318 research outputs found

    CloudScope: diagnosing and managing performance interference in multi-tenant clouds

    Get PDF
    © 2015 IEEE.Virtual machine consolidation is attractive in cloud computing platforms for several reasons including reduced infrastructure costs, lower energy consumption and ease of management. However, the interference between co-resident workloads caused by virtualization can violate the service level objectives (SLOs) that the cloud platform guarantees. Existing solutions to minimize interference between virtual machines (VMs) are mostly based on comprehensive micro-benchmarks or online training which makes them computationally intensive. In this paper, we present CloudScope, a system for diagnosing interference for multi-tenant cloud systems in a lightweight way. CloudScope employs a discrete-time Markov Chain model for the online prediction of performance interference of co-resident VMs. It uses the results to optimally (re)assign VMs to physical machines and to optimize the hypervisor configuration, e.g. the CPU share it can use, for different workloads. We have implemented CloudScope on top of the Xen hypervisor and conducted experiments using a set of CPU, disk, and network intensive workloads and a real system (MapReduce). Our results show that CloudScope interference prediction achieves an average error of 9%. The interference-aware scheduler improves VM performance by up to 10% compared to the default scheduler. In addition, the hypervisor reconfiguration can improve network throughput by up to 30%

    On Improving The Performance And Resource Utilization of Consolidated Virtual Machines: Measurement, Modeling, Analysis, and Prediction

    Get PDF
    This dissertation addresses the performance related issues of consolidated \emph{Virtual Machines} (VMs). \emph{Virtualization} is an important technology for the \emph{Cloud} and data centers. Essential features of a data center like the fault tolerance, high-availability, and \emph{pay-as-you-go} model of services are implemented with the help of VMs. Cloud had become one of the significant innovations over the past decade. Research has been going on the deployment of newer and diverse set of applications like the \emph{High-Performance Computing} (HPC), and parallel applications on the Cloud. The primary method to increase the server resource utilization is VM consolidation, running as many VMs as possible on a server is the key to improving the resource utilization. On the other hand, consolidating too many VMs on a server can degrade the performance of all VMs. Therefore, it is necessary to measure, analyze and find ways to predict the performance variation of consolidated VMs. This dissertation investigates the causes of performance variation of consolidated VMs; the relationship between the resource contention and consolidation performance, and ways to predict the performance variation. Experiments have been conducted with real virtualized servers without using any simulation. All the results presented here are real system data. In this dissertation, a methodology is introduced to do the experiments with a large number of tasks and VMs; it is called the \emph{Incremental Consolidation Benchmarking Method} (ICBM). The experiments have been done with different types of resource-intensive tasks, parallel workflow, and VMs. Furthermore, to experiment with a large number of VMs and collect the data; a scheduling framework is also designed and implemented. Experimental results are presented to demonstrate the efficiency of the ICBM and framework

    Adaptive & learning-aware orchestration of content delivery services

    Get PDF
    Many media services undergo a varying workload, showing periodic usage patterns or unexpected traffic surges. As cloud and NFV services are increasingly softwarized, they enable a fully dynamic deployment and scaling behaviour. At the same time, there is an increasing need for fast and efficient mechanisms to allocate sufficient resources with the same elasticity, only when they are needed. This requires adequate performance models of the involved services, as well as awareness of those models in the involved orchestration machinery. In this paper we present how a scalable content delivery service can be deployed in a resource- and time-efficient manner, using adaptive machine learning models for performance profiling. We include orchestration mechanisms which are able to act upon the profiled knowledge in a dynamic manner. Using an offline profiled performance model of the service, we are able to optimize the online service orchestration, requiring fewer scaling iterations

    Effective Resource and Workload Management in Data Centers

    Get PDF
    The increasing demand for storage, computation, and business continuity has driven the growth of data centers. Managing data centers efficiently is a difficult task because of the wide variety of datacenter applications, their ever-changing intensities, and the fact that application performance targets may differ widely. Server virtualization has been a game-changing technology for IT, providing the possibility to support multiple virtual machines (VMs) simultaneously. This dissertation focuses on how virtualization technologies can be utilized to develop new tools for maintaining high resource utilization, for achieving high application performance, and for reducing the cost of data center management.;For multi-tiered applications, bursty workload traffic can significantly deteriorate performance. This dissertation proposes an admission control algorithm AWAIT, for handling overloading conditions in multi-tier web services. AWAIT places on hold requests of accepted sessions and refuses to admit new sessions when the system is in a sudden workload surge. to meet the service-level objective, AWAIT serves the requests in the blocking queue with high priority. The size of the queue is dynamically determined according to the workload burstiness.;Many admission control policies are triggered by instantaneous measurements of system resource usage, e.g., CPU utilization. This dissertation first demonstrates that directly measuring virtual machine resource utilizations with standard tools cannot always lead to accurate estimates. A directed factor graph (DFG) model is defined to model the dependencies among multiple types of resources across physical and virtual layers.;Virtualized data centers always enable sharing of resources among hosted applications for achieving high resource utilization. However, it is difficult to satisfy application SLOs on a shared infrastructure, as application workloads patterns change over time. AppRM, an automated management system not only allocates right amount of resources to applications for their performance target but also adjusts to dynamic workloads using an adaptive model.;Server consolidation is one of the key applications of server virtualization. This dissertation proposes a VM consolidation mechanism, first by extending the fair load balancing scheme for multi-dimensional vector scheduling, and then by using a queueing network model to capture the service contentions for a particular virtual machine placement

    Performance Controlled Power Optimization for Virtualized Internet Datacenters

    Get PDF
    Modern data centers must provide performance assurance for complex system software such as web applications. In addition, the power consumption of data centers needs to be minimized to reduce operating costs and avoid system overheating. In recent years, more and more data centers start to adopt server virtualization strategies for resource sharing to reduce hardware and operating costs by consolidating applications previously running on multiple physical servers onto a single physical server. In this dissertation, several power efficient algorithms are proposed to effectively reduce server power consumption while achieving the required application-level performance for virtualized servers. First, at the server level this dissertation proposes two control solutions based on dynamic voltage and frequency scaling (DVFS) technology and request batching technology. The two solutions share a performance balancing technique that maintains performance balancing among all virtual machines so that they can have approximately the same performance level relative to their allowed peak values. Then, when the workload intensity is light, we adopt the request batching technology by using a controller to determine the time length for periodically batching incoming requests and putting the processor into sleep mode. When the workload intensity changes from light to moderate, request batching is automatically switched to DVFS to increase the processor frequency for performance guarantees. Second, at the datacenter level, this dissertation proposes a performance-controlled power optimization solution for virtualized server clusters with multi-tier applications. The solution utilizes both DVFS and server consolidation strategies for maximized power savings by integrating feedback control with optimization strategies. At the application level, a multi-input-multi-output controller is designed to achieve the desired performance for applications spanning multiple VMs, on a short time scale, by reallocating the CPU resources and DVFS. At the cluster level, a power optimizer is proposed to incrementally consolidate VMs onto the most power-efficient servers on a longer time scale. Finally, this dissertation proposes a VM scheduling algorithm that exploits core performance heterogeneity to optimize the overall system energy efficiency. The four algorithms at the three different levels are demonstrated with empirical results on hardware testbeds and trace-driven simulations and compared against state-of-the-art baselines

    Modeling and Prediction of I/O Performance in Virtualized Environments

    Get PDF
    We present a novel performance modeling approach tailored to I/O performance prediction in virtualized environments. The main idea is to identify important performance-influencing factors and to develop storage-level I/O performance models. To increase the practical applicability of these models, we combine the low-level I/O performance models with high-level software architecture models. Our approach is validated in a variety of case studies in state-of-the-art, real-world environments

    Autonomic Performance-Aware Resource Management in Dynamic IT Service Infrastructures

    Get PDF
    Model-based techniques are a powerful approach to engineering autonomic and self-adaptive systems. This thesis presents a model-based approach for proactive and autonomic performance-aware resource management in dynamic IT infrastructures. Core of the approach is an architecture-level modeling language to describe performance and resource management related aspects in such environments. With this approach, it is possible to autonomically find suitable system configurations at the model level

    POWER MANAGEMENT IN THE CLUSTER SYSTEM

    Get PDF
    With growing cost of electricity, the power management of server clusters has become an important problem. However, most previous researchers have only addressed the challenge in traditional homogeneous environments. Considering the increasing popularity of heterogeneous and virtualized systems, this thesis develops a series of efficient algorithms respectively for power management of heterogeneous soft real-time clusters and a virtualized cluster system. It is built on simple but effective mathematical models. When deployed to a new platform, the software incurs low configuration cost because no extensive performance measurements and profiling are required. Built upon optimization, queuing theory and control theory techniques, our approach achieves the design goal, where QoS is provided to a larger number of requests with a smaller amount of power consumption. To strive for efficiency, a threshold based approach is adopted in the first part of the thesis. Then we systematically study this approach and its design decisions. To deploy our mechanisms on the virtualized clusters, we extend the work by developing a novel power-efficient workload distribution algorithm. Adviser: Ying L
    corecore