference current is greater than the IDDQ current, Voo will increase due to charging of
the DUT capacitance (including small bypass capacitors), see Figure 6-12(A). As a result, the
voltage on input 2 of the operational amplifier (Figure 6-11) will increase producing a logic
high. If the reference current is less than the IDDQ current,Voo will decrease due to discharg­
ing of the DUT capacitance (including small bypass capacitors), see Figure 6-12(B). As a re­
sult, the voltage on input 2 of the operational amplifier will decrease producing a logic low.
Through a levels translator, the arming tester channel also accepts the logic level from the
operational amplifier and latches the pass or fail into the tester. The arming signal is then un­
asserted, the PET closes, the DUTs 100 is again supplied by the DDPS and the next vector is
applied.

Reference
"'-Current

Level control

-r -r-fD_~---:Q~::=-'-'-i

VDD

J__~_
(A) Iref> I DDQ

Small
Bypass
Cap.

Reference
I--I~.. ...- Current

Level control

Small
Bypass
Cap.

(B) Iref < I DDQ

Figure 6-12: Model of currents with quiescent OUT

During IDDQ testing the tester executes patterns at normal functional rates, on vectors which
IDDQ tests are performed the vector period is extended. The total cycle time needed for a
IDDQ vector will depend on the amount of capacitance on the DUT side of the monitor and
the accuracy that is needed.

DUTVDD pin
(current)

42

Figure 6-13: LTX I DDQ timing diagram

© Philips Electronics N.V.



• QTAG class & type: The LTX monitor is a monitor that is mounted in the test head of the
tester. This is not a QTAG standard monitor, but it is controlled in the same way. This

means MDF also can cover this type of monitor. According the QTAG standard it is a
semi-digital threshold monitor in class 2 or 3.

• Monitor control: Controlling this type of monitor is done by digital pins connected to
unused tester channels. In Figure 6-13 a timing diagram of the LTX monitor is shown.

Threshold can be set using 4 pins, also connected to unused tester channels. The analog
pass/fail output should be measured (compared) at predefined times.

6.8 The Fully Digital Interface!

The monitors described so far use an analog parameter to set the current threshold value. Some testers

have a limited number of analog voltage sources, and they may not have any analog voltage sources

available to set the threshold. This is even more likely when devices with multiple power supplies are

tested because a separate IDDQ or IssQ monitor, with its associated analog threshold signal, would be

required for each power supply that is to be measured. This is an unrealistic requirement for some of

today's production test environments. A fully digital interface [Hales, 94b] was proposed to the QTAG

group as a way to make the QTAG monitors more useful in these environments.

The fully digital interface specifies the current threshold using a digital value which is loaded serially

into the monitor rather than using an analog value. In addition, the serial interface enables multiple

monitors to be chained together so that a single set of four digital tester pins can be used to control

as many monitors as are required. Although this serial interface makes access to the monitors more

complicated, it also provides more flexibility. It is thought that this interface can provide everything

that is needed to control the complete range of QTAG monitors which will be available, ranging from

the simplest low capability monitors to the more advanced monitors which will have current mea­

surement capabilities as well as pass/fail current threshold checking.

6.8.1 A Simple Monitor

Figure 6-14 is a block diagram of the serial interface logic which would be used by one of the simpler

QTAG IDDQ monitors. The power connections at the bottom ofthe diagram (VDD_MON, VDD_PSU,

VSS, and VDD_DUT) have the same functions as in the IDUNA-2 monitor. The other four connections

are used to create the fully digital serial interface. The MODE, CLK, and DI pins are inputs to the

monitor from the tester and the DO pin is an output from the monitor back to the tester. Multiple

monitors can be connected by chaining together their DI and DO pins. The four pins which are used

to create the serial interface are the same for both IDDQ and ISSQ monitors. The serial interface logic

can be implemented in CMOS using less than 300 transistors together with adigital to analog convertor.

1. © Copyright IEEE 1995

© Philips Electronics N.V. 43



MODE. This pin is used to switch between the monitor's control and monitor modes. Control mode

is used to configure the monitor, and monitor mode is used to measure quiescent current values.

CLK. In control mode, the rising edge of CLK clocks serial data in and out of the monitor. In monitor

mode, the rising edge of CLK indicates when a current measurement should be made.

DJ. In control mode, this pin is used to load serial data into the monitor. In monitor mode, this pin is

used to read the measurement result which is present at the DO output pin of the previous monitor in

the chain.

DO. In control mode, this pin reads serial data from the monitor. When multiple monitors are chained

together, this pin is also used to pass serial data from one monitor to the next monitor in the chain. In

monitor mode, this pin is used to feed the measurement results back to the tester.

000

DI

eLK

MODE

VDD_MON
VDD_PSU

VSS

DO

Figure 6-14: Block Diagram of Fully Digital Monitor

6.8.2 Control Mode

In Control mode the tester can set the monitor's threshold current, specify the current range, switch

the monitor on and off, and perform various other control activities. This is done by loading serial

data into the monitor via the DJ input pin. When these data have been shifted through the monitor,

they appear on the DO pin where they can then be loaded into the next monitor in the chain (if any).

Control mode is also used to read serial data from the monitor back to the tester.

Serial access to the monitor is accomplished via a 12 bit internal shift register which is connected

between the monitor's DJ and DO pins. In control mode, data in this shift register are shifted by one

bit on the rising edge of the CLK signal. The shift register is divided up into 4 command bits and 8

44 © Philips Electronics N.V.



data bits. Data are shifted into the monitor starting with the least significant data bit, and ending with

the most significant command bit. When the mode is changed from control mode to monitor mode,

the command that is present in the 4 command bits of the shift register is executed. Most of the

commands which have been defined are optional, and do not have to be implemented in all monitors.

DO

Some ofthe commands cause the monitor to load various data into the monitor's internal shift register.

These data can be read while the monitor is in control mode by shifting them out through the DO pin.

6.8.3 Monitor Mode

In Monitor mode the monitor measures the DOT's IOOQ/IsSQ value and sets the value of its DO pin

to indicate the measurement result. When multiple monitors are used the monitors can be chained

together to share a common set of four serial interface pins on the tester (Figure 6-15). When this is

done, the tester only has direct access to a single monitor's DO pin, so the measurements results need

to be combined to give a single pass/fail result. To do this, each monitor looks at the value that is

present on its DI input pin as well as looking at its internal IooQ/IsSQ measurement result. The monitor

returns a fail condition if either its DI input pin or the result of its internal IOOQ/IssQ measurement

indicate a fail condition. When this is done, the DO pin of the last monitor in the chain acts as a

combined pass/fail indicator for all of the monitors. In monitor mode, the tester should always apply

a 1 (pass) to the DI pin of the first monitor in the chain.

Figure 6-15: Block Diagram of Multi-Monitor Configuration

6.8.4 Current Measurements

The fully digital interface also provides two methods to support monitors which can return a current

measurement rather than just returning a pass/fail result. The first method (the measurement monitor)

© Philips Electronics N.V. 45



uses an integrated analog to digital convertor in the monitor, and the digitized result can then be

accessed by shifting it out using the serial interface.

The second method (the analog monitor) is simpler to implement, but requires either an external analog

to digital convertor or a mixed-signal tester with analog test capabilities. In this type of monitor the

DO pin can also be used to output an analog voltage which is proportional to the sampled current

value. Since multiple analog results cannot be combined into a single pass/fail value, the serial interface

provides some commands which can be used to configure the monitors so that the analog measurement

values appear sequentially at the output of the final monitor in the chain (shown below).

Measure IDDQl'ISSQ Values

t
eLK

DO ==:x x x::::==
t t t

Result 1 Result 2 Result 3

6.8.5 Connections to the Tester

Figure 6-15 shows how two fully digital IOOQ monitors would be connected to the tester. The DO

output of the first monitor is connected to the DI input of the second monitor. The pass/fail signal

which appears at the DO pin of the second monitor will indicate a failure if the measurement from

either of the monitors was above the specified threshold value.

Figure 6-15 also shows how analog IDDQ monitors would be connected to the tester. The analog

monitor's DO pin can return either a digital pass/fail indicator or an analog voltage. The pass/fail

value is processed directly by the tester and the analog voltage is digitized by an external analog to

digital convertor before it is passed on to the tester. In this case an eight bit analog to digital convertor

has been used, so nine additional tester pins are required. The tester pin count could be reduced by

adding a serial interface to the analog to digital convertor and connecting it using the existing serial

interface bus. The pin count could also be reduced by feeding the analog voltage value directly to an

input comparator of the tester where a pass-fail limit is set. Since this limit can be programmed from

the tester software an external analog to digital convertor can be replaced by a slow, virtual convertor

in the test program.

46 © Philips Electronics N.V.



7 MDF definition

7.1 Introduction

As mentioned earlier in section 5.6 MDF is intended as a means of describing the key aspects
of the implementation of IDDQ/ISSQ monitors used in conjunction with ATE systems [Baker,
94]. A similar approach as with BSDL has been chosen to come to the definition of MDF. The
MDF description is based on the VHDL syntax, which means that the QTAG monitor is de­

scribed in a VHDL entity description. In section 7.3 MDF is defined using Backus-Naur
Form (BNF). The BNF conventions used are given in appendix A. The complete BNF de­

scription of MDF is given in appendix B. The MDF description starts with the definition of
generic parameters. These parameters are needed to select default values used by test pro­

grams. These defaults include the package of the monitor, but also the format and state
schemes used to control the monitor. The logical port description part defines the pin types of

the monitor, the port names given are used as references in the rest of the MDF description.
The monitor type part gives the possibilities of the monitor and also defines the minimum

time period that can be used while testing. The package pin mappings are used to bind the
port names to physical pins. The monitor control scheme is described in the same way as

most tester software does, with format and state mappings. In MDF the state mappings are di­
vided in two modes, bypass mode and monitor mode. These modes are needed to choose
whether the monitor is active during a certain test or inactive (bypassed). The last part of the
entity description consists of the monitor port identification. This part is used to bind the

monitor pins to standard QTAG pin classes. These classes will first be discussed in the next
section.

7.2 (!1rj\(; pin classes

QTAG monitors will be controlled by a combination of test vectors and test programs used to
set voltage or current levels, measure values (analog or digital by down-loading captured
data from pin memory), calibration and initialization [Baker, 94]. All test programs will be

using a standard set of QTAG functions, available in all tester software belonging to QTAG
compatible ATE. Each standard function will be dedicated to a predefined group of monitor

pins. To group monitor pins, QTAG pin classes will be defined in this section. For a monitor
pin, being member of a class implies the type of pin and its usage. MDF will contain informa­

tion in the port identification part which binds all monitor pins to a QTAG class and gives pa­
rameter values to initialize the class-related standard functions. Below, the pin classes
defined will be summarized.

• QMON_BYPASS:
The bypass class is used for digital pins controlling the bypass mode of the monitor.

• QMON_TRIGGER:
The trigger class is used for digital input pins latching output at specific time intervals.

© Philips Electronics N.V. 47



• QMON_DI:
This class is used for digital input pins which are used when several monitors are daisy
chained together. It is an input for the DO signal from the previous monitor.

• QMON_DO:
The DO class is used for digital output pins carrying pass/fail information. The pass/
fail signal of the threshold monitor is present on the pins assigned to this class. It may
be asynchronous or may be latched at specific time intervals using a pin assigned to the
trigger class.

• QMON_VDD_PSU:
Pins assigned to the VDD_PSU class are analog pins which are used to power the pins
assigned to the VDD_DUT class. Current drawn through the VDD_DUT pins is taken
from pins assigned to this class.

• QMON_VDD_MON:
The VDD_MON class is used for analog pins which are used to power the monitor

modules.

• QMON_VDD_REF:
The analog pin class VDD_REF is used to define the voltage of the VDD_DUT class
pins.

• QMON_VDD_DUT:
Analog pins assigned to the VDD_DUT class are Voo pins of the DUT.

• QMON_IXXQ_REF:
The class IXXQ_REF is an analog pin class for pins that may be used to alter the fixed

current threshold.

• QMON_IXXQ_REF_BUS:
The class IXXQ_REF_BUS is used for digital pins that form a bus which is used to set
the current threshold. The pins have to be declared as bievector in the logical port
description.

• QMON_VALUE_ANALOG:
The QMON_VALUE_ANALOG class is used for analog output pins (measurement
type monitors) that have to be measured during a specific time in the monitor (measure)
period.

• QMON_VSS:
The V55 class is used for pins that has the function of global ground.

48 © Philips Electronics N.V.



7.3 The entity description

In VHDL all designs are expressed in terms of entities, which are the most basic building
blocks in a design [Perry, 93]. MDF uses a VHDL entity description to describe current mon­
itors with its pins, both analog and digital, its limitations and all information needed to con­
trol the monitor during quiescent current testing. For MDF, an entity has the following
structure:

entity My_QTAG_mon is
<generic parameters>
<logical port description>
<standard use statement>
{<use statement>}
<monitor type>
<device package pin mappings>
<device port format mappings>
<device default mode mappings>
<monitor port identification>

end My_QTAG_mon;

-- an entity for My_QTAG_mon

-- End description

This structure should be maintained with the order of elements as shown above to simplify
non-VHDL applications. The elements will be addressed in the next sections.

7.3.1 Generic parameters

Generics are a general VHDL mechanism used to pass information to an instance of an entity.
In MDF they are intended as a method for selecting among several packaging options that a
device may have and also for selecting the default scheme (format, timing and states) used
when using the QTAG monitor. The VHDL generic parameters must have the names shown in
order for software to separate them from other parameters that might be passed to the entity.
The construct has the following form:

generic ( PHYSICAL PIN MAP: string:=<default package type>;
PORT_FORMAT_MAP: string:=<default format description>;
BYPASS_MODE_MAP: string:=<default bypass mode map>;
MONITOR_MODE_MAP: string:=<default monitor mode map> );

<default package type> ::= "<VHDL identifier>"
<default format description> ::= "<VHDL identifier>"
<default bypass mode map> ::= "<VHDL identifier>"
<default monitor mode map>::= "<VHDL identifier>"

The VHDL identifiers refer to names given to constants with reserved MDF string types. The
use of these parameters and the reserved string types will become clear in the next sections.

© Philips Electronics N.V. 49



7.3.2 Logical port description

The device's system terminals are given meaningful symbolic names, which are used in sub­

sequent descriptions. This allows the majority of the statements to be "terminal independ­
ent". The port description uses the VHDL port list in standard practice. All pins referenced in

the MDF description must have been defined here, so not only digital but also analog pins in­
volved with the current measurement must be defined. The port description form is:

port ( <pin spec> {;<pin spec>} );
<pin spec>
<identifier list>
<pin type>
<port dimension>
<range>

::= <identifier list>:<pin type><port dimension>
::= <port name>{ ,<port name>}
::= in lout I buffer I inout I linkage
::= bit I bit_vector «range»
::= <integer> to <integer> I <integer> down to <integer>

The <pin type> identifies the system usage of a pin, with the following options:

in
out
inout
buffer
linkage

: simple input pin
: output pin which may participate in busses
: bidirectional signal pin
: output pin that may not participate in busses
: analog pin

Note, every pin must have a unique name, so if there are several VSS pins for example, they

must have different names such as VSSI, VSS2 etc, or be expressed as a vector. A vector re­
fers to a port consisting of more than one pin. An example of a port statement is:

port ( VREF,VDD_MON,lREF,VDD_DUT,VDD]SU:linkage bit;
VSS:linkage bit_vector(lto2);
DI,TRIGGER,BYPASS:in bit;
DO :out bit );

This example port statement declares eleven pins, consisting of seven analog pins ( five sin­
gle linkage pins and one two pins linkage vector) and four digital pins (three input and one

output).

7.3.3 Use statements

In VHDL commonly used data types are collected in a package. The MDF use statements

identify a standard VHDL package and other optional user defined packages needed to define
MDF attributes, types and constants. The following statement is mandatory in MDF:

use STD_QTAG_1_1995.all

7.3.4 Monitor type

.- Get standard MDF information

The type of QTAG monitor is defined by the use of VHDL attributes. An attribute contains
data that is attached to a VHDL object. The used type definitions are declared in the standard

QTAG VHDL package. Goal of the monitor type attributes is to add identification and verifi­
cation capabilities to application software that has to control the monitor during testing. The
following attributes describe the type of monitor:

50 © Philips Electronics N.V.



attribute MONITOR OPERATION of <component name> : entity is <monitor operation type>;
attribute MONITOR CONTROL of <component name> : entity is <monitor control type>;
attribute MONITOR RETURN of <component name> : entity is <monitor return type>;
attribute MONITOR_THRESHOLD of <component name> : entity is <monitor threshold type>;
attribute MONITOR_THRESHOLD_VALUE

of <component name> :entity is <real number>;
attribute MONITOR_THRESHOLD_LIMITS_RANGE

of <component name> :entity is ( <limits range record> );
attribute MONITOR_MEASUREMENT_LIMITS_RANG E

of <component name> :entity is ( <limits range record> );
attribute MONITOR MIN CLOCKPERIOD

<monitor operation type>
<monitor control type>
<monitor return type>
<monitor threshold type>
<limits range record>
<lower limit>
<upper limit>

of <component name> :entity is <real number>;
::= IDDQ I ISSQ I IXXQ
::= SEMI DIGITAL I FULL DIGITAL- -
::= MEASUREMENT I THRESHOLD I BOTH
::= FIXED I VARIABLE
::= <lower limit>,<upper limit>
::= <real number>
::= <real number>

The operation type IXXQ is used for monitors that can be used to monitor as well IDDQ as
IssQ. In all MDF descriptions operation, control, return and minimum clock period attributes
are used. The other monitor type attributes are used depending on the facilities the monitor
offers. For example when describing a monitor with fixed threshold only attributes
MONITOR_THRESHOLD (is FIXED) and MONITOR_TRESHOLD_VALUE are used. The
formal MDF rules can be found in appendix B.

7.3.5 Device package pin mappings

In this part of the description the VHDL attribute and constant statements are used to list the
package pin mapping. The format is shown by example:

attribute PIN_MAP of My_QTAG_mon: entity is PHYSICAL_PIN_MAP;

constant My_QTAG_mon_S0L16: PIN_MAP_STRING := <pin map string>;

Attribute PIN_MAP is a string that is set to the value of the parameter
PHYSICAL_PIN_MAP, as named above. VHDL constants are then written, one for each
packaging version that describes the mapping between the logical and physical device pins.
Note that the type of the constant must be PIN_MAP_STRING. An example of a pin mapping
string is:

"VREF:2.DO:l,Dl:15,VSS:(14,16),VDD_MON:l3." &
"TRIGGER:ll ,lREF:9.BYPASS:7,VDD_DUT:5,VDD]SU:3"

Note that the string is (arbitrarily) divided into two parts by the concatenation character "&",

which has no further syntactical meaning. An MDF parser will read the concatenated content
of the string and match portnames with the names in the port definition. The symbol on the
right of the colon is the physical pin associated with that port signal. If signals like VSS are
'bievector' in the port definition, then a matching list of pins enclosed in parenthesis are re­
quired. The physical pin mapped onto VSS(2) is pin 16 in the above example.

© Philips Electronics N.V. 51



7.3.6 Device port format mappings

The VHDL attribute and constant statements are used in a similar way to the device package

pin mappings. However, here they are used to define different format schemes for the ports of
the QTAG device. The format mapping form is:

attribute FORMAT_MAP of <component name>: entity is PORT_FORM AT_MAP ;

constant <format mapping name> : FORMAT_MAP_STRING := <format map string> ;
<format mapping name> ::= <VHDL identifier>
<format map string> ::= "<port format map>! ,<port format map> I"
<port format map> ::= <port name>:<port format>
<port format> ::= «format type>[,<leading edge>H,<trailing edge>))
<format type> ::= <digital format type> I <analog strobe type>
<digital format type> ::= DA I RZ I RO I RC I NR I SO I DC I TR
<analog strobe type> ::= MV
<leading edge> ::= <integer>
<trailing edge> ::= <integer>

Attribute FORMAT_MAP is a string that is set to the value of the parameter

PORT_FORMAT_MAP, as named above. VHDL constants are then written, one for each for­
mat scheme used for different monitor usage. For example can be thought of a synchronous
and an asynchronous format scheme. When no interactive application software is used, the
used format scheme can be chosen through the generic parameter PORT_FORMAT_MAP. An
example of a format mapping string is:

"DO:(SB.s0,80),Dl:(NR ,0),TRIGGER:(NR,0),BYPASS:(RZ,1 0,90)" ..

The <format type> identifies the format of a pin, with the following options:

DA : Data (state changes only occur at the beginning and end of a period)
RZ : Return to Zero
RO : Return to One
RC : Return to complement
NR : No Return
SO : StroBe
DC : Dont Care
TR : TRistate

MV : Measure Value (strobe for analog pin)

The MV format is a special format that is defined to indicate when a analog signal is valid to
be measured. It uses a leading and trailing edge to define the 'signal valid' window. This for­
mat can only be used with pins that belong to the QMON_VALUE_ANALOG class, men­

tioned in the port identification part.

Leading and trailing edges are given in percentages of the defined period length. The mini­
mum period length (MONITOR_MIN_CLOCKPERIOD) is defined in the monitor type sec­

tion of the MDF description.

52 © Philips Electronics N.V.



7.3.7 Device default mode mappings

The VHDL attribute and constant statements in this part are also used in a similar way to the
device package pin mappings, they are used to define different pin state schemes for as well
analog as digital pins of the QTAG device. The state mappings are divided in two types. The
first type is the state mapping of the pins used in bypass mode. In this mode, the QTAG mon­
itor is not active. The second type is the state mapping of the pins used in monitor mode. In
monitor mode the QTAG monitor is active. The mode mapping form is:

attribute BYPASS_MODE of <component name> : entity is BYPASS_MODE_MAP;
attribute MONITOR MODE of <component name> : entity is MONITOR_MODE_MAP;

constant <mode mapping name>: BYPASS_MODE_MAP_STRING:= <mode map string>;
constant <mode mapping name>: MONITOR_MODE_MAP_STRING:= <mode map string>;

<mode mapping name> ::= <VHDL identifier>
<mode map string> ::= "<port mode map>{,<port mode map>}"
<port mode map> ::= <port ID>:<pin state>
<pin state> ::= <digital state>kanalog value>
<digital state> ::= 011 I L I H I X I Z
<analog value> ::= <real number>

Attributes BYPASS_MODE and MONITOR_MODE are strings that are set to the value of
the parameters BYPASS_MaDE_MAP and MONITOR_MaDE_MAP, as named above.
VHDL constants are then written, one for each pin state scheme used for different tests.
When no interactive application software is used, the used pin state scheme can be chosen
through the generic parameters BYPASS_MaDE_MAP and MONITOR_MaDE_MAP. An
example of a mode mapping string is:

"VREF:5.0,/REF:O.O,VDD]SU:5.5,VSS(1):O.O,VSS(2):O.O," &
"DI:l ,TRIGGER:l ,BYPASS:l,DO:X"

The <digital state> identifies the state of a pin, with the following options:

o : input pin low state
1 : input pin high state
L : output pin low state
H : output pin high state
X : output pin don't care
Z : output pin tristate

The value system follows that of IEEE Std_Logic_1164 for digital pins. The values given to
the analog pins should be interpreted by the application software according to the monitor
port identification.

7.3.8 Monitor port identification

The monitor port identification part describes to which class of QTAG pins the monitor pins
belong. This class information is used by application software to identify the monitor pins
and to initialize the class-related functions on these pins. The port identification is defined by
the use of VHDL attributes:

© Philips Electronics N.V. 53



attribute QMON_BYPASS
attribute QMON_TRIGGER
attribute QMON_DI
attribute QMON_DO
attribute QMON_VDD]SU
attribute QMON_VDD_MON
attribute QMON_VDD_REF
attribute QMON_VDD_DUT
attribute QMON_IXXQ_REF
attribute QMON_IXXQ_REF_BUS
attribute QMON_VALUE_ANALOG
attribute QMON_VSS

of <port name> : signal is «level record»;
of <port name> : signal is «level record»;
of <port name> : signal is (<level record»;
of <port name> : signal is «level record»;
of <port name> : signal is "<vdd rec str>";
of <port name> : signal is "<vdd rec str>";
of <port name> : signal is "<vdd rec Sir>";
of <port name> : signal is "«dep rec sir»";
of <port name> : signal is «ref record»;
of <port name> : signal is «ref bus record»;
of <port name> : signal is "<val_ana rec str>";
of <port name> : signal is <default value>;

The identification attributes are all optional, but every port name declared in the port descrip­
tion part has to be bound to a QTAG pin class.

All digital pin classes are records assigned to, defining voltage levels belonging to logic low
and high levels, used to control the monitor.

<level record>
<low level voltage>
<high level voltage>

::= <low level voltage>,<high level voltage>
::= <real number>
::= <real number>

The analog pins bound to VDD classes, except the VDD_DUT class, use a <vdd rec str>
string to define its function parameters. The string can be devided in three parts, defining the

minimum, maximum and default voltage levels of the pin it is assigned to. The default value
is defined by a real number, while the minimum and maximum values also can be defined us­

ing a record describing a dependency upon another analog pin. This linear relation is de­
scribed using an offset and a multiplier.

<vdd rec str>
<min value depend>
<max value depend>
<default value>
<dep rec str>
<relation>
<offset>
<multiplier>

::= <min value depend>,<max value depend>,<defaull value>
;:= <real number> I «dep rec str»
;:= <real number> I «dep rec str»
::= <real number>
::= <port name>,<relalion>
::= <offset>,<multiplier>
::= <real number>
::= <real number>

The VDD_DUT pins can only be described in a dependency, because the voltage level of
these pins is always dependent on other pins. This is done in the same form as described in

the previous paragraph. The default value will be generated using this dependancy and the
default value of the pin it is dependent upon.

54

<dep rec sir>
<relation>
<offset>
<multiplier>

::= <port name>,<relation>
::= <offset>,<multiplier>
:;= <real number>
;:= <real number>

© Philips Electronics N.V.



The IXXQ_REF class parameters are defined using records with five real number fields. The

first three are used to initialize minimum, maximum and default current levels, the remaining

two (offset and multiplier) are used to convert the pin current level into the altered current

threshold used when monitoring.

<ref record>
<min value>
<max value>
<default value>
<conversion>
<offset>
<multiplier>

<min value>,<max value>,<defauit value>,<conversion>
<real number>
<real number>
<real number>
<offset>,<multiplier>
<real number>
<real number>

The IXXQ_REF_BUS class controls the internal current threshold. This is done by digital
pins which form a bus that can be given a certain logical value. This value is used to set the
current threshold. The attribute used for this class consist of a record with four number fields
and a string. The first two number fields are real numbers that define the voltage levels be­
longing to the logic low and high value as is standard practice with digital pins. The next two
integers define the biCvector numbers that identify the most significant bit (MSB) and least
significant bit (LSB) used in the lookup table defined by using a string.

<ref bus record>
<level record>
<low level voltage>
<high level voltage>
<msb ID>
<Isb ID>
<ref table string>
<table entry>
<bus pattern>
<bit>
<ref value>

::= <level record>,<msb ID>,<lsb ID>,<ref table string>
::= <low level voltage>,<high level voltage>
::= <real number>
::= <real number>
::= <integer>
::= <integer>
::= "<table entry>{ ,<table entry>}"
::= <bus pattern>:<ref value>
::= <bit>{<bit>1
::= 011

::= <real number>

The usage is shown by the following example:

attribute QMONJXXQ_REF_BUS ofADR : signal is (0.0,5.0,3,0, "0000:10.0E-6," &
"0001:JJ.OE-6," &
"0010:12.0E-6," &
"0100:13.0E-6," &
"1000:14.0E-6" );

In this example, biCvector ADR is a four pins wide bus. The logic low and high levels corre­
spond with voltage levels O.OV and 5.0V. The MSB and LSB used in the lookup table are as­
signed to portID 3 and to portID O. This means that ADR(3) is MSB and ADR(O) is LSB. The
physical pins of the portIDs are described in the device package pin mappings. The lookup
table contains current threshold values assigned to each table entry.

As described in the previous chapter, measurement monitors with an analog output will also
be part of the QTAG monitor standard. The outputs of these monitors will be bound to the
VALUE_ANALOG class. The class parameters are described using a string. This string con­
tains minimum and maximum values and a linear conversion part in which an offset and mul-

© PhIlips Electronics N.V. 55



tiplier are given. The minimum and maximum values can be real numbers but also
dependencies as described in the VOO classes part. A time window, indicating the analog
value is valid, is defined in the format mapping part using the MV (measure value) format.

<val_ana rec str>
<min value depend>
<max value depend>
<depend record>
<relation>
<offset>
<multiplier>
<conversion>
<offset>
<multiplier>

::= <min value depend>,<max value depend>,<conversion>
::= <real number> I <depend record>
::= <real number> I <depend record>
::= <port name>,<relation>
::= <offset>,<multiplier>
::= <real number>
::= <real number>
::= <offset>,<multiplier>
::= <real number>
::= <real number>

The last class defined is the VSS class. This class is only given a default voltage level by a
real number attribute. All pins bound to this class are used as global ground.

<default value> ::= <real number>

At this time QTAG pin classes have been defined based upon presently known monitors and
proposals for future development. All types of monitor pins that can be expected on future
QTAG monitors are covered. However, extension of these classes is foreseen.

In appendix F, three examples of MOF are given describing IOUNA-2, QuiC-Mon v5.0a and
the LTX_IDDQ monitor.

56 © Philips Electronics N.V.



8 Using MDF in Philips CAD-Test flow

8.1 Introduction

Philips CAD-Test flow is based on a set of tools developed by Philips Semiconductor and
Philips ED&T (Electronic Design and Tools) to implement the macro-test methodology de­
vised by Philips Research [Bouwman,92]. In the macro-test methodology the Divide and

Conquer approach to design for testability is employed to break the testing of an IC into indi­
vidual macros that have a specific test generation tool for which a known fault or defect cov­
erage can be generated. Hence random logic would be partitioned away from RAMs, and
different analogue blocks would be partitioned into macros. Using this strategy, the individu­
al test sequences must be first merged with the necessary test protocol, to transport the test

data to and from the macro, and second, to merge all the macro test vectors into one efficient
unified program.

8.2 Computer Aided Test (CAT) system

The set of tools developed by Philips Semiconductors and Philips ED&T used for test gener­
ation are part of the Philips Computer Aided Test (CAT) system. Pattern generation is done

by four different software tools, see Figure 8-1. For random logic the combinatorial pattern

generator AMSAL is used. For RAM and/or ROM the algorithmic generator MemGen is

used. If a functional test is desired, the functional pattern converter FCon can be used to con­
vert simulation listing files into a test pattern set. The boundary scan pattern generator Tim­
Pat is used to generate vectors for testing boundary scan circuitry (used for testing PCB).

Figure 8-1: Pattern generation tools in Philips CAT system

All pattern generators produce a PAT file, the standard pattern file. This file contains stimuli
and predicted responses, expressed with respect to pins or chains of the block to which it re­

fers. It is the task of the Test ASSembler (TASS) to change this level of reference from block
level to chip level and to resolve the chain references. How this needs to be done can be fig­

ured out by the Test PLan Generator (TPLG), which output is used to instruct TASS how to
assemble tests. An important property of the PAT file is that is does not contain any timing­

related information. It is up to TASS to add this information according to the user-specified
needs.

© Philips Electronics N.V. 57



8.3 TASS

TASS is probably a unique tool in the industry, because it is not only capable of merging test
vectors and protocols of different macros into a unified test sequence for an IC. It can trans­
late those vectors into a wide variety of different ATE vector formats and simulator formats,
but also into VHDL and Verilog test benches. In Figure 8-2 a block diagram of TASS is
shown. The input files of TASS consist of a control (CTR) file and test data files (TDF) con­
sisting of pattern (PAT) files and Test Description Language (TDL) files.

U
CTR

U
PAT

\... TDL files
'V'

TDF

PAT files ,/

Tester Programs
J941,.)953
J976,.)983
LTX synchromaster
HP82000
IMS Logic Master
Sentry 7/50
ASIX2
A570/580

TSSI ascii
TAPEl,TAPE2
PAT
ATF
EDIF

Simulator
stimuli
Quicksim Force
SIMONSCL
GDT LSIM
HELIX
VLSISIM
VERILOG
VHDL

Figure 8-2: TASS block diagram

The TASS CTR file contains a control description in TASS Command Language (TCL). It is
used to influence the execution of the TASS program and to specify the required input and
output files. The timing information belonging to DUT test vectors is described in the same
way as tester software does, using formats (waveforms) and edges combined in a waveset.
The waveset information belonging to the test data files is also defined in the CTR file. The
TDL files contain test descriptions that are used to manipulate test vectors.

As shown in the TASS block diagram (Figure 8-2) no data path is available from the CTR
compiler to the TDL compiler. As a result, the test description language can not handle data
that is defined in the CTR file. This means that the test description language can only change
stimuli and expected data of the test. The accompanying waveset information defined in the
CTR file is static during a test block. Even vector manipulations depending on waveset infor­
mation are impossible. As will be shown later this is a major drawback when manipulating
test vectors for I DDQ test using a QTAG monitor.

The TASS output files are generated by the T2POST backend. This part contains the execu­

tion of the conditions which are defined in the CTR file and the calculation of the wavesets
and delays. The output files can be divided in three groups. The first group consists of tester
specific output files, the second group is formed by simulator stimuli and the third group is
formed by standard files like PAT or Application Test Files (ATF). These files are used for

58 © Philips Electronics N.V.



data transfer between different tools. The ATF format also can be used to execute multiple
TASS runs on one vector set, see Figure 8-3. This can be necessary because of the poor con­
currency TASS offers.

A great disadvantage of the multiple TASS runs using the ATF format is the lost of waveset
information defined in previous runs because of the ATF files only containing stimuli and ex­
pected data without timing and waveform information.

PAT

E7=1r--~I4- CTR

L...;,-'T"""..........;;;J..- TDL

, ~ :~_._~r¥. CTR
• I .~-_.

ATF : TASS.·.:
~ I .. - _. TDL'" ......,.... .. ........

' .. ' ATF
CTR
with Wavesets

!4--TDL
J,.-........-.--......!

Figure 8-3: Multiple TASS runs using ATF

One facility that TASS cannot provide is test program generation. This is a disadvantage
when using TASS in the QTAG Design-test flow (see Figure 5-3) because the monitor must to
a degree be controlled via the test program. For instance, control of PSU voltages is only pos­
sible via the test program. Nevertheless for the purpose of creating a 'QTAG monitor AP­
PEND' TASS is an ideal because it provides powerful vector manipulation facilities with the
capability of direct translation to many ATE systems.

8.4 Philips IDDQ Test-development flow

The QTAG standard has been defined to create a 'Plug&Play' environment for IDDQ test.
MDF also has been defined supporting this goal. The Philips I DDQ Test-development flow
also has to support the idea of 'Plug&Play' using a QTAG monitor. This means that it must

be easy to append a QTAG monitor to existing test vectors. The ideal situation would be that
appending a monitor to a complete test generated for a specific DDT does not need any re­
generation of these DDT test vectors.

As mentioned in section 8.3 the 'QTAG monitor APPEND' part of the QTAG Design-Test
flow can be implemented using TASS. It has the following two functions:

• Append monitor control to existing OUT test files

• Convert OUT testfiles keeping OUT quiescent during current measurement.

© Philips Electronics N.V. 59



The digital monitor pins are connected to the tester pin electronics. This means they are con­
trolled by the test vectors, which will be loaded into the tester pin memory. As a result, the
monitor append consists of adding monitor pins and monitor control states to the OUT test
vector files. The resulting test files will control both OUT and QTAG monitor. Keeping the
OUT quiescent is not as easy as it seems using TASS. As mentioned before TDL, which is
used to append the QTAG monitor to the OUT test vectors, does not offer the possibility of
getting pin waveset information while processing vectors. Keeping the OUT in a quiescent
state means that all OUT pins, including clock pins, may not switch during this period. To ar­

range this all OUT pins must be given a state, depending on the pin's format in the waveset
description which is only available in the TASS CTR file. For example a pin with a Return to
Zero format has to be held low (zero) to keep it quiescent.

DUT
testfiles

MDF

::::::~:r:::

====d.??::::
·····=·QTAG~~~it.:-APPEND

Figure 8-4: 'QTAG monitor APPEND' using TASS

The 'QTAG monitor APPEND' needed in the IDDQ testflow using TASS has to contain a soft­
ware tool that overcome the shortcomings of TASS in relation to the timing issue described.
The resulting flow is shown in Figure 8-4. It has a 'QTAG monitor APPEND' that consists of

a new developed MDF2TASS tool and a TASS-run on the OUT testvectors. MDF2TASS
solves the problem described above by keeping a list with waveform information of all OUT
pins (read from OUT CTR file). While generating the testvector manipulation functions in
TDL this list is used to create functions, depending on the formats of the OUT pins. The

TASS-run is controlled by a CTR file, containing timing information of the OUT and the
QTAG monitor pins, and a TDL file, describing IDDQ testvector manipulation functions, gen­

erated by MDF2TASS. The final result of the TASS-run are tester files for the OUT with a
QTAG monitor on the test fixture.

60 © Philips Electronics N.V.



The pattern files containing OUT test vectors consist of pin and chain declarations, input
stimuli and expected data. These vectors describe long series of clock cycles in which data is
scanned into scan chains. When all chains have been filled with stimuli, a 'normal' clock cy­
cle occurs bringing the OUT in a state which is compared to expected data while shifting out
the scan chains. IDDQ is measured prior to a 'normal' clock cycle.

EJ OUT Netlist ....

"",,··i· EJ f3
~"'SA~ .tdl tID #

.ctr ••
.TASS

A(fdIH~(l;.Jrigpln19PV1Pinlisirn.ttrfllEi .</:,
IcicilLTrig pill indiqlles Illdq'rrieasIJrllmenl L::yl;:lesin.B,ttfi1e .:
TmnolloWihgTAS~;Tqp::onstr@trllil~zelhis;i .'.:, .. } .::,.,.",.,

DEFINE TESTMODE;
Idd~Trig =0;

END;
DEFINE NORMALMODE;

Idd~Trig = 1;
END;

I•
"":"'''''''''::::'''':::::f.,:(~;:~:::::""<~:::~:::••:

MDFHASS

Figure 8-5: Philips I DDQ Test-development flow

A 'QTAG monitor APPEND' needs a trigger flag in the OUT vector file indicating when
IDDQ has to be measured. When no flag is available the append tool cannot detect whether
IDDQ should be measured or not because the vector file does not always contain explicit in­
formation on the OUT being in scan mode or normal mode. For this reason precautions have
to be taken assembling a test containing IDDQ test vectors. After assembling such test in the
output vector file a virtual pin must be available which will be used as IDDQ trigger flag as

© Philips Electronics N.V. 61



described above. Ideal would be using test pattern generators that generate this trigger infor­
mation itself. This would allow combining IDDQ test patterns and voltage test patterns in one
test and this also would be better for a total 'Plug&Play' concept because adding a virtual pin
during assembling the DUT test can be seen as a regeneration of existing OUT test vectors.
This is not ideal as stated before. When adding trigger information during assembling special
effort is asked from the test engineer who in the ideal 'Plug&Play' situation should not notice
the difference of test generation with or without IDDQ trigger flag.

In Figure 8-5 the Philips IDDQ Test-development flow is shown. The pattern generator AM­

SAL is used for generating IDDQ test patterns (without IDDQ trigger flag). The creation of a
virtual trigger pin called Iddq_Trig is done in the first TASS run used for assembling the
OUT test without QTAG monitor. The TCL code used to generate this pin is also shown. The
resulting OUT test vectors will contain a trigger pin which indicates IDDQ measure cycles

(Iddq_Trig = 1). In Figure 8-5 also the new developed tool MDF2TASS is shown, including
its data flow which is magnified in Figure 8-6. In the next section this tool is discussed in de­

tail.

8.5 MDF2TASS

A new tool called MDF2TASS has been developed to append QTAG monitor control to gen­
erated test vectors using the Philips CAT system. MDF2TASS has been written in ANSI C us­
ing YACC and LEX for building input file parsers.

Figure 8-6: MDF2TASS data flow

62 © Philips Electronics N.V.



In this section the functioning of MDF2TASS will be discussed on the basis of Figure 8-6.
First, all tasks of MDF2TASS are summarized:

• Parse Monitor Description Format and build QTAG monitor data structure

• Parse TASS Command Language (CTR file) and build list of OUT-pin waveforms

• Generate CTR file with wavesets for DUT and QTAG monitor

• Generate IDDQ test description in TDL, keeping OUT quiescent while measuring

When the MDF2TASS tool is executed, first the monitor MDF file is parsed by a MDF com­
piler. This compiler uses a YACC and LEX parser. The grammatical rules defined in YACC

are a one to one translation of the MDF entity description in BNF (see appendix B). The lex­
ical elements defined in LEX are a subset (same as BSDL) and standard practice of those of

VHDL as defined in IEEE Std 1076. The most important elements are mentioned in appendix
D. While parsing MDF a data structure is build containing all monitor specific information.

The next step is formed by executing the TCL compiler/generator. The YACC and LEX files
used for the TCL parser have been based on the grammatical and lexical rules defined in the
TASS reference manual [CAT team, 94]. This compiler/generator behaves as a filter that cop­
ies relevant information directly from input to output CTR file. When DUT-pin timing and
waveform information is read, it is also copied to the output CTR file and stored for later use
while generating test functions in TDL. Only timing and waveform information defined in

'TCL global scope' is copied. While copying TCL from input to output CTR file pin declara­
tions and wavesets are extended with QTAG monitor pins and accompanying wavesets read

from the MDF data structure. The DUT test period, defined in the input CTR file, is overruled
by the minimum test period defined in MDF attribute MONITOR_MIN_CLOCKPERIOD.

When the TCL compiler/generator has finished, the TDL generator is executed. This part of

the MDF2TASS software has access to the data structure containing QTAG monitor informa­
tion read from the MDF file and to the DUT-pin waveform data. The generator contains

standard IDDQ-measure functions that only have to be completed with monitor and DUT spe­
cific pinnames and states. These functions are:

• monitocbypass_mode:

• monitocmeasure_mode:

• gecquiescenCdut:

• gecpattem_dut:

Generate monitor stimuli and expected data
controlling monitor in bypass mode.

Generate monitor stimuli and expected data
controlling monitor in measure mode.

Generate DUT stimuli keeping it quiescent.

Get original DUT test vector.

8.5.1 TDL flow generated by MDF2TASS

In TDL a main routine is written that calls the generated functions mentioned above while

manipulating the DUT test vectors. Depending on the state of Iddq_Trig a function call se­
quence is executed, see Figure 8-7. The DUT test patterns are numbered. These numbers are
used to reference DUT patterns while generating the new patterns including monitor control.

The main routine starts by initializing a local pattern number counter and getting the first

DUT test pattern referring to it. When the Iddq_Trig state is zero, the QTAG monitor will be
kept in bypass mode. The accompanying monitor pin states are added to the DUT test pat-

© Philips Electronics N.V. 63



terns by the function 'monitocbypass_mode'. After this the output pattern is written and the
local pattern number counter is increased. When the Iddq_Trig state is one, IDDQ has to be
measured before clocking the OUT. First the QTAG monitor control is added to the OUT test
pattern by the function 'monitocmeasure_mode'. Hereafter OUT-pin states are changed
keeping the OUT quiescent during the current measurement cycle. These changes are made

by the 'gecquiescenCdut' function.

START

t
{initialize pattern_dut number}

t
getyattem_dut

~g=l}

monitor measure mode
.- t -

get_qUlescent_dut

t
{generate pattern}

t
getyattern_dut

t
monitor_bypass_mode

t

{generate pattern}

Ildd"'T~

monitor_bypass_mode

t

{generate pattern} ('normal' cycle)

lin""." p.tt=_d", n"mbe,} ..J
t

(pattern_dut number> max pattern_dut number)

t
END

Figure 8-7: TDL flow generated by MDF2TASS

Now a new pattern is written containing the QTAG monitor control for measuring IDDQ and
the OUT-pin states keeping the OUT quiescent. The next step is fonned by a reload of the
original OUT pattern (without changes made to keep it quiescent) by the function

'geCpattern_dut' without increasing the local pattern number counter. The QTAG monitor
bypass control is added calling the function 'monitor_bypass_mode'. The pattern written at
this point contains the original 'nonnal' cycle. In the resulting test file all original 'nonnal'
cycle vectors have been replaced by two vectors. One vector controlling a QTAG monitor for

measuring IDDQ with a quiescent OUT and one vector describing the usual 'nonnal' cycle
keeping the QTAG monitor in bypass mode. In the next section an example is shown creating

IDDQ test vectors with MDF2TASS and TASS. The TDL file generated in this example has
been printed in appendix E.5.

64 © Philips Electronics N.V.



8.6 MDF2TASS example

In this section an example is shown in which MDF2TASS is used in the Philips CAD-Test
flow to append Philips IDUNA-2 monitor control to simple test patterns, specially defined for
the MDF2TASS example. In Figure 8-8 the IDDQ Test-development flow and file names used
for this example are shown. First, the pattern definitions in the pattern file 'testdut.pat' are
explained, then the Application Test Files in the Test-development flow are discussed. The
example is finished by vector generation for HP82000 tester.

TASS

mdf2tass.atf

········MDEztAss

iduna2.mdf

mdf2tass.tdl
mdf2tass.tass

Figure 8-8: MDF2TASS example IDDQ Test-development flow

All files, except 'iduna2.mdf', mentioned in Figure 8-8, have been printed in appendix E. In
appendix F.I, the MDF description of Philips IDUNA-2 monitor ('iduna2.mdf') has been
written.

8.6.1 Example test patterns

The MDF2TASS example uses a pattern file 'testdut.pat' which is generated by hand. This
file contains two test pattern definitions which are discussed after explaining the test DUT
they are defined for. In Figure 8-9 the test DUT is shown. It only consists of two scan chains.
One scan chain (scani 1 -> scano 1) of length four and one scan chain (scani2 -> scan02) of
length two.

scanil

scani2

scanol

scano2

Figure 8-9: Test DUT used in MDF2TASS example

© Philips Electronics N.V. 65



This information also can be found in the header definition of the pattern file. The header def­
inition describes at which locations in a pattern inputs and outputs of the DDT can be found
and at which positions the scan chain data has been written. Below a part of the pattern file
'testdut.pat' (see appendix E.l) is presented including additional comment.

Example: part of DUT pattern file: 'testdut.pat'

Header Definition;

I NPUT sea ni 1 1, se an i2 2; - - - - - - - - > 'normal' cycle input at position 1 and 2 in pattern

OUTPUT seano 1 15, se ano2 16; - - - - - - ->'normal' cycle expo data at position 15 and 16 in pat.

CHAIN seani1 3, seano1 9, 4, N; -->chain1:inputstartat3,exp.datastartat9,length4

CHAIN seani2 7, seano2 13, 2, N; ->chain2:inputstartat7,exp.datastartatJ3,length2

End;

Pattern Definition;

1 01 1111 11 LLLL HH LL;

2 : 10 0101 10 HHLH LH HH;

End;

The patterns defined in the above example describe 5 cycles each. These cycles consist of

four scan cycles (longest scan chain length) and one 'normal' cycle. In Table 8-1 the extract­
ed cycles of the two pattern definitions are shown. The chain input stimuli and expected data
defined in the pattern definition have been completed with zeros for don't care input states
and undefined (D) for don't care expected data.

Table 8-1: Cycles defined in 'testdut.pat'

u

u
u

u
u

:::~iiij:6:t:: :::::: ·.·•.i.:~.:·.:·.¢.a.::.:·.··.··.~.:·.:.h.··.·..~.•..i •........:.....:.:...:...:.:.:.:.;.:.:.;.:.:.:...

o
o

o

o
o
o

normal

scan 2

scan 3

scan 4

scan 1

scan 4

scan 2

scan 1

scan 3

scan 2

scan 3

scan 4

66 © Philips Electronics N.V.



Note that the expected data has been delayed. The expected data of pattern one is used to­
gether with the input stimuli of pattern two (While shifting new data in, expected data is

compared to the data shifted out).

8.6.2 DUT Application Test File

As shown in Figure 8-8 an ATF file 'testdut.atf' (see appendix E.3) is generated by TASS

controlled by the 'testdut.tass' (see appendix E.2) CTR file. While generating the OUT test

vectors a IDDQ trigger pin is defined. At this point for example HP82000 test vectors could be

created (instead of ATF), used for testing the OUT without QTAG IDDQ monitor. The
Iddq_Trig pin in this case can be used to trigger IDDQ measuring resources. During the

MDF2TASS example at this point an ATF file is created. Below a part of this ATF file has

been copied:

Example: part of ATF file: 'testdut.atf'

HEADER DEFINITION;
INPUT SCANI1 1, SCANI2 2, CLK 3, IDDQ_TRIG 4;
OUTPUT SCAN01 5, SCAN02 6;

END;

PATTERN DEFINITION;

* ***** START OF 1.TESTMODE FOR DTB TESTDUT *****
1 1010UU;
2 : 1010UU;
3 : 1110UU;
4 : 1110UU;

* ***** START OF 1.NORMALMODE FOR DTB TESTDUT *****
5 : OlllLL;

* ***** START OF 2.TESTMODE FOR DTB TESTDUT *****
6 0010LH;
7 : 1010LH;
8 : OllOLU;
9 : 1010LU;

* ***** START OF 2.NORMALMODE FOR DTB TESTDUT *****
10 : 1011HH;

* ***** START OF 3.TESTMODE FOR DTB TESTDUT *****
11 : 0010HL;
12 : 0010HH;
13 : 0010LU;
14 : 0010HU;

END;

As can be seen in the ATF file, the original pattern definitions of the input PAT file have been

extracted in the ATF file. For this reason the Iddq_Trig pin has to be added in the first TASS

run used on original PAT files. After extracting the patterns, explicit information of the OUT

being in normal mode or scan mode has been lost. Note that adding the IDDQ trigger pin is

only possible when all pattern definitions describe IDDQ patterns. When combining columns
1,2,5,6 of the ATF pattern definition, Table 8-1 arises. Column 3 contains the clock state of

the OUT. As can be seen the clock state is a continuous one. Together with the accompanying

waveform definition in the 'testduttass' CTR file a continuous clock signal is produced on
the tester (if tester files are generated). The Iddq_Trig pin state is zero in scan cycles and one

in 'normal' cycles as defined in section 8.4

© Philips Electronics N.V. 67



8.6.3 Adding IDUNA-2 monitor

Adding IDUNA-2 monitor control to the DUT test vectors (ATF file) is done by executing

TASS controlled by MDF2TASS output files. When MDF2TASS is called without parameters

the following message is displayed:

Screencopy MDF2TASS call:

>mdf2tass

usage: mdf2tass <MDF file><TCL file><ATF filename><CREATE options>

example: mdf2tass iduna2.mdf iddqtest.tass iddqtest.atf atf no_compress

The MDF2TASS tool needs the following input parameters:

• <MDF file> : filename of MOF file

• <TCL file> : filename of TCL file that was used for creating the DUT ATF file

• <ATF filename> : filename of DUT ATF file. (ATF file is opened by TASS)

• <CREATE options> : TCL CREATE options, used for defining TASS output format

Below two examples of calling MDF2TASS are given. Both are used in the MDF2TASS ex­

ample I DDQ Test-development flow shown in Figure 8-8. The first call is used to create an
ATF file ('mdf2tass.atf', see appendix E.6) including IDUNA-2 monitor control. The second

call is used to generate HP82000 tester files. These files have been used to get a graphic rep­

resentation of the DUT test vectors with additional monitor control.

MDF2TASS calls used for example:

mdf2tass iduna2.mdf testdut.tass testdut.atf atf no_compress

mdf2tass iduna2.mdf testdut.tass testdut.atf hp82000

Executing TASS with the files generated by MDF2TASS is done as follows:

TASS call used after executing MDF2TASS:

tass mdf2tass

While executing TASS, controlled by the files generated by MDF2TASS, tester files or other

format files are generated used for testing a DUT with QTAG monitor on the test fixture. Be­
low the header and pattern definition part of the ATF file ('mdf2tass.atf') generated by the fi­

nal TASS run of the MDF2TASS example has been printed. As can be seen, IDUNA-2

monitor pins have been added to the header definition. Also columns are added in the pattern

definition containing monitor control states and expected data.

The most important issue to note is the existance of additional cycles in which IDDQ is meas­

ured. During these cycles the clock state (column 7) is zero, keeping the DUT quiescent, the

bypass pin state is one and DUT output is ignored.

68 © Philips Electronics N.V.



Example: part of ATF file: 'mdf2tass.atf'

HEADER DEFINITION;
INPUT QM_DI 1, QM_TRIGGER 2, QM_BYPASS 3, SCANII 5, SCANI2 6,

CLK 7, IDDQ_TRIG 8;
OUTPUT QM_DO 4, SCANOI 9, SCAN02 10;

END;

PATTERN DEFINITION;
* ***** TESTMODE ********

1 100UI0I0UU;
2 : 100UI0I0UU;
3 : 100UI110UU;
4 : 100UI110UU;

* ***** IDDQ MEASURE MODE
5 : 111 HOI 01 UU ;

* ***** NORMALMODE ******
6 : 100U0110LL;

* ***** TESTMODE ********
7 : 100UOOI0LH;
8 : 100U1010LH;
9 : 100U0110LU;
10: 100U1010LU;

* ***** IDDQ MEASURE MODE
11: IllH1001UU;

* ***** NORMALMODE ******
12: 100U1010HH;

* ***** TESTMODE ********
13: 100UOOI0HL;
14: 100U0010HH;
15: 100U0010LU;
16: 100U0010HU;

END;

*****

*****

*****

*****

*****

*****

*****

In Figure 8-10 a timing diagram of the generated HP82000 test is shown. In this figure the
IDUNA-2 monitor control can be observed. When trigger IDDQ_T is high, IDDQ has to be
measured. DUT clock eLK is held low and bypass mode is left (QM_BYP high). After trig­
gering the monitor (QM_TRI) the pass/fail is observed at output QM_DO.

Figure 8-10: HP82000 timing diagram: test DUT with IDUNA-2

© Philips Electronics N.V. 69



9 Conclusions

In this report the definition of a description language for IDDQ monitors has been described.
The language 'Monitor Description Format' (MDF) is based on the VHDL syntax and bor­
rows many concepts from the Boundary Scan Description Language (BSDL) used in IEEE
Std 1149.1. A wide variety of monitors can be described using MDF because of the flexible
storage of monitor control schemes and the extensive collection of standard pin classes, used
to interface with Automatic Test Equipment (ATE) software. The MDF definition has focused
on creating a working solution for the monitors which already exist (semi-digital). Since no
QTAG standard digital interface has been defined yet, the current MDF definition does not
include support for these types of monitors. However, this is an area that needs to be ad­

dressed in future development.

While defining the IDDQ test-development flow using the Philips test assembler TASS, a tim­
ing issue appeared that probably will be a problem with most test assembler software. In con­
ventional voltage test-development, timing information is added at the end of the test
generation after assembling the DUT test patterns. In future IDDQ test-development timing
information will be more and more important during test vector assembly. One key issue is
keeping the DUT quiescent while controlling IDDQ measure equipment. This can be imple­
mented as period changes 'on the fly'. For obtaining optimal testtime vector periods will only
be extended in the period IDDQ is measured leaving all other test cycles unchanged.

Another issue identified is the need of a IDDQ trigger column in the DUT test vectors. In this
column a flag can be set when IDDQ has to be measured. In Philips IDDQ Test-development
flow a virtual pin (Iddq_Trig) is added while assembling the generated DUT testpatterns.
This virtual pin is used for triggering IDDQ measurement. As a result, all patterns in the vec­
tor files have to be IDDQ testpatterns. Ideal would be pattern generators which generate an
IDDQ trigger column in the testpatterns. In this case IDDQ testpatterns could be combined with
voltage testpatterns and the QTAG 'Plug & Play' principle would be served because of the

automated availability of IDDQ trigger information.

A total 'Plug & Play' environment for QTAG IDDQ monitors only can be reached when ATE
offers QTAG standard functions. These functions form together with the QTAG pin classes
the software interface needed to control the monitor via the ATE testprograrn. For instance,
control of PSU voltages is only possible via the testprograrn. The QTAG standard functions
has to be defined in the near future to allow developments in testprogram generation.

In general can be concluded that the definition of MDF brings the QTAG standard one step
closer to a total 'Plug & Play' environment for IDDQ testing although much work has to be
done in future development to ensure its success.

© Philips Electronics N.V. 71



10 Future development

In section 6.8 of this report a proposal for a fully digital serial interface is described. This in­
terface uses only 4 pins and is specially designed for QTAG monitors. As a result, fast mode
switching (monitor mode / control mode) is possible and also monitor specific settings (e.g.
threshold) can be made. Prior to finishing this report a document appeared in which a IDDQ

monitor was presented using the standard 1149.1 interface [Rubio, 95].

The 1149.1 standard brings with it the fixed architecture of the TAP controller, a fixed four or
five pin interface and BSDL as a definition language. These are all the significant advantages
to 1149.1. However, it also constraints the 1149.1 interface. For exampie the standard defines
the state-machine of the TAP controller. That means that fully compliant monitors could not
be provided with options to allow rapid changes of operating mode. e.g. in one or two vectors
to switch from control mode to calibrate mode, and then bypass mode without additional
pins. The pin interface is also tightly constrained.

At first sight the proposed QTAG serial interface is most likely to become standard QTAG
digital interface. If both interface types had to be developed from scratch this would be true.
Reality shows that 1149.1 is a wide accepted test standard. This means, hardware is available
in standard libraries and also test-synthesis tools are available. The MDF defined in this re­
port can perfectly be combined with BSDL. This combination will describe semi-digital as
well as digital monitors with 1149.1 interface. In the future maybe digital QTAG monitors
can also be combined with boundary scan used for 'on line' current measurements, either on
systems or ICs. These benefits make the 1149.1 interface an extremely good candidate to be­
come standard digital interface in these applications. Prior to adopting this interface investi­
gation has to take place to the need of additional pins (monitor clock pin in [Rubio, 95]) in
the digital QTAG interface standard for triggering the IDDQ measurements. Furthermore, con­
sequences of the fixed TAP controller should be considered by QTAG.

© Philips Electronics N.V. 73



Appendix A BNF conventions

The syntax of MDF is presented in Backus-Naur Form (BNF)
using the following conventions:

• Any item enclosed in chevrons ( i.e., between the character < and the character> )
is the name of a syntax item that will be defined.

• Items enclosed between braces ( i.e., between the character { and the character} )
may be omitted or included one or more times.

• Items enclosed between square brackets ( i.e., between the character [ and the
character] ) may be omitted or included only one time.

• Items enclosed between the "lazy T" characters 1- and -I may appear in any order.

• Except with regard to case, text shown in bold has to be included exactly as it is
presented.

• Alternative syntaxes are separated by a vertical bar (I)

• The symbol "::=" should be read as "is defined as".

• White space ( spaces, tabulation, carriage returns, etc. ) is used in the BNF
descriptions to provide enhanced readability and are not part of the syntax.

© Philips Electronics N.V. 75



Appendix B MDF entity description in BNF

• The MDF entity description

entity <component name> is
<generic parameters>
<logical port description>
<standard use statement>
{<use statement»
<monitor type>
<device package pin mappings>
<device port format mappings>
<device default mode mappings>
<monitor port identification>

end <component name>j

<component name>::= <VHDL identifier>

• Generic parameters statement

<generic parameters>::= generic ( PHYSICAL_PIN_MAP:string:=<default package type>

PORT_FORMAT_MAP:string:=<default format description>

BYPASS_MODE_MAP:string:=<default bypass mode map>

MONITOR_MODE_MAP:string:=<default monitor mode map> )j

<default package type>::= "<VHDL identifier>"
<default format description>::= "<VHDL identifier>"
<default bypass mode map>::= "<VHDL identifier>"
<default monitor mode map>::= "<VHDL identifier>"

• Logical port description statement

<logical port description>::= port «pin spec> {j<pin spec>))j

<pin spec>::=
<identifier list>::=
<pin type>::=
<port dimension>::=
<range>::=

<identifier list> : <pin type><port dimension>
<port name>{ ,<port name»
in I out I buffer I inout I linkage
bit I bit_vector «range»
<integer> to <integer> I <integer> downto <integer>

• Standard Use statement

<standard use statement>::= use <standard VHDL package identifier>.all;

<standard VHDL package identifier>::= STD_QTAG_1_1995 I <other package identifier>
<other package identifier>::= <VHDL identifier>

© Philips Electronics N.V. 77



• Use statement

<use statement>::= use <user VHDL package identifier>.all;

<user VHDL package identifier>::= <VHDL identifier>

• Monitor type statement

<monitor type>::= <monitor operation stmt>
<monitor control stmt>
<monitor return stmt>
[<monitor threshold stmt><monitor threshold value stmt>1
<monitor threshold stmt><monitor threshold limits range stmt>]
[<monitor measurement limits range stmt>]
<monitor minimum clockperiod>

<monitor operation stmt>::=

<monitor control stmt>::=

<monitor return stmt>::=

<monitor threshold stmt>::=

<monitor threshold value stmt>::=

<monitor threshold limits range stmt>::=

<monitor measurement limits range stmt>::=

<monitor minimum clockperiod>::=

attribute MONITOR_OPERATION of <component name>
:entity is <monitor operation type>;
attribute MONITOR_CONTROL of <component name>
:entity is <monitor control type>;
attribute MONITOR_RETURN of <component name>
:entity is <monitor return type>;
attribute MONITOR_THRESHOLD of <component name>
:entity is <monitor threshold type>;
attribute MONITOR THRESHOLD VALUE of- -
<component name>:entity is <real number>;
attribute MONITOR_THRESHOLD_LIMITS_RANGE of
<component name>:entity is «limits range record»;
attribute MONITOR MEASUREMENT LIMITS RANGE of- --
<component name>:entity is «limits range record»;
attribute MONITOR MIN CLOCKPERIOD of
<component name>:entity is <real number>;

<monitor operation type>::= IDDQ I ISSQ IIXXQ
<monitor control type>::= SEMI_DIGITAL I FULL_DIGITAL
<monitor return type>::= MEASUREMENT ITHRESHOLD I BOTH
<monitor threshold type>::= FIXED I VARIABLE
<limits range record>::= <lower limit>,<upper limit>
<lower limit>::= <real number>
<upper limit>::= <real number>

• Package pin mapping

<device package pin mappings>::= <pin map statement><pin mappings>

<pin map statement>::=

<pin mappings>::=
<pin mapping>::=
<pin mapping name>::=
<pin map string>::=
<port pin map>::=
<pin list>::=
<pin ID>::=

78

attribute PIN_MAP of <component name>: entity is PHYSICAL_PIN_MAP;

<pin mapping> «pin mapping»
constant <pin mapping name>:PIN_MAP_STRING := <pin map string>;
<VHDL identifier>
"<port pin map> (,<port pin map»"

<port name>:<pin list>
<pin ID> I «pin ID>(,<pin ID>))
<integer>

© Philips Electronics N.V.



• Port format mapping

<device port format mappings>::= <format map statement><format mappings>

<format map statement>::=

<format mappings>::=
<format mapping>::=

<format mapping name>::=
<format map string>::=
<port format map>::=
<port format>::=
<format type>::=
<digital format type>::=
<analog strobe type>::=
<leading edge>::=
<trailing edge>::=

attribute FORMAT_MAP of <component name>
:entity is PORT_FORMAT_MAP;
<format mapping> «format mapping>)
constant <format mapping name>
:FORMAT_MAP_STRING:=<format map string>;
<VHDL identifier>
"<port format map> (,<port format map> )"
<port name>:<port format>
«format type>[,<leading edge>][,<trailing edge>])
<digital format type> I<analog strobe type>
DAIRZIROIRCINRISBIDCITR
MV
<integer>
<integer>

• Device default mode mapping

<device default mode mappings>::= <bypass mode mappings> <monitor mode mappings>

<bypass mode mappings>::=
<measure mode mappings>::=
<bypass mode map statement>::=

<measure mode map statement>::=

<mode mappings>::=
<mode mapping>::=
<mode mapping name>::=
<mode map type>::=
<mode map string>::=
<port mode map>::=
<pin state>::=
<digital state>::=
<analog value>::=

<bypass mode map statement><mode mappings>
<monitor mode map statement><mode mappings>
attribute BYPASS_MODE of <component name>
:entity is BYPASS_MODE_MAP;
attribute MONITOR_MODE of <component name>
:entity is MONITOR_MODE_MAP;
<mode mapping> «mode mapping>)
constant <mode mapping name> : <mode map type> := <mode map string>;
<VHDL idenifier>
BYPASS MODE MAP STRING I MONITOR MODE MAP STRING- - - - - -
"<port mode map> (,<port mode map>)"
<port ID>:<pin state>
<digital state> I <analog value>
OlllLIHIXIZ
<real number>

• Monitor port identification

<monitor port identification>::= I [<bypass>)[<trigger>)[<di>)[<do>][<vdd_psu>]
[<vdd_mon>][<vdd_ref>] [<vdd_dut>][<ixxq_ref>]
[<ixxq_reCbus>][<val_analog>][<vss>]I

<bypass>::=
<trigger>::=
<di>::=
<do>::=
<vdd_psu>::=
<vdd_mon>::=
<vdd_ref>::=
<vdd_dut>::=

attribute QMON_BYPASS
attribute QMON_TRIGGER
attribute QMON_DI
attribute QMON_DO
attribute QMON_VDD_PSU
attribute QMON_VDD_MON
attribute QMON_VDD_REF
attribute QMON_VDD_DUT

of <port name>:signal is (<level record»;
of <port name>:signal is «level record»;
of <port name>:signal is «level record»;
of <port name>:signal is (<level record»;
of <port name>:signal is "<vdd rec str>";
of <port name>:signal is "<vdd rec str>";
of <port name>:signal is "<vdd rec str>";
of <port name>:signal is "«dep rec str»";

© Philips Electronics N.V. 79



<ixxq_ref>::=
<ixxq_reCbus>: :=
<val_analog>::=
<vss>::=

attribute QMON_IXXQ_REF
attribute QMON_IXXQ_REF_BUS
attribute QMON_VALUE_ANALOG
attribute QMON_VSS

of <port name>:signal is «ref record»;
of <port name>:signal is «ref bus record»;
of <port name>:signal is "<val_ana rec str>"j
of <port name>:signal is <default value>;

<level record>::=
<low level voltage> ::=
<high level voltage>::=

<vdd rec str>::=
<min value depend>::=
<max value depend>::=
<default value>::=
<dep rec str>::=
<relation>: :=
<offset>: :=
<multiplier>: :=

<dep rec str>::=
<relation>: :=
<offset>: :=
<multiplier>: :=

<ref record>::=
<min value>::=
<max value>::=
<default value>::=
<conversion>::=
<offset>: :=
<multiplier>::=

<ref bus record>::=
<level record>::=
<low level voltage>::=
<high level voltage>::=
<msb ID>::=
<lsb ID>::=
<ref table string>::=
<table entry>::=
<bus pattern>::=
<bit>::=
<ref value>::=

<val_ana rec str>::=
<min value depend>::=
<max value depend>::=
<depend record>::=
<relation>: :=
<offset>: :=
<multiplier>: :=
<conversion>::=
<offset>: :=
<multiplier>: :=

<default value>::=

80

<low level voltage>,<high level voltage>
<real number>
<real number>

<min value depend>,<max value depend>,<default value>
<real number> I «dep rec str»
<real number> I «dep rec str»
<real number>
<port name>,<relation>
<offset>,<multiplier>
<real number>
<real number>

<port name>,<relation>
<offset>,<multiplier>
<real number>
<real number>

<min value>,<max value>,<default value>,<conversion>
<real number>
<real number>
<real number>
<offset>,<multiplier>
<real number>
<real number>

<level record>,<msb ID>,<lsb ID>,<ref table string>
<low level voltage>,<high level voltage>
<real number>
<real number>
<integer>
<integer>
"<table entry>{,<table entry>}"
<bus pattern>:<ref value>
<bit> {<bit> }
011
<real number>

<min value depend>,<max value depend>,<conversion>
<real number> I <depend record>
<real number> I <depend record>
<port name>,<relation>
<offset>,<multiplier>
<real number>
<real number>
<offset>,<multiplier>
<real number>
<real number>

<real number>

© Philips Electronics N.V.



Appendix C MDF standard package

-- Give pin mapping declarations

attribute PIN_MAP: string;

subtype PIN_MAP_STRING is string;

-- Give format mapping declarations

attribute FORMAT_MAP: string;

subtype FORMAT_MAP_STRING is string;

-- Give mode mapping declarations

attribute BYPASS_MODE_MAP : string;

subtype BYPAS_MODE_MAP_STRING is string;

attribute MONITOR_MODE_MAP : string;

subtype MONITOR_MODE_MAP_STRING is string;

-- Give monitor_type declarations

type LIMITS_RANGE is record

LOWER_LIMIT : real;

UPPER_LIMIT : real;

end record;

type MONITOR_OPERATION_TYPE

type MONITOR_CONTROL_TYPE

type MONITOR_RETURN_TYPE

type MONITOR_THRESHOLD_TYPE

is (IDDQ,ISSQ,IXXQ);

is (SEMCDIGITAL,FULL_DIGITALL);

is (MEASUREMENT,THRESHOLD,BOTH);

is (FIXED,VARIABLE);

attribute MONITOR_OPERATION : MONITOR_OPERATION_TYPE;

attribute MONITOR_CONTROL : MONITOR_CONTROL_TYPE;

attribute MONITOR_RETURN : MONITOR_RETURN_TYPE;

attribute MONITOR_THRESHOLD : MONITOR_THRESHOLD_TYPE;

attribute MONITOR_THRESHOLD_VALUE : real;

attribute MONITOR_THRESHOLD_LIMITS_RANGE : LIMITS_RANGE;

attribute MONITOR_MEASUREMENT_LIMITS_RANGE: LIMITS_RANGE;

attribute MONITOR_MIN_CLOCKPERIOD : real;

-- Give monitor identification declarations

type LEVEL_INFO is record

LEVEL_LOW : real;

LEVEL_HIGH: real;

end record;

type REFERENCE_INFO is record

MIN : real;

MAX : real;

TYPICAL : real;

© Philips Electronics N.V. 81



OFFSET : real;

MULTIPLIER : real;

end record;

type BUS_REFERENCE_INFO is record

LEVEL_LOW : real;

LEVEL_HIGH : real;

MSB_ID : integer;

LSB_ID : integer;

REF_TABLE_STRING : string;

end record;

attribute QMON_BYPASS

attribute QMON_TRIGGER

attribute QMON_DI

attribute QMON_DO

attribute QMON_VSS

attribute QMON_VDD_DUT

attribute QMON_VDD_PSU

attribute QMON_VDD_MON

attribute QMON_VDD_REF

attribute QMON_IXXQ_REF

attribute QMON_IXXQ_REF_BUS

82

: LEVEL_INFO;

: LEVEL_INFO;

: LEVEL_INFO;

: LEVEL_INFO;

: real;

: boolean;

: real;

: real;

: REFERENCE_INFO;

: REFERENCE_INFO;

: BUS_REFERENCE_INFO;

© Philips Electronics N.V.



Appendix D Lexical elements of MDF (and BSDL)

• Characterset

The language is not case sensitive.
The following characters are permitted within the language:

• Upper- and lower-case letters

• Digits: 0 to 9

• Special characters: " & ' ( ) *,-. : ; < => _ (This list is smaller than for VHDL)

• Logical separators: The space character and VHDL format effectors are used as logical
separators. VHDL format effectors are the characters called horizontal tabulation, vertical
tabulation, carriage return, line feed and form feed.

• Identifiers

Identifiers are user-supplied names and reserved words functioning as names. Identifiers have
to start with a letter and may contain letters, digits, or the underscore character.

There is no upper limit to the number of characters in an identifier.
The underscore character ( ) is not allowed to be the last character in an identifier.
Adjacent underscore characters ( __ )are not allowed.

Example: va lid_identifierO1

invalid_identifier_

• Strings

A string is defined as a sequence of zero or more characters enclosed between quotation
marks. A quotation mark character is not allowed within a string in MDF (and BSDL).

Example: "This is a valid string"
"This "is" not allowed"

Strings are used extensively in MDF (and BSDL). Since many of the strings are potentially
longer than a single line, the concatenation operator & is used to break them into manageable
pieces.

Example: "This is " & "a split string"

• Lexical Atoms

• An <integer> is any valid unsigned VHDL integer made up of an unsigned numeric
character sequence not containing an underscore character and not using an exponent field

• A <real number> is any valid VHDL real number of the form <integer>.<integer> or
<integer>.<integer>E<integer> all written contiguously without spaces or format effectors.

Note 1E3 is not a real because it does not contain a decimal point.

© Philips Electronics N.V. 83



Appendix E Files MDF2TASS example

E.! PAT file: 'testdut.pat'

Identification;
Date 20/01/95;
Time 09:12:13;
Origin AMSAL;
Version Ol.OB.OOp;
Testtype SCANTEST;
Device OUT;

End;

Header Definition;
INPUT scanil 1, scani2 2;
OUTPUT scanol 15, scano2 16;
CHAIN scanil 3, scanol 9, 4, N;
CHAIN scani2 7, scano2 13, 2, N;

End;

Pattern Definition;
1 01 1111 11 LLLL HH LL;
2 : 10 0101 10 HHLH LH HH;

End;

E.2 CTR file: 'testdut.tass'

DEFINE MULTIPLE;

SET INPUTPIN = scanil, scani2, clk, IddCLTng;
SET OUTPUTPIN scanol, scano2;

Iddq_Trig
scanil,scani2
elk
scanol,scano2

clk = 1 ;

DRIVER TG_NR_TRIG;
DRIVER TG_NR;
DRIVER TG_RZ;
STROBE TG_SB;

DEFINE FORMAT TEST_FORMAT;
Iddq_Trig NR;
scanil,scani2 NR;
clk RZ;
scanol, scano2 SB;

END;

DEFINE TIMING TEST_TIMING;
SET PERIOD 100 NSEC;
CHANGE TG_NR_TRIG AT 0;
CHANGE TG_NR AT 0;
CHANGE TG_RZ AT 5, 55;
CHANGE TG_SB AT 50, 70;

END;

DEFINE TEST testdut/pat=testdut.pat
SELECT TIMING TEST_TIMING;
SELECT FORMAT TEST_FORMAT;

define testmode;
Iddq_Trig = 0;

end;
define normalmode;

Iddq_Trig = 1;
end;

END;

CREATE atf no_compress;
END;

© Philips Electronics N.V. 85



E.3 ATF file: 'testdut.atf'

* ***********************************************************************

* * AMSAL PAT file
* *

*
*

* * Created by TASS version 01.08.03p *
* ***********************************************************************

IDENTIFICATION;
ORIGIN TASS
VERSION 01.08.03p
DATE 11/04/95i
TIME 45/36/13i
TESTTYPE FUNCTIONALTEST;

END;

HEADER DEFINITIONi
INPUT SCANII 1, SCANI2 2, CLK 3, IDDQ_TRIG 4i
OUTPUT SCANOI 5, SCAN02 6;

END;

PATTERN DEFINITION;

1.NORMALMODE FOR DTB TESTDUT *****

2.NORMALMODE FOR DTB TESTDUT *****

*

*

*

*

*

***** START OF
1 1010UUi
2 1010UUi
3 1110UUi
4 1110UU;

***** START OF
5 : 0111LLi

***** START OF
6 0010LHi
7 : '1010LHi
8 : 0110LU;
9 : 1010LUi

***** START OF
10: 1011HHi

***** START OF
11: 0010HL;
12: 0010HH;
13: 0010LU;
14: 0010HU;

1.TESTMODE

2.TESTMODE

3.TESTMODE

FOR DTB TESTDUT *****

FOR DTB TESTDUT *****

FOR DTB TESTDUT *****

END;

E.4 CTR file: 'mdf2tass.tass'

DEFINE MULTIPLEi

SET INPUTPIN
SET INPUTPIN
SET INPUTPIN
SET OUTPUTPIN

QM_DI
QM_TRIGGER
QM_BYPASS
QM_DO

SET INPUTPIN
SET OUTPUTPIN

IDDQ_TRIG
SCANIl ,SCANI2
CLK
SCANOI ,SCAN02

QM_DI;
QM_TRIGGERi
QM_BYPASSi
QM_DOi

DRIVER TG_QM_D6;
DRIVER TG_QM_D7;
DRIVER TG_QM_D8i
STROBE TG_QM_S9i

SCANIl,SCANI2,CLK,IDDQ_TRIGi
SCANOl,SCAN02i

DRIVER TG_NR_TRIGi
DRIVER TG_NRi
DRIVER TG_RZi
STROBE TG_SBi

DEFINE FORMAT
SCANIl
SCANI2
CLK
IDDQ_TRIG
SCANOI

86

MDF2TASS_FORMATi
NRi
NR;
RZi
NRi
SBi

© Philips Electronics N.V.



SCAN02 SB;
QM_DI NR;
QM_TRIGGER= NR;
QM BYPASS RZ;
QM_DO SB;

END;

DEFINE TIMING MDF2TASS_TIMING;
SET PERIOD 20000 NSEC;

CHANGE TG_NR_TRIG AT 0;
CHANGE TG_NR AT 0;
CHANGE TG RZ AT 1000, 11000 ;
CHANGE TG_SB AT 10000, 14000 ;
CHANGE TG_QM_D6 AT 0;
CHANGE TG_QM_D7 AT 0;
CHANGE TG_QM_DB AT 3000, 17000;
CHANGE TG_QM_S9 AT 10000, 16000;

END;

CREATE HPB2000;

DEFINE TEST MDF2TASS_IDDQ/TDL=MDF2TASS.TDL;
SELECT TIMING MDF2TASS_TIMING;
SELECT FORMAT MDF2TASS_FORMAT;

END;

END;

E.5 TDL file: 'mdf2tass.tdl'

VAR pnbr
term_nr
cycle
pins

TERM

in teger;
integer;
integer;
integer;

{ OUT terminals incl. virtual Iddq_Trig pin
SCANI1 INPUT;
SCANI2 INPUT;
CLK INPUT;
IDDQ_TRIG INPUT;
SCAN01 OUTPUT;
SCAN02 OUTPUT;

{ QTAG monitor terminals
QM 01 INPUT;
QM_TRIGGER: INPUT;
QM_BYPASS : INPUT;
QM_DO : OUTPUT;

FUNCTION monitor_bypass_mode;
BEGIN

DRIVE QM_DI &1;
DRIVE QM_TRIGGER &1;
DRIVE QM_BYPASS &1;
EXPECT QM_DO &X;

END;

FUNCTION monitor_measure_mode;
BEGIN

DRIVE QM_DI &1;
DRIVE QM_TRIGGER &1;
DRIVE QM_BYPASS &1;
EXPECT QM_DO &1;

END;

FUNCTION get_quiescent_dut;
BEGIN

DRIVE CLK = &0;

© Philips Electronics N.V. 87



EXPECT SCAN01 &U;
EXPECT SCAN02 &U;

END;

FUNCTION get-pattern_dut;
BEGIN

for term_nr = 1 to pins do
set_term term_nr = get-pattern(pnbr,get_patloc(term_name(term_nr)) ,1);

endfor;
END;

BEGIN
pins = 10;
pnbr = 1;
open(pat, 'testdut.atf');

writeln(pat_file, '***** TESTMODE ******** *****')
while read-pattern(pnbr) do

get_pattern_dut;

if get_pattern(pnbr,get_patloc('Iddq_Trig') ,1)
{ standard sycles }

monitor_bypass_mode;
for cycle = 1 to get_cycles (pnbrl do
pattern;

endfor;

&0 then

else
{ measure cycles }

writeln(pat_file, '***** IDDQ MEASURE MODE *****');
monitor_measure_mode;
get_quiescent_dut;
pattern;
get_pattern_dut;
monitor_bypass_mode;
DRIVE Iddq_Trig = &0;
writeln(pat_file,'***** NORMALMODE ****** *****');
pattern;
writeln (pat_f ile, ,** * * * TESTMODE * ** * ** * * ** * **' ) ;

endi f;

pnbr = pnbr + 1;

endwhile;
END;

E.6 ATF file: 'mdf2tass.atf'

* ***********************************************************************
* * AMSAL PAT file
* *

*
*

* * Created by TASS version 01.08.03p *
* ***********************************************************************

IDENTIFICATION;
ORIGIN TASS
VERSION 01.08.03p
DATE 12/04/95;
TIME 36/18/15;
TESTTYPE FUNCTIONALTEST;

END;

HEADER DEFINITION;
INPUT QM_DI 1, QM_TRIGGER 2, QM_BYPASS 3, SCANI1 5, SCANI2 6,

CLK 7, IDDQ_TRIG 8;
OUTPUT QM_DO 4, SCAN01 9, SCAN02 10;

END;

PATTERN DEFINITION;
* ***** TESTMODE ******** *****

1 100UI010UU;
2 : 100U1010UU;

88 © Philips Electronics N.V.



3 : 100U1110UUi
4 : 100U1110UUi

* ***** IDDQ MEASURE MODE
5 : I11HOI0IUUi

* ***** NORMALMODE ******
6 : l11UOllOLLi

* ***** TESTMODE ********
7 100UOOIOLHi
8 : 100UI0I0LHi
9 : 100U0110LUi
10: 100UI0I0LUi

* ***** IDDQ MEASURE MODE
11: I11HI00IUUi

* ***** NORMALMODE ******
12: 100UI0I0HHi

* ***** TESTMODE ********
13: 100UOOI0HLi
14: 100UOOI0HHi
15: 100UOOI0LUi
16: 100UOOI0HUi

ENDi

© Philips Electronics N.V.

*****

*****

*****

*****

*****

*****

89



Appendix F Examples MDF

F.l MDF: IDUNA-2

entity IDUNA2 is

generic ( PHYSICAL_PIN_MAP: string .- uIDUNA2_S0L16";
PORT_FORMAT_MAP : string .- "SYNCHR_FORMAT";
BYPASS_MODE_MAP : string .- "SYNCHR_STATIC_BYPASS";
MONITOR_MODE_MAP: string .- "SYNCHR_ASYNCH_MONITOR");

port ( VREF,VSS,VDD_MON,IREF,VDD_DUT,VDD_PSU:linkage bit;
DI,TRIGGER,BYPASS:in bit; DO:out bit);

attribute MONITOR_OPERATION
attribute MONITOR_CONTROL
attribute MONITOR_RETURN
attribute MONITOR_THRESHOLD
attribute MONITOR_THRESHOLD_VALUE
attribute MONITOR_MIN_CLOCKPERIOD

of IDUNA2
of IDUNA2
of IDUNA2
of IDUNA2
of IDUNA2
of IDUNA2

entity is IDDQ;
entity is SEMI_DIGITAL;
entity is THRESHOLD;
entity is FIXED;
entity is 10.OE-6;
entity is 20.0E-6;

attribute PIN_MAP of IDUNA2:entity is PHYSICAL_PIN_MAP;

constant IDUNA2_S0L16:
PIN_MAP_STRING:="VREF:2,DO:l,DI:15,VSS:14,VDD_MON:13," &
"TRIGGER:ll,IREF:9,BYPASS:7,VDD_DUT:5,VDD_PSU:3";

attribute FORMAT_MAP of IDUNA2:entity is PORT_FORMAT_MAP;

constant ASYNCH_FORMAT:
FORMAT_MAP_STRING:="DO: (SB,50,80),DI: (NR,O),TRIGGER: (NR,O)," &
"BYPASS: (RZ,15,8Sj";

constant SYNCHR_FORMAT:
FORMAT_MAP_STRING:="DO: (SB,60,80) ,DI: (NR,O) ,TRIGGER: (RZ,50,55) ," &
"BYPASS: (RZ,15,85)";

attribute BYPASS_MODE of IDUNA2:entity is BYPASS_MODE_MAP;

constant ASYNCH_DYNAMIC_BYPASS:
BYPASS_MODE_MAP_STRING:="DI:l,TRIGGER:l,BYPASS:l,DO:X";

constant SYNCHR_DYNAMIC_BYPASS:
BYPASS_MODE_MAP_STRING:="DI:l,TRIGGER:O,BYPASS:l,DO:X";

constant ASYNCH_STATIC_BYPASS:
BYPASS_MODE_MAP_STRING:="VDD_PSU:5.0,DI:l,TRIGGER:l,BYPASS:O,DO:X";

constant SYNCHR_STATIC_BYPASS:
BYPASS_MODE_MAP_STRING:="VDD_PSU:5.0,DI:l,TRIGGER:0,BYPASS:O,DO:X";

attribute MONITOR_MODE of IDUNA2:entity is MONITOR_MODE_MAP;

constant SYNCHR_ASYNCH_MONITOR:
MONITOR_MODE_MAP_STRING:="DI:l,TRIGGER:l,BYPASS:l,DO:H";

attribute QMON_BYPASS
attribute QMON_TRIGGER
attribute QMON_DI
attribute QMON_DO
attribute QMON_IXXQ_REF

attribute QMON_VDD_PSU
attribute QMON_VDD_MON
attribute QMON_VDD_REF
attribute QMON_VDD_DUT
attribute QMON_VSS

end IDUNA2;

© Philips Electronics N.V.

of BYPASS :
of TRIGGER:
of DI
of DO
of IREF

of VDD_PSU:
of VDD_MON:
of VREF
of VDD_DUT:
of VSS

signal is (0.0,5.0);
signal is (0.0,5.0);
signal is (0.0,5.0);
signal is (0.0,5.0);
signal is

(-18.0E-6,140.0E-6,0.0,10.OE-6,1.0) ;
signal is "(VREF,0.0,1.0),6.5,5.5";
signal is "(VREF,0.0,1.0),6.5,5.5";
signal is "(VDD_PSU,-0.5,1.0),6.5,5.0";
signal is h(VREF,O.O,l.O)";
signal is 0.0;

91



F.2 MDF: QUICKMON V5.0a

generic ( PHYSICAL_PIN_MAP
PORT_FORMAT_MAP
BYPASS_MODE_MAP
MONITOR_MODE_MAP

string . - "QUICMON_V5_0_A_ISSQ_BOARD";
string .- "QUICMON_V5_0_A_ISSQ_FORMAT";
string .- "QUICMON_V5_0_A_ISSQ_BYPASS";
string .- "QUICMON_V5_0_A_ISSQ_MONITOR"l;

port ( POS15V,VSS,POS5V,NEG15V,SENSE:linkage bit;
CHG,BYPSS:in bit);

attribute MONITOR_OPERATION

attribute MONITOR CONTROL

attribute MONITOR RETURN

attribute MONITOR MEASUREMENT_LIMITS RANGE

attribute MONITOR_MIN_CLOCKPERIOD

of QUICMON_V5_0_A_ISSQ:
entity is ISSQ;
of QUICMON_V5_0_A_ISSQ:
entity is SEMI_DIGITAL;
of QUICMON_V5_0_A_ISSQ:
entity is MEASUREMENT;
of QUICMON_V5_0_A_ISSQ:
entity is (0.0,0.0);
of QUICMON_V5_0_A_ISSQ:
entity is 10.0E-6;

PIN_MAP_STRING:="POS15V:1,VSS:2,POS5V:3,NEG15V:4,SENSE:5,CHG:6,BYPSS:7";

constant QUICMON_V5_0_A_ISSQ_FORMAT:
FORMAT_MAP_STRING:="CHG: (RO,50,90l ,BYPSS: (NR,Ol ,SENSE: (MV,60,85)";

constant QUICMON_V5_0_A_ISSQ_BYPASS:
BYPASS_MODE_MAP_STRING:="BYPSS:O,CHG:1";

constant QUICMON_V5_0_A_ISSQ_MONITOR:
MONITOR_MODE_MAP_STRING:="BYPSS:1,CHG:O";

attribute QMON_BYPASS of BYPSS signal is (0. 0,5. 0) ;
attribute QMON_TRIGGER of CHG signal is (-2.0,5.0);
attribute QMON_VSS of VSS signal is 0.0;
attribute QMON_VDD_MON of POS15V signal is "15.0,15.0,15.0";
attribute QMON_VDD_MON of POS5V siqnal is "5.0,5.0,5.0";
attribute QMON_VDD_MON of NEG15V signal is "-15.0,-15.0,-15.0";
attribute QMON_VALUE_ANALOG of SENSE signal is "0.0,0.0,0.0,0.0";

end QUICMON_V5 _0_ A_ ISSQ;

92 © Philips Electronics N.V.



entity LTX_IDDQ is

genecic PHYSICAL PIN_MAP
PORT_FORMAT_MAP
BYPASS MODE MAP
MONITOR_MODE_MAP

string .- #LTX_IDDQ_PINS#;
string .- #LTX_IDDQ_FORMAT#;
string .- #LTX_IDDQ_BYPASS_LIMITO";
string .- "LTX_IDDQ_MONITOR_LIMITO");

port ( DPS_IN,DPS_OUT:linkage bit;
GND:linkage bit_vector(Oto1);
CONTROL:inout bit;
ADR:in bit_vector(Oto3));

use STD_QTAG_1_1995.all;

attribute MONITOR_OPERATION
attribute MONITOR_CONTROL
attribute MONITOR_RETURN
attribute MONITOR_THRESHOLD
attribute MONITOR_THRESHOLD_LIMITS RANGE
attribute MONITOR_MIN_CLOCKPERIOD

of LTX_IDDQ
of LTX_IDDQ
of LTX_IDDQ
of LTX_IDDQ
of LTX_IDDQ
of LTX_IDDQ

enti ty is IDDQ;
entity is SEMI_DIGITAL;
entity is THRESHOLD;
entity is VARIABLE;
entity is (0.0,0.0);
entity is 10.OE-6;

attribute PIN_MAP of LTX_IDDQ:entity is PHYSICAL_PIN_MAP;

constant LTX IDDQ PINS:
PIN_MAP=STRING:="DPS_IN:1,DPS_OUT:2,GND: (3,4) ,CON­

TROL: 5 , ADR: (6,7 , 8 , 9) " ;

attribute FORMAT_MAP of LTX_IDDQ :entity is PORT_FORMAT_MAP;

constant LTX_IDDQ_FORMAT:
FORMAT_MAP_STRING:=#CONTROL: (SB,65,95) ,CON­

TROL: (RZ,5,60),ADR:(NR,0)";

attcibute BYPASS_MODE of LTX_IDDQ :entity is BYPASS_MODE_MAP;

constant LTX IDDQ BYPASS LIMITO:
BYPASS_MODE_MAP_STRING:=#CONTROL:O,CONTROL:X," &
#ADR (3) : 0 ,ADR (2) : 0 ,ADR (1 ) : 0 ,ADR (0) : 0 # ;

constant LTX_IDDQ_BYPASS_LIMIT4:
BYPASS_MODE_MAP_STRING:="CONTROL:O,CONTROL:X," &
"ADR (3) : 0, ADR (2) : 1 ,ADR (1 ) : 0, ADR (0) : 0 # ;

attribute MONITOR_MODE of LTX_IDDQ :entity is MONITOR_MODE_MAP;

constant LTX IDDQ MONITOR LIMITO:
MONITOR=MODE_MAP_STRING:="CONTROL:1,CONTROL:H,# &
#ADR (3) : 0, ADR (2) : °,ADR (1) : 0, ADR (0) : °# ;

constant LTX_IDDQ_MONITOR_LIMIT4:
MONITOR_MODE_MAP_STRING:=#CONTROL:1,CONTROL:H," &
#ADR (3) : 0, ADR (2) : 1 ,ADR (1) : 0, ADR (0) : 0" ;

attribute QMON_BYPASS of CONTROL signal
attribute QMON_DO of CONTROL signal
attribute QMON_VSS of GND signal
attribute QMON_VDD_DUT of DPS- OUT signal
attribute QMON_VDD_PSU of DPS IN signal
attribute QMON_IXXQ_REF_BUS of ADR signal

© Philips Electronics N.V.

is (0.0,5.0);
is (0.0,5.0);
is 0.0;
is #(VDD_PSU,O.O,l.O)#;
is #0.0,6.0,5.0#;
is (0.0,5.0,3,0,#0000:0.0," &

#0001:0.0,# &
#0010:0.0,# &
#0011:0.0,# &

"0100:0.0,# &
#0101:0.0,# &
#0111:0.0,# &
#1000:0.0,# &
#1001:0.0,# &
#1010:0.0,# &
#1011:0.0,# &
#1100 0.0,# &
#11010.0," &
#1110 0.0,# &
#11110.0#);

93



References

[Baker, 90]

[Baker, 93]

[Baker, 94a]

[B aker, 94b]

[Baker, 95]

[Bennetts, 84]

[Bouwman, 92]

[Bouwman, 95]

[Bruls, 94]

K. Baker, S.C. Verhelst,
"IDDQ Testing because Zero-defects isn't enough:
A Philips Perspective",
Proceedings International Test Conference 1990, pp 253-254

K.Baker,
"Philips' Draft Proposal for a Quiescent Current Monitor
Standard under QTAG"
version 1.0 QTAG, 1993

K. Baker,
"Requirements Specification for the QTAG
Monitor Description Format (MDF)"
QTAG document, version 1.0, May 1994

Internal reference RWB-554-KB-94052-KB

K. Baker, et-al,
"Development of a Class 1 QTAG Monitor",
Proceedings International Test Conference, 1994, pp 213-222

K. Baker, A. Hales,
"Quality Test Action Group (QTAG):
Plug and Play IooQ Testing for Text Fixtures",

Design & Test of Computers (IEEE), FALL, 1995

R.G. Bennetts,
"Design of testable logic circuits",
Addison-Wesley, 1984

EG.M. Bouwman, et-al
"Macro Testability: The Results of Production Device Applications"
Proceedings International Test Conference 1992, pp 232-241

EG.M. Bouwman, et-al,
"Performing Application Mode Testing in a DSP based Testing
Environment",
Philips internal report 1995

E. Bruls,
"Variable supply voltage testing for analogue CMOS and
bipolar circuits",
Proceedings International Test Conference 1994, pp. 562-571

© Philips Electronics N.V. 95



[CAT team, 94]

[Claassen, 89]

[Hales, 94a]

[Hales, 94b]

[Keating,87]

[LTX, 94]

[Maly, 88a]

[Maly, 88b]

[Manhoeve, 94]

[Maxwall, 92]

[Parker, 90]

96

CAT team,
"TASS Reference Manual version 01.08.03",
Philips Semiconductors, sept 1994

T.A.C.M. Claassen, et-al,
"New Directions in Electronic Test Philosophy,Strategy, and Tools",
Proceedings of 1st European Test Conf. 1994, Paris 1989, pp. 5-13

A. Hales
"Texas Instrument Draft Proposal for QTAG off-chip IOOQ /ISSQ
Monitor Standard",
version 1.4, QTAG, 1994

A. Hales
"A serially Adressable, Flexible Current monitor for

Test Fixture based IDDQ/IsSQ Testing",
Proceedings International Test Conference, 1994, pp 223-232

M. Keating and D. Meyer,
"A New Approach to Dynamic IDD Testing",
Proceedings International Test Conference, 1987, pp 316-321

LTX corporation
"Master Series IDDQ monitor"
Preliminary document Rev 0.8 , 1994

W. Maly, P. Nigh,
"Built-in Current Testing Feasability Studie",
IEEE ICCAD, Nov 1988, pp 340-343

W. Maly, et-al,
"Yield loss mechanisms and defect tolerance"
in "Yield modelling and defect tolerance in VLSI" pp 3-30,
Adam Hilger, Philadelphia, PA, USE, 1988

H.A.R. Manhoeve, et-al,
"An Off-chip IDDQ Current Measurement Unit for
Telecommunications ICs"
Proceedings International Test Conference, 1994

P.C. Maxwall, et-al,
"The effectiveness of IDDQ , functional and scan tests:
How many fault coverages do we need?",
Proceedings International Test Conference 1992, pp. 168-177

K.Parker, S. Oresjo,
"A Language for Describing Boundary-Scan Devices"
Proceedings International Test Conference 1990, pp. 222-231

© Philips Electronics N.V.



[Perry, 93]

[Rajsuman, 95]

[Rubio, 95]

[Wallquist, 93]

[Wallquist, 94]

D.L. Perry
"VHDL second edition"
Mc Graw-Hill inc. Computer Engineering Series, 1993
ISBN 0-07-049434-7

R.Rajsuman,
"IDDQ testing for CMOS VLSI",
Artech house, 1995

A. Rubio
"IDDQ monitors design strategies"
VLSI Test Symposium, 1995

K.M. Wallquist, et-al,
"A General Purpose IDDQ Measurement Circuit",
Proceedings International Test Conference 1993, pp 642 - 649

K.M. Wallquist,
"IDDQ/ISSQ production testing with QuiC-Mon v5.00"
Document, Philips Semiconductors, Albuquerque

© Philips Electronics N.V. 97


	Voorblad

	Abstract

	keywords

	Preface

	Acknowledgements

	Note

	Contents

	1. Introduction

	2. IC Design and testing.

	3. IDDQ testing.

	4. Automatic test equipment.

	5. Quality test action group (QTAG).

	6. IDDQ monitors.

	7. MDF definition.

	8. Using MDF in Philips CAD-test flow.

	9. Conclusions

	10. Future development.

	Appendix

	References


