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(In the name of Allah, Most gracious, Most merciful)

Glorious Quran

Recite in the name of your Lord who created -

Created man from a clinging substance.

Recite, and your Lord is the most Generous -

Who taught by the pen -

Taught man that which he knew not.

Surah Al-’Alaq [96:1-5]

“My Lord, increase me in knowledge.”

Surah Taha [20:114]
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Elegy Written in a Country Churchyard (1751)

The boast of heraldry, the pomp of pow’r,

And all that beauty, all that wealth e’er gave,

Awaits alike th’ inevitable hour.

The paths of glory lead but to the grave.

Thomas Gray (1716 –1771)

False Greatness (1706)

Tis true, my form is something odd

but blaming me, is blaming God,

Could I create myself anew

I would not fail in pleasing you.

Joseph Carey Merrick (1862 –1890)

Were I so tall to reach the pole,

Or grasp the ocean with my span,

I must be measured by my soul;

The mind’s the standard of the man.

Isaac Watts (1674 –1748)
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Abstract

“Being ignorant is not so much a shame, as being unwilling to learn”

— Benjamin Franklin (1706–1790)

This dissertation addresses the performance related issues of consolidated Virtual

Machines (VMs). Virtualization is an important technology for the Cloud and data

centers. In many ways, essential Cloud services are directly dependent on virtualiza-

tion. Essential features of a data center like the fault tolerance and high-availability of

services are implemented with the help of VMs. The fundamental principle of such

schemes is to execute multiple copies of a VM on two or more physical servers; if one

VMs fails, then another VM must take over the execution process.

Similarly, pay-as-you-go model, one of the most critical features of Cloud, is also

made possible by VM deployment technique. Cloud users can rent VMs for any du-

ration; the VMs are automatically created, managed, and destroyed by sophisticated

Cloud management software. Furthermore, VMs consolidation helps to increase re-

source utilization and reduce energy costs by concurrently running multiple VMs on

the same physical server. Thus, virtualization is an essential technology for the Cloud

and data centers.

Cloud had become one of the significant innovations over the past decade. Re-

search has been going on the deployment of newer and diverse set of applications like

the High-Performance Computing (HPC), and parallel applications on the Cloud. En-

ergy consumption efficiency is becoming a significant issue for the data centers, too.

Nowadays, the big data centers house more servers than ever before; such data centers

can consume megawatts of electricity per hour. Improvements in the energy efficiency

of the servers can save much energy.

The primary technology behind the Cloud is virtualization; therefore, it is neces-

sary to investigate the resource utilization characteristics of the VMs. The primary
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method to increase the server resource utilization is VM consolidation, running as

many VMs as possible on a server is the key to improving the resource utilization. On

the other hand, consolidating too many VMs on a server can degrade the performance

of all VMs.

What is more, different resource-intensive tasks like, CPU, memory, and I/O-

intensive tasks have different effects on consolidation. The performance of VMs can

change considerably depending on what types of tasks are being consolidated. There-

fore, it is necessary to measure, analyze and find ways to predict the performance

variation of consolidated VMs.

This dissertation investigates the causes of performance variation of consolidated

VMs; the relationship between the resource contention and consolidation performance,

and ways to predict the performance variation. Experiments have been conducted with

real virtualized servers without using any simulation. All the results presented here

are real system data. The VM performance is profiled for various stages of server

consolidation.

The number of concurrently running VMs can change at any time on a server;

moreover, different types of resource-intensive tasks may run on the VMs. In this

dissertation, a methodology is introduced to do the experiments with a large number

of tasks and VMs; it is called the Incremental Consolidation Benchmarking Method

(ICBM). The experiments have been done with different types of resource-intensive

tasks, parallel workflow, and VMs.

Furthermore, to experiment with a large number of VMs and collect the data; a

scheduling framework is designed and implemented. The framework makes it easy to

handle a large number of VMs at a time. The experiments are done in stages; at each

stage different combination of tasks and VMs are concurrently run on the server to

collected data. The data includes task execution time variation, system-interrupts, and

page-faults.

Experiments have been done with various benchmark suites and a parallel work-

flow. Three popular hypervisors are used in the experiments; they are VMware ESXi,

Citrix XenServer, and Xen. Analysis of the experimental data demonstrates some inter-

esting relationship among the VM resource utilization and consolidation performance.

Furthermore, it is shown that the profiled execution time variation data can be used as

a performance measure and to train prediction models for the consolidated VMs.
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Two machine learning techniques have been used in this dissertation, to build pre-

diction models for the VM execution time variation; they are the Least Square Regres-

sion (LSR) and Artificial Neural Network (ANN). Experimental results show that the

models can quite accurately predict the performance variation of VM consolidation on

multiple hypervisors.

To conduct experiments, consolidated VMs have been divided into two categories;

the target VM and co-located VMs. During experiments, data is separately collected

from both sets of VMs, and separate sets of performance prediction models are built.

Sperate data is used for training and testing the prediction models as well. Chapter 4

gives details about how the data is collected, and prediction models are built using

LSR.

In this dissertation, the Root Mean Squared Error (RMSE), Mean Squared Er-

ror (MSE)/ Mean Squared Deviation (MSD), and Mean Absolute Percentage Error

(MAPE)/ Mean Absolute Percentage Deviation (MAPD) are used as measures to com-

pare the accuracy of prediction models. Three prediction models are built for three

resource combinations; (i) CPU-memory, (ii) CPU-I/O, and (iii) memory-I/O. The pre-

diction accuracies of the three models of each dataset are tested separately.

In Chapter 4, two sets of prediction models are created using two sets of Execution

Time Variation (ETV) data. The first set of prediction models are built using target

VM data, and prediction accuracies are tested on two tasks; Filebench and IOzone. In

the case of Filebench, the RMSE of predictions for three resource combinations are

0.771, 2.131, and 2.605, respectively. On the other hand, for IOzone the RMSE of

predictions for the same three resource combinations are 2.193, 2.475, and 3.083,

respectively.

The second set of prediction models are created for the same three resource com-

binations (CPU-memory, CPU-I/O, and memory-I/O) with the data collected from the

co-located VMs. Accuracies of the three models are tested again using Filebench and

IOzone. In this case, for the Filebench the RMSE of predictions for three resource com-

binations are 0.657, 1.841, and 1.475, respectively. Lastly, for IOzone the RMSE

of prediction models are 2.083, 4.572, and 3.898, respectively.

In Chapter 6, the effectiveness of the introduced methodology (ICBM) is tested for

multiple hypervisors. In this chapter, experiments are performed with three different

hypervisors; ESXi, XenServer, and Xen. Then, a set of unified prediction models

are built using the experimental data from the three hypervisors. The accuracies of
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the prediction models are also tested on three hypervisors using separate datasets for

testing and training. The MAPE is used as a measure of prediction accuracy for the

models. The MAPE of prediction models for ESXi, XenServer, and Xen hypervisors

are 9.5255%, 29.7558%, and 12.5249%, respectively.

Furthermore, in Chapter 6, ANN prediction models for VM execution time varia-

tion are built and tested. The chapter describes how the experimental data are collected

from multiple hypervisors and used to build the prediction models. Once again, models

are trained and tested using separate datasets. The ANN prediction models are tested

on two separate hypervisors and three sperate tasks.

The three tasks used for testing the prediction accuracy of ANN models are the

Sysbench CPU test, Stream, and Filebench. For the Xen, the MAPEs of prediction for

the above mentioned three tasks are 20.50%, 11.78%, and 21.02%, respectively.

For ESXi, the MAPEs of prediction for the same three tasks are 22.17%, 12.31%, and

15.88%, respectively.

Experiments are also performed with the performance variation of tasks of a real-

world scientific workflow on consolidated VMs. The Galactic Arecibo L-band Feed

Array HI (GALFA-HI) Survey project employs the Arecibo 305 meter telescope to

map the neutral hydrogen around the Milky Way Galaxy. A considerable amount of

radio telescope and astrophysical data needs to be analyzed to produce mosaic images

of the scanned section of the sky.

Additionally, experiments are also conducted to observe the performance impact

of consolidation on the tasks of the above mentioned scientific workflow. Accuracies

of the performance prediction models are tested on two hypervisors, Xen and ESXi.

The mAddCube is one of the tasks of the workflow. In the case of Xen, the RMSE,

and MAPE of prediction for the mAddCube task are 3.30, and 22.86%, respectively.

Next, for the ESXi hypervisor, the RMSE, and MAPE of prediction for the same task

are 3.35, and 19.52%, respectively.
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Chapter 1

Introduction

“Educating the mind without educating the heart is

no education at all.”

— Aristotle* (384-322 BC)

Cloud is one of the most innovative innovations of the last decade. It can fulfill the

sudden or unexpected need of extra computing power often required by institutes and

enterprises in a cost-effective way. The concept of Cloud rises from the demands from

two opposite ends of the technological spectrum.

Small businesses and departments often find themselves in need of a significant

amount of computing power. On the other hand, enterprises with a significant amount

of hardware need to make good use of their resources. Cloud is the technology that

offers benefits to the people on both ends of this spectrum. That is why it is one of the

rare innovations that has generated interest among academia and enterprises alike.

Today, the Cloud provides various levels and types of services. However, every

Cloud service is dependent on the virtualization in one way or another [5–12]. Vir-

tualization divides the resources of a physical server into smaller units, which can be

rented out as Virtual Machines (VMs). The Cloud users can rent VMs on demand and

have complete control over the rented VMs. A physical server may host several VMs

simultaneously with the help of a hypervisor.

*A Roman marble bust of Aristotle, copy of a Greek original; in the Museo Nazionale

Romano, Rome. Image source: http://www.abc.net.au/radionational/programs/
scienceshow/a4.jpg/8106036
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The Hypervisor is a thin layer of software that creates the environment to run mul-

tiple VMs on a single host. The hypervisor manages both the VMs and shields the host

from any malicious activities of the VM owners. One can customize the rented VMs

according to one’s requirements; however, the changes do not affect the underlying

physical hardware.

The process of running multiple VMs on a physical server is commonly known

as the consolidation. The VMs that are simultaneously running on the same physical

server is known as the co-located VMs. In this dissertation, the interactions between

the co-located VMs, their mutual performance interference, and related issues are ex-

plored.

1.1 Motivation for the research

Virtualization is an essential part of modern-day data centers. Whether it is a large

scale data center or just a departmental cluster, the virtualization is used everywhere.

It not only enables data centers to provide essential Cloud services; rather it provides

far more functionality.

The Information Technology (IT) infrastructure has seen many transformations

within the last decade. The schematic diagrams of Figure 1.1 demonstrates the dif-

ference between the tradition and modern IT infrastructure. Figure 1.1a shows the

traditional IT infrastructure that was in place for a long time. After the mainframe com-

puters were replaced by smaller and more efficient microprocessor technology in the

late seventies, the traditional IT infrastructure had cemented itself into the enterprises

around the globe. It mainly consisted of a cluster of physical machines connected

through a relatively high-speed network.

There were several problems associated with the traditional IT infrastructure. First

of all, enterprises had to go through a long and complicated procedure of procuring the

hardware. That made it difficult to fulfill the sudden need for large-scale computing

power. A decision about having a particular amount of computing power had to be

made a long time ahead. Especially with the advent of the internet and web-based

application, it became a huge inconvenience.

Furthermore, it was problematic for startup companies typically with a limited fund

to own a large pool of physical resources. On top of those, the computing hardware
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Figure 1.1: Schematic diagram of Information Technology (IT) infrastructure.
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usually has a limit on service life. Most often, it is even more costly to administrate,

maintain and upgrade the physical machines than purchasing them in the first place.

As a result, operating and maintaining IT infrastructure was an expensive business

throughout the eighties and nineties.

Although, with traditional IT infrastructure, enterprises have all the computing

power at their disposal it was highly inefficient to own or operate. Often, the require-

ment for computing power in an enterprise is fluctuating, and that can lead to reduced

efficiency and waste of energy.

Enterprises have been looking for a viable alternative to the traditional IT infras-

tructure, and that came in the form of Cloud. The new infrastructure is shown in

Figure 1.1b. In this case, enterprises do not have to purchase any physical hardware,

and computing power can be acquired on demand. The new IT infrastructure is seen

as a pool of resources that can be rented and managed virtually.

Users can rent VMs according to their needs and use the resources as long as re-

quired. Thus, saving users from having to spend a fortune on the physical hardware.

Also, Cloud makes it possible to rent computing resources on demand even for the

enterprises on budget. Cloud provides a better mechanism for fault tolerance and high

availability of services. Furthermore, it saves users from hardware maintenance and

upgrading cost. Thus, the concept of Cloud is fundamentally different from the tradi-

tional one.

The secret behind creating a resource pool is virtualization. All the services of

modern Cloud are directly dependent on virtualization technology, which makes it

possible to divide physical resource into virtual units. The Cloud as we know it today

would have never been possible without the help of modern virtualization technology.

From the earliest days of computing till today the primary purpose of the virtual-

ization remains the same, resource sharing [13–22]. However, modern virtualization

technology does much more than that. The high availability of Cloud services and fault

tolerance mechanism of data centers are all dependent on the virtualization [23, 23–

30]. Modern data centers would not be able to function the way it does today without

virtualization.

Virtualization is widely used on newer clusters for various advantages. That means

applications deployed in Clouds and clusters are mostly running on one or more VMs.

The VMs have fundamental differences with the physical machines. One physical ma-

chine does not interfere with the performance of another one. However, simultaneously
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running VMs do interfere with each other.

The co-located VMs share physical resources of the server with each other [31,

32]. The sharing creates resource contention for the VMs resulting in the performance

variation. Measuring or predicting this performance variation is not a straightforward

process. Various resources like CPU, memory and I/O are virtualized in different ways.

Different virtualized resource behave differently during consolidation, and their effects

on the consolidation are not the same [33].

Consolidation is used in all modern servers; the resource utilization depends on

how many VMs can be run on a server without creating too much resource con-

tention [32]. As data centers are getting bigger and consuming more energy the re-

source utilization efficiency is becoming a more pressing issue. For increasing the

resource utilization efficiency of the servers, it is essential to study the reaction of the

consolidated VMs.

What is more, existing scheduling algorithms are designed for physical machines [34].

As more and more servers are getting virtualized; it is essential to study the perfor-

mance variation of the consolidated server to determine how to make the scheduling

algorithms more efficient in the virtualized environment.

1.2 Contributions

Virtualization is essential for providing Cloud services. This dissertation deals with an-

alyzing and improving the performance of consolidated VMs. Many important issues

like resource usages and energy efficiency depend on the consolidated VMs perfor-

mance. The primary research contributions of this dissertation are summarized below.

1. All experiments are conducted on real virtualized systems. Results from three

well known hypervisors are used throughout the dissertation; they are VMware

ESXi [35–37], Citrix XenServer, and Xen [38, 39]. Multiple VMs are set up on

each hypervisor and experiments are done with real workloads. The experimen-

tal data are collected from both the VMs and hypervisors for analysis.

2. Real system data is used throughout the dissertation, and no simulation is used

in any experiment. There are fields where simulation provides excellent results;

however, virtualization system research is not one of them.
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In each chapter of the dissertation, different experiments have been designed

and carried out with consolidated virtual machines to collect system data. For

example in chapter 4 experiments are conducted to collected CPU, memory, and

I/O usages data of the VMs from the hardware. Based on the analysis of this

data further experiments have been designed for chapter 5.

In chapter 5, the task execution finish times collected from the Operating System

(OS) is used analysis. Similarly, in chapter 7 experiments are designed to collect

system events and interrupt data from the hardware. Thus, all the chapters are

logically connected, and analysis of experimental system data of one chapter is

the basis for the experiments of the subsequent chapters.

3. Experiments are conducted with the resource consumption and performance

variation of VMs. It is known that the consolidated VMs of a server interfere

with the performance of each other [31, 32, 40–42]. Simultaneously running

VMs of a server compete with each other for three primary computing resources;

CPU, memory, and I/O.

Furthermore, different VMs use the resources differently; hence, their contribu-

tion to resource contention is different. Experiments have been done with vari-

ous resource usages pattern and number of consolidated VMs. The experimental

results demonstrate how the VM performance is affected by different types of

resource contention.

4. A benchmarking technique is presented to analyze the VM consolidation perfor-

mance, called the Incremental Consolidation Benchmark Method (ICBM) [43].

In this method, the numbers of various resource intensive VMs are increased

systematically. In turn, it increases the resource contention in the system and the

execution finish times of tasks start to rise.

As the increasing number of VMs compete for the resources, some VMs are

deprived of the resources and can not continue to execute properly. It has con-

sequences on the tasks running on the affected VMs. As a result, the tasks on

the VMs take longer to finish execution. Therefore, in the ICBM, the number of

consolidated VMs are systematically manipulated to observe their effect on the

overall performance.
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5. In this dissertation, the task execution time is used as a performance metric. The

experimental results show that the task execution time variation can be a good

indicator of the consolidation performance. The resource usage intensity varies

from task to task.

First of all, several tasks are chosen for the experiments whose resource intensi-

ties are known; then, they are combined to create combinational workloads. The

tasks are combined in several patterns to create several workloads. The work-

loads are run on three hypervisors to collect the data about task execution time

variation. The collected data is then compared and analyzed. The experimental

results show that different resource intensive tasks react differently to the VM

consolidation.

6. To efficiently experiments with the virtualized system, a VM workflow schedul-

ing framework is developed [44]. It is an application entirely written in Java. It

can schedule parallel tasks and workflow on multiple VMs. Also, once the task

execution is finished, the application can retrieve the data for later analysis.

The scheduler can simultaneously connect to multiple hypervisors and run work-

loads concurrently. The workloads are defined in a separate file, which defines

which task to run at which VM and in what pattern. Executing the tasks in spe-

cific patterns is the key to analyze the execution time variation of consolidated

VMs.

The framework is built with the objective to apply the ICBM on multiple hyper-

visors simultaneously. A server can run many VMs at a time, and it is hard to

manage all the execute tasks manually. The new scheduler can execute work-

loads with a large number of VMs automatically.

7. Experiments have been conducted with various workload and hypervisors. The

results show that the proposed methodology, ICBM is a powerful tool for ana-

lyzing resource contention of VMs [45]. Furthermore, experiments have been

conducted with a real-world parallel workflow to test the effectiveness of ICBM.

Data collected through the ICBM can also be used to predict the task execution

time variation due to resource contention of VMs. First, a set of workloads is

run and their execution finish times are profiled. Then, the profiled-data is used
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to build a prediction model, which is then used to predict the execution time

variation of another set of workloads.

The profiled-data can be used with any machine learning technique to build a

prediction model. In this dissertation, two techniques are used to build models,

the Least Square Regression (LSR) and Artificial Neural Network (ANN). The

accuracies of the prediction models from both the techniques are also presented

and compared.

1.3 Structure of the dissertation

This chapter is the first chapter of the dissertation; it is the introduction. The rest of the

chapters are organized as described below.

• Chapter 2 discusses the background of the virtualization. It describes the ori-

gin and development of virtualization technology over the decades. Also, the

classification of the virtualization technology is given. There exist many clas-

sifications of virtualization, it is important to know how they are different and

which ones are important for the Cloud and data centers.

The chapter also discusses how the various computing resources can be virtu-

alized. The benefits of using virtualization in the Cloud and data centers are

discussed. Basics of Grid computing and how Cloud emerged from Grid tech-

nology are discussed. Furthermore, a classification of various types of Cloud

also provided.

• Chapter 3 starts the experiments with consolidated VMs. The chapter discusses

the importance of the research. In the chapter, experiments have been conducted

with nine different benchmark suites; they are also described in the chapter. The

benchmarks can be divided into four categories based on their resource usage

intensities.

The first three categories are CPU, memory, and I/O intensive benchmarks. The

fourth set of benchmarks are multiple resources intensive, that is they use several

types of resources at the same time. Those benchmarks are concurrently exe-

cuted in consolidated VMs. In this chapter, experiments are conducted on the

Xen hypervisor. The resource usage data of the consolidated VMs are collected
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after the experiments have finished, they show how the resource usage pattern

of VMs changes with the changing number of consolidated VMs. The results of

this chapter also helped to design experiments for the rest of the chapters of the

dissertation.

• Chapter 4 introduces and discusses the new consolidation benchmarking tech-

nique, called the ICBM [43]. The chapter describes how the ICBM is applied to

the VMs of a hypervisor. In this case, Xen hypervisor is used to run the VMs.

The ICBM can be divided into several steps; those steps are described in the

chapter.

For the experimental purposes, the co-located VMs are divided into two cate-

gories, target and co-located VMs. The target VM is monitored for performance

variation. On the other hand, the co-located VMs are used to create resource

contention. The number of co-located VMs are increased in the system that is

what creates the resource contention.

The various workloads are run on the co-located VMs and execution time vari-

ation of the target VM is collected. The profiled data are used to train LSR

models. The models are then used to predict the execution time variation of the

target VMs. During training and testing, separate workloads are used in the co-

located VMs. Thus, the combination of co-located VMs used for the testing is

different from those used for the training.

The execution time variation of the target VM depends on the resource con-

tention created due to the co-located VMs. Thus, a different combination of

co-located VMs affects the target VM execution time differently. Data is col-

lected for a selected combination of co-located VMs, and the model is trained.

The experimental results show that the LSR model can predict the execution time

variation of the target VM for other combinations of co-located VMs.

This chapter contains material that was published as [43]. The author of this dis-

sertation has done all the works related to publication. The author has designed

and conducted the experiments, collected and analyzed the data, and wrote the

draft for the paper. Since the publication, the author has also added more expe-

riential results and data to the chapter.
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• Chapter 5 presents a framework for scheduling and profiling the parallel work-

flows on VMs. Also, the concept of ICBM is extended to the parallel workflows.

In the previous chapter, the ICBM is introduced for analyzing the performance

of a group of VMs. The ICBM runs a group of tasks in the VMs according to

some predefined patterns. Those patterns are stored in a file beforehand; the

scheduler uses the pattern to run the tasks on VMs and collect their performance

variation data.

This chapter extends the concept of ICBM to the parallel workflows. A parallel

workflow consists of many individual tasks; this chapter shows that the ICBM

can be applied to those tasks, too. The framework is designed with several goals

in mind those are described in this chapter. The implementation of the frame-

work is divided into several modules, which are described in this chapter.

Finally, the experiments are conducted with a real-world parallel workflow. The

framework executed all the tasks of the workflow and collected the execution

time variation data.

This chapter was previously published as [44]. The author of this dissertation has

designed and conducted all of the experiments. The author also has collected and

analyzed the experimental data and compiled the draft of the paper.

• In Chapter 6, the experiments are done with the ICBM and multiple hypervisors.

Three hypervisors are set up for the experiments, they are the ESXi, XenServer,

and Xen.

The experimental results show that the execution time variation is not dependent

on the location of the VM on the server, rather it is dependent on the total number

of VMs. That is the VM performance is mainly affected by the total number of

VMs on the system. If the total number of VMs is increased in the system, the

performance degrades, on the other hand, if the VM number is decreased the

performance enhances; thus, the relationship is reciprocal.

Various resource intensive benchmarks are run on three hypervisors and execu-

tion time variation is profiled. The number of co-located VMs are changed in

the server to vary the resource contention in the system; this resource contention

is responsible for the execution time variation of VMs.



1.4. RESEARCH METHODOLOGY 11

Data collected from the three hypervisors have been used to build LSR mod-

els, which can predict the VM execution time variation on multiple hypervisors.

Thus, showing that the LSR models can be generalized for multiple hypervisors.

Furthermore, an ANN model is used to predict the execution time variation of a

parallel workflow. The tasks of the workflow are profiled using ICBM, and the

collected data is used to train an ANN model. Then, the ANN model is used to

predict the execution time variation of the workflow tasks for a various number

of co-located VMs.

This chapter contains material published in [46]. The author of this dissertation

has designed all the experiments and collected the data. The author has analyzed

the data and wrote the draft for the paper.

• In Chapter 7, further experiments are conducted with the ICBM. In this chap-

ter, investigations are conducted with the effect of VM memory allocation on

VM consolidation. Various tasks are used in the experiments; each task with a

different memory requirement is used.

Experiments are conducted with three hypervisors; the results show that memory

allocated plays an integral part in the consolidated VMs performances. Experi-

ments are also done with the system events, like interrupt and page-faults to find

their effect on the VM consolidation performance. The system event data are

collected from three hypervisors and used to build an ANN model for predicting

the VM execution time variation. The model is also used to predict the execution

time variation of the tasks of a workflow.

This chapter is previously published as [45]. The author of this dissertation has

designed and conducted the experiments, collected and analyzed the data, and

wrote the drafts of the paper.

• Finally, Chapter 8 concludes this dissertation with a summary and closing re-

marks.

1.4 Research methodology

The research methodology used in this dissertation is based on the Design Science

Research (DSR), which focuses on creating artifacts to solve a problem [47–49]. In
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Figure 1.2: Research methodology of the dissertation.

DSR, a produced artifact can be a construct, a model, a method, or an algorithm. The

methodology developed in Chapter 4 (ICBM) can be considered as an artifact for this

dissertation.

Design research can be applied in many fields of research including algorithms

and computer interface design [50]. It consists of formulating a design or a method,

conducting experiments and evaluating results [51].

In this dissertation, the research process followed is by based on the guidelines

proposed by Henver [51]. The design process of this dissertation is divided into four

phases, they are Conceptualization, Analysis, Design, and Evaluation/Results. Fig-

ure 1.2 shows how the chapters of the dissertation are divided into four DSR phases.

• The first phase is the conceptualization. Chapter 2 introduces virtualization to

readers and demonstrates the importance of virtualization concerning modern

Cloud. Different aspects of virtualization are introduced, and their prominence
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is discussed briefly. Discussion of Chapter 2 is essential for understanding how

the experiments are conceptualized in this dissertation.

• The next phase is analysis. In this phase, experiments are performed to col-

lect performance data from consolidated VMs. Analysis of data collected from

Chapter 3 played an essential part in designing the experiments for the rest of the

dissertation. The experiments in this section give a valuable insight into how the

performance of various resource intensive VMs is affected by the consolidation.

• In the third phase, a methodology is designed to systematically inspect the effect

of VM consolidation on the server performance. It is called the Incremental

Consolidation Benchmarking Method (ICBM) and described in Chapter 4.

After reviewing the methodology of Chapter 4, a need was felt to design a new

framework that can apply the steps of methodology in a large scale experimen-

tal setup. Therefore, a framework is designed and implemented in Chapter 5

to perform experiments with a large number of VMs. Thus, in this phase, a

methodology and a framework are designed to conduct experiments with VM

consolidation.

• In the fourth phase, the effectiveness of the presented method and the framework

are tested on various hypervisors. Chapters 6 presents the experimental results

on three different hypervisors. Data collected during the experiments are also

used to build prediction models using machine learning methods.

In Chapter 7, ICBM is used to conduct experiments with VM memory allocation

and consolidation. Thus, the effectiveness of the presented methodology in the

dissertation is evaluated in this phase.

Now that, the structure and research mythology of the dissertation are discussed,

it is time to introduce the basic concepts of virtualization. In the next chapter, the im-

portance of virtualization and Cloud computing is discussed. The next chapter is also

crucial for understanding how the problem of consolidated VMs performance interfer-

ence is conceptualized and experiments are conducted in this dissertation.



Chapter 2

Virtualization and Background

“I was born not knowing and have had only a

little time to change that here and there.”

— Richard Phillips Feynman* (1918-1988)

2.1 Introduction

Virtualization is a cunning technology, which has roots back to the early days of main-

frame computers [13–22], The mainframe are the predecessor of the modern High-

Performance Computers (HPC). Virtualization has a fascinating origin and history.

This chapter discusses the beginning and development of the virtualization technol-

ogy. Also, the application of virtualization in the context of modern Cloud computing

is discussed. Categorization of the Cloud and virtualization technology are described

as well.

2.2 Virtualization

Discussion of this chapter begins with virtualization, which allows multiple Operating

Systems (OS) to run on a single physical machine [52]. There is no standard definition

of virtualization; it is described differently by different researchers.

*Image source: http://www.nndb.com/people/584/000026506/

14

https://www.nobelprize.org/nobel_prizes/physics/laureates/1965/feynman-bio.html
http://www.nndb.com/people/584/000026506/


2.2. VIRTUALIZATION 15

One of the earliest definition of virtualization was like this “to present the illusion

of many smaller virtual machines (VMs), each running a separate operating system

instance” [53]. Later, VMware defined virtualization as follows “The term virtualiza-

tion broadly describes the separation of a resource or request for a service from the

underlying physical delivery of that service” [54]. In 2007, IBM defined virtualization

as “virtualization is a technique for hiding the physical characteristics of computing

resources from the way in which other systems, applications or end users interact with

those resources” [55].

The definition of virtualization has not been updated or standardized in years. In

this dissertation, the virtualization is defined as follows:

Definition 2.1 Virtualization is the process of creating an isolated execution environ-

ment that is either vastly or entirely different from the underlying (physical) environ-

ment.

Where, “execution environment” refers to a group of resources and settings that

enable an application or a set of applications to execute properly. Virtualization of

resources is most often achieved with the helped of a thin layer of software or firmware

that is layered on top of the physical hardware directly or another software layer.

The thin layer of software, which enables the virtualization process is known as

the hypervisor. VMware defines hypervisor as follows “A thin layer of software that

generally provides virtual partitioning capabilities which run directly on hardware,

but underneath higher-level virtualization services. Sometimes referred to as a “bare

metal” approach” [54].

2.2.1 Origin of hypervisor

It might be surprising to some readers to learn that the term “hypervisor” is older than

the term “Operating System” [56, 57]. Prior to IBM System/360 there [13–16, 58]

was no “operating system” available for cluster computers. All the systems used to

have a “supervisory program” or “supervisor” program to control the execution flow

of other routines, work scheduling, input/output (I/O) operations, error actions and to

perform other similar actions. In modern computers, similar actions are performed

by the kernel [57, 59, 60]. Even today, the kernel mode of modern processors is also

called the supervisor mode.
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The IBM 7080 was introduced in 1961 [61, 62], it was the part of hugely success-

ful IBM 700 series of computes. The IBM 701 was the first commercially available

scientific computer and the large-scale electronic computer that was produced for the

general market [61]. All previous large-scale computing systems were designed and

produced for a company or organization specifically.

The IBM 7080 become hugely popular, and various organizations widely used it.

Later, when the IBM System/360 was released in mid-sixties, many people were still

using the code developed for IBM 7080 and some other older machines. The IBM

System/360 model 65 had an emulator to run the codes of legacy systems like that of

IBM 7080. However, the only problem was that the system could run in only one mode

at a time, either in IBM System/360 or IBM 7080 mode.

That encouraged the engineers in IBM to introduced an ingenious solution to run

the IBM System/360 system in both modes at the same time. According to the plan,

the memory space of the system was divided into two parts, the lower and upper half.

Either part of the memory was able to run in IBM System/360 or IBM 7080 mode.

However, the IBM System/360 model 65 had only one set of registers; thus, the reg-

ister values needed to be swapped between the modes. A small code was added to

facilitate the register value swapping process. The added code was referred to as the

“hypervisor” by the IBM engineers.

The term hypervisor is a variant of the term supervisor. The ‘supervisor’ is a pro-

gram used in early generation IBM clusters to control other programs and interact with

hardware. The word “hyper-” is a stronger variant of word “super-”. In the context of

early cluster computing systems, it had been used to indicate that the hypervisor is the

“supervisor of supervisor”, a unique application that has control over the supervisor.

Both words have the same meaning; “super-” is a Latin term meaning “above”, while

“hyper-” is an Ancient Greek term meaning “above”.

Not to mention the virtualization technology even predates the modern micropro-

cessor technology, which became hugely popular in the early seventies. The first com-

mercially available microprocessor, the Intel 4004 was introduced in 1971 [63, 64].

The microprocessor technology was set in motion by Intel, a different company with

different goals. Thus, virtualization has close ties to the early generation of mainframe

computers that existed before even the microprocessors came into existence.

Although modern hypervisors are much more involved in design and implemen-

tation, they still bear the same name as that of their ancestors. Modern hypervisor is
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also known as the Virtual Machine Monitor (VMM) [65–68]. Hypervisors play an es-

sential role throughout this dissertation. All the experiments here are designed to be

conducted directly on hypervisors.

Several well-known hypervisors have been used in the experiments and data col-

lected from the hypervisors are also used for analysis. Various types of experiments

are conducted in the different chapters. More discussion about those experimental

processes can be found in the respective chapters.

2.3 Types of hypervisor

Hypervisors can be categorized into two main types based on their location specific to

the OS and hardware. They are type-1, and type-2 hypervisors [69]. A type-1 or bare-

metal hypervisor is installed on the hardware and controls all the hardware resources

Hardawre

Hypervisor

VM1 VM2 VM3 VM4 VM5 VM6

(a) Type-1 / Bare-metal hypervisor

Hardawre

Hypervisor

Operating System

VM1 VM2 VM3

(b) Type-2 / Hosted hypervisor

Figure 2.1: Types of hypervisor.
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directly. On the other hand, a type-2 or hosted hypervisor is installed on an OS and

is dependent on the OS for accessing the resources. Both types have advantages and

disadvantages; they are used for different purposes. Two types of hypervisors are

shown in Figure 2.1 and discussed next.

2.3.1 Type-1 / Bare-metal hypervisor

A type-1 hypervisor is the most efficient for concurrently running multiple VMs on a

single server. It is installed directly on the physical hardware, and it controls all aspects

of the VMs. A type-1 hypervisor may be equipped with CPU schedulers, resource

distributor, and other components to share the resources among the VMs efficiently. In

this case, the hypervisor takes full control of the hardware and uses the entire physical

resources to run VMs concurrently. It is well-suited for Cloud and data centers.

A type-1 hypervisor may have built-in one or more CPU schedulers that can dy-

namically share CPU resources among the VMs. Similarly, the hypervisor distributes

memory and I/O resources among the VMs. A type-1 hypervisor is typically optimized

for running multiple VMs on a server. For the optimization process to work correctly,

the system must be booted in hypervisor supported mode. In data centers and clusters,

it is widely used. Examples of type-1 hypervisor includes Xen [38, 39], XenServer,

VMware ESX [35–37], KVM [70–73], and Hyper-V server [74, 75].

2.3.2 Type-2 / Hosted hypervisor

The type-2 hypervisor is installed on top of the OS, and the system is not required to

boot into the hypervisor mode. To the host OS, the hypervisor appears just like another

application. In this case, the hypervisor does not access the hardware directly, and

resource sharing among the concurrently running VMs is far less efficiently compared

to that of type-1. It is usually not deployed for Cloud or used in data centers. It is

mainly used on desktops computers to run a second or even a third operating system.

In this way, the user can use two or more OS without rebooting the system. Examples

include, Oracle virtual box [76] and VMware workstation [77, 78].

All the experiments of this dissertation are conducted with type-1 hypervisor as it

is predominantly used in data centers. Cloud systems are usually built upon type-1

hypervisors. That is why type-1 hypervisors are chosen for the experiments.
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2.4 Virtualization and x86 Architecture

The x86 family of processors is predominantly used for both personal and commercial

purposes. Data centers are no different, most of the processors used for providing

Cloud services are from x86 family. Therefore, all experiments in this dissertation are

conducted with x86 compatible processors. Next, the virtualization process of the x86

processor family is discussed.

In the modern generation of processors, a hierarchical protection domain or pro-

tection ring system is used to protect data and processes from faults and malicious in-

structions [79]. Originally, x86 architecture was designed long before the modern vir-

tualization hype and was never intended to be used with virtualization technology [80–

83]. Hence, the x86 processor design had no hardware support for virtualization at

all. When the virtualization became prevalent in the last decade or two, the software

engineers and developers had to come up with an ingenious solution to virtualize the

x86 architecture.

The x86 processors have four privilege rings or protection domains, which are

numbered from 0 to 3 [84]. Ring-0 is the most privileged domain while the ring-3 is

the least privileged one. Figure 2.2a shows how the rings are usually employed when

no virtualization process is involved.

There is no hard and fast rule to use the protection rings. Two possible schemes

for those rings are shown in Figure 2.2a. In the figure, Ring-0 is the highest privileged

level, which either occupied by the kernel or a set of special OS functions. This ring is

used for providing the core functionalities of OS.

Next, ring-1 hosts the rest of OS or OS functions that are less important than the

kernel functions. A modern operating system is a massive piece of software, and not

all functionalities are as important as the kernel functions. The less critical services are

sometimes hosted in ring-1 to reduce operational overhead.

If a system resource is restricted to a lower number ring, then all the processes

running on the higher numbered rings must send an access request to the lower level

ring process through a trap or a fault. A system fault or trap initiates a context-switch

process, and the system enters into the kernel mode to provide the service. If multiple

processes on higher level rings send requests simultaneously, then the kernel decides

which one gets the access first. The context-switching process has high overhead, and

OS designers usually try to reduce the number of such overhead as much as possible.
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(a) x86 protection rings as used by operating systems.
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(b) Type-1 virtualization with x86 protection rings.

Figure 2.2: Hierarchical protection domains/rings of x86 architecture and virtualiza-

tion.

The philosophy behind using ring-1 is that if some part of the OS can be placed on a

higher level ring, then it can save the system from having to enter the kernel mode at

least some of the time.

Next, ring-2 hosts the device drivers or OS routines that provide such services.

The device drivers directly communicate with OS to operate various devices. Lastly,

user applications are placed in level 3, the lease privileged domain. Thus, a user-

level application is entirely dependent on lower level processes for providing system

services.

When the concept of privileged rings was instantiated in the early seventies, system

faults or traps event were costly for processors to handle [79]. Modern processors are
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much faster compared to previous generations of processors and have special mecha-

nisms to serve multiple traps or faults more efficiently. Nowadays, most kernels can

perfectly operate without utilizing all four privilege rings. In fact, most modern kernels

utilize only two privileged levels, 0 and 3 [85].

Next, Figure 2.2b shows how a type-1 hypervisor utilizes the rings on the server.

The type-1 hypervisor is widely used in data centers and the most efficient way to

run multiple VMs on a server concurrently. Throughout this dissertation, the type-1

hypervisor is used for conducting experiments. As the figure shows, type-1 hypervisor

must be placed in ring-0 as it requires the highest privilege in the system. The host

operating system (of the server) is placed in the ring-1; thus, having the second highest

privilege. Hypervisor still has higher precedence than that of the host operating system

and ultimately controls all the system resources.

The guest operating system (on VM) is placed on the next available ring, and it has

lower privilege than both the guest operating system and hypervisor. Finally, applica-

tions on VMs are run in level 3, which is the least privileged of all the levels.

As mentioned above, a system does not need to use all four rings to operate, and

a non-virtualized system can operate perfectly on two or three privilege levels. How-

ever, when virtualization is implemented the guest OS, host OS, and hypervisors are

generally placed on the rings as shown in Figure 2.2b.

After the advent of Cloud computing and reincarnation of virtualization technol-

ogy, the x86 architecture has been modified to accommodate an extra privilege level [81–

83]. All modern x86 processors (produced within last decade or so) have a new priv-

ilege level, which is commonly referred to as “Ring -1”. In hardware-assisted virtu-

alization, the hypervisor utilizes the new ring to operate at the most privileged level.

The extra ring makes it possible for hardware-assisted hypervisors to run unmodified

operating systems on the VMs.

2.5 Categorization of virtualization methods

In an x86 system, virtualization can be implemented at different levels and ways to

serve different functional purposes. Various researchers have classified virtualization

technology differently; however, there is no consensus among the researchers. In this

dissertation, virtualization methods of x86 processors are divided into six categories
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based on the purpose of their use. In this dissertation, the categorization is made de-

pending on at what level the virtualization is applied and what type of service it has to

offer to the system.

The virtualization technology is not monolithic rather it is a highly dynamic one.

It has a different meaning to different people, and it can be used in a wide range of

scenarios. A categorization of virtualization is necessary to know which category is

essential for data centers and Cloud.

In this dissertation, virtualization is divided into six categories according to levels

and types of services they offer. The six categories are as follows:

1. Emulation,

2. Full virtualization,

3. Para-virtualization,

4. Hardware assisted virtualization,

5. OS-level virtualization, and

6. Application level virtualization.

Table 2.1 compares the important characteristics of all six virtualization categories.

The categories of virtualization are briefly discussed below.

A full discussion about the categories of virtualization is out of scope for this dis-

sertation. The categories are introduced here to make it clear to users that the virtual-

ization technology has many applications and functions. In the context of this disser-

tation, it is necessary to know what type of virtualization is essential for data centers,

so that experiments can be designed and conducted accordingly.

2.5.1 Emulation

In this case, the hypervisor emulates all the components of the hardware. Every hard-

ware component is emulated for the VM, and any OS can be ported to run on the VM

without significant modification. Emulation is used for running OS with one system

architecture, on a machine with another system architecture.

The instruction set of the guest system can be completely incompatible with that

of the host. It is the most costly form of virtualization as it requires to translate all the
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Table 2.1: Comparison of virtualization categories.

Virtualization

category

Operation

overhead

VM

dependent

on

Hypervisor

operating

level

Consolidat-

ion of

many VMs

Examples

Emulation High Nothing
Usually

over OS
Infeasible

QEMU,

Bochs,

VirtualPC

Full Medium
Host H/D

Architecture

Usually

over OS
Feasible

VMWare

Worksta-

tion,

Parallels

Para
Medium

to low

Host H/D

Architecture
Below OS

Most

feasible

Xen, Citrix

XenServer,

VMWare

ESX Server

Hardware

assisted

Medium

to low

Special host

H/D support

Usually

below OS

Most

feasible

Intel VT-x,

AMD-V

OS-level
Usually

low

Shared host

OS libraries

Closely

connected

with OS

Only for

the same

OS version

Solaris

Containers,

BSD Jails,

Docker

Application

level

Usually

low

Shared host

application

libraries

Over OS

Only for

the same

application

JVM

guest instructions into native instructions. The hypervisor is responsible for the binary

translation of all guest OS instructions to make them compatible with host hardware.

Emulation is mainly utilized for the development of new systems and debugging.

With this type of virtualization, an OS can be ported to any machine even with en-

tirely different system architecture. QEMU is a popular example [86]. Other examples

include Bochs and VirtualPC.
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2.5.2 Full virtualization

Full virtualization is possible if the architectures of the physical host and virtual ma-

chine are the same. It uses just “enough” virtualization so that unmodified OS can run

on the VM. In this kind of virtualization, hardware architecture swap is not possible

for the OS. The IBM VM family fall into this category. The VM-CMS is a family of

virtual machine operating systems developed for IBM mainframe computers [87–98].

They are the ancestors of the modern hypervisors, both sharing many characteristics.

The Conversational Monitor System or CMS is one of the earliest examples of

software that acted as a hypervisor. Many of the design principles of modern hyper-

visors are invented initially for the VM-CMS family. Two modern examples of full

virtualizations are the VMWare Workstation [77, 78] and Parallels.

2.5.3 Para-virtualization

Para-virtualization is by far the most common form of virtualization deployed today.

In this case, the hardware simulation is not used for VMs; however, the guest OS inside

the VM has to be modified. The guest OS uses hypercalls to interrupt the hypervisor.

In this model the guest OS is trapped by the application then the hypervisor is trapped

by the OS. The application uses the syscall to interrupt the OS, then, in turn, OS uses

the hypercall to interrupt the hypervisor.

The guest OS needs to be modified and can not access the underlying hardware.

An application can send a service request to the guest OS through syscall. Instead of

servicing the interrupt by itself the modified OS interrupts the hypervisor through the

hypercall. In this case, OS must be aware of uses the hypervisor API and the guest OS

is modified to accomplish this.

In modern data centers and clusters, this type of virtualization is widely used. Ex-

amples include Xen [38, 39, 53], XenServer [99] and VMWare ESX Server [35–37].

2.5.4 Hardware virtualization

Hardware virtualization technology [100] transfers some of the hypervisor responsi-

bilities to the hardware. One of the problems with the para-virtualization is that the

OS needs to be modified. The modification is only possible for open source OS. Pro-

prietary software like the Windows is not open source and this is a problem for the
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para-virtualization technique. To overcome such problem, the hardware manufactur-

ers have introduced additional features to the hardware to assist virtualization. In this

case, the hardware is aware of the hypervisor and interrupts from the guest OS are

transferred to the hypervisor automatically.

Initially, the x86 family of processors was not designed for virtualization, and it

became a significant drawback after the advent of Cloud. The hardware assistance

virtualization was introduced to overcome this issue. In this case, the hypervisor gets

direct support from the hardware. Both modified and unmodified OS can be run on

the hardware-assisted virtualization. Examples include the Intel Hardware-assisted

Virtualization (Intel VT-x) [82] and AMD-V [101].

2.5.5 OS-level virtualization

In this case, the primary focus of the virtualization is in the OS. A single instance of

OS is divided into multiple partitions. Each partition acts as a fully functioning OS.

This case, only one kernel is active, and it provides services to all the OS partitions.

Nonetheless, all the partitions are isolated from each other. Applications running on

one partition is unaware of the other partitions.

In this case, guest OS is the same as the host OS, and only appears to be isolated.

Any other type or version of OS cannot be run on the guest. Examples include Solaris

Containers [102], BSD Jails, Linux Vserver [103] and Docker [104].

2.5.6 Application level virtualization

This type of virtualization is applied at the application level. Each application gets a

full execution environment, and they do not share system variables. Each application

controls own separate copy of the components like own registry files and global ob-

jects. The application level virtualization allows applications to avoid deadlocks and

conflicts over the resources.

Multiple application level VMs can be run on one host OS. Multiple copies of

the application and runtime environment can be made and run in parallel. The main

advantage is that the virtualization overhead is low. The tasks run on the applica-

tion level VM, and the VM communicates with the OS. The Java Virtual Machine

(JVM) [105, 106] is an example of application level VM.
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In data centers, mostly para-virtualization and hardware-assisted virtualization are

used. Both techniques are the most efficient for running multiple VMs concurrently on

a server. In this dissertation, experiments have been done with hypervisors that employ

both para-virtualization and hardware-assisted virtualization technology.

2.6 Virtualization of different resources

Computing systems usually require three types of resources to operate, they are a)

CPU, b) memory, and c) I/O. A virtualized system is no different. Three primary

computing resources need to be virtualized for VMs to operate appropriately. Those

three resources are fundamentally different and need to be virtualized in different

ways [107]. Their virtualization processes are described below.

2.6.1 CPU / Processor virtualization

The hypervisor distributes CPU resource among the VMs almost as the same way the

OS allocates CPU cycles among the processes. When the VMs are created, each VM

is assigned one or more Virtual CPU (vCPU). The hypervisor allocates time-slices

to each vCPU; essentially it is just CPU time sharing among the VMs. Each VM is

allowed to run for an assigned time slot, and the VM runs on the CPU for the allocated

period. When the period is over, the VM is stopped, and the registers and CPU states

are saved. Then, the registers and CPU states are swapped with another VM, and the

new VM is allowed to run for the allocated period [108].

The hypervisor may use various algorithms to share CPU among the VMs. CPU

virtualization is very efficient and has low virtualization overhead.

2.6.2 Memory Virtualization

Memory virtualization technique is different from than that of CPU. The hypervisor

allocates sperate memory address regions for each VM. A guest OS can perform op-

erations only on the memory sectors allocated to it by the hypervisor. Thus, the hy-

pervisor enforces memory isolation for each VM. It is critical that one VM does not

have access to the memory region occupied by other VMs for the safe and secure task

execution environment.
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A VM is not aware of the memory sectors occupied by other VMs; only the hyper-

visor has that information. A guest OS can manage the page tables already allocated

to it by the hypervisor; the guest OS distributes the memory among the local processes

during the runtime. However, creating a new page table for VMs is a troublesome

process. It requires modification of the physical memory locations.

To create a new page table, the VM first interrupt the hypervisor. The global mem-

ory space is divided, distributed, and managed by the hypervisor. A VM is not aware

of the divisions, and any attempt to modify outside memory regions could easily result

in conflict with the memory spaces of other VMs. Hypervisor manages all the VMs

and knows the global address of the memory regions allocated to each VM. Once the

hypervisor receives a request, it creates a new page table and returns the address to the

VM.

A two-level page table system is used for the VMs [109, 110]. The guest OS uses

a page table to map VM virtual memory pages to VM physical memory pages. The

hypervisor uses a shadow page table to map VM memory pages to actual memory

pages on the server. As the second level of memory mapping is controlled by the

hypervisor; therefore, the VMs cannot access the actual physical memory.

Using a two-level page system; the hypervisor ensures that every VM can access

own memory pages and do not interfere with the pages of other VMs. Since a two-level

page system is used and hypervisor needs to be interrupted for creating and updating a

shadow page table; creating or updating a page table has high overhead.

Applications run on the guest OS, and page fault can occur at any time. Whenever

the guest OS detect any page fault, it initiates a sequence of events. First, the page

table is changed to read the only mode; then the hypervisor is notified through an

interrupt. In the para-virtualized system, the interruption is done through hypercalls.

The hypervisor makes changes to the shadow page table and informs the VM through

hypervisor callback interrupt.

The hypervisor ensures the VM security in this way; however, with the high over-

head of manipulating two-level page tables. Thus, both the VM memory allocation

and task memory requirement play a crucial part in the VM performance.
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2.6.3 I/O virtualization

For I/O devices like the network interface card and disk, virtual interfaces are needed

to be created. Multiple virtual interfaces are multiplexed onto a physical interface.

Each VM has a disk partition; however, they are not allowed to access the physical

disk directly. Hypervisor translates the I/O requests of the VMs to actual disk block

addresses [111].

The actual mapping process depends on the hypervisor type. Type-2 hypervisor

sends down the requests to host OS device drivers. The host OS treats the requests in

the same way as it treats requests from other processes. However, type-1 hypervisor

uses split drivers usually in conjunction with a special VM.

In the split driver technique two types of drivers are used, backend and frontend

driver. The front-end driver resides in the VM and communicates with the processes

of the VM. The front-end driver sends the data to the back-end driver, which resides

either inside the hypervisor or on a special VM. The back-end driver communicates

with the hardware to process I/O requests.

Use of virtual device offers extra security; however, at the cost of extra over-

head [33]. The requests have to go through two different driver levels and translation

phases; thus, adding overhead to the I/O processing. As a result, both the memory and

I/O virtualization incurs more overhead compared to CPU virtualization.

All three types of resource virtualization play an essential part in Cloud operations

and performance. In this dissertation, experiments have been performed with all three

types of resource virtualization.

2.7 Data centers and the rise of virtual machines

In data centers and Cloud mainly type-1 hypervisor is used. A type-1 hypervisor is

more efficient for simultaneously running multiple VMs on a server. In this case, the

hypervisor takes full control of the hardware and use the resources efficiently. Benefits

of using virtualization are many folds [5–12]. Many works have listed various benefits

of virtualization; however, some of the listings are overlapping. In this dissertation the

following six benefits of virtualization are identified:

1. Security / VM isolation
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2. Increase resource utilization / reducing energy cost

3. High availability of services / Fault tolerance

4. Legacy application and system

5. Maintenance

6. Pay-as-you-go model

Next, each category of the benefit of using virtualization in Cloud is discussed in

brief.

2.7.1 Security / VM isolation

Security is one of the primary reasons for using virtualization in data centers [5]. A

user can have administrative control over the rented VMs and install any application.

However, the user does not have access to the underlying physical hardware. The data

center owner can have full control of the hardware and create VMs for the users.

Virtualization allows the VM owners to use their rented VMs without compromis-

ing the security of the physical server. In this way, virtualization ensures security for

the data center owner without restricting the administrative privileges of the VM own-

ers. The hypervisor restricts VMs from accessing the physical hardware; thus, any

change made by the VM do not affect the hardware or other VMs. The hypervisor

multiplexes the physical resources such as CPU, memory, and I/O in such a way that

each VM is isolated from other VMs. Each VM has control over own execution en-

vironment. Thus, VM owners have the full flexibility to run any application on their

rented VMs.

2.7.2 Increase resource utilization / reducing energy cost

Virtualization can increase resource utilization and reduce energy cost through consol-

idation [23, 23–27]. Consolidation is the process of running multiple VMs on a same

physical server. Running multiple VMs on a server increases resource utilization of

the physical server. In turn, that means less physical server have to be active at any

given time. Thus, virtualization can help to reduce energy cost.
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2.7.3 High availability of services / Fault tolerance

Virtualization helps to increase the availability of services. The key to increasing the

availability of services is running multiple copies of VMs [28–30]. The high availabil-

ity schemes simultaneously execute two or more copies of the same VM on different

physical servers. One of the servers run the primary VM while rest of servers run the

secondary VMs. The service is provided from the primary VM, while the other VMs

are regularly updated with the primary VM data.

In the case, the primary VM goes down a secondary VMs is chosen to continue

providing the services. The service requests are automatically diverted to the selected

secondary VM. How much of the primary VM state can be recovered depends on the

recovery algorithm and how many VMs are simultaneously running. Running the same

task on multiple VMs in multiple locations is in the heart of the VM fault tolerance

schemes.

2.7.4 Legacy application and system

There are many commercial applications still in production that was designed decades

ago for the legacy hardware. Many enterprizes continue to use legacy applications and

value their legacy systems highly [112–116]. All hardware has a lifetime, and they

phase out eventually. Enterprises often choose to continue using the legacy applica-

tions long after the life cycle of the hardware is over. When vendors stop manufactur-

ing legacy hardware buying new hardware becomes impossible for the legacy software

owners.

Replacing legacy hardware or application is often expensive. All the source codes

need to rewritten for new compatible hardware. Furthermore, all databases and files

need to be moved to the new format. Thus, moving codes and data to a new system can

be costly and time-consuming. One of the cost-effective solutions is to run the appli-

cation on VMs that emulate the legacy hardware. The VMs are configured to emulate

legacy hardware entirely; thus it can save the cost of replacing legacy hardware.

2.7.5 Maintenance

In data centers, often a server runs for an extended period. Occasionally, the physical

servers face problems and need to be shut down for maintenance. In such cases, the
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VM of the host needs to be moved to another server. Live migration feature of the

virtualization enables VMs to migrate while they are executing tasks [117–122].

A physical server starts showing signs of fatigue usually after long hours of opera-

tion. What is more, an increase in the temperature of a part of the data center can affect

the performance of the physical servers [123, 124]. The servers may also need to be

shut down for other reasons like a hardware replacement or software update. In such

cases, the VMs running on the servers need to be relocated to other physical servers.

Live migration gives the option to relocate the VMs without interrupting the services.

The VMs can provide services to the Cloud users during the live migration pro-

cess [125–127]. The actual downtime is so minimized that the VM can continue to

provide services without interruption [110]. Once the migration is completed the VMs

are completely moved to another part of the data center, and the old server is now free

for maintenance work. Thus, using virtualization technology, it is possible to carry out

maintenance tasks without interrupting the Cloud services. It is a significant advantage

for the businesses.

2.7.6 Pay-as-you-go model

One of the attractive features of the public Cloud is the pay-as-you-go model for rent-

ing out the VMs [128, 129]. A Cloud user can rent as many VMs as the user want and

use them as long as required. Instead of acquiring hardware a user can rent VMs al-

most instantly. The pay-as-you-go model is beneficial for small and medium business,

which often face the surge in online user activities. VMs can be set up in minutes; on

the other hand, the setting up hardware usually takes much time.

Furthermore, businesses can stop renting the VMs at any stage if the extra com-

puting power is no longer required. On the other hand, it is not possible to get rid

of unnecessary physical hardware easily. The model saves many start-up businesses

from initially spending much money on the computing hardware. Businesses also save

money by not having to pay for server maintenance and management costs.

The pay-as-you-go models are the most cost-effective option for many businesses.

Thus, the virtualization played a significant role in the commercial success of the

Cloud.
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2.8 Grid Computing

Any discussion about Cloud computing should start with Grid computing. Grid com-

puting is the predecessor of the Cloud computing. The term Grid computing was

coined in the late 1990s, is borrowed from the concept of the electrical power grid.

The idea behind Grid computing was to connect many computers to the internet to

harness their computing power [130].

In the 1990s the internet was getting faster and individual computers were getting

cheaper; sales of the personal computing was booming. The concept behind Gird is to

connect multiple computers to create a global resource space for scientific computing.

In this case, data and resources are distributed and shared among many institutes and

departments.

The grid can be identified with three characteristics; decentralized resource control,

standardization, and nontrivial qualities of service [131]. The decentralized resource

control means Grid resources can span multiple administrative domains. The standard-

ization refers to the protocols and interfaces that are used to share the Grid resources.

Lastly, the non-trivial qualities of service mean parameters such as latency, throughput,

and reliability can be uncertain at times.

The Grid was initially designed for running scientific applications and did not

achieve commercial success for several reasons. The distributed nature of the Grid

is not suitable for many organizations; efficient task scheduling also proved to be trou-

blesome for the distributed resources. The decentralized nature of Grid also makes the

coordination and security issues challenging to handle. On top of this, various organi-

zations introduced separate standards for the Grid middleware that are not compatible

with each other. As a result, Grid did not achieve commercial success.

Over the years Gird architectures become too complicated to maintain let alone of

adding new functionality. Ultimately, Gird was a concept that looked good only on

paper and had limited practical applications. The popularity of Grid declined rapidly

after the introduction of Cloud. The Cloud was designed to avoid the architectural

pitfalls that are associated with traditional Grid computing.
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2.9 Cloud

There is no accepted definition of the Cloud; different organizations define Cloud in

different ways. In this section, the definition provided by different leading organiza-

tions is discussed first. Then a working definition for Cloud is given that is suitable for

this dissertation.

VMware defines Cloud computing as “Cloud computing delivers convenient, on-

demand access to shared pools of data, applications, and hardware. The cloud com-

puting paradigmmade possible by sophisticated automation, provisioning, and virtu-

alization technologiesdiffers dramatically from todays IT model” [132].

On the other hand, Intel defines Cloud as “a computing paradigm where services

and data reside in shared resources in scalable data centers, and those services and

data are accessible by any authenticated device over the Internet” [133].

The US National Institute of Standards and Technology (NIST) defines Cloud com-

puting as follows “Cloud computing is a model for enabling ubiquitous, convenient,

on-demand network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction” [2].

The International Business Machines Corporation (IBM) defines “a Cloud is a

pool of virtualized computer resources” [131]. For IBM the virtualization plays an

integral part for the Cloud. IBM specifies two essential characteristics of the Cloud.

The first is the dynamic scale-in and scale-out capability. The Cloud allows fast pro-

visioning and de-provisioning of resources for applications. The second is facilitating

the load-balancing and reallocation of resources. Both of the features are achieved

through virtualization.

It is possible to identify other characteristics of Cloud, too [134]. For example the

Cloud is also characterized as “component-based application construction” [135]. In

the beginning, Cloud was not thought of as a new computing paradigm; rather, it was

believed to be a combination of some new technologies and the Grid. Notably, the

idea of utility computing and virtualized data center are what made the Cloud different

from the Grid.

A lot of technical concepts has changed over the years, and new technologies have

been added to the Cloud; however, the core concepts remain the same. In this disserta-

tion the core concept of Cloud is defined in the following way:
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Definition 2.2 Cloud is the concept of using computing resources as a utility.

This definition is straightforward and precise for works done in this dissertation.

The benefit of using virtualization is increased security and better resources manage-

ment. As a result, the scope of deploying applications is much greater in Cloud com-

pared to Grid. Initially, Cloud was used for deploying interactive web applications and

three-tier architectures [136]. However, nowadays the scope of the Cloud has increased

significantly as scientific and parallel applications are being deployed in the Cloud.

2.9.1 Cloud verses Grid

There are several differences between the Cloud and Grid, they are summarized below.

The virtualization is essential for the Cloud; however, for Gird it is optional [137].

Although nowadays virtualization is widely used in Grid. Another difference that in

Grid the applications are run in the batch mode. On the other hand, Cloud mainly run

interactive applications [136]. Grid applications can be deployed locally; however, for

Cloud, all the application must be deployed in Cloud [135].

In Grid, an application accesses the resource through the middleware, which man-

ages the resources. In Cloud, the applications use standard web protocol, which makes

the resource access easier [136]. The Grid is organized virtually; all the distributed

resources are arranged in a virtual domain. On the other hand, all the Cloud resources

reside in the data center; hence, the renounces are arranged physically. It is a signifi-

cant advantage as the enterprises and institutes can control the physical resources.

The grid does not have any efficient business model; the entire Grid system is a

share-based economy. On the other hand, Cloud uses a utility model; the user has

to pay based on per unit of resource usage [138]. For Grid there is no Service Level

Agreement (SLA) enforcement; however, Cloud enforces SLA strictly.

For Grid there is no centralized control; all resources are distributed and belongs

to different owners. In contrast, Cloud is centrally managed. All physical resources

reside in the data center and managed by the organization [138].

The Grid is a highly open system and vulnerable to malicious attacks. The Cloud

is far less open and provides an excellent level of security. Another factor is that Grid

is hard to operate; as there is no standard Application Programming Interface,(API)

most setup has to be done manually. Cloud, on the other hand, provides standard API

and almost everything is automatic.
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Lastly, the initial moving cost is higher for Cloud compared to Grid. Initially, to

deploy an application in the Cloud necessary number of VMs have to be rented, and

all the data needs to be transferred to the Cloud. The Cloud providers charge users for

both the amount of data transfer and storage [139]. It may require a substantial amount

of initial investment. On the other hand, Grid is a share-based economy. Furthermore,

there is no need to transfer all the distributed data to a central location. Thus, the initial

setup cost for Grid is nominal. However, recall that Cloud offers an excellent level of

SLA and security while the Grid does not.

2.10 Taxonomy of Cloud

In the previous sections, the basics of Cloud and virtualization have been discussed.

In this section, the taxonomy of the Cloud will be discussed in brief, this discussion

is necessary for understating the dissertation. However, a full discussion of the Cloud

taxonomy is out of scope for this dissertation. The Cloud taxonomy of this dissertation

is shown in Figure 2.3.

Researchers have identified many characteristics of Cloud; however, not everyone

agrees with everyone else [140, 141]. However, the essential characteristics of the

Cloud can be identified as follows:

1. Virtualization

2. Pay-as-you-go model

3. Scalability-on-demand

4. Fault-tolerance

5. Quality-of-Service

Those essential characteristics are described next. Virtualization is an essential

characteristic shared by all the Cloud. All Cloud deployment and services employ vir-

tualization. All the services and benefits, which are offered by the Cloud are depended

on virtualization. Modern Cloud as we know it today would have never been possible

without virtualization.

Pay-as-you-go model is the primary factor behind the commercial success of the

Cloud. It is the most interesting aspect of Cloud for the users. A user can rent any
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Figure 2.3: Taxonomy of Cloud services [1, 2].

amount of resources at any time. The user only has to pay for the rented resources,

and there are no other costs involved. There is no infrastructure procurement, man-

agement or update cost involved with the Cloud. Scalability-on-demand is another

feature common to every Cloud. Cloud users can rent resources on demand. Most

cloud providers charge separately for each resource consumption. Depending on the

computational it is possible for users to rent new resource ar anytime. Moat cloud

system allows users to scale up resources both vertically and horizontally.

Fault-tolerance all Cloud systems have elaborate fault-tolerance and disaster re-

covery plan. Those plans are also linked to the high availability of services. However,

the scope of those plans differ from provider to provider; it cloud be a simple VM

duplication plan to a highly sophisticated fault-tolerance algorithm. All Cloud systems

provide some scheme and measure to ensure the Quality-of-services. Measures and

schemes may vary from provider to provider and detail about a provider’s scheme can

be found in the contract agreement.

Now that the essential characteristics of the Cloud are discussed, next the Cloud

classification and services models are going to be addressed. There are three main

deployment and three services models for the Cloud. The three deployment models

are: a) Public Cloud, b) Private Cloud, and c) In-house Cloud. On the other hand,

the three services models are: a) Infrastructure as a Service (IaaS), b) Platform as a

Service (PaaS), and c) Software as a Service (SaaS). Those models are discussed in the
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following sections.

2.11 Classification of Cloud deployment models

In this dissertation, the categorization of Cloud services and deployment models have

been used to reflect our current understanding of the technology. Cloud has come a

long way within a few years, and the classification is done based on the recent devel-

opments scenarios.

Cloud is a centralized system; all physical resources are kept in a data center. Sev-

eral models have been proposed for Cloud services and resource deployment. There are

several taxonomies proposed for Cloud services, platforms, Infrastructure-level, Inter-

operability and so on. Unfortunately, those works are almost a decade old [134, 142–

145]. The Cloud has evolved over the years, and our understanding of the technology

has developed. While some of the concepts remain the same, some other concepts have

changed.

In 2011, NIST categorized the Cloud deployment models as private, community,

public, and hybrid [2]. Those were based on the earlier understanding of the Cloud

deployment strategies. It was prevalent among the Cloud deployment models for sev-

eral years. However, with time the understanding of deployment models have been

changed.

In this dissertation, Cloud is divided into three categories based on deployment

models; they are public, private and in-house Cloud. Table 2.2 provides a compar-

ison of the three deployment models. This classification is made by analyzing the

current Cloud deployment strategies of organizations. Those deployment models are

discussed in the following sections. Originally this dissertation was submitted with

this classification in September 2017.

In January 2018, VMware released a new classified of the Cloud deployment

model [146]. This classification contains three models; hosting, private, and public.

Community and hybrid, two deployment models, considered earlier in the 2011 NIST

classification have vanished from the 2018 VMware classification.

The classification presented in this dissertation is similar to that offered by VMware.

All three deployment model concepts are very similar to the three models proposed by

VMware. The only difference is that in this dissertation one of the categories is named
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the ‘in-house’, whereas in VMware technical report the same category is being called

the ‘hosting’. Other than that, both categories embody the same concept.

Thus, the deployment models released by a leading virtualization enterprize few

months after the original submission of this dissertation agrees with the new deploy-

ment models presented in this dissertation. The three deployment models are discussed

next.

Table 2.2: Comparison of characteristics of Cloud deployment models [3, 4].

Characteristics

Types
Public Private In-house

Dedicated
Multiple

customers
Single customer

Infrastructure

managed

Third party

provider

Customer or Third

party provider
Customer

Infrastructure located Off-premise
On-premise or

Off-premise
On-premise

Software update cycle
Third party

provider

Customer or Third

party provider
Customer

Modification of

services

Not allowed by

customer
Allowed by customer

Service configuration
Highly

standardized

Mostly

customizable

Fully

customizable

Application security

requirement
Usually low Medium to high High

Application resource

requirement
Usually High High to moderate Moderate to low

Access policy Un-trusted Trusted

Fault tolerance and

recovery scheme

Third party

provider
Custom scheme possible

Application

performance tuning

Third party

provider

Customer or Third

party provider
Customer
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2.11.1 Public cloud

Public Cloud is the most common form of Cloud available today; it offers VM services

to all users [29]. A user can rent computing, storage, and data transfer services from

the Cloud provider [139]. The VMs are rented out in the pay-as-you-go model; a user

can rent a unit of resource for any duration.

In a public Cloud, VMs from multiple tenants usually share the same physical

server. Public Cloud users usually have fewer security requirements, and the resource

units are relatively cheaper. Users can easily rent VMs through web portals and use

them.

Most deployed applications are interactive and have low latency and throughput

requirements, like the Web and game servers. Deployment of scientific application is

less common in public Cloud. However, nowadays public Clouds has started offering

specialized services for high resource intensive applications. Some examples of public

clouds include the Amazon Elastic Cloud (EC2), Blue Cloud by IBM, Sun Cloud,

Google AppEngine and Windows Azure [147].

2.11.2 Private cloud

Private Cloud applies strict security rules and regulations [2, 29]. Extra care is taken

to ensure the quality of services like, latency, and throughput. Primary users are the

enterprises and departments that require greater computing power to run scientific ap-

plications. Such an application requires greater computing power compared to the

applications on public Cloud. However, they have a shorter lifespan compared to the

applications of the public Cloud.

For example, a company may need to simulate massive chemical reactions for a

new product [148, 149]. Similarly, a biology department may require working with a

significant amount of biological data [150]. Such applications need high-performance

computing power. The resource requirement for parallel tasks is different from that

of the ordinary web servers. Furthermore, there can be sensitive data that requires

more security compared to that offered by the public Cloud. The scientific data are

confidential, and it needs to be secured from unauthorized access.

The private Cloud offers a higher level of security and SLA for sensitive data and

applications. For example, they make sure that VMs of only one user resides on a

server and VMs of no other users are on that server. Private Clouds are usually smaller
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in size and renting VMs not as easy or cheap as it is for the public Cloud. However,

some public Clouds also offers the same functionality at a higher price.

2.11.3 In-house cloud

The in-house Cloud refers to a system used by an organization for internal use only.

Banks and other financial institutions usually require in-house Cloud; it is used for

processing mainly financial transactions. Such transactions take a short time to exe-

cute; however, requires highly secured execution environment [151–153]. Financial

transactions face a high risk of malicious attacks; hence, never deployed in public or

private Cloud. Also, both the public and private Cloud requires data to be transferred

to the Cloud file system that is also a security risk for the financial data.

Financial transactions are small in size and do not require high-performance com-

puting. The primary objective is to process the requests securely and as quickly as

possible. In-house Clouds are smaller in size and systems are built with extra security

features.

In this dissertation, experiments are done with hypervisors and VMs. All Cloud

deployment models are dependent on hypervisors and VMs; The experiments of this

are designed to work with all types of Cloud deployments.

2.12 Classification of Cloud service models

Cloud is dependent on virtualization for providing services. Based on how a VM is

configured to provide service the Cloud can be divided into three categories as shown

in Figure 2.4. The three categories are [145, 154]:

1. Infrastructure as a service (IaaS),

2. Platform as a Service (PaaS), and

3. Software as a service (SaaS).

All three categories of Cloud services are discussed in this section. A full discus-

sion about the services is out of the scope of this dissertation. They are introduced here

to explain how those services relate to the works of this dissertation.
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Figure 2.4: Classification of Cloud service models.

All of this services are implemented on top of physical hardware and hypervisors.

All the experiments in this dissertation are conducted on hypervisors running on phys-

ical hardware. Hence, the experimental findings and results are equally applicable to

all service models.

2.12.1 Infrastructure as a service (IaaS)

Iaas is the lowest level of service provided by any Cloud. In this case, rented VM can

be configured to perform any task. Each VM is allocated with virtual resources like

virtual CPU, memory and I/O. The VMs are highly configurable and the VM owner

can install any application [128, 155–158].

A user can rent as many VMs as required, configure them and deploy the applica-

tion. In this case, the virtual hardware is rented out, and the user can choose a guest

OS to install. The user manages the OS and has the flexibility to run any application.

Example of Iaas includes Amazon EC2 [159].
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2.12.2 Platform as a Service (PaaS)

The Paas provides service a level higher than that of Iaas. In the case of Paas, the

platform is managed by the Cloud provider. It is not possible for the Cloud user to

install the OS of own choice [160–165]. The VMs are reconfigured for a particular

development environment; thus, Paas is mainly used to develop and deploy applica-

tions on the Cloud. Examples of Paas includes Windows Azure [147] and Google App

Engine [166].

2.12.3 Software as a service (SaaS)

In the case of Saas, the application layer is also managed by the Cloud provider in

addition to the virtual hardware and platform. The cloud user can only interact with

the applications. The applications are developed and deployed before hand; Saas is

basically just a production environment [167–173].

Compared to previous service levels the Saas is more familiar to the users. Example

of Saas includes the Google Apps, and Microsoft Office 365. Users can either install

an app on the local device or access it through a web portal. The locally installed

application is just a frontend that interacts with the Cloud to provide services.

2.12.4 Physical hardware and hypervisor

Strictly speaking, physical hardware and hypervisor are not the part of Cloud service

hierarchy. Nonetheless, they are introduced here to demonstrate their position in ref-

erence to the hierarchy. The hardware and hypervisor sit at the bottom of the stack,

and all three services are developed on top of them. Thus, they play a vital part in

providing all three types of Cloud services.

Physical hardware can be any server or cluster computing system. In data centers,

generally, a type-1 hypervisor is directly installed over the hardware. Then, all types

of Cloud service models are then implemented on the top.

In this dissertation, all the experiments are conducted with the physical hardware

and type-1 hypervisor directly. Thus, the experimental results and finding have equal

impact on all types of services mentioned above.
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2.13 Conclusion

This chapter discusses the concepts regarding virtualization. Importance and benefits

of virtualization in Cloud are also explained. Virtualization has a long history, and

many pieces of research have been done work in this field. Virtualization is a necessary

feature of the Cloud, many services of Cloud dependents on it.

A full discussion about history, types, or service models built on the top of vir-

tualization are out of scope for this dissertation. Those topics are introduced here to

give readers an idea about at what level the experiments are conducted and how they

impact various service models. From the discussion above, readers will have a better

understanding of how the experiments are designed and what aspects are taken into

consideration.

Different resources like, CPU, memory and I/O are virtualized differently. A data

center can house thousands of virtualized servers. Resource utilization and energy

efficiency are important issues for the servers. The improvement of resource utilization

can save energy; therefore, it is an essential area of research.

Now, that the basics of Cloud are discussed; the next chapter begins the experiment

with VMs. All experiments are done on the real virtualized system. An application

may use three basic resource types; CPU, memory, and I/O. The application can also

use a combination of resources, like CPU and memory combination, or memory and

I/O combination. Performance of the consolidated VMs is affected by the resource

consumption. In the next chapter, experiments are conducted with the performance

and resource usage of the consolidated VMs.



Chapter 3

Resource usages and contention of

co-located virtual machines

“It is by logic that we prove, but by intuition that we discover.

To know how to criticize is good, to know how to create is better”

— Jules Henri Poincaré* (1854–1912)

3.1 Introduction

Server virtualization is an essential feature of modern data centers. It is a cunning tech-

nology that provides applications with an alternate view of the execution environment

and resources that are independent of the underlying system and architecture. Such ab-

straction is often necessary to run untrusted software over the internet and on different

system architecture. The modern data centers and virtualization are dependent on each

other. The virtualization is consistently used in the data centers to run various types

of applications on high-end servers. Virtualization technique can be implemented on

different computing systems in various ways.

In high-end servers, the virtualization layer usually resides over the physical hard-

ware. In this case, the guest Operating Systems (OS) run on top of the virtualization

layer and interact with a hypervisor rather than directly with the actual physical hard-

ware. Virtualization mainly provides two advantages. Firstly it allows software to run

*Image source: https://commons.wikimedia.org/wiki/File:Young_Poincare.
jpg
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on a system for which the software was not designed and secondly it provides an easy

way to run an untrusted application on a remote machine. Both of the abilities are cru-

cial for deploying application over the internet. For above reasons, the virtualization

has become a popular choice for data centers all over the world.

The history behind the inception of Cloud is fascinating. As the computing hard-

ware has become ever cheaper during the late nineties, various enterprises started

building up a vast cache of commodity hardware primarily to meet their computa-

tional requirements. However, soon it was realized that most data centers have a low

level of utilization [174], it can be as low as 5% and hardly ever crosses 20%. Low

utilization directly translates into both high operational cost and energy bill, which are

real concerns for any data center owner [175].

On the other hand, the rapid growth of the internet provided an opportunity to

both small and medium scale internet based service providers to acquire additional re-

sources on a short-term basis. These businesses often face a sudden deluge of traffic,

which may last only for a short duration of time. Such requests cannot be served

sustainably with the physical resources available to most small and medium scale

businesses. On the other hand, purchasing a large cache of physical hardware for

occasional service requirements is not economical. Therefore, an alternative to con-

ventional computing resource acquiring process was necessary, and out of this mixture

of drastically different economic demands, the idea of Cloud was conceived to help the

operators on both sides of the spectrum.

The Cloud is a technology that is born out of necessity; it is the concept of using

computing power as a utility. The Cloud has already been proven as one of the most

successful innovations of the past decade, and constant efforts are being made to make

it more accessible for high-performance computing (HPC) [8]. As already mentioned

that a fundamental concept of Cloud is to rent computing power as a utility, not the

physical hardware. It is a revolutionary idea in the field of computing, and this would

not have been possible without virtualization. The Cloud allows users to deploy their

applications over the internet, while the actual physical machines in the data center

remain out of reach for the Cloud user.

The Cloud offers users the ability to rent any amount of resources within a short

period without prior reservation, run any application on them and subsequently release

them without any strings attached. In the heart of the whole process is the virtualiza-

tion technology, which allows the physical resources to be divided into virtual units
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and rented over the internet. Deployment of virtualization makes sure that the Cloud

users can have the full control over the rented Virtual Machines (VMs), while Cloud

providers have the total control over the physical hardware. However, the consequence

of running multiple VMs on a physical machine is resource contention, which leads to

performance degradation. Although, unexpected performance degradation may be ac-

ceptable for applications like web services; however, may not be adequate for running

parallel applications. This performance variance is influenced by a lot of factors, in-

cluding resource contention among the running VMs, the architecture of the hypervisor

itself and I/O requests handling by the virtualization system.

The scheduling is an integral part of executing parallel applications. To fully utilize

the inherent parallelism of an application first it is broken into some smaller tasks and

then scheduled for execution. During the scheduling process, each task is assigned a

start-time, finish-time, and processor to execute on. Once the application is broken

down into some smaller tasks, it can be represented by a task graph for convenience.

A crucial part of scheduling is to estimate the execution start time and finish time

of each task. That is because before a child task can start execution all the parent

tasks of it must finish executions. As mentioned earlier, that on VMs tasks often faces

unpredictable performance degradation; as a result, the finish time of tasks cannot be

estimated accurately during the scheduling process.

Since the delay in the execution of a task of the task graph can have a cascad-

ing effect, this can make the whole scheduling scheme inefficient [176]. Therefore, to

effectively schedule a parallel application on a virtualized system analyzing the perfor-

mance impact of the co-located VMs is necessary [177–186]. Performance prediction

models for VMs can be useful for improving energy efficiency as well [187–193]. Ef-

ficient use of energy has become a burning issue for the data centers today [194–197].

A computing system can achieve the highest efficiency only when all the hardware

components are fully active, and the system is running on full load. Techniques such

as temporarily shutting down of one or more cores of the processor or some blocks of

memory have been shown to be not energy efficient [198]. The virtualization can be

an effective way of reducing energy consumption through consolidation of VMs.

As mentioned above the servers of many data center remain under-utilized at most

of the times [174]. One way to increase utilization is to consolidate more VMs on the

same server. Being able to run more VMs on the same server means increased server

utilization for the same amount of physical resources. On the other hand, consolidating



3.1. INTRODUCTION 47

too many VMs on the same physical server will degrade the performance of VMs. A

model that can predict the performance penalty for consolidation will help to choose

the optimal number of VMs to be consolidated [26, 182, 191, 199]. The model will in-

dicate how much performance will be lost due to the consolidation of a certain number

of VMs on a server.

In this scenario, the physical system remains fully active while the consolidated

VMs number may be varied to achieve different levels of performance-versus-utilization

trade-offs. Obliviously, more consolidated VMs on less number of running physi-

cal servers means more performance degradation, while running additional physical

servers means better performance, however, at the cost of extra energy consumption.

Predicting such trade-off behavior with a model can help the system administrator to

take better decisions.

To build a performance model for co-located VMs some factors need to be consid-

ered [200]. First, the relationship between the resource consumption of various VMs

is not linear. Second, many hardware parameters and counters have to be taken into

account for this problem, and that increases the dimensionality of the problem. Third,

to build such a model various benchmarks are required, that can put stress on different

systems resources both individually and collectively. Fourthly, the experiments have

to be done with a variable number of simultaneously running VMs. As the number

of co-located VMs on a server may change at any time, therefore, their effect on the

performance needs to be examined.

It should be noted that although modern data centers are made up of heterogeneous

hardware, however, it does not necessarily mean that each machine configuration is

different from every other machine. Usually, for a data center, large pieces of hardware

is purchased at a time in batches, and each batch usually consists of machines of similar

configuration.

This chapter begins experiments with consolidated VMs and tasks. Various bench-

mark suits are used to collect resource usage data from various VM combinations.

Separate benchmarks are used to put stress on separate computing resources. The re-

source consumption data from multiple VMs are collected.

A set of benchmarks are used to measure various VM resource usages like CPU,

memory, disk I/O. Also, an Online Transaction Processing (OLTP) benchmark is used

to put stress on all three resources simultaneously. The benchmarks are run on VMs
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in different combinations, and each combination is a pattern. The finding of this chap-

ter will be used in the following chapters for analyzing and building VM performance

models. Next, the objectives of the works are described with an introduction to the vir-

tualization technology. Afterward, the experimental setting and results are discussed,

followed by the chapter conclusion.

3.2 Motivation and background

The objective of this work is to identify the effect of resource contention among co-

located VMs. The virtualization of data-center provides some unique benefits like

consolidation and live migration [125–127]. Analysis of VM resource contention will

help to increase resource utilization through VM consolidation and migrations. The re-

source consumption pattern of VMs changes depending on the consolidation environ-

ment. Here, a virtualized server is used to investigate the VMs resource consumption

pattern changes due to the change of co-located VMs number.

Initially, some benchmarks are run individually on one VM of a server and resource

usages traces are collected. Then, a set of two VMs is placed on the server, and the

resource usage pattern for two simultaneously running VMs are recorded. This process

is repeated for sets of four, eight and fourteen co-located VMs. The objective is to

observe the changes in resource usages pattern due to the change of the quantity of

simultaneously running VMs.

These experimental stages are set up initially to observe how VMs react to con-

solidation. This chapter describes what benchmarks are used in the experiments and

types of data are collected. The experiments are primarily done to collect resource

usages data and identify how the resource usages pattern varies. In later chapters, it

is described how the resource usages pattern can be analyzed and used for predicting

VM consolidation performances.

Linux scripts are used here to run nine different benchmarks on different sets of

consolidated VMs; each set is having a different number of simultaneously running

VMs. While the benchmarks were running, tools like Top and Iostat [201] are used to

collect CPU, memory, and disk I/O utilization from all VMs and host. The tools collect

a wide variety of system data; however, the collected data is raw and do not have any

uniform value range. Thus, the data requires further processing. At first, the collected
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data is organized and refined, then, it is formatted and scaled for visualization. Once

the refining and formatting process is done separate data files are produced for each set

of co-located VMs. Also, sperate sets of files are also generated for the host machine

data.

Next section gives an overview of the virtualization process used in the Cloud and

data centers.

3.2.1 Application of virtualization in cloud

The virtualization is an absolute necessity for modern data centers especially after the

advent of Cloud computing. There exist many different types of virtualization tech-

nique today, however, for data centers the most popular virtualization technology is the

type-1 virtualization. In type-1 virtualization, the virtualization layer is placed above

the physical hardware and controls the hardware directly, unlike a non-virtualized sys-

tem where the operating system controls the hardware. One of the primary purposes

of the virtualization layer is to provide an alternate view of the physical resources to

the VMs above it. Such abstraction is necessary for providing Cloud services.

The commercial Cloud lets the users deploy their application over the internet with-

out much administrative supervision. Such deployments of the software raise serious

security concerns. To run applications on the Cloud, most users require administrative

privileges and a typical data center may have thousands of such users logged on at

any given time. That is why, it is not realistic for the administrators of data centers to

keep track of all administrative operations of the users, this is where virtualization is

so useful.

The data centers rent out VMs, which has no access to the physical resources.

Nonetheless, the VMs appear as fully functional self-contained autonomous units of

execution to the Cloud user. A user can have administrative privilege on the rented

VM allowing them to install and run any application. On the other hand, virtualization

helps to protect the physical machines from the security risks. Thus, VMs allow users

to install and run any application freely and at the same time it reliefs data center ad-

ministrators from having to monitor every activity in those VMs. VMs can be created

within a minute with couples of commands and once rented out then it is up to the user

to decide how the VM is going to be operated.
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Once the user has finished running the applications the user can release the VM im-

mediately. After the release, the VM can be either recycled or destroyed automatically

by the Cloud management system without any human involvement. Thus, creating and

destroying VMs on demand without the need for any human interaction saves many

person-hours for the data center administrators.

The benefits of virtualization are not only limited to the public Cloud; it is also use-

ful for private Cloud as well. A simple scenario would be like this where several teams

are simultaneously developing different parts of a large-scale data analysis software

for multi-core clusters. In this case, it is not possible for one team to have the whole

machine for itself since such hardware is expensive and an organization may only have

one such cluster. Such software may take some time to compile and in an Agile [202]

software development environment all the teams need to compile their parts of soft-

ware regularly. Obliviously with only one piece of hardware, it is not possible for

multiple teams to compile simultaneously.

One solution is to virtualize the cluster and provide each team with own global

space. Once all the teams have done compiling their parts of the software, then com-

plete software can be compiled together to ensure the integrity of the software. In

this way, all teams can independently compile their parts of software before compiling

altogether with other teams. Thus, making sure that their parts compile correctly. It

could save much time that would be otherwise wasted debugging the software.

A wide variety of operating systems is available today. Over the years many deriva-

tives of Unix have been introduced like the Oracle Solaris, Berkeley Software Distri-

bution (BSD) [203] and IBM AIX [204]. In the case of Cloud, different users may have

different operating system requirement and it is not always possible for a data center

to maintain every type of OS for users. The VM can help in this situation too as it lets

the users use the OS of their choice.

Another area where virtualization can be very useful in data centers is the fault

tolerance. Servers in a data center may start to show signs of fatigue for various rea-

sons, including extended hours of operation. The increase of temperature in a part

of the data center also enhances the probability of machine failure in that area of the

data center [123, 205]. It is indeed not possible to move around physical servers in a

data center. In such cases, the one solution is to shut down the physical servers on the

particular part of the data center to avoid a possible catastrophic failure; however, this

would lead to online service interruptions. The hypervisor can also allow VMs to be
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migrated while they are being executed, through a process known as the live migra-

tion. The live migration makes it possible to move the VMs of a physical server to

other physical servers, which are located in a low-risk part of the data center.

The live migration also is necessary for other features like consolidation and energy

efficiency. The virtualization allows public Clouds to have elaborated fault tolerance

mechanism through live migration and replication of VMs; those are what makes pub-

lic the Cloud enable to offer a high degree of availability of services to the users. Thus,

virtualization is a useful technology.

The history of virtualization technology is almost as old as the modern comput-

ers. Some may be fascinated to know that the virtualization technology was first de-

veloped during the late sixties; thus, predating the microprocessor technology itself.

Virtualization was originally introduced by IBM for their mainframe computers with

the motivations similar to as it is today [13–22]. Mainframes were hugely expensive

pieces of machinery; therefore, investors wanted the best possible utilization out of

them. As a result, the virtualization introduced to the mainframes so that the batch

tasks can be consolidated. Over the years the demand for mainframe fall as the market

for x86 machines grew. Initially, the x86 platform was not designed for virtualiza-

tion. Nonetheless, during the late nineties, the x86 servers became much powerful and

widely used that virtualizing them became a realistic option. Despite similarities of

goal, the modern virtualization architecture is significantly different from that of the

mainframe. Today data centers are dominated by type-1, para-virtualization technol-

ogy, which is relatively low overhead.

The motivations for using VMs in a data center are summarized below.

• Virtualization can increase resource sharing and utilization through VM consol-

idation.

• Allows alien applications to run without the supervision from data center admin-

istrators.

• Allows implementing sophisticated fault tolerance mechanism for data centers

through the live migration and replication of VMs.

• Virtualization reduces the system maintenance and administration cost for the

data center owners.
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From the above discussion, it is clear that virtualization is very relevant to the data

centers of today. The potentials of virtualization are not still fully utilized in the area of

high-performance computing. The next section discusses the main drawbacks of using

virtualization in the field of high-performance computing.

3.2.2 Scheduling of parallel application and virtualization

To run a parallel application on VMs; the parallel application is first broken down into

a set of smaller tasks. These tasks can be executed parallel; however, the dependencies

among those tasks have to be taken into account. The task dependencies mean that

the output of one task can be the input of one or more other tasks. A Task Graph is a

directed acyclic graph, which presents the tasks as vertices and dependencies among

them as edges. The task graphs have prime importance is modeling and analysis of

parallel applications and architectures [206–209]. The task graph is also known as the

Activity Network and based on the concept of individual task [210].

The concept of a task has not been formally defined; however, it refers to a set

of instructions that can be thought of a unit of work and performed sequentially on

a single processor using a fixed amount of resources [206]. In virtualized systems, a

fixed amount of physical resources like CPU, memory and I/O can also be assigned

to tasks like in a non-virtualized system. However, it is known that the performance

of VMs does not always correspond to the assigned amount of resources [31, 40–42].

Therefore, to efficiently execute tasks on a virtualized system it is necessary to have a

performance prediction model for VMs [32].

In the theory of activity network, the parallel applications or programs are consid-

ered as complex activities, which consists of several individual tasks, and a precedence

relationship interconnects them. The precedence relationship is also known as con-

straints specify that specific tasks have to wait for some other task to finish, former is

known as the child task while later is known as the parent task.

The relationship among all the tasks of complex activities can be presented in a

directed graph called, the task graph. During scheduling process each task is mapped

to an individual processor; hence, the tasks graphs are essential for any scheduling

algorithm [209, 211–214]. Before a child task can be scheduled for the execution;

the execution finish times of the parent tasks must be known. As mentioned earlier

that in virtualized systems applications often suffer from an unexpected variance of



3.3. CONSOLIDATION BENCHMARKS 53

performance; therefore, without taking the variation into account, it is not possible

to accurately estimate finish time of tasks for scheduling. The ability to predict how

the performance of applications running on co-located VMs varies will help to build

efficient task schedules.

The model can be used to predict how the performance of individual VMs would be

affected if they are consolidated together on a single physical machine. Different tasks

use different resources in different quantities, and when two are placed together, each

will influence the performance of others. A performance model for the virtualized

systems will help to choose a group of tasks that will perform better when they are

placed together on a physical server.

The next section discusses the existing VM consolidation benchmarks.

3.3 Consolidation benchmarks

There exists several consolidation benchmarks for virtualized servers like, vConsoli-

date [215] and vmMark [216]. Both of the above benchmarks use the concept of tiling,

which is just a simple approach to identify the average overall impact of consolidation

only. The strategy used in those consolidation benchmarks is fundamentally different

from that used in this chapter, they will be further discussed below.

3.3.1 Concept of tiles in the consolidation benchmarks

Both benchmarks use combinations of different applications on VMs to build a struc-

ture resembling tiles. Each VM runs an application that is representative of a type of

modern-day server workload, for example, mail server, database server, web server,

and Java server. Each VM runs only one type of workload. During the experiments,

the total number of transactions successfully commit by each VM is recorded. After-

ward, a weighted average is calculated from all the VMs data. Different benchmarks

use slightly different formulas to calculate the overall consolidation marks; thus, marks

obtained from them are not the same [215, 216].

In contrast, this work focuses on examining the resource consumption of various

computing resources; thus, giving a more in-depth view of the system under consoli-

dation. It will help to understand the overall impact of virtualization on the physical

server and individual VMs. Once the resource requirement of a VM is analyzed, this
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can be used to explain the performance of the consolidated VMs. The experimental

results will help data center owners and system administrators to take a more informed

decision about the server consolidation and live migration.

3.3.2 Scoring methodology in the consolidation benchmarks

Above benchmarks provide some points or marks to characterize the average perfor-

mance of a virtualized system. However, those are not very useful for building a per-

formance model for the resource contention of co-located VMs. Any performance

prediction model requires detail information about the system performance. More de-

tails about the scoring system are given next.

One VMmark tile consists of six different VMs running six different workloads;

they are the Mail server, Java server, Standby server, Web server, Database server,

File server. Different metrics are collected from the different workload. For example,

metric collect from the Mail server is the actions/minute. Metric collect from the Web

server is the accesses/second. Metric collected from the File server is the MB/second.

Thus different workload provides different metrics. Since those metrics have different

measurement units, VMmark normalizes the individual scores and provides an overall

score [216].

An example of VMmark system score on the Hewlett Packard Enterprise (HPE)

ProLiant DL380 Gen10 Server can be found in [217]. This system hardware employs

4 sockets, 64 cores, and 128 hardware threads. VMware ESXi server version 6.0.0

is used in the experiments. Total of 22 tiles are run on the system, and VMmark

V2.5.2 Score is 25.86. The VMware keeps the record of VMmark results submitted by

various enterprises, further examples of VMmark scores can be found in [218]. The

vConsolidate also follows the similar methodology to perform the tests, however, uses

a different formula to aggregate the results.

In the scores of the above benchmarks, there is no indication of how a particu-

lar resource intensive VM affects the server performance. For example, how a CPU-

intensive VM effects the performance or memory-intensive VM affecting the perfor-

mance. Therefore, the results are not categorized resource-wise.

Another problem is that VMmark runs all the tests for a fixed number of tiles only.

The VMmark runs the tiles and collects workload data at regular intervals. Tests on the

server can be run for three or more hours at a time. At first, VMmark waits for VMs to
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reach a steady state. Once the steady state is reached, experiments are divided into 40-

minute sections. In each section, data is collected with 60 seconds interval. After each

40-minute section, the results for the tiles are calculated. At least three sections of tests

are run, and the median score of each section for each tile is collected for calculation.

During the test duration, the number of titles is not changed. In a virtualized pro-

duction server, the number of VMs can change at any time. Moreover, new VM can

be a CPU or memory intensive one. Recall that a VMmark tile is just a combination of

six VM workloads. In the real world, the number of VMs may change in any randomly

order not necessarily according to the arrangement of VMmark tile. Thus, VMmark is

not equipped to handle the changing state of VM consolidation. Therefore, a separate

profiling tool is necessary to collect such detailed data from the VMs.

In this dissertation, those issues are taken into consideration while performing ex-

periments with consolidated VMs. In this chapters, it is also investigated how new is-

sues may arise with the changing dynamic of the experiments. In subsequent chapters,

the new challenges are analyzed, and methods are proposed to overcome those issues.

To conduct the experiments with consolidated VMs performance a set of benchmarks

need to be selected. Next section describes the benchmarks used in the experiments of

this and subsequent chapters.

3.4 Benchmarks used

Benchmarks selection plays an important part in system performance analysis. For

any system, three basic types of system resources can be identified, they are CPU,

memory, and disk I/O. No single benchmark can represent all three resources; hence,

several benchmarks are used. The benchmarks employed in this work are listed in the

table 3.1, they are also described below.

These benchmarks play a vital role in the experiments conducted in this and sub-

sequent chapters of the dissertation. In this chapter, the benchmarks are used to con-

duct experiments with VM consolidation performance. In the subsequent chapters the

benchmarks are used to create workload combinations; details are given in the re-

spective chapters. Sections 3.5 and 3.6.1 provides further information about how the

benchmarks are arraigned in experiments and data is collected from the benchmarks.

After describing the benchmarks and experimental setup, the experimental results
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for benchmarks are discussed in the section 3.6.1. Changes in resource usages patterns

of each essential resource like CPU, memory and I/O are discussed separately. To

compare and summarize the performances of various benchmarks the arithmetic mean

of resource usages of all the benchmarks are calculated and shown in Section 3.9.

3.4.1 CPU intensive benchmarks

Two CPU-intensive benchmarks have been used in the experiments. They are the

Nbench and Unixbench. The benchmarks are described next.

3.4.1.1 Nbench

The Nbench [219] is a CPU benchmark suite consisting of various types of benchmarks

to test all the vital functions of a processing unit. It was initially introduced in mid-

1990’s by researchers of once popular the BYTE magazine. Subsequently, it has been

updated several times to make it more compatible with modern CPUs. The benchmark

suite is written in C and was initially intended for Windows machines. However, later

Linux compliant versions were introduced; hence the benchmark is portable between

systems.

The benchmark suite uses a comprehensive set of real-world algorithms to make

the tests as realistic as possible. These tests are called, Numeric sort, String sort,

Resource intensity Benchmark

CPU
Nbench

Unixbench

Memory
Cachebench

STREAM

I/O

Dbench

Filebench

IOzone

Other
LMbench

Sysbench

Table 3.1: Resource intensities of the used benchmarks.
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Bitfield, Emulated floating-point, Fourier coefficients, Assignment algorithm, Huffman

compression, IDEA encryption, Neural Net and LU Decomposition.

In the numeric sort test, several arrays of 32-bit integers are sorted to test the integer

handling capability of the system. In the string sort test, several arrays of strings of

arbitrary lengths are sorted. A variety of bit manipulation functions is executed in the

bit-field test. A small software package is used to stress the floating-point unit of the

system in the emulated floating-point test. In the Fourier coefficients test, numerical

analysis is done to calculate a series approximation of a waveform.

Next test, the assignment problem is one of the fundamental combinatorial opti-

mization problems in the operational research. Here, the objective is to find a maxi-

mum matching for a weighted bipartite graph. The Huffman compression test uses the

Huffman algorithm to test the performance of a system for compressing both text and

graphics.

Next, the IDEA encryption test is for evaluating the efficiency of a system using the

IDEA algorithm to cipher and then decipher blocks of data. The neural net test consists

of a small self-sufficient back-propagation network simulator to perform tests. The last

test is the LU Decomposition it is for testing the performance of the system for solving

a set of linear equations. Thus, the Nbench benchmarks consist of a comprehensive set

of test for a VM.

3.4.1.2 Unixbench

The Unixbench [220] performs multiple tests on the system. The resource usage pat-

terns of various tests of the Unixbench are designed to resemble that of commonly used

commercial applications. The Unixbench has been used to analyze the performance of

VMs in previous works [221]. The tests that are included in Unixbench are described

next.

The Dhrystone [222] and Whetstone [223] are two well-known synthetic bench-

marks that are part of the Unixbench suite and used for measuring the CPU perfor-

mance. Synthetic benchmarks are carefully designed programs based on statistical

analysis of various parts of widely used applications. The objective here is to mimic

the operations of certain parts of real-world applications that are responsible for most

of the resource consumption by the application. It is motivated by the fact that during

execution applications usually spend the most time on certain parts of the code, and
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these parts have huge influences on the overall performance of the application.

The Whetstone measures the speed and efficiency of some floating point operations

that are common in scientific applications. It employs a wide variety of C library

functions like sin, cos, sqrt, exp, and log along with other system related functions like

conditional branches and procedure calls. On the other hand, the Dhrystone focuses

on integer and array access efficiency of the system. Design of these tests is influenced

by the design techniques of software such as the compiler, code optimization, and

wait-states.

Next, the execl throughput test measures the execl call execution efficiency of the

system. The execl() is an essential function that replaces the currently executing pro-

cess with a new one. It is an essential member of the exec family of functions. Next,

the file copy test is for testing how fast chunks of data can be copied. For this purpose

read, write and copy operations are performed on buffers of different sizes. Next, in the

pipe throughput test, a process is repeatedly used to write and read on 512 kb buffers

as many times as possible over the pipe, which is a simple mechanism for interprocess

communication. Next, in the pipe-based context switching test two processes inter-

change an integer through a bi-directional pipe, and size of the integer is increased in

each successive step.

The process creation test measures how many times a process can fork and reap

child processes. Creating and reaping child processes is a standard feature of applica-

tions. Next, in the test called shell scripts, it is tested how many copies of a shell script

the system can run concurrently and how quickly. Next, in the system call overhead

test, the getpid() system call is repeatedly issued by a simple program. Each system

call causes the operating system to enter into kernel mode and subsequently depart,

purpose of the test is to check how fast the system can enter into and exit from kernel

mode. Besides these, the Unixbench also performs both 2D and 3D graphical tests for

the graphics driver of the system.

3.4.2 Memory intensive benchmarks

Two memory intensive benchmarks are used in the experiments; they are the Cachebench

and Stream. Both of the benchmarks are described next.
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3.4.2.1 Cachebench

The Cachebench [224] is a benchmark for testing the memory system and cache; it

performs eight different tests to determine the bandwidth of the system memory hier-

archy. The memory is an essential part of any computing system; the VM performance

depends in many ways on the available memory. The memory system of all modern

servers has a hierarchical structure for faster execution of the code. In the hierarchical

memory system, the data is stored on various levels of cache depending on the spatial

and temporal properties of the data.

The Cachebench run eight different tests to determine the overall efficiency of the

cache levels. The first three tests are the read, write and modification tests for the

cache. In those tests, data of different length are randomly written, read and modified

systematically to measure the efficiency of the memory system. Next, three tests are

conducted that are similar to previous three tests; however, they use a specially mod-

ified chunk of codes, which are not affected by the optimization method of any com-

piler. These codes are part of the commercial software that is known not to get changed

by well-known code optimizers. That is why the scores from those tests remain almost

the same over different systems even though different optimization technique may have

been used.

The last two tests are involved with using well known C library functions memset()

and memcpy(). C applications frequently use these two functions to both access and

modify the memory. Therefore, their scores are good indicators of the overall perfor-

mance of an application on the system. The Cachebench was chosen because all eight

tests together provide a relatively balanced picture of the performance of memory and

cache hierarchy.

3.4.2.2 Stream

The Stream [225, 226] is a light-weight synthetic benchmark for measuring the mem-

ory bandwidth of the system. It consists of four basic operations that are performed on

vectors [227]. The first test is called the COPY, where the elements of a vector are sys-

tematically copied from one to another vector of the same size, this test is designed to

mimic the operation of a generic garbage collector. The tests are done on pre-allocated

large size vector of double-value elements residing in main memory. Next test is the

SCALE, where a large scalar value is multiplied with all the elements of a vector.
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The third test is SUM, where all the elements of two vectors are added. In the last

test contents of one vector is multiplied by a constant value and added to the contains

another vector, the operation is known as the TRIAD. The Stream is designed for

the analysis of the frequently applied memory operations; hence, it is useful for VM

memory usage analysis.

3.4.3 Disk I/O intensive benchmarks

The I/O is an essential resource for a system. Three I/O intensive benchmarks have

been used in the experiments, they are discussed below. The I/O intensive VMs usu-

ally show a higher amount of variation compared to CPU intensive VMs. Three bench-

marks have been used for the disk I/O as they can influence the VM performance sig-

nificantly. Furthermore, the performances of virtual I/O devices get easily affected by

the presence of other VMs. Thus, the VM I/O usage is a significant factor for the

system performance.

3.4.3.1 Dbench

The Dbench [228] is a filesystem benchmark, it can quickly generate a significant

amount of load to put a filesystem under stress. It generates the I/O workload for the

file system from a pre-configured “loadfile”, which can be designed by one according

to one’s requirements. Specialized loadfiles are available for downloaded.

The primary purpose of generating workloads is to find out the relationship be-

tween the amount of I/O stress and performance loss of the system. Analyzing the I/O

characteristics of a VM is vital because the impact of consolidation is most profound

on the I/O intensive VMs. This capability of putting the I/O system under stress ac-

cording to a predefined loadfile makes this benchmark significantly useful. According

to the requirements, it is possible to build custom loadfiles to match the I/O usage pat-

tern of a parallel application. The loadfile makes it possible to perform the same test

as many times as necessary repeatedly.

3.4.3.2 Filebench

The filebench [229] is another filesystem and storage benchmark used in the experi-

ments. A wide variety of workloads can be generated by using the Filebench along
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with Workload Model Language, which is a synthetic application model description

language used to reconstruct the I/O usage footprint of any application. Two pre-

defined workloads are also available for download; they are called the file-micro and

file-macro. These two workloads are designed by analyzing various commercial soft-

ware.

The file-macro workload has been designed to test the overall file system perfor-

mance of a server. It includes the small and large size database servers, multithreaded

web and proxy servers, mail and file servers. On the other hand, file-micro uses both

random, and sequential writes, and reads operations to test the file system performance

at the micro level. Various combinations of reads and writes operations are performed

along with other operations like the file create and delete to test the basic response time

of the file system. The experts in the respective fields have created both of those work-

loads. The workload files are useful for putting the file system under a considerable

amount of stress.

3.4.3.3 Iozone

The Iozone [230] is another file system benchmark that can be used for the analysis of

the I/O system. In the Cloud environment, different VMs may run applications with

different I/O requirements at different times. Hence, for a particular application, the

VM may show good performance while for applications it may. The Iozone is designed

to explore the I/O performance of a system.

The Iozone contains some microbenchmarks and specialized test for the I/O sys-

tem. It performs a mix of operations to measure the bandwidth of the I/O system. In

the tests file sectors are read and write in both forward and backward direction in some

predefined patterns. The patterns include sequential, random, and stride.

The two specialized tests of IOzone are the Mmap and Async I/O. The Mmap test

uses Unix system call mmap() to map disk spaces to the memory address space of the

user. Then, data stored in the mapped portion of memory are written to a disk file. The

test is mainly focused on evaluating the performance of the mmap in a system. The

memory mapped files are different from regular files in semantics. They treat data like

chunks of memory mimicking the behavior of well-known Cloud applications, like the

MapReduce [231].

Next, the Async I/O test measures the performance of POSIX async I/O operations
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in the system using asynchronous I/O interfaces like, aio write(), aio read() and

aio error(). Such asynchronous I/O operations are frequently used in applications;

hence, the Iozone is helpful for measuring the I/O performance of applications.

3.4.4 Other benchmarks

Some benchmarks can perform multiple resource-intensive tests. Two such bench-

marks are discussed here; they are the LMbench and Sysbench.

3.4.4.1 LMbench

The LMbench [232] is a system benchmark suite consisting of a set of micro-benchmarks

to measure the system performance. The micro-benchmarks have two categories; they

are the bandwidth and latency tests.

The purpose of bandwidth tests is to measure how fast data can be moved around

on the system. Performance of any application greatly depends on the data movement

efficiency of the system. The performance of both the system overhead and memory

clock cycles are tested. On the other hand, the latency tests measure the time taken by

the system to carry out commands. Time taken by the system to execute the control

messages is essential for the response time of an application. The micro-benchmarks

of the LMbench are designed to measure the response time performance.

Another design goal of the LMbench was to make the benchmark as portable as

possible. It is entirely written in ANSI-C and uses POSIX interfaces so that it can be

used on a broad range of OS.

3.4.4.2 Sysbench

The sysbench [233] is a popular system benchmarking suite with various types of

tests programs. It is a multi-purpose benchmark that can be used to measure the

performance of individual system resources like CPU, memory, and disk I/O and

complex processes like multi-thread operations, and Online Transaction Processing

(OLTP) [233]. In the OLTP test, a MySQL database is used. The OLTP is an impor-

tant part of the web applications, which are commonly deployed on the Cloud. The

ability of the MySQL server to successfully process transactions in a given amount of

time is calculated. The transactions are themselves small in size; to complete them
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the database access is required, and the database access operations consume multiple

system resources. The goal of the OLTP test is to put pressure on the MySQL database

server, which in turn puts pressure on multiple system resources like, CPU, memory,

and disk. The benchmark is very suitable for reproducing the resource usage footprint

of most database applications.

Two observations play essential parts in performance benchmark design. The

first is that applications usually spend most of the time executing a small segment

of code [234]. The second is that the application performance depends on some fac-

tors like the system call handling efficiency of a particular machine [222]. Those two

factors significantly affect the performance of an application. The benchmarks are

designed based on statistical analysis of popular applications.

There is no universal consensus on the two issues; therefore, statistical analysis

from different angles have given rise to different benchmark suites. No single bench-

mark is sufficient enough to provide the complete picture of the VM performance in-

terference. The goal of this work is to analyze the performance of co-located VMs,

and different benchmarks suites are used for this purpose. Each benchmark has some

unique features and representative of a particular type of application. In the experi-

ments, workloads are build by combining those benchmarks.

3.5 Data collection process

The previous section describes the benchmarks used in the experiments in this chapter.

This section describes how the data is collected from the VMs during the experiments.

Linux distributions are accompanied with some built-in tool to gather data about the

running processes, these tools along with some other utilities are used. The resource

usage data is collected from all the VMs and physical host.

Figure 3.1 shows the diagram of the experiment setup and data collection process.

The middle section of the figure shows that several hosts are running different numbers

of consolidated VMs. In a data center, different hosts may concurrently run different

numbers of VMs at different times. The experimental setup replicates this situation by

running different numbers of VMs on different hosts.

A virtualized host is capable of running several VMs concurrently. Figure 3.1

shows the VMs that are running on the host with solid lines. Empty VM slots on the
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Figure 3.1: Data collection process from the co-located VMs.

server are shown with dashed lines; the empty slots are shown to indicate that the host

is capable of consolidating more VMs.

The right side of Figure 3.1 shows the scripts are used to control the benchmarks

and VMs. During the stages of experiments, several benchmarks need to be run. Also,

the number of concurrently running VMs need to change at each stage. The shell

scripts on the right are used to control the benchmarks and VMs. The scripts them-

selves run on a separate machine and connects to the host through SSH connection.

On the left side of Figure 3.1 several other scripts are running to collect resource

usages data from the hosts. The scripts run tools to collect information about CPU,

memory, and I/O usages. These scripts are also run on a separate machine and store all

data on the remote machine. Data from different tools have the different format, and

they are stored in files for later analysis.

Next, Figure 3.2 shows how the usage data collected from the physical host and

each VM on the host. As mentioned before, that three resources usages are monitored,

they are CPU, memory, and disk I/O.

The Linux top command is used for collecting data of CPU and memory usage

data. For the CPU various data are gathered from all VMs and host. Those include the
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Figure 3.2: System data collected from the co-located VMs and host.

percentage of CPU usage by user and system level processes, system idle time and I/O-

wait percentages. The top command provides information about used memory pages;

however, they are not in the same format as the CPU data. Therefore, memory usage

data need to be refined and scaled.

The Iostat [201] is used to measure the disk I/O activity of the VMs and physical

host. The Iostat provides various data about device utilization, including the number

of kilobytes written and read from the device per second. The data provided by the

Iostat also need to be scaled and formatted. The system parameters collected with the

above tools are summarized in Table 3.2.

The experiments were conducted with different numbers of simultaneously running

VMs. First data is collected by running each benchmark separately on a single VM on

the host; resource usages trace for each benchmark is collected separately. Afterward,

VMs are run in groups of two, four, eight and fourteen co-located VMs. This process

is repeated for all nine benchmarks.

Shell scripts were used to run the experiments from a remote machine over the

Secure Shell (SSH). The shell scripting has been used for two reasons. The first is shell

scripts can efficiently run benchmarks and collect data from remote machines. The

second is that the scripts can be easily created and manipulated. The shell scripting is a

powerful way to run processes and collect information about the running process from

the system. For each benchmark, a separate script is written to run the experiments and

collect information. All the collected data are filtered and scaled using another shell

script for analysis.
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Resource Field Description

CPU

1 %us Percentage of the CPU for user processes

2 %sy Percentage of the CPU for system processes

3 %id Percentage of the CPU idle

4 %wa Percentage of the CPU processes waiting for I/O operations

Memory 5 mem Current physical memory (RAM) in use

Disk I/O
6 rkB/s Number of kilobytes read per second

7 wkB/s Number of kilobytes written per second

Table 3.2: System parameters profiled from the VMs.

3.6 Experimental setup

All the experiments are done on a Dell XPS-8500 system with an Intel i7-3770 pro-

cessor with 16 GB of RAM. The i7-3770 processor consists of four cores having the

clock speed of 3.4 GHz each. Each core, in turn, contains two threads, that is eight

hardware threads in total.

The Fedora 17 is installed as the host operating system, and Xen 4.2 is installed

on top of it as the hypervisor. The guest operating systems were all Fedora 16 with

1 GB of RAM and 30 GB of disk space each. Disk spaces for all the guest VMs are

allocated through the logical volume manager (LVM). The Xen supports both file or

LVM based VMs; nonetheless, LVM based system was chosen because it shows better

performance and flexibility compared to file-based VMs.

As mentioned earlier the physical host has 16 GB of RAM and VMs were config-

ured to have 1 GB of RAM. It was noticed that under such circumstances the highest

number of VMs that the physical machine can run successfully is fourteen. The sys-

tem becomes irresponsive when attempts were made to run any higher number of VMs

simultaneously. Next section presents the results of the experiments.

3.6.1 The experimental results

The experiments were conducted with the nine benchmarks, which are discussed in the

above section. These experiments are divided into two categories.

The first set of experiments is done with a single VM. In this case, a benchmark is
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run on a VM, and various resource usage data is collected from both the VM and host.

The resource usage data collected are for CPU, memory, and Disk I/O.

In the second set of experiments, the number of simultaneously running VMs is

increased in the system. The objective is to observe how the resource usage pattern of

VMs change due to consolidation. This set of experiments start with one single VM,

and the number of VMs is increased in later stages; five different sets of simultaneously

running VMs are used here.

During the experiments, data are collected at one-second intervals. Each data file

contains up to 66, 000 rows of data, each line corresponding to one second of data. A

file can be up to 250 MB in size; each contains over 18 hours of physical and several

VM resource usage and hardware counter trace data. For each benchmark, both the

host and VM resource usage traces are collected for analysis.

The experimental results are discussed in the following sections; primarily two sets

of experimental results are presented. In Section 3.7, three types of resource usages

of individual tasks are presented. The three types of resources are CPU, memory, and

I/O. Individual tasks are run on the VMs, and their resource usages data is collected

from both the VMs and physical host. The objective, in this case, is to examine the

resources usages patterns of individual benchmarks.

Next, in Section 3.8, it is examined how the resource utilization patterns change due

to consolidation. In this case, the number of co-located VMs are increased in the host;

as a result, the resource usages patterns of benchmarks are changed. In this section,

the utilization pattern of each resource is checked separately. During experiments,

resource usages data is collected from both the VM and host, which are presented in

the section.

3.7 Resource usages pattern of individual benchmarks

The first set of results show the individual resource usage of the nine benchmarks.

Figures 3.5, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, and 3.11 show the data for this set of

experiments. The benchmarks are separately run on individual VMs.

The objective of the experiments is to observe the resource usages pattern of var-

ious the benchmarks. In this case, the host is running only one VM and data are

collected from both the VM and physical host. From the collected experimental data
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the graphs are produced using GNUPLOT [235–237]. Throughout this dissertation,

GNUPLOT scripts are used for graph generation and data visualization.

In each figure, the x-axis shows the execution time of the benchmarks in seconds.

On the other hand, the y-axis represents the resource utilization within the range 0 to 1.

The current resource utilization is calculated as the percentage of maximum resource

usage. First, the resource utilization data from all the profiling tools are collected.

Then, for each resource maximum resource usage is identified and current resource

usage value is calculated as the percentage of maximum value.

All the figures of this section, Y-axis values has the range from 0 to 1. A 0 (Zero)

value on the Y-axis indicates zero resource utilization, while 1 (One) represents the

maximal (100%) utilization. All other values on the Y-axis fall in-between 0 and 1.

The values are transformed in this way for continence of represent and comparison.

Figures 3.5 to 3.11 show that all benchmarks have different usages pattern for three

resources; CPU, memory, and disk I/O. No two benchmarks produce identical resource

usage traces. What is more, for the same benchmark the resource usages traces of the

physical host and VMs are different. No workload was run on the physical host during

the experiments; all benchmarks are run on VMs.

VMs can not directly access the physical disk; it is the duty of the hypervisor to

carry out such tasks of accessing. The hypervisor does all the actual disk operations

on behalf of VMs. To perform disk operations; the hypervisor needs to enter and exit

the kernel mood several times; this results in increased CPU usage of the host.

From Figures 3.5 to 3.11, resource usages patterns of both the VM and host are

shown. In each figure, the top graph shows the three resource usage pattern of the VM

while the bottom graph shows the pattern for the host. It can be seen that resource usage

patterns of the VMs and physical host are identical in some cases and not identical in

other cases.

For example, Figure 3.5a shows the CPU usage of the Cachebench in black. This

particular CPU usage pattern is created by running the Cachebench on the VM. Fig-

ure 3.5b shows the CPU usage pattern host in black, also. The host CPU usage pattern

is due to CPU overhead caused by running the VM, and in this case, it is low. Fig-

ure 3.5a also shows the I/O usage pattern of the Cachebench in red.

Figure 3.5b shows that the I/O usage overhead for the host in red. In this case,

the I/O usage overhead is significantly higher. Recall from the previous chapter (Sec-

tion 2.6) that the three resources are virtualized differently, and virtualization overhead
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can be significantly higher for memory or I/O intensive tasks. This disparity between

the host and VM resource usages are further discussed in the following sections.

Each figure shows two graphs for a benchmark; one for the VM data the other one

is for physical host. For example, Figure 3.3a shows the resource usage data collected

for the Nbench from the VM. Figure 3.3b shows the resource usage data from the host

for the same benchmark. Similarly, in the above figures, the resources usage of VMs

and physical host are shown together.

3.7.1 Resource utilization patterns of CPU-intensive benchmarks

Figures 3.3 and 3.4 show the resource usage patterns of two CPU intensive bench-

marks; the Nbench and Unixbench. In each graph, the three resource usage are shown

in three different colors. In both cases, the VM CPU utilization is high; however, the

host CPU usages are much lower. This difference is because of how the CPU resource

is virtualized.

Figures 3.3b and 3.4b show the CPU usages pattern of the physical host. As dis-

cussed in the previous chapter (Section 2.6), the virtualization of the CPU resource is

very efficient. In above figures, the VMs have a lot more CPU utilization compared to

that of the physical host.

A virtual CPU can carry on execution quite smoothly except for a few privileged

instructions; hence, not much overhead is induced on the physical host. When the

workload is mainly comprised of CPU workload, the VM can continue execution with-

out too much involvement from the hypervisor. That is why the host CPU utilization

is different and do not reflect the CPU usage of the VM. Therefore, CPU usage data

collected from the VM is more accurate compared to that collected from the host.

The resource usage data is collected through the Linux performance measurement

tools. Performance measurement tools read various system counters and attribute the

resource usage to a VM or the host.

In Figures 3.3 and 3.4, the actual workloads are run on VMs, and the performance

profiling tool attributed a high CPU usage to the VM. On the other hand, the CPU

usage of the physical server is due to the disk I/O operations performed on behalf of

VMs and domain switching operations.
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Figure 3.3: Resource usages pattern of a CPU intensive benchmark (1): the Nbench.
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Figure 3.4: Resource usages pattern of a CPU intensive benchmark (2): the Unixbench.
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3.7.2 Resource utilization patterns of Memory-intensive benchmarks

In this section, resource utilization patterns of two memory-intensive tasks are pre-

sented and discussed. The two memory intensive benchmarks are Cachebench, and

Stream; their resource usages patterns are shown in Figures 3.5, and 3.6, respectively.

Usually memory-intensive and I/O-intensive VMs show much more resource usage

variance compared to the CPU intensive VMs.

As before, the first graph of each figure shows the resources usages pattern of

the VM. Figures 3.5a, and 3.6a show resource usage patterns of the Cachebench, and

stream benchmarks on VMs, respectively. On the other hand, Figures 3.5b, and 3.6b

show the host resource usage for the same benchmarks, respectively. In this case, the

benchmarks are being run VMs; however, VMs need resources from the physical host

to execute. Thus, the resource usages pattern on the host are created by the running

VMs and they are shown on Figures 3.5b, and 3.6b.

Figure 3.5a shows that the VM memory usages of Ionone increase over time. How-

ever, Figure 3.5b shows that during the same period host memory usage do not show

much variation. This lack of variation happens because of the hierarchical nature of

system memory.

The VM keeps track of own memory; however, the hypervisor does not keep detail

record about how the tasks of a VM. There is a temporal and spatial correlation among

the memory data pages, and it is not easy for the physical host to acquire or release

memory instantly in a virtualized system.

The hypervisor adds an extra level of indirection, which makes it more difficult for

the physical host to determine which memory block is in use currently and which are

not by the VM. The guest OS of the VM controls that information. All these factors

subsequently make it difficult for the host to keep track of the VM memory usages. A

VM is in much more informed position to know which pages are going to be accessed

by the guest operating system shortly.

Thus, memory usage data collected from the VM are more accurate compared to

the host data. Next, it is going to be investigated how the I/O resource usages vary

between the VM and host.
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Figure 3.5: Resource usages pattern of a memory intensive benchmark (1): the

Cachebench.



3.7. RESOURCE USAGES PATTERN OF INDIVIDUAL BENCHMARKS 74

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

V
M

 C
P

U
/ 
M

e
m

o
ry

/ 
D

is
k
 u

ti
liz

a
ti
o
n

Time (sec)

CPU
Mem
Disk

(a) VM data.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

H
o
s
t 
C

P
U

/ 
M

e
m

o
ry

/ 
D

is
k
 u

ti
liz

a
ti
o
n

Time (sec)

CPU
Mem
Disk

(b) Physical host data.

Figure 3.6: Resource usages pattern of a memory intensive benchmark (2): the Stream.
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3.7.3 Resource utilization patterns of I/O and multiple intensive

benchmarks

In this section, resource usages pattern of three I/O-intensive and two multiple resource

intensive tasks are discussed. The three I/O-intensive benchmarks are Diskbench,

Filebench, and IOzone; their resource usages patterns are shown in Figures 3.7, 3.8,

and 3.9, respectively. On the other hand, two multiple resource intensive benchmarks

are LMbench, and sysbenchOLTP; their resource usages patterns are shown in Fig-

ures 3.10, and 3.11, respectively.

The multiple resource intensive benchmark suites have tests that can put pressure

on multiple resources. Their tests are designed such a way that they can put pressure on

all three resources; CPU, memory, and I/O. However, it is also possible to pass special

parameters to those multiple benchmarks so that they run only one type of resource

intensive tests.

In each figure, the disk I/O usages pattern of the physical host almost similar to

that of the VM. Recall, that it was not the case for the CPU and memory the resource

usage patterns of the VM and host. It can be seen that compared to CPU and memory

virtualization the I/O virtualization have more effect on the host resources; reasons for

this are discussed next.

The non-privileged VMs cannot access the I/O devices directly. The I/O request in-

side a VM generates an exception and causes the system to enter into the kernel mode.

In a para-virtualized system, like the Xen, the VMs need the help of the hypervisor to

perform I/O operations. Interrupt handling is a complicated process.

First, the I/O data is copied to a specific location of the memory and the control

is transferred to the hypervisor from the guest OS of VM. To accomplish this, either

the guest OS of VM or the physical hardware must be modified. In any case, the

hypervisor hides the absolute memory location from the VM and transfers the data to

a special privileged domain, which does the actual I/O processing. Then, the new data

is copied back to the same selected memory region, again.

Xen uses a double-ended circular queue to pass all the control information [53, 69].

Ultimately the privileged domain does all the real I/O processing to physical disk; that

is why the I/O usages pattern of the host is similar to that of the VM. The I/O opera-

tion of VMs is a complicated process which involves multiple context switching and

transferring control back and forth to the privileged domain. Thus, the I/O operations
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Figure 3.7: Resource usages pattern of a I/O intensive benchmark (1): the Dbench.
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Figure 3.8: Resource usages pattern of a I/O intensive benchmark (2): the Filebench.
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Figure 3.9: Resource usages pattern of a I/O intensive benchmark (3): the Iozone.
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Figure 3.10: Resource usages pattern of the LMbench.
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Figure 3.11: Resource usages pattern of the Sysbench OLTP test.
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increase the CPU usage of the physical host, too.

For example, Figure 3.9b shows the I/O usages of the physical host for IOzone.

Figure 3.9a shows the I/O usages pattern of the VM for the same benchmark. It can

be seen that those two patterns are very similar. As the hypervisor is involved with the

entire I/O processing of the VM; their I/O processing patterns are similar. Furthermore,

Figure 3.9b shows that the CPU usages of IOzone physical host are higher compared

to that of other benchmarks discussed before. I/O processing typically requires a large

number of context-switching, this is what causes the higher CPU usages pattern for the

physical host.

The resource usage data from this section shows that different benchmarks produce

different resource usage patterns. Again, for each benchmark, the resource usage pat-

tern of the VM and the physical host is not the same. In the next section, different

combinations of the simultaneously running VMs are used to observe their resource

usages pattern changes.

3.8 Resource usage pattern changes due to VM consol-

idation

This section gives the result for the second set of experiments. Here, more than one

instance of the benchmark is run on the host at a time. In the previous section, the

resource usage patterns of nine benchmarks are presented. This section investigates

how the resource usage patterns on VMs change due to consolidation.

In this set of experiments, the benchmarks of the previous section are run simul-

taneously to observe the resource usage pattern changes. Total five sets of VMs are

used for experiments; each set contains a different number of VMs. The experimental

results demonstrate that different resources react differently to the VM consolidation.

The number of VMs used in the five sets are one, two, four, eight and fourteen, respec-

tively.

In data centers, servers usually host VMs of some predefined configurations; this is

done to make the administrative tasks more manageable. If different VMs are created

with arbitrary memory sizes, the summation of their memories may not be equal to

the physical memory of the host, and some part of the physical memory will remain

unused. Thus, uneven VM memory allocation can create problems; that is why in
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Cloud the VMs are rented out in a selected set of memory configurations.

Next, the resource usage pattern changes of the benchmarks are discussed sepa-

rately. As the number of co-located VMs changed in the system the resource usages

pattern are affected. Each resource like CPU, memory and I/O shows different pat-

terns of changes. That is why the effect of each resource is discussed separately. The

discussion starts with the pattern changes in CPU resource utilization.

3.8.1 Effect of VM consolidation on CPU usages

Figures 3.12, 3.13, 3.14, 3.15 and 3.16 show the CPU usages change of the Unixbench,

Cachebench, Dbench, LMbench, and Sysbench OLTP benchmarks, respectively. Re-

call that, the Unixbench is a CPU intensive benchmark, while the Cachebench is a

memory intensive benchmark. The Dbench is an I/O intensive benchmark. The LM-

bench is multiple resource-intensive. Similarly, Sysbench OLTP test is also multiple

resource-intensive.

Figure 3.12a shows the VM CPU usage pattern changes of the Unixbench. The Y-

axis shows the time, while the X-axis shows the CPU utilization. Five CPU utilization

data sets are plotted in Figure 3.12a, one for each VM set mentioned above. For exam-

ple, 1vm means only one instance of the Unixbench was run on a VM in the system. In

this case, no other VM run any task. Similarly, 2vm represents CPU usages data when

two instances of the Unixbench are simultaneously run on two VMs of the server.

Next, 4vm represents the CPU usages when instances of the Unixbench was run-

ning on the host. Figure 3.12a shows that up to eight simultaneously running VMs the

CPU utilization is quite good for the Unixbench. However, for fourteen simultaneously

running VMs (14vm) the CPU utilization drops significantly.

Next, Figure 3.12b shows the host CPU utilization for five VM sets. It can be seen

that the host CPU utilization level is much lower compared to that of the VMs. Thus,

in the case of Unixbench, the vCPU efficiently share and utilize hardware threads until

eight VMs are running. However, with fourteen VMs the utilization degrades rapidly.

Next, Figure 3.13 shows the CPU usage of both the VM and physical host for the

Cachebench. The graphs show how the CPU execution pattern changes with the chang-

ing number of simultaneously running VMs. In this case, all VMs run the Cachebench,

a memory-intensive benchmark.

Figure 3.13a show the change of CPU resource usage pattern of VM due to the
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changing number of co-located VMs. While a single VM is running (shown in black),

the peak CPU usage is between 5 and 10 seconds; rest of the time CPU usage is av-

erage. However, when multiple running VMs are running the system the resources

usages pattern changes into a few isolated peaks and low utilization regions.

The reason is that there is only one physical memory hierarchy and multiple VMs

are trying to access it. Thus, each VM has to wait for its turn, resulting in isolated peak

CPU usage. When a VM is in wait-state, obviously the VM CPU utilization is low.

It can be seen that for a single running VM the CPU usage is more or less average;

however, when multiple VMs are running the CPU usage of them turns into segments

of peak and low utilization regions.

Next, Figure 3.13b shows the CPU usage of the physical host during the experiment

with Cachebench. It can be seen that CPU overhead of physical host is comparability

small for one VM in the system and does not increase much for a higher number of

simultaneously running VMs.

Next, Figure 3.14a shows the CPU usage pattern of the Dbench for five sets of co-

located VMs. For one running VM, the CPU utilization is nearly 50%; this CPU usage

can be attributed to the disk access operations by the hypervisor [33]. As the number

of simultaneously running VMs are increased one can see a gradual decrease in CPU

usage; that is because multiple VMs are competing for the disk system and increasing

the resource contention. Thus, running too many VM can result in the overall decrease

of I/O processing ability of the hypervisor.

Next, Figure 3.15a shows the CPU usage of the LMbench for the different number

of simultaneously running VMs. The CPU utilization for two and four simultaneously

running VM are high. However, up to eight VMs, the CPU utilization pattern remains

almost the same. On the other hand, for fourteen simultaneously running VMs, the

CPU usage pattern shows significant change.

As described in the experimental setup, the server has one Intel i7-3770 processor,

which has four physical cores and eight hardware threads. Figure 3.15a shows that up

to eight simultaneously running VMs the CPU utilization is high. As eight VMs are

using eight hardware threads; one VM is using one hardware thread. The co-located

VMs are sharing logical CPU efficiently, even though two VMs shares each physical

core. However, when fourteen VMs are simultaneously running each hardware thread

is shared by two VMs, and this leads to a dramatic reduction in CPU usage. The

resource contention has a tremendous effect in this case.
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Figure 3.12: Unixbench: CPU usages pattern changes due to various number of co-

located VMs.
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Figure 3.13: Cachebench: CPU usages pattern changes due to various number of co-

located VMs.
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Figure 3.14: Dbench: CPU usages pattern changes due to various number of co-located

VMs.
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Next, Figure 3.15b shows that the physical host CPU overhead is increased for both

eight and fourteen VMs sets compared to the lesser number of VMs. As the number of

simultaneously running VMs are increasing the hypervisor has to handle more context

switching and other interrupts. That is why the CPU usage overhead is increased in the

system. The results show that an increasing number of consolidating VMs increases

overhead in the physical host. As a result, the overall server resource utilization can

decrease.

Figure 3.16a shows the CPU utilization of the Sysbench OLTP benchmark for var-

ious numbers of simultaneously running VMs. The OLTP benchmark carries out a

complex set of operations involves CPU and I/O usage. Recall, in Figure 3.11a the

resource usage pattern of OLTP is shown, the pattern has two parts. The OLTP bench-

mark reads data from the files in the first part; then, they are processed in the second

part. In the first part, the benchmark has almost 50% CPU usage; however, lesser

I/O usage. In the second part, CPU utilization is nearly 100%, while the I/O usage is

negligible.

Figure 3.16a shows that once the number of simultaneously running VMs is in-

creased in the system, the changes occur in both parts of the resource usage pattern.

For single running VM (1vm), the first part of CPU operations finished around 45-

second mark, followed by a peak in CPU usage between 50 to 100 seconds. However,

when two VMs are simultaneously running, the CPU operations take longer to com-

plete. The first part now finishes around the 55-second mark; therefore, this part of

execution time is almost 10-second longer now. The second part does not start im-

mediately; it starts around 95 seconds leaving a gap of almost 40 seconds in-between.

Thus, the resource usage pattern changed significantly.

For other VM sets similar pattern changes can be seen; the CPU operation comple-

tion time is getting longer, and access to the disk is also getting delayed. The results

show that the execution finish times of the benchmarks are extending due to consolida-

tion. This finding is significant. In the next chapter, this observation is used to derive a

new methodology for VM consolidation benchmarking.

Next section discusses the changes in memory usages pattern due to consolidation.
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Figure 3.15: LMbench: CPU usages pattern changes due to various number of co-

located VMs.
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Figure 3.16: Sysbench: OLTP CPU usages pattern changes due to various number of

co-located VMs.
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3.8.2 Effect of VM consolidation on memory usages

Figures 3.17, 3.18, 3.19, and 3.20 show the changes in memory usages pattern of the

Stream, Filebench, Iozone, and LMbench, respectively. Each figure has two graphs,

the first graph shows the memory usage data of the VM, while the second graph shows

the memory usage data of the host. Those usages data is obtained by running VMs in

stages, where each stage has a different number of simultaneously running VMs on the

server just as described in the above sections.

Figure 3.17 shows the memory utilization changes of the Stream due to different

numbers of simultaneously running VMs. Recall that, it is a memory-intensive bench-

mark.

Figure 3.17a shows that for four co-located VMs the memory utilization is reason-

ably high. However, For fourteen simultaneously running VMs, the memory utilization

is almost 50% of that of a single VM. Although, the system has 16 GB of memory and

each VM has been allocated a 1 GB of memory in the physical host; the performance

degradation still happens due to resource contention.

Various parts of the shared memory system like the memory address bus and space

have to be multiplexed among the VMs. Therefore, an increasing number of co-located

VM has adverse effects on the resource utilization.

Next, Figure 3.18 shows the changes in memory usage of the Filebench due to

VMs consolidation. Figure 3.18a shows that for one or two simultaneously running

VMs the VM memory utilization reaches peak value quickly. Thus, indicates a low

level of resource contention among the VMs. However, as the number of co-located

VMs are increased the VM memory utilization takes longer to reach a high utilization

level.

As mentioned before, although separate memory locations are allocated for the

VMs still there is resource contention among them. Because of excessive resource

contention among too many co-located VMs the memory utilization increase is slowed

down compared to fewer VMs number. Thus, the too much resource contention can be

detrimental to the system performance.

Figure 3.18b shows the memory usage pattern changes of the Filebench due to

previous five sets of VMs. The physical host memory usages show almost no variance

due to the different number of simultaneously running VMs. As it is explained above,

the virtualization adds an extra level of indirection in memory hierarchy leaving the
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Figure 3.17: Stream: memory usages pattern changes due to different number of co-

located VMs.
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Figure 3.18: Filebench: memory usages pattern changes due to different number of

co-located VMs.
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Figure 3.19: Iozone: memory usages pattern changes due to different number of co-

located VMs.
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Figure 3.20: LMbench: memory usages pattern changes due to different number of

co-located VMs.
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physical host almost in the dark about the real-time memory usage of a VM. Therefore,

the physical memory utilization data of the host do not indicate any change in the

utilization of VM memory.

Next, Figures 3.19 and 3.20 show the memory utilization changes of Iozone and

LMbench for different sets of co-located VMs. Recall that, both are multi-resource

intensive VMs.

Figure 3.19a shows the memory utilization of a VM running the Iozone benchmark.

With only a single running VM the physical host the memory utilization gradually

increases. On the other hand, with two or four running VMs the resource contention

stops the utilization from reaching a high level. As the number of VMs increase in the

system, the utilization pattern becomes rather flat.

Figure 3.20a shows that memory utilization pattern of the LMbench on a VM.

The memory utilization pattern of LMbench is different from that of Iozone. For a

single VM, the resource usage of the running benchmark consists of alternate levels of

utilization; high and low. However, the resource utilization becomes more flat with the

increase in the number of VMs just like in the previous cases.

Furthermore, as the number of VMs increase, the execution time tends to stretch

longer. For example, when one VM is running on the host, between 250 and 300 sec-

onds, a high level of memory utilization is observed. As the number of co-located VMs

increase, it takes longer to reach a high level of utilization. For eight co-located VMs

it takes more than double time to execute, and the memory usages pattern becomes

spread between 375 to 500 seconds. It can be seen that for fourteen simultaneously

running VMs it take even longer.

The experimental results show that the tasks are taking longer to execute as the

number of simultaneously running VMs are increased in the server. This observation

encouraged the author to do further experiments with VM consolidation and task exe-

cution time in the later chapters. Next, the system I/O utilization pattern changes are

discussed.

3.8.3 Effect of VM consolidation on disk usages

Figures 3.21, 3.22, and 3.23 show how disk utilization of co-located VMs are affected

for the Filebench, Iozone, and LMbench, respectively. The graphs of the figures show

the I/O utilization of the benchmarks for five sets of co-located VMs.
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Figures 3.21b, 3.22b and 3.23b show the I/O utilization of the physical host. The

figures show that the physical host shows more I/O utilization compared to the figures

discussed in the previous section. As already explained, that each I/O request of the

VM is ultimately processed by the hypervisor; this results in high I/O utilization for

the physical host.

In each of the three figures, while only one VM is running on the host, the I/O

usages pattern of the VM and physical host are identical. VMs can not process I/O

requests by themselves. Whenever a VM needs to perform an I/O operation, it informs

the hypervisor through interrupts; the hypervisor then performs the I/O on behalf of the

VM. That is why in above three figures the I/O usage of the VM and host are almost

identical for one running VM.

Figure 3.21a shows the I/O utilization pattern changes of the Filebench for five VM

sets. For a single running VM, a high utilization can be seen between 0 to 15 seconds.

On the other hand, for two co-located VMs the utilization is spread-out between 0 to

30 seconds; it is almost double the amount of time taken for a single VM. It can be

seen that as the number of VMs increase in the system the I/O usage pattern spread-out

more. Next, Figure 3.21b shows that the cumulative host I/O utilization increase with

the increase in the number of VM. The host I/O utilization reaches the peak between

four and eight number of co-located VM; however, shows a drastic reduction of overall

utilization for fourteen simultaneously running VMs.

Next, Figure 3.22a shows the I/O utilization pattern changes of the Iozone. The Io-

zone shows a different pattern compared to the Filebench discussed above. For exam-

ple, the host cumulative I/O utilization increase of the previous example is not present

in the case of Iozone.

Figure 3.22b shows that Iozone running on a single VM is causing high I/O uti-

lization for the VM. However, when the VM number is increased in the system, the

result is not a cumulative higher utilization rather a massive loss of utilization. As

the number of co-located VMs increase in the system the physical host I/O utilization

gets worse. It shows that the resource contention has a more significant effect on I/O

utilization compared to other resources.

The last example of this section shows the I/O utilization of the LMbench for dif-

ferent VM sets. Figure 3.23a shows that the LMbench has much lower I/O utilization

compared to above two benchmarks. Figure 3.23b demonstrates that the cumulative

physical host I/O utilization is getting higher with the increase in the number of VM.
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Figure 3.21: Filebench: disk I/O usages pattern changes due to different number of

co-located VMs.



3.8. RESOURCE USAGE PATTERN CHANGES DUE TO VM CONSOLIDATION98

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

V
M

 d
is

k
 u

ti
liz

a
ti
o
n

Time (sec)

1 vm
2 vm
4 vm
8 vm

14 vm

(a) VM data.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

H
o
s
t 
d
is

k
 u

ti
liz

a
ti
o
n

Time (sec)

1 vm
2 vm
4 vm
8 vm

14 vm

(b) Physical host data.

Figure 3.22: Iozone: disk I/O usages pattern changes due to different number of co-

located VMs.
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Figure 3.23: LMbench: disk I/O usages pattern changes due to different number of

co-located VMs.
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Therefore, consolidating the VMs with moderate or low I/O utilization can increase

the overall host I/O utilization.

Recall that, Figure 3.22a showed that each instance of Iozone has higher I/O utiliza-

tion. When multiple instances of Iozone are simultaneously run, it results in degrada-

tion of I/O performance. On the other hand, Figure 3.23a shows that a single LMbench

instance has much lower I/O utilization. When benchmarks with little I/O utilization

are consolidated, the cumulative host I/O utilization increases.

3.9 Comparing the arithmetic mean of resource usages

of the benchmarks

Figures 3.24, 3.25 and 3.26 the arithmetic mean of the resource usages of all bench-

marks discussed in above sections. In the graphs of the above sections, the X-axis

shows the time in seconds, while the Y-axis shows the resource utilization. From those

graphs, the arithmetic mean of the utilization for each benchmark is calculated and

shown in the three figures of this section.

The arithmetic means are grouped according to the resource utilization types. For

example, Figure 3.24 shows the arithmetic mean of CPU utilization of the nine bench-

marks. As mentioned above, the VMs are grouped in five sets and each set contains a

different number of VMs. All the VMs of a set are run simultaneously, and resource

utilization data are collected. Then, the arithmetic mean of resource usage for each set

of VMs is calculated separately.

Recall that, Figure 3.13a showed five CPU usages pattern of the Cachebench for

five sets of simultaneously running VMs. The sets contain one, two, four, eight, and

fourteen VMs, respectively. For each set, two hundred seconds of execution time is

shown. Along the X-axis, data is plotted with the one-second interval. The Y-axis

shows the CPU utilization for each second. From the data of Figure 3.13a five arith-

metic means are calculated for five sets of VMs.

Now Figure 3.24a shows the five arithmetic means for the Cachebench. The X-axis

shows how many VMs were running on the host, while the Y-axis shows the arithmetic

mean of the CPU utilization. In this way, arithmetic means of CPU utilization of eight

benchmarks are calculated. The arithmetic means of all eight benchmarks are shown

in different colors in Figure 3.24a.



3.9. COMPARING THE ARITHMETIC MEAN OF RESOURCE USAGES ... 101

Next, Figure 3.24b shows the arithmetic mean of the host CPU utilization of the

same benchmarks. They are calculated in the same way; however, host CPU utiliza-

tion data is used instead of VM data. In this way, the arithmetic mean of memory,

and I/O utilization of all the eight benchmarks are calculated, and they are shown in

Figures 3.25, and 3.26, respectively. In each figure, the arithmetic mean of resource

utilization for each benchmark is shown with a different colored bar.

3.9.1 The arithmetic mean of CPU usage data

Figure 3.24a shows that the LMbench, Nbench, and Stream have a high arithmetic

mean of CPU utilization for single running VM. Their arithmetic means of CPU uti-

lization remain high until eight simultaneously running co-located VMs. However, the

arithmetic mean is much lower for fourteen VMs, indicating a high level of resource

contention among VMs.

The Nbench is a CPU intensive benchmark and has the highest arithmetic mean

of CPU utilization among all the benchmarks. On the other hand, other benchmarks
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Figure 3.24: Arithmetic mean of CPU usages for various number of co-located VM.
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Figure 3.24: Arithmetic mean of CPU usages for various number of co-located VM

(Continued).

have a decreasing value of the arithmetic mean of CPU utilization with the increasing

number of co-located VM.

Next, Figure 3.24b shows the arithmetic mean of CPU utilization of the host for

eight benchmarks. The physical host has a low arithmetic mean of CPU utilization

in all cases. The host CPU utilization is mainly due to context switching, and system

interrupts.

3.9.2 The arithmetic mean of memory usage data

Next, Figure 3.25a shows the arithmetic mean of memory utilization by eight bench-

marks on VMs. The arithmetic mean of memory utilization of VMs does not change

much with the change of the number of co-located VMs.

Next, Figure 3.25b shows that the physical host memory utilization does not change

with increasing VM number either.
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Figure 3.25: Arithmetic mean of memory usages for various number of co-located

VM.
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3.9.3 The arithmetic mean of I/O usage data

Figure 3.26 shows the arithmetic mean of I/O utilization for both VM and physical

host. Here, the Iozone which has about 75% I/O utilization for a single running VM.

However, it shows severe degradation of I/O utilization with the increase of co-located

VM number. Both for the VM and physical host the arithmetic mean of I/O utilization

decreases with the increase of co-located VM number. For eight or more co-located

VMs the arithmetic mean of I/O utilization of VM falls under 10%.

On the other hand, both the Cachebench and Filebench have a relatively higher

arithmetic mean of physical host utilization for increasing number of co-located VMs.

Initially, with one running VMs, both benchmarks have a moderate level of I/O uti-

lization. The arithmetic mean of I/O utilization of both benchmarks are less than 30%

when running on a single VM.

Next, Figure 3.26b shows that with increasing number of VMs the arithmetic mean

of physical host I/O utilization remains under 40%. These results illustrate that the

arithmetic-mean of I/O utilization is low for an increasing number of consolidated

 0

 0.2

 0.4

 0.6

 0.8

 1

1 vm 2 vm 4 vm 8 vm 14 vm

Virtual machine: Avg. Disk usages for different number of running vms

cachebench
diskbench
filebench

IOZone
lmbench
nbench
stream

sysbenchOLTP

(a) VM data.

Figure 3.26: Arithmetic mean of disk usages for various number of co-located VM.
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Figure 3.26: Arithmetic mean of disk usages for various number of co-located VM

(Continued).

VMs.

3.10 Conclusion

The performance interference of co-located VMs is an essential issue for the VM con-

solidation and migration. The resource usage efficiency is another important factor for

the data centers. In this chapter, resource usages changes of VM due to consolidation

is investigated. Several sets of benchmarks are run on the VMs, and their resource us-

age traces are collected. Results show that each benchmark has unique resource usage

signature and behave differently to the VM consolidation.

From the experimental results above three observations are made:

a) Consolidated VMs interfere with the performance of each other, and the nature

of the interference depends on the number of simultaneously running VMs. It

can be seen that the resource usage pattern of the VMs are changing as the num-

ber of VMs are increasing in the system;
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b) The resource intensities of the VMs play an essential part in the performance

interference. The performance degradations of the same VM for different re-

sources, like CPU, memory, or I/O are different. In other words, the reaction of

each resource towards the consolidation and resource contention is different.

c) Under consolidation tasks take longer to finish execution on VMs, the resource

contention is mainly responsible for this delay. The experimental results of

above sections show that there is a relationship between the consolidated VMs

and the task execution finish time; this encouraged the author to do more exper-

iments with task execution time variation in the later chapters.

Observations and findings of this chapter are used in the next chapter to set up

new experiments with consolidation. Especially the effect of consolidation on the task

execution time variation of VMs is critically examined.

Experimental setup and results of this section are used as guidelines to perform

large-scale experiments in successive chapters. Data collection technique is changed,

and various statistical analysis is presented.

In the next chapter, a methodology is presented to profile the execution time vari-

ation of consolidated VMs. Experimental results of this chapter helped to design the

new methodology and set up experimental stages.

In this chapter, Linux shell scripts are used to run benchmarks and control VMs.

Advantages and limitations of using scripts to run experiments were apparent to the

author. As a result, the need for designation a new framework became clear. The

experience of data and VM controlling process during the experiment of this section

had helped to design a new framework for conducting experiments with VMs. The

new framework is presented and discussed in details in Chapter 5.

Thus, the experiments conducted in this chapter paved the way to conduct more

experiments with VM consolidation and performance in successive chapters of the

dissertation.



Chapter 4

Incremental Consolidation

Benchmarking Method (ICBM)

“It is strange that only extraordinary men make the discoveries,

which later appear so easy and simple.”

— Georg Christoph Lichtenberg* (1742–1799)

4.1 Introduction **

The previous chapter (Chapter 2) describes the importance of virtualization for both the

Cloud and data centers. Virtualization enables data centers to provide Cloud services

cost-effectively and reliably. VM consolidation helps to reduce operating cost and

increase resource utilization. On the other hand, consolidation has effects on the VM

performance [187, 238–241].

VM consolidation is done to increase the resource utilization of the virtualized

servers. However, it imposes a performance penalty, which manifests itself through

the execution time variation of co-located VMs [242–244]. This performance variation

occurs because of resource contention among the VMs. It is an obstacle to efficiently

scheduling parallel applications on virtualized systems; the reasons are stated below:

*Image source: https://www.babelio.com/auteur/Georg-Christoph-
Lichtenberg/118291

**This chapter contains materials that were published as [43]. All the contents of this chapter are

entirely original work of the author. The author has designed and conducted the experiments. The author

also collected the data and analyzed the results to prepare the draft for the publication.
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(a) The variation depends on the server load and resource contention among the

VMs. The same task may take a different amount of time to be completed on

different VMs decreasing the efficiency of the virtualized server;

(b) To schedule a task of any parallel application determining the execution finish

times of all parents is necessary. It becomes difficult due to the execution time

variation. Thus, it is an important issue to address.

Most of the previous works in this area fall into two broad categories. The first

one, is to explore the cost-performance models of parallel applications on Clouds [158,

245–256]. The other one, is virtualized server consolidation benchmarking [216, 257–

262].

One can quickly identify few shortcomings of those works:

(i) They do not explore the resource contention and performance variation of co-

located VMs explicitly;

(ii) Experiments have been done, mainly with parallel applications [263]. Those

have a complex internal structure of their own represented by a task graph. Vir-

tualization technique involves many layers of abstraction and hardware indirec-

tion, and it is not easy to build a performance model. Furthermore, complex

internal structures of a parallel application can make it difficult to capture the

relationship among the co-located VMs accurately;

(iii) They do not provide the option to control usages of different computing re-

sources either individually or granularly during experiments. During experi-

ments, such abilities are highly desirable;

(iv) Consolidation benchmarks are designed to provide an overall average point of

some combination of tests not details about different levels of consolidation;

(v) The consolidation benchmarks are hugely dependent on vendors, and their appli-

cability for comparing different virtualization technologies are not well defined.

For example, the VMmark benchmark is designed for VMware ESX servers;

(vi) Most works use sophisticated mathematical optimization tools, which have high

overhead. The performance modeling greatly depends on system configuration,
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and changes to system configuration may require model retraining, which in turn

becomes a hugely time-consuming process due to high overhead;

(vii) Many works deal with a theoretically derived model of the Cloud and simulation

is used for verification. There is no well-accepted method to reflect the effect of

performance variation due to virtualization in simulation; hence, often simula-

tion does not portray the system behavior faithfully.

Chapter 3 discusses the importance of ensuring the quality of service for Cloud

providers. Moreover, the energy consumption is becoming a significant issue for the

data centers. It is essential to analyze the performance of consolidated VMs to optimize

the server resource usage. Performance analysis can help the system administrators to

decide how many VMs to be consolidated on a server with an acceptable amount of

performance loss [187, 188, 264, 265].

This chapter introduces task Execution Time Variation (ETV) as a performance

metric for consolidated VMs [266]. A methodology for profiling the task execution

time is also introduced, called the Incremental Consolidation Benchmarking Method

(ICBM). Key design features of the ICBM are discussed next:

1) Combinations of various syntactic benchmarks suites are used in the experi-

ments. Manipulation of different types of syntactic benchmarks gives the ability

to manipulate basic resources of the server. Careful manipulation of benchmarks

on the VMs makes it possible to control resources like CPU, memory and I/O

both individually and collectively. This resource controlling makes it possible

to analyze the effect of consolidation on each resource type more discretely than

the previous works;

2) The ICBM is a method to profile task ETV for a set of VMs for different types of

resource contention. It is not dependent on virtualization technology or system

configuration. It is a methodology that can be applied to any system, making it

suitable to compare a wide range of systems;

3) The task ETV prediction models for combinations of resources have been built

from profiled VM data. Separately collected task ETV data due to primary re-

sources, like CPU, memory and I/O, have been used to predict task ETV for

the combination of resources, like CPU-Memory, CPU-I/O, and Memory-I/O.
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The prediction results have a reasonable level of accuracy demonstrating that

profiling for every combination of resource load is not necessary. It can save a

significant amount of time while profiling consolidated VMs;

4) All experiments have been done on actual virtualized servers. All results pre-

sented here are real system data. The results show that the ICBM can predict the

task ETV of real virtualized systems quite accurately;

The ICBM is a methodology to profile and predict performances of various types

and numbers of consolidated VMs. In this chapter high lights various issues in-

volved with experimenting with consolidated VMs and proposes a methodology

to overcome them. Experimental results show the methodology can be success-

fully applied to real systems;

5) The ICBM uses task execution time as a metric. During experiments, task ex-

ecution time variation of the VMs are recorded. However, from the collected

execution time performance variation is calculated in percentage. It is possible

to calculate the performance variations of other system using the ICBM, and

that can make it possible to compare the impact of consolidation on different

systems.

Furthermore, prediction models are trained with the help of performance varia-

tion curve data. The performance variation graph, which represents performance

improvement or degradation of the consolidated VMs. The ICBM is not reliant

on absolute system value rather it depends on relative performance gain or loss

of consolidated VMs. Those percentage data from one system can be compared

with system easily.

Furthermore, in subsequent chapters, the performance profiling and prediction

techniques are further refined. Those improvements make the ICBM more suit-

able to be applied to various types of systems.

6) Prediction models have been built using the Least Square Regression (LSR),

which has low overhead. Use of LSR makes the training and prediction process

much faster. Often, changes in system configuration may require retraining of

models, in such cases a low overhead process can save much time;

7) Analysis of profiled data reveals some interesting patterns. For example, it shows
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that certain types of resource combinations can cause the task execution time of

consolidated VMs to degrade more rapidly than the others. This rapid execution

time degradation indicates that resource contention is one of the main factors,

behind the average utilization of virtualized servers being so low.

The syntactic benchmarks suites play an essential part in the design of the ICBM.

They are essential tools for server performance analysis, and many studies have been

done on their design. These benchmarks are the result of long-time analysis of com-

mercially successful applications. They are inspired by an interesting phenomenon

that, the applications spend both 80% of their time and resources, executing just 20% of

the code [234].The syntactic benchmark suites are carefully crafted to mimic such es-

sential parts rather than running the entire application. Each benchmark suite consists

of several individual applications. These applications are grouped in a well-thought-

out pattern.

The benchmarks suites are used here to get a finer control on the individual server

resource types. Without using these benchmark suites, such controlling of resources is

not possible. Experimental results show that the benchmark suites can cause a signifi-

cant amount of resource contention and ETV on VMs. Thus, the benchmark suites can

be a set of powerful tools for studying the performance variation of virtualized servers.

The experiments that are conducted from several angles and they provide some inter-

esting results.

Rest of the chapter is structured as follows. Section 4.2 discusses the importance of

VMs in data centers, resource utilization, and energy efficiency. Section 4.3 introduces

the task execution time as a performance metric. The section demonstrates the rationale

behind using the task execution time as a metric. Section 4.4 discusses the ICBM

in detail. In this chapter, the consolidated VMs are divided into two categories for

performance measuring. Section 4.5 shows the task ETV results for the first category,

the target VM. Section 4.6 shows the variations for the second category, the co-located

VMs. Section 4.7 shows the prediction model was trained and the prediction results. It

shows the parameters and coefficients of the trained LSR model. Finally, Section 4.10

concludes the chapter.
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4.2 Data centers and VMs

The primary technology enabling the Cloud and modern data centers is the virtual-

ization. The Cloud and data centers can be thought of ecosystems, where VMs go

through the all stage of life cycle. VMs are created, operated, maintained, migrated,

and eventually destroyed. All the activities of the Cloud revolve around the virtualiza-

tion technology.

The Cloud users rent VMs to deploy their applications. As the Cloud is being

used for new fields of application, like big data analysis; the demand for the Cloud is

ever growing. The increasing demands for the Cloud services are naturally making the

data centers bigger and bigger. The data centers are warehouses full of hundreds of

thousands of virtualized server to provide all necessary services.

When scores of servers are involved, the efficiency and energy consumption be-

came a significant concern. Improvement of server consolidation efficiency can help

to save energy usage [244].

4.2.1 Consolidation and the energy cost

In data centers several VMs are simultaneously run on a server to increase the resource

utilization and reduce operational cost; the process is known as the VM consolida-

tion [244]. Since the consolidated VMs share the server resources, they create per-

formance interference for each other. Thus, running too many VMs on a server can

severely degrade their performances [193].

On the other hand, running too few VMs reduces the resource utilization. Studies

have shown that the data center resource utilization is still remarkably low [267]. As

the data centers are getting bigger, the energy efficiency is becoming a more significant

issue. In 2005, the worldwide combined data center power demand was equivalent to

that of the output of seventeen 1000 MW power plants. What is more, the average data

center electricity use grew at a rate of 16.7% in 2005 [268]. Improving the resource

utilization of servers can help to reduce the data center energy costs.

4.2.2 Performance variation of consolidated VMs

Understanding the causes of the VM performance variations on consolidated servers

is essential. The VMs behave differently than physical machines. For example, the
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system events handling is more expensive for VMs compared to physical machines.

A typical physical machine has one Operating System (OS); thus, all interrupts are

handled by the OS. On the other hand, in a virtualized server all VM interrupts must

go through the hypervisor. Presence of hypervisor, makes the system interrupt even

more complicated and expensive to handle.

Figure 4.1a depicts a collection of physical machines each with own hardware, OS,

and task. Each gray block is a separate physical machine, each of which has separate

physical resources and one OS. The OS directly communicates with the hardware,

whenever the running task requires to access physical resources. The task running

on the physical machine uses system interrupts to draw the attention of the OS. The

interrupts are costly events regarding both the time and complexity.

In the case of VMs, the situation is different. Usually, some VMs reside on a

physical machine and share resources as shown in Figure 4.1b. Here, a hypervisor

runs on top of the hardware and VMs are placed on top of the hypervisor. The VMs do

not have access to the underlying hardware because of security reasons [38].

To access the hardware, the VM must first interrupt the hypervisor. To allow this
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(a) Four separate physical machines.
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(b) Four VMs sharing a physical server.

Figure 4.1: Two clusters of physical servers and virtual machines.
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to happen either the guest OS (inside the VM) has to be modified or such support has

to be incorporated in the hardware. Once the hypervisor receives the interrupt, then it

proceeds forward with communicating with the hardware. The data from the hardware

is also relayed back to the original VM in the same manner.

The hypervisors use one special VM, which is often called the driver domain to

communicate with the hardware. The special VM contains all the device drivers to

communicate with the hardware. Since the other VMs cannot communicate with the

hardware directly, the driver domain is required to do the communication on their

behalf. The driver domain is kept separate from the hypervisor to keep the hypervisor

lightweight and secured. Otherwise, a bug in a device driver may compromise the

entire hypervisor.

All the VMs running on the physical machine has to access and share hardware

through a complicated path that follows through the hypervisor and driver domain.

Thus, the cost of system interrupt and accessing physical resources are considerably

higher for the VMs.

The consolidated VMs of Figure 4.1b interfere with the performance of each other,

what types of tasks are running on the determines the nature and magnitude of the in-

terference. On the other hand, the physical machines of Figure 4.1a are independent;

the tasks running on them do not interfere with each other. Thus, in the performance

point of view VMs are different from physical machines. Experiments with the re-

source contention of the consolidated VMs can help to improve the performance of the

VMs involved.

4.3 Task execution time variation (ETV) as a perfor-

mance metric

There has been much work done with the performance metric. System counters are

predominantly used for system performance evaluation [260, 269, 270]. At the begin-

ning of the dissertation, at Chapter 3 experiments have been done with system param-

eters also. Those experiments gave some insight into how the system parameter values

change with the number of consolidated virtual machines. It was observed that as the

number of VMs increase in the system the task completion time also start to vary. In

this Chapter further excrements have been done with task execution finish times.
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This chapter uses the task execution time variation (ETV) as a performance metric

for the consolidated VMs. Previously, Section 4.2.2 discussed how the consolidated

VMs interfere with the performance of each other. This section will explain how the

execution times of the tasks on consolidated VMs changes depending on how many

and what types of tasks are running on the server. It will also be shown that the task

ETV can be used as a useful performance metric.

In the next few sections, the motivations for using the task ETV as a metric for the

consolidated VMs is explained. The relationship between the consolidated VMs and

ETV is demonstrated with a set of experiments in the next section. A host can have

many VMs, and they can be arranged in many different ways, and it is necessary to

examine how the VM arrangements affect the performance. It is important to remem-

ber that a fixed number of VMs can be arranged in a large number of ways. Now the

question is if only the location of a VM changes in the server then would it affect the

overall server performance or not? In the next section, experiments are designed to

examine those situations.

4.3.1 Combination of VMs

Several VMs may be consolidated on a server at a time. The objective of this section is

to investigate whether the location of the VMs on the server influences the performance

or not. The problem is explained in an example next.

Assume one server has the physical resources to run 16 VMs and currently only 5

VMs are running. The 5 VMs may be placed in any location on the server. Placement

of the VMs can change for several reasons. It is possible that some of the VMs have

finished their tasks leaving some vacant places in-between the running VMs. Another

scenario would be a VM is added to the server and it is placed in a random location. In

this way a server may end up with the same number of VMs; however, they are located

in different places. In either case, the server has the same number of VMs; however,

the combination is different.

If all combinations of the five VMS are to be considered, then there would be 4368

combinations in total. Because there are C16
5 or 4368 ways to select five locations

for VMs from sixteen possible available locations on the server. Now the question

is, do all of those combinations have the same effect on the server performance or

not? Profiling VMs with a series of micro-benchmarks is already a time-consuming
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process [271]. Furthermore, profiling for all of the combinations of VMs would require

even more time.

The experiments in this section aim to show that different combination of the same

number of VMs has the same overall effect on the consolidation. In this section, ex-

periments are conducted with different combinations of VMs, and they show almost

similar results. Since all of the VM combinations show almost similar effect; profiling

the performance of all combinations of VM is not necessary. Thus, much VM profiling

time can be saved. Next, the experimental setup for this section is described.

A consolidated server can have many different combinations of co-located VMs,

the number of consolidated VMs can change at any time. Figure 4.2 depicts a con-

solidated hypervisor with ten different VM sets. Each row independently represents

a set of VM combination at a particular time. Thus, ten rows represent ten different

combinations or sets.

In each set, on one VM the Filebench [229] is executed and the completion time is

recorded. Each line of Figure 4.2 represents a different combination of VMs. The top

line shows that one VM is running the Filebench (shown in yellow), while other VMs

are idle (shown in white). The Filebench is run eight times in eight randomly selected

locations and the arithmetic mean of all the execution times is recorded. That is the
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Figure 4.2: Combinations and rearrangements of the same five VMs.
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setting of the first line is repeated eight times and each time a random VM was chosen

to run the Filebench.

Next, the second line depicts that two CPU (shown in red) and two I/O-intensive

(shown in green) VMs are added to the system. In this case, one VM runs the Filebench

as before, and another four co-located VMs are also run simultaneously. The rest of the

eleven VMs do not run any task (shown in white). Eight different random combinations

of those five VMs are run and the arithmetic mean of the execution time of Filebench

is calculated. The process of running those random combinations are further explained

next.

In the second row, there are sixteen VMs in total, and only five are busy. Those

five VMs are all placed at the left end of the row. However, it is possible to place those

five VMs anywhere on the server. Like the eight random combinations of the VMs are

shown in the next eight lines (R.1-R.8) of Figure 4.2. Although they are in random

locations, each line contains exactly five VMs.

The experimental results of this section show that all random combinations of the

same number of VMs suffer similar performance degradation. In other words, the

results here show that the VM performance variation does not depend on locations of

the VMs on the server rather it depends on the total number of VMs and their types.

For example, the execution times of the eight random rows (R.1-R.8) of Figure 4.2

are 20.32, 19.5, 18.51, 20.22, 20.23, 19.74, 20.48, and 19.51 minutes, respectively.

Their arithmetic mean is 19.985 minute.

The results show that the locations of the VMs do not influence the performance.

Rather the total number of VMs and their resource intensities that are responsible for

the task ETV. Thus, performance interference of the second VMs set (second line) of

Figure 4.2 is the same as that of the eight random sets (R.1-R.8).

Above result has important significance for the rest of the experiments. It means

that for a fixed group of VMs, there is no need to examine their performance interfer-

ence for all possible VM combinations on the server. Experimental results show that

the performance data collected for a combination is equivalent to all other combina-

tions.

In the above experiment, only a set of 5 VMs is used. However, those experiments

can be done with any number of VMs. In the next section, experiments are done with

different sets of VMs with different number of VMs. Each time the similar results are

observed.
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In this section experiments are done with a fixed number of VMs, in the next section

experiments are done by changing the number of VMs. That is in the next section,

during experiments the total number of VMs is also changed. Again, for each of those

set of VMs different combinations are used in the experiments.

4.3.2 Task performance variation and numbers of co-located VMs

The previous section demonstrates that if the numbers of co-located VMs is constant on

a server; then shuffling of their locations do not affect the consolidation performance.

This section deals with the question of what would happen if the total number of co-

located VMs are changed.

In a data center, the number of simultaneously running VMs can change at any

time. It is a troublesome process to profile task execution times for a vast number of

combinations. Fortunately, the observation from the previous section can help us to

overcome this problem. Results obtained in the previous section show that for a given

number of VMs even if the VM combinations are changed their cumulative resource

contention on the server remains the same.

In this section different experiments are done with different sets of VMs, where

each set contains a different number of VMs. Figure 4.3 shows the experiential set

up for this section. It differs from the experimental set up of the previous section

(Figure 4.2), where all experiments were with a set of 5 VMs.

In this section, the VM number is increased at each stage. Figure 4.3 shows that

several sets of CPU and I/O intensive VMs are run on the server. Each line represents

a stage and set of VMs. The VM sets are arranged in increasing order, to record their

cumulative effect on VM performance in increasing order. Figure 4.3 has nine stages,

representing nine different sets of VMs. Each set has a different number of VMs. For

example, first set in the top line has only one running VM. The second line has a set of

three VMs. Next line has a set of five VMs. Thus, in each successive stage from top to

bottom, the number of VMs is increased by two.

In stage 1 (top line of Figure 4.3), the Filebench is run on one VM. There are

sixteen VMs in the system, and the Filebench can be run on any of those sixteen

VMs. As shown in the second column of Table 4.1 there are C16
1 or 16 ways select

a VM location for the Filebench to run. Eight random locations are selected, and the

Filebench is run eight times, each time in a different location. Therefore, it is the same
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Figure 4.3: Incrementing VM number at each stage of experiment.

task to run eight different VM location on the server. The objective is to find how the

performances of those eight runs differ from each other. The collected execution time

data is shown in Figure 4.4.

The cluster of the first eight values on Figure 4.4 shows the execution finish times

for eight different runs. In the graph, the Y-axis represents the execution finish time

of the Filebench, while the X-axis indicates the number of co-located VMs running on

the server beside the Filebench. For first eight runs, no other VMs are running beside

the one running the Filebench. Hence, in the Y-axis the value is 0, indicating there are

zero co-located VMs are running on the server. The X-axis shows that the first eight

execution time values are close to each other. Those values are further are discussed

below.

The Y-axis of Figure 4.4 shows execution finish times of the Filebench. First eight

values of the graph show the execution finish time when the Filebench is run alone in

the server. That means no-other co-located VMs are running on the server. Each time

the Filebench is run on a VM located in a different location on the server. The first

run takes 13.76 minutes to finish. Then the Filebench is moved to a VM in a different

location and run again. The second run takes 14.27 minutes to finish. Similarly, the

Filebench is run inside a VM six more time, and each time the VM moved to a different

location. Execution finish times of those six runs are 13.92, 14.34, 13.02, 13.44, 13.99,
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Figure 4.4: Execution time of increasing number of co-located VMs in Figure 4.3.

13.91 minutes, respectively.

Even though, the Filebench was run eight different location of the server their re-

spective finish times are close to each other. The arithmetic mean of those eight-run

times is 13.83125 minutes and Standard Deviation (SD) is only 0.4320859. A small

value of SD indicates that the magnitude of variation among the original values is rela-

tively small. The arithmetic mean and SD of those eight values are shown in the second

row of the Table 4.1.

Table 4.1 shows the arithmetic mean and SD for each cluster of values in Figure 4.4.

There are nine clusters of values in the Figure 4.4 they are presented in nine rows of

Table 4.1. For example, the second row of Table 4.1 shows the arithmetic mean of the

first eight execution times; it is 13.8312 minute. The SD of those eight runs is shown in

the next column. The SD of those eight values is only 0.4320, which is only 3.12% of

the absolute value of their arithmetic mean. Hence, those execution time values have

very slight variation among themselves.

Next, stage 2 of the Figure 4.3 indicates that one CPU intensive and one I/O inten-

sive VMs have been added to the server. Now, one VM run the Filebench as before and

two more VMs run CPU-memory load combination. For those three VMs randomly
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Table 4.1: Task execution time data for increasing number of co-located VMs in Fig-

ure 4.4.

No. of

co-located VMs

Possible

combi-

nations

(C16
i )

Arithmetic

Mean of

Filebench

Exe. time

(minute)

Standard

devia-

tion

(SD)

Exe. Time

increase

compared

to Stage 1

(%)

Exe. Time

increase

in consec-

utive

Stages

(%)

0 (0 CPU+0 I/O) 16 13.8312 0.4320 - -

2 (1 CPU+1 I/O) 560 15.7637 1.2848 13.9452 13.9452

4 (2 CPU+2 I/O) 4368 19.8137 0.6474 43.2269 25.6979

6 (3 CPU+3 I/O) 11440 21.1000 1.7791 52.5536 06.5118

8 (4 CPU+4 I/O) 11440 24.0250 1.7798 73.7014 13.8625

10 (5 CPU+5 I/O) 4368 25.3662 1.5521 83.3969 05.5816

11 (5 CPU+6 I/O) 1820 26.1412 1.3670 89.0016 03.0560

12 (6 CPU+6 I/O) 560 28.2075 2.0380 103.9375 07.9043

14 (7 CPU+7 I/O) 120 30.4587 0.9555 120.2173 07.9500

eight different combinations are chosen to run on the server. After each run, the tasks

are moved to VMs located in different locations and run again. Thus, those three VMs

are run in eight different locations on the server. Execution times of those eight VM

combinations are shown in the second cluster of values in Figure 4.4. The third row of

Table 4.1 shows the arithmetic mean and SD for these eight execution times.

As shown in the table, there are C15
3 or 560 possible ways to place those three VMs

on the sixteen available slots in the server. Figure 4.4 again shows that those execution

times are close to each other. As shown in the third row of Table 4.1, the SD of all

eight runs are only 1.2848, and the arithmetic mean is 15.7637 minutes. The SD of

those eight values is only 8.15% to their arithmetic mean. Thus, statistically, variation

among those eight values is relatively small. In other words, although the VMs are

rearranged eight times; however, their execution times do not deviate much from their
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mean value.

The execution time increase of the Filebench from the first to the second stage is

also calculated. The arithmetic mean of execution times of eight runs of Filebench

at stage 1 is 13.8312 minutes. It is shown in the second row of Table 4.1. At stage

2, two co-located VMs are added to the system. The execution time of Filebench in

the presence of two additional VMs are also recorded. They are run in eight different

combinations and the arithmetic mean of their execution times is 15.7637 minutes.

Thus, the execution time of the Filebench is increased by 13.9452%, as calculated

below.

(15.7637− 13.8312)/13.8312)× 100 = 13.9452%

Those additional VMs have caused the execution time of the Filebench to be increased

by 13.9452% from the initial value.

This value is shown in the third row of Table 4.1. The execution time of the

Filebench increased by 13.9452% in stage 2 compared to that of stage 1. Recall

that the arithmetic mean of execution times of stage 1 is shown in the second row of

the table. The arithmetic mean of execution times of stage 2 is shown in the third row.

Similarly, the percentage of execution time increases for other stages are calculated

and shown in the fifth column of Table 4.1.

Next, at stage 3 five VMs are run on the system, one VM running the Filebench

along with four other co-located VMs. Thus, stage 3 has two extra co-located VMs

compared to the stage 2. Stage 3 is shown in the third line of Figure 4.3, it shows

all five VMs. In this case, also, all VMs are run eight times on eight combinations of

locations. After each run, the five VMs are moved to other random locations of the

server.

The fourth row of Table 4.1 shows the execution time data of stage 3. The arith-

metic mean of those eight-run times is 19.8137 minute, and SD is 0.6474. Here, SD is

only 3.26% of the absolute value of the arithmetic mean of the execution times. Thus,

statistically, the execution time variation among the eight runs is quite small. Thus,

changing locations of VMs do not have much effect on execution times as long as the

total number of VMs remain the same.

Furthermore, as shown in the fifth column of the Table 4.1, the execution time on

stage 3 has increased by 43.2269% compared to that of stage 1. Recall that at stage 1,
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the Filebench is run alone without any co-located VMs. Data for stage 1 is shown in

the second row of the table.

Also, the sixth column shows that the execution time increase is 25.6979% com-

pared to the stage 2. Recall that only 2 co-located VMs are used at stage 2 and data

are shown in the third row of the table. Thus, this execution time increase is due to

running two extra co-located VMs on the server.

In the same way, the number of VMs is increased by two at each stage. Figure 4.3

shows the all nine stages of the experimental setup. At each stage, VMs are run in

eight different combinations. Then, Figure 4.4 shows the execution times of each of

those nine stages for eight combinations. In Figure 4.4, nine cluster of values represent

nine experimental stages.

The execution time values are grouped (as clusters in the Figure 4.4) according to

the number of co-located VMs running on the system. In X-axis shows the number of

co-located VMs. Value of 0 means there was no other VM on the system other than

the Filebench. Value of 2 means two other VMs are running on the system besides the

Filebench. The number of co-located VMs increased by 2 at each stage. Thus, in the

final stage, 14 co-located VMs are running on the system.

Each cluster of Figure 4.4 has eight different execution time values for eight VM

combinations. The values are clustered together based on the number of co-located

VMs. For example, the first cluster of eight values is for running Filebench in eight

different locations on the server. Here, no other co-located VMs were run in the sys-

tem; hence, X-axis value for this cluster of values is 0.

The second cluster of Figure 4.4 groups together eight execution time values. In

each of the eight cases, the Filebench is run along with two co-located VMs. Hence,

for this cluster of values, the X-axis tick value is 2.

In this way, two extra co-located VMs are added to the system. Thus, in the final

stage of Figure 4.3 (stage 9), seven CPU intensive VMs and seven I/O intensive co-

located VMs are run on the server. The execution times of all nine stages are shown

on Figure 4.4.

Recall that in each stage, eight random combinations of VMs were run. The execu-

tion time of Filebench for all of the setting is shown in Figure 4.4. In the figure, eight

execution times for each set of VMs are shown as histograms in a cluster. Execution

times from a different set of VMs are shown in different clusters. In Figure 4.4, there

are nine such clusters for nine set of VMs. The arithmetic means of eight execution
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time values of each cluster are also calculated. Those nine values of arithmetic means

are shown as a line graph in the figure as well. Arithmetic mean and SD for each

cluster of values is calculated separately and shown in Table 4.1.

Table 4.1 shows the arithmetic mean of execution time for all nine stages of the

experiment. The table shows that the execution time of the Filebench increases with

the increase in the number of co-located VMs. In the table, the number of co-located

VMs are increased by two at each stage. However, there is an exception between the

seventh and eighth rows.

The number of co-located VMs between the seventh and eighth rows differ by only

one. It is done to show that if the number of co-located VMs is changed by one, then

execution time difference becomes smaller. The seventh row of Table 4.1 shows the

execution finish time of Filebench due to ten co-located VMs. On the other hand,

the eighth rows show the execution finish time of the same Filebench due to eleven

co-located VMs.

Recall that the sixth column of Table 4.1 shows the execution time difference per-

centage between two consecutive stages. It can be seen that execution time differences

between the seventh and eighth rows are only 3.0560%. It is relatively small com-

pared to other cases. That is why the number of VMs is increased by two in each

stage instead of one. As increasing the VM number by one does not show a significant

difference in execution time.

Recall, Figure 4.4 shows the execution time of Filebench for nine group of co-

located VMs. Each group has the same number of co-located VMs; however, in ran-

domly selected locations. Table 4.1 shows the arithmetic mean and SD for each of the

nine groups. One row of the table presents data for one stage of the experiment.

The fourth column of Table 4.1 shows that the SD values for each stage. The SD

is calculated from the eight execution times of each group. A small SD for a group of

values indicate that the variation among the original values is small. The second row

of the table shows that the SD of eight execution time of stage 1 is only 0.4320. The

third row shows that the SD of the eight execution times of stage 2 is 1.2848. Likewise,

from the fourth column, it can be seen that for each of the nine stages of the experiment

the SD values are small.

Small SD for a stage, indicates that the execution times do not change much due

to re-arrangement of the VM locations. Small SD values of the fourth column indicate

that as long as the number of co-located VMs remains constant no matter how many
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ways they rearranged or recombined the execution time varies a little. Therefore, those

VMs cumulative effect on the resource contention remains the same.

The fifth column of Table 4.1 shows the increase in execution time from the initial

execution time. The initial execution time means the execution time of Filebench at

stage 1. Recall that at stage 1, the Filebench was run alone without any co-located

VM. The co-located VMs are added in successive stages and execution time increased

because of that. The fifth column indicates the execution time increase in percentage

compared to the stage 1. The sixth column of Table 4.1 shows the execution time

increase percentage for two consecutive stages.

The findings from the experiments in this section can be summarized as follows:

1) The execution times of VMs start to increase as the number of co-located VMs

is increased in the system;

2) The variation of VM execution time is not dependent on the location of the VMs;

rather it depends on the total number of VMs running on the system and their

resource usage.

In this section, experiments are conducted with only one task, the Filebench. How-

ever, the result summary of this section provides a way to profile the task ETV variation

due to VM consolidation. Based on the findings of this section a methodology is de-

veloped in the next section. With the help of that methodology, the experiments are

repeated with a larger number of tasks and hypervisors in the following chapters.

4.4 Incremental Consolidation Benchmarking Method

(ICBM)

Based on the results of the previous sections this section introduces a methodology

for profiling the task ETV of consolidated servers called, the Incremental Consoli-

dation Benchmarking Method (ICBM). Pseudocode for the methodology is shown in

Figure 4.5. Parameters of this pseudocode are described in Table 4.2.

The methodology can be applied step by step to any server with virtual machines;

there is no particular requirement for applying the method. The only assumption is

that the server is capable of consolidating multiple VMs; as the example shown in

Figure 4.6.
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Table 4.2: Parameters of the pseudocode of Figure 4.5.

Symbol Meaning

T Is a list containing all the tasks used in the experiments.

Bcpu
Is a set of benchmarks used to increase CPU resource contention in the

server.

Bmem
Is a set of benchmarks used to increase Memory resource contention in

the server.

Bi/o
Is a set of benchmarks used to increase I/O resource contention in the

server.

vt
One VM designated as the target VM. During experiments, the execu-

tion time of tasks of this VMs is profiled.

vco
A set of VMs designated as co-located VMs. During experiments, tasks

are run on these VMs to create resource contention on the server.

∆ Number of VMs increased at succussive stages of the experiment.

ti
Is the ith task in the list, T .

ETV i
0,0

Execution time of the task ti at stage 1. At this stage the task is run

without any co-located VM.

k
is a variable that determines how many co-located VMs should run at

each stage.

ETV i
j,k

is the execution time of task i when it is consolidated with k number of

type j co-located VMs.

Steps of the methodology (Figure 4.5) are explained with the example of Figure 4.6.

Lines 1-9 of Figure 4.5 initializes the variables. Let T is a set of task and ETV of each

task, ti ∈ T will be measured. Bcpu, Bmem, and Bi/o are sets of CPU, memory, and

I/O intensive benchmarks respectively.

One of the VMs is designated as the target vm (vt), while rest are designated as

co-located (vco) vms. The vt is used to run different tasks to record their ETV. On the
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1: T ← A set of tasks.

2: Bcpu ← A set of CPU intensive benchmarks.

3: Bmem ← A set of memory intensive benchmarks.

4: Bi/o ← A set of I/O intensive benchmarks.

5: vt ← A target vm.

6: vco ← A set of co-located vms.

7: ∆← Number of VMs increased at each stage.

8: Benchmark types B ← {Bcpu}, {Bmem}, {Bi/o},

9: {Bcpu, Bmem}, {Bmem, Bi/o}, {Bcpu, Bi/o}.

10: for Each task ti ∈ T do

11: Add vt to the host.

12: ETV i
0,0 = Execution of ti on vt alone.

13: k = 0

14: for Each benchmark type bj ∈ B do

15: while All the vco are responding do

16: k = k +∆.

17: Add k number of vco with benchmark of type bj to host.

18: Run vt simultaneously with the added vco.

19: ETV i
j,k = Execution finish time of the vt.

20: end while

21: Remove all vco and free related system resources.

22: end for

23: end for

Figure 4.5: Incremental Consolidation Benchmarking Method (ICBM) pseudocode.

other hand, vco have been used to create resource contention collectively. The tasks of

T are run on vt, while benchmarks of Bcpu, Bmem, and Bi/o are run on vco.

Let ti ∈ T be a task whose ETV due to CPU intensive co-located VMs is going

to be investigated. At first, the execution finish time of t1 is measured without any

interference from co-located VMs. Lines 11-12 shows that ti is run alone on a single

VM (vt) of the host, this corresponds to the stage 1 of Figure 4.6. The execution time

of task, ti without any interference is stored in ETV i
0 .



4.4. INCREMENTAL CONSOLIDATION BENCHMARKING METHOD ... 128

CPU CPU

CPUCPUCPUCPU

CPUCPUCPUCPUCPUCPU

CPU CPU CPU CPU CPU CPU CPU CPU

CPUCPUCPUCPUCPUCPUCPUCPUCPU

BBB

BB

BB

B

BB

B

BB

B

B

BB

B

B

B

BBBBBBBBB

tv
vco

Hypervisor

t

t

t

t

t

t

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

vm vm vm vm vm vm vm vm vm vmvm
0 1 2 3 4 5 6 7 8 9 10

BCPU

Figure 4.6: Task execution time profiling with CPU intensive benchmarks in co-located

VMs.

Next, in stage 2 of Figure 4.6 the ti is run again, this time along with two simul-

taneously running co-located vms (v1 and v2). Both new VMs, run one Bcpu type

benchmark each, thus only increasing CPU intensive load on the system. It gives the

execution time of ti on vt, which is now consolidated with two co-located CPU inten-

sive VMs. At each stage, the number of co-located VMs are increased that is why a

while loop is used in lines 15-20.

The while loop repeatedly runs ti, and the number of co-located VM is increased

at each stage. How many co-located VMs would be run at each stage is determined by

the variable k, which is initialized to 0 at line 13 just before the loop starts. Another

variable ∆ determines how many new co-located VMs are to be added to the host; it

is also initialized at the beginning.

At each iteration, the value of k is increased by the amount of ∆ as shown in line

16. All the benchmarks, bj used in the co-located VMs are stored in the list B. Above

steps are need to be repeated for each benchmark, bj ∈ B. Therefore, another for

loop is placed in the lines 14-22. The execution time of the ith task for k number of

jth benchmark is stored in ETV i
j,k. As the loops iterate, all the values are updated

accordingly.

In the next iteration, two more CPU intensive vco are added (stage 3 of Figure 4.6),
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increasing the number of CPU intensive co-located VMs to four. The execution fin-

ishes time of vt is profiled again for this setting. This way, two new vco are added at

each stage until the co-located VMs stop responding.

The maximum number of VMs that can be simultaneously run on a host without

making it non-responsive is dependent on the host configuration. Most hypervisors are

designed to handle a large number of VMs simultaneously. For example, XenServer

version 7.5 is designed to run up to 1000 VMs concurrently on a host. However, in

reality, the number of concurrent VMs are limited by VM workload, system load and

other environmental factors [272]. Thus, in practice, the VM number depends on the

VM and host hardware configuration.

In the experimental set of above, the host has one Intel i7-3770 processor with four

cores and eight hardware threads. Assigning, a logical CPU to each VM the system

could simultaneously run a maximum of fourteen such VMs, adding anymore VM

would make the whole system non-responsive.

With one VM designated as vt and two more new vco added at each stage, the fi-

nal stage (stage 7) of the experiment had thirteen simultaneously running VMs (one

vt along with twelve vco). The VMs are created with a least possible subset of CPU

resources so that CPU load can be increased granularly. However, VMs with a larger

number of logical CPU can also be created depending on the host hardware configura-

tion.

Once the task execution times are profiled with CPU intensive co-located VMs the

memory intensive co-located VMs. The same steps are repeated for memory intensive

vco; as an example is shown in Figure 4.7. However, in this case, memory intensive

benchmarks are run on co-located VMs instead of CPU intensive benchmarks.

All VMs are configured to have 1 GB of RAM. The experiment starts (stage 1

of Figure 4.7) with a single VM (vt) running the task, whose ETV due to memory

intensive co-located VMs is going to be investigated. Next, (stage 2 of Figure 4.7) vt

is run again along with two new co-located vms (v1 and v2), each running one memory

intensive benchmark. Similarly, two more VMs (vi and vi+1) are added at each stage

until the host system reaches a predetermined point of memory load.

In this case, adding a new vco makes the host memory load to be increased by 1 GB.

It was done so that, the host memory load can be changed granularly. The host has 16

GB of RAM. By restricting the number of VMs to thirteen at the final stage, maximum

of 13 GB RAM is allocated to the co-located VMs leaving rest for the hypervisor. As
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Figure 4.7: Task execution time profiling with memory intensive benchmarks in co-

located VMs.

with the CPU load, this predetermined load is also not a fixed number.

Afterward, for I/O load the same steps are repeated by adding two I/O intensive

benchmarks on two vco, at each stage. Thus, the ETV data for three basic resource

types (CPU, memory and I/O) are collected.

4.4.1 Measuring ETV for resource combinations

Next, the algorithm of Figure 4.5 repeats the same procedure for resource combi-

nations, too. The combinations are made by choosing two resource types at a time

from the previously mentioned basic three resources. The basic resources are (i) CPU,

(ii) Memory, and (iii) I/O. Their combinations used here are (iv) CPU-Memory, (v)

Memory-I/O and (vi) I/O-CPU. Thus, six resource types are used in the co-located

VMs; three are basic, and the other three are combinational.

Experiments for the combination of loads are done the same way. That is, start with

one VM (vt), and at each stage add two co-located VMs (vi and vi+1) to increase the

load. The difference is that now two new VMs run two different types of benchmarks.

Both of them, together create the effect of load combinations. For example, to increase

CPU-Memory load, two vco are added at each stage. One (vi) runs a CPU intensive



4.5. EXECUTION TIME VARIATIONS (ETV) OF THE TARGET VM (vt) 131

MemCPU

CPU

CPU

CPU

CPUCPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

B

CPU

MemMem

MemMem

Mem

MemMem

Mem

Mem

Mem

Mem

Mem

MemMem

Mem

B

B

109876543210
vm vmvmvmvmvmvmvmvmvmvm

Stage 6

Stage 5

Stage 4

Stage 3

Stage 2

Stage 1

t

t

t

t

t

t

Hypervisor

cov
vt

B B B B B B B B

B

B

B

B B

B

B

B B

B

B

B

B B

B B

B B B

Figure 4.8: Task execution time profiling with CPU-memory resource combination in

co-located VMs.

benchmark, while the other one (vi+1) runs a memory intensive benchmark. An exam-

ple of using resource combination in co-located VMs is given in the Figure 4.8. For

the other two resource combinations, the same procedure is followed.

Above experiments demonstrate how the execution time of vt is varied due to co-

located VMs (vi
co). However, there is another angle to this problem, that is how the

vco are collectively affecting the execution times of each other. To examine this the

execution finish times of all the vi are also recorded at each stage. Finally, the whole

procedure is repeated without the vt altogether. That is, all the experimental steps

are repeated by adding only load (on vi
co) at each stage. The ETV data obtained by

applying the algorithm are presented in the next few sections.

4.5 Execution time variations (ETV) of the target VM

(vt)

Discussion about the ETV of the targets VM (vt) is divided into two sections. In this

section, the ETVs due to basic types of load on the co-located VMs are addressed,

while in the next section ETVs due to the combination of resources are discussed.

Discussion about ETV of both basic and combinational resources are necessary.
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Later in the chapter, it is described how the prediction models can be built from the

collected ETV data. Finally, prediction models are presented in Section 4.9. The

models are relationships between the ETV due to basic resources to that due to the

combination of resources. Therefore, discussion about both basic and combinational

types of resources is necessary.

The basic resource load is created by using one of the following three resource

types: CPU, memory, and I/O. During this section, only one type of resource load

is increased in the co-located VMs. Figures 4.9, 4.10 and 4.11 show the task ETV

of vt due to three basic types of resource loads. The three resources are being, CPU

(Figure 4.9), memory (Figure 4.10) and I/O (Figure 4.11).

In each graph, the X-axis shows the total number of VMs running on the system,

while the Y-axis presents the task execution completion time of vt. The first point of

the graph shows the execution time of vt when it is run alone on the server. At this

stage vt is free from any interference from co-located VMs. As the algorithm described

previously in Figure 4.5 and example given in Figure 4.6. Then, two co-located VMs

(vco) are added to the server at each successive stage. In the final stage, twelve vco are

simultaneously run beside the vt.

The X-axis is marked with how many VMs were running at each stage. For exam-

ple, at stage 1 only the vt was running. In stage 2, one vt and two vco run on the host.

Finally at stage 7, vt is run with twelve vco. Various resource intensive benchmarks

are run on vco to create resource contentions systematically. On the other hand, tasks

are executed on the vt to measure ETV.

The Y-axis shows the ETV of the tasks on the vt. ETVs of seven tasks have been

measured they are, Nbbench, Unixbench, Cachebench, Stream, Dbench, Filebench,

and I/O zone. Among the above tasks, the Nbbench, Unixbench, and Cachebench are

CPU intensive tasks. The Cachebench, and Stream intensive tasks. While, Stream,

Dbench, and Filebench are I/O intensive tasks. Three types of tasks have been used

because they react differently to various types of resource contention.

From left to right along the X-axis, the interference from co-located VMs increases.

The first point of each graph gives the execution time of the task without any interfer-

ence from co-located VMs. On the other hand, the last point gives the execution time

with maximum interference from co-located VMs. Results show that different types

and number of vco make the task execution time to vary at a different rate.

Figure 4.9 shows that the task ETV of vt with the increase of CPU intensive vco.
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Figure 4.9: The task ETV of vt due to CPU resource load on vco.
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Figure 4.10: The task ETV of vt due to Memory resource load on vco.
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Figure 4.11: The task ETV of vt due to I/O resource load on vco.

The task ETVs due to CPU intensive resource contention is the minimum among six

types of workloads.

On the other hand, for memory intensive vco (Figure 4.10) the two CPU intensive

tasks (Nbench and Unixbench) on vt show less variation compared two memory in-

tensive tasks (Cachebench and Stream) under the same situation. As an example, in

isolation, the Nbench takes 10.1 minutes to execute on vt. With other 12 memory

intensive co-located VMs (vco) it extends to 12.83 minutes, which is only 27.02% ex-

tension. In contrast, the Cachebench under the same setup takes 587.58% longer to

execute (execution time goes from 11.76 min to 80.68 min).

Figure 4.11 shows the task ETV due to I/O intensive vco. Here, CPU intensive tasks

do not show much performance degradation, while both the memory and I/O intensive

tasks do. For example, the Cachebench (a memory intensive task) have 1057.311%

increase in execution time, while Iozone (an I/O intensive task) have 1482.93%.
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4.5.1 ETV results of vt due to combination of resources

In the previous section, the vt task ETV data due to basic resource types have been

discussed. In this section, the vt task ETV data due to resource combination is going

to be discussed. Recall that Section 4.4.1 describes the experimental stages to collect

ETV data due to resource combination on co-located VMs.

Figures 4.12, 4.13 and 4.14 show the task ETV on vt for combinational workloads

on vco. The workload combinations are being CPU-Memory (Figure 4.12), Memory-

I/O (Figure 4.13) and CPU-I/O (Figure 4.14).

Figure 4.12 shows the ETV of seven tasks due to a mix of CPU and memory inten-

sive vco. Here, CPU intensive tasks (Nbench and Unixbench) show the least amount

of degradation just as observed previously. Among the memory intensive benchmarks,

the Cachebench shows the highest rate of performance degradation (542.74%).

On the other hand, for I/O intensive tasks the effect of CPU-Memory vco combina-

tion is less adverse compared to memory intensive tasks. Figures 4.14 and 4.13 show

the performance degradation of vt when I/O intensive vco is coupled with CPU and

memory intensive vco, respectively.
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Figure 4.12: The task ETV of vt due to CPU-Memory resource combination on vco.



4.5. EXECUTION TIME VARIATIONS (ETV) OF THE TARGET VM (vt) 136

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

E
x
e
c
u
ti
o
n
 t
im

e
 o

f 
v

t 
(m

in
)

No of vm with both Mem and I/O load 

Nbench

Unixbench

Cachebench

Stream

Dbench

Filebench

Iozone

Mean of all vm

Figure 4.13: The task ETV of vt due to Memory-I/O resource combination on vco.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

E
x
e
c
u
ti
o
n
 t
im

e
 o

f 
v

t 
(m

in
)

No of vm with both CPU and I/O load 

Nbench

Unixbench

Cachebench

Stream

Dbench

Filebench

Iozone

Mean of all vm

Figure 4.14: The task ETV of vt due to CPU-I/O resource combinations on vco.
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In both cases, memory and I/O intensive tasks on vt show comparatively more

performance degradation. In the case of CPU-I/O load (Figure 4.14), the Cachebench

and Iozone show increase of execution time by 1907.21% and 1991.67%, respectively.

Again for Memory-I/O load (Figure 4.13), the same two benchmarks show worse

performance degradation (1100.09% and 1502.56%, respectively).

The graphs in this section show that the amount of performance degradation is dif-

ferent for different types of tasks. The amount is depended on the resource requirement

of the task and co-located VMs. The SD of the execution times of tasks is also calcu-

lated and shown in Tables 4.3, 4.4, 4.5. The significance of those SD values are also

discussed in the next section.

4.5.2 Standard deviation (SD) of the target VM (vt) execution times

The Standard Deviation or SD is a measure that is used to quantify the amount of

variation or dispersion of a set of data values [273]. A low SD indicates that the values

are close to the arithmetic mean of the values. On the other hand, a high SD indicates

that the values are spread over a broader range.

Table 4.3 shows the SD of execution times of two CPU-intensive tasks on vt

through stage 1 to stage 7. Table 4.4 shows the SD for two memory-intensive tasks,

while the Table 4.5 shows the SD for two I/O-intensive tasks. Those values are calcu-

lated from the graphs in the previous section.

Recall that Section 4.5 discusses the ETV of vt for basic resource loads. During

the stages of the experiment, the number of VMs with basic loads are increased in

the system. The results for three basic resources are shown in the Figures 4.9, 4.10

and 4.11.

In Section 4.5.1, the ETV due to combination of resources are considered. Again,

Figures 4.12, 4.13 and 4.14 show the results for co-located VMs. As discussed in

those section different types of resource intensive tasks faces different amount of per-

formance degradation.

Above mentioned graphs show the task execution times of the target (vt) at seven

stages of the experiment. Each graph shows the ETV of the same seven tasks along

the Y-axis. However, each graph has different workload on the co-located VMs along

X-axis. In this section, SD of the execution times of tasks has been calculated from the

data.
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Table 4.3: Standard deviation (SD) of ETV of two CPU-intensive tasks on vt.

Workload type

on co-located VMs

Task name

Nbench Unixbench

Basic

CPU-intensive 3.66 0.05

Memory-intensive 2.58 0.05

I/O-intensive 0.01 0.15

Combination

CPU-Memory-intensive 4.12 0.05

CPU-I/O-intensive 0.88 0.08

Memory-I/O-intensive 3.82 0.06

For example, Figure 4.9 plots the execution times variation of the Cachebench

for CPU intensive co-located VM workload. As discussed in the Section 4.5, the

Cachebench being a memory intensive benchmark do not show much execution time

variation due to CPU intensive workload. From the graph, seven execution times of

the Cachebench is collected, and their SD is calculated, it is only 0.99. This value is

shown in the second row of the third column of Table 4.4.

Next, recall that Figure 4.10 shows seven execution times for the Cachebench.

However, this time memory intensive co-located VMs are being used, and it can be

seen that the execution times variation is different. Here, also the seven execution times

are collected from the graph and SD is calculated. In this case, SD of the execution

times of the Cachebench is 25.28, indicating a more significant difference among the

all original values. Thus, memory intensive workload has a more significant influence

on the execution time of Cachebench. This value is shown in the third row of the third

column of Table 4.4.

Also, recall that Figure 4.11 shows the execution time variation of the Cachebench

due to I/O intensive workload. The SD of those execution time is 46.59. This value is

shown in the fourth row of the third column of Table 4.4.

In Section 4.5.1, ETV of the vt due to combinational resource load is discussed.

In this case, experiments are performed using resource combinations on the co-located
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Table 4.4: Standard deviation (SD) of ETV of two Memory-intensive tasks on vt.

Workload type

on co-located VMs

Task name

Cachebench Stream

Basic

CPU-intensive 0.99 2.42

Memory-intensive 25.28 16.89

I/O-intensive 46.59 0.12

Combination

CPU-Memory-intensive 23.51 1.43

CPU-I/O-intensive 83.85 0.35

Memory-I/O-intensive 49.40 0.82

Table 4.5: Standard deviation (SD) of ETV of two I/O-intensive tasks on vt.

Workload type

on co-located VMs

Task name

Filebench Iozone

Basic

CPU-intensive 0.41 1.51

Memory-intensive 2.97 14.18

I/O-intensive 15.16 54.70

Combination

CPU-Memory-intensive 3.06 9.89

CPU-I/O-intensive 17.33 71.62

Memory-I/O-intensive 13.17 56.62
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VMs. For example, Figure 4.12 shows the execution time variation of the Cachebench

due to CPU and memory load combination. The SD of this set of execution times is

shown on the fifth row of the third column of Table 4.4.

Similarly, six SD values for the Cachebench are calculated and shown in the third

column of Table 4.4. Six SD values are for six workload types on co-located VMs. The

second column of the table also shows the workload types used in the co-located VMs.

The fourth column of the table shows the SD values for another memory intensive task,

the Stream.

Using the procedure as described above, SD for two CPU and two I/O intensive

tasks are also calculated; their values are shown in Tables 4.3 and 4.5, respectively.

Recall that in Sections 4.5 and 4.5.1, the performance degradation of the vt is

expressed in terms of execution time increase percentage. Observing the ETV of tasks

is one way to present the effect of VM consolidation on task performance. A higher

execution time increase percentage indicate that VMs are performing worse. It is also

discussed that the performance of vt can degrade rather quickly particularly with the

increase of memory and I/O intensive co-located VMs. For those two types of resource

loads, the performance starts to deteriorate even when half the number of vco that the

physical system is capable of hosting, is running.

In this section, the task ETV results of two previous sections (4.5, and 4.5.1) are

presented in terms of SD. Tables 4.3, 4.4, and 4.5 show that the memory and I/O

intensive task execution times shows greater SD values indicating their execution time

values are spread over a wider range. Thus, SD provides another way to measure the

VM performance degradation quantitatively.

In last three sections (4.5, 4.5.1, 4.5.2), ETV data for the target VM (vt) is presented

and and their significance is discussed. In the next section, ETV data for the co-located

VMs (vco) are analyzed.

4.6 Execution time variations of the co-located VMs (vico)

In the previous section (Section 4.5), task ETV data is collected from the target VM

(vt) and presented in different figures. Figures 4.9, 4.10, and 4.11 show the ETV

data due to basic resource loads. Figures 4.12, 4.13, and 4.14 show the ETV data

due to combinational resource loads. During the same stages of experiments, data is
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also collected from the co-located VMs (vi
co), and those data are now presented in this

section.

Recall that in Section 4.4, a methodology is presented to systematically profile the

task execution time changes due to the changing number of VMs. In the experimental

setup two categories of VMs are used, target VM (vt) and co-located VM (vco). Then

in section 4.5, the experimental results of the target VM (vt) are discussed. In this

section, experimental results for the co-located VM (vco) are discussed.

Section 4.4 describes the stages of the experiment with the consolidated VMs. Dur-

ing the experiments, the execution finishes time of all the co-located VMs (vco) at each

stage are profiled. This section discusses the EVT data of vco and this data has some

interesting properties. Later in the section 4.7.3 it will be shown that these properties

can be useful for predicting the task ETV values of vt.

This section presents the ETV data of co-located VMs. Figures 4.15, 4.16, 4.17,

4.18, 4.19, and 4.20 show the arithmetic mean of execution times of all vi
co at each

stage, separately.

During experiments, it was observed that the arithmetic mean of the execution time
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Figure 4.15: Arithmetic mean of task ETV of vco with respect to CPU load changes.
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Figure 4.16: Arithmetic mean of task ETV of vco with respect to Memory load

changes.
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Figure 4.17: Arithmetic mean of task ETV of vco with respect to I/O load changes.



4.6. EXECUTION TIME VARIATIONS OF THE CO-LOCATED VMS (vi
co) 143

of all the vi
co follows a pattern for each resource type. At each stage, the execution fin-

ish time of each co-located VM is collected and their arithmetic mean is calculated.

They show a typical pattern even though the individual vi
co execution time may not

have such characteristic indicating that resource usages of all the co-located VMs col-

lectively shapes the performance degradation curve during consolidation.

Figures 4.15, 4.16, 4.17, 4.18, 4.19, and 4.20 show the arithmetic mean of co-

located VMs at each stage. The first point of each graph is always zero as there is no

vi
co running on the host at stage 1 (see Figure 4.6). At stage 2, two vco are running,

therefore second point is the arithmetic mean of task execution times of two VMs (v1,

v2). Similarly, third point is the arithmetic mean of values of four VMs (v1, v2, v3 and

v4) and so on.

As described above, each graph has seven arithmetic mean variation plot of vco

for seven different tasks. Furthermore, the arithmetic mean of those seven values is

also shown in black in each graph. Arithmetic mean data data is obtained using three

basic resources workload, they are CPU (Figure 4.15), memory (Figure 4.16), and

I/O (Figure 4.17). The three resource combinational workload used are CPU-Mem

(Figure 4.18), Mem-IO (Figure 4.19), and CPU-IO (Figure 4.20).

The increase of different types of workloads causes the arithmetic mean of execu-

tion times to change differently. It can be seen that the task ETV is the minimum for

CPU intensive load (Figure 4.15) among all three basic types of resources.

Among the three combinations of resources, the CPU-Memory (Figure 4.18) in-

tensive vco combination shows the least amount of performance degradation. On the

other hand, the combination of Memory-I/O intensive vco (Figure 4.19) have a debili-

tating effect on the system as the arithmetic-mean of execution time rises rather quickly

compared to other combinations.

One interesting observation made about the vco ETV data presented here is that

they show similarities in the pattern unlike the vt data. Recall that task ETV data from

the target VM (vt) is presented in Section 4.5.

Figure 4.15 shows the arithmetic mean of CPU-intensive co-located VMs for seven

tasks. The figure shows that the ETV patterns of all seven graphs are similar to each

other. Again, Figure 4.16 shows the arithmetic mean of vco ETV for seven tasks for

memory-intensive co-located VMs. Once again, the vco task ETV pattern for all seven

tasks are similar. Same thing can be seen in Figure 4.17 for I/O intensive co-located

VMs, too. Thus, Figures 4.15, 4.16, and 4.17 show that for each of the three basic
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resource intensive co-located VMs the ETV data shows similar patterns.

A similar observation can be made for ETV of co-located VMs with resource com-

binations, also. For example, Figure 4.18 shows the ETV of co-located VMs due to

CPU-memory load combination. At each stage, the task ETV values of the co-located

VMs have the matching patterns. Similar characteristics among the ETV values can be

also seen for memory-I/O (Figure 4.19) and CPU-I/O (Figure 4.20) load combinations

on co-located VMs.

This type of pattern regularity is not visible in all the ETV data of target VM

(Section 4.5.2). Recall, Figure 4.10 shows the task ETV of the target VM due to

memory intensive co-located VMs. In this case, the Cachebench shows more execution

time variation compared to other tasks. On the other hand, the Nbench shows little

variation.

Another example is in Figure 4.13. Here, the ETV of target VM is shown for

memory and I/O load combination on the co-located VMs. In this case, benchmarks

like the Cachebench and IOzone shows much more execution time variation compared

to that of Nbench and Unixbench.
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Figure 4.18: Arithmetic mean of task ETV of vco with respect to CPU-Memory load

combination changes.
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Figure 4.19: Arithmetic mean of task ETV of vco with respect to Mem-I/O load com-

bination changes.
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Figure 4.20: Arithmetic mean of task ETV of vco with respect to CPU-I/O load com-

bination changes.
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Thus, the ETV data of the target VM do not show regularity like that is observed in

the co-located VM data. It should be noted that one set of target VM data show some

regularities. Figure 4.9 shows the ETV of seven tasks on vt due to CPU intensive co-

located Vms. As the figure shows, the CPU intensive workload does not cause much

execution time variation on any task their ETV pattern looks similar. However, all

other resource combinations the ETV pattern of target VM is different as it can be seen

from Figures 4.10 to 4.14 and discussed in Section 4.5.2.

This regularity among the co-located VM data can be used as a heuristic for ex-

pected performance of consolidated VMs. In the next section, it is shown that this

characteristic can be used to predict task ETV of vt.

Each experiment has been repeated at least three times to obtain the above results.

The order of adding VMs has been shuffled, to observe their effect. However, no

significant difference between the results has been observed. Two VMs are added at

each stage, only to conduct the experiments uniformly. In our observation, the order of

adding VMs do not change the results ultimately; rather it depends on the cumulative

resource usages of VMs.

4.7 Task execution time variation prediction

This section presents the prediction results for the task ETV due to the combination of

resources. In the previous section, task execution time was profiled for three primary

resource workloads and three combinational workloads. This section shows that task

ETV for combinational workload can be predicted from the ETV due to primary re-

sources. Predictions are separately made from the target VM (vt) data, and co-located

VM data (vco) in Sections 4.7.2, and 4.7.3, respectively. In both cases, the non-linear

least square regression (LSR) is used for building prediction models.

Before presenting the prediction results, it is necessary to describe how data are

rearranged for training and testing prediction models. The description of the data re-

arrangement process and examples are given in the next section, and this is done only

make the training process clear.
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4.7.1 Rearrangement of ETV data for training and testing

Recall that in Figures 4.9, 4.10, 4.11, 4.12, 4.13 and 4.14 (of Section 4.5), data is

grouped according to the workload types in co-located VMs. For example, in Fig-

ure 4.9 the all seven task ETV data is due to CPU workload in the co-located VMs.

Similarly, in Figure 4.10 seven task data is grouped according to the memory workload

and so on. It is done to demonstrate how the different types of resource workload in-

fluence the task execution time differently. This grouping is essential for studying the

effect of each resource type separately.

To properly train the prediction models, the training (both input and target) data

needs to be grouped task wise. It is required because during training the task ETV data

due to the basic resources of a task needs to correspond to the ETV data due to the

combination of resources of the very same task. Otherwise, training data set would not

be consistent.

Figure 4.21 shows an example, of this rearranged input and target data set used for

training. All the vt ETV data used here are from the graphs of Section 4.5. It combines

the task ETV data of the Cachebench on vt for three basic (Figures 4.9, 4.10, and 4.11)
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Figure 4.21: Examples of input and target vt training data: Cachebench.
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Figure 4.22: Examples of input and target data for both vt & vco testing: Filebench.
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and three combined (Figures 4.12, 4.13 and 4.14) resource loads on vco, respectively.

All the vt task ETV data are rearranged similarly.

During training, the three basic resources data (CPU, Memory and I/O) are used as

inputs and three combinations of resources data (CPU-Memory, CPU-I/O, and Memory-

I/O) as targets. From the training data set, three sperate models have been generated for

three sets of target data (CPU-Memory, CPU-I/O, and Memory-I/O). All three targets

use the same three basic resources data as inputs.

An example of test data set is shown in Figure 4.22. It combines six ETV Filebench

data from Figures 4.9, 4.10, 4.11, 4.12, 4.13 and 4.14. This data set is used for testing

the accuracy of the prediction models. In the same way, rest of the task ETV data

are rearranged for training and testing purposes; however, they are not shown here.

Prediction results results for models built with vt data is presented in the next section

(Section 4.7.2).

Next, Figure 4.23 shows how the data collected from the co-located VMs (vco) are

rearranged for training a separate set of prediction models. In this case, the vco data

from the Section 4.6 is reorganized to create test and training data sets. The results for

this set of prediction models are presented later in Section 4.7.3.

4.7.2 Target VM (vt) execution time prediction from the ETV data

Four benchmarks data have been used as tasks for training. They are the Nbench,

Unixbench, Cachebench, and Stream. Two other benchmarks have been used for test-

ing; they are the Filebench and Iozone.

All of the test benchmarks have different levels of performance degradation. There-

fore, they can help to evaluate the prediction process. Training and testing have been

done on different sets of data. No training data have been used for testing and vice

versa.

The six graphs of Figures 4.24, 4.25, 4.26, 4.27, 4.28, and 4.29, separately show

prediction results for three resources of two test tasks on vt. Each graph contains two

sets of predictions obtained from two separate data sets, which are described next.

The first set of predictions is shown in blue in the figures. In this case, the task

ETV data of vt for basic resource types have been used to predict the task ETV of vt

for the combination of resources. First, the task ETV data of vt for CPU (Figure 4.9),

Memory (Figure 4.10) and I/O (Figure 4.11) intensive vco are recorded, separately.
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Those are used as training inputs.

Then, three resource combinations have been used as three separate training tar-

gets. They are CPU-Memory (Figure 4.12), CPU-I/O (Figure 4.14) and Memory-I/O

(Figure 4.13). From the above training data prediction models are built. The model

building process and prediction results are discussed next.

The second set of predictions is shown in red in the figures. In this case, co-located

VM data is used for prediction, and the process is mentioned in the later section.

Prediction results for three resources (CPU, Memory and I/O) of two test tasks

(Filebench, and Iozone) are shown in Figures 4.24, 4.25, 4.26, 4.27, 4.28, and 4.29.

The Root Mean Square Error (RMSE) for this set of predictions are shown later in

Table 4.6 in Section 4.8.

4.7.3 Target VM (vt) execution time prediction from the vco data

The second set of prediction models are built by training the LSR models only with

vco data. The prediction results are also shown in red on the previously presented

Figures 4.24, 4.25, 4.26, 4.27, 4.28, and 4.29. These prediction results demonstrate an

interesting aspect of ETV data, the models generated using co-located VM (vco) data
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Figure 4.25: Task execution time prediction from vt and vco data for Iozone: CPU-

Mem load.

can predict the ETV of target VM (vt), too.

All the data used here to train the prediction models are from the figures of Sec-

tion 4.6. During training the CPU (Figure 4.15), memory (Figure 4.16) and I/O (Fig-

ure 4.17) data of vco are used as inputs, while CPU-Mem (Figure 4.18), Mem-I/O

(Figure 4.19) and CPU-I/O (Figure 4.20) combination data of vco are used as targets.

On the other hand, during testing, the vt data are used as both input and target.

All testing has been done with the same two tasks (Filebench, and Iozone), which are

also used in the previous section for testing the prediction models. That is, in this case,

models are generated using only co-located VMs data, while testing is done with target

VM data.

An example of the training data used here is shown in Figure 4.23 of Section 4.7.1.

It is a collection of six different Cachebench ETV data from six graphs of Figures 4.15,

4.16, 4.17, 4.18, 4.19, 4.20.

During training, the variation of the arithmetic mean of vco ETV due to CPU,

memory and I/O are used as inputs. The CPU-Memory, Memory-I/O and CPU-I/O

combinations ETV data are used as targets. Three models have been generated in this

way, with three vco target data set. However, testing is done with vt test data like,

the example shown in the Figure 4.22. Recall that, it was also used for testing in the
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Figure 4.26: Task execution time prediction from vt and vco data for Filebench: Mem-

I/O load.
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Figure 4.28: Task execution time prediction from vt and vco data for Filebench: CPU-

I/O.
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Figure 4.29: Task execution time prediction from vt and vco data for Iozone: CPU-I/O

load.
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previous section.

Next, in Section 4.8, RMSE for this set of prediction models is presented in Ta-

ble 4.7 and discussed.

4.8 The accuracy of prediction models

The Root Mean Square Error (RMSE) is a widely used measure to prediction accuracy

of a model [274–278]. It is also commonly used in regression analysis. It measures the

differences between the predicted values and the observed values. RMSE calculates

the differences between the values using the following formula

√

(f − o)2 (4.1)

Where, f is the predicted or forecasted values, and o is the observed or known results.

The bar above the squared difference of values signifies the arithmetic mean. There-

fore, the formula can be re-written slightly differently to highlight the arithmetic mean

of values in the following way [279]:

RMSEfo =

√

∑N

i=1
(zfi
− zoi

)2

N
(4.2)

Where zf is the standardized forecast value and zo is the standardized observed value.

Values can be standardized using the following formula.

z =
X − µ

σ
(4.3)

Where, X is a set of values, µ is the arithmetic mean of the values, and σ is the

standard deviation of the values.

The RMSE is the standard deviation of the residuals. The residual of an observed

value is the difference between the observed value and the forecasted or predicted value

of the quantity of interest. Residuals are a measure of how far the actual data points

are from the regression line.

The formula for calculating RMSE can also be written as follows [276]:
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RMSE =

[

n−1

n
∑

i=1

|ei|
2

]1

/

2

(4.4)

Where ei is the absolute forecasting error. Again, ei can be calculated using following

formula [277]:

ei =
(

yi − f (m)
i

)

(4.5)

Where yi is the observed value at time i. On the other hand, f (m)
i is the predicted

value at time i from model m. From now on, the index of the prediction model will

be omitted from the equations.

From the absolute forecasting error (ei) the Mean Absolute Error (MAE) can be

calculated as follows [277]:

MAE =
1

n

n
∑

i=1

|ei| (4.6)

Then, Mean Square Error (MSE) is calculated using the formula:

MSE =
1

n

n
∑

i=1

|e2i | (4.7)

Finally, RMSE is calculated as:

RMSE =

√

√

√

√

1

n

n
∑

i=1

|e2i | (4.8)

The RMSE of predictions for two sets of data mentioned in the previous sections

are shown in Tables 4.6 and 4.7, respectively.

4.8.1 Comparison of RMSE for prediction models

Recall that Section 4.7.2 discusses the prediction results for the models built with target

VM data. In this case, prediction models are trained with basic resource ETV data.

Then, the model is used for predicting the ETV of the target VM due to resource
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combinations. Prediction results are shown in the Figures 4.24, 4.25, 4.26, 4.27, 4.28,

and 4.29. Actual and predicted ETV data are collected from those graphs and used to

calculate the RMSE of predictions in Table 4.6.

Similarly, Section 4.7.3 discusses the ETV prediction results for models built from

co-located VM data. The prediction results for this set of data is also shown the Fig-

ures 4.24, 4.25, 4.26, 4.27, 4.28, and 4.29. The RMSE values of Table 4.7 is calculated

from this set of data. Rest of the sections discusses the significance of RMSE data in

detail.

To the best knowledge of the author there exist no approximation algorithm to

estimate the task ETV of co-located VMs. Therefore, there is no acceptable theoretical

bound for the RMSE values [254]. In general, a lower value of RMSE indicates better

prediction accuracy.

One of the observations made during the prediction process is that the number

of types of resource data is used in train phase influences on the outcome. In this

section, the influences of resource types and number on prediction model accuracy are

discussed in detail. Table 4.6 shows the RMSE of prediction results for the models

build with vt data. Recall that, execution time prediction process using target VM (vt)

data is discussed in Section 4.7.2. A color scheme is used in columns of the table to

differentiate between two types of prediction results.

In Table 4.6, six columns shows the RMSE of prediction results. The six columns

are divided into three groups; each group has two columns. The three groups show the

task ETV prediction for three resource combinations; CPU-memory, memory-I/O, and

CPU-I/O. Again, each group has two columns of predictions; one prediction is made

using three resources, and another prediction is made using two resources.

For example, both the second and third columns of Table 4.6 show the RMSE

of prediction for CPU-memory resource combination. However, in two columns the

prediction models are built in different ways. For the third column, the prediction

model is built using data from two types of resources, which are CPU and memory.

Whereas, in the second column the prediction is made using three types of resources;

CPU, memory, and I/O. It can be seen that the RMSEs of prediction are better in

the second column. The third column is also highlighted in gray to emphasize the

difference of prediction accuracy.

Among the two sets of prediction models, the main difference is how many types of

resource data are used for training. Other than this, both the second and third column
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Table 4.6: Root mean square error (RMSE) for prediction using target vm (vt) data.

Resource types used to build prediction model

CPU-Memory model CPU-I/O model Mem-I/O model

B
en

ch
m

ar
k

s Using all

three

resources

(CPU,

Mem, I/O)

Using

only two

resources

(CPU,

Mem)

Using all

three

resources

(CPU,

Mem, I/O)

Using

only two

resources

(CPU,

I/O)

Using all

three

resources

(CPU,

Mem, I/O)

Using

only two

resources

(Mem,

I/O)

F
il

eb
en

ch

0.771 2.628 2.131 11.933 2.605 3.022

Io
zo

n
e

2.193 10.505 2.475 21.566 3.083 3.588

of Table 4.6 shows the prediction for the same resource combination. In the second

column, all three primary resources execution time data have been used. During the

training phase, ETV due to CPU, memory, and I/O have been used as the model inputs,

and CPU-memory ETV data is used as the target. On the other hand, the third column

only CPU and memory ETV have been used as the input. The ETV due to I/O workload

is not used in this column. As it is visible in the third column, the prediction accuracy

is lower than that of column two.

Next, the fourth and fifth columns show the RMSE of prediction for CPU and I/O

resource combination. Lastly, both the sixth and seventh column shows the RMSE

of prediction for memory and I/O combination. In both cases, prediction results are

differentiated using a color scheme in the columns. The results indicate that better

prediction result can be achieved by using three resources instead of two. In other

words, the RMSE of predictions is better in the column where three resources are used

for building the models.

Above paragraphs discuss the significance of using different colors in the columns

and show that the RMSE of the predictions are always better when three resource data

are used to build prediction models. Next, the prediction accuracies of individual tasks
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are discussed. Table 4.6 shows the prediction results for two test tasks, the Filebench,

and IOzone. The third row shows the RMSE of prediction for the Filebench, while

the fourth row shows RMSE for the IOzone. Again, for each task, the RMSE is lower

when three resources are used for training the prediction model.

First, the prediction accuracy of the CPU-memory resource combination for the

Filebench is discussed. For the Filebench, the RMSE for prediction is 2.628 when two

resources are used to build the model. The RMSE of prediction is only 0.771 when all

three resources are used to build the prediction model. Similarly, for other two resource

combinations (CPU-I/O, and Memory-I/O) also it can be seen that RMSE values are

lower when three types of resource data are used during the prediction model training.

Next, the fifth row of Table 4.6 shows the prediction accuracy data the IOzone.

For IOzone, the RMSE of prediction for the model built using two resource data is

10.505. However, when three resources are used in the model, the RMSE drops to

2.193. Recall that a lower RMSE value indicates a better prediction accuracy. The

same results can be observed for the RMSE values of the CPU-I/O and Memory-I/O

resource combinations, too.

Next, Table 4.7 shows the prediction results for the model trained with co-located

Table 4.7: Root mean square error (RMSE) for prediction using co-located vm (vco)

data.

Resource types used to build prediction model

CPU-Memory model CPU-I/O model Mem-I/O model

B
en

ch
m

ar
k

s Using all

three

resources

(CPU,

Mem, I/O)

Using

only two

resources

(CPU,

Mem)

Using all

three

resources

(CPU,

Mem, I/O)

Using

only two

resources

(CPU,

I/O)

Using all

three

resources

(CPU,

Mem, I/O)

Using

only two

resources

(Mem,

I/O)

F
il

eb
en

ch

0.657 4.515 1.841 10.607 1.475 47.797

Io
zo

n
e

2.083 43.546 4.572 87.725 3.898 59.863
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VM (vco) data. In this case, prediction results are shown for the same two tasks

(Filebench, and IOzone) have been used; however, vco data is used instead of vt data.

Recall that, prediction model building process using co-located VM (vco) is discussed

in Section 4.7.3.

In Table 4.7 also, the prediction accuracy is better when all three resources data

are used to generate the model rather than two. For example, both second and third

columns of Table 4.7 show the RMSE of prediction for CPU and memory resource

combination. It can be seen that the RMSE values of the second column are always

lower than that of the third column. In other words, the prediction accuracy for the

CPU-Memory load combinations is better when the model is built using CPU, memory,

and I/O data rather than using only CPU and memory data. Recall that, similar patterns

are also observed in the RMSE values of Table 4.6 and the significance of those values

are discussed earlier in the section.

From the discussion of this section, it can be concluded that the execution time

prediction accuracy for a model built using all three basic resources data is better com-

pared to that is generated by using only two resource types data.

4.9 Process of obtaining LSR prediction model param-

eters

This section presents the parameters and coefficient of the prediction models. Recall

that Sections 4.7.2 and 4.7.3 presents the execution time prediction results. The accu-

racy of the prediction is discussed in Section 4.8. Finally, in this section parametric

models for the prediction are presented. Those models are shown in equations 4.10,

4.11, 4.12, 4.13, 4.14, and 4.15.

As described in the Sections 4.7.2 and 4.7.3 the models are trained with profiled vt

and vco data, respectively. The profiled ETV data of VMs have been used to train LSR

models. Parameters and co-efficient shown in equations 4.10, 4.11, 4.12, 4.13, 4.14,

and 4.15 are collected from the trained LSR prediction models models. The equations

demonstrate the relation between input and prediction data formats.

The LSR models are built using statistical packages of the R programming lan-

guage [280, 281]. Specifically, the lm() and Glm() functions from the R statistical

package have been used [282–284]. Those packages and functions are discussed in the



4.9. PROCESS OF OBTAINING LSR PREDICTION MODEL PARAMETERS 160

following section.

4.9.1 Least Square Regression (LSR) packages of R

The lm() is a useful function for carrying out regression, single stratum analysis of

variance, and analysis of covariance [283]. It has the following function interface:

lm(formula, data, subset, weights, na.action,

method = "qr", model = TRUE, x = FALSE,

y = FALSE, qr = TRUE,

singular.ok = TRUE, contrasts = NULL, offset, ... )

Parameters of the lm() functions are described next. Parameter formula is a symbolic

description of the model to be fitted. Models has typical form response ∼ terms.

response is the numeric response vector. On the other hand, terms is a series of

terms that specify the predictor for response.

Parameter data is an optional data frame or a list containing thy variables of the

model. Parameter subset is an optional vector that specifies a subset of data to be used

for the model fitting process. Parameter weights is an optional vector of weights used

in the fitting process. Parameter na.action is a function indicating the course of action

if some of the data are unavailable (NA) or missing.

Parameter method points to the method to be used for fitting. Parameters model,

x, y, qr are the logicals that indicate which corresponding components of the fit are

to be returned. The components represented by the logicals model, x, y, qr are the

model frame, the model matrix, the response, and the QR decomposition, respectively.

Parameter singular.ok is another logical. It contains FALSE if a singular fit is an error.

Parameter contrasts is a set of optional values. Parameter offset allow to set an offset

value for the predictor during the fitting process. Lastly, Parameter (...) are additional

arguments that can be passed to low-level regression fitting functions.

The glm() is used to fit generalized linear models, it has the following function

interface [282]:

Glm(formula, family = gaussian, data = list(),

weights = NULL, subset = NULL,

na.action = na.delete, start = NULL, offset = NULL,
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control = glm.control(...), model = TRUE,

method = "glm.fit", x = FALSE, y = TRUE,

contrasts = NULL, ...)

Most of the arguments like formula, data, weights, subset, na.action, offset, model,

method, x, y, and contrasts are already discussed above for the lm() function. In

addition are there two more parameters present in glm() function. They are discussed

below.

Parameter family points to an error distribution description and link function to

be used in the model. start points to the staring values of the paraments in the linear

predictor. Lastly, control has a list of parameters controlling the fitting process.

There is also a print() method that helps to print parameters and coefficients for

glm models [282]. The interface for this function is given next.

print(x, digits=4, coefs=TRUE,

title=’General Linear Model’, ...)

Parameter digits indicates the number of significant digits to be printed. coefs is a

logical determining whether to print model coefficients or not. For coefs = TRUE the

function prints all values from table of coefficients, standard errors, etc. title allows a

character string to be passed to the method.

4.9.2 Formulas for lm() and glm() functions

For both lm() and glm() functions, formulas or models can be specified symbolically.

Experiments were done with different terms and formulas. A grid search was con-

ducted on the parameter space to find the best parameter values. Next, it is going

to be discussed how the parameters are selected and coefficients are obtained for the

equations of this section.

Different prediction models have been used for different resource combinations.

It can be seen that the equations 4.10, 4.11, and 4.12 presents prediction models for

CPU-memory, CPU-I/O, and memory-I/O resource combinations, respectively. For

example, equation 4.10 shows the prediction results for the CPU and memory resource

combination. First experiments have been done with various formulas. Formulas were
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chosen based on their prediction accuracy on the test data set. For the CPU-memory

resource combination following formula was chosen based on the RMSE value of pre-

diction.

c_m ∼ (I(cˆ0.7)+I(mˆ0.9)+I(io))ˆ2

In the above formula, c, m, and io are three vectors containing the target VM data;

they contain the ETV data due to CPU, memory, and I/O intensive co-located VMs,

respectively. Those data are presented in the graphs of Figures 4.9, 4.10 and 4.11 and

discussed in Section 4.5. On the other hand, c_m is the prediction for CPU and mem-

ory resource combination. The prediction results are previously shown in Section 4.22.

Above formula, which is compatible with the R programming language can be

expanded into an equation as follows [285, 286]:

c mi = α1 + α2 ∗ c
0.7
i + α3 ∗m

0.9
i + α4 ∗ ioi

+ α5 ∗ c
0.7
i ∗m

0.9
i + α6 ∗ c

0.7
i ∗ ioi + α7 ∗m

0.9
i ∗ ioi

(4.9)

Where, ci ∈ c, mi ∈ m, and ioi ∈ io are members of the vectors containing

ETV data of CPU, memory, and I/O, respectively. On the other hand, α1, α2, ... α7

are model coefficients, which needs to be determined from the trained model. Lastly,

c mi ∈ c_m is the predicted execution time for a particular CPU and memory com-

bination.

4.9.3 Process of obtaining coefficient estimate

The function lm() returns an object of class “lm”, which is a list containing many

components like coefficients, residuals, fitted.values, rank, weights, df.residual, terms,

etc. Once the model is fitted, function maned summary() can be called to obtain and

print a summary and analysis of variance table of the results [287–289].

print(summary(fit))

Where fit is an object of lm class returned from the lm() function after fitting process.

An output of this function call is shown in Figure 4.30.
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Call:
lm(formula = c_m ∼ (I(cˆ0.7) + I(mˆ0.9) + I(io))ˆ2,

data = data2)

Residuals:
Min 1Q Median 3Q Max

-2.3308 -0.4663 -0.1265 0.2751 2.7262

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -21.130543 4.883250 -4.327 0.000297

***
I(cˆ0.7) 4.963360 0.842037 5.894 7.51e-06

***
I(mˆ0.9) 0.752094 0.336192 2.237 0.036254

*
I(io) 0.600729 0.368986 1.628 0.118425
I(cˆ0.7):I(mˆ0.9) -0.124518 0.051755 -2.406 0.025425

*
I(cˆ0.7):I(io) -0.037475 0.066595 -0.563 0.579577
I(mˆ0.9):I(io) 0.002292 0.001269 1.807 0.085143

.
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

‘ ’ 1

Residual standard error: 1.114 on 21 degrees of freedom
Multiple R-squared: 0.9961, Adjusted R-squared:

0.9949
F-statistic: 886.9 on 6 and 21 DF, p-value: < 2.2e-16

Figure 4.30: An output from lm() function.

At the top of the result, the formula used in the function is printed. Next statistics for

residuals are shown. Residuals are the difference between the actual response values

and the response values from the prediction.

Next, the coefficients of the model are printed. In regression analysis, the coef-

ficients are unknown constants that represents the intercept and slope of the linear

model [287]. The estimates of coefficients of the model formula are obtained during

the fitting process with the training dataset.
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The first column below the ‘coefficients’, prints all the terms relevant to the model

formula. The second column prints their estimated values. The coefficient standard

errors are printed in the third column.

The coefficient t-value column is a measure of how many standard deviations of

the coefficient estimates are further away from zero (0). Far away values from zero

indicate that the corresponding coefficient represents an essential relationship in the

model. Last column, the Coefficient Pr(> |t|) represents the probability of observing

any value equal or larger than t. Residual Standard Error is a measure of the quality

of the regression model fitting process. Rest of the statistics show how well the model

fits the actual data.

Thus, the general prediction model for the CPU-memory combination is shown in

equation 4.9. After fitting the model with R, coefficient estimates are obtained from

the lm object. Finally, all coefficients and parameters are put in the formula to obtain

the Equation 4.10.

In the same way, prediction models for other resources combinations are also ob-

tained. Equations 4.11, and 4.12 show the prediction models CPU-I/O and memory-

I/O resource combinations, respectively.

4.9.4 Parametric models

In previous three sections (Sections 4.9.1, 4.9.2, and 4.9.3) process of building pre-

diction models with R statistical packages is described. The sections describe how

the formulas and coefficients can be obtained from the R statistical functions. How-

ever, the functions provide output formulas in a minimal form, which is most suitable

for people with technical know-how. In this section, the formulas are expanded and

presented in a more human-readable form.

Equations 4.10, 4.11, and 4.12 show the three prediction models built with target

VM data as described throughout the previous sections. The terms used in the Equa-

tions 4.10, 4.11 and 4.12 are self-explanatory; nonetheless, they are listed in Table 4.8

for convenience. For example, T t
cpu−mem,i denotes predicted task execution time of a

task on vt, when it is consolidated with the i number of CPU and memory intensive co-

located VMs. Similarly, T t
cpu−io,i and T t

mem−io,i represent the predicted task execution

time for CPU-I/O and Memory-I/O load combinations, respectively.

As explained in the Section 4.7, the same input parameters have been used for
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all three equations. T t
cpu,i represents the task execution time of vt when the server is

consolidated with the i number of CPU intensive co-located VMs. Similarly, T t
mem,i

and T t
io,i represent the task execution time when the server is consolidated with the

same number of memory and I/O intensive co-located VMs, respectively.

Next, Equations 4.13, 4.14, and 4.15 present the prediction models built from co-

located VM data. Recall that the prediction results of models built using the co-located

VM data is described in Section 4.7.3, and the process of obtaining model parameters

and coefficients are discussed in Sections 4.9.1, 4.9.2, and 4.9.3 above.

Table 4.8: Parameters of the equations 4.10, 4.11, 4.12, 4.13, 4.14, and 4.15.

T t
cpu−mem,i

Expected execution time of a task on target VM. The target VM is

consolidated with total of i co-located VMs. The co-located VMs

are running a CPU and memory intensive load combination.

T t
cpu−io,i

Expected execution time of a task on target VM. The target VM is

consolidated with total of i co-located VMs. The co-located VMs

are running a CPU and I/O intensive load combination.

T t
mem−io,i

Expected execution time of a task on target VM. The target VM is

consolidated with total of i co-located VMs. The co-located VMs

are running a memory and I/O intensive load combination.

T t
cpu,i

Observed task execution on target VM. The target VM is consol-

idated with the i number of CPU-intensive co-located VMs.

T t
mem,i

Observed task execution on target VM. The target VM is consol-

idated with the i number of memory-intensive co-located VMs.

T t
io,i

Observed task execution on target VM. The target VM is consol-

idated with the i number of I/O-intensive co-located VMs.

T co
cpu,i

Arithmetic mean of task execution times of i number of co-

located VMs, all running CPU intensive benchmarks.

T co
mem,i

Arithmetic mean of task execution times of i number of co-

located VMs, all running memory intensive benchmarks.

T co
io,i

Arithmetic mean of task execution times of i number of co-

located VMs, all running I/O intensive benchmarks.
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T t
cpu−mem,i = −20.415 + 4.795 ∗ (T t

cpu,i)
0.7

+ 0.752 ∗ (T t
mem,i)

0.9 + 0.579 ∗ (T t
io,i)

− 0.119 ∗ (T t
cpu,i)

0.7 ∗ (T t
mem,i)

0.9

− 0.035 ∗ (T t
cpu,i)

0.7 ∗ (T t
io,i)

+ 0.002 ∗ (T t
mem,i)

0.9 ∗ (T t
io,i) (4.10)

T t
cpu−io,i = −16.393527 + 0.802 ∗ (T t

cpu,i)

+ 0.282 ∗ (T t
mem,i) + 1.769 ∗ (T t

io,i)

− 0.020 ∗ (T t
cpu,i) ∗ (T

t
mem,i)

− 0.023 ∗ (T t
cpu,i) ∗ (T

t
io,i)

+ 0.003 ∗ (T t
mem,i) ∗ (T

t
io,i) (4.11)

T t
mem−io,i = −16.549 + 2.104 ∗ (T t

cpu,i)

+ 7.920 ∗ (T t
mem,i)

0.2 − 0.169 ∗ (T t
io,i)

0.96

− 0.957 ∗ (T t
cpu,i) ∗ (T

t
mem,i)

0.2

+ 0.031 ∗ (T t
cpu,i) ∗ (T

t
io,i)

0.96

+ 0.455 ∗ (T t
mem,i)

0.2 ∗ (T t
io,i)

0.96
(4.12)

The models in Equations 4.13, 4.14, and 4.15 have the same targets as that of

Equations 4.10, 4.11, and 4.12, respectively. However, inputs of the first three set of

equations ( 4.10, 4.11, and 4.12) are different than that of second set of three equations

( 4.13, 4.14, and 4.15).

As explained in Section 4.7.3, in this case, the arithmetic mean of execution times
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of co-located VMs has been used as inputs. For example, T co
cpu,i represents the arith-

metic mean of execution times of the i number of CPU intensive co-located VMs. In

this case, the arithmetic mean of execution times of co-located VMs has been used to

predict the task ETV of target VM.

Coefficients for these three models are obtained using the same procedure as de-

scribed earlier in the section. First, a suitable formula for the prediction models is

obtained from the co-located VM data through experiments. Then, the model coef-

ficients are estimated from the trained models. Meanings of the terms used in the

equations are also explained in Table 4.8 as well.

T t
cpu−mem,i = −0.009 + 0.190 ∗ (T co

cpu,i)
1.2

+ 0.220 ∗ (T co
mem,i)

1.2 + 0.250 ∗ (T co
io,i) (4.13)

T t
cpu−io,i = −0.102 + 4.217 ∗ (T co

cpu,i)
3.25

− 0.034 ∗ (T co
mem,i) + 1.383 ∗ (T co

io,i)
0.7

+ 0.544 ∗ (T co
cpu,i)

3.25 ∗ (T co
mem,i)

− 5.394 ∗ (T co
cpu,i)

3.25 ∗ (T co
io,i)

0.7

+ 0.163 ∗ (T co
mem,i) ∗ (T

co
io,i)

0.7
(4.14)

T t
mem−io,i = 3.720 ∗ (T co

cpu,i)
0.325 + 2.376 ∗ (T co

mem,i)

− 0.020 ∗ (T co
io,i)

0.05 + 1.079 ∗ (T co
cpu,i)

0.325 ∗ (T co
mem,i)

− 4.394 ∗ (T co
cpu,i)

0.325 ∗ (T co
io,i)

0.05

− 3.144 ∗ (T co
mem,i) ∗ (T

co
io,i)

0.05
(4.15)
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Changes in the basic configuration of VMs may require some modification of the

model coefficients. The public Cloud offers VMs for renting in a certain number of

predefined configurations. Therefore, some such models required in reality are limited.

What is more, since LSR has low overhead building or rebuilding of a limited number

of such models would not be time-consuming.

4.10 Conclusion

This chapter addresses the critical issue of profiling and predicting the performance

variations of VMs due to consolidation. This chapter is built upon the works of the

previous chapter. Based on the experimental results and observations of the Chapter 3,

A straightforward methodology has been introduced here that is practically feasible to

implement.

Work presented in this chapter is different from most complementary works on

virtualization, which uses simulation to derive results. All results and data shown are

collected from real system data. This work introduces a methodology to profile the

task ETV of consolidated VMs, called the Incremental Consolidation Benchmarking

Method (ICBM).

Several combinations of benchmark suites have been used to profile and predict

the execution time variation (ETV) of tasks due to consolidation. The ICBM presented

in this chapter uses a step-by-step VM profiling process. At each step, a selected set

of VMs is run to create the desired amount of resource contention. The methodology

introduced here for consolidated VMs is unique and useful. Experimental results from

real virtualized systems show that in this way it is possible to predict the task ETV of

VMs quite accurately.

The consolidated VMs are divided into two categories for the conducting the ex-

periments. At each stage of the ICBM, there can be one target VM (vt) and zero or

more co-located VMs (vco). The vt is used to measure task execution time variation

due to consolidation. On the other hand, vco are used to create resource contention on

the server.

First task execution times are profiled for VM consolidation and then the data this

used to train a prediction model. Two sets of data are used to build two sets of pre-

diction models; one collected from the target VM and another from the co-located
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VMs. Furthermore, model training and prediction are done entirely different sets of

task execution time data. Models built from both sets of data show a good accuracy of

prediction. Predictions are made for three combinations of resources; they are CPU-

memory, CPU-I/O, and memory-I/O.

One set of prediction results are obtained using the target VM (vt) data. Two tasks

are used to test the prediction accuracy of the models. For the Filebench, the RMSE

for prediction for CPU-memory, CPU-I/O, and memory-I/O resource combinations are

0.771, 2.131, and 2.605, respectively. For the IOzone the RMSE of prediction for

the same three combinations are 2.193, 2.475, and 3.083, respectively.

Another set of prediction results are obtained using the co-located VMs (vco) data.

Predictions are made for the three same set of resource combinations (CPU-memory,

CPU-I/O, and memory-I/O). In this, case the RMSE of prediction for the Filebench are

0.657, 1.841, and 1.475, respectively. For the IOzone the RMSE values are 2.083,

4.572, and 3.898, respectively.

A lower value of RMSE generally means a better prediction accuracy. This chapter

also presents parametric models for the prediction. The parameters and coefficient of

the model are collected during the experiments.

This chapter provides a quantitative way to compare the mutual performance in-

terference of co-located VMs. The results also provide some valuable inside into the

nature of resource contention due to the consolidation of VMs involving various types

of system resources.

The experimental results encourage one to continue working in this direction. In

the next chapters, the experiments are extended to a broader range of virtualization

techniques and server configurations to derive a more generalized model.



Chapter 5

An Automated Lightweight

Framework for Scheduling and

Profiling Parallel Workflows

“The scientist is not a person who gives the right answers,

he is one who asks the right questions.”

— Claude Lévi-Strauss* (1908–2009)

5.1 Introduction

This work presents a lightweight framework for performing automated experiments

with the execution time and performance variations of parallel workflows on consol-

idated Virtual Machines (VMs). As discussed in the previous chapter (Chapter 4),

the task ETV due to consolidation is an obstacle to efficiently scheduling workflows

on VMs. In data centers, VMs are usually consolidated to increase resource utiliza-

tion. However, this causes resource contention and performance degradation among

the VMs.

Previously, Chapter 4 showed the application of the Incremental Consolidation

*Image source: https://media.gettyimages.com/photos/claude-
levistrauss-picture-id952436610

**The contents of this chapter were published as [44]. Author of the dissertation has conducted all

the experiments, analyzed the data and prepared the drafted.
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Benchmarking Method (ICBM) on the tasks running on VMs. In Chapter 4, the ex-

periments are conducted with the Xen hypervisor only. In this chapter, the ICBM is

extended to parallel workflows. A parallel workflow consists of multiple tasks with

inter-decencies. Experiments are also extended to three hypervisors; they are ESXi,

XenServer, and Xen. Furthermore, a framework is introduced to perform experiments

with the consolidated VM performance. Those topics are further described throughout

the chapter.

To address the VM consolidation performance issues; it is necessary to perform

experiments with large sets of tasks and VMs. The interaction among the VMs is ex-

plored in many recent works to improve the performance of consolidated VMs and

applications [290–296]. The proposed framework makes it easy to conduct experi-

ments with large numbers of task execution patterns. It is capable of profiling the

execution time variation of each task of a workflow.

The design principles, implementation issues, and tradeoffs of the framework are

discussed in detail in this chapter. The effectiveness of the framework is demonstrated

with a data-intensive scientific workflow. This workflow process the Galactic Arecibo

L-band Feed Array HI (GALFA-HI) survey data [297] with the Montage toolkit [298].

With this framework, the experiments are simultaneously conducted on three different

hypervisors and the execution time variation of each task is retrieved.

The three hypervisors used here are the VMware ESXi 5.5, XenServer 6.5, and

Xen 4.6. This framework will enable researchers to perform large-scale experiments

with the execution time variations of parallel tasks on multiple hypervisors and the

Cloud.

Virtualization plays a vital role in both the data centers and Cloud. Among other

advantages, it allows consolidation of VMs in data centers. The consolidation pro-

cess of running multiple VMs simultaneously on the same server. It is a conventional

technique to increase the resource utilization, reducing operational cost and energy

consumption. However, the main drawback of consolidation is performance variation

due to resource contention and interferences among the VMs.

More and more applications and workflows are being deployed on the Cloud. How-

ever, scheduling of scientific applications and workflows on the Cloud is still inefficient

because of the task execution time variation. On consolidated servers, the task execu-

tion finish time may very unexpectedly; thus, it is difficult to determine which appli-

cations should be consolidated for the better performance [299, 300]. Recently, many
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works have focused on this issue [292–296, 301, 302].

The works on VM consolidation, rely on the experimental results of how the con-

solidated applications react to the resource contention. They usually require running

a vast number of experiments with various applications and workflows. This chapter

proposes a framework to efficiently manage and conduct experiments with a large num-

ber of VM schedules and resource usage patterns. The VMs schedules are designed

to make them as general as possible and as close to real-world workload as possible.

Great care has been taken to design the experimental stage to make them cover a wide

range of experimental situation. This chapter is a continuation of the work of the pre-

vious chapter (Chapter 4) and depends on the concepts and methodology introduced

previously.

As discussed previously in the Section 4.3.1, using execution time as a performance

metric it is possible to cover a wide range of scenarios with one combination of VMs.

Furthermore, as discussed in the Section 4.3.2, a systematic increase of the number of

VMs in the system can help to profile VMs for a wide variety of workload patterns.

There are many Cloud management and maintenance software available today [39,

303–313]. Although they are designed for performing maintenance, fault tolerance,

and data backup services; they are not the best suited for performing experiments with

task scheduling and resource usage patterns on VMs for several reasons:

a) The software stacks are primarily designed for providing the Cloud services not

for performing experiments with VM workloads. For example, they have unique

features for providing fault tolerance, VM replication, migration and high avail-

ability of VMs to a data center. The software stacks do not offer any built-in

features for performing experiments with application scheduling patterns on the

Cloud;

b) The software has many modules, and they require a lot of time and effort to

master. System administrators require much experience to manage these systems

efficiently. On the other hand, most researchers are concerned with a quick and

easy setup of experiments. There is an open source Cloud management software.

However, it takes a lot of time and effort to modify a large piece of software to

implement special interfaces to conduct scientific experiments. Making such

changes to a massive software stack with many modules can be a cumbersome

process.
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c) Cloud management software has many layers and hides many complexities of

execution from the users. That convenient for the system administrators, who

are primarily concerned with the maintenance. However, during the experiments

measuring the performance impact of each task execution is necessary. The ex-

periments are required to understand the VM consolidation behavior and identify

any anomaly quickly.

The proposed framework is designed to bypass the interaction with management

software and run task scheduling experiments directly on the VMs. The framework has

a simple construct; it can execute parallel workflows on VMs of multiple servers. Some

features of the framework and contribution of this chapter are briefly stated below:

i) A lightweight framework for profiling the execution time variations of parallel

workflow on the Cloud is presented. It provides a simple interface for conduct-

ing experiments on VMs and scheduling parallel workflows across on multiple

hypervisors. The primary objective is to provide an accessible platform to carry

out experiments on the Cloud. It can be used independent of any data center

management software, thus making the general experimental process easier.

ii) This framework is lightweight and easy to handle; no specialized knowledge is

required.

iii) The framework allows researchers to specify a sequence of workload execution

pattern for the VMs. A human-readable workload descriptor file stores all the

task execution patterns. The exact sequence of tasks that are to be executed is

defined in the file.

iv) Another feature of the framework is the command descriptor file. Parallel appli-

cations usually consist of several smaller tasks and a set of commands may be

required to run each task. The command descriptor file contains the actual com-

mands, and one mnemonic is issued against each set of commands. Thus, the

workload descriptor file remains small, and workload patterns are easy to create

and modify.

The command descriptor file also allows running complex applications like web

servers or database servers like any other task. The framework scans the work-

load file twice. During the first scan all the mnemonics are replaced and in the
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second scan actual commands are executed. Thus, adding or modifying real

command sets is much easier as they are stored only in one place, in the com-

mand descriptor file;

v) The framework can simultaneously conduct experiments with workflow sched-

ules and resource usage patterns on multiple hypervisors. It uses the Secure Shell

(SSH) to connect to virtualized servers instead of the API. The use of SSH in-

creases flexibility, and any hypervisors can be connected using just SSH. On the

other hand, coding in multiple APIs for multiple hypervisors is a cumbersome

process. The SSH gives the ability to connect to any Cloud;

vi) The framework is implemented entirely in Java and can run on any Operating

System (OS). It can be used as a stand-alone application or plugged-in with any

other Java task scheduling program. It is lightweight, completely portable and

requires no installation.

To the best of the author, there is no other framework written in any language

to do experiments with execution time variation of a large number of parallel

workflows and VM combinations. To the best knowledge of the author, this

framework is the first of its kind. There is no other framework designed and

implemented before to conduct experiments with task execution time variation

of a wide variety of VM consolidation.

This framework is both independent of and complementary to Cloud management

software. While the management software can be used for providing Cloud services;

this framework can be used to run experiments with workload patterns on the Cloud. It

is a lightweight framework designed and implemented in Java to conduct experiments

with virtualized systems. This framework is designed to manage large combinations

of VMs and schedule often required while conducting experiments with virtualized

servers.

The effectiveness of the framework is demonstrated with a real data-intensive work-

flow, which processes the GALFA-HI [314] survey data with the Montage toolkit [315].

The Incremental Consolidation Benchmarking Method (ICBM) [43] has been used

to analyze the tasks of the workflow. Initially, the ICBM was introduced to analyze the

execution time variations of individual tasks on VMs. In this chapter, it is extended to

analyze the tasks of the scientific workflow.
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The rest of the chapter is organized as follows. Section 5.2 describes the problem

considered in this chapter with an example. Design goals are discussed in Section 5.4,

followed by the framework design in Section 5.5. Section 5.7 discusses the workflow

and benchmarks used along with experimental setup. Section 5.8 gives the results of

experiments with task execution patterns on three hypervisors. Section 5.9 provides a

brief overview and shortcomings of complementary works. A discussion about future

work and conclusion are in Section 5.10.

5.2 Scheduling workflows and consolidation

The task execution time variation due to VM consolidation is one of the major prob-

lems for the Cloud. It can be even more troublesome for parallel applications and

scientific workflows because of task dependencies.

Figure 5.1 shows an example of workflow, which processes the GALFA-HI survey

data [314] using the Montage toolkit [298, 315]. It is a data-intensive workflow that

creates a mosaic image of a part of the Milky Way galaxy from some data cubes. The

survey employs the 1,000-foot (305-meter) radio telescope of the Arecibo Observatory

in Puerto Rico. The radio telescope was the largest single-aperture telescope from its

completion in 1963 until 2016. For the survey, first, the sky is divided into grids. Then,

the radio telescope makes detail scans of the sky and provides data in the form of radio

wave. Thus, separate data cubes are generated from the separate parts of the sky. The

data generated in this way needs to be compiled and merged to create a visible mosaic

image of the sky. The GALFA-HI workflow presents the process of compile-and-create

the mosaic image.

The data cubes are released at regular intervals as a part of the ongoing survey.

Such workflows are a widely used in the field of astronomy. The workflow itself has

16 tasks (t1 to t16) on 8 levels (l1 to l8). Figure 5.2 shows one schedule of these tasks

on a set of co-located VMs.

In Figure 5.2, the tasks of the GALFA-HI workflow (Figure 5.1) are scheduled on

the VMs of a single server. Here, the server has eight simultaneously running VMs.

As the tasks of the workflow have internal dependencies, they need to be scheduled

hierarchically. The tasks that can be run simultaneously are grouped in one level. The

tasks of the level below are dependent on tasks of the immediately upper level.
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Figure 5.1: A workflow: GALFA-HI data processing with the Montage toolkit.

Figure 5.2 depicts that the tasks are being executed level by level on the VMs of

a single server. There are VMs of three colors on the server. Light blue VMs are

where the tasks of GALFA-HI are being executed. In a consolidated server, tasks from

other applications are also being executed; they are shown in red. Finally, white VMs

represent empty VMs, where no tasks are being run at present.

The tasks on additional VMs (shown in red) are responsible for creating resource

contention and performance degradation of tasks of GALFA-HI workflow. In this case,

performance deterioration of a task can have a cascading effect on the other tasks of

the workflow because of the task dependencies [176]. Furthermore, the performance

of tasks of the critical path would directly affect the makespan.
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Figure 5.2: Scheduling GALFA-HI workflow on VMs.

To efficiently schedule the workflows on the Cloud; it is necessary to take the

execution time variations into account [316]. Presently, there is no well-accepted the-

oretical solution for this issue. Therefore, most works rely on heuristics [292–296].

To design heuristic algorithm based solutions; a significant amount of experimental

data is required. Figure 5.2 shows one schedule on co-located VMs. Now by changing

the number of VMs running other tasks (shown in red), it is possible to create other

schedules. This framework makes it easier to carry out experiments with a score of

such VM schedules and also can retrieve the data. The obtained data can help to

design better heuristics algorithms for VM consolidation. A unique way to profile the

task execution time variation is presented in [43], called the ICBM. This work further
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expands the ICBM to schedule scientific workflows on the VMs.

5.3 ICBM for workflow

Initially, the ICBM was introduced to retrieve the execution time variations of VMs on

consolidated servers [43]. This work shows that the concept of ICBM can be applied to

parallel workflows, too. The concept of ICBM involves increasing the resource usage

of a virtualized server systematically to cause execution time variations on VMs. A

parallel workflow can have more than one task. It means that for a parallel workflow

the same resource usage pattern has to be applied to each of the tasks, separately. This

process is described next.

Figure 5.3 shows the steps of ICBM for applying a CPU-intensive resource usages

pattern on the GALFA-HI workflow. Initially, only tasks of the workflow are run on the

server. As it is shown in Figure 5.3a, at this stage tasks from no other applications are

run on the server. Thus, the execution finish times of tasks of the workflow are obtained

without interferences from VMs belonging to other tasks. Afterward, the workflow is

rerun.

In the next stage, two additional CPU-intensive tasks are executed at each level of

execution. It is referred to as stage 2 and shown in Figure 5.3b. At stage 3, four addi-

tional CPU-intensive VMs are being run along with the workflow (Figure 5.3c). Thus,

the workflow is repeatedly executed, and CPU-intensive VMs are increased systemat-

ically.

This process is repeated until all VMs of the server are utilized, and that is the final

stage of the experiment. Figure 5.3d shows the final stage for this particular server

configuration. This server can accommodate a maximum of 13 VMs, and all of them

have been used in the final stage. Tasks of the workflow are occupying five VMs, while

the remaining eight are CPU-intensive VMs.

The ICBM divides experiments into stages so that the tasks of a workflow suffer

the least amount of interference at stage 1 (Figure 5.3a), while they face the most CPU-

intensive resource usage contention at the final stage (Figure 5.3d). Then, the entire

procedure is repeated for another resource intensive VMs, like memory (Figure 5.4a)

and I/O (Figure 5.4b) intensive VMs.

Afterward, the steps are repeated for combinations of resources, too. One example
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Figure 5.3: Applying CPU-intensive resource usages pattern on GALFA-HI workflow.
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Figure 5.3: Applying CPU-intensive resource usages pattern on GALFA-HI workflow

(Continued).

of a combination of resources is shown in Figure 5.4c, it is for CPU-Memory. Here, the

process is repeated as described above. However, one CPU-intensive and one memory-

intensive VM have been added at each stage, instead of two CPU-intensive ones. Other

combinational resource contentions, like CPU-I/O and Memory-I/O, are created in the

same process. Above discussion shows that experimental procedures like the ICBM

require handling many task schedules. The exact sequence of task executions on VMs

and their mutual performance inferences due to consolidation have to be investigated.

There are other tasks and resource scheduling software available. However, they

are not designed to do experiments with task execution time variations on consoli-

dated VMs. Other software uses high-level interfaces and hides almost all scheduling

complexities from the user. That may be convenient for average Cloud users, who

are interested only in the outcome and not the detail scheduling procedure. However,

it is beneficial for researchers conducting experiments with resource contention and

consolidation to control the scheduling process actively.

The primary objective of this work is to present a low-level, lightweight frame-

work for experimenting with various workload patterns automatically. This framework

should be able to act as both a scheduler and profiler of task execution times and con-

nect to any Cloud. In this work, the design goals, implantation issues and experimental

results of the framework are discussed in detail.
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Figure 5.4: Various resource usages pattern applied on GALFA-HI workflow.
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5.4 Design goals of the framework

This section discusses both the primary goals and tradeoffs considered while designing

and implementing the framework. The framework is modular in design, and different

modules serve different purposes. The design goals of the framework are discussed

first in this section, while the framework modules are discussed in the following sec-

tion. The design goals of the framework are listed below.

1. Easy to perform experiments with workflow.

2. Execute resource usages patterns.

3. Easy to check the workload patterns.

4. Connect to any Cloud technology.

5. Easy to deploy.

Design goals are necessary for any project. Discussion about the goals makes

it easier to understand what features are required for the proposed framework. Five

design goals are further discussed below.

5.4.1 Easy to perform experiments with workflow

The first objective is to provide an easy interface to perform experiments with the

workflows on virtualized servers. There are some Cloud management systems and

programming paradigms. However, they are not designed for carrying out experiments

with VM consolidation.

The new framework should be able to perform sophisticated experiments on the

VMs independent of any management software. This work aims to provide an easy

interface to design and carry out experiments with workflows on virtualized servers

so that the performance variation of each task can be profiled independently. The

primary application of the framework would be to discover the relationship between the

execution time variations of consolidated VMs and resource utilization of the server.
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5.4.2 Execute resource usages patterns

To study the effect of consolidation on the VM performance; it is necessary to create

complex workload patterns and execute the tasks accordingly on the VMs. Therefore,

the proposed framework should provide an easy way to run tasks according to prede-

fined resource usages patterns as discussed above.

A human-readable file should contain all the workload patterns so that it would be

easy to create and modify patterns. Researchers would be able to create those files to

specify precisely the way they want the tasks to be executed on the system. Thus, the

behavior of the system to resource contentions and consolidation performance can be

scrutinized.

5.4.3 Easy to check the workload patterns

A workflow consists of a combination of several tasks; executing such one task may

require running one or more sets of commands. Storing and managing too many com-

mands in one workload pattern file often creates confusion. There should be an easy

way to rectify any potential error in the workload pattern file. One way to achieve this

is not to inscribe all the commands in the workload file rather store them in a separate

file.

The workload file is created only with a short set of mnemonics. During runtime,

the mnemonics are mapped to one or more actual set of commands. The process is

described in more detail in the implementation section (Section 5.5).

5.4.4 Connect to any Cloud technology

Modern data centers have a countless number of servers, and various hypervisors are

deployed on them. It is necessary for the framework to be able to connect to a large

number of VMs running on multiple hypervisors. Therefore, the framework needs a

method with a small connection overhead that can run any task on any Cloud system.

The implementation section describes how this is achieved.



5.5. IMPLEMENTATION OF THE FRAMEWORK 184

5.4.5 Easy to deploy

The framework should be easily deployable on a wide variety of systems. There are

many operating systems today; the framework should be as universally deployable

as possible. It should not be dependent on any Cloud management system or OS;

thus, making it possible to initiate experiments from any machine regardless of the

OS. Use of a common framework to perform experiments would give researchers the

opportunity to collaborate and share experimental results more widely.

In this section, the motivations and design goals of the framework are described.

The next section describes how those goals are achieved during implementation.

5.5 Implementation of the framework

This section describes the implementation process of the framework to achieve the

design goals of the previous section. The framework is divided into seven modules,

and each module accomplishes a specific task. The modules are listed below:

1. The command mapping module.

2. The workload loader module.

3. The hardware configuration loader module.

4. The scheduler module.

5. The connecting module.

6. The data formatting module.

7. The profile manager module

All modules are shown in Figure 5.5 and described below. Each module works

independently of each other. The profile manager module coordinates among all the

modules by sending signals. The modules also need to exchange data among them-

selves. Solid lines represent data transfer paths, while dashed lines represent command

transfer paths.
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5.5.1 The command mapping module

A workflow consists of many tasks, and each task requires one or more sets of com-

mands to execute appropriately. Inscribing all commands to a workload file is counter-

productive for several reasons. It makes the workload file long, and it becomes difficult

to inspect the workload file for patterns. Furthermore, if an error is found in one of the

commands, then all the occurrences have to be corrected in the workload file. This

inconvenience can be avoided by storing all the actual commands in a separate file,

called the command descriptor file.

The file stores one single mnemonic against a set of real commands required to run

a task. The workload pattern files are created only with these mnemonics; they do not

contain any real command. For the workload execution, first, the command mapping

module loads all the actual commands into memory then all mnemonics are replaced

with their corresponding actual command sets in the workload file. This design choice

was made to make the workload file manageable in size and more straightforward to

inspect by humans.

5.5.2 The workload loader module

All the experimental resource usage patterns are stored in a workload descriptor file,

which is a human-readable file containing only mnemonics. This file describes line by

line, the dependencies and exact execution sequence of the tasks. The tasks that are

to be run simultaneously are stored in one line, while the tasks dependent on them are

written in the line immediately below.
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The workload loader module scans the tasks one by one so that they can be executed

on the VMs precisely in the order intended on the workload file. The file is human-

readable that makes it easier to identify how a virtualized system reacts to a particular

pattern of resource usage.

5.5.3 The hardware configuration loader module

To execute the sequence of workload patterns some basic hardware information is re-

quired. The necessary hardware configuration of all the VMs and physical host are

stored in the hardware configuration file.

The arrangements of VMs on physical hosts along with their MAC addresses are

stored in this file. The hardware configuration loader module fetches this data from

the file so that the framework can utilize it to connect and execute workloads on the

VMs.

5.5.4 The scheduler module

The scheduler module collects information from the above three data loading modules,

and allows the tasks to be executed on VMs. At first, memory mapped commands

and hardware configuration file are used to check the consistency of the workload

descriptor file. In the case of any inconsistency, the scheduling process has to be

terminated.

After consistency checking the scheduler issues the necessary commands to VMs

through the connecting module, which is described next. It is designed as a separate

module so that it can be modified to implement any custom task scheduling algorithm

for VMs in the future.

5.5.5 The connecting module

Another design goal is to make the framework universally connectable to as many

systems as possible. The framework makes all connections through an SSH imple-

mentation in Java, called the JSch [317]. Thus, the entire framework is written in Java

and can be run on any OS. It is completely portable and requires no installation.

The SSH is chosen over API to keep the framework lightweight. It allows the

framework to connect to multiple hypervisors simultaneously without having to write
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codes for multiple APIs. Furthermore, any new hypervisor can be easily supported

without code modification.

5.5.6 The data formatting module

As the workflows are executed the raw data is sent back through the SSH channels to

the remote machine; these data need to be formatted to use them with other applica-

tions. This module formats and stores the experimental results in the output files. The

data is analyzed later to discover the relation between the resource usage patterns and

task execution time variations.

5.5.7 The profile manager module

This module is responsible for coordination among all the modules so that they can

work seamlessly. The profiler is modular in design so that a module can be easily

customized if required. Also, adding new modules for future functionality is much

more manageable in this way.

The next section describes the pseudocode for the framework. The pseudocode

describes how the modules mentioned earlier work together.

5.6 Pseudocode for the framework

Figure 5.6 shows the pseudocode for the modules of the framework to run. First, all

commands are loaded on the COMM-LIST from the command descriptor file. The

command loader module does this by mapping all commands to their corresponding

mnemonics in memory (lines 1-2). Then, the workload loader module parse the work-

load descriptor file and loads workload pattern on the WL-LIST (lines 3-4). The WL-

LIST contains a detailed execution plan for both the parallel application and resource

contention patterns.

Examples of such patterns are shown in Figures 5.3 and 5.4. Once the patterns are

written in the workload file, then the framework executes all the patterns automatically.

Afterward, the hardware configuration data is loaded from the file to the VM-LIST

(lines 5-6). The VM-LIST contains all the data required for connecting to VMs during

experiments.
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1: Load all commands and mnemonics, from the Command Descriptor file to

COMM − LIST .

2: Load workloads from the Workload Descriptor file to WL− LIST .

3: Load VMs configuration from file to the VM − LIST .

4: for Each lineLi ∈ WL− LIST do

5: for Each task, tj ∈ Li do

6: Let, commj ∈ COMM − LIST be the command for tj .

7: Let, vmj ∈ VM − LIST be the VM, where to run tj .

8: Check the consistency of tj against commj on vmj .

9: if tj is consistent then

10: Put tj , commj and vmj on RUN − LIST .

11: else

12: Exit.

13: end if

14: end for

15: Replace all mnemonics of RUN − LIST with actual commands.

16: Simultaneously send commands to all vmj of RUN − LIST .

17: Wait for their execution to finish and collect execution time data.

18: end for

Figure 5.6: Pseudocode for the framework.

Next, a for loop (lines 7-21) processes the WL-LIST, line by line. Recall that the

tasks that are to be run simultaneously are written in a single line. The inner for loop

(lines 8-17) removes one task at a time from the line and checks for consistency against

hardware data and commands. The inner for loop processes all the tasks of a line, as

those tasks are intended to be executed together. Therefore, the inner for loop do not

execute the tasks inside the loop rather puts in a list so that all of them can be executed

simultaneously.

After the consistency checking, if all the tasks are found to be consistent, then

they are stored in a linked list, called the RUN-LIST. On the other hand, if a task is

not compatible then the application exits immediately. Once all the tasks of a line are
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processed the inner for loop exits.

Then, all the mnemonics of the RUN-LIST are replaced with the actual command

set with the assistance of the COMM-LIST (line 15). Once this is done the commands

are simultaneously sent to execute all tasks of the RUN-LIST (line 16). The framework

then waits for the tasks to finish and collect the individual task execution time data (line

17). Afterward, the same process is repeated for the next line of WL-LIST on the next

iteration of the outer for loop.

The outer for loop exit when all the lines of WL-LIST (entire pattern) have been

processed. To experiment with another resource usage pattern the procedure repeated

from the beginning.

5.7 Workloads used

Two categories of workload have been used in the experiments. The first category

is the data-intensive scientific workflow, which is used to observe the execution time

variations of tasks under consolidation. The second category is a set of benchmarks

suites used to create resource contention patterns on servers.

The benchmark suites are used to build-up stage by stage resource contention in the

server; to make the performance of the workflow tasks begin to vary on consolidated

VMs. The framework runs the benchmark suites according to the pattern described in

the workload file and retrieves the execution time of each task of the workflow at each

stage.

5.7.1 Scientific workflow: GALFA-HI

The GALFA-HI survey continuously scans the sky for naturally occurring hydrogen

atoms [314]. The survey divides the sky into several parts, and the parts are scanned

at stages. After each stage, data cubes are released after a detailed scan of a part of the

sky. Several data cubes have been released so far.

Five of those released data cubes have been processed with the Montage toolkit [315],

to create a mosaic image of a part of the Milky Way galaxy. The workflow is shown

in Figure 5.1 has 16 tasks and eight levels. It is a data-intensive workflow, which

processes about 2 GB of raw data cubes. Experiments measure the execution time

variation of tasks in this workflow due to consolidation.
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5.7.2 Set of benchmark suites

Three sets of benchmark suites have been used to create resource contention patterns on

the tasks of the above workflow. They are the sets of CPU, memory and I/O-intensive

benchmark suites.

Each benchmark suite, in turn, consists of several similar types of tests. The bench-

marks have been used in the experiments of previous chapters and already described in

Section 3.4; therefore, a detail discussion is not given here. Next, each set is described

in brief.

5.7.2.1 CPU-intensive benchmarks

Three CPU-intensive benchmarks have been used, they are the Sysbench CPU test,

Nbench and Unixbench. The Sysbench CPU test has been widely used with multi-core

server [318] and VM workload consolidation experiments [319].

The Nbench is a CPU-intensive benchmark suite, having ten different CPU-intensive

tests [219]. The Unixbench is another CPU-intensive benchmark suite, which has been

used for experiments on Amazon EC2 [221]. Thus, the benchmarks are have been used

in previous works on CPU performance analysis.

5.7.2.2 Memory-intensive benchmarks

Three memory-intensive benchmarks have been used for creating resource contention

patterns. The first is the Cachebench, which consists of eight different memory tests [224].

The second is the Stream, a syntactic benchmark program for measuring sustainable

memory bandwidth [225]. The final one is the Sysbench memory test.

5.7.2.3 I/O-intensive benchmarks

Five I/O-intensive tests have been used to create resource contention patterns. The

Filebench is an important I/O benchmark suite [229], which can be configured to per-

form various I/O-intensive tests. Five of them are used, they are the file-server, web-

server, web-proxy, video-server and online transaction processing (OLTP) test.
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5.7.3 Experimental setup

Three Dell XPS-8500 servers of identical hardware configuration had been set up for

the experiments. Each server has one Intel i7-3770 processor and 32 GB memory. The

i7-3770 has four cores and eight hardware threads, each is clocked at 3.4 GHz. Three

different hypervisors are installed on three servers; they are, VMware ESXi 5.5, Citrix

XenServer 6.5 and Xen 4.6 on Centos 7.

Each hypervisor has 14 VMs of identical configuration. Each VM has one pro-

cessor, 2 GB of Ram and 50 GB virtual disk. During experiments, the framework

connects to all 42 (14×3) VMs on three hypervisors and execute workload patterns

simultaneously. The framework itself runs on a remote Dell OptiPlex 9010 machine

and connects to hypervisors through the LAN. The results of the experiments are given

next.

5.8 Experimental Results for GALFA-HI tasks

Recall that the GALFA-HI workflow (Figure 5.1) has 16 tasks comprised of seven

functions. Average execution times of those seven functions without interferences

are shown in Table 5.1. In this case, the tasks are scheduled precisely like that of

Figure 5.3a. That is the tasks of the workflow are run without any other co-located

VMs.

Table 5.1: Mean execution times of tasks of GALFA-HI workflow on VMs (in Fig-

ure 5.3a) without interferences.

Level Task Time (m)

1 mShrinkCube 3.878

2 & 5 mImgtbl 0.02

3 mMakeHdr 0.02

4 mProjectCube 39.774

6 mAddCube 12.32

7 mGetHdr 0.02

8 mViewer 0.04
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Results are shown for two functions, the mProjectCube and mShrinkCube. The rest

of the functions also show variations similar to that of these functions. The results are

grouped according to the resources loads for the convenience of discussion. The three

resource workload groups are the CPU, memory, and I/O. Each graph shows ETV of

one task for one type of resource contention on three hypervisors.

5.8.1 Variations due to CPU-intensive workload

The three graphs in Figure 5.7 show execution time variations of the mProjectCube

function for three CPU-intensive workloads. Again in each graph, the task ETV for

three hypervisors are shown.

In each graph, the Y-axis represents the execution time variation. The X-axis repre-

sents how many CPU-intensive VMs were running on the server besides the workflow.

The first point of the X-axis is zero meaning no other VMs were running when the

execution time of the function was measured. That is only the tasks of the workflow

are executed on the VM with zero co-located VMs. This execution schedule is shown

in Figure 5.3a.

The next point on the X-axis is 2. That means two additional CPU-intensive VMs

were running at every step of the workflow execution (schedule shown in Figure 5.3b).

In this way, the workflow is repeatedly executed with an increasing number of

CPU-intensive VMs. The final point is 8, indicating eight additional CPU-intensive

VMs were used, at each step of workflow execution as shown in Figure 5.3d.

In each graph, from left to right on the X-axis the interference from the number

of CPU-intensive VMs increases. The leftmost point is the execution time of a task

without any interference from other VMs. The rightmost point is the execution time of

the same task with maximum interference.

Figure 5.7 shows that the mProjectCube function shows relatively less execution

time variation due to CPU-intensive VMs. It applies to all three hypervisors.

Figure 5.7c shows that on ESXi hypervisor the execution time of mProjectCube

function without any co-located VM is 38.52 minutes. On the other hand, the same

function takes 48.12 minutes to execute while eight other Unixbench suites are running

on the co-located VMs. Thus, the execution time of mProjectCube function goes from

38.52 minute (the leftmost point on the graph) to 48.13 minute (rightmost point) due
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(c) Task ETV of mProjectCube due to the Unixbench.

Figure 5.7: Task execution time variation (ETV) of the mProjectCube function due to

the CPU-intensive workload patterns on VMs.
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(b) Task ETV of mShrinkCube due to the Sysbench CPU test.
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(c) Task ETV of mShrinkCube due to the Unixbench.

Figure 5.8: Task execution time variation (ETV) of the mShrinkCube functions due to

the CPU-intensive workload patterns on VMs.
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to the addition of 8 VMs. Here, each co-located VM is running a Unixbench bench-

mark suite. Therefore, consolidation with eight additional CPU-intensive VMs (in this

case the Unixbench) causes 24.94% increase in execution time of the mProjectCube

function. It is the highest of the three hypervisors.

For XenServer, the maximum execution time variation of the mProjectCube func-

tion happens due to Sysbench CPU tests (Figure 5.7b). In this case, the ETV is 13.49%

and caused when the function is consolidated with eight co-located VMs running Sys-

bench CPU tests. For Xen, the mProjectCube function also shows the maximum varia-

tion due to the Unixbench (Figure 5.7c). In this case, ETV is 6.15% caused when eight

VMs with Unixbench are consolidated with the function.

Figure 5.8 shows the execution time variation of the mShrinkCube function. The

execution time variation data of three hypervisors show that the effect of CPU-intensive

VM is also minimum on the mShrinkCube function.

5.8.2 Variations due to memory-intensive workload

Figures 5.9, and 5.10 shows the execution time variations of the mProjectCube, and

mShrinkCube functions due to the memory-intensive workloads, respectively. Fig-

ures 5.9a, 5.9b, and 5.9c show the execution time variation of the mProjectCube func-

tion due to consolidation with the Cachebench, Stream, and Sysbench memory test,

respectively. Figures 5.10a, 5.10b, and 5.10c show the execution time variation of the

mShrinkCube function for the same three benchmark suites, respectively.

In all cases, the mProjectCube shows more variation compared to the mShrinkCube

function. For all three hypervisors, the mProjectCube function shows the maximum

execution time variations when consolidated with the Stream benchmark. Figure 5.9b

shows the maximum execution time variations of the mProjectCube function due to the

consolidation with the Stream benchmark. The execution time increase of the mPro-

jectCube function for ESXi, XenServer, and Xen hypervisors are 24.24%, 11.02%, and

11.56%, respectively.

From the above graphs, it can be seen that the GALFA-HI workflow tasks do no

show much execution time variation due to memory-intensive co-located VMs.
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(b) Task ETV of mProjectCube due to the Stream.
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(c) Task ETV of mProjectCube due to the Sysbench Memory

test.

Figure 5.9: Task execution time variation (ETV) of the mProjectCube function due to

the Memory-intensive workload patterns on VMs.
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(a) Task ETV of mShrinkCube due to the Cachebench.
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(c) Task ETV of mShrinkCube due to the Sysbench Mem test.

Figure 5.10: Task execution time variation (ETV) of the mShrinkCube function due to

the Memory-intensive workload patterns on VMs.



5.8. EXPERIMENTAL RESULTS FOR GALFA-HI TASKS 198

5.8.3 Variations due to I/O-intensive workload

During the experiments of previous chapters, it was observed that the I/O-intensive

VMs tend to show a higher degree of execution time variation compared to CPU and

memory-intensive VMs. Five I/O-intensive benchmarks have been used in the ex-

periments. Figures 5.11, and 5.12 show the execution time variations of the mPro-

jectCube, and mShrinkCube functions due to consolidation with five different I/O-

intensive benchmarks, respectively.

Figure 5.11b shows the co-located VMs with video servers can cause significant ex-

ecution time variation for the mProjectCube functions on all three hypervisors. When
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(b) Task ETV of mProjectCube due to Video server.

Figure 5.11: Task execution time variation (ETV) of the mProjectCube function due to

the I/O-intensive workload patterns on VMs.
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Figure 5.11: Task execution time variation (TETV) of the mProjectCube function due

to the I/O-intensive workload patterns on VMs (Continued).
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consolidation with eight VMs with video servers the execution times of the mPro-

jectCube function increased by 683.30%, 705.83%, and 588.96% compared to the ini-

tial value on ESXi, XenServer, and Xen, respectively.

Figure 5.12b shows that the video servers also have a significant impact on the

execution time variation of mShrinkCube function on all three hypervisors, too. The

execution time increase of the mShrinkCube function due to consolidation on ESXi,

XenServer, and Xen are 901.92%, 774.10%, and 595.34%, respectively.

For other I/O-intensive benchmarks, similar results can be obtained, too. For exam-

ple, Figure 5.11a shows the execution time variation of the mProjectCube function due

to the file-servers on all three hypervisors. Here, execution time increases for ESXi,
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Figure 5.12: Task execution time variation (ETV) of the mShrinkCube function due to

the I/O-intensive workload patterns on VMs.
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Figure 5.12: Task execution time variation (TETV) of the mShrinkCube function due

to the I/O-intensive workload patterns on VMs (Continued).
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XenServer, and Xen is 154.39%, 114.78%, and 92.95%, respectively.

The file-servers similarly cause execution time variation for the mShrinkCube func-

tion, too. Execution time increases for ESXi, XenServer, and Xen are 411.13%,

347.96%, and 343.15%, respectively.

From the presented execution time variation data it is clear that a combination of

benchmarks can be used to create resource contention patterns for tasks on VMs. The

significance of the above findings is discussed next.

5.8.4 Discussion

The experimental results show that resources like CPU, memory, and I/O, all have

different types of effects on the task execution time. It is observed on all three hy-

pervisors. From the above results, it is clear that the execution time variation directly

depends on the cumulative resource requirement of the co-located VM of a server.

Previously it has been shown that by profiling the execution times of co-located

VMs it is possible to predict the task execution time variations [43]. The resource

requirement of the VMs plays a massive part in execution time variations. For exam-

ple, both the mProjectCube and mShrinkCube functions are I/O-intensive tasks, and

they have the maximum variation for I/O-intensive benchmarks. For both the CPU

and memory intensive co-located VMs the functions shows much less execution time

variation. Thus, resource intensities of co-located VMs play an essential part in con-

solidation performance.

The objective of the experiments is to show that the proposed framework can profile

the tasks of a scientific workflow for any workload and hypervisor. It can help to

design and carry out experiments with VM placement and consolidation for scientific

workflows. Profiling execution time of VMs it is possible to determine which types of

VMs show better performance when consolidated together.

5.9 Related work

Related works can be divided into two broad categories. The first category of works

deals with application performance efficiency on the Cloud and VM consolidation [292–

296]. However, the works do not provide any general framework to do experiments
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with the tasks of parallel applications. In contrast, this work provides a simple and

effective framework that can be used for experimental purposes on the Cloud.

The second category of works are the Cloud management, maintenance and schedul-

ing software [39, 303–313]. They can provide many high-level functionalities for the

Cloud, like running selected operations periodically. Many complex operations can

be performed with just a few commands. However, they hide much of the operational

complexity from the users and do not allow low-level control over the task execution

process. On the other hand, this framework offers an easy interface for executing tasks

according to the requirement of the experiment.

Although the works outlined above provide some high-level support for running

tasks on the Cloud, none of them provides low-level functionality to carry out exper-

iments with VM consolidation. Unlike, those previous works here a framework is

presented to perform experiments with workloads on the Cloud.

5.10 Conclusion

There are many issues related to the Cloud that depend on consolidation, like applica-

tion performance, energy efficiency, and resource utilization. Empirical data can help

to choose a better VM combination for consolidation performance and efficiency. This

work presents the design and implementation of a framework for performing experi-

ments with execution time variation of scientific workflows on the Cloud. Profiling of

task execution time is required for better understanding of VM consolidation.

The framework can apply any resource usage patterns to the tasks of a workflow. It

does not compile the input files rather it behaves like an interpreter. There is no well-

accepted theocratical model for task execution variation due to consolidation. There-

fore, such a framework would help to set up large-scale experiments for achieving a

practical solution. To show the capability of the framework experiments are performed

with a real data-intensive workflow and three hypervisors. The resource contention

patterns or workloads for VMs are created by combining various types of benchmarks.

The framework is lightweight and implemented in Java. It can be run on any OS

and can connect to any hypervisor or the Cloud. Several sets of experiments have been

conducted, and the results are retrieved successfully. The results demonstrate that the

framework is capable of executing workflow schedules and resource usage pattern on
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multiple hypervisors. This framework can be a powerful tool for experimenting with

VM consolidation and task execution time variation of workflows. In the next chap-

ters, the framework is used to set up large scale of experiments with various scientific

workflows and diverse sets of resource usage patterns.



Chapter 6

Analysis and prediction of workflow

and task execution time variations on

multiple hypervisors

“Adversity is the first path to truth.”

— George Gordon Noel Byron* (1788–1824)

6.1 Introduction**

This chapter is the continuum of the previous chapters. Chapter 4 introduces the In-

cremental Consolidation Benchmarking Method (ICBM) to predict the task Execution

Time variation (ETV) of consolidated Virtual Machines (VMs). That chapter also

presents task ETV prediction models for consolidated VM and experiments are done

with Xen hypervisor. Then, Chapter 5 presents a framework to conduct experiments

with parallel workflow and multiple hypervisors.

In this chapter, the framework is used to experiment with ICBM and workflows on

multiple hypervisors. The ICBM is applied to collect data and build prediction models

*Image source: http://www.facts-about.org.uk/famous-people-facts-
starting-with-l/lord-byron.htm

**This chapter contains materials that were published as [46]. Since the publication, the content has

been extended with more experiments, results, and discussion. Author of the dissertation has designed

and conducted all experiments. The author has also collected and analyzed the data and wrote the draft.
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for multiple hypervisors. Ideas that are introduced in the previous chapters are further

developed in this chapter. The scope of experiments has been expanded to multiple

hypervisors. This chapter presents unified task ETV prediction models for multiple

hypervisors.

A VM is a self-contained unit of execution created on top of a hypervisor in a phys-

ical host. Several VMs are consolidated on a single host to reduce the operational and

maintenance cost. All the simultaneously running VMs of a physical host are collec-

tively known as the co-located VMs. The virtualization has already taken a prominent

place in modern data centers. Most common features of a data center, like the fault tol-

erance mechanism and pay-as-you-go model for the Cloud, are implemented through

virtualization.

VMs are consolidated to increase the resource utilization of servers. However, it

imposes a performance penalty, which is manifested through the ETV of co-located

VMs [242–244]. It is an obstacle to efficiently scheduling parallel workflows on vir-

tualized systems. The ETV depends on the server workload and resource contention

among the VMs. As a result, the same task may take a different amount of time to be

completed on different VMs depending on the resource contention level. To schedule a

task of any parallel application the execution finish time of all the parent tasks must be

known. Because of ETV, the task execution finish times of VMs may deviate, which

makes scheduling parallel and high-performance applications on virtualized servers

difficult [34, 103].

Using the ICBM as the basis; this chapter introduces unified models for predicting

the ETV among multiple hypervisors. The contribution of this chapter is also summa-

rized next:

1) This work introduces unified models for predicting the ETV on multiple hyper-

visors. The Least Square Regression (LSR) is used to build the unified models.

These models can be used to predict the execution time variation of VMs for

multiple resource combinations;

2) Experiments are conducted on three actual virtualized servers, and no simulation

is used. All the prediction results presented here are real system data. This

chapter proves the effectiveness of ICBM on multiple hypervisors;

3) In this chapter, experiments are conducted with parallel workflows on multiple
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hypervisors, and prediction models are built with an Artificial Neural Network

(ANN).

Rest of the chapter is structured as follows. The primary objectives of the experi-

ments are discussed in Section 6.2, Next, Section 6.3 discusses the methodology used

in the experiments. Section 6.3.2 discusses the benchmark suites used in the exper-

iments. Sections 6.3.3 discusses the experiential setup. The experimental results for

the execution time variation are shown in Sections 6.4, 6.5, and 6.6. The Section 6.8

discusses the prediction results for LSR models, while the Section 6.12 discusses the

prediction results for ANN models. Finally, Section 6.13 concludes the chapter.

6.2 Resource contention and performance interference

of consolidated VMs

This section presents the concepts behind the experimental setup of this chapter in a

graphical form. Figures 6.1, and 6.2 in combination provides the conceptual overview

of the objective of this chapter.

A consolidated server can have different numbers of VMs running at different

times. Moreover, different VMs may be different types of resource intensive. Some of

them may be CPU intensive, while others may be memory or I/O intensive. Thus, a

combination of different types and number of resource intensive VMs may be present

in the server at any given time. Each resource intensive VM has a particular kind of ef-

fect on the performance. For example, an increase in the number of the CPU intensive

VMs will create more CPU resource contention on the system. The same goes for the

memory or I/O intensive VMs.

The logical architectural construct of all modern computers are derived from the

original von Neumann model [320, 321]. According to the model, all components of a

computing system can be categorized into three parts; Central processing unit (CPU),

Memory Unit, and Input/Output Devices [321, 322]. In modern computers, they also

represent three types of resources required to run an application. This concept can be

extended for VMs, too. The effects of these resources in the context of consolidation

is discussed next.
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Figure 6.1 depicts the effect of consolidation on a VM performance from the re-

source contention point of view. The figure has three axes, one for each primary re-

source type; CPU, memory, and I/O. Each axis indicates how many VMs of each

resource type are running on the server. As mentioned above, three main resources can

be identified for a server; CPU, Memory, and I/O.

In Cloud and data centers, it is not uncommon to run the same task or the same

type of task repeatedly. However, on the repeated runs the server may have a different

number of co-located VMs. In a data center, the numbers of co-located VMs on servers

are continually changing. Thus, the performance of the same task may vary depending

on the number of co-located VMs are running and their resource intensities.

Previous two chapters (Chpaters 4 and 5) discuss a profiling method and tool for

consolidated VM. Those chapters present a low-cost procedure for both training and

testing of performance prediction models for consolidated VMs. The primary focus of

this chapter is to apply those methods to a broader experimental setting with multiple

hypervisors.

In a consolidated environment, the VMs compete for above mentioned three system

resources with each other. One example of such a situation is given in Figure 6.1a,

where the three axes represent the number of three resources intensive VMs on the

system. The X-axis, which is shown in Red represents the number of CPU intensive

VMs. Y-axis (shown in Blue) indicates the number of memory-intensive VMs. Lastly,

the Z-axis (shown in Green) indicates the number of I/O intensive VMs.

Initially, the execution times of the tasks are profiled for each resource types. Fig-

ure 6.1a shows the execution time variation of one of the tasks due to CPU-intensive

co-located VMs. Here, the execution time variation of the Filebench is profiled for

varying number of CPU-intensive VMs. Recall that the data profiling methodology is

discussed in details in Section 4.4 of Chapter 4.

In the graph, the X-axis presents the number of CPU-intensive co-located VMs,

while the Y-axis presents the execution time of the Filebench. This execution time

variations are real system data, which is presented in Figure 6.13 and discussed in

Section 6.6. These data are collected using the ICBM introduced in Chapter 4.

Filebench is an I/O intensive task; therefore, it does not show much variation due

to CPU intensive co-located. The Filebench is already introduced in Section 3.4.3.

Also, the effect of I/O intensive co-located VMs on the task execution time is already

discussed in Section 3.7.3.
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(c) I/O-intensive resource contention.

Figure 6.1: Resource contention due to single resources usage.
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Next, Figure 6.1b shows the execution time variation of Filebench for memory in-

tensive co-located VMs. In this case, the number of memory intensive co-located VMs

presented in Y-axis, while the Z-axis represents the execution time variation of the

Filebench. In this case, again, Filebench do not show much variation due to memory

intensive co-located VMs as discussed before in Section 3.7.3.

Lastly, Figure 6.1c shows the execution time variation of Filebench due to I/O

intensive co-located VMs. In this case, the Filebench being an I/O-intensive task shows

a much higher level of execution time variation compared to the previous two cases as

explained in Section 3.7.3. Here, the number of I/O intensive co-located VMs is shown

in the Z-axis and the execution time variation is shown on the X-axis.

In the three graphs of Figure 6.1, the number of three types of resource intensive co-

located VMs are shown on three axes. On the other hand, the execution time variations

are shown in cyclic order. That is, When the number of co-located VMs is shown in

X-axis, then the execution time variation is shown in Y-axis. When the number of

co-located VMs are shown in the Y-axis, the execution time variation is shown in Z-

axis. Lastly, when the number of co-located VMs is in the Z-axis, the execution time

variation is shown back in X-axis.

Even though the execution variation due to one type of resource intensive VMs

can be placed into a two-dimensional space, the three-dimensional space is required

to show their overall relation to each other. Next, Figure 6.2 shows how the execution

time variation due to more than one type of resources.

Figure 6.2 shows the execution time variation of Filebench due to resource com-

binations on the co-located VMs. Figure 6.2a shows the execution time variation of

Filebench due to CPU and memory intensive co-located VMs. In this case, the num-

ber of CPU-intensive co-located VMs are shown on the X-axis, while the memory-

intensive VMs are shown on the Y-axis using the same convention as previously intro-

duced in Figure 6.1. The execution time variation of Filebench is shown on the Z-axis.

As it can be seen that the Filebench, an I/O intensive task do not show much execution

time variation due to CPU and memory intensive co-located VMs.

On the other hand, Figure 6.2b shows a more considerable amount of execution

time variation for CPU and I/O intensive co-located VMs compared to the previous

case. This is also expected as already explained in Section 3.7.3 of Chapter 3. In this

case, the number of CPU and I/O intensive co-located VMs are shown in X and Z axes,

respectively. The Z-axis shows the execution time variation of Filebench on the Y-axis.
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Figure 6.2: Resource contention due to combination of multiple resources.



6.2. RESOURCE CONTENTION AND PERFORMANCE INTERFERENCE... 212

Lastly, Figure 6.2c shows the execution time variation of the Filebench for Memory

and I/O intensive co-located VMs. In this case, the X-axis shows the execution time

variation of Filebench while the number of memory and I/O intensive co-located VMs

are shown in the Y and Z axis, respectively. As expected in this case the execution

time shows much more variation compared to the previous two cases.

In Figure 6.2, all graphs are plotted in three-dimensional space. While plotting the

number of co-located VMs are placed on the axis using the same convention as used in

Figure 6.1 before. That is the number of CPU, memory, and I/O intensive co-located

VMs are shown in X, Y, and Z-axes, respectively. In each graph of Figure 6.2, two

of the axes are used to indicate the number of co-located VMs, while the third axis is

used to represent the execution time variation.

Figures 6.1 and 6.2 are conceptually connected to each other; both figures have

three axes representing the three types of resource contention; CPU, memory, and I/O.

In Figure 6.1 execution time variation is shown due to single resource contention. On

the other hand, in Figure 6.2 combination of resources are used to create a combined

effect, which is represented in a three-dimensional space.

For example, in Figure 6.1a, the X-axis indicates the number of CPU intensive

VMs are running on the system. In Figure 6.1b, the Y-axis represents the number of

memory-intensive VMs are concurrently running on the same system. Then in Fig-

ure 6.2a, the X-Y plane located between those two axes represents the execution time

variation due to CPU and memory intensive VMs combination. It is also true for other

two resource combinations of the figure. Effect of CPU-I/O intensive resource combi-

nation in Figure 6.2b is presented with X-Z plane. Lastly, the Y-Z plane represents the

memory-I/O intensive resource combination in Figure 6.2c.

Figures 6.1 and 6.2 show the objective of the experiments with the tasks of this

chapter. Figure 6.1 shows that the execution time variation data is profiled for three

resources separately. Prediction models are trained using this data. Then these mod-

els are used to predict the execution time variation of three resource combinations

shown in Figure 6.2. Thus, the prediction models are trained with three sets of two

dimensional execution time variation data and then used to predict the values in three-

dimensional space.



6.2. RESOURCE CONTENTION AND PERFORMANCE INTERFERENCE... 213

6.2.1 Number of co-located VMs on multiple servers

As discussed in the previous section, a server can have different types of resource

intensive VMs. Moreover, a data center houses many virtualized servers. Figure 6.3

depicts a typical situation in a data center. The data center may be operating many

servers, and different kinds of hypervisors may be deployed on them. At different

points in time, the servers may have different numbers of co-located VMs.

Figure 6.3 shows that at three different times the three servers have different num-

bers of simultaneously running VMs. For example, at time ti−1, the Xen is running

two VMs, and at ti the number of VMs is increased to three. Similarly, the number of

co-located VMs changes over time on the XenServer and ESXi hypervisors, too. Each

of the co-located VMs has specific resource requirement and duly affect the perfor-

mance of neighboring VMs. Depending on what type of resource intensive co-located

VMs are running a task would take a different amount of time to be completed.

The CPU intensive co-located VMs would have one kind of effect on a CPU in-

tensive task. Their effect would be different on a memory intensive task than an I/O

intensive task. Different types of hypervisors and system configurations also have to

be taken into account.

Two issues need to be addressed while analyzing the VM consolidation perma-

nence. First one is to formulate a method to record the VM performance variations due

to consolidation systematically. The second is to find a way to predict this execution

time variation. Recall that, Chapter 4 introduces a methodology for profiling and pre-

dicting the ETV, called the ICBM [43]. In Chapter 4 the experimental results of ICBM
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Figure 6.3: Multiple hypervisors with various numbers of simultaneously running

VMs.
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are shown for one hypervisor, Xen. In this chapter, the ICBM has been extended to

multiple hypervisors.

This chapter shows that the ICBM can be applied not only to compare the perfor-

mance of different stages of a consolidated hypervisor, also to make the comparison

among multiple hypervisors. This work presents extended experimental results for

three hypervisors. Thus showing that the ICBM can be used in a broader virtualization

environment.

It is difficult to profile a virtualized system manually. A server may be running

a different number of VMs with different amount of workloads at different points of

time [323]. Recall that, Chapter 5 presents a framework for scheduling VMs on mul-

tiple hypervisors. In this chapter, the methodology from Chapter 4 (ICBM) and the

framework from Chapter 5 are combined to profile and predict the ETV of VMs on

multiple hypervisors.

6.3 Methodology

This section uses the methodology of ICBM, which is introduced previously in Chap-

ter 4 and also used in Chapter 5. This chapter shows that the methodology can be

extended to multiple hypervisors. A parallel application can have many different data

flow paths, and an application can be decomposed into a set of tasks. The tasks need

to be scheduled individually on the VMs. This work lays the ground for understanding

the effect of consolidation at the VM level.

In the experimental setup, all VMs of a server has the same configuration. One of

them is designated as the target VM (vt), while rest are designated as (vco). The vt has

been used to run different tasks and record their ETV. On the other hand, vco have been

used to create resource contention on the host collectively. As co-located VMs with

different resource types are added to the server, the cumulative resources consumption

create pressure on the server. The performance of VMs starts to degrade with the

increase in the number of co-located VMs. The ETV data profiled from the above

experiments demonstrate how the execution time of vt varies on multiple hypervisors

due to consolidation. In the experiments, each combination of vco is considered as

one workload. The co-located VM combinations can be changed to create new server

workload.
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6.3.1 Use of benchmark suites in the experiments

Various benchmarks suites are utilized in the ICBM. These benchmark suites are the

result of detail analysis of commercially successful applications [222]. They are in-

spired by an interesting phenomenon that, the applications spend both 80% of their

time and resources, executing just 20% of the code [234]. The syntactic benchmark

suites are carefully crafted to mimic such essential parts, rather than running the entire

application [222].

During consolidation, the VMs compete for shared server resources. As a result,

the performance of each VM is affected. To get the real picture of consolidation; it

is necessary to do the experiments with different resource consumption patterns. It is

achieved by changing the number and type of benchmark on the co-located VMs. Each

pattern of co-located VMs is a workload for the server.

The benchmark suites can be run in any order or quantity on the co-located VMs;

thus, a wide variety of workloads can be created. The number of simultaneously run-

ning benchmarks of each type can be increased or decreased to create resource con-

tention of a specific type. Thus, the overall server workload for a specific type of

resource can be adjusted. The benchmarks suites are used here to get finer control over

the server resource usage.

6.3.2 Benchmarks used

Three different categories of benchmarks have been used throughout the dissertation;

they are CPU, memory and I/O intensive benchmarks.

Three CPU intensive benchmarks have been used in the experiments. They are

the Sysbench CPU test, Nbench and Unixbench. Three memory intensive benchmarks

have been used in the experiments, Those benchmarks are the Cachebench, Stream

and Sysbench memory test. Three I/O intensive benchmarks have been used as well,

they are the Dbench, Filebench and Iozone. Recall that the benchmarks are already

described in Section 3.4 of Chapter 3.

6.3.3 Experimental setup

The experiments have been conducted with three Dell XPS-8500 systems. Each ma-

chine has one Intel i7-3770 processor and 32GB of RAM. The i7-3770 processor has
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four cores and eight hardware threads, each clocked at 3.4 GHz.

Three different hypervisors have been used to compare the consolidation perfor-

mance among them. They are the VMware ESXi 5.5, XenServer 6.5, and Xen 4.6. All

the hypervisors have been deployed independently with identical VM settings.

Each hypervisor has 15 VMs setup, one to act as vt, while the rest are vco. Each VM

centos 6 as guest OS, have one logical CPU, 2 GB of RAM and 50 GB of virtual disk

space. The VMs is not pinned to any logical cores. A total of 30 GB RAM is allocated

to the 15 VMs, and rest is available for the hypervisor. All the benchmarks are installed

on VMs beforehand; a concurrent java application manages all benchmarks, VMs, and

physical servers from a remote node.

Now, that the experimental setup and the benchmarks used are discussed in the

next few sections, the experimental results are going to be discussed. Three sets of

results are presented for three hypervisors; VMware ESXi, XenServer, and Xen. The

prediction models derived from the ETV data is also presented in a later section. The

discussion of experimental results starts with the ETV data of VMware ESXi hypervi-

sor in the next section.

6.4 Execution time variation on Esxi

In this and following sections, the task execution time variations due to VM consoli-

dation are discussed in details. The task execution time variation of tasks on VMs was

the theme of the last few chapters. This section is just an extension of the works done

previously in Chapters 3, 4, and 5.

The first set of experimental data presented here is collected from the VMware

ESXi hypervisor. The ETV of vt due to various types of workloads are shown in Fig-

ures 6.4, 6.5, and 6.6. ETVs of different resource-intensive tasks on ESXi is discussed

in successive sections. ETVs of three CPU-intensive tasks are presented and discussed

in the next section and Figure 6.4 shows the ETV data for those three CPU-intensive

tasks.

Similarly, Sections 6.4.2, and 6.4.3 discuss the ETV of memory, and I/O intensive

tasks on the ESXi hypervisor, respectively. The ETV of the three memory intensive

tasks on VMs is shown in Figure 6.5. Finally, Figure 6.6 shows the ETV of the three

I/O intensive tasks.
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6.4.1 Execution time variation (ETV) of CPU intensive tasks

Figure 6.4 shows the ETV of CPU-intensive tasks on ESXi hypervisor for six different

workloads.

In each graph of Figure 6.4, the X-axis shows the total number of VMs running on

the system, while the Y-axis presents the task completion time of vt. The execution

times are profiled using ICBM as described in the Chapter 4.

The first point of each graph is the execution time of vt when it was run alone on

the server (Stage 1). At stage 1, vt is free from any interference from co-located VMs

(vco). As it is explained in Chapter 4, two vco are added to the server at successive

stages. Therefore, the successive points of X-axis represent the execution time of vt

with increasing amount of resource contention. In our experiential setup, the final stage

has fourteen simultaneously running vco besides the vt.

In each graph, from left to right along the X-axis the interference from co-located

VMs steadily increase. The first point of each graph gives the execution time of a task

without any interference from co-located VMs. On the other hand, the last point gives

the execution time with maximum interference. The results of this section demonstrate

that different types and numbers of vco can make the task execution time to vary at a

different rate. Next, the ETV due to three categories of benchmarks on the ESXi is

discussed. The discussion starts with TEV due to CPU-intensive co-located VMs.

Three graphs of Figure 6.4 show the ETV of three CPU intensive benchmarks for

various types of resource intensive co-located VMs on ESXi hypervisor. Each graph

shows results for six workload types; they are CPU, memory, I/O, CPU-memory, CPU-

I/O and memory-I/O workload.

As the number of co-located VMs increase the execution time of target VM is in-

creased, too. Thus, the execution time variations due to six different types of workload

are shown in each graph. It shows that each workload on type vco affects the task

execution time uniquely.

Figure 6.4a shows the ETV of Nbench for the six types of workloads of vco. Re-

call that Nbench is a CPU intensive benchmark. For this benchmark suffers the most

performance degradation due to the CPU intensive workloads on vco. Without any

interference, the Nbench takes 13.48 minutes to execute. On the other hand, Nbench

takes 90.99 minutes to execute with fourteen other co-located VMs running fourteen

CPU intensive benchmarks. That, the execution times go from 13.48 to 90.99 minutes
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Figure 6.4: ETV of three CPU intensive tasks on the ESXi hypervisor.

due to resource contention, this is a 575% increase in execution time.

Without any interference from any co-located VM, the Nbench takes 13.48 to exe-

cute on vt. On the graph of Figure 6.4a, it is the leftmost point. As the co-located VMs

are added to the server the execution time begins to extend. At the rightmost point,

the vt is simultaneously running with 14 more vco and each co-located VM runs one

CPU intensive benchmark. For this system configuration, the execution time due to the

maximum interference is 90.99 minutes.

On the other hand, the Nbench shows much less variation for other types of work-

loads. For example, in the case of I/O workload, the variation of execution time is just

0.91%. Thus, CPU-intensive tasks have low variation due to I/O intensive workload.

Figure 6.4b shows ETV of the Unixbench, which is another CPU intensive bench-

mark; it also shows the maximum performance degradation for CPU intensive work-

load. On the other hand, it has low ETV for I/O intensive workload. For CPU intensive

workload, the execution time variation is 247% (execution time goes from 12.36 min

to 42.89 min). While for I/O intensive workload it is only 2.58%. The results show

that the CPU intensive tasks have maximum ETV due to CPU intensive workload. On

the other hand, ETV is the minimum due to I/O intensive workloads.

This work is a continuation of works of previous chapters. As results of Chapter 3
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(b) ETV of the Unixbench, for six different workloads.
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(c) ETV of the Sysbench CPU test, for six different workloads.

Figure 6.4: ETV of three CPU intensive tasks on the ESXi hypervisor (continued).



6.4. EXECUTION TIME VARIATION ON ESXI 220

show different types of resource intensive workload affects the performance of consol-

idated VMs; as a result, the task execution times begin to vary. Furthermore, Chapter 4

discusses how different types of resource intensive co-located VMs have a different

effect on the task execution time.

As shown in the Chapter 4, if the target (vt) and co-located VMs (vco) have the sim-

ilar type of resource requirement then the performance degrades quickly. On the other

hand, if they have dissimilar resource requirements, then the effect on performance is

much less severe. That is why a CPU intensive task has much greater execution time

degradation due to CPU intensive workload. The same task has much better perfor-

mance when consolidated with I/O intensive workload. Thus, the results of this section

are consistent with the results of the previous sections.

6.4.2 Execution time variation (ETV) of memory intensive tasks

The ETV variation due to memory intensive tasks is shown in Figure 6.5. In this case,

three memory tasks are the Cachebench, Stream and Sysbench memory test.

Figure 6.5a shows the ETV of Cachebench for six different workloads just as shown

in the previous graphs. The Cachebench suffers the maximum change of execution
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(a) ETV of the Cachebench, for six different workloads.

Figure 6.5: ETV of three memory intensive tasks on the ESXi hypervisor.
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(b) ETV of the Stream CPU test, for six different workloads.
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(c) ETV of the Sysbench memory test, for six different workloads.

Figure 6.5: ETV of three memory intensive tasks on the ESXi hypervisor (Continued).
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time due to memory intensive workload of vco. The execution time rises from 12.14 to

43.31 minutes, and it is a 248.51% increase in execution time.

Afterward, Figure 6.5b shows the ETV of Stream for six different workloads.

Stream also shows greatest ETV due to Memory-I/O intensive workload, and it is

698.33%.

Next, Figure 6.5c shows the task execution time variation for the Sysbench mem-

ory test. In this case, the highest variation happens due to CPU-Memory intensive

workload, and it is 189.72%. In all three cases, least amount of variation is shown

for I/O intensive workloads.

6.4.3 Execution time variation (ETV) of I/O intensive tasks

Finally, Figure 6.6 shows the ETV of three I/O intensive tasks on Exsi server; they

are the Dbench, Iozone, and Filebench. In general, the benchmarks suffer the most

performance degradation for I/O intensive vco. On the other hand, they suffer the least

for CPU and memory intensive vco.

Firstly, Figure 6.6a shows the ETV of the Dbench for six different types of work-

load. Among the six, the performance degradation is worse for I/O intensive workload;
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(a) ETV of the Dbench, for six different workloads.

Figure 6.6: ETV of three I/O intensive tasks on the ESXi hypervisor.
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(b) ETV of the Iozone, for six different workloads.
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(c) ETV of the Filebench, for six different workloads.

Figure 6.6: ETV of three I/O intensive tasks on the ESXi hypervisor (Continued).
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it is 325%. Next, Figure 6.6b shows the ETV for the Iozone. In this case, also, I/O in-

tensive workload shows the worse performance degradation, it is 1250.34%. Lastly,

the Figure 6.6c shows the performance degradation of Filebench for six different work-

loads. It can be readily seen, that the performance is worse for I/O intensive workload

and it is 178.67%.

This section discussed the ETV of tasks on ESXi hypervisor for six different types

of workload. Next section, discusses the ETV of the same tasks and workloads on the

XenServer hypervisor.

6.5 Task execution time variation on XenServer

This section presents the experimental results collected from the XenServer hypervi-

sor. The ETV data of VMs for the XenServer is shown here in the same format as it

is shown for ESXi hypervisor in the previous section. In this section, also, the experi-

mental results show similar trends as discussed in the previous section; therefore, those

discussions about similar patterns are not repeated.

In this case, also, there are three sets of results for benchmarks of three primary

resource groups. Three graphs of Figure 6.7, show how three CPU intensive tasks

react to various resource workload types. Figures 6.8, and 6.10 show the execution

time variations of memory, and I/O intensive tasks, respectively.

6.5.1 Execution time variation (ETV) of CPU intensive tasks

Figure 6.7 shows the ETV of three CPU intensive tasks for six different workloads

each. These tasks are, the Nbench, Unixbench and Sysbench CPU test, and six work-

loads are CPU, memory, I/O, CPU-Memory, CPU-I/O and Memory-I/O.

The Y-axis shows the execution time variations, while the X-axis shows the number

of simultaneously running VMs on the server. Figure 6.7a shows that the Nbench has

most execution time variation for both CPU and CPU-I/O workloads.

When the Nbench is run alone on the server, it takes 13.54 minute to execute. On

the other hand, when consolidated with 14 other CPU intensive VMs, it takes 90.57

minutes to execute. In other words, the Nbench shows 568.90% increase in execution

time due to CPU intensive workload. Similarly, for CPU-I/O intensive workload, the
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(b) ETV of the Unixbench, for six different workloads.

Figure 6.7: ETV of three CPU intensive tasks on the XenServer hypervisor.



6.5. TASK EXECUTION TIME VARIATION ON XENSERVER 226

 0

 5

 10

 15

 20

 25

vt
(stage 1) 

vt + 2 vco
(stage 2) 

vt + 4 vco
(stage 3) 

vt + 6 vco
(stage 4) 

vt + 8 vco
(stage 5) 

vt + 10 vco
(stage 6) 

vt + 12 vco
(stage 7) 

vt + 14 vco
(stage 8) 

E
x
e

c
u

ti
o

n
 t

im
e

 o
f 

v
t 
(m

in
)

No of co-located vm

CPU load

Mem load

I/O load

CPU-Mem load

CPU-I/O load

Mem-I/O load

(c) ETV of the Sysbench CPU test, for six different workloads.

Figure 6.7: ETV of three CPU intensive tasks on the XenServer hypervisor (Contin-

ued).

Nbench has 594.51% increase in execution time. In contrast, the Nbench shows

almost no execution time variation for I/O only workload.

Other two CPU intensive benchmarks also show similar variation patterns. That is,

they have the highest degree of variation for CPU intensive workloads, while almost

no variation due to I/O intensive workload.

Figure 6.7b shows that the Unixbench have 185.05% increase in execution time

for the CPU workload; the execution time goes from 12.38 minute to 35.29 minutes.

Figure 6.7c shows that the Sysbench CPU test has 73.26% increase in execution time

for the similar case. However, both of the benchmarks show almost no variation for

I/O intensive workload.

6.5.2 Execution time variation (ETV) of memory intensive tasks

Figure 6.8 shows the ETV of three memory intensive task for the same six workloads.

The memory intensive benchmarks, are the Cachebench, Stream and Sysbench mem-

ory test. In this case, the three tasks show the highest amount of variation due to

memory intensive workload and least for I/O intensive workload.
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Figure 6.8a shows the ETV of Cachebench due to various workloads. For mem-

ory workload, the Cachebench has an execution time increase of 223.64%. The

Cachebench takes 12.14 minutes to execute when it is run alone on the server; when

consolidated with 14 other memory intensive VMs it takes 39.29 minutes to complete

execution. On the other hand, the Cachebench shows almost no task execution time

variation for I/O intensive workloads.

Next, the ETV of Stream benchmark is shown in Figure 6.8b. It shows that the

Stream has 730.34% increase in execution time for memory intensive workload.

Next, Figure 6.8c shows the execution time variation of Sysbench memory test.

In this case, both the CPU and CPU-Memory intensive workloads have the maximum

amount of variation of task execution time. Here, the CPU intensive workload causes

the execution time to increase by 140.30%, while the CPU-Memory intensive work-

loads cause 142.12%. For the above two benchmarks, the I/O intensive workloads

cause the least amount of execution time variation.
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(a) ETV of the Cachebench, for six different workloads.

Figure 6.8: ETV of three memory intensive tasks on the XenServer hypervisor.
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(b) ETV of the Stream, for six different workloads.
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(c) ETV of the Sysbench memory test, for six different workloads.

Figure 6.8: ETV of three memory intensive tasks on the XenServer hypervisor (Con-

tinued).
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6.5.3 Execution time variation (ETV) of I/O intensive tasks

Next, Figure 6.10 shows the execution time variations of three I/O intensive tasks

for six workload types. The three I/O intensive task are, the Dbench, Iozone, and

Filebench. The experimental results show the similar patterns as discussed in the pre-

vious section and chapters. Therefore, those parts of the discussion are not repeated

here.

First, the Figure 6.10a shows task execution time variation of the Dbench. It has

the highest amount of variation for I/O intensive workload, and it is 297.77%. In this

particular case execution time increases from 12.11 minutes to 48.17 minutes. Next,

Figure 6.10b shows that the Iozone has 1455.57% increase in task execution time

due to I/O intensive workload.

Similarly, the Filebench has 188.19% increase in execution time due to I/O work-

load. Thus, I/O workload causes the maximum amount of variation for all three bench-

marks. On the other hand, CPU, and memory intensive workloads do not have much

effect on these three tasks.

The next section discusses the ETV of the same tasks for another hypervisor, Xen.
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(a) ETV of the Dbench, for six different workloads.

Figure 6.9: ETV of three I/O intensive tasks on the XenServer hypervisor.
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(b) ETV of the Iozone, for six different workloads.

Figure 6.9: ETV of three I/O intensive tasks on the XenServer hypervisor.
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(c) ETV of the Filebench, for six different workloads.

Figure 6.10: ETV of three I/O intensive tasks on the XenServer hypervisor (Contin-

ued).
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6.6 Task execution time variation on Xen hypervisor

In this section, the experimental results for the Xen hypervisor are presented. Pre-

sented results for Xen hypervisor are in the same form as the results presented for the

last two hypervisors in the previous sections. In this case, the same methodology and

benchmark suites have been used as it is discussed in the last few sections and chap-

ters. The results presented here also so similar patterns as discussed for the last two

hypervisors (ESXi and XenServer). Therefore, those parts of the discussion are not

repeated in this section.

The ETV of the tasks on the Xen are shown in Figures 6.11, 6.12, and 6.13; the

same tasks are used here. Figure 6.11 shows the ETV of three CPU intensive tasks

on Xen; they are the Nbench, Unixbench, and Sysbench CPU test. Figure 6.12 shows

the ETV of three memory intensive task for the same six workloads. They are the

Cachebench, Stream, and Sysbench memory test. Finally, Figure 6.13 shows the ETV

of three I/O intensive tasks; they are the Dbench, Iozone, and Filebench.

The tasks exhibit patterns similar to that observed in both ESXi and XenServer.

Therefore, their ETVs are not discussed separately. In the next section, the maximum

execution time variation percentage of each task is calculated and compared.
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(a) ETV of the Nbench, for six different workloads.

Figure 6.11: ETV of three CPU intensive tasks on the Xen.
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(b) ETV of the Unixbench, for six different workloads.
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(c) ETV of the Sysbench CPU test, for six different workloads.

Figure 6.11: ETV of three CPU intensive tasks on the Xen (continued).
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(a) ETV of the Cachebench, for six different workloads.
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(b) ETV of the Stream CPU test, for six different workloads.

Figure 6.12: ETV of three memory intensive tasks on the Xen.
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(c) ETV of the Sysbench memory test, for six different workloads.

Figure 6.12: ETV of three memory intensive tasks on the Xen (Continued).
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(a) ETV of the Dbench, for six different workloads.

Figure 6.13: ETV of three I/O intensive tasks on the Xen.
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(c) ETV of the Filebench, for six different workloads.

Figure 6.13: ETV of three I/O intensive tasks on the Xen (Continued).
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6.7 The maximum execution time variation (ETV) per-

centage on three hypervisors

Tables 6.1, 6.2, and 6.3 show the maximum execution times variation the tasks on

ESXi, XenServer, and Xen hypervisors, respectively. Those tables use the results pre-

sented in the three previous sections. The experimental data of Sections 6.4, 6.5,

and 6.6 are used to calculate the values in Tables 6.1, 6.2, and 6.3. Thus, this section

is a continuation of the discussion about the ETV results of the last three sections.

The maximum execution time variation is the difference between the initial execu-

tion time and the maximum execution time of a task. The task is run alone on the server

and execution finish time is the initial execution time. Then the number of co-located

VMs are increased on the system; as a result, the performance of the task begins to

Table 6.1: Maximum execution time variation percentage of tasks for six workload

types on ESXi hypervisor.

Benchmark

name

CPU

intensive

workload

(%)

Mem.

intensive

workload

(%)

I/O

intensive

workload

(%)

CPU-Mem

intensive

workload

(%)

CPU-I/O

intensive

workload

(%)

Mem-I/O

intensive

workload

(%)

SB CPU

test
83.95 83.59 0.91 118.13 32.63 39.65

Nbench 575.00 299.32 36.77 345.75 502.37 268.57

Unixbench 247.00 119.17 2.58 85.62 51.05 133.01

Cachebench 91.81 248.51 0.41 213.53 40.37 223.54

Stream 71.56 688.33 1.07 663.15 11.80 698.23

SB Mem

test
167.17 182.91 0.90 189.72 48.33 65.57

Dbench 0.91 0.58 325.00 28.63 250.20 207.83

Iozone 14.29 32.12 1250.34 29.79 1191.29 1190.48

Filebench 2.75 19.71 200.23 6.91 126.29 140.92
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degrade. When the maximum number of co-located VMs are running on the server the

execution finish time of a task is the maximum execution time. The difference between

the final execution time and the initial time is the maximum execution time variation.

In the ETV graphs of above three sections (Sections 6.4, 6.5, and 6.6), the far

left point on the X-axis represents the initial execution time, while the far right point

represents the maximum execution time. Their difference is the maximum execution

time variation. For example, in Figure 6.4a initial execution time of Nbench is 13.48

minutes and maximum execution time is 90.99 minutes. Therefore, the maximum

execution time variation of Nbench due to CPU intensive workload is 77.51 minutes.

The maximum execution time variation percentage calculated from the ratio of the

maximum execution time variation and initial execution time. Thus, the maximum ex-

ecution time variation percentage of Nbench for CPU intensive workload is 575.00%,

Table 6.2: Maximum execution time variation percentage of tasks for six workload

types on XenServer hypervisor.

Benchmark

name

CPU

intensive

workload

(%)

Mem.

intensive

workload

(%)

I/O

intensive

workload

(%)

CPU-Mem

intensive

workload

(%)

CPU-I/O

intensive

workload

(%)

Mem-I/O

intensive

workload

(%)

SB CPU

test
73.26 58.54 1.79 76.12 40.03 36.46

Nbench 568.90 268.90 28.94 470.37 650.12 226.35

Unixbench 185.05 65.09 1.69 64.26 65.93 74.13

Cachebench 73.83 223.64 0.81 188.37 32.40 187.04

Stream 113.80 730.34 11.21 641.34 41.42 684.46

SB Mem

test
140.30 128.79 7.06 142.12 67.81 80.90

Dbench 8.27 0.58 297.77 32.86 222.73 198.76

Iozone 22.79 47.70 1455.57 43.26 1387.70 1356.08

Filebench 5.13 11.71 188.19 3.14 161.14 154.97
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which is calculated as follows:

((90.99− 13.48)/13.48× 100)

= (77.51/13.48× 100)

= 575.00

In this way the maximum execution time variation percentage of each task is cal-

culated for each workload and shown in the Tables 6.1, 6.2, and 6.3.

The maximum execution time variation percentage data allows comparing how the

task execution time varies from the initial value due to consolidation. The three tables

show a similar pattern; usually, a type of resource intensive task is most affected by

Table 6.3: Maximum execution time variation percentage of tasks for six workload

types on Xen hypervisor.

Benchmark

name

CPU

intensive

workload

(%)

Mem.

intensive

workload

(%)

I/O

intensive

workload

(%)

CPU-Mem

intensive

workload

(%)

CPU-I/O

intensive

workload

(%)

Mem-I/O

intensive

workload

(%)

SB CPU

test
51.20 57.22 3.08 78.04 16.22 31.43

Nbench 573.82 317.63 38.20 356.48 505.95 274.41

Unixbench 265.45 129.01 13.36 87.37 58.66 155.14

Cachebench 106.31 257.93 5.45 232.80 42.83 251.70

Stream 53.29 598.62 0.51 587.19 14.55 613.89

SB Mem

test
83.23 94.91 2.21 115.09 37.93 69.89

Dbench 11.48 7.32 332.50 40.18 266.91 232.28

Iozone 16.93 75.38 1318.62 76.06 1251.37 1289.99

Filebench 1.55 5.03 170.81 3.89 113.26 146.63
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the same type of resource intensive workload. For example, the second column of

Table 6.1 shows the maximum execution time variation percentage of nine tasks due

to CPU-intensive workload. The three CPU intensive tasks, SB CPU test, Nbench, and

Unixbench have the values 83.95%, 575.00%, and 247.00%, respectively. Those three

values are highlighted; as they are the highest in the respective rows. In other words,

CPU intensive tasks show maximum variation due to CPU-intensive workload.

The maximum execution time variation percentages of three memory intensive

tasks are shown in fifth to seven rows. The three memory intensive tasks are Cachebench,

Stream, SB Mem test. The highest percentage in each row is highlighted in bold. It can

be seen that the maximum percentages are either for memory intensive workloads or a

combination of memory-intensive workloads. For example, the highest percentage of

the Cachebench is 248.51%, and it is for memory intensive workload. For the Stream,

the highest value is 698.23%, and it is for memory and I/O workload combination.

Similarly, all three tables show that the CPU intensive tasks have the highest ex-

ecution time variation usually for a CPU-intensive workload. On the other hand,

memory-intensive workload shows the maximum amount of performance degradation

for memory-intensive or combination of memory-intensive workloads and so on.

Following sections present the ETV prediction results and models; the models are

derived from the ETV data discussed in the above sections.

6.8 Prediction with the Least Square Regression (LSR)

This section describes how the least square regression (LSR) method is utilized to

build prediction models from the data obtained in the previous sections. Earlier, ETV

data from three separate hypervisors are presented in Sections 6.4, 6.5, and 6.6. In

this section, those data are used to build prediction models. Training and testing of

the prediction models have been done with separate data sets, and there is no overlap

between them.

In this section, it is explained how all those data are fitted to build the LSR predic-

tion models. This section describes how the data set is arranged for training and testing

and used in the subsequent sections for building and testing prediction models.

Recall that in Chapter 4 all the processes related to LSR has been thoroughly dis-

cussed. In Section 4.7, prediction process with LSR has been discussed in detail. In
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Section 4.9, the process of obtaining parametric models from R statistical packages

has been explained. Furthermore, Section 4.9.3 describes how to estimate model coef-

ficients from the R statistical packages.

All data used during training and testing of LSR models are already presented

in Sections 6.4, 6.5, and 6.6. In those sections, the ETV of nine benchmarks from

three different resource intensive groups are discussed. For each set of experiments

two separate hypervisors are used, they are the ESXi and XenServer. For example,

Figures 6.4 and 6.7 show the ETV of three CPU intensive tasks on the Vmware ESX

and XenServer, respectively. Similarly, Figures 6.5 and 6.8 show the ETV data of three

memory intensive tasks, respectively. Figures 6.6 and 6.10 show the ETV of three I/O

intensive tasks, respectively.

Each graph of the above figures shows data for six different workload types. For

example, each graph of Figures 6.4 and 6.7 shows six different workload data. One

single graph shows data for one task only; three of them are basic resource workloads,

while the other three are combinational workloads. The basic workload types are CPU,

memory and I/O. Three resource combinational workloads are, CPU-Memory, CPU-

I/O, and Memory-I/O.

Data from above mentioned graphs (Figures 6.4, 6.7, 6.5, 6.8, 6.6, and 6.10) are

used in the following sections for training and building prediction models. Data for

each graph is divided into two categories; basic and combinational. The three resource

combinations are used as the targets of three prediction models. On the other hand, the

ETVs due to three basic resources are used as the inputs.

Following sections show how this data is used to build the models. The sections

also discuss different prediction scenarios and accuracy. Finally, in Section 6.10 pre-

diction models are built as the culmination of the works done in the following sections.

Based on the works of following sections, three models built and they are shown in the

Equations 6.1, 6.2 and 6.3. However, to understand the models the discussion of the

following sections is essential.

The prediction models in Equations 6.1, 6.2 and 6.3 are created with the data from

both the VMware ESX and XenServer hypervisors. Thus, the models presented in

that section are unified models for both hypervisors. Later in the Section 6.10.1, it is

also shown that the unified models can be used to predict the task execution time for

random VM workloads. Thus, this chapter gives a section by section description of

how the prediction models are built and tested for accuracy.
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The ETV data of nine tasks are divided into two separate sets. One set contained

six tasks data and used for the model training. Another set has three task data, which

used for testing. The training set contains the Nbench, Unixbench, Cachebench, Sys-

bench memory test, Dbench, and Iozone. Three other tasks used for testing are the

Sysbench CPU test, Stream, and Filebench. For each task, data is collected from all

three hypervisors. Three sets of experiments have been done.

The ETVs data of six training tasks for three basic workloads are used as the model

inputs. Three basic workloads are being CPU, memory, and I/O. Three resource com-

binations are used as the model outputs. The model is trained with multiple inputs and

target data. Afterward, the models have been used to predict execution time variation

for the combination of resource workloads.

For testing, three sperate tasks are used, they the Sysbench CPU test, Stream, and

Filebench. Their ETV data for CPU-memory, CPU-I/O, and memory-I/O resource

combinations have been predicted. Testing and training are done with entirely separate

sets of data. Not only separate sets of tasks also separate hypervisor ETV data is used.

Data from ESXi and Xen hypervisor have been used to train prediction models.

Once, the LSR models are built various model parameters are also obtained. The

prediction results are discussed in the next section.

6.9 Prediction results for LSR

The ETV data for ESXi, XenServer, and Xen are discussed in the previous section.

One example of input data from the ESXi hypervisor used for training can be seen in

the Figure 6.4a. Figure 6.4a shows six different workloads ETV data of the Nbench on

ESXi hypervisor; three are primary resources, and the other three are the combination

of resources. To build a model for CPU-Memory intensive ETV prediction the ETV

due to three primary resources (CPU, memory and I/O) are used as the inputs, while

ETV due to CPU-Memory workload has been used as the target.

In the same way, to build the prediction model for CPU-I/O the same three primary

resources ETV data are used as the inputs. However, in this case, the ETV due to

CPU-I/O workload has been used as the target. A model for predicting the ETV due to

memory-I/O workload is also created similarly.

The ETV data from XenServer is also fed to the model during the training phase.
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One example of such input data from the XenServer can be seen in Figure 6.7a. Simi-

larly, data from Xen is also used.

The accuracy of the built models is then tested against three separate test task data.

An example of the test task for ESXi hypervisor is shown in Figure 6.4c. As usual, it

has six different workloads related ETV data.

The predictions compared against the actual data. For example, to compare the

prediction output for CPU-memory combination; three ETV data of the Sysbench CPU

test (due to CPU, memory and I/O workload) are used as three inputs, respectively. On

the other hand, the output from the model is compared with the actual CPU-memory

ETV data of sysbench CPU test. Similarly, the accuracy of the other two models

(CPU-I/O and memory-I/O) are also tested for accuracy.

6.9.1 The prediction results for the ESXi

The prediction models are built with all three hypervisor data. That is the ETV data

from ESXi, XenServer, and Xen is used to build a unified model. Then, the accuracy

of the models is tested separately against two hypervisors, ESXi and XenServer. In

this section prediction results for ESXi are presented.

The prediction results for three resource combinations of ESXi hypervisor (CPU-

memory, CPU-I/O and memory-I/O), for three test benchmarks (Sysbench CPU test,

Stream, and Filebench) are shown separately in Figures 6.14, 6.15, and 6.16.

Figures 6.14 shows the three prediction results for CPU-memory resource combi-

nation on ESXi hypervisor. Figure 6.14a shows the prediction results for Sysbench

CPU test for CPU and memory workload combination. The Sysbench is a CPU in-

tensive task. The actual execution time variation is shown in blue, while the predicted

execution time is shown in red. The prediction is made with the LSR models built from

ETV data as described above.

Next, Figure 6.14b shows the execution time variation prediction for the Stream.

The Stream is a memory intensive task. Lastly, Figure 6.14c shows the execution time

variation prediction of the Filebench for CPU and memory workload combination. The

Filebench is an I/O intensive task. Each graph shows the ETV due to actual resource

combination (shown in blue) and prediction from the respective models (shown in

red). Thus, the three graphs of Figure 6.14 show the prediction results for one CPU,

one memory, and one I/O intensive task, each.
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(a) Prediction for the Sysbench CPU test.
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(b) Prediction for the Stream.
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(c) Prediction for the Filebench.

Figure 6.14: Prediction results for CPU-Memory workload combination on ESXi.
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(a) Prediction for the Sysbench CPU test.
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(b) Prediction for the Stream.
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(c) Prediction for the Filebench.

Figure 6.15: Prediction results for CPU-I/O workload combination on ESXi.
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(b) Prediction for the Stream.
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(c) Prediction for the Filebench.

Figure 6.16: Prediction results for memory-I/O workload combination on ESXi.
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Similarly, the next two figures show the prediction for two other resource com-

binations, CPU-I/O and Memory-I/O. Figure 6.15 shows the task ETV prediction for

CPU and I/O workload combination. Prediction for three task are shown, they are

the Sysbench CPU test, Stream, and Filebench. Figure 6.15 shows the execution time

variation prediction of the same three tasks for memory-I/O load combination.

6.9.2 The prediction results for the XenServer

In this section prediction results are presented for XenServer hypervisor. Figures 6.17,

6.18, and 6.19 show nine prediction results with the same tasks for the XenServer. The

results are presented in the same format as above. That is, results from three resource

combinations for three types of tasks (nine graphs in total) are shown separately.

Three resource combinations are CPU-memory, CPU-I/O, and memory-I/O, they

are shown in Figures Figures 6.17, 6.18, and 6.19, respectively. Here also, each graph

shows two data sets; one actual execution time variation due to resource workload

combination and one predicted from LSR model. Again, the actual ETV is shown in

blue, while the predicted ETV is shown in red.

Previously, Section 6.8 described how the LSR prediction models built using the

methodology introduced in Chapter 4. The LSR prediction models here are created by

following the same methodology; therefore, it is not discussed here agagin.

Prediction results for the three sperate resource combinations are shown in the

figures. Figure 6.17 shows the prediction results for the CPU-memory workload com-

bination. Next, Figure 6.18 shows the predictions results for CPU-I/O workload com-

bination. Lastly, Figure 6.19 shows the predictions results for memory-I/O workload

combination.

Each figure shows the prediction results for the same three tasks, which were used

in the previous section for making predictions on ESXi. The prediction results are

similar to that of the ESXi hypervisor discussed in the previous section; therefore, the

discussion is not repeated here.

Similarly, predictions are also made on the Xen hypervisor using the same proce-

dure and tasks. The LSR prediction results for the Xen are also similar to that of ESXi

and XenServer. Therefore, those results are not presented here.

The accuracy of the prediction models in this and previous section are also calcu-

lated. The next section discusses the accuracy of the predictions by the models.
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(a) Prediction for the Sysbench CPU test.

 0

 10

 20

 30

vt
(stage 1) 

vt + 2 vco
(stage 2) 

vt + 4 vco
(stage 3) 

vt + 6 vco
(stage 4) 

vt + 8 vco
(stage 5) 

vt + 10 vco
(stage 6) 

vt + 12 vco
(stage 7) 

vt + 14 vco
(stage 8) 

E
x
e
c
u
ti
o
n
 t
im

e
 o

f 
v

t 
(m

in
)

No of co-located vm

Prediction

Actaul

(b) Prediction for the Stream.
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(c) Prediction for the Filebench.

Figure 6.17: Prediction results for CPU-Memory workload combination on XenServer.
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Figure 6.18: Prediction results for CPU-I/O workload combination on XenServer.
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Figure 6.19: Prediction results for Memory-I/O workload combination on XenServer.
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6.9.3 Root mean square error (RMSE) for the prediction

The Root Mean Square Error (RMSE) of prediction for Exsi, XenServer, and Xen are

shown in Tables 6.4, 6.4, and 6.4, respectively. The RMSE is an indicator of prediction

accuracy; lower value indicates a better prediction accuracy. Recall that RMSE is

already introduced and discussed in Section 4.8 of Chapter 4.

Previous two sections presented the prediction results for LSR prediction models.

Section 6.9.1 shows the prediction results for the ESXi hypervisor, while Section 6.9.2

shows the prediction results for XenServer. The predictions are also made for Xen

hypervisor. However, resulted graphs for Xen are not shown here as they are very

similar to that of ESXi and XenServer. In this section, RMSE calculated from the

prediction results for all three hypervisors are presented.

For each benchmark and workload types, the prediction errors are shown sepa-

rately. The accuracy of the prediction for different resource combinations is different

as shown in the tables. For each resource combination, the RMSE values of the three

benchmarks are shown in separate rows.

Tables 6.4 shows the RMSE values for ESXi; values for the different combination

of resources are shown in different columns. The third, fourth, and fifth columns

of the table show the RMSE value for the CPU-memory, CPU-I/O, and memory-I/O

workload combinations, respectively. For the CPU-memory load combination, the

Stream has the highest RMSE value; it is 2.6298. For CPU-I/O load combination

the Stream has the highest RMSE value again, it is 4.8102. For memory-I/O load

Table 6.4: RMSE of prediction for ESXi.

Task name
Resource

intensity

CPU-Mem

intensive

workload

combination

CPU-I/O

intensive

workload

combination

Mem-I/O

intensive

workload

combination

SB CPU test
CPU-

intensive
2.2895 1.8205 3.0858

Stream
Mem.-

intensive
2.6298 4.8121 3.8134

Filebench I/O-intensive 1.0039 2.8102 5.8760
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combination the Filebench has the highest value, it is 5.876. Highest values for each

column is marked in bold.

Table 6.5 shows the RMSE of prediction for XenServer; the results are shown in

the same format as above. Here, also the highest RMSE for each resource combination

is shown in bold. Table 6.6 shows the RMSE values for the Xen hypervisor and highest

values in each column are marked as well.

The second column of each table shows the resource intensity of the task. For

example, the Sysbench (SB) CPU test is marked as CPU intensive. The Stream is

memory intensive, and Filebench is I/O intensive. From the three tables, it can be

seen that memory and I/O intensive tasks have higher RMSE values compared to CPU

Table 6.5: RMSE of prediction for XenServer.

Task name
Resource

intensity

CPU-Mem

intensive

workload

combination

CPU-I/O

intensive

workload

combination

Mem-I/O

intensive

workload

combination

SB CPU test
CPU-

intensive
1.3541 1.3286 2.3954

Stream
Memory-

intensive
3.0901 1.6091 2.6644

Filebench I/O-intensive 0.3307 2.5524 3.1346

Table 6.6: RMSE of prediction for Xen.

Task name
Resource

intensity

CPU-Mem

intensive

workload

combination

CPU-I/O

intensive

workload

combination

Mem-I/O

intensive

workload

combination

SB CPU test
CPU-

intensive
3.0849 1.2971 1.5593

Stream
Memory-

intensive
4.3019 2.1410 4.3683

Filebench I/O-intensive 2.3967 3.5543 4.8173
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intensive tasks. As memory and I/O intensive tasks show more execution time variation

due to the combination of resources, therefore, the prediction error is slightly higher.

he tables in this section present the accuracies of the prediction made for the three

hypervisors. This accuracies are calculated from the prediction results presented in

Sections 6.9.1, and 6.9.2. In the next section, it is shown how the parametric models

can be built from the LSR prediction models trained in those sections.

6.10 Parametric models from LSR prediction results

Equations 6.1, 6.2, and 6.3 shows the model parameters and coefficients obtained

from the LSR model trained above. Section 6.8 discusses the process of building

LSR prediction models. Then, Section 6.9.1 presents the prediction results for ESXi

hypervisor. Section 6.9.2 presents the prediction results for XenServer hypervisor. In

this section, all the data from those sections is used to build parametric models.

Recall that, the process of obtaining parametric models from packages of the R

programming language is already described in Section 4.9. As the same process from

the Section 4.9 is used here to build parametric models the discussion about model

building process is not repeated here.

Equations 6.1, 6.2, and 6.3 demonstrate the relationship between input and target

data formats. The model terms are also described in Table 6.7 for clarification. Three

prediction models are built for three resource combination targets, which are the CPU-

Memory, CPU-I/O, and Memory-I/O.

The left side of equations denote the target terms that are to be predicted. For

example, the term ETV pred,t
cpu−mem,k denotes the execution time variation prediction of

a task, t on a VM for CPU and memory workload combinations. In this case, the

VM is consolidated with the k number of co-located VMs, which run a combination

of CPU and memory workloads. Recall that, the ICBM has several stages. At each

stage, a different number of co-located VMs are simultaneously run with the task t.

The ETV pred,t
cpu−mem,k is the predicted execution time variation of t when it is consoli-

dated with total of k CPU and memory intensive VMs. Similarly, ETV pred,t
cpu−io,k, and

ETV pred,t
mem−io,k are the execution time variation predictions for k number of CPU-I/O,

and memory-I/O VM combinations, respectively.

The right side of the equations presents the terms that are inputs to the models.
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Table 6.7: Description of terms of Equations 6.1, 6.2, and 6.3

ETV pred,t
cpu−mem,k

Predicted ETV of a task, t on a consolidated VM. Another k num-

ber of co-located VMs with CPU and memory intensive workload

combination are consolidated with it.

ETV pred,t
cpu−io,k

Predicted ETV of a task, t on a consolidated VM. Another k
number of co-located VMs with CPU and I/O intensive workload

combination are consolidated with it.

ETV pred,t
mem−io,k

Predicted ETV of a task, t on a consolidated VM. Another k num-

ber of co-located VMs with CPU and memory intensive workload

combination are consolidated with it.

H A set of hypervisors.

T A set of tasks.

Eh,t
cpu,k

Observed execution time of t on a consolidated VM on a hyper-

visor, h. It is consolidated with the k number of CPU-intensive

co-located VMs.

Eh,t
mem,k

Observed execution time of t on a consolidated VM on a hypervi-

sor, h. It is consolidated with the k number of memory-intensive

co-located VMs.

Eh,t
io,k

Observed execution time of t on a consolidated VM on a hyper-

visor, h. It is consolidated with the k number of I/O-intensive

co-located VMs.

All three equations (6.1, 6.2, and 6.3) use the same terms as inputs, they are the

execution times due to the basic resources workload types. Each equation has six

terms on the right side; they are quite self-explanatory. For example, Eh,t
cpu,k represents

the task execution time of a benchmark (t), when it is consolidated on a particular

hypervisor (h) with k other CPU intensive co-located VMs. Where, h ∈ H is one of

the hypervisors and t ∈ T is one of the tasks used during the training phase. The H

and T are a set of hypervisors and tasks, respectively.

The model uses data from all training benchmarks from all hypervisors to create

the models. In the same way, terms Eh,t
mem,k and Eh,t

io,k represent the task execution

time, when t is consolidated with the k number of memory and I/O intensive co-

located VMs, respectively. The αi, βi, and γi are the model coefficient, which is
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being determined during the model training process.

ETV pred,t
cpu−mem,k =

α1 +
∑

h∈H

∑

t∈T

(

α2 × (Eh,t
cpu,k) + α3 × (Eh,t

mem,k) + α4 × (Eh,t
io,k)

0.9

+ α5 × (Eh,t
cpu,k)× (Eh,t

mem,k) + α6 × (Eh,t
cpu,k)× (Eh,t

io,k)
0.9

+ α7 × (Eh,t
mem,k)× (Eh,t

io,k)
0.9
)

(6.1)

ETV pred,t
cpu−io,k =

β1 +
∑

h∈H

∑

t∈T

(

β2 × (Eh,t
cpu,k) + β3 × (Eh,t

mem,k)
0.5 + β4 × (Eh,t

io,k)
1.5

+ β5 × (Eh,t
cpu,k)× (Eh,t

mem,k)
0.5 + β6 × (Eh,t

cpu,k)× (Eh,t
io,k)

1.5

+ β7 × (Eh,t
mem,k)

0.5 × (Eh,t
io,k)

1.5
)

(6.2)

ETV pred,t
mem−io,k =

γ1 +
∑

h∈H

∑

t∈T

(

γ2 × (Eh,t
cpu,k) + γ3 × (Eh,t

mem,k) + γ4 × (Eh,t
io,k)

1.8

+ γ5 × (Eh,t
cpu,k)× (Eh,t

mem,k) + γ6 × (Eh,t
cpu,k)× (Eh,t

io,k)
1.8

+ γ7 × (Eh,t
mem,k)× (Eh,t

io,k)
1.8
)

(6.3)

There is a total of six terms on the right side, of each equation. First three are

being Eh,t
cpu,k, Eh,t

mem,k, and Eh,t
io,k. The next three are just combinations of the first

three. Although, all the equations have the same six terms; however, their coefficients

and exponents are different. Here, the presented models are unified models as the data

from all three hypervisors are used to build the models.
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6.10.1 LSR predictions with random workload

For further testing of the prediction accuracy of trained models, random workloads are

used. Figures 6.20, 6.21, and 6.22 shows random workload are being run on ESXi,

XenServer, and Xen. Figures show that the workloads are created using a random

combination of tasks and VMs on the server.

First random locations for co-located VMs are chosen on the server then randomly

selected tasks are executed on them. In each row of the figures, represents one stage of

the experiment. At each stage, one target and several co-located VMs are running. The

prediction models obtained in the previous section are used to predict the execution

time of the target VM due to the presence of a random combination of co-located

VMs.

The random workloads are run on the different hypervisors; which are VMware

ESXi, XenServer, and Xen. Tables 6.8, 6.9, and 6.10 show the prediction results for

the three hypervisors, respectively. In each table, the first column is the row number

corresponding to the figures. The second column shows the names of the target VM

tasks. The third column shows the actual execution time of the target VM task in each

row. The fourth column shows the predicted execution time for the target VM task by

the model. The fifth row contains the prediction error.

All training and testing are done with mutually exclusive hypervisor data. That

is the hypervisor data used during training is not used for testing. Three hypervisors

are used during the training process. Tables 6.8 shows the execution time prediction

results for ESXi hypervisor. In this case, the models have trained with the execution

time variation data from XenServer and Xen hypervisor. Then the trained models are

used to predict the execution time of the tasks running on the ESXi hypervisor.

In the same way, the prediction models are trained with Xen and ESXi hypervisor

data and then used to predict the execution time of tasks running on XenServer. The

prediction results for the XenServer is shown in Table 6.9. Next, the models are again

trained with ESXi and XenServer data, and the models are used to predict the execution

time of tasks running on the Xen hypervisor. In this case, the prediction results are

shown on Table 6.10. Thus, in all three Tables (6.8, 6.9, and 6.10) data from different

hypervisors have been used to trained and test the prediction models.

Tables 6.8, 6.9, and 6.10 also show the percentage prediction error at the sixth

column. The percentage prediction error is calculated using following formula [324]:
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percentage prediction error =
(

measured value− predicted value

measured value

)

×100 (6.4)

Above three tables (6.8, 6.9, and 6.10) also show the Mean Absolute Percentage

Error(MAPE) in the very last row of each table. It is also known as the Mean Absolute

Percentage Deviation (MAPD) is a measure of prediction accuracy of a forecasting

models statistics. The MAPE is the arithmetic mean of the absolute percentage errors

of prediction. The error is defined as measured value minus the predicted value. In this

case, only the absolute value of the percentage error is summed up ignoring the sign of

the error; this eliminates the possibility of positive and negative errors canceling each

other during summation. As the error is presented in terms of percentage, this makes

it easy to understand, and it is frequently used to test the accuracy of the prediction

model. A smaller value of MAPE indicates a better prediction accuracy [325].

The MAPE is calculated using following formula [325, 326]:

Mean Absolute Percentage Error (MAPE)

= 100×
1

N

N
∑

t=1

∣

∣

∣

∣

measured valuet − predicted valuet

measured valuet

∣

∣

∣

∣

(6.5)

Each of the three figures (6.20, 6.21, and 6.22), shows nine randomly generated

rows (R1-R9) of VMs. Among them, the first three rows (R1-R3) of the figures

show that the Sysbench CPU test is consolidated with a various number of co-located

VMs. In this case, the VMs are randomly placed on the server to generated workloads,

which causes the execution time of the Sysbench CPU test to vary at a different amount.

The LSR models built and presented previously in Section 6.10 are used to predict the

execution time variation of the Sysbench CPU test. The objective here is to observe

the prediction accuracy of the models for randomly generated workloads.

Similarly, the second three rows (R4-R6) of each figure (6.20, 6.21, and 6.22)

show that the Stream is consolidated with various numbers of co-located VMs. The last

three rows (R7-R9) show how a file server is consolidated with several combinations

of co-located VMs. In each case, the co-located VMs are marked with their resource

intensities.
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Recall that the prediction models (Equations 6.1, 6.2, and 6.3) in Section 6.10

utilizes the number of co-located VMs and their resource intensities to predict the exe-

cution finish time of the target VM. In this section, each co-located VM in Figure 6.20,

6.21, and 6.22 is marked with resource intensity. A VM is either a CPU, memory or

I/O intensive VM. They are some blank VMs shown in the figures they represent VMs

with no task running on them.

Figure 6.20 shows that nine random workloads are created on the ESXi hypervisor.

They are the combination of different types of resource intensive VMs. For example

row 1 (top of Figure 6.20) has four CPU-intensive and nine memory-intensive co-

located VMs. The execution finish time of the Sysbench CPU test due to consolidation

with this workload on ESXi is 19.26 minute. The model trained in the previous section

have been used to predict the execution time for this workload. Similarly, the models

have been used to predict execution time variations of tasks for nine workloads on

ESXi hypervisor. Their actual execution time and predicted execution times are listed

in Table 6.8. For the workloads, the RMSE of prediction is 2.5867.

Table 6.8 shows measured and predicted execution time of each row. Each row is

numbered along with the task name, whose execution time is to be predicted. The third

column shows the measured actual execution time of the task due to the consolidated

random workload on co-located VMs. The fourth column shows the execution time

SB
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CPU
SB

SB
CPU

Stream

Stream

Stream

File
Server

Server
File

File
Server

R1

R2

R3

R4

R5

R6

R7

R8

R9

ESXi
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Figure 6.20: Random workload generated for ESXi.
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Table 6.8: Execution time prediction for randomly generated workloads on ESXi.

VMware ESXi (Figure 6.20)

Row

no.
Task name

Measured

execution time

(minute)

Predicted

execution time

(minute)

Prediction

Error (minute)

Percentage

prediction

error (%)

R1

SB CPU

19.26 15.7827 3.4773 18.0545

R2 78.30 75.0328 3.2672 4.1726

R3 13.71 14.5762 -0.8662 -6.3180

R4

Stream

11.47 11.0501 0.4199 3.6608

R5 11.10 10.3921 0.7079 6.3774

R6 23.64 20.7657 2.8743 12.1586

R7

File Server

11.87 13.2075 -1.3375 -11.2679

R8 39.56 36.1093 3.4507 8.7227

R9 25.01 21.2591 3.7509 14.9976

RMSE 2.5867

MAE 2.2391

MAPE 9.5255

predicted by the LSR models. The fifth column shows the prediction error of each

row. At the end of the column, the RMSE of the prediction errors is also given. The

sixth column of the table shows the percentage prediction error. The column shows

the largest magnitude of percentage error the Sysbench CPU test on the R1, and it is

18.0545%.

Similarly, execution time prediction for nine separate random workloads are made

for XenServer, and Xen hypervisor; the results are shown in Figures 6.21, and 6.22,

respectively. Their execution times are also predicted by models build with mutually

exclusive hypervisor data. That is prediction model used for XenServer hypervisor is

trained with data from ESXi and Xen hypervisor. Actual execution times and predic-

tion data for XenServer are shown in Table 6.9.

Similarly, prediction models used for Xen is trained with data from ESXi and

XenServer. Once the model is trained, they are used to predict the task execution

time variation on Xen. Table 6.10 shows the measured and predicted task execution
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Figure 6.21: Random workload generated for XenServer.

Table 6.9: Execution time prediction for randomly generated workloads on XenServer.

XenServer (Figure 6.21)

Row

no.
Task name

Measured

execution time

(minute)

Predicted

execution time

(minute)

Prediction

Error (minute)

Percentage

prediction

error (%)

R1

SB CPU

15.41 13.8446 1.5654 10.1583

R2 5.98 4.2006 1.7794 29.7558

R3 12.61 13.4495 -0.8395 -6.6574

R4

Stream

13.39 11.9921 1.3979 10.4398

R5 12.20 13.6815 -1.4815 -12.14344

R6 21.71 18.7382 2.9718 13.6886

R7

File Server

13.77 17.1161 3.3461 24.2999

R8 12.08 13.294 -1.2140 -10.0496

R9 21.12 23.1647 -2.0447 -9.6813

RMSE 2.0042

MAE 1.8489

MAPE 14.0971
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time for Xen.

The row by row prediction results for the VM settings of Figure 6.21 is shown

in Table 6.9. In this case, all tasks are running on XenServer hypervisor. The sixth

column of the Table 6.9 shows the percentage prediction error for the trained model.

In can be seen that the percentage prediction error is significantly higher compared to

that of ESXi (previously shown in Table 6.8). Particularly the third row of Table 6.9

show that for Sysbench CPU test the percentage prediction error is−29.7558%.

Recall that the hypervisors are trained with mutually exclusive hypervisor data.

That is, the prediction models used for XenServer is trained with data from ESXi and

Xen hypervisor. The prediction models for ESXi and Xen are trained in the same way

using mutually exclusive training and testing data. However, prediction models for

ESXi (Table 6.8) and Xen Table 6.10 show better percentage prediction error compared

to that of XenServer (Table 6.9), this shows that the prediction accuracy of the unified

prediction model is not the same for all hypervisors.

For each hypervisor, training situation can be unique. It is known that in different

situation machine learning methods may require different amount of data to proper

training [327–330]. Therefore, it is possible that the amount of data required for build-

ing a prediction model for different hypervisors can be different. It is possible that the

accuracy of the prediction model for XenServer can be improved using a larger set of

training data.

Lastly, Table 6.10 shows the accuracy of the prediction model for the Xen hypervi-

sor. In this case, also nine random workloads are generated using various combination

of resource-intensive co-located VMs. As the workloads are randomly generated the

workloads are not the same on the three hypervisors.

The VM workloads used for this hypervisor is shown in Figure 6.22. The figure

has nine rows showing nine randomly generated workload. The execution time of the

task in target VM for the above nine workloads are shown from the second to the tenth

column of Table 6.10.

In this case, the highest percentage prediction error is 22.5960%, and it is for the

Stream benchmark. This value is shown in the fifth row of Table 6.10. The MAPE of

all nine predictions is also shown in the thirteen row of the table, and it is 12.5249%.

The RMSE of prediction for XenServer and Xen are 2.0042 and 2.6686, respectively.
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Figure 6.22: Random workload generated for Xen.

Table 6.10: Execution time prediction for randomly generated workloads on Xen.

Xen (Figure 6.22)

Row

no.
Task name

Measured

execution time

(minute)

Predicted

execution time

(minute)

Prediction

Error (minute)

Percentage

prediction

error (%)

R1

SB CPU

18.79 16.3315 2.4585 13.0840

R2 40.33 37.4472 2.8828 7.1480

R3 13.11 15.1193 -2.0093 -15.3264

R4

Stream

16.91 13.0890 3.8210 22.5960

R5 13.55 11.6988 1.8512 13.6619

R6 17.44 14.5880 2.8520 16.3532

R7

File Server

15.86 14.4915 1.3685 8.6286

R8 93.74 96.9221 -3.1821 -3.3946

R9 21.91 19.1642 2.7458 12.5321

RMSE 2.6686

MAE 2.5745

MAPE 12.5249
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6.11 Artificial neural network (ANN) and Back propa-

gation learning

Artificial neural network (ANN) is an widely used machine learning method for su-

pervised learning [331–339, 339, 339–346]. ANNs are computer systems inspired

initially by the biological neural networks.

In many cases the functional relationship between the input variables and the output

variables are unknown. For example when modeling the relationship between complex

diseases, and their potential risk factors that can be useful for disease prevention strate-

gies. An ANN can be useful for building models for such complex scenarios. Unlike

generalized linear models (GLM) [347], an ANN does not require to specify the re-

lation between the input and output variables. Observed data can be used to train an

ANN, which learns an approximation of the relationship by gradually adapting the

parameters.

An ANN is a valuable statistical tool. They are an extension of GLMs and can be

used similarly. An ANN consists of several layers of nodes and connects between them

The connect usually exist between nodes on successive layers. A node is often called

an artificial neuron, while a connection is also known as the synapsis. Figure 6.23

shows an example of an artificial neural network.

In the example of Figure 6.23, artificial neurons are shown as circles and synapses

are shown as connections between the neurons. An artificial neural network can have

one input layer, one output layer, and several hidden layers. Inputs are feed though

input layers, data is transformed in the hidden layers, and finally, the output layer

provides the output.

In Figure 6.23, the leftmost layer is the input layer, the middle layer is the hidden

layer, and the rightmost layer is the output layer. In the figure, the input layer has

four neurons, and the hidden layer has five neurons. Each node of the input layer is

connected to all the nodes of the hidden layer. Data flow direction through the links

are indicates with allows. It can be seen that each node of the hidden layer receives

data from all the input nodes.

A weight is associated with each link. During the training phase, the learning algo-

rithm updates the weights using various formulas. When the input data pass through

a link, the associated weight is multiplied with the input and data is gathered in the
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Figure 6.23: An Artificial neural network (ANN).

hidden layers. Data collected in the nodes of the hidden layer are then transformed us-

ing a predefined function. As the links have different weights, the data collected from

different nodes of hidden layers are different. The transformed data is then propagated

through another set of links either to another hidden layer or output layer.

ANN is used in a lot of real world situation like Handwriting Recognition [348–

354], Speech Recognition [355–359], Remote Sensing and image classification [360–

362], Image compression [363–367], Data mining [368–370], Robotics and Autonomous

Systems [371, 372], Weather forecast [373, 374], Stock Exchange Prediction [375–

377], etc. Thus, an ANN is an important method in the field of machine learning. In

this chapter, An ANN is used here to predict the task ETV for various types of resource

intensive co-located VMs. The backpropagation algorithm is used here for training the

ANN. The algorithm is described in the next section.

6.11.1 Resilient Back propagation with weight backtracking

Backpropagation is one of the most widely used learning algorithms for multilayered

forward feed networks [331–333, 378, 379]. The basic idea behind the backpropaga-

tion learning algorithm is to apply the chain rule repeatedly to compute the influence
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1: for all weight do

2: weight← weight− grad× L.Rate

3: end for

Figure 6.24: Traditional back propagation pseudocode.

of each weight with respect to an error function E [380–382]. E is an arbitrary error

function. The relation can be mathematically expressed as:

∂E

∂wi,j

=
∂E

∂si

∂si
∂neti

∂neti
∂wi,j

(6.6)

Where, wi,j is the weight on the link, which connects neuron j to neuron i. si is the

output from from neuron i. The neti is the weighted sum of the inputs of neuron i.

Once the partial derivatives for each weight of the network are known, the function

tries to minimize the error by performing gradient descent:

wi,j(t+ 1) = wi,j(t)− ǫ
∂E

∂wi,j

(t) (6.7)

Where ǫ is the learning rate. t is the index for iteration steps. It is essential to choose

the value of ǫ carefully as it scales the derivative and effects the time needed for the

solution to converge [332]. If the value of ǫ is set too small, then it will require too

many steps to reach an acceptable solution. On the other hand, a large value of learning

rate can lead to oscillation, which can prevent the error from reach an acceptable value.

All weights of the backpropagation is updated using the Equation 6.7, which is

transformed into pseudocode in Figure 6.24. weight is the weight of individual

links that connect the neurons. All weight of the traditional backpropagation algo-

rithm updated using the same formula. grad is the gradient calculated according to

Equation 6.6. L.Rate is the learning rate for the neural network. For traditional

backpropagation algorithm, the learning rate is a constant and applied to all weights

equally. However, in resilient back propagation, each weight have separate learning

rates and the rates may change during the learning process. The resilient backpropa-

gation algorithm is discussed next in the section.

Resilient back propagation algorithm is based on the traditional back propaga-

tion [331–333]. In a traditional neural network, there is only one learning rate, and

it is applied to all weights during the training process. On the other hand, resilient
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backpropagation use a separate learning rate ǫi,j for each weight. The learning rates

can also be changed during the training process. Equation 6.7 shows how the weights

are adjusted during the training process of the traditional backpropagation algorithm.

For the resilient backpropagation the equation is changed as follows:

wi,j(t+ 1) = wi,j(t)− ǫi,j .sign

(

∂E

∂wi,j

(t)

)

(6.8)

In Equation 6.8, only the sign of the partial derivatives have been used instead of the

magnitude, this ensures an equal influence of the learning rate over the entire net-

work [332].

Resilient back propagation allows a way to speed up the convergence in shallow

areas of the search space. It is done by keeping an eye on the sign of the partial

derivatives of the error function. If the partial derivative keeps the sign, the learning

rate ǫi,j can be increased. On the other hand, if the sign changes that indicate that the

minimum region is missed due to a large learning rate. In this case, the learning rate

needs to be decreased. Also, the steps of the last iteration need to be undone. It is

achieved by using the weight backtracking technique.

In the weight backtracking technique, the last step of the iteration is undone, and

the learning rate is also decreased during the successive stages of iteration. Without

the use of backtracking technique, the algorithm can oscillate over the minimum value

several times. The pseudocode for resilient backpropagation algorithm with weight

backtracking for training a feed-forward neural network is discussed below [332].

Figure 6.25 shows the basic algorithm for resilient backpropagation and weight

backtracking. The for loop (from line 1 to 14) performs the same operations for all the

weights of the network. Inside the for loop, one of three sets of actions are taken based

on the sign of the multiplication of new and old gradient.

If condition in line 2 checks whether the old and new gradient have the same sign or

not. The new gradient is calculated using Equation 6.6 and the old gradient is the stored

gradient of the immediately previous step. Positive multiplication result indicates that

both gradients have the same sign and the minimum region have not reached yet. In

this case, the learning rate (L.Rate) is increased slightly for faster convergence. In

line 3, present L.Rate is multiplied with etaPLUS , which is a predefined constant

value. Then, the result is compared with another constant L.RateMAX and the lesser

value is chosen. L.RateMAX is a predefined constant that represents the maximum
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1: for all weight do

2: if (gradold × gradnew > 0) then

3: L.Rate← min (L.Rate× etaPLUS, L.RateMAX)

4: weight← weight− sign(gradnew)× L.Rate

5: gradold ← gradnew

6: else if (gradold × gradnew < 0) then

7: weight← weight + sign(gradold)× L.Rate

8: L.Rate← max (L.Rate× etaMINUS, L.RateMIN)

9: gradold ← 0

10: else if (gradold × gradnew = 0) then

11: weight← weight− sign(gradnew)× L.Rate

12: gradold ← gradnew

13: end if

14: end for

Figure 6.25: Resilient back propagation with weight backtracking.

learning rate. Thus, the learning rate is increased; however, making sure that it does

not cross the maximum limit. In line 4, this updated value of L.Rate is multiplied by

the sign of the new gradient and subtracted from the present weight. Thus, depending

on the sign of the new gradient L.Rate amount is either removed from or added to

the present weight. In line 5, the new gradient value is stored in the variable gradold

to be used in the next step.

Next, a else if condition is used to check if the old and new gradients have different

signs. In line 6, a negative multiplication result indicates that old and new gradients

have different signs. That means the algorithm has crossed the minimum region and

a backtracking step is required. First, the learning rate is multiplied by the sign of the

old gradient and added to the weight. In this way, the weight of the last step is restored

(line 7). Learning rate also needs to be decreased, and this is done in line 8. First the

resent learning rate is multiplied with another predefined constant (etaMINUS) and

compared with the predefined minimum learning rate (L.RateMIN ). Maximum of

the values are chosen to make sure that learning rate does not fall below a certain limit.
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At line 9, the old gradient is set to zero. Thus, the weight backtracking operation is

performed.

Next, another else if condition checks if the multiplication of old and new gradient

are zero or not. In this case, weights are updated (line 11); however, learning rate

(L.Rate) is not changed. The gradient value is also stored in the variable gradold.

These same steps are performed in each stage of the iteration.

In this dissertation, the package neuralnet [383–388] from the R programming

language [280–289, 389] has been used. The neuralnet package is described next.

6.11.2 An ANN package of R: neuralnet

The neuralnet is an R package to train a multi-layer neural network for regression

analysis. This section provides an introduction to neuralnet function, which is

used for training an ANN with a resilient backpropagation algorithm. The package

gives options to select several different learning algorithms for the neural network,

they are:

i) Traditional backpropagation algorithm.

ii) Resilient back propagation algorithm.

iii) Resilient back propagation with weight backtracking algorithm.

iv) Modified globally convergent resilient backpropagation algorithm.

In this dissertation, Resilient back propagation with weight backtracking algorithm

is used for training an ANN. Recall that the resilient backpropagation with weight

backtracking is described in Section 6.11.1 above.

The neuralnet package contains a flexible function to train neural networks.

The package can handle an arbitrary number of input variables, output variables, and

hidden layers. Functions are also provided to visualize the results and trained neural

networks. The neuralnet function has following interface [383, 383]:

neuralnet(formula, data, hidden = 1, threshold = 0.01,

stepmax = 1e+05, rep = 1, startweights = NULL,

learningrate.limit = NULL,

learningrate.factor = list(minus = 0.5, plus = 1.2),
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learningrate=NULL, lifesign = "none",

lifesign.step = 1000, algorithm = "rprop+",

err.fct = "sse", act.fct = "logistic",

linear.output = TRUE, exclude = NULL,

constant.weights = NULL, likelihood = FALSE)

Where parameter formula is a symbolic description of the model to be fitted. Pa-

rameter data is a data frame containing the variables specified in the formula. Pa-

rameter hidden is a vector of integer values that are used to specify the number of

hidden neurons in each layer. Parameter threshold is a floating point value that spec-

ifies the threshold for the partial derivatives of the error function as the stopping cri-

terion. Parameter stepmax defines the maximum number of training steps for the

neural network. If the neural network does not converge to any particular value after

the maximum number of steps, the training process is terminated. Parameter rep de-

fines the number of times the whole training process should be repeated. Parameter

startweights is a vector containing initial weights for the links of the neural network.

If the weights are not specified then random values are assigned.

Parameter learningrate.limit is a list containing lowest and highest limit for the

learning rate. Parameter learningrate.factor is a list containing multiplication factors

for the upper and lower learning rate. Above two parameters are used with the resilient

backpropagation algorithm. Parameter learningrate defines the learning rate for tra-

ditional back propagation algorithms. It is not used with the resilient backpropagation

algorithm. Parameter lifesign is a string that indicates how much data will be printed

during the iterations of the neural network.

Parameter lifesign.step is an integer that specifies the step size of the minimal

threshold to print. Parameter algorithm defines which learning algorithm to use for

training the neural network. Parameter err.fct is differentiable function, which is used

for error calculation. Parameter act.fct is a differentiable function used for smoothing

the results of the cross product of input and weights. Parameter linear.output is a

logical parameter that determines whether the output should be linear or not. Param-

eter exclude is a matrix that specifies the weight, which should be excluded from the

calculation. Parameter constant.weights is a list of weights that are treated as con-

stant; thus, not altered during the training process. Parameter likelihood is a logical

parameter that triggers further statistical calculations if error function shows specific
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behavior.

In this section, the neuralnet function is introduced, and function parameters

are discussed. This function of the R programming language is used for training an

ANN prediction model. Next section describes the prediction data and results for the

trained ANN.

6.12 Prediction with an Artificial neural network (ANN)

Previously in Section 6.9, the ETV data is used with LSR to build execution time

prediction models. The ETV data is collected using ICBM from three hypervisors as

described in the previous sections. This section shows that the ETV data can be used

with other machine learning methods like the Artificial Neural Network (ANN). In this

section, the prediction results from an ANN model are presented. The ANN is a widely

used machine learning method [331–339, 339, 339–346]. An ANN model can learn

from observed events. ANN is introduced in Section 6.11 and theory behind an ANN

learning algorithm are discussed in Section 6.11.1. Also, the R language package used

for training an ANN is discussed in Section 6.11.2. In this case, the ETV due to various

workload is input to an ANN. Then, the trained model is used for prediction.

Figures 6.4, 6.5, 6.6, 6.7, 6.8, 6.10, 6.11, 6.12, and 6.13 show ETV results for two

types of workloads. There are three basic types of workload; CPU, memory and I/O.

There is also three combinational workload; CPU-memory, CPU-I/O, and memory-

I/O. Prediction for two types of workloads is discussed in the next section.

6.12.1 Case 1: Execution time prediction for single resource con-

tention

The task ETV results are discussed in Sections 6.4, 6.5, and 6.6. Figures 6.4, 6.5,

6.6, 6.7, 6.8, 6.10, 6.11, 6.12, and 6.13 show that some tasks can show huge level of

variation during VM consolidation.

For example, Figure 6.6b shows that the execution time of the IOzone rapidly in-

creases with the increase of I/O intensive workload in the co-located VMs. In the final

stage, with 14 co-located I/O intensive VMs the IOzone takes 174.87 minutes to exe-

cute on ESXi. The summation of all execution times for eight combinations is 792.19

minutes or 13.20 hours.
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Similarly, in the final stage of Figure 6.10b, it takes 168.78 minutes to execute on

XenServer. The summation for all of the settings is 639.82 minutes or 10.66 hours.

Thus, tasks can show a lot of ETV due to single resource contention and summation

of all the execution times can be a large one. It would be a time-consuming process to

profile all the tasks for all co-located VM combinations. A lot of profiling time can be

saved if the ETV due to the higher number of co-located VMs can be predicted from

the observed ETV due to the lower number of co-located VMs.

In this section, an ANN model is used for this purpose. The ANN model is trained

with the task execution times due to the lower number of co-located VMs. Then, it

is used to predict the execution time variation due to the higher number of co-located

VMs. The prediction results for ESXi are given in Table 6.11.

The second row of the Table 6.11 shows the four actual execution time variation

of the Nbench; they are taken from Figure 6.4a. Recall that, Figure 6.4a shows eight

Table 6.11: ANN prediction of execution time for higher number of VMs.

No of CPU-intensive

co-located VMs
8 10 12 14 RMSE MAE

Measured Nbench execution

time (minute)(see Figure 6.4a)
58.48 65.03 79.64 90.99

ANN prediction (minute) 63.08 70.48 84.75 97.91

Prediction error (minute) -4.60 -5.45 -5.11 -6.92 5.58 5.52

No of Memory-intensive

co-located VMs
8 10 12 14 RMSE MAE

Measured Stream execution

time (minute)(see Figure 6.5b)
49.29 59.65 70.08 80.41

ANN prediction (minute) 53.93 64.92 75.59 85.79

Prediction error (minute) -4.64 -5.27 -5.51 -5.38 5.21 5.20

No of I/O-intensive co-located

VMs
8 10 12 14 RMSE MAE

Measured IOzone execution

time (minute)(see Figure 6.6b)
115.94 138.35 163.14 174.87

ANN prediction (minute) 123.81 144.36 171.33 186.53

Prediction error (minute) -7.87 -6.01 -8.19 -11.66 8.67 8.43
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execution time variations of Nbench due to CPU intensive co-located VMs. Data of

four lower combinations of co-located VMs (0, 2, 4, 6) are used for training. Then, the

ANN model is used for predicting the execution time variation of Nbench due to the

higher number of co-located VMs (8, 10, 12, 14). Predictions are shown in the third

row of Table 6.11, and the errors are shown on the fourth. The Root Mean Squared

Error (RMSE) for this set of prediction is 5.58.

This process can be repeated for other resource-intensive co-located VMs, too. For

example, the sixth row of the Table 6.11 shows the actual ETV of the Stream due to

four higher configuration of memory intensive co-located VMs. This data is taken

from Figure 6.5b. Here, also the lower four setting of co-located VMs have been used

for training an ANN model. Then, the model is used to predict the execution times due

to four higher combinations of co-located VMs. The RMSE for this set of prediction

is 5.21.

Table 6.12: ANN prediction of execution time for lower number of VMs.

No of CPU-intensive

co-located VMs
0 2 4 6 RMSE MAE

Measured Nbench execution

time (minute)(see Figure 6.4a)
13.48 18.41 24.29 33.89

ANN prediction (minute) 16.7 22.18 28.38 39.56

Prediction error (minute) -3.22 -3.77 -4.09 -5.67 4.28 4.18

No of Memory-intensive

co-located VMs
0 2 4 6 RMSE MAE

Measured Stream execution

time (minute)(see Figure 6.5b)
10.20 19.24 28.97 39.13

ANN prediction (minute) 14.19 23.34 33.58 44.89

Prediction error (minute) -3.99 -4.10 -4.61 -5.76 4.66 4.61

No of I/O-intensive co-located

VMs
0 2 4 6 RMSE MAE

Measured IOzone execution

time (minute)(see Figure 6.6b)
12.95 35.85 61.28 89.81

ANN prediction (minute) 16.01 41.64 67.36 97.07

Prediction error (minute) -3.06 -5.69 -6.08 -7.26 5.73 5.54
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Similarly, the last three rows of Table 6.11 show the prediction for the IOzone due

to I/O intensive co-located VMs. ETV data of IOzone due to I/O intensive co-located

VMs on the ESXi hypervisor is shown in Figure 6.6b.

In a data center, the number of co-located VMs may change in any order. Thus, a

reverse scenario may also occur. That is, the number of co-located VMs may drop in

a server after some time. In such case, the execution time variations due to the higher

number of co-located VMs would be known and one needs to predict the variations

due to the lower number of co-located VMs.

This reverse situation is considered in Table 6.12. In this case, the higher numbers

of co-located VM data (8-14) is used to train the ANN model. Then, the execution

time variations due to a lower number of co-located VMs is predicted. The RMSE of

prediction in this case for the Nbench, Stream, and IOzone are 4.28, 4.66 and 5.73,

respectively.

6.12.2 Case 2: Execution time prediction for multiple resources

In the last section, execution time variations due to only single resource intensive work-

load have been considered. That is, at each stage only one type of resource intensive

co-located VMs is increased. Either CPU, memory or I/O intensive workload is in-

creased at a time. In this section, the contention due to the combination of workload is

examined.

Three resource combinations are considered CPU-memory, memory-I/O, and CPU-

I/O combinations. This section demonstrates the relationship between the execution

time variation due to basic resource usages and that of the combination of resources.

The objective is to train an ANN model with the performance variation data due to

basic resource contention, then use it to predict the execution time variations due to

the combination of resources.

For the ANN model, the training and testing are done with non-overlapping data

sets. The training set contains six tasks; Nbench, Unixbench, Cachebench, Sysbench

memory test, Dbench, and IOzone. The testing set contains three separate tasks; Sys-

bench CPU test, Stream, and Filebench. Furthermore, training and testing data are

collected from different hypervisors. It is done to show the general applicability of the

presented methodology. The prediction results hold across the hypervisors and VM

configurations.
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(b) ANN testing with separate three tasks ETV data.

Figure 6.26: ANN training and testing with separate data sets.

Figure 6.26a shows how input and target data are feed to an ANN model during

the model training phase for predicting execution time variation due to CPU-memory

workload combination. In this case, all training data is collected from the ESXi. Recall

that ANN learning algorithms and R implementation packages are already discussed

in Sections 6.11, 6.11.1, and 6.11.2. Figure 6.26a only demonstrates what tasks are

used as input and target during the training process.

Execution time variation of the training set due to three basic resource intensive

co-located VMs are used as the training input. Recall that, the ETV on ESXi due to

the three basic and combinational workload are shown in Figures 6.4a, 6.5b, and

Figure 6.6c. The execution time variation of the same tasks due to CPU-memory
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workload combination is used as the training output. The training and testing data

set are presented in the previous sections. The same data is used here, and instead of

LSR, the ANN is used to build the models.

Next, Figure 6.26b shows the prediction process for CPU-memory resource com-

bination. For testing data from three separate tasks on another hypervisor are used.

Here, the execution time variation of the test set due to CPU, memory, and I/O in-

tensive co-located VMs on Xen are used as the test input. Then, the ANN model

prediction is compared with the actual execution time variation due to CPU-memory

resource contention on Xen.

Table 6.13 shows the ETV prediction results of ANN for the Sysbench CPU test on

Xen. As before, in one of the VMs, the Sysbench CPU test is run, and CPU and mem-

ory intensive workloads are run on co-located VMs. The first column of Table 6.13

shows the number of co-located VMs with CPU and memory intensive workload are

used at each stage. The second column shows the execution times of the Sysbench

Table 6.13: ANN prediction of execution time for CPU & Mem workload combina-

tions on Xen.

No of CPU &

Mem. intensive

co-located VMs

Sysbench CPU

test execution

time (minutes)

(see

Figure 6.11c)

ANN

prediction

(minutes)

Prediction

error

(minutes)

Percentage

prediction

error (%)

0 11.07 13.03 -1.96 -17.70

2 11.01 13.57 -2.56 -23.25

4 11.86 14.38 -2.52 -21.24

6 13.64 16.22 -2.58 -18.91

8 15.94 19.57 -3.63 -22.77

10 17.63 20.84 -3.21 -18.20

12 19.86 24.29 -4.43 -22.30

14 21.49 25.71 -4.22 -19.63

RMSE 3.24

MAE 3.13

MAPE 20.50
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CPU test at each stage. The ANN prediction, error and RMSE are shown in the fol-

lowing rows as well. The third column shows the execution time prediction of the

ANN model at each stage. The fourth column lists the prediction error. At the end of

the fourth column, the RMSE of prediction for this set of data is also given, it is 3.24.

It is also possible to train the ANN model for other workload combinations. ANN

predictions for Memory-I/O, and CPU-I/O intensive combinational workload are shown

in Tables 6.14, and 6.15, respectively. In each case, the prediction error and RMSE are

also shown. The training and testing procedures followed here are similar to that are

shown in Figs. 6.26a, and 6.26b, respectively. The total time taken by ANN training

and prediction process is only 0.1330 seconds. Thus, the process is speedy and can be

easily retrained in real time as new task execution variation data arrives.

Next, Tables 6.16, 6.17, and 6.18 show the execution time variation prediction for

the same three resource combinations on ESXi, respectively. In this case, the same

procedure described as above is followed. The difference only is that now the training

Table 6.14: ANN prediction of execution time for Mem. & I/O workload combinations

on Xen.

No of Mem. &

I/O intensive

co-located VMs

Stream (minutes)

execution time

(see Figure 6.12b)

ANN

prediction

(minutes)

Prediction

error

(minutes)

Percentage

prediction

error (%)

0 11.66 9.21 2.45 21.01

2 20.83 17.47 3.36 16.13

4 31.16 27.46 3.70 11.87

6 41.95 37.46 4.49 10.70

8 52.49 47.33 5.16 9.83

10 62.63 57.37 5.26 8.39

12 72.94 67.01 5.93 8.12

14 83.24 76.42 6.82 8.19

RMSE 4.83

MAE 4.64

MAPE 11.78
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Table 6.15: ANN prediction of execution time for CPU & I/O workload combinations

on Xen.

No of CPU & I/O

intensive

co-located VMs

Filebench execution

time (minutes) (see

Figure 6.13c)

ANN

prediction

(minutes)

Prediction

error

(minutes)

Percentage

prediction

error (%)

0 12.82 15.38 -2.56 -19.96

2 13.69 16.6 -2.91 -21.25

4 14.87 18.5 -3.63 -24.41

6 15.99 19.77 -3.78 -23.63

8 18.16 22.09 -3.93 -21.64

10 20.36 24.8 -4.44 -21.80

12 23.59 27.73 -4.14 -17.54

14 27.34 32.26 -4.92 -17.99

RMSE 3.85

MAE 3.78

MAPE 21.02

Table 6.16: ANN prediction of execution time for CPU & Mem. workload combina-

tions on ESXi.

No of CPU &

Mem. intensive

co-located VMs

Sysbench CPU test

execution time

(minutes) (see

Figure 6.4c)

ANN

prediction

(minutes)

Prediction

error

(minutes)

Percentage

prediction

error (%)

0 10.92 13.44 -2.52 -23.07

2 11.52 14.09 -2.57 -22.30

4 12.79 15.41 -2.62 -20.48

6 14.04 17.31 -3.27 -23.29

8 16.37 20.28 -3.91 -23.88

10 19.17 23.18 -4.01 -20.91

12 21.04 25.91 -4.87 -23.14

14 23.82 28.66 -4.84 -20.31

RMSE 3.69

MAE 3.57

MAPE 22.17
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Table 6.17: ANN prediction of execution time for Mem. & I/O workload combinations

on ESXi.

No of Mem. &

I/O intensive

co-located VMs

Stream execution

time (minutes) (see

Figure 6.5b)

ANN

prediction

(minutes)

Prediction

error

(minutes)

Percentage

prediction

error (%)

0 10.20 12.38 -2.18 -21.37

2 19.46 22.99 -3.53 -21.00

4 29.45 32.66 -3.21 -10.89

6 39.47 43.77 -4.30 -10.89

8 49.81 54.77 -4.96 -9.95

10 60.38 65.76 -5.38 -8.91

12 71.00 76.80 -5.80 -8.16

14 81.42 87.43 -6.01 -7.38

RMSE 4.64

MAE 4.47

MAPE 12.31

Table 6.18: ANN prediction of execution time for CPU & I/O workload combinations

on ESXi.

No of CPU & I/O

intensive

co-located VMs

Filebench execution

time (minutes) (see

Figure 6.6c)

ANN

prediction

(minutes)

Prediction

error

(minutes)

Percentage

prediction

error (%)

0 13.88 16.18 -2.30 -16.57

2 16.25 19.57 -3.32 -20.43

4 19.49 22.66 -3.17 -16.26

6 22.77 26.01 -3.24 -14.22

8 25.96 29.13 -3.17 -12.21

10 27.45 32.33 -4.88 -17.77

12 29.12 33.52 -4.40 -15.10

14 31.41 35.96 -4.55 -14.48

RMSE 3.72

MAE 3.62

MAPE 15.88
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tasks are run on the XenServer, and testing data is collected from the ESXi. These pre-

diction results for XenServer hypervisor is similar to that of ESXi hypervisor; there-

fore, discussion about the results are not repeated. In this case, the total process of

training an ANN model with the XenServer hypervisor data took only 0.1230 seconds.

6.12.3 Case 3: Execution time prediction for a parallel workflow

In previous sections, the task execution time variation due to different resource inten-

sive co-located VMs are investigated. It is explained previously that a scientific work-

flow usually consists of a set of smaller tasks. Here, the methodology of the previous

sections will be applied to the tasks of a scientific workflow.

In Chapter 5, experiments have been done with a scientific workflow, called the

GALFA-HI. In this section, the same workload is used for testing the prediction ability

of the ANN model. Recall, the GALFA-HI workflow in introduced in the Section 5.7.1

and shown in Figure 5.1.

The GALFA-HI is an ongoing survey and will eventually cover 13,000 square de-

grees of the sky on completion. That is a considerable portion of the sky where the sky

is divided into smaller parts for detailed data collection. Thus, the GALFA-HI work-

flow is run again and again on the small data cubes to combine them all into a larger

mosaic image. In a virtualized data center, the number of co-located VMs is going to

be different from each run of the workflow. Reliable task execution time prediction for

any combination of co-located VMs can improve the server resource utilization.

Performance prediction procedure used for the tasks of GALFA-HI workflow is

shown in Algorithm 1. It is based on the experimental observation of the previous

sections. Results from cases 1 and 2 show that task execution time depends on the

total number of co-located VMs and their resource usages types.

Furthermore, recall that in Section 4.3.2 it was shown that the actual location of

VMs on the server is not a major influencing factor. The cases also show that it is

possible to predict the task execution time for any combination of resource-intensive

co-located VMs using an ANN. It is low-cost and can be updated at run-time with new

data. Those observations are put together to create the Algorithm 1.

The execution time variation of each task of GALFA-HI workflow is profiled in-

dividually using the ICBM, described previously in Section 4.4. Figure 5.1 shows

that the GALFA-HI workflow has eight levels. Recall that, the execution time of
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Algorithm 1 Procedure for task execution time prediction.

1: Input: A combination of VMs on the server and a task.

2: Output: Expected task execution time.

3: Categorize the co-located VMs according to their resource intensities

4: and count the total VM number for each resource type.

5: if Final count of VMs matches with a stored combination then

6: Output the stored expected task execution time.

7: else

8: Use the previously trained ANN to predict the task execution time

9: When task execution finishes, use the new data to update the ANN training.

10: end if

the tasks of each level are shown in Table 5.1. It shows the execution time of the

tasks without any interference from co-located VMs. As shown in the Table 5.1 the

tasks mShrinkCube, mImgtbl, mMakeHdr, mProjectCube, mAddCube, m-GetHdr, and

mViewer take 3.878, 0.02, 0.02, 39.774, 12.32, 0.02, and 0.04 minutes to execute, re-

spectively.

The execution time variation predictions for two of the tasks are shown in Fig-

ure 6.27. They are the mShrinkCube and mProjectCube. Figure 6.27a shows the per-

formance variation of the mShrinkCube task for I/O-intensive resource contention in

the server. Here, mShrinkCube is executed with a different combination of co-located

VMs on the XenServer, just as described in cases 1 and 2. With those execution time

variation data the ANN model is trained.

The prediction results are tested against data of two other hypervisors; Xen and

ESXi. To test the prediction model, random numbers of I/O intensive VMs were run

with the mShrinkCube task on both hypervisors. The collected execution time vari-

ations are then grouped and ordered according to the number of co-located VMs as

shown in Figure 6.27a. The Xen hypervisor ETV data is shown in red, while ESXi data

is shown in green. ANN execution time predictions are shown in blue. The RMSE of

predictions for mShrinkCube is 2.32, and 1.02 on ESXi, and Xen, respectively.

Next, ANN prediction for the mProjectCube task is shown Figure 6.27b. In this
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case, also the XenServer data is used to train the ANN model. The prediction ability

of the model is tested against the data from Xen and ESXi, separately. The RMSE of

prediction for the mProjectCube task (Figure 6.27b) on ESXi, and Xen are 13.93, and

5.82, respectively.

Algorithm 1 is straightforward and can be easily integrated with any existing sys-

tem. Both the training and prediction overhead are low. Also, the ANN model can be

easily retrained with new data during runtime to improve prediction accuracy.

6.13 Conclusion

This chapter addresses an important issue related to VM performance in data centers,

the ETV of VMs due to consolidation on multiple hypervisors. Task performance

variation due to consolidation is a major barrier to efficiently scheduling scientific

workflow on virtual clusters. Accurate predict of task performance can be a crucial

factor for increasing the server efficiency and resource utilization.

Recall that Chapter 4 presents a methodology (ICBM) for profiling and building

performance model for consolidated VMs. Previously, in Chapter 5 a framework is

implemented that allows applying ICBM to a large number of VMs and hypervisors.

This chapter combines the works of the previous chapter to present several prediction

models for multiple hypervisors based on profiling. The models can predict the perfor-

mance variation of VMs due to three resource combinations; CPU-Memory, CPU-I/O,

and Memory-I/O. Experimental results are shown from three well-known hypervisors;

VMware ESXi, XenServer, and Xen. From the experimental data of the three hypervi-

sors, unified execution time prediction models are built for consolidated hypervisors.

The experimental results presented here are real system data, and no simulation

has been used in this chapter. First, the ETV due to basic workload types is profiled

with the help of ICBM. The basic workload types are the CPU, memory and I/O. Then,

this data is used to predict the ETV due to resource combinations, like CPU-Memory,

CPU-I/O, and Memory-I/O.

The ICBM presented in Chapter 4 is a VM consolidation performance profiling

technique that can be used with various machine learning and prediction algorithms.

In Chapter 4, only LSR is used to build prediction models from the collected data. In

this chapter, both LSR and ANN models are trained with the data collected to show
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that the ICBM can work with both.

In this chapter, an R programming language package is used to build LSR predic-

tion models. Detail of usages of the package is already given previously in Section 4.9.

The unified LSR models are built using three hypervisors data; however, training and

testing are done using mutually exclusive data set. Nine random workloads have been

run on three hypervisors each to test the prediction accuracy of the models, and their

results are shown in Tables 6.8, 6.9, and 6.10. The tables show that the mean absolute

percentage error (MAPE) for ESXi, XenServer, and Xen hypervisors are 9.5255%,

29.7558%, and 12.5249%, respectively.

This chapter also presents prediction models built with an artificial neural network

(ANN) with backpropagation. Section 6.11 discusses about ANN. Section 6.11.1 gives

theoretical background about resilient Back propagation with weight backtracking.

Section 6.11.2 describes the neuralnet package of R programming language that is

used to build ANN models.

Tables 6.13, 6.14, and 6.15 shows the prediction results for Sysbench CPU test,

Stream, and Filebench on the Xen hypervisor, respectively. Tables show that the

prediction model MAPE for these three tasks on Xen are 20.50%, 11.78%, and

21.02%, respectively. On the other hand, Tables 6.16, 6.17, and 6.18 show the

prediction results for the same three tasks on the ESXi hypervisor. The MAPEs of

prediction for the three tasks are 22.17%, 12.31%, and 15.88%, respectively.

The MAPE results presented in this chapter show that in some cases the LSR mod-

els perform little better than ANN models. This is expected as it is known that the

training data size can affect the accuracy of machine learning methods [327–330].

Neural networks are designed to work with a large set of data and usually produces a

better result when hundreds and thousands of data samples are present. For a relatively

smaller set of data, the accuracy of LSR prediction models can outperform that of an

ANN.



Chapter 7

Analyzing the impact of memory

allocation on the consolidated virtual

machines performance using the

ICBM

“Essentially, all models are wrong, but some are useful”

— George Edward Pelham Box* (1919–2013)

7.1 Introduction**

The Incremental Consolidation Benchmarking Method (ICBM) was introduced in Chap-

ter 4. Then, Chapter 5 presents a framework to apply ICBM on multiple hypervisors

effectively. Chapter 6 uses the data collected through the framework to train Least

Square Regression (LSR) and Artificial Neural Network (ANN) models. This chapter

continues experiments with the consolidation performance and resource allocation.

Virtualization is one of the most critical technologies behind the Cloud. It plays a

significant role in providing the Cloud services. In this chapter, the principle of ICBM

*Image source: http://bulletin.imstat.org/2013/07/obituary-george-e-p-
box-1919-2013/

**The contents of this chapter were published as [45]. The author of the dissertation has designed the

study, conducted the experiments and collected the data. The author has also done all the data analysis

and drafting.
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is used to analyze the impact of resource allocation on consolidated Virtual Machines

(VMs). A virtualized server may host many VMs, which are called the co-located

VMs.

VMs are consolidated to increase the server resource utilization. However, it leads

to VM performance degradation. In data centers, often the VM number per server is

kept limited to maintain a certain performance level. As a result, the overall utilization

of servers in data centers is low [390]. Performance prediction of consolidated VMs

can help data center owners to take an informed decision about how many VMs to run

without facing too much performance penalty.

The Resilient Distributed Datasets (RDDs) was introduced in 2012, it performs all

operations in the main memory of a Cluster [391]. It claims to be twenty times (20x)

faster than Mapreduce [231], Dryad [392] and other parallel data processing frame-

works. However, it is not made clear whether such performance can be gained for

consolidated VMs, too. This work looks into the relationship between VM resource

allocation and consolidation performance. In particular, how the VM memory alloca-

tion and system events like interrupt and page-faults play a role in the consolidation.

System interrupt and page-fault handling are crucial issues for the hypervisor. VM

scheduling is a hierarchical process [393–395]. The hypervisor is responsible for

scheduling the vCPUs and other physical resources among the VMs. Virtualization

process divides a physical CPU into several virtual CPUs or vCPUs, and this makes

the interrupt and page fault handling process much more complicated for the hyper-

visor. Most Cloud workloads are either I/O or memory intensive [396, 397]. Both

the I/O and memory intensive workload generates a lot of system-interrupts and page

faults. Thus, handling too many interrupts acquires a lot of system resources leading

to a reduced application performance [398].

Recently, the VM consolidation and application performance of virtualized servers

have received a lot of attention from the researchers across-the-board [68, 292, 294,

295, 399–412]. Nonetheless, those works do not explore the connection between the

system events and consolidation performance. Various host system event data can be

logged and later analyzed [413]. However, getting an accurate picture of the system

performance from them is much more challenging [414]. Previously, it is also shown

that not all the host system event data is statistically significant [415].

A VM can not directly access the shared physical resources like the memory or

I/O. The hypervisor is responsible for sharing such resources with the VMs. There are
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three primary resources to be shared; CPU, memory and I/O. Among them, the CPU is

the easiest to schedule. However, memory and I/O virtualization techniques are more

complicated. In general, accessing any shared virtualized system bus is a costly and

cumbersome process.

VMs cannot perform operations on the memory outside the region allocated by the

hypervisor. For example, to handle a page fault first, the VM sends an interrupt signal

to the hypervisor. The hypervisor initiates the appropriate course of actions. When the

process is complete, the hypervisor sends back the new memory pages addresses to the

VM. The hypervisor may receive interrupt requests from multiple VMs at once.

The sequences make the interrupt handling process for the hypervisor more costly

compared to that of the physical machine. Similarly, when a VM needs to access the

shared I/O bus, it needs to send an interrupt signal to the hypervisor. Since the memory

and I/O intensive tasks can generate a lot of interrupts, their performance tends to suffer

the most in consolidated servers. To improve the efficiency of virtualized servers their

performance variation under consolidation is investigated here. The contributions of

this work are briefly stated below:

i) This work investigates the effect of resource allocation and critical system events

on the VM consolidation. Experimental results show that such system events

have a significant influence on the consolidated VMs performance and by careful

resource allocation it is possible to improve the performance;

ii) Results also indicate that the host hardware counters do not provide a reliable

picture of the system events like the interrupts and page-faults. However, the co-

located VMs system event data can be used better for performance prediction;

iii) We show that the execution time profiling can help to predict the consolidated

VMs performance variation. VMs system counter data is used to train an Artifi-

cial Neural Network (ANN). Then, the ANN is used to predict the performance

variations of the tasks of a parallel workflow.
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7.2 Motivation: consolidated VMs performance and host

event counters

A parallel workflow can be broken into smaller tasks. Figure 5.1 shows an example

of parallel work flow [297] called the GALFA-HI. It is introduced and discussed in

Section 5.2 of Chapter 5. The GALFA-HI data archive stores a large-scale survey

data of the Galactic neutral hydrogen [416]. It is an ongoing project with the Arecibo

L-band Feed Array (ALFA) radio telescope system [417].

The workflow comprises of sixteen tasks, which are discussed in detail in Sec-

tion 5.7.1. The workflow is re-introduced here because it is required for clarification

and discussion of this chapter. In the next section, the relevance of data and code reuse

in the context of workflow scheduling is discussed.

7.2.1 Data and code reuse and Experimental setup

To schedule the tasks of a scientific workflow (like that of Figure 5.1 in Section 5.2)

on VMs it is necessary to take into account the effect of consolidation on VMs. When

a group of tasks is scheduled on a group of separate physical machines, the perfor-

mance interference is not an issue. However, as shown in the last several chapters

the consolidated VMs exert pressure on each other, and as a result, their performance

degrades.

In the last few chapters, the effect of consolidation on task execution time has been

analyzed. In this chapter, the relation between the task execution time variation and

the system event and page faults are examined. Concurrently running VMs on a host

server can generate a lot of event counter data. It is intuitive to collect the host data

and analyze. However, results of the next section will demonstrate that it is not the best

approach for the analyzing the VM performance interference.

Data and code reuse are standard practice in the Cloud [391]. Some examples in-

clude iterative data mining applications, like the MapReduce [418, 419] and Dryad [392].

Reuse of data is also common in iterative machine learning and graph algorithms, like

the PageRank, K-mean clustering, and Logistic regression. In above cases, the same

function is repeatedly applied to the subset of data. With each iteration the data volume

reduces.

An experiment is set up to replicate the above scenario with a Dell XPS-8500
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system. It has one Intel i7-3770 processor with four cores, eight threads, and 32 GB

memory. Xen 4.6 is deployed on the system, and sixteen VMs are set up. Each VM

has one virtual CPU (vCPU), 2GB RAM, and 50 GB hard disk space.

Now that the basic idea and set up of the experiments are described the next section

explains how the experiment is performed.

7.2.2 Consolidation performance of an I/O intensive task

The Sysbench file I/O test is used in each co-located VM. The test performs random

reads and writes operations on 1GB file data. Each task instance issues 100,000 ran-

dom reads and writes requests. Experiments are done in stages as shown in Figure 7.1a.

At stage 1, fifteen instances of the test are run on fifteen VMs and their execution finish

times are recorded. In stage 2, the same tests are run on thirteen VMs.

The iterative machine learning and graph algorithms perform repeated operations

on the sub-datasets. At each iteration, the data is refined and reduced in volume. The

process continues until the desired result set is obtained. In this experimental setup the

I/O-intensive VMs are repeatedly run; at each stage, the number of co-located VMs is

reduced. Thus, the total volume of data to be processed becomes smaller in successive

stages.

Figure 7.1b shows the arithmetic mean of the execution times of the tasks at each

stage. The experiment is run three times and the execution time of each task at each

VM: Sysbench file test

Stg.8

Stg.7

Stg.6

Stg.5

Stg.4

Stg.3

Stg.2

Stg.1

Xen

(a) Stages with decreasing number of co-located VMs.

Figure 7.1: Experiment with the Sysbench File I/O test in Xen.
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Figure 7.1: Experiment with the Sysbench File I/O test in Xen (Continued).

stage is collected. For example, at stage 1, fifteen VMs simultaneously run the Sys-

bench file I/O test. The execution finish times of the fifteen tasks are 102.61, 102.39,

102.62, 102.32, 102.40, 102.05, 102.44, 102.02, 102.57, 102.47, 102.62,

102.19, 102.64, 102.54, and 102.45 minutes, respectively. The first bar of Fig-

ure 7.1b shows their arithmetic mean; 102.42 minute.

Similarly, the next bar shows the arithmetic mean of the tasks of the second stage

where thirteen VMs are simultaneously running (second line of Figure 7.1a), and it is

86.30 minute.

It is clear that as the number of VMs are decreasing so is the arithmetic mean of the

execution times. In other words, the co-located VMs performances are improving in

the successive stages. Thus, from the data, it is easy to see how the task performances

are affected by the co-located VMs.

Next, it is going tested how the consolidation performance correlates with the host

system event counters.

7.2.3 Host system counter data for Sysbench File I/O test

The I/O-intensive VMs generate a significant number of system interrupts and page

faults. The objective of the experiment is to observe how the host system event counters

are affected by the consolidated I/O workload. Figure 7.2 shows changes in the host
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system interrupt, and page fault counter data during the experiments of Figure 7.1a. All

data is collected from the dom0 while the different stages of VMs were running. The

proc filesystem keeps detail record about the system performance and processes [420].

Data is collected at a one-minute interval for the duration of the execution of each stage

(each line in Figure 7.1). Figure 7.2 shows the arithmetic mean of the collected data.

Figure 7.2a shows the arithmetic mean of the Hypervisor callback (HYP) inter-

rupts of the host. It is intuitive to think that more VMs with I/O activities will notice-

ably increase the host interrupt counters. However, it is shown in Figure 7.2a that the

host system-interrupt values do not deviate much due to the change in the number of

co-located VMs. For example, the HYP interrupts due to fifteen co-located VMs is

1061583 interrupts/minute (stage 1 of Figure 7.1a).

Next bar, shows the arithmetic mean of interrupts collected at the one-minute in-

terval for thirteen co-located VMs, and it is 1096830. Similarly, following bars show

the interrupt numbers for successive stages. There is no apprehensible pattern among

the values.

The last bar on Figure 7.2a shows the HYP interrupts when no VM is running on

the system; the host is still registering 1046581 HYP interrupts per minute. Even

though no tasks are running the hypervisor has to perform necessary VM scheduling

and maintenance services. The residual interrupts are the result of those services.
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Figure 7.2: The host event counter data for various stages of the Sysbench File I/O

consolidated tests in Xen.
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Figure 7.2: The host event counter data for various stages of the Sysbench File I/O

consolidated tests in Xen (Continued).

Next, Figure 7.2b shows the number of Rescheduling (RES) interrupts occurred in

the host during each stage. The data is collected at a minute interval. Linux uses the

RES interrupts to wake up an idle CPU-core to spread the load across the available

CPU cores. It can be seen that RES interrupt of the host does not show a significant

difference with the change in VM number.

Similarly, Figure 7.2c shows the number of page fault happening at each stage of

the experiment. The page fault data are collected from the proc file system with a
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one-minute interval. Again, there is no significant pattern appearing among the bars.

Above results show that the host interrupt and page fault data are not good indi-

cators of consolidated VMs performance. It is also true for other types of resource

intensive VMs, as shown next.

7.2.4 Consolidation performance of a memory intensive task

Figure 7.3 shows results for consolidated memory-intensive VMs. In this case, the

experimental setup is similar to that of Figure 7.1. However, instead of I/O-intensive

tasks now memory-intensive tasks are used, and stages number is reduced to five. The

stages contain 15, 8, 4, 2, and 1 VMs, respectively. Figure 7.3 shows the arithmetic

mean of execution times of the Sysbench memory test for five stages.

The Sysbench memory allows setting data volume for the test. Figure 7.3 shows

the execution time variations for two different volumes, 512GB and 1024 GB. The

first pair of bars shows the task execution times of both volumes for fifteen co-located

VMs. For 512GB data the execution completion time is 17.47 minute.

The Sysbench is designed to test the overall memory throughput of the system, not

only the main memory. Recall that each VM is allocated 2GB RAM only. Thus, not

all test data is unique, and the same values may be used multiple times, this is a part of

the test, too.
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Figure 7.3: Execution times (min) data for various stages of the Sysbench memory

consolidation tests in Xen.
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The second bar of Figure 7.3 (shown in light brown) shows the arithmetic mean

of execution times for 1024GB data; it is 34.84 minute. That is now on all fifteen

VMs the Sysbench memory is set to process 1024GB data. Hence, the execution time

increase is 99.42% compared to the previous volume of data.

Similarly, next set of bars shows the execution times of other stages of VMs. For

512GB data, the arithmetic mean of execution times of 4, 2, and 1 co-located VMs are

6.34, 5.99, and 5.96 minutes, respectively.

Notice, for up to four, co-located VMs the overall consolidation performance is

almost the same. However, the above four VMs the performance starts to degrade

rapidly. The same thing happens to the 1024GB data, too. That is, up to four co-

located VMs the arithmetic mean of execution times is about 12 minute. Beyond four

VMs the execution times start to deteriorate rather quickly.

Next, we check the host system counter data for the same stages of experiment.

7.2.5 Host system counter data for Sysbench memory test

Figure 7.4a shows the host HYP interrupts number changes during the same stages of

consolidation. Here, the interrupt data is pulled from the host proc filesystem with 10

seconds interval. The HYP interrupt data does not show any pattern of change due
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Figure 7.4: The host event counter data for various stages of the Sysbench memory

consolidation tests in Xen.
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Figure 7.4: The host event counter data for various stages of the Sysbench memory

consolidation tests in Xen (Continued).

to consolidation stages. Next, Figure 7.4b shows the RES interrupt of the host during

the same stages. The RES values do not show any statistically significant pattern,

either. Similarly, experiments have been done with other host counter data and resource

intensive VM, too. However, in all cases findings are quite similar; the host system

counters do not show any pattern of change due to consolidation stages.

7.2.6 Discussion

In summary, the increase in consolidation decreases the overall VMs performances.

It is known that, I/O and memory intensive tasks increases system interrupt and page

faults [421]. However, the experimental results show that the host event counters do

not show any significant pattern. The results are consistent with earlier findings that

the host system data are not statistically significant for the consolidation performance

monitoring [415].

It is not easy to extract performance information from the hypervisor cache, and

page-fault event traces [414, 422]. The main reason behind is that the hypervisor uses

many techniques to reduce the overall system interrupt and page-fault overhead. For

example, the Interrupt Coalescing is used to reduce the interrupt handling cost [393,

396, 423, 424].
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Similarly, other techniques are applied to merge the page fault events of co-located

VMs. Thus, by just logging the host event counters, it is not possible to get the accurate

picture of the performance. On the other hand, profiling task execution times can give

a better idea of the performance in practice.

7.3 The consolidated task performance and VM mem-

ory allocation

The previous section demonstrates that profiling the system event counter is not a good

way to monitor the consolidation performance. On the other hand, the task execution

time variation shows a clear pattern with the consolidation performance changes.

This section examines the task execution time variation due to memory allocation

of the co-located VMs. In the previous sections, the numbers of VMs are increased in

stages. However, the task memory usage is kept fixed. Here, both the number of VMs

and the task memory usages are raised to observe their effect on consolidation.

At first, the tasks with small memory requirement is used that can be fitted inside

the RAM of the VM. In successive stages, the size of memory is increased so that

the memory size becomes too big to fit in the RAM. The objective is to examine the

performance variations of two types of consolidated tasks; tasks that can be entirely fit

into the RAM and the tasks that can not.

Here, the Cachebench [425] is used as the memory-intensive benchmark. It offers

the option to specify the memory size to be used. The Cachebench does not allocate

all the RAM at once. First, it allocates a small block in the RAM. Then in successive

stages, it allocates slightly larger memory blocks to perform tests. It continues to

increase the memory allocation size until a predefined point is reached or runs out of

the RAM to allocate.

The Cachebench suite contains two sets of experiments. The first test set includes

the memory read, write, and update operations being performed on an array of elements

in the RAM.

The second test set uses the memset() and memcpy() functions to set values and

copy memory contents in the RAM. Above two functions primarily used by the C++

applications to acquire memory during the runtime. They are widely used by the

memory-intensive application to manipulate the memory elements, and the efficiency
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of those applications largely depends on the performance of the above two functions.

7.3.1 Experimental results for Xen

Figure 7.5 shows the execution time variations of two types of consolidated tasks in

Xen. For each task, seven different memory setting are used (1KB, 16KB, 4MB,

64MB, 256MB, 512MB and 1024MB).

Figure 7.5a shows the execution time variation of the Read/Write/Update test dur-

ing consolidation. The experimental stages are similar to that of Figure 7.1. First, one

VM is run alone on the hypervisor, and in successive stages, the co-located VM num-

ber is increased. Each VM has 2GB RAM. The X-axis shows the number of co-located

VMs running on the hypervisor.

Figure 7.5a shows that for first six task memory settings (1KB, 16KB, 4MB,

64MB, 256MB, and 512MB) the execution time of the Read/Write/Update test

does not increase much due to the consolidation. The reason is that the task occupies

less space in memory than the available VM RAM. In this case, the results show that

the consolidation has little effect on the task performance. However, when the task

memory allocation is increased to 1024MB, it can not be entirely fit in the VM main

memory.
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(a) Read/Write/Update test.

Figure 7.5: The Cachebench consolidation performance variation test on co-located

VMs with 2GB RAM in Xen.
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(c) Results for 1024GB data.

Figure 7.5: The Cachebench consolidation performance variation test on co-located

VMs with 2GB RAM in Xen (Continued).

Although the VM has 2GB RAM, the kernel processes occupy a significant portion

of it. Practically it is not possible to allocate 1024MB memory to the Cachebench now,

and that leads to an increased number of page faults and interrupts in the host. The

hypervisor has to switch between kernel and user mode more frequently to handle the

events. The effect of it is apparent in the consolidation performance.

Thus, for the tasks requiring 1024MB main memory, the consolidated performance

degrades rapidly. As the task execution time increases rapidly compared to the previous
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six cases, it is shown separately in Figure 7.5c.

The same phenomenon can be shown for other memory-intensive tasks, too. Fig-

ure 7.5b shows the execution time variations of the memset()/memcpy() tests. Here,

the same stages are used as described above. The results show a similar pattern. That

is, up to 512MB memory allocation the consolidated task performance degradation is

minimum due to the increase of co-located VMs. However, once the task memory re-

quirement becomes too big (like 1024MB) for the VM memory, the consolidated VMs

performance starts to degrade rather quickly.

The execution time variation for 1024MB is shown in Figure 7.5c again as it does

not completely fit in Figure 7.5b.

7.3.2 Experimental results for ESXi

Above findings are not dependent on the hypervisor; VMs in any hypervisor would

react in the same way. Figure 7.6 shows the results of the same experimental stages on

the ESXi. Here, sixteen VMs are set up on the ESXi with each VM having 2GB RAM.

Figure 7.6a shows the results for the Read/Write/Update test. The execution finish

time shows little variation as the number of co-located VMs is increased.

Figure 7.6b shows the performance of the memset()/memcpy() tests and the results
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Figure 7.6: The Cachebench consolidation performance variation test on co-located

VMs with 2GB RAM in ESXi.
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(c) Results for 1024GB data.

Figure 7.6: The Cachebench consolidation performance variation test on co-located

VMs with 2GB RAM in ESXi (continued).

are also similar. Figure 7.6c shows the consolidation performance variation of both

tests for 1024MB memory allocation. The same tests are done on the XenServer,

and the results are quite similar. However, experimental results for XenServer are not

shown here.
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7.3.3 Increased memory size of VMs

One more test is conducted to make sure that the memory size is the primary factor

behind the observed results. The VM main memory size is raised to 4GB, and the

consolidation experiment stages are repeated with increased VM RAM allocation. Due

to the increased memory size now the 1024MB task can comfortably fit inside the VM

RAM.

Figure 7.7 show the execution times of the tasks under consolidation on both the

Xen and ESXi. First, the Cachebench is run on a VM with 4GB memory. In successive

stages, the number of co-located VMs are increased. In contrast to Figs. 7.5c and 7.6c

now the 1024MB memory size task show almost no variation with the increase of

co-located VM number.

Results of this section prove that necessary memory allocation is critical for VM

consolidation performance. Thus, accurate determining of the tasks memory require-

ments and VMs memory allocation can effectively improve the task performance in

the VMs.
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Figure 7.7: The Cachebench consolidation performance variation test on co-located
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7.4 Non-memory resident tasks and ×-factor graph

The results of the last section show that the task memory requirement has a real impact

on the co-located VMs performance. If a task can be fit entirely in the VM main

memory, then the task performs better under VM consolidation, this is true for all

hypervisors.

In this section, we consider the performance variation of the tasks that can not be

entirely fit inside the main memory. Here, the Sysbench memory test is used and it

performs a different type of test compared to the Cachebench, which is used in the

previous section. The test uses a fixed region of the main memory to perform all the

operations, and that size is not altered during the test.

7.4.1 Sysbench memory read test

Figure 7.8a shows the execution time variations of the Sysbench memory read test

during consolidation. The test continuously performs read operations on a fixed size

VM memory block.

Figure 7.8a shows the time taken to complete the reading of four separate data vol-

umes. The main memory allocation is not altered in this test, and the same values may

be read multiple times. The objective is to see how the consolidated tasks performance

varies with the increase of data volume. The four different data volumes are 256GB,

512GB, 1024GB, and 2048GB, respectively. Figure 7.8a shows the execution time

variation of each volume.

Next, the ratio of execution time increase from the initial value is calculated and

shown in Figure 7.8c. The calculation of the execution time increase ratio is straight-

forward as described below. From Figure 7.8a, one single VM without consolidation

takes 2.96 minutes to complete reading of 256GB data.

With two simultaneously running co-located VMs the execution time increases to

3.09 minute. Thus, for two co-located VMs the execution time increase to initial value

ratio is calculated as (3.09− 2.96)/2.96 = 0.043.

For 4, 8, and 15 co-located VMs the execution times rises to 3.11, 4.77, and 8.99

minutes, respectively. Thus, their execution time increase ratios are 0.050, 0.611, and

2.037, respectively.
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The execution time increase ratios for 512GB, 1024GB, and 2048GB data are cal-

culated as shown in Figure 7.8c. For 512GB data the ratios for 2, 4, 8, and 15 co-

located VMs are 0.005, 0.063, 0.572, and 1.931, respectively. Notice, even though

Figure 7.8a has different ranges of execution time values; the execution time increase

ratios of them in Figure 7.8c show a similar pattern.

7.4.2 Sysbench memory write test

Figure 7.8b shows the results for the Sysbench memory write test. Here, the Sysbench

performs the write operations on a fixed region of the VM memory. The task execution

time variations due to four different data volumes are shown and their execution time

increase ratios are shown in Figure 7.8c.

Although Figs. 7.8a and 7.8b have different execution time value ranges their ex-

ecution time increase ratios are quite similar (Figure 7.8c). Besides the execution

time increases ratios for eight data sets the Figure 7.8c has another curve called the

×-factor (times factor). It is the arithmetic mean of all the eight execution time

increase ratios in Figure 7.8c.

Notice, that the execution time increase ratios of a task remain the same even

though data volumes are changed. Thus, a group of task execution time variations

can be represented through one×-factor curve.
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Figure 7.8: The Sysbench memory test performance under consolidation in Xen.
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Figure 7.8: The Sysbench memory test performance under consolidation in Xen (Con-

tinued).

This section explains how the phenomenon of ×-factor is observed among the

profiled execution times of the consolidated VMs. The benefit of using×-factor is

that instead of using a wide range of execution time values (like shown in Figure 7.8a

and 7.8b) only one set of ratios can be used (Figure 7.8c).

Later in Section 7.5.2,×-factor is further discussed. The section will show how

the experimental data can be arranged to calculate ×-factor. However, to under-

stand the process it is necessary to understand how the experiments are designed and
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performed with the execution time variations. That is done in the next few sections.

Section 7.5.1 describes how the experiments are performed with system interrupt

and task execution time variation. Then, Section 7.5.2 describes how the collected data

is used to calculate the×-factor. What is more, the subsequent sections also show

how the ×-factor data can be efficiently used with a machine-learning process to

predict VM execution time variations from the system interrupt data.

7.5 Execution time variation due to system interrupt

In Section 7.3, it is shown that the task memory requirements affect the consolidated

VMs performances. The memory and I/O-intensive tasks on co-located VMs increase

the number of interrupts and page faults in the system. As the hypervisor interrupt

handling process is more complicated compared to a physical machine, the task per-

formance degrades quickly with the increase of co-located VMs.

However, Section 7.2 demonstrated that it is not possible to correlate the perfor-

mance of co-located VMs with the host hardware counter data. That is because modern

hypervisors use various techniques to coalesced VMs interrupts and page-faults. Thus,

their performance impact on the consolidated VMs performances cannot be determined

from the host event data alone.

Here, an indirect method is used to investigate the performance effect of the inter-

rupts and page-faults on the consolidated VMs. A measured number of interrupts and

page faults are injected into the consolidated host to observe the performance variation.

First, the total number of interrupts and page faults caused by a selected set of tasks

in an isolated system is measured. Then, the VMs are consolidated with the selected

set of tasks so that the total amount of injected system interrupts and page faults are

known. Next, the process is described in more detail in the next section.

7.5.1 Patterns for injecting system events

Figures 7.9 (on page 305), 7.10 (on page 306), and 7.11 (on page 307) show three

different VM arrangements for experimenting with system interrupts and page faults.

In this experimental setup, the Sysbench CPU test is used as the test task (shown in

red), while the Stress context switching test is employed in the co-located VMs (shown

in green). However, the same experiments can be repeated with any other test task or
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co-located VMs.

Figures 7.9, 7.10, and 7.11 show how VMs are increased in the system in a step

by step process. In all the Figures, first, the Sysbench CPU test is run on a single

VM and the execution time is recorded. Then, in the successive stages, the number

of co-located VMs are changed. That is how resource contention among the VMs

are changed and as a result, the execution time of the co-located VMs starts to vary.

Changing the number of co-located VMs is possible in several ways. Three possible

patterns are shown in the Figures 7.9, 7.10, and 7.11. Those patterns are discussed

next.

Figure 7.9 shows one possible pattern and it has eight stages. The observed ex-

ecution time variations of the Sysbench CPU test task on all eight stages are shown

in Table 7.1. The second column of Table 7.1 shows how many co-located VMs are

running on the server at each stage, while the third column shows the execution time

variation of the Sysbench CPU test task for the respective stages.

The fourth column of Table 7.1 shows the total system interrupt of all the co-located

VMs at each stage. During each stage the system interrupts are collected from all the

co-located VMs, and the fourth column is the summation of all those values. Similarly,

the fifth column shows the summation of page-faults of all the co-located VMs.

Next, Figure 7.10 (on page 306) shows another pattern of increasing co-located

VMs. Here, the positions of co-located VMs on the hypervisor are different from that

of the Figure 7.9 (on page 305). The execution time variations, interrupt, page faults

and other data are shown in from second to fifth columns of Table 7.2 (on page 306).

From Figures 7.9 and 7.10 it can be seen that VMs are arranged differently at each

stage of those two figures. However, Tables 7.1 and 7.2 show that the stage-wise the

execution time variations, interrupts, and page-faults are still similar. Thus, the results

indicate that VM execution time, system interrupt, and page-fault values are dependent

on the total number of VMs not on their location on the server.

Next, Figure 7.11 (on page 307) shows another pattern of co-located VMs. Here,

the VMs are arranged in yet another way, differently to that of Figure 7.9 or 7.10. The

stage-wise the execution time variations, interrupt, and page-faults of this pattern are

shown in Table 7.3 (on page 307).

Even though, the three patterns of Figures 7.9, 7.10, and 7.11 are spatially dif-

ferent; however, Tables 7.1, 7.2, and 7.3 show there is a connection among them. If

the data from all the three tables are sorted according to increasing order of co-located
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Figure 7.9: Execution time variation of the Sysbench CPU test for VM pattern 1.

Table 7.1: Observed VM execution time variation, interrupts and page-faults for the

pattern of Figure 7.9 in ESXi.

Data for the Pattern 1 in Figure 7.9

Stage

Number of

co-located

VMs

Exe. time of

Sysbench

CPU test

System

interrupts
page-faults

1 0 2.39 – –

2 2 2.47 112802600 7439

3 4 2.57 217010717 14151

4 6 2.86 321218834 20448

5 8 3.39 434021434 28406

6 10 4.14 544675413 33838

7 12 4.82 638892442 41969

8 14 5.51 762760441 49478
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Figure 7.10: Execution time variation of the Sysbench CPU test for VM pattern 2.

Table 7.2: Observed VM execution time variation, interrupts and page-faults for the

pattern of Figure 7.10 in ESXi.

Data for the Pattern 2 in Figure 7.10

Stage

Number of

co-located

VMs

Exe. time of

Sysbench

CPU test

System

interrupts
page-faults

1 0 2.31 – –

2 2 2.36 113534826 7369

3 4 2.39 231979265 12698

4 6 2.61 368834758 20656

5 8 3.16 466413338 26884

6 10 3.77 600200321 33700

7 12 4.42 730305094 40136

8 14 5.02 849363236 47955
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Figure 7.11: Execution time variation of the Sysbench CPU test for VM pattern 3.

Table 7.3: Observed VM execution time variation, interrupts and page-faults for three

patterns of Figure 7.11 in ESXi.

Data for the Pattern 3 in Figure 7.11

Stage

Number of

co-located

VMs

Exe. time of

Sysbench

CPU test

System

interrupts
page-faults

0 0 2.29 – –

2 2 2.34 111113767 6772

4 6 2.64 218363680 20152

6 10 3.81 333507654 32559

8 14 5.02 437369925 45484

10 4 2.41 558735105 11918

12 8 3.19 661446011 26228

14 12 4.44 797065406 39142
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VMs number, then it can be seen that their execution times, interrupts and page-faults

values are almost the same.

Experiments have been done with other patterns, too. However, when the results

are arranged according to the number of co-located VMs at each, they show a similar

pattern again. It is observed that no matter in how many ways the co-located VMs

are arranged, those values depend on the total number of co-located VMs, not on their

locations.

Next section describes how the×-factor can be calculated from the experimental

data presented here.

7.5.2 Calculating the ×-factor

This section describes how ×-factor is calculated for the patterns shown in Fig-

ures 7.9, 7.10, and 7.11 above. The concept of ×-factor is introduced in the Sec-

tion 7.4. Then, in Section 7.5.1 experiments are conducted to collect execution time,

system interrupt, and page-fault data from consolidated VMs. Consolidated VMs are

run according to the three patterns of Figures 7.9, 7.10, and 7.11 as described in Sec-

tion 7.5.1 above. Experimental data for those three patterns are are shown in Tables 7.1,

7.2, and 7.3, respectively.

To calculate the×-factor, first the values of three patterns of Tables 7.1, 7.2, and

7.3 are sorted in ascending order according to the number of co-located VMs. After the

sorting, the arithmetic mean of the three values of each stage is calculated and shown

in Table 7.4.

The second column of Table 7.4 shows the arithmetic mean of the execution time

variation of three patterns of Figures 7.9, 7.9, and 7.9. First the values of stages from

Tables 7.1, 7.2, and 7.3 are sorted according to the ascending order of the number of

co-located VMs. After sorting the stages in ascending order, then the arithmetic mean

is calculated from three values at each stage. An example of the calculation process is

discussed next.

Recall third column of that Table 7.1 shows all the execution time variation data

for the pattern of Figure 7.9. The seventh row of Figure 7.9 shows the execution time

variation of Sysbench CPU test for eight co-located VMs, and it is 3.39 minutes.

Similarly, Table 7.2 shows the execution time variation data for the pattern of Fig-

ure 7.10. In this particular table, the execution time of the Sysbench CPU test for eight
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Table 7.4: ×-factor calculated from the data of Tables 7.1, 7.2, and 7.3.

Stage

no.

VM

no.

Arithmetic

mean of

execution time
(

Exe.timei
)

×-factor
(

fi

)

Arithmetic

mean of

Interrupts

Arithmetic

mean of

page-faults

1 0 2.33 0.00 – –

2 2 2.39 0.02 111113767 7193

3 4 2.45 0.05 218363680 12922

4 6 2.70 0.15 333507654 20418

5 8 3.24 0.39 437369925 27172

6 10 3.90 0.67 558735105 33365

7 12 4.56 0.95 661446011 40415

7 14 5.18 1.22 797065406 47639

co-located VMs is shown in the seventh row, and it is 3.16 minutes.

Next, Table 7.3 shows execution time variation data for the third pattern in Fig-

ure 7.11. In this table, the Sysbench CPU test execution time due to eight co-located

VMs is shown in the ninth row, and it is 3.19 minutes. The arithmetic mean of those

three execution time values is 3.24 minutes, and it is shown in the sixth row of Ta-

ble 7.4. Thus, the sixth row shows the arithmetic mean of Sysbench CPU test execution

times due to eight co-located VMs.

In the same way, the arithmetic mean of execution times is calculated for all co-

located VM number and stored in the third row of Table 7.4. The rows of the table are

sorted according to the ascending order of the number of co-located VMs.

Similarly, the system interrupts, and page-faults data is collected from three pre-

vious tables (Tables 7.1, 7.2, and 7.3) and their arithmetic means are calculated. The

fourth, and fifth columns of Table 7.4 show the arithmetic means of the system in-

terrupts, and page-faults, respectively. Next, it is explained how the ×-factor is

calculated these arithmetic mean values.

The fourth column of Table 7.4 is called the×-factor, which is the ratio of the

execution time increase from the initial value. For any stage, i the ratio is calculated
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as follows:

×− factori = fi =
(Exe.T imei − Exe.T ime0)

Exe.T ime0

Where, Exe.T imei is the task execution time at stage i and Exe.T ime0 is the

initial task execution time. The second column of Table 7.4, shows the×-factor for

the Sysbench CPU test data. For example,×-factor for two co-located VMs is 0.02

(third row). It is calculated as follows (2.39− 2.33)/2.33 = 0.02. Similarly, rest

of the×-factors are calculated.

The ×-factors essentially represents the ratio of how much the execution time

varies at each stage compared to the initial value. Table 7.4 shows the ×-factor

of only one task, the Sysbench CPU test. However, it is possible to calculate the ×-

factor for other tasks also. Next section presents the calculated×-factors values

for two hypervisors; VMware ESXi and Xen.

Figures 7.12, and 7.13 of the next section show×-factor of seven tasks on EXSi

and Xen, respectively. The values for all the tasks are obtained using the same process

as discussed in this section.

7.6 ×-factor of tasks on ESXi and Xen

The seven tasks used in each graph of Figure 7.12 are the Nbench [219], Sysbench CPU

test [233], Stream [225–227], Cachebench [224], Sysbench memory test, Sysbench

file I/O test [233] and Iozone [230]. Recall that those benchmarks are introduced and

discussed in the Section 3.4 of the Chapter 3. That is why those benchmarks are not

discussed here again.

For those tasks, the execution complition times are collected for various patterns

of co-located VMs as described above in Section 7.5.1. Then, the×-factor for each

task is calculated according to the process described in Section 7.5.2.

The four graphs of Figure 7.12 are created using four types of tasks in the co-

located VMs; the tasks are from the Sysbench [233] and Stress [426] benchmark suites.

The four types of tasks are the Stress cache contention, Stress context switching, Sys-

bench mutex, and Sysbench threading tests; their results are shown in Figs. 7.12a,

7.12b, 7.12c, and 7.12d, respectively.



7.6. ×-FACTOR OF TASKS ON ESXI AND XEN 311

 0

 2

 4

 6

 8

[,
]

[7
0
1
,

 1
8
7
2
]

[ 
1
4
8
9
,

 3
2
1
3
]

[ 
2
0
5
2
,

 4
9
9
2
]

[ 
2
7
4
7
,

 6
7
0
8
]

[3
4
5
8
,

 8
4
0
8
]

[3
9
5
5
,

 1
0
0
5
4
]

[4
8
3
2
,

 1
0
9
9
8
]

X
-f

a
c
to

r

Total context switching, and page-faults number

nbench
sysbenchCPU

stream
cachebench

sysbenchMem
sysbenchFile

iozone
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Figure 7.12: Calculating×-factor in the ESXi.
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Figure 7.12: Calculating×-factor in the ESXi (Continued).
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Figure 7.12a shows the×-factor values of seven tasks for the Stress cache con-

tention tests in the co-located VMs. As the number of co-located VMs are increased in

the system the execution time of the tasks, start to vary, and this variation is the basis

for calculating the×-factor.

The system interrupts, and page-faults are collected from all the co-located VMs

during the experimental stages. The x-axis of graphs shows the arithmetic mean of the

interrupts and page-faults values. The arithmetic means are collected for three different

test patterns (Figures 7.9, 7.10, and 7.11) as discussed in Section 7.5.1.

Next, Figure 7.12b shows the ×-factor for context-switching tasks in the co-

located VMs. The steps are similar to that described above only now the Stress context-

switching benchmarks is used instead of the cache benchmark. The same goes for other

two graphs (7.12c, and 7.12d).

Four graphs of Figure 7.12 shows the relation between the execution time increases

of tasks and the total number of system interrupts and page-faults in the co-located

VMs. Similar experiments can be performed for other hypervisors, too.

Figure 7.13 shows the execution time variation of the same seven tasks on the Xen

for four different types of co-located VMs. For example, Figure 7.13a shows the ×-

factor values of seven tasks for the Stress cache contention tests in the co-located

VMs. In this case of Figure 7.13, the all the experiments are conducted on the Xen

hypervisor.

Similarly, Figure 7.13b Figure 7.12b shows the ×-factor for context-switching

tasks in the co-located VMs. In Figure 7.13c,×-factor due to the Sysbench Mutex

test in co-located VMs is calculated and shown. Lastly, Figure 7.13d shows the ×-

factor due to the Sysbench thread test in co-located VMs. These results are similar

to that of ESXi hypervisor shown in Figure 7.12 and discussed above in the section.

That is why the discussion about the significance of the results are not repeated.

In this section, the ×-factor of seven tasks are presented for two hypervisors,

ESXi and Xen. For each hypervisor, seven tasks are run with four types of tests on

the co-located VMs. Each of those four tests has different types of system resource

requirement and effect the seven tasks differently. The×-factor for ESXi hypervisor

is shown on the four graphs of Figure 7.12, while the×-factor for Xen hypervisor

is shown on the four graphs of Figure 7.13.

The concept of the×-factor is vital for this chapter, and it is a reoccurring theme

in the sections of this chapter. In this chapter, an ANN is used to predict the ETV of
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Figure 7.13: Calculating×-factor in the Xen.
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Figure 7.13: Calculating×-factor in the Xen (Continued).
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tasks on consolidated VMs. The ×-factor plays an integral part in the training

of ×-factor models. Next, section shows that these values can be used to train

an ANN and predict the performance variation of tasks of a parallel workflow under

consolidation.

7.7 Performance prediction for tasks of a parallel work-

flow

The previous section shows how the execution time variation of tasks can be linked to

the interrupts and page-fault numbers of co-located VMs. In this section, it is shown

that an ANN can be trained with those values to predict the performance of consoli-

dated tasks.

A parallel workflow consists of many tasks. To schedule those tasks on the VMs

the estimation of execution finish time is critical. However, in a consolidated server,

the VMs performance may vary depending on the interference of co-located VMs. As

discussed in the earlier chapters, this variation depends on the types of tasks running

on the co-located VMS and amount of system events they are generating. In this sec-

tion, the collected system event counter data is used to train an ANN to predict the

performance of the tasks of a parallel workflow under consolidation.

ANN is a well-known machine learning technique [336, 339, 343–346, 427]. The

neural network is consist of links and nodes. The nodes are arranged in layers. Recall

that the construct of an ANN is introduced and discussed in Section 6.11 of Chapter 6.

Training instances are fed to the network through input layers, then passes through

hidden layers finally ranching to output layers. The layers are connected through links,

and each link is associated with a particular weight. The training process involves

adjusting the weights with the help of training instances. Recall that, theoretical back-

ground for training an ANN is also discussed in Section 6.11.1.

Recall that the GALFA-HI workflow introduced in the Section 5.2 of Chapter 5.

The workload has seven different functions. Table 7.5 shows the execution time, in-

terrupts, and page faults of those functions. The workflow diagram is shown again in

Figure 7.14 for referential purposes only. It is done so that the tasks of the workflow

can be easily related to the data of Table 7.5. That is also required for the clarification

of the execution time prediction process for workflows that are discussed next.
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Figure 7.14: A parallel work flow example: the GALFA-HI.

An ANN model is trained with the×-factor data from the previous section (Fig-

ures 7.12 and 7.13). First, the total interrupts and page faults of each function are mea-

sured in an isolated system. Then those functions are run with a various combination of

co-located VMs as described in the previous section. Then, an ANN model is trained

Table 7.5: Execution time and system event data of the functions of Figure 7.14 in

Xen.

Level GALFA-HI Task
Exe. time

(min.)

Context-

switches
Page-faults

1 mShrinkCube 3.74 5,486 362

2 &5 mImgtbl 0.09 29 410

3 mMakeHdr 0.02 8 1,063

4 mProjectCube 1.12 3,734 292,660

6 mAddCube 9.92 75,556 1,798

7 mGetHdr 0.07 12 271

8 mViewer 0.07 372 15,276
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with all the×-factor and system event data.

7.7.1 Prediction result for mAddCube on Xen

In this section, the prediction results discussed here are collected by conducting ex-

periments on the Xen hypervisor. Table 7.6 shows the prediction results for one the

functions, the mAddCube. First, the mAddCube is run alone without any co-located

VM and the execution time is collected (9.94 minutes). Then co-located VMs are

added to the system and execution time of the mAddCube starts to vary. The total

interrupts and page faults of the co-located VMS are profiled.

The first, and second columns of Table 7.6 shows the total interrupts, and page

faults of the co-located VMs, respectively. Then an ANN model is used to predict the

×-factor of mAddCube for a various number of co-located VMs. The third column

shows the ANN prediction of×-factor for the mAddCube. The expected execution

time is estimated from the×-factors using following formula:

Table 7.6: ×-factor and execution time prediction for the mAddCube from the VMs

system event data in the Xen.

Total

context

switching

Total

page-fault

Predicted

X-factor
(f p

i )

Predicted

execution

time

(minute)

Measured

execution

time

(minute)

Prediction

error

(minute)

Percentage

prediction

error (%)

- - - - - - - - 9.94 - -

2317 5460 0.3259557 13.18 11.11 -2.07 -18.63

2979 7020 0.4768612 14.68 12.04 -2.64 -21.92

3641 8580 0.6026157 15.93 12.79 -3.14 -24.55

4303 10140 0.9688129 19.57 15.69 -3.88 -24.72

4965 11700 1.1941650 21.81 17.52 -4.29 -24.48

RMSE 3.30

MAE 3.20

MAPE 22.86
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Exe.T imei = (1 + f p
i ) ∗ Exe.T ime0

Where, the Exe.T imei is the predicted execution time for the task. f p
i is the×-

factor prediction from the ANN. Exe.T ime0 is the initial execution time of the

task without any co-located VM. The fourth column of Table 7.6 shows the estimated

execution times. The fifth column shows the actual execution time of the mAddCube,

while the sixth column shows the prediction error. Lastly, the Root Mean Squared

Error (RMSE), and Mean Absolute Error (MAE) of the prediction is shown in the last

two rows, respectively.

7.7.2 Prediction result for mAddCube on ESXi

The previous section discusses the ANN prediction results for the mAddCube function

on the ESXi hypervisor. In this section, the experimental procedure of the previous

Table 7.7: ×-factor and execution time prediction for the mAddCube from the VMs

system event data in the ESXi.

Total

context

switching

Total

page-fault

Predicted

X-factor
(f p

i )

Predicted

execution

time

(minute)

Measured

execution

time

(minute)

Prediction

error

(minute)

Percentage

prediction

error (%)

- - - - - - - - 9.91 - -

26470080 4780 0.2976791 12.86 10.72 -2.14 -19.96

26470742 6340 0.5459132 15.32 12.53 -2.79 -19.96

26471404 7900 0.8526741 18.36 16.25 -2.11 -12.98

26472066 9460 1.4823411 24.60 19.85 -4.75 -23.92

26472728 11020 1.6579213 26.34 22.23 -4.11 -18.48

RMSE 3.35

MAE 3.18

MAPE 19.52
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section is repeated for the Xen hypervisor.

Table 7.7 shows the execution time variation prediction of the mAddCube on ESXi.

The previously trained ANN model is used to predict the ×-factor. As before,

the mAddCube is first executed alone in the system. Then, it is repeatedly run with

various co-located VMs. The total numbers of interrupt and page-fault of the VMs are

collected and used for the×-factor predict. From the predicted ×-factor values

the expected execution times of the mAddCube is estimated. The RMSE and MAE of

the prediction are 3.35, and 3.18, respectively.

Figure 7.15 shows actual and predicted execution times of the mAddCube for both
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Xen and ESXi hypervisors. The first points of the graphs show the actual mAddCube

execution time without any interference from co-located VMs. Subsequent points

show the execution time variation of the mAddCube due to the increased number of

system interrupts and page-faults. Also, the execution time prediction for the total

number of system interrupt and page-faults are shown.

The advantage of using×-factor for training an ANN model is the feature scal-

ing effect. Actual execution time values have a wider range; it is known that the feature

scaling of values can improve the prediction ability of an ANN model [428–430]. With

the×-factor the training process converges more efficiently compared that of the ac-

tual execution time. The training with an ANN is also swift; it takes only 0.102 seconds

to train the model. Therefore, any new data from co-located VMs can be easily used

to retrain an ANN model.

7.8 Conclusion

This chapter examines the impact of VM resource allocation and system events on the

consolidation performance. As data centers are getting bigger, the efficiency of the

virtualized servers is becoming more of a pressing issue. Thus, it is essential to find

ways to extract the maximum performance from the consolidated VMs.

The experimental results of this chapter show that the system interrupts and page-

faults are one of the main causes of performance degradation in virtualized systems.

Furthermore, it is not a straightforward process to predict the effect of the system inter-

rupts and page-faults from the system event counters. Instead, this chapter proposes a

method to profile the co-located VMs system event counters and use the data to predict

the performance variation due to consolidation.

The presented methodology is straightforward; it uses various combination of work-

load on consolidated VMs to record the interrupts, page faults, and execution finish

times. As the number of co-located VMs increase in the system, the task execution

times begin to vary. Then, the×-factor is calculated, it is the ratio of execution time

increase to the initial execution time value.

An ANN can be easily trained to predict this×-factor from the co-located VMs

system interrupt and page fault numbers. Application of×-factor instead of execu-

tion time makes the training process more efficient. As it is a low-cost training process,
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it can be easily retrained with new co-located VM data at any time.

Presented predicting methodology was applied to the tasks of scientific workflow

running on both Xen and ESXi hypervisor. Tables 7.6, and 7.7 show the prediction

results for mAddCube function running on Xen and ESXi hypervisors, respectively.

From the prediction results, the mean absolute percentage error (MAPE) is also calcu-

lated for both hypervisors. The tables show that the MAPE of prediction for Xen and

ESXi are 22.86% and 19.52%, respectively.



Chapter 8

Conclusions

“Do not judge me by my successes, judge me by how many

times I fell down and got back up again.”

— Nelson Rolihlahla Mandela* (1918–2013)

This dissertation explores the performance related issues with the consolidated Vir-

tual Machines (VMs). Virtualization is an essential technology for the Cloud and data

centers, many necessary features of the Cloud are dependent on it. The pay-as-you-go

model for Cloud is implemented with the help of VMs. Furthermore, in data centers,

features like the fault-tolerance and high-availability of services are achieved through

the use of virtualization. Nowadays, Cloud and VMs are almost synonymous terms.

Chapter 2 of this dissertation, explains how the virtualization is essential for the

Cloud. Virtualized allows physical servers to run multiple VM simultaneously; the

process is known as the consolidation, the VMs are referred to as the co-located VMs.

Consolidation allows to increase resource utilization and reduce operational cost. Run-

ning multiple VMs on a server also helps to reduce energy usage. On the other hand,

the co-located VMs interfere with the performance of each other, that leads to perfor-

mance degradation.

As data centers are getting bigger, the resource utilization and energy usage are be-

coming major issues. In this dissertation, experiments are done with the consolidated

*Image source: https://www.20minutes.fr/monde/diaporama-3253-nelson-
mandela-vie-lutte
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VMs on real systems. The effect of various types of resource contention on the con-

solidated VMs is examined. The experimental data is collected to train models, which

can predict the performance variation of VMs.

All results presented here are real system data. Three hypervisors are used in

the experiments; they are the ESXi, Xen, and XenServer. During the experiments,

each hypervisor run up to sixteen VMs simultaneously. A benchmarking methodology

for VMs and hypervisors called the Incremental Consolidation Benchmarking Method

(ICBM) [43] is presented in Chapter 4. In subsequent chapters, the effectiveness of the

ICBM is demonstrated with various experimental results. In the experiments, several

resource-intensive benchmarks and a parallel workflow are used.

Setting up experimenting with a lot of VMs on multiple hypervisors can be time-

consuming, that is why a new VM scheduling framework [44] is presented in Chap-

ter 5. This framework can run workload on multiple hypervisors and collect execution

time data. The collected data are used in Chapters 6 and 7 to build prediction mod-

els [45, 46]. The Least Square Regression (LSR) and Artificial Neural Network (ANN)

models are trained with the profiled data. The results show that the models can predict

the task execution time variation due to resource contention of co-located VMs. The

next section summarizes the chapter-wise achievements.

8.1 Summary of the dissertation

In Chapter 3, initial experiments are conducted with the consolidated VMs. Various

resource intensive benchmarks are consolidated to record their performance variation.

Results show that different resource intensive tasks react differently to the resource

contention. However, in all cases, the execution time of the tasks show some amount

of variation due to consolidation. For a different number of consolidated VMs, the

execution time varies differently; this indicates that the task execution time variation

can be a good indicator of consolidation performance.

In Chapter 4, further experiments have been done with the task execution time

variation. In this chapter, the ICBM is introduced [43]. The experimental results show

that the task execution time variation depends on the number of co-located VMs and

their resource usage. As the number of co-located VMs are increased in the system the

execution time starts to vary. The variation is profiled and used for training prediction
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models. The physical host has fourteen VMs, and a lot of different combinations of

tasks can be run on them. A combination of tasks and co-located VM is considered as

one workload.

The experimental results show that the task execution time variation does not de-

pend on the location of the VMs, rather it depends on the total number of co-located

VMs. That is if the order of the same number of VMs is shuffled in the host, their

collective effect on the server resources remains the same. During the profiling stage,

the execution time is collected for a set of the VM combinations. Then, the data is

used to train LSR models. The experimental results show that the built LSR mod-

els are capable of predicting the execution time variation of tasks and co-located VM

combinations.

The experimental results of applying the ICBM on consolidated VMs encourages

one to do more experiments with the VM execution time variation in a wider-scale. In

Chapter 5, three hypervisors are used in the experiments, each hypervisor run up to

sixteen VMs at a time. Handling a large number of VMs during the tests is difficult;

therefore, the necessity for a new VM scheduler is felt. Chapter 5 also introduces a

new scheduling framework for VMs; it can run any number of VMs in any combina-

tion [44]. The scheduler can run VMs in a wide variety of patterns and collect the VM

execution time data. The design goals, components and implementation detail of the

framework are discussed in the chapter.

The framework can run different categories of resource-intensive benchmarks on

VMs. The results show that different resource intensive VMs, like CPU, memory, and

I/O-intensive VMs have a different effect on the consolidation performance. For exam-

ple, CPU intensive co-located VMs show less performance degradation compared to

I/O intensive co-located VMs. In addition to the benchmark suites, a parallel workflow

was also used in the experiments. The results show that the framework can run and

collect execution time variation data of each task of the parallel workflow.

Next, in chapter 6, large-scale experiments are carried out with the framework

and ICBM [46]. This chapter demonstrates that ICBM is capable of handling a large

number of VMs. Various experiments have been done with three hypervisors; ESXi,

Xen, and XenServer. Three categories of tasks are used in the experiments; they are

CPU, memory, and I/O-intensive tasks. The execution time variation data is collected

from all three hypervisors. The collected data is then used to build a unified model

for the VM consolidation execution time prediction. The results show that the unified
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model can predict the execution time variation for both the ESXi and XenServer.

Recall that in Chapter 4, LSR models were introduced for predicting the execution

time variation on one hypervisor. The models were built with the execution time vari-

ation data from the Xen hypervisor. In Chapter 6, a unified LSR model is created with

the data from multiple hypervisors, and it is used to predict the VM execution time

variation on multiple hypervisors. Thus, showing that the ICBM can be generalized

among multiple virtualized systems.

Furthermore, Chapter 6 indicates that the ICBM data can be used for training an

ANN model, too. In this case, the VM execution time variation data is collected from

three hypervisors and used to train an ANN model. Then, the ANN model is used to

predict the execution time variation of the tasks of a parallel workflow. The experimen-

tal results of Chapter 6 show that the ICBM is a versatile method that can be applied

to a lot of experimental cases.

Chapter 7 shows that the ICBM can be used for conducting a further investigation

with the individual resources. In this chapter, the effect of memory allocation and sys-

tem events on the VM consolidation performance is examined [45]. The experimental

results show that the memory usage of the tasks on VMs plays a significant role in

the consolidation performance. By careful VM memory allocation, it is possible to

improve the consolidated VMs performance.

Furthermore, experiments are conducted with the system events like interrupt and

page faults. For VMs, the system events handling overhead is higher compared to that

of physical servers. In this chapter, the effect of system events on the consolidated

VMs is examined. Various system event data is collected from the VMs and used to

train an ANN model. The trained ANN model is then used to predict the execution

time variation of the tasks of a parallel workflow. Using the VM system event counter

data the model can predict the performance of co-located VMs.

Throughout this project, the VM consolidation performance is investigated from

various angles. The experiments are conducted to understand the effect of resource

contention on the co-located VMs. The task execution time variation on consolidated

VMs has been used as a metric in this project. Several VM combinations are run on

the hypervisor to collect the VM execution time variation data. The data gathered from

three hypervisors are analyzed and then used to build the execution time prediction

models. The results encourage one to do further experiment with the task execution

time variation and VM consolidation performance.
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Classification, Business Models, and Research Directions ,” Business & Infor-

mation Systems Engineering, vol. 1, no. 5, pp. 391–399, Oct 2009.

[131] Ian Foster, “What is the Grid? - a three point checklist,” GRIDtoday, vol. 1, no.

6, July 2002.

[132] VMware, “VMware vCloud Service Definition for a Public Cloud,” Tech.

Rep., VMware, Inc, 3401 Hillview Ave, Palo Alto, CA 94304, USA, 2011,

https://www.vmware.com/content/dam/digitalmarketing/

vmware/en/pdf/whitepaper/cloud/vmware-servicedef-

public-cloud-11q1-white-paper.pdf [Online: Accessed August-

2018].

https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/whitepaper/cloud/vmware-servicedef-public-cloud-11q1-white-paper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/whitepaper/cloud/vmware-servicedef-public-cloud-11q1-white-paper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/whitepaper/cloud/vmware-servicedef-public-cloud-11q1-white-paper.pdf


BIBLIOGRAPHY 342

[133] Intel Information Technology, “Intel Cloud Computing Taxonomy and

Ecosystem Analysis,” Tech. Rep., Intel Corporation, 2200 Mission

College Blvd. Santa Clara, CA 95054-1537, USA, 2010, https://

www.intel.com/content/dam/doc/technology-brief/

cloud-computing-intel-cloud-computing-taxonomy-and-

ecosystem-analysis-brief.pdf [Online: Accessed August-2018].

[134] Nelson M. Gonzalez, Charles Miers, Fernando F. Redı́golo, Marcos

A. Simplı́cio Jr., Tereza Cristina M. B. Carvalho, Mats Näslund, and Makan
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[145] C. N. Höfer and G. Karagiannis, “ Cloud computing services: taxonomy and

comparison ,” Journal of Internet Services and Applications, vol. 2, no. 2, pp.

81–94, Sep 2011.

[146] Adrian Roberts, “Public Cloud Service Definition,” Tech. Rep., VMware, Inc.,

3401 Hillview Ave, Palo Alto, CA 94304, USA, January 2018, https://

www.vmware.com/content/dam/digitalmarketing/vmware/

en/pdf/vcat/vmware-public-cloud-service-definition.

pdf [Online: Accessed August-2018].

[147] Henry Li, Introducing Windows Azure, Apress, Berkely, CA, USA, 2009.

[148] L. Pilosu, P. Ruiu, K. Goga, and M. A. Budroni, “Automated Cloud Comput-

ing Approach for the Simulation of Chemo-Hydrodynamic Problems,” in 2016

10th International Conference on Complex, Intelligent, and Software Intensive

Systems (CISIS), July 2016, pp. 438–443.

[149] S. Hwangbo and K. Lee, “Cloud Services for Modeling and Simulation: A

Simulation of a Chemical GasDiffusion in the Cloud,” in 2016 IEEE/ACM 20th

International Symposium on Distributed Simulation and Real Time Applications

(DS-RT), Sept 2016, pp. 187–188.

[150] M. J. Harvey and G. De Fabritiis, “AceCloud: Molecular Dynamics Simulations

in the Cloud,” Journal of Chemical Information and Modeling, vol. 55, no. 5,

pp. 909–914, 2015, PMID: 25849093.

https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/vcat/vmware-public-cloud-service-definition.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/vcat/vmware-public-cloud-service-definition.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/vcat/vmware-public-cloud-service-definition.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/vcat/vmware-public-cloud-service-definition.pdf


BIBLIOGRAPHY 344

[151] Tim Mather, Subra Kumaraswamy, and Shahed Latif, Cloud Security and Pri-

vacy: An Enterprise Perspective on Risks and Compliance, O’Reilly Media,

Inc., 2009.

[152] Hassan Takabi, James B. D. Joshi, and Gail-Joon Ahn, “Security and Privacy

Challenges in Cloud Computing Environments,” IEEE Security and Privacy,

vol. 8, no. 6, pp. 24–31, Nov. 2010.

[153] Z. Tari, “Security and Privacy in Cloud Computing,” IEEE Cloud Computing,

vol. 1, no. 1, pp. 54–57, May 2014.

[154] Wayne Jansen and Timothy Grance, “SP 800-144. Guidelines on Security and

Privacy in Public Cloud Computing,” Tech. Rep., National Institute of Standards

& Technology, Gaithersburg, MD, United States, 2011.

[155] Joel Scheuner, Jürgen Cito, Philipp Leitner, and Harald Gall, “Cloud Work-

Bench: Benchmarking IaaS Providers Based on Infrastructure-as-Code,” in

Proceedings of the 24th International Conference on World Wide Web, New

York, NY, USA, 2015, WWW ’15 Companion, pp. 239–242, ACM.

[156] Hamoun Ghanbari, Bradley Simmons, Marin Litoiu, Cornel Barna, and Gabriel

Iszlai, “ Optimal Autoscaling in a IaaS Cloud ,” in Proceedings of the 9th

International Conference on Autonomic Computing, New York, NY, USA, 2012,

ICAC ’12, pp. 173–178, ACM.

[157] Luis M. Vaquero, Luis Rodero-Merino, and Daniel Morn, “ Locking the sky: a

survey on IaaS cloud security. ,” Computing, vol. 91, no. 1, pp. 93–118, 2011.

[158] Alexandru Iosup, “IaaS Cloud Benchmarking: Approaches, Challenges, and

Experience,” in HotTopiCS, 2013, pp. 1–2.

[159] Amazon Inc, Amazon Elastic Compute Cloud (Amazon EC2), Amazon Inc.,

http://aws.amazon.com/ec2/#pricing, 2008.

[160] Rostyslav Zabolotnyi, Philipp Leitner, Waldemar Hummer, and Schahram Dust-

dar, “JCloudScale: Closing the Gap Between IaaS and PaaS,” ACM Transac-

tions on Internet Technology (TOIT), 2015.



BIBLIOGRAPHY 345

[161] Rajdeep Dua, A Reddy Raja, and Dharmesh Kakadia, “Virtualization vs Con-

tainerization to Support PaaS,” in Proceedings of the 2014 IEEE International

Conference on Cloud Engineering, Washington, DC, USA, 2014, IC2E ’14, pp.

610–614, IEEE Computer Society.
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