Adaptive & Learning-aware Orchestration of
Content Delivery Services

Steven Van Rossem®, Thomas Soenen *, Wouter Tavernier®,
Didier Colle*, Mario Pickavet* and Piet Demeester*
*Ghent University — imec, IDLab, Department of Information Technology.
Email: wouter.tavernier @ugent.be

Abstract—Many media services undergo a varying workload,
showing periodic usage patterns or unexpected traffic surges.
As cloud and NFV services are increasingly softwarized, they
enable a fully dynamic deployment and scaling behaviour. At
the same time, there is an increasing need for fast and efficient
mechanisms to allocate sufficient resources with the same
elasticity, only when they are needed. This requires adequate
performance models of the involved services, as well as awareness
of those models in the involved orchestration machinery. In this
paper we present how a scalable content delivery service can be
deployed in a resource- and time-efficient manner, using adaptive
machine learning models for performance profiling. We include
orchestration mechanisms which are able to act upon the profiled
knowledge in a dynamic manner. Using an offline profiled
performance model of the service, we are able to optimize the
online service orchestration, requiring fewer scaling iterations.

Index Terms—VNF, NFV, Machine Learning, Performance

Profilin
g I. INTRODUCTION

Enabled by Network Function Virtualization (NFV), soft-
warized implementations of network functions create very
flexible deployment options. In function of the online work-
load, more or less virtualized datacenter resources (such as
CPU cores and bandwidth) can be elastically allocated to the
service. When a service provider offers a certain functionality
to its users, the performance is specified in the Service Level
Agreement (SLA). Typically, Key Performance Indicators
(KPIs) such as response time, jitter or loss are given in
the SLA, along with their acceptable boundary values. The
service provider can however optimize the amount of allocated
resources as long as this does not cause any unacceptable
service degradation outside the SLA limitations. To optimize
this process, the relation between performance and allocated
resources should be known in advance, so the service provider
can orchestrate efficiently, needing less scaling iterations. If
we can model this relation, we can make a more accurate
prediction of how much resources are needed to fulfil the
SLA.

In this paper, we deploy a content delivery service chain
(described in Section II), where the number of file servers
can be scaled, following a certain workload pattern. In an
offline development environment (similar to production), we
first execute a series of tests while varying several workload
and resource parameters. Using this pro-active measurement,
we analyse how trends can be modelled, which allows us to
predict the number of needed file servers, given a certain
workload and response time. This model is later on trans-

ferred to the production environment, where the orchestration
platform can make an informed prediction of the needed file
servers to deploy. If this model was not available, a sequence
of scaling operations would take place, until the service
eventually reaches the required performance. This difference
is experimentally validated. In Section IV we describe the
process of profiling the service in an offline development en-
vironment and creating a performance prediction model. Later
on, in Section V, we describe how the profiled model can be
integrated in a NFV Management and Network Orchestration
(MANO) platform used for operational service deployments.

II. THE CONTENT DELIVERY SERVICE TOPOLOGY

The service we use is doing basic content delivery. A load
balancer uses a round-robin strategy to distribute incoming
file requests to a number of servers. Each server can only
be connected to the load balancer over a bandwidth-limited
link (1Gbps). This represents a topology where the servers are
deployed on less powerful environments and such as smaller
edge compute nodes. This setup can for example represent
a series of multiple mirror file servers, located at different
locations for extra reliability and decentralization. The setup
is depicted in Fig. 1.

Load
@ Balancer
(LB)

Fig. 1: The tested service topology scales between multiple
file servers on limited network links.

Server N

We distinguish three different functional blocks:

a) Load Balancer: This is a Docker-based container. The
implementation is Haproxy . We configure Haproxy as round-
robin load balancer and enable the export of performance
metrics such as response time.

b) File Server: This is a Docker-based container using
the Python-based Flask implementation to serve files of ran-
dom data and a given filesize.

¢) Clients: The workload is generated in the Clients con-
tainer. Locust is used as programmable file request generator.
We generate a varying number of concurrent file requests of
different filesizes.

III. RELATED WORK

Our implementation is based on aspects of both VNF pro-
filing and VNF orchestration. This section describes how our
approach extends current related work. We base our modelling
approach on the method used in [1]. We apply the method on a
new service topology and investigate how we can extrapolate
the modelled performance to untrained configurations. On the
other hand, the authors in [2] and [3] propose to use analytical
curve fitting to extrapolate service performance trends beyond
trained workloads and resource allocations. The analytical
trends are fitted online while the service is operating in the
production environment. Our experiment however, tries to
pro-actively model the performance trends, using an offline
profiling environment. This helps to orchestrate the service
more efficiently in production, and optimizes the learning time
needed in production.

The MANO Framework orchestrates the end-to-end runtime
life cycle of the profiled service in production. In order to
use the profiled model in the operational context, the MANO
Framework needs to be able to execute it. Therefore, the
framework needs to support customisation, so that generic
life cycle behaviour that is being applied to all services can
be overwritten on a per service basis. In this context, [4]
and [5] mention the necessity for MANO customisation but
without proposing solutions. OSM [6] and Open Baton [7],
two open source MANO Frameworks, allow developer-defined
customisation for VNF life cycle events, such as attaching
specific scripts to be executed when the VNF is started,
configured or requires healing. However, both platforms miss
the ability to tailor life cycle events on the network service
level, e.g. custom procedures when a service should be scaled.
ONAP [8] introduced a concept for a closed loop automation
management platform (CLAMP) [9], allowing service level
customisation through high-level policies. However, our pro-
filed model is too complex to be captured by a hard coded,
rule-based policy. SONATA-NFV [10] allows service develop-
ers to attach code snippets which customise the orchestration
to the level of a modular service. Through Function (FSM) and
Service Specific Managers (SSM), developers can package
their code (including profiled models) as Docker containers
and have them executed during the operational runtime of

their services.
IV. PROFILING PHASE

Before we deploy the service in production, the topology
(Fig. 1) is profiled in an offline environment. By profiling
the service, we hope to derive a model to predict how many
server instances should be allocated to the service, in order to
meet a given workload and KPI target. We generate a series
of workloads from the Clients to the LB, combined with a
varying number of resource allocations. The monitored data
is then later analysed to see if certain trends can be modelled.

As test hardware we use multiple equal compute nodes with
2x 8core Intel E5-2650v2 (2.6GHz) CPU running Ubuntu
18.04 as operating system. Linux Bridge is used as the
hypervisor switch for the VNFs. We do not change default

OS options (e.g. we leave hyperthreading enabled). The con-
figuration options of Docker are called to isolate the CPU
cores between the containers used in the tested topology.

A. Profiled Metrics

Monitoring data is the base for our modelling approach.
During profiling, we monitor several metrics which we can
group into three categories:

1) Workload parameters (wl):

Streams (s) : [1-1000] concurrent clients who are continu-
ously generating file requests. So if there are n streams, there
are always n concurrent file requests ongoing. 50 different
values are selectively chosen, spaced evenly along the log
scale.
Filesize :
MByte.

2) Resource parameters (res):

Load Balancer cpu limit (LB.,,) : The allocated vCPU
share to the load balancer is [0.25, 0.5, 0.75, 1, 2, 3, 4, 5,
6] vCPU cores. This is only applicable in the offline profiling
environment.

Number of servers (Ngervers) : We create two datasets to
analyse how well we can predict the performance of an
extrapolated number of servers:

The size of the requested files is [0.5, 1, 5, 10]

o Ngervers = [2-5]: dataset for training the model.
o Ngervers = [6-8]: dataset for testing the extrapolated model
accuracy of an untrained number of servers.
3) Performance parameters (perf):
The service KPI is the mean response time (7') (ms) of
the file requests, as measured at the ingress port of the Load
Balancer. This is the average time it takes to complete a file
download.

All combinations of the above parameters are tested, this
yields a total of 12600 data points. This is then repeated
at least 30 times, so we can average each datapoint over
30 measurements. This creates a good estimation of the
average performance of this service topology. To speed up the
measurements, we use the automated profiling environment
described in [11]. This way we can run the tests in parallel,
over multiple equal compute nodes. We show an example
of the averaged profiled data in Fig. 2. The confidence
intervals are drawn, but are barely visible because there is
little variation in the measurements.

B. Resource Allocation Model

In order to predict how much resources should be allocated
to the service, to meet a certain performance, we need to
model the relation between workload (wl), performance KPI
(perf) and resource allocation (res). Based on the work in
[1], we can write following generic formulation to find the
optimal resource allocation:

f(wl7 7"68) S perftarget
wl > wltarget (1)
minimize cost(res)

Haproxy=4 vCPUs, filesize=10MByte

servers
2

15000
@ 12500
10000
7500

5000 -

response time (ms

2500

T T T T T T
0 200 400 600 800 1000

streams

Fig. 2: Example of the profiled response time under a different
number of servers.

The model f(wl,res) = perf predicts the KPIs in perf for
a given workload and resource allocation. To find a solution
for the optimization problem in Eq. 1 a simple heuristic can
be used:
By iterating over all possible resource allocations, in order
of increasing resource cost, we eventually find an allocation
which satisfies the equations in Eq. 1. This means that the
proposed resource allocation is the cheapest one to reach the
target workload (wliarget) Within the targeted performance
limit (per frarget). When applied to our tested service topology,
this yields the procedure given in Algorithm 1. The number of
servers (NVgervers) 18 increased until the targeted response time
(T'resp) is reached, for a targeted number of streams (Siarget)-
By using the model f we can in fact mimic a scaling sequence
where more resources are added until the performance is
within specification. In Table I we give an overview of the
used variable names throughout the paper for easy reference.

Starget Target number of streams

Ttarget Target response time (upper limit)

Ngervers Number of servers

LBcpu Allocated vCPU of the load balancer

filesize | Filesize of the requests in the workload

f Trained model to predict the response time T

T A value of the mean response time

s A value of workload streams

Smax Maximum number of streams, for a given target of
Nservers, Ttargcty and filesize

TABLE I: Overview of used variable names.

Algorithm 1: Heuristic to find optimal Ngepvers

Data: Starget» Ttarget» filesize, f

Result: Nygivers

Ngervers <— 2 (initial Ngervers allocation) ;

while f(Stargct; filesizea Nscrvcrs) Z Ttargct do
| increase Nyervers ;

end

return IV, serverss

[S TR N

The accuracy of the heuristic in Algo. 1 stands or falls
with the accuracy of the model f. We investigate different
methods for deriving f from our profiled dataset. The models
are implemented using the Python-based library scikit-learn
[12]:

o ANN The Artificial Neural Network (ANN) is a well known
method from the machine learning domain. This method is
capable of modelling very non-linear trends. When visually
inspecting the trends for the response time (see Fig. 2), we
expect however more linear relationships. As a compromise
we use a less complex ANN, here with two hidden layers
with 10 resp. 5 nodes.

o Lasso Since we expect more linear shaped trends, we
also include the linear regression-based Lasso method. We
also use polynomial expansion (second order) on the input
parameters, in order to create some more degrees of freedom
to fit the model.

« Random Forest The procedure of this method is to combine
multiple decision trees in determining the final output
rather than relying on an individually built decision tree.
Maximum tree depth is set to 10, and the number trees in
the forest is 100. The use of decision trees for modelling
network service performance has been investigated in [13]
with promising results. We include the method here for
verification on our data sets.

o Multivariate Linear Interpolation Regression is done by
interpolating linearly between surrounding samples. The
interpolant is constructed by triangulating the input data
using Delaunay triangulation, and on each triangle per-
forming linear barycentric interpolation. This method also
works in multiple dimensions, so the total workload and
resource input space is taken into account to interpolate
an intermediate KPI value. This method has been used for
VNF modelling in [1]. We also include the method here for
verification on our new datasets.

o Multi Lasso [1] This customized procedure is based on the
method which showed most promising results in [1], used
on the profiling of stand-alone Virtual Network Functions
(VNFs). In [1], the method called *Curve Fit’ fits a number
of analytic functions to the profiled data points. In our
implementation, a Lasso model is trained (instead of an
analytic function), separately for each profiled combination
of (filesize and Ngervers), Where only the number of
streams 1is varying as input parameter for the model. A
prediction of a new workload value is made by using
the previously mentioned Interpolation method between the
Lasso models of surrounding nearby combinations (of
filesize and Ngervers). One can think of this method as
training a Lasso model for each of the lines in Fig. 2. Any
intermediate value is then found by interpolation between
the profiled Lasso models. More details of this method are
given in [1].

In the following three subsections, we validate the usability
of the above proposed methods in Eq. 1, hence providing an

accurate prediction of the needed number of servers in our
service.

1) Extrapolate to untrained resource allocations:

The usability of Eq. 1 and Algo 1 depends on the accuracy of
the model f(wl,res) = perf and its ability to extrapolate
well to untrained values of Nggrvers. Only then can the
model predict useful resource recommendations. We examine
the different modelling methods to validate if the response
time prediction can be extrapolated to untrained resource
configurations. The accuracy of the methods is measured using
the Root Mean Square Error (RMSE) of the predicted and the
actual response time. The result is given in Fig. 3. In the left
part, we can assess how each method can predict the response
time for service configurations with Nyervers = [2, 3, 4, 5]. We
create five random splits with 90% of the dataset for training
and 10% for testing. Then the RMSE is averaged over these
five random data subsets. So in the left part, a lower RMSE
indicates that the method can predict better the response time,
as long as the test samples stay within the boundaries of the
training data.

In the right part of Fig. 3, the RMSE is measured using
the previous dataset (used on the left) as training data and the
extrapolated dataset (Ngervers = [6,7,8]) as test data. So the
test data is not any more within the boundaries of the training
data, as Ngervers 18 increased. This indicates how well each
method can predict the response time for Ngervers beyond the
training data.

3000 - ANN
Lasso
Ran.Forest
Interpol.

Multi Lasso

2500

1

2000

1500

RMSE (ms)

1000

500

#servers

Fig. 3: Comparison of extrapolation capabilities between
different modelling methods.

It is a known characteristic of many machine learning-
based methods, that they do not predict well outside the
boundaries of the training set. The accuracy of those methods
is only good as long as there were enough training samples
’in the neighbourhood’ of the test sample. In Fig. 3 we see
that some methods (Random Forest, Interpolation and Multi
Lasso) are better at interpolating data within the boundaries
of the training dataset. When Ngepvers increases beyond the
trained values, accuracy gets worse. Other methods, based
on linear regression, can however extrapolate further (ANN,
Lasso). We see in Fig. 3 that their accuracy does not worsen
in the extrapolated area, but these methods are unfortunately

considerably worse at the left side, interpolating values in
within the boundaries of the training set. For ANN, we
experience very large variations in the resulting accuracy,
for repeated training cycles on the same training set. This
indicates that accuracy depends on the random initialized
weights in the model, and that there are too little training
samples available for the model to converge. Decreasing the
number of nodes in the ANN, would require less samples to
train all the weights in the model, but at the cost a reduced
trend fitting. We see in our test that smaller ANNs do not
improve accuracy.

The Multi Lasso method has an unrivalled accuracy as long
as it is tested within the boundaries of a training set. This is
also aligned with the tests done in [1]. In the remainder of
this paper we further improve the model to make predictions
for an increasing number of servers.

2) Iterate through representative resource allocations:

To find an optimal resource allocation in Eq. 1, our pro-
posed heuristic iterates through possible resource allocations,
ordered by increasing resource cost. To train the model f in a
representative way, compared to the operational environment,
we should align the samples taken in the offline profiling
environment as much as possible. This means that we need to
make sure that both workloads and allocated resources in the
profiling tests are aligned with the ones used in the operational
environment.

Concerning the allocated resources, an extra preprocessing
step is taken to select representative measurements from the
offline profiling tests. In our profiling environment, we have
limited resources available. Therefore we carefully control
how many vCPUs are allocated to the load balancer Haproxy
(LBgpu). For each profiled topology of Neervers, We increase
LB, until we are sure that the service is no longer con-
strained by LB. We define a resource cost as in Eq. 2 , where
we take wy = 0.1 and wy = 1. This resembles that LBy, is
a much cheaper resource, as it easier to allocate more vCPUs
to LB, compared to adding an extra server.

cost(res) = w1 * LBepy + W2 * Nervers 2)

The defined resource cost is a helpful tool to select from
what LB, onwards, the performance is limited by Ngervers.
This is exemplified in Fig. 4, where we plot the maximum
streams possible, for a target filesize = 10M B and re-
sponse time Tiarget = 5000ms, in each profiled resource
combination, ordered by increasing resource cost. To pre-
dict the maximum streams we use a Multi Lasso method,
trained with samples of Nyervers < 5. This results in a
model f which can predict the response time 7 like in:
f(streams, filesize, Ngervers, LBcpu) =T

We look for the value of streams at which Ti,.ge is
reached, in each profiled resource combination of Ngepvers
and LBc,,. This is done by incrementing streams in the
above model until f reaches Tiarget. The predicted trend in
Fig. 4 shows how this model f fits to the real measurements.

The crossed marker values or profiled points are found by
interpolating the real measurements.

filesize=10MB response time=5000ms

500 A
Profiled / Training Extrapolated .o«
X
®%¢
400 -
2 X X X
@ 3007 B¢ T - T
v N N
: S 1 [[F T
H I I I 1
200 A t 1 l' l' "
St X x x x
i i i
')0000(X % X
10011 i i ; --- predicted trend
3 X K X x profiled points
* * * * @ selected points
2 3 4 5 6 7 8 9

resources cost

Fig. 4: Comparison of extrapolation capabilities between

different modelling methods.
We use Fig 4 to illustrate following things:

o As expected, the Multi Lasso model fits well in the left part
of Fig. 4, where nearby training samples are available. In
the right part, f is stuck at the nearest sample included in
the training set (this is a similar extrapolation behaviour as
for the Random Forest or Interpolation methods).

o The resource cost increases slowly when adding more
LB.p,. We see in Fig. 4 that for each number of servers (the
label on the x axis), the performance stabilizes and adding
more LB resources does not help any more. This shows that
from a certain LB, the response time is indeed limited
by Nservers Only. This effect is visible due to the selection
of the weights in Eq. 2.

In the production environment we assume that LB is
never the bottleneck. There, LB has no resource limitation
and can freely use all of the available vCPUs. To predict
this performance, we filter from the profiled data only the
measurements which reflect an unsaturated L B: in Fig. 4 these
are the large blue dots. These points are the selected resource
allocations, where adding more LB, does not improve the

performance by more then 10%, for a given Ngepyers- AS a
result, we filter a set of profiled points, with a representative
performance for an unconstrained LB and a specific filesize,

Ttarget and Nservers~
3) Extrapolated Resource Recommendation :

It is clear that the procedure in Algo. 1 is not working
to predict an extrapolated number of fileservers. This is
due to the fact that the model f cannot extrapolate well
to untrained settings. An improved version is proposed in
Algo 2. This algorithm performs better because we do not
use f directly to predict extrapolated values. We only use
f within the boundaries of the training set: We illustrated
in Fig. 4, that it is possible to derive a maximum number
of streams for each profiled number of servers. So for a

given Ti.get and filesize, we can use our profiled model
f to derive an estimation for sy .y, the maximum number of
streams reachable in every profiled number of Ngepvers. This
way, we can gather several values for syax, which creates a
new dataset, which is easier to extrapolate. For example, the
selected points in Fig. 4 seem to be on a linear trend line.
This reduced dataset is gathered in Line 1-6 of Algo. 2.

Line 4 in Algo. 2 uses an iterative solving algorithm to find
a solution for s, .. In our tests we use a brute force method
which iteratively increments s by one until Ti,;gc¢ is reached.
Further optimized solver methods are possible but not tested

here.

Algorithm 2: Heuristic to find optimal Nggpvers (With
extrapolation beyond profiled data)
Data: Siarget, Trarget, filesize, f
Result: Ngervers
1 Nprofiled < profiled values of Negrvers 3
2 P < empty dataset ;
3 foreach N; € Npiofiled do

4 Smax < solve f(S’ filesjze, N’L) = Ttarget)
5 P.append([Smax, Ni);
¢ end

7 fregr < LinearRegression(s, N; € P);
8 Nservers — Ceil(fregr(starget))
9 return N, serverss

Figure 5 demonstrates how a trend for the required number
of servers was derived using Algo 2. The blue profiled points
are derived from the training dataset of Ngervers = [2 — 5.
These points are used in Line 7 in Algo. 2 to train a linear
regression. In our experiment we assume a linear trend is
existing between spyax and Ngepvers. We achieve a stepwise
prediction by ceiling the regression line to the upper integer
value. The orange mew points indicate points outside of
the training set, these are measured in the topology with
Nservers = [6 — 8]. We see that these points are well on the

predicted linear trend.

target filesize: 10MB, response time: 5000ms

—— prediction
129 o profiled points

§ 10 4 new points
c
a
Y— 8
5}
@
Qo 6
1S
>
c 4 4

2 -

T T T
400 600 800

max streams

T
0 200

Fig. 5: Linear extrapolation of the profiled dataset.

C. Other Modelling Approaches

In this subsection we why other profiling methods would
yield less accurate results. A general machine learning-based
approach would be to consider purely the profiled values of
filesize, streams and T to predict Ngervers, as in Eq. 3.

F(filesize, streams, T) = Nservers 3)

The above modelling approach has several disadvantages:

o The parameter Nge vers 1S NOt continuous but categorical in
nature. Several values of filesize, streams and T map to
a single integer value of Ngervers, as seen in Fig. 5. For a
generic machine learning method, this would mean that the
training samples are following a step-like shape. We know
that regression-based methods are not good at modelling
such discontinuities, certainly when the number of training
samples is rather limited, as in our use case.

« When considering classifier-based methods, we could suc-
cessfully train a model to predict Ngervers Classes, but the
number of classes is limited to the values of Ngepvers in the
training set. Trained classifiers can therefore not extrapolate
and are bounded to predict only trained values of Ngeivers
(similar to the faulty predicted values in the extrapolated
part of Fig. 4).

The above reasons further explain why generic machine
learning methods cannot be used directly. The approach in
Algo. 2 effectively bypasses the explained shortcomings of
machine learning methods in our profiling use case. We can
further note that Algo. 2 can be easily adapted to model other
trend lines if needed. Line 7 in Algo. 2 can be easily replaced
by another regression method, if the trend line seems to be of a
different, non-linear shape. For modelling the response time, a
linear trend is also what is intuitively expected : From a certain
number of concurrent streams, the service’s resources are
saturated and the maximum bandwidth (BW,.) is reached.
This maximum bandwidth is shared among the increasing
number of streams, each downloading the same filesize. This
leads to a response time 7' as given in Eq. 4 :

filesize
BWmax

We can additionally assume that BW,, is strongly correlated
with Ngervers in our service. If Eq. 4 is true, this would mean
that the model accuracy must improve if we use 1/Ngervers as
a feature. The product filesizex streams* 1/Ngervers should
then be a good predictor for 7. We test this assumption by
testing including 1/Ngepvers in the training set of the Lasso
method, and use polynomial expansion of the third order
to ensure that the input feature set is expanded with also
the product of all three features as mentioned. We show the
prediction accuracy of this Lasso3 method in Fig. 6. We see
that the Lasso3 method is indeed outperforming the earlier
used Lasso method, which indicates that the relation of Eq.
4 improves the prediction model. But bigger problems occur
when using Lasso3 for extrapolation, probably because the
third order polynomial expansion is overfitting the training set,

T = streams 4)

3000

B Lasso
2500 - mmm Lasso3
B Multi Lasso

Profiled

2000

1500 4

RMSE (ms)

1000 +

500 H

2 3 4 5 6 7 8
#servers

Fig. 6: Accuracy of the Lasso3 method.

creating non-linear trends. We can conclude from the results
in Fig. 6 that linear regression-based methods can be improved
greatly, if expert knowledge as in Eq. 3 is used. However our
proposed Multi Lasso method remains the best choice for our

use case.
V. MANO PLATFORM INTEGRATION

To perform automated life cycle management for content
delivery services at runtime, one uses NFV Management
and Orchestration (MANO) frameworks. These frameworks
typically automate life cycle decicions such as instantiation,
scaling, migration, configuration and termination, based on
a high level service description. For example, the service
description of a content delivery service could contain a
scaling policy indicating that the service should scale out
when the average response time of the service exceeds 0.05s,
and scale in if it falls below 0.03s. It is then the task of
the MANO Framework to enforce this policy by monitoring
the associated metrics and automatically trigger scaling events
when the thresholds are crossed.

In this paper we focus on the SONATA-NFV [10] MANO
Framework, as argumented in Section III, since it contains
a unique feature that is required for our setup. It allows the

=

Lifecycle
Manager

‘ ‘ Service

! . NS

i i | Placement
H H Plugin

H i

...

P
i ! VNF Function

: : Scaling Lifecycle “
H H Plugin Manager

i

i

: Openstack oDL Kubernetes

E Wrapper Wrapper Wrapper

! -
' / \ \

PoP #1 PoP #2

VNF2 VNF3

VNF1 VNF4

i Docker
™M - Docker

Fig. 7: SONATA-NFV MANO framework Architecture with
Specific Managers.

developer of the content delivery service to add actual code to
its service description, which can be executed by the MANO
Framework at the appropriate time. With this feature, service
developers get a more finegrained control over the life cycle
management of their services at runtime. Where earlier, they
were limited to describe the desired behaviour through high
level policies, they can now include (machine learning-based)
prediction models to alert the MANO Framework when life
cycle events are needed.

The SONATA-NFV MANO Framework enables this feature
through the use of SSMs. These are Docker containers, pro-
vided by a service developer, that are deployed and attached
as part of the control plane when the content delivery service
is being deployed. During default life cycle processes (e.g.
instantiation and termination), the MANQO Framework will
interact with the SSM to check if there is any service specific
control behaviour that needs to be considered. The MANO
Framework also allows the SSM access to all monitoring data
related to the associated content delivery service, and provides
a hook so that the SSM can send instructions (e.g. to scale or
to migrate) to the MANO Framework. Therefore, at runtime,
the SSM can process all the relevant monitoring data, use
it as input for the machine learning model that was copied
into the SSM container, and request a scaling event from

0.5

the MANO Framework whenever the model indicates one is
needed. Figure 7 shows how the SSM concept relates to the
entire architecture of the SONATA-NFV MANO Framework.
For more details on this architecture, see [10].

We have ran two experiments to show the added value of in-
cluding the profiling model as code to the service description.
Each scenario applies a different scaling logic to a content
delivery service containing a Haproxy load balancer and a
set of Python Flask backend fileservers, as described earlier.
The number of fileservers is to be decided by the scaling
logic. A SONATA-NFV MANO Framework instance is used
to orchestrate this service on top of a Kubernetes cluster, with
32 Intel(R) Xeon(R) CPU E5-2650 v2 CPUs and 32 GB of
RAM available. Load is generated using the Python Locust
tool by requesting 1 MB files in concurrent threads through the
REST API that is exposed by the service. In the first scenario,
we apply a simple high level scaling policy that instructs the
MANO Framework to add a single fileserver if the average
response time of the service exceeds 0.05s, and to remove a
single fileserver it falls below 0.03s. In the second scenario,
we deploy the service together with an SSM that contains
our pre profiled model f. By using Algo 2, the SSM can
plugin monitored data of the number of concurrent sessions
(Starget), the filesize being requested and the cut-off response

o
o

0.44

'*ﬂHL\J‘W .
0
0 200 400

response time[s]
o
w

e
N}

0.14

0.0

0.5

0.44

WLJ mvar
0 100 200

o
w

e
N

response time[s]

0.14

0.0

sessions
—— response time

600 800
time [s]

1000

(a) response time

100

active sessions

backend servers

—
S

-
N

—
o

©

o

IS

N

sessions

—— backend servers

L

400 600 800
time [s]

(b) Number of backends

Fig. 8: Scenario 1: Runtime scaling without learning

sessions
—— response time

Fig. 9: Scenario 2: Runtime scaling with learning

300 400 500
time [s]

(a) response time

100

r 80

r 60

I 40

r 20

active sessions

backend servers

16

14

o
N

—
15}

1000

sessions

—— backend servers

200 300 400
time [s]

(b) Number of backends

500

(Note the different x axis scale compared to Fig. 8)

r 100

80

60

r 40

20

100

80

I 60

40

20

active sessions

active sessions

time (Ttarget), and calculate when the service should be scaled.

The results of both scenarios are shown in Figures 8 and
9. They show for each scenario how the service response
time and the number of backend servers evolve when the
scaling logic is being applied by the MANO Framework.
The shown data is collected from the Haproxy load balancer.
The scaling regime was triggered by varying the number of
concurrent requests generated by the Locust tool, which is
recorded by the load balancer as number of active sessions.
When the number of active sessions increases, we see that
for scenario 1 the number of backend fileservers gradually
increases, resulting in a gradual decrease of the response time.
In scenario 2, the desired number of backend fileservers is
reached much quicker, because the profiling model provided
a good estimation of how many fileservers are needed for the
new conditions. This results in a shorter scaling procedure
so that the required QoS in terms of service response time
(< 0.05s) is reached much faster (only 2 scaling iterations
versus 11 for a surge of 10 active sessions to 100).

VI. CONCLUSION AND FUTURE WORK

Profiling a network service implies that a set of varying
workload parameters and resource allocations is tested in
an isolated environment, prior to deployment in production.
This pro-active, offline test allows to monitor and model the
service’s performance. The creation of such a performance
model has been exemplified on a content delivery service,
where a load balancer distributes incoming file requests to a
set of bandwidth- limited servers. The goal of the profiled
model is to predict how much servers need to be reserved in
the production environment, to meet a given SLA specifica-
tion of max concurrent streams and response time. We also
showed how a provided performance model can be integrated
in production-grade MANO platform architectures. We see
however following paths for improvement:

A. Online Learning as MANO Platform Extension

As shown in Figure 9, the scaling data provided by the
profiling model is not perfect. Both for the increase from 10
to 50 sessions, and from 10 to 100, Figure 9b shows that
after one initial large scale out event of multiple backends,
estimated by the model, the MANO decides to scale out one
more time. This secondary scale out event is triggered by the
fact that the specified response time threshold of 0.05s was
not yet reached. The scaling information from the model was
good, but still deviated a bit from the actual scenario. This
can be explained by looking at the used environments. It is
very hard for offline profilers to mimic the exact operational
environment when they are collecting profiling data in their
setup. Therefore, follow-up procedures should always be in
place when earlier profiled data is being used at runtime. One
such procedure is the application of online learning. More
specifically in our workflow, this comes down to retraining
model f with newly gathered data and plugging it back into
Algo 2. In the MANO framework, the SSM contains the
profiled model and can receive new monitoring data associated
to the content delivery service. Next, this data could be used

to retrain the model and further improve the scaling behaviour
in the specific operational environment currently being used.

B. Hybrid Modelling Approaches

One of our learnings is that standard machine learning
methods fall short to extrapolate service performance to
untrained resource allocations. Either they are too complex to
be trained by the limited amount of profiled samples, or they
only work well within the boundaries of the training data. To
overcome this, we needed to filter out our wanted performance
metrics from profiled resource allocations only (Algo. 2). On
this simplified dataset we can do a linear regression, in order
to extrapolate performance beyond profiled settings. In our
example we witnessed a clear linear trend to extrapolate the
performance. More tests on varying types of network services
are needed to check if other (non-) linear KPI trends are
occurring. Also other types of KPIs such as loss or jitter
could show different trend shapes. Then it is the question
if and how existing machine learning methods can be used
for online retraining of non-linear service performance trends.
Our presented example use-case and followed methodology
can trigger further research in this area.

ACKNOWLEDGEMENT
This work has been performed in the framework of the NGPaaS and
S5GTANGO project, funded by the European Commission under the Hori-
zon 2020 and 5G-PPP Phase2 programmes, resp. under Grant Agreement
No. 761 557 and 761 493 (http://ngpaas.cu) (https://www.5gtango.eu). This
work is partly funded by UGent BOF/GOA project ’Autonomic Networked

Multimedia Systems’. REFERENCES

[1] S. Van Rossem, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester,
“Profile-based resource allocation for virtualized network functions,”
IEEE Transactions on Network and Service Management, pp. 1-1, 2019.

[2] J. O. Iglesias et al., “Orca: an orchestration automata for configuring
vnfs,” in Proceedings of the 18th ACM/IFIP/USENIX Middleware
Conference. ACM, 2017, pp. 81-94.

[3] P. Xiong, C. Pu et al, “vperfguard: an automated model-driven
framework for application performance diagnosis in consolidated cloud
environments,” in Proceedings of the 4th ACM/SPEC International
Conference on Performance Engineering. ACM, 2013, pp. 271-282.

[4] S. Van Rossem et al., “Introducing development features for virtualized
network services,” IEEE Communications Magazine, 2018.

[5]1 R. Szabo et al., “Elastic network functions: opportunities and chal-
lenges,” IEEE network, vol. 29, no. 3, pp. 15-21, 2015.

[6] “OSM Release Six Documentation,” https://osm.etsi.org/wikipub/index.
php/OSM_Release_SIX_Documentation, (Accessed Feb. 18, 2020).

[7]1 G. Carella et al., “Prototyping nfv-based multi-access edge computing
in 5g ready networks with open baton,” in /EEE NetSoft, 2017, pp. 1-4.

[8] “ONAP: Open Network Automation Platform,” https://www.onap.org/
architecture, (Accessed Feb. 18, 2020).

[9] ONAP, “Documentation of ONAP’s CLAMP module,” http:
/lonap.readthedocs.io/en/latest/submodules/clamp.git/docs/index.html,
(Accessed Oct. 10, 2018).

[10] T. Soenen et al., “Empowering network service developers: enhanced
nfv devops and programmable mano,” IEEE Communications Magazine,
vol. 57, no. 5, pp. 89-95, 2019.

[11] S. Van Rossem, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester,
“Optimized Sampling Strategies to Model the Performance of
Virtualized Network Functions,” Jan. 2020. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02354401

[12] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

[13] M. Peuster and H. Karl, “Understand your chains and keep your
deadlines: Introducing time-constrained profiling for nfv,” in 2018
CNSM Conference, Nov 2018, pp. 240-246.

