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Abstract

Recent trends like cloud computing and virtualization indicate that service providers are
increasingly transitioning to IT infrastructures that provide higher flexibility to allocate
resources dynamically in response to changes in the business landscape. These service
providers are driven by the pressure to improve the efficiency of their systems, e.g., by
sharing resources, to reduce their operating costs. To raise the resource efficiency, resource
allocations must be continuously adapted during operation to changes in the system en-
vironment. However, the increasing system complexity and the rising frequency at which
adaptations are required render human intervention prohibitive and increase the need
for autonomic and self-adaptive approaches. Thus, many researchers in the autonomic
computing and software engineering communities are working on approaches for the engi-
neering of self-adaptive systems.

A powerful approach to tackle the challenges and manage the complexity of engineering
such systems is to apply model-based techniques. The vital benefit of employing models
for system adaptation is that models can provide relevant information for what-if analyses
and thus drive the autonomic decision-making process. Thereby, it is possible to search
for valid and suitable system configurations at the model level and thus avoid unnecessary
and possibly costly system adaptations.

This thesis presents a systematic approach for proactive and autonomic performance-aware
resource management in modern dynamic IT service infrastructures. Core of the approach
is the Descartes Modeling Language (DML), a novel architecture-level modeling language
specifically designed to describe performance and resource management related aspects
in such environments. With DML it is possible to continuously predict at run-time the
impact of changes in the system environment as well as the impact of potential adaptation
actions on the system performance and resource efficiency. Furthermore, DML enables
the specification of adaptation processes at the model level. These modeled processes are
used to automatically adapt the system to changes in its environment, such as the way it
is used by customers, leveraging DML’s performance prediction capabilities for automated
decision-making. By means of this model-based approach, it is possible to autonomically
find suitable system configurations at the model level, thereby avoiding unnecessary and
possibly costly system adaptations. In addition, the presented approach provides a method
for self-adaptive workload forecasting to anticipate changes in the load placed on the system
such that the system can be adapted proactively, i.e., before performance or resource
efficiency problems occur. Thus, with our approach, substantial reductions in IT costs
through significant improvements in the resource efficiency can be achieved. Moreover,
the sophisticated modeling abstractions of DML support the model-driven development of
self-adaptive systems and thereby help to reduce the inherent complexity of such tasks.

The scientific contributions of this thesis are:

• A novel modeling formalism to describe the complex nature of the resources of mod-
ern dynamic IT service infrastructures. The formalism, which is part of DML, sup-
ports modeling the distribution of resources within and across data centers as well

xiii



xiv Contents

as the specification of the performance-influencing properties of these resources, in-
cluding nested logical resource layers such as virtualization or middleware.

• A method for the identification, classification, and automated quantification of pos-
sible performance-influencing factors of resource layers, e.g., of virtualization plat-
forms. The results can be used to derive a model of the performance overhead
induced by a resource layer and thereby improve performance prediction results.

• A flexible modeling formalism to describe the degrees of freedom of architecture-level
performance models that can be employed for run-time system adaptation. Further-
more, we provide modeling abstractions to specify the system adaptation processes
at the architecture-level in an intuitive and easily maintainable manner. These ab-
stractions can be used to describe high-level adaptation objectives, explicitly dis-
tinguishing system-specific adaptation actions from system-independent adaptation
strategies.

• A novel method for self-adaptive workload classification and forecasting to enable
proactive system adaptation at run-time. The method follows an approach that
automatically identifies the characteristics of a given workload and selects a suitable
forecasting strategy. The method continuously adapts the selection at run-time to
reflect the characteristics of the observed workload, taking into account the achieved
forecast accuracy as well as changing system requirements and user objectives.

• An end-to-end approach for autonomic performance-aware resource management
leveraging the previous contributions to implement a holistic model-based adap-
tation control loop. The approach uses DML as the basis to support automated
decision-making by predicting the impact of adaptation actions on the system per-
formance and adapting the system accordingly. The proposed adaptation method
also leverages the previously described models and techniques for proactive system
adaptation.

From a technical perspective, we contribute a framework that implements the described
concepts to automatically adapt the system model according to the corresponding modeled
adaptation process, using performance prediction to evaluate the impact of its adaptation
actions. We apply and evaluate our approach end-to-end in the context of three different
representative case studies to demonstrate that our approach can be effectively used for
autonomic performance-aware resource management to increase the resource efficiency in
modern dynamic IT service infrastructures without sacrificing performance guarantees.
The case studies are carefully selected and cover a broad spectrum of configurations with
different types of applications, hardware environments, deployment configurations, and
workloads. The considered evaluation scenarios are derived from typical real-life prob-
lems, e.g., of our industrial partner Blue Yonder, a leading service provider in the field
of predictive analytics and big data. The results show that our approach can provide
significant efficiency gains of more than 50% without sacrificing performance guarantees,
and that it is able to trade-off performance requirements of different customers in hetero-
geneous hardware environments. Furthermore, the results show that our approach enables
proactive system adaptation, reducing the amount of Service-Level Agreement (SLA) vi-
olations by 60% compared to trigger/rule-based approaches. These case studies and their
results remarkably show how our holistic model-based approach can be effectively used
to engineer systems with autonomic performance and resource management capabilities
providing substantial reductions in IT costs.
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Zusammenfassung

Trends wie Cloud Computing und Virtualisierung machen deutlich, dass immer mehr
Dienstanbieter IT-Infrastrukturen einsetzen, die eine höhere Flexibilität und Dynamik
bei der Zuweisung von Ressourcen bieten. So kann z.B. durch Teilen von Ressourcen die
Effizienz der Systeme erhöht und damit die Betriebskosten gesenkt werden. Um die Res-
sourceneffizienz zu steigern, müssen aber die Ressourcenzuweisungen ständig während des
Betriebs an Veränderungen in der Umgebung, wie z.B. Lastschwankungen, angepasst wer-
den. Die manuelle Durchführung solcher Anpassungen werden jedoch erschwert durch die
steigende Komplexität der Systeme sowie die zunehmende Frequenz, mit der Anpassungen
nötig sind. Dies führt zu einer verstärkten Nachfrage nach autonomen und selbst-adaptiven
Systemen, weshalb viele Forscher aus den Bereichen Autonomic Computing und Software
Engineering an Methoden zur Konstruktion solcher Systeme arbeiten.

Eine Idee, die Herausforderungen und Komplexität, die bei der Entwicklung solcher Sys-
teme auftreten zu bewältigen ist, modellbasierte Techniken zu verwenden. Entscheidender
Vorteil bei der Verwendung von Modellen zur Adaption von Systemen ist, dass Modelle
relevante Informationen für “Was wäre wenn”-Analysen liefern und dadurch einen autono-
men Entscheidungsprozess vorantreiben können. Mit solch einem Ansatz können gültige
und passende Systemkonfigurationen auf Modellebene gesucht und bewertet, und dadurch
unnötige, möglicherweise teure Adaptionen des Systems vermieden werden.

Die vorliegende Arbeit stellt einen systematischen Ansatz zur proaktiven, autonomen und
leistungsorientierten Ressourcenverwaltung in dynamischen IT-Infrastrukturen vor. Kern
des Ansatzes ist die Descartes Modeling Language (DML), eine neue architekturbasierte
Modellierungssprache, die speziell dafür entwickelt wurde, die für die Performance und die
Ressourcenverwaltung relevanten Aspekte der Infrastruktur zu beschreiben. Mit DML ist
es möglich, kontinuierlich zur Laufzeit den Einfluss von Änderungen in der Umgebung des
Systems sowie den Einfluss von möglichen Adaptionen auf die Performance und Ressour-
ceneffizienz des Systems vorherzusagen. Des Weiteren ermöglicht DML die Spezifikation
von Adaptionsprozessen auf Modellebene. Diese modellierten Prozesse werden anschließend
verwendet, um das System automatisch an Änderungen, wie z.B. im Benutzungsverhalten
der Kunden, anzupassen. Dabei werden die Vorhersagefähigkeiten von DML zur autono-
men Entscheidungsfindung herangezogen. Mit Hilfe dieses modellbasierten Ansatzes ist
es möglich, auf Modellebene autonom passende Systemkonfigurationen zu finden und da-
durch unnötige oder teure Systemadaptionen zu vermeiden. Zusätzlich bietet unser Ansatz
die Möglichkeit zur Vorhersage der Arbeitslast, sodass Änderungen in der Last des Sys-
tems antizipiert und das System proaktiv, d.h. bevor Probleme mit der Performance oder
Ressourceneffizienz auftreten, angepasst werden kann. Der vorgestellte Ansatz ist somit
in der Lage, die Energieeffizienz des Systems signifikant zu verbessern und dadurch sub-
stantielle Einsparungen bei den IT-Kosten zu erzielen. Darüber hinaus unterstützen die
zugeschnittenen Modellierungsabstraktionen von DML die modellgetriebene Entwicklung
selbst-adaptiver Systeme indem sie helfen, die inhärente Komplexität dieser Aufgabe zu
bewältigen.
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Die wissenschaftlichen Kernbeiträge dieser Arbeit sind:

• Ein neuer Formalismus zur Modellierung des komplexen Charakters verteilter Res-
sourcen moderner IT-Infrastruktur. Als Teil der DML unterstützt der Formalismus
bei der Modellierung der Verteilung von Ressourcen innerhalb und über Rechenzen-
tren hinweg, sowie bei der Spezifikation der Performance-Einflussfaktoren der Res-
sourcen inklusive verschachtelter logischer Ressourcen wie z.B. von Virtualisierung
oder Middleware.

• Eine Methode zur Identifikation, Klassifizierung und automatisierter Quantifizierung
möglicher Performance-Einflussfaktoren von Ressourcenschichten wie z.B. Virtua-
lisierungsplattformen. Die Ergebnisse können benutzt werden, ein Modell für den
Performance-Overhead der Ressourcenschicht abzuleiten um damit die Performance-
Vorhersage zu verbessern.

• Ein flexibler Formalismus zur Modellierung der Freiheitsgrade welche zur Laufzeit
zur Anpassung des Systems zur Verfügung stehen. Des Weiteren bieten wir Modellie-
rungsabstraktionen an, mit der auf Basis der Freiheitsgrade Prozesse zur Adaption
des Systems bereits auf Architekturebene und in intuitiver und leicht zu warten-
den Weise spezifiziert werden können. Diese Abstraktionen beschreiben die Ziele des
Adaptionsprozesses auf hohem Abstraktionsniveau, und unterscheiden dabei explizit
zwischen systemspezifischen Adaptionsaktionen und systemunabhängigen Adapti-
onsstrategien.

• Eine neue Methode zur selbst-adaptiven Klassifizierung und Vorhersage von Ar-
beitslast die zur proaktiven Systemadaption zur Laufzeit verwendet werden kann.
Mit dieser Methode wird ein Ansatz verfolgt, der automatisch die Charakteristiken
gegebener Lastkurven identifiziert und passende Vorhersagestrategien auswählt. Die
vorgeschlagene Methode passt ihre Auswahl kontinuierlich zur Laufzeit an die Cha-
rakteristiken des beobachteten Lastverhaltens an und berücksichtigt dabei auch die
erzielte Vorhersagegenauigkeit sowie veränderte Anforderungen an das System oder
veränderte Zielvorgaben des Benutzers.

• Ein Ansatz zur autonomen leistungsorientierten Ressourcenverwaltung welcher auf
die zuvor dargestellten Beiträge aufbaut und somit einen ganzheitlichen modellba-
sierten Regelkreis zur Systemadaption realisiert. DML dient dabei als Basis für die
automatisierte Entscheidungsfindung indem die Auswirkungen von Adaptionsaktio-
nen auf die Performance des Systems vorhergesagt werden und der Adaptionsprozess
das System dementsprechend anpasst. Des Weiteren nutzt diese Adaptionsmethode
die zuvor beschriebenen Modelle und Vorhersagetechniken zur proaktiven Systema-
daption.

Aus technischer Sicht ist der Beitrag dieser Arbeit das Rahmenwerk, welches die beschrie-
benen Konzepte implementiert um automatisch das Modell des Systems anhand des model-
lierten Adaptionsprozesses anzupassen und dabei Performancevorhersagen verwendet, um
die Auswirkungen von Adaptionen zu bewerten. Der vorgestellte Ansatz wird im Rahmen
von drei repräsentativen Fallstudien im Ganzen evaluiert um zu demonstrieren, dass der
Ansatz für autonome leistungsorientierte Ressourcenverwaltung verwendet werden kann
um die Ressourceneffizienz in modernen dynamischen IT-Infrastrukturen zu erhöhen, oh-
ne Performance-Garantien opfern zu müssen. Die Fallstudien wurden sorgfältig ausgewählt
um ein möglichst breites Spektrum an Szenarien mit unterschiedlichen Arten von Hard-
wareumgebungen, Anwendungen, Softwareverteilungen und Arbeitslast abzudecken. Die
betrachteten Evaluationsszenarien sind abgeleitet von typischen Problemen die in der In-
dustrie auftreten, z.B. bei unserem Partner Blue Yonder, einem führenden Dienstanbieter
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im Bereich Predictive Analytics und Big Data. Die Ergebnisse zeigen, dass unser An-
satz signifikante Effizienzsteigerungen von mehr als 50% ermöglicht, ohne Performance-
Garantien zu opfern und dass er in der Lage ist, verschiedene Performance-Anforderungen
unterschiedlicher Kunden abzuwägen, selbst in heterogenen Hardwareumgebungen. Des
Weiteren zeigen die Ergebnisse, dass unser Ansatz die proaktive Adaption von Systemen
unterstützt und dadurch im Vergleich zu trigger- oder regelbasierten Ansätzen die An-
zahl der Verletzung von Dienstgütevereinbarungen um bis zu 60% senkt. Diese Fallstudien
und die erzielten Ergebnisse zeigen deutlich, dass der vorgestellte ganzheitliche und mo-
dellbasierte Ansatz die systematische Konstruktion von Systemen mit Fähigkeiten zur
autonomen Performance- und Ressourcenverwaltung ermöglicht und dadurch substantielle
Senkungen der IT Kosten erzielt werden können.
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1. Introduction

1.1. Motivation

Modern software systems have increasingly distributed architectures composed of loosely-
coupled services that are typically deployed on virtualized infrastructures. Supported by
virtualization, which abstracts from the physical infrastructure, such system architectures
provide increased flexibility by enabling the dynamic assignment of virtual to physical
resources at run-time. Recent trends like cloud computing confirm that more and more
service providers adopt such dynamic infrastructures, driven by the pressure to improve
the efficiency of their systems, e.g., by sharing resources, and to reduce their operating
costs. For example, cloud computing allows to provide data center resources as on demand
services over a private or public network in a pay-as-you-go manner. This promises sub-
stantial reductions in IT costs, as well as significant improvements in the energy efficiency
through the dynamic consolidation of system resources and their sharing among multiple
independent applications (Kaplan et al., 2008; IT world, The IDG Network, 2008).

However, to maintain performance requirements with improved resource efficiency, systems
must be continuously adapted to changes in their environment such as workload fluctua-
tions or added/removed services. For example, the amount of resources allocated to each
service must be continuously adjusted to match the changing resource demands resulting
from variations in the customer workloads. Ideally, such adaptations should be performed
in an automated manner to reduce the amount of human intervention. The challenge
that automated and autonomous resource management approaches are faced with is that
the benefits of the increased flexibility and dynamics come at the cost of higher system
complexity. The increased complexity results from the introduced gap between physical
and virtual resource allocations and the complex interactions between the applications
sharing the physical infrastructure. For example, changes in the workload behavior of
one application can affect other applications if they are sharing resources or services. This
complexity makes it difficult to apply trigger- or rule-based approaches as used, e.g., in the
Amazon Elastic Compute Cloud (Amazon Web Services, 2010), because the appropriate
triggering points are typically highly dependent on the architecture of the hosted services
and on their workload profiles which can change frequently during operation. Moreover,
trigger/rule-based approaches cannot know in advance how much additional resources in
the various application tiers will be required (e.g., Virtual Machines (VMs), virtual CPUs
of VMs, physical machines, network bandwidth) and where and how the newly started VMs
should be deployed and configured to ensure performance requirements without sacrificing
efficiency.
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2 1. Introduction

The difficulty to predict the effects of the described interactions between applications as
well as the inherent semantic gap between application-level metrics and resource allocations
at the physical and virtual layers significantly increase the complexity of managing the
performance at system run-time. The pivotal question is: How can we perform system
adaptations in such situations in an autonomic manner without disturbing the system
operation? Thus, many researchers in industry and academia are working on techniques
for designing and engineering self-adaptive systems; a system that is able to automatically
adapt itself at run-time to changes in its environment to ensure its functionality, or Quality
of Service (QoS) properties like performance and resource efficiency.

A promising approach to address the above described challenge in managing the complexity
of modern dynamic IT service infrastructures is to develop self-adaptive systems with
model-based adaptation mechanisms (Kramer and Magee, 2007; Blair et al., 2009). The
essential advantage of a model-based approach to system adaptation is that, assuming
that the employed system model reflects the system state with sufficient accuracy, the
model can be used to ensure that the system will continue to operate as expected after a
planned adaptation has been executed, taking into account the performance and resource
efficiency requirements. Thus, by using models to search for suitable system configurations,
unnecessary and sometimes costly adaptations of the system can be avoided. Furthermore,
by abstracting from technical details, models help to reduce the inherent complexity of
such systems and thereby support the model-driven development of self-adaptive systems.
However, to achieve this goal, novel modeling formalisms are required that capture the
structure, behavior, and goals of the system to support automated adaptation decisions
at run-time.

The goal of the approach presented in this thesis is to provide a holistic model-based ap-
proach for autonomic performance-aware resource management leveraging novel modeling
formalisms to support the automatic adaptation of resource allocations to changes in the
system environment while maintaining performance requirements. Core of the approach is
a novel architecture-level modeling language, called Descartes Modeling Language (DML),
specifically designed to describe performance and resource management related aspects of
modern dynamic IT service infrastructures. With DML it is possible to continuously pre-
dict at run-time the impact of changes in the way the system is used by customers, as
well as the impact of changes in the system configuration, on the system performance and
resource efficiency. Furthermore, DML can be used to specify adaptation processes at the
model level in a human-understandable and reusable way. These processes are used to
adapt the system during operation to the changes in its environment using DML’s perfor-
mance prediction capabilities for automated decision-making. In addition, the presented
approach leverages workload forecasting techniques to adapt the system proactively, i.e.,
before the changes in the system environment actually have a negative impact on system
performance or resource efficiency.

1.2. Problem Statement

Many researchers agree that a promising approach for engineering self-adaptive systems is
the development of model-based adaptation mechanisms (e.g., Kramer and Magee, 2007;
Blair et al., 2009; de Lemos et al., 2011; Oreizy et al., 1999; Garlan et al., 2004; Becker
et al., 2012; Salehie and Tahvildari, 2009). To this end, novel modeling formalisms are
needed that provide means to describe the various system properties that are relevant for
automated adaptation decisions (such as structural, behavioral, or non-functional proper-
ties), while explicitly taking into account the dynamic context of the system (the degrees
of freedom for adaptation, the various adaptation strategies, and the underlying goals
driving the system adaptation). Furthermore, to support the systematic development of
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1.2. Problem Statement 3

self-adaptive systems, flexible modeling abstractions to specify different types of adapta-
tion processes, ranging from simple rules to complex heuristics or optimization algorithms,
are needed.

The challenge when developing such modeling formalisms is that the latter must be specif-
ically designed to provide suitable modeling abstractions for performance and resource
management at system run-time (Blair et al., 2009). Furthermore, one must separate
the possibly multiple concerns that should be covered by the modeling formalism (France
and Rumpe, 2007). Specifically, for the approach presented in this thesis, we need a
modeling formalism that abstracts from technical and system-specific details to reduce
complexity such that adaptation processes can be specified at the architecture-level in a
human-understandable, machine processable, and reusable manner. At the same time, the
modeling formalism should provide means to model sufficient performance-relevant details
of the system to predict the performance impact of changes in the system environment
and of undertaken adaptation actions. Thus, to provide novel modeling concepts for au-
tonomic performance-aware resource management, we face the following main challenges
and research questions.

Modeling abstractions for describing dynamic IT service infrastructures
The semantic gap between physical and virtual resource allocations in modern dy-
namic IT service infrastructures makes it hard to predict the effect of dynamic
changes in the environment, as well as to predict the effect of possible reconfig-
uration actions on the system performance. To enable such predictions, a novel
modeling formalism is required to capture the performance-relevant factors of mod-
ern dynamic IT infrastructures, focused on information that can be leveraged during
system adaptation for automated decision-making. For example, the formalism must
be capable of capturing the performance influences of the physical and the logical
layers of the system architecture, so that their impact on the system performance
for a given system configuration and workload scenario can be predicted. Specific
research questions in this area are: What is a suitable abstraction level for modeling
the performance-relevant properties and resource management aspects of the system
that are relevant for automated adaptation decisions? How can we encode impor-
tant structural information about the distribution of physical and logical resources?
What are suitable modeling abstractions to describe the performance influences of
multiple resource layers and how can these influences be quantified in an automated
manner?

Modeling abstractions to specify system adaptation
To ease the development of self-adaptive systems, novel modeling formalisms are
needed that support the specification of system adaptation processes at the model
level. A modeling formalism must provide means to capture the dynamic aspects of
the system, such as the degrees of freedom in which the system can be adapted at
run-time. Moreover, the modeling formalism must support a human-understandable
way of specifying how the system adapts to changes in its environment such that its
operational goals are continuously fulfilled. Simultaneously, the modeled adaptation
processes must be machine-processable to leverage model-driven techniques for exe-
cuting the modeled adaptation process. Research questions that arise are: How can
we reflect the adaptable parts of the system at the model level? How can we ab-
stract from system-specific implementation details to describe adaptation processes
in a generic, human-understandable and reusable way?

Besides these modeling formalisms, to proactively adapt a system to changes in the ap-
plication workloads, we need techniques to forecast future workload variations such as
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growing workload intensity, load fluctuations, or periodic spikes. We can then use per-
formance prediction techniques to predict the impact of the forecast workload variations
on the system performance and perform proactive system adaptation in case of detected
problems. The challenges and research questions in this context are:

Self-adaptive workload forecasting at system run-time
The proactive adaptation of systems to changes in their workloads requires novel
workload forecasting methods designed for use during system operation that can au-
tomatically capture the observed workload trends and seasonal behavior. To provide
accurate and accurately timed forecasts with an acceptable computational overhead
for possibly multiple different workloads, the method must be capable of selecting at
run-time the appropriate forecasting strategy depending on the observed character-
istics of the workloads. When selecting a suitable forecasting strategy, the selection
algorithm must trade-off between forecast accuracy and system-specific time con-
straints in which the forecasts must be available. Furthermore, the method must be
able to continuously adapt its decision depending on changes of the workload char-
acteristics, system requirements, or user objectives. Specific research questions to
be addressed are: How can we automatically select a suitable workload forecasting
strategy for a given workload? How can we consider system-specific requirements
and user-defined objectives in the selection process? How to trade-off forecasting
accuracy and forecasting speed?

Finally, the overall challenge is to demonstrate that the developed concepts can be effec-
tively used to implement model-based system adaptation processes capable of autonom-
ically managing the system’s operational goals. Therefore, the developed modeling and
prediction techniques must be consolidated into a coherent, clearly defined process model
that leverages the described modeling formalisms for online performance prediction and
autonomic decision-making. The basis for such a process model is typically a feedback
loop (or control loop) which is considered as essential building block for engineering self-
adaptive systems (Brun et al., 2009). The question remains what type of feedback loop
should be used and how the individual parts can be integrated into the different phases of
the loop.

1.3. Shortcomings of Existing Approaches

State-of-the-Art in Industry

The state-of-the-art of industrial approaches for automated performance and resource man-
agement in virtualized environments generally follow a trigger/rule-based approach when
it comes to enforcing Service-Level Agreements (SLAs). Custom triggers can be config-
ured that fire when a metric reaches a certain threshold (e.g., high resource utilization
or load imbalance) and execute certain predefined reconfiguration actions until a given
stopping criterion is fulfilled. The most prominent examples of such approaches are the
Amazon Elastic Compute Cloud that offers “auto scaling” (Amazon Web Services, 2010),
the “Autoscaling” solution of the Windows Azure technology platform (Microsoft, 2012),
or the VMware Distributed Resource Scheduler that dynamically allocates and balances
computing capacity (VMware, 2006).

The problem of these approaches is that application-level metrics (such as response time)
normally exhibit a non-linear behavior on system load and they typically depend on the
behavior of multiple VMs across several application tiers. Generally, it is hard to predict
how changes in the application workloads (e.g., varying request arrival rates and/or trans-
action mix) propagate through the layers and tiers of the system architecture down to the
physical resource layer. Therefore, it is hard to determine general thresholds indicating
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1.3. Shortcomings of Existing Approaches 5

when triggers should be fired given that such triggers are typically highly dependent on
the architecture of the hosted services and on their workloads which can change frequently
during operation. Furthermore, in case of contention at the physical resource layer, the
performance of an individual application may be significantly influenced by applications
running in other co-located VMs sharing the physical infrastructure. Moreover, triggers
are usually defined by the customer, i.e., the resulting adaptations are limited to the con-
cerns a single customer. Thus, it is not possible to trade-off the requirements of multiple
customers when trying to improve resource efficiency. To be effective, triggers must take
into account the interactions between applications and workloads at the physical resource
layer. The complexity of such interactions and the inability to predict how changes in ap-
plication workloads propagate through the layers of the system architecture down to the
physical resource layer render conventional trigger-based approaches unable to reliably
enforce SLAs in an efficient and proactive fashion.

State-of-the-Art in Academia

In academia, there are two major lines of research trying to address the described prob-
lem from different perspectives. First, there is the (software) performance engineering
community focusing on approaches for using performance models for capacity planning
at run-time. Existing work in this area mainly uses coarse-grained performance models
that typically abstract systems and applications at a high level (e.g., Jung et al., 2010;
Zhang et al., 2007; Li et al., 2009; Bennani and Menasce, 2005; Cunha et al., 2007; Gambi
et al., 2013). Such models do not explicitly model the software architecture and execution
environment to distinguish performance-relevant behavior at the virtualization level vs. at
the level of applications hosted inside the running virtual machines. The individual effects
and complex interactions between the application workloads and the system components
and layers are considered as static and viewed as a black box in such models. This hinders
fine-grained performance predictions that are necessary for efficient resource management,
e.g., predicting the effect on the response times of different services, if a virtual machine
in a given application tier is to be replicated or migrated to another host, possibly with
a different configuration; or predicting the effect of changing a configuration parameter in
the virtualization or middleware layer of a given application tier (e.g., number of virtual
CPUs assigned to an application server VM).

Over the last decade, the software performance engineering community has also proposed
a number of modeling approaches for building architecture-level performance models of
software systems (Koziolek, 2010). Such models provide modeling constructs targeted at
describing and evaluating the performance-relevant behavior of a software system during
the software development process, i.e., at system design-time and in an offline setting.
However, these modeling constructs are unsuitable for system adaptation in online settings
as there are some fundamental differences between offline and online scenarios that lead to
different requirements on the underlying performance abstractions. At system design-time,
the main goal of performance modeling and prediction is to evaluate and compare different
design alternatives in terms of their performance properties. In contrast, at run-time, the
performance modeling abstractions should enable predicting the impact of changes in the
application workloads as well as adaptation actions undertaken during operation to avoid
performance issues. However, currently, there are no performance modeling approaches
that explicitly consider the dynamic aspects of modern IT systems and services as part of
their architectural models (Becker et al., 2012).

The second research area relevant to the approach presented in this thesis is represented
by the autonomic computing and self-adaptive systems community. In this research area,
models play an important role in managing the complexity of dynamic and self-adaptive
systems and supporting adaptation decisions in such environments (Blair et al., 2009;
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6 1. Introduction

Cheng et al., 2009). As surveyed by Salehie and Tahvildari (2009), many approaches in
this area use models to capture context information that can be leveraged during sys-
tem adaptation. However, such approaches typically apply domain-specific models that
abstract from the system architecture. Approaches that employ software architecture mod-
els are, e.g., Oreizy et al. (1999); Floch et al. (2006); Garlan et al. (2009); Hallsteinsen et al.
(2012). However, such approaches are typically restricted to parameter and component
composition adaptations and do not include the system’s operational environment within
the scope of the considered adaptation possibilities. Furthermore, adaptation decisions
are normally based on simple policies or rules that do not consider detailed predictions of
the impact of possible adaptation actions on the end-to-end system performance. Thus,
the challenge that has not yet been fully covered by research in the autonomic computing
and self-adaptive systems community is how to model the system performance properties
and behavior as well as the adaptation processes at the system architecture-level in a
human-understandable, reusable and machine processable manner.

1.4. Contributions of this Thesis

The contribution of this thesis is the design and implementation of a holistic model-based
approach for autonomic performance-aware resource management of modern IT service in-
frastructures. In this approach, we use specifically designed architecture-level performance
models for predicting the performance impact of changes in the environment (including
both external changes in application workloads and internal changes as part of adaptation
actions) as well as models designed to specify adaptation processes of such systems at the
architecture-level.
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Figure 1.1.: Schematic representation of the model-based adaptation process and the in-
volved artifacts.

From a high-level perspective, our model-based system adaptation process consists of the
steps depicted in Figure 1.1. First, in the Anticipate/Detect Problem step, we apply
workload forecasting techniques to predict changes in the application workloads. These
forecasts serve as input to the architecture-level performance model of the system, which
allows us to predict the impact of such changes on the system performance. If the workload
changes have a negative impact on the system performance or resource efficiency, we use
the adaptation process specified by the adaptation process model to adapt the system
model (Adapt Model). In the Predict Adaptation Impact step, we predict the impact of the
performed adaptation. If the applied adaptation was successful, i.e., it solves the problem
that necessitated the adaptation, we adapt the system accordingly (Adapt System). If the
problem is not solved, we repeat these steps until we find a model configuration that solves
the detected problem.

The benefit of this approach is that we can search for solutions to detected or anticipated
problems at the model-level and thereby avoid possibly costly adaptation actions on the
real system. The performance model can be leveraged during the adaptation process to
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1.4. Contributions of this Thesis 7

evaluate the impact of the possible adaptation actions and thereby support automated
decision-making. To derive performance metrics from the architecture-level performance
model, we use the online performance prediction techniques developed by Brosig (2014).
More specifically, online performance prediction is used in the Anticipate/Detect Problem
step to predict the impact of the workload changes on the system performance as well as in
the Predict Adaptation Impact to evaluate the impact of adaptation actions. Hence, this
thesis is closely related to the PhD thesis of Brosig as it leverages the online performance
prediction techniques presented therein.

The contributions of this thesis can be separated into scientific and technical contributions.
The scientific contributions are:

• A novel modeling formalism to describe the increasingly complex nature of modern
distributed IT service infrastructures. The formalism supports modeling the dis-
tribution of resources within and across the boundaries of data centers as well as
the specification of performance-relevant properties of the modeled resources. Fur-
thermore, the modeling formalism also provides means to specify the performance
influences of nested logical resource layers, such as virtualization or middleware. The
proposed modeling formalism has been published in Huber et al. (2012a).

• A method for the identification, classification, and automated quantification of possi-
ble performance-influencing factors of resource layers, using virtualization as proof-
of-concept. Based on the classification, we conduct automated benchmark exper-
iments to quantify the influences of the identified factors. The automated quan-
tification method has been published in Huber et al. (2010b). The derivation of
performance overhead factors and the overall evaluation of the proposed approach
has been published in Huber et al. (2011b).

• A flexible modeling formalism to describe the dynamic aspects of self-adaptive sys-
tems as well as their adaptation processes. This modeling formalism consists of two
parts: modeling abstractions for specifying adaptation points and a modeling lan-
guage to define adaptation processes. Adaptation points describe the degrees of free-
dom of the system architecture and valid configuration space. The adaptation pro-
cess modeling language is designed to describe adaptation processes of self-adaptive
systems at the architecture-level in an intuitive and easily maintainable manner. It
distinguishes high-level adaptation objectives from low-level implementation details,
explicitly separating system-specific adaptation operations from system-independent
adaptation plans. The adaptation points meta-model has been published in Huber
et al. (2012a). The adaptation process modeling language has been initially published
in Huber et al. (2012b) and refined in Huber et al. (2014).

• A novel method for self-adaptive workload classification and forecasting providing the
basis for proactive system adaptation at run-time. For a given workload, our method
automatically identifies the characteristics of the workload and selects a suitable
forecasting strategy. At run-time, the method continuously adapts the selection,
taking into account the achieved forecast accuracy as well as changing workload
characteristics or changing system requirements and user objectives. This method
has been published in Herbst et al. (2013a) and refined in Herbst et al. (2014).

• A process model for using architecture-level performance models for self-adaptive
resource allocation (Huber et al., 2011a), realizing a holistic model-based adaptation
control loop for autonomic performance-aware resource management. Based on the
familiar generic control loop used in the autonomic computing and software engi-
neering communities, we define an adaptation method that leverages the previously
described models and performance prediction techniques for proactive system adap-

7



8 1. Introduction

tation. To support automated decision-making, we use models to predict the impact
of adaptation actions on the system performance and adapt the system accordingly.

From a technical perspective, we contribute a framework that implements the described
contributions to automatically adapt the system according to the corresponding modeled
adaptation process, using online performance prediction to evaluate the impact of its adap-
tation actions. To demonstrate that the presented approach can be effectively used for
autonomic performance-aware resource management, we apply and evaluate our approach
end-to-end in the context of three different representative case studies. The considered
evaluation scenarios are derived from typical real-life problems, e.g., of our industrial part-
ner Blue Yonder, a leading service provider in the field of predictive analytics and big
data. The case studies are carefully selected and cover a broad spectrum of configurations
with different types of applications, hardware environments, deployment configurations,
and workloads. The first case study is based on the SPECjEnterprise2010 benchmark
that models a representative enterprise application and demonstrates the effectiveness of
our approach in a homogeneous virtualized cluster environment. The second case study
evaluates the potential of our workload classification and forecasting approach for proac-
tive model-based system adaptation at run-time. The third case study is conducted in
cooperation with Blue Yonder and investigates the applicability of our approach in hetero-
geneous environments built from commodity hardware to trade-off different performance
requirements of multiple customers while maintaining resource efficiency.

The validation results show that our approach can provide significant resource efficiency
gains of over 50% without sacrificing performance guarantees, and that it is able to trade-
off performance requirements of different customers in heterogeneous hardware environ-
ments. Furthermore, we demonstrate how our approach enables proactive system adapta-
tion and thereby considerably reduces the amount of SLA violations by 60% compared to
trigger/rule-based approaches. With these end-to-end case studies, we demonstrate that
i) DML allows the specification and execution of proactive system adaptation processes
at the model-level to achieve significant performance and resource efficiency gains, and
ii) architecture-level performance models and online performance prediction can be effec-
tively used to perform autonomic system adaptation such that the system’s performance
requirements and resource efficiency targets are maintained. The versatility of the selected
case studies illustrates that our approach can be applied not only in classical data centers
but also in other service infrastructures such as private or public clouds. Thus, we con-
sider the approach presented in this thesis as the foundation for a new type of computing
systems which are designed from the ground up with built-in online QoS prediction and
self-adaptation capabilities used to enforce QoS requirements in a cost- and energy-efficient
manner.

1.5. Outline

The thesis is structured into three main parts. Part I describes the foundations of this
thesis and discusses related work. It is organized as follows.

Chapter 2 presents the foundations of this thesis. The chapter introduces common
concepts and terminology from the area of autonomic computing, self-adaptive sys-
tems, and performance engineering, and explains the role of models in these areas.

Chapter 3 reviews related work in the areas of autonomic computing, self-adaptive
systems, and performance engineering, focusing on architecture-based approaches to
self-adaptation.

Part II comprises the contributions of this thesis. The contributions are separated into
the following four chapters.

8



1.5. Outline 9

Chapter 4 presents the major conceptual building blocks of our model-based adap-
tation approach. More specifically, it presents a refined concept of the MAPE-K
adaptation control loop designed to leverage the novel features of the Descartes
Modeling Language (DML) to realize autonomic performance and resource manage-
ment at run-time. Moreover, Chapter 4 introduces the major concepts of DML which
we need for online performance prediction and run-time system adaptation.

Chapter 5 presents a meta-model to describe the resource landscape of modern dis-
tributed IT systems. This chapter introduces novel concepts for modeling the con-
figuration of physical resources as well as the performance-influencing properties of
resource layers. Furthermore, it presents a method for the automatic quantification
of such performance-influencing properties using virtualization as proof-of-concept.

Chapter 6 introduces generic and flexible modeling formalisms to describe the dy-
namic aspects of self-adaptive systems as well as their adaptation processes. It also
presents the architecture of the adaptation framework that implements the presented
concepts of our model-based adaptation control loop.

Chapter 7 presents an approach for self-adaptive Workload Classification and Fore-
casting (WCF) at run-time that uses common time series analysis techniques to
identify the characteristics of workloads. Based on the identified characteristics,
suitable forecasting methods to predict future workload intensities are selected and
used for proactive system adaptation.

Each of these chapters contain their own evaluation in which we evaluate the individual
contributions in isolation. Part III presents the end-to-end validation scenarios and results
and concludes the work.

Chapter 8 presents the end-to-end validation of our approach showing how the indi-
vidual parts of our approach can be integrated into a holistic model-based approach
that can be applied for autonomic performance-aware resource management. We
conduct three case studies with different validation goals and discuss the results as
well as the threats to validity.

Chapter 9 concludes this thesis by summarizing its contributions and validation
results and gives an outlook on future research.

9
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2. Autonomic System Adaptation and
Performance Modeling

The approach presented in this thesis is influenced by three major lines of research, depicted
in Figure 2.1: autonomic computing, software engineering, and performance engineering.
This chapter introduces the foundations of this thesis and explains the most important
concepts and terminology. In Section 2.1, we introduce foundations of autonomic com-
puting, focusing on the major self-* properties and design principles of autonomic and
self-adaptive systems. In Section 2.2, we present concepts from software engineering and
performance engineering that are used in the field of software performance engineering.
More specifically, we discuss different types of performance models and their properties
that are used during software development as well as at system run-time for autonomic
performance-aware resource management. In Chapter 3, we review related work from the
area of model-based performance and resource management (Section 3.2) and architecture-
based system adaptation (Section 3.1).
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Figure 2.1.: Related research areas.
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14 2. Autonomic System Adaptation and Performance Modeling

2.1. Autonomic and Self-Adaptive Systems

The term autonomic computing was first introduced by IBM in 2001 (Horn, 2001). It
proposes a biology-inspired notion of a computer system that is able to adapt to internal
and external changes with minimal human intervention (Kephart and Chess, 2003). This
paradigm was motivated by the problem that IT systems were becoming increasingly
complex and thus difficult for human administrators to manage and maintain. As a result,
many researchers and developers began to examine ways to overcome these problems by
aiming to automate administrative tasks, such as updating or reconfiguring the system.
This led to the idea of enhanced computing systems with self-management capabilities that
are able to evolve in an autonomous manner, detecting and fixing undesirable behaviors
and adapting to changes in their environment.

Autonomic computing is inspired by research from many other fields, such as biology, con-
trol theory, artificial intelligence, complex systems, etc. For example, the term autonomic
is inspired by the autonomic nervous system responsible for regulating vital functions in
the complex system of the human body, and feedback loops known from control systems
are also a central element of autonomic computing systems. Moreover, autonomic systems
are related to artificial intelligence as both types of systems seek to achieve certain op-
erational goals with little or no human intervention. More details about the relation of
autonomic computing to other research areas can be found in Lalanda et al.

In the following sections, we first present the so-called self-* properties that are targeted
by autonomic or self-adaptive systems. Next, we present the major concepts and principles
important for engineering autonomic and self-adaptive systems. Then, we discuss the role
of models during the development and execution of autonomic and self-adaptive systems.
Finally, we present a definition for self-aware computing systems, a sub-class of autonomic
computing systems.

2.1.1. Self-* Properties

According to Kephart and Chess (2003), the self-management capabilities of an autonomic
computing system can be separated into four main areas:

1. Self-configuration: The system adapts to unpredictable conditions by automatically
changing its configuration, e.g., adding or removing new components or resources,
without disrupting its service.

2. Self-healing: The system can prevent and recover from failure by automatically dis-
covering, diagnosing, circumventing, and recovering from issues that might cause
service disruptions.

3. Self-optimization: The system is able to continuously tune itself either reactively or
proactively in response to changes of environmental conditions.

4. Self-protection: The system anticipates, identifies and prevents various types of
threats in order to preserve its integrity and security.

These four properties are considered as fundamental for any autonomic system, and are
also referred to as self-chop properties. Since the beginning of the autonomic computing
initiative, further attributes and capabilities have been identified by researchers in this
area. Such self-managing properties (sometimes referred to as self-* properties) are in-
terrelated properties that a system should possess in order to achieve various degrees of
autonomicity. For example, other important self-* properties according to Lalanda et al.
(2013) are:

14



2.1. Autonomic and Self-Adaptive Systems 15

• Self-predicting (self-anticipating): a system’s ability to predict future events or re-
quirements, whether with respect to the system’s internal behavior or with respect
to its external context. An anticipating system should be able to manage itself
proactively.

• Self-adapting: a system’s ability to modify itself (self-adjust) in reaction to changes
in its execution context or external environment, in order to continue to meet its
business objectives despite such changes.

• Self-adjusting: a system’s ability to modify itself during run-time including modifi-
cations to its internal structure, configuration, or behavior.

• Self-aware: a system’s ability to ‘know itself’, i.e., to possess knowledge of its in-
ternal elements, their current status, history, capacity, and connections to external
elements or systems. A system may also possess knowledge of the possible actions
it may perform and of their probable consequences. This property can also be con-
sidered as a combination of self-reflecting, self-predicting, and self-adapting, and is
an important property for the approach presented in this thesis. We will discuss it
in more detail in Section 2.1.4.

• Self-configuring: a system’s ability to (re-)configure itself by (re-)setting its internal
parameter values to achieve high-level policies or business goals.

• Self-diagnosing: a system’s ability to analyze itself in order to identify existing prob-
lems or to anticipate potential issues.

• Self-governing (self-managing): a system’s ability to administer itself in order to
achieve high-level policies or business goals.

• Self-healing (self-repairing): a system’s ability to recover from the failure of any of
its constituent elements (reactive) or to predict and prevent the occurrence of such
failures (proactive).

• Self-monitoring: a system’s ability to retrieve information on its internal state and
behavior, whether globally or for any of its constituent elements. Self-monitoring is
essential for attaining self-awareness.

• Self-optimizing: a system’s ability to improve its operation with respect to predefined
goals (e.g., resource management for optimized system efficiency).

• Self-organized (self-assembled): a system’s property of being automatically formed
via the decentralized assembly of multiple independent elements.

• Self-protecting: a system’s ability to protect itself from malicious or inadvertent
attacks.

• Self-reflecting: a system’s ability to reflect its software architecture, execution envi-
ronment, and hardware infrastructure on which it is running as well as its operational
goals (e.g., performance and resource efficiency targets, or other QoS requirements).
Sometimes this property is also referred to as the system’s ability to determine
whether its self-* functionalities conform to expectations.

• Self-stabilizing: a system’s ability to attain a stable, legitimate state, starting from
an arbitrary state and after a finite number of execution steps.

The described self-* properties typically influence each other to a certain degree and thus,
they normally cannot be considered in isolation. They must be considered from a global
system perspective and the integration and coordination of such properties within the
whole computing system requires a systematic approach (Lalanda et al., 2013). In the
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16 2. Autonomic System Adaptation and Performance Modeling

following, we present the major design concepts and a reference architecture currently used
in autonomic and self-adaptive systems to implement systems providing one or multiple
of the described properties.

2.1.2. Design Principles of Autonomic Systems

Core of autonomic systems is an entity that realizes the self-* properties presented in the
previous section (IBM Corporation, 2003). This entity, also referred to as autonomic man-
ager in the following, can be understood as an executable software unit that implements
the adaptation logic in order to continuously meet the system’s operational goals.

Autonomic Manager and Managed System

In their taxonomy on self-adaptive software systems, Salehie and Tahvildari (2009) distin-
guish two types of approaches to implement autonomic managers (cf. Figure 2.2). First,
the external approach distinguishes a dedicated adaptation engine (or manager) that im-
plements the logic for adapting the managed system. The managed system can be a single
server or a cluster of machines in a Grid environment, a specific software component, an
operating system or a component therein, etc. Conceptually, the managed system provides
two types of control points: sensors and effectors. Sensors provide information about the
managed system, e.g., information about its state or its current performance. Effectors
provide the possibility to adjust the managed system.

In certain cases, the autonomic manager and the managed system may be more inter-
twined without a clear separation of application logic from adaptation logic. Such internal
approaches are normally based on programming language features, such as conditional
expressions, parametrization, or exceptions.

Managed 

System

Autonomic

Manager

effectors

sensors

(a) External Approach

Managed 

System

sensors

effectors

(b) Internal Approach

Figure 2.2.: External and internal approaches to implement autonomic managers.

Autonomic Control Loop

The adaptation behavior realized by autonomic managers typically corresponds to the
concept of a control loop. Such control loops can be found in other research areas too,
e.g., in feedback control systems used in control theory (cf. Brogan, 1991). In a feedback
control system, the output of the system is fed back through a sensor to a reference value
(cf. Figure 2.3). The controller then takes the error (or difference) between the reference
value and the output to change the input values to the system under its control.

To structure the principle of operation exhibited by autonomic managers, Kephart and
Chess (2003) defined a reference architecture that is also based on a control loop, typically
referred to as the MAPE-K loop. This reference architecture has the advantage that it
offers a clear way to identify and classify areas of particular focus and thus, it is used by
many researchers to communicate the architectural concepts of autonomic systems.
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Controller System
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Reference Error Input Output

Figure 2.3.: Feedback loop in control systems.

The acronym MAPE-K reflects the five main constituent phases of autonomic loops, i.e.,
Monitor, Analyze, Plan, Execute, and Knowledge, as depicted in Figure 2.4. Ba-
sically, the Monitor phase collects information from the sensors provided by the managed
artifacts and its context. The Analyze phase uses the data of the Monitor phase to
assess the situation and determine any anomalies or problems. The Plan phase generates
an adaptation plan to solve a detected problem. The Execute phase finally applies the
generated adaptation plan on the actual system. A cross-cutting aspect shared among all
phases of the loop is the Knowledge about the system and its context, capturing as-
pects like the software architecture, execution environment, and hardware infrastructure
on which the system is running. The knowledge may also explicitly capture the operational
goals of the system, e.g., the target QoS level the managed system should provide. The
representation of the knowledge can take any form, e.g., a performance model describing
the performance behavior of the system. As this thesis follows a model-based approach,
we are particularly interested in the different types of models that can be applied to rep-
resent the knowledge about the system. Such concepts will be introduced in the following
Section 2.1.3.

Autonomic Manager

Monitor

Plan

Execute

Analyze

Knowledge

Managed System

Sensors Effectors

Figure 2.4.: Reference architecture of the autonomic control loop implemented by auto-
nomic managers (cf. Kephart and Chess, 2003).

The software engineering community uses a similar feedback loop concept, distinguishing
the four phases Collect, Analyze, Decide, and Act (Cheng et al., 2009). Conceptu-
ally, the behavior of these phases is similar to the phases in the MAPE-K loop, however,
this concept does not explicitly consider the Knowledge part.

More details about the use of feedback loops in self-adaptive systems, such as the use of
multiple, multi-level, positive, or negative feedback loops, are given by Brun et al. (2009).
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18 2. Autonomic System Adaptation and Performance Modeling

Reactive and Proactive Autonomic Managers

We distinguish two different general types of adaptation behavior that are implemented
by an autonomic manager, the reactive and proactive adaptation behavior (Lalanda et al.,
2013). The reactive behavior triggers the adaptation only in reaction to some external
event, such as availability of new monitoring data or violations of operational goals. In
contrast, a proactive manager may take the initiative of analyzing future situations to an-
ticipate possible problems and adjust the managed system before the anticipated problems
actually occur.

Structuring Multiple Autonomic Managers

Autonomic systems may consist of a number of autonomic elements that manage parts of
the global autonomic system. Normally, the decoupling is domain specific and can depend
on multiple architectural or functional considerations. Although the different autonomic
elements can act independently and with no dependency between their respective man-
agement actions, they usually cooperate to achieve common goals. There exist various
collaboration patterns for organizing multiple autonomic elements.

One possible approach to multi-agent cooperation is a hierarchical (centralized) structuring
of the autonomic elements. Autonomic elements are organized into a hierarchy where
elements can set goals to the elements of lower levels in the hierarchy, which in turn
provide feedback about their behavior. An alternative to the hierarchical approach is
where all autonomic elements in the system can communicate directly (the decentralized
approach). In this organization pattern, each autonomic element acts independently and
uses both external and internal data to make its own decisions. The particular challenge
of this approach lies in guaranteeing that the behavior emerging from the individual goals
of each autonomic element will actually contribute to reaching the global goal.

2.1.3. Model-Driven Autonomic and Self-Adaptive Systems

When it comes to the Knowledge part of the reference architecture presented in Sec-
tion 2.1.2, the crucial question is: What should be stored in the knowledge and how should
it be represented? A promising approach to represent the knowledge is to use models that
abstract from the complexity of the managed system and that allow to reason about the
system properties. For example, a great benefit of using models for adaptation planning
is that, under the assumption that the model mirrors the managed system with sufficient
accuracy, the model can be used to ensure that system integrity is preserved when apply-
ing an adaptation. This is because changes are planned and applied to the model first,
allowing to identify the resulting system state including any violations of constraints or
requirements captured as part of the model. The usage of explicit models as Knowledge
allows the MAPE tasks to focus on the computation (the adaptation logic) and not on
the data representation and collection. In general, many different types of models can
be used. However, it is important to use models defined at the right level of abstraction.
For example, models abstracting the system at the architecture level can provide benefits
for the systematic engineering of autonomic and self-adaptive systems (cf. Kramer and
Magee, 2007; France and Rumpe, 2007; Blair et al., 2009). In the following, we discuss
different types of models that play an important role as artifacts that are used in software
engineering along the software life cycle.

The model-driven engineering (MDE) community advocates the creation and exploitation
of models to entirely drive the development and maintenance of software systems. To be
machine-processable, models must be formalized using a modeling language with clear,
precise and non-ambiguous semantics. Since all aspects of such a modeling language have
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2.1. Autonomic and Self-Adaptive Systems 19

to be expressed and formally defined, the modeling language itself can be seen as a model
(i.e., a meta-model). This meta-model can be considered as a model that defines the
language for building a concrete system model and is thus sometimes also called domain-
specific language (DSL). Basically, a meta-model or a DSL defines a grammar and a
vocabulary that allows to create models that conform to the meta-model.

In recent years, models are also seen as crucial artifacts that can play an important role
during the whole software life cycle and not only at design time. France and Rumpe (2007)
introduced the idea of models at run-time (models@runtime) to capture and describe run-
time phenomena in an abstract manner. Such models are synchronized with (or causally
connected to) an operational system and can be used to reflect information about the
system operations. This notion of models@runtime has been refined by Blair et al. as a
“causally connected self-representation of the managed system that emphasizes the struc-
ture, behavior, or goals of the system from a problem space perspective” (Blair et al., 2009,
p. 2). As such, models@runtime are an important contribution to the field of autonomic
computing as they provide the relevant information to drive autonomic decision-making.

When developing modeling formalisms, one is usually faced with the problem that models
should cover multiple concerns (cf. France and Rumpe, 2007). Thus, the model that
represents the managed system usually consists of several models focusing on different
aspects, possibly at different levels of abstraction. Vogel et al. (2011) present a classification
of the different types of models that can constitute a run-time model (cf. Figure 2.5). First,
they distinguish two types of models: reflection models and adaptation models. Reflection
models reflect the system and its environment either in a descriptive or prescriptive manner
(system models and environment models, respectively). Descriptive models describe the
“as-is” situation of the running system and its environment, while prescriptive models
prescribe the “to-be” situation, i.e., the designated target state of the system. The system
and/or environment models are either analyzable themselves, or they serve as input for
analysis models to support reasoning about the system and/or its environment (Vogel
et al., 2011).

In contrast to reflection models, adaptation models are primarily applied on reflection
models and they define how reflection models are evaluated or changed. The reasoning
performed on a reflection model is specified through evaluation models, e.g., by specifying
constraints that are checked on the reflection model. A change model describes how to
explore the system’s variability and configuration space to find a suitable adaptation plan
(Vogel and Giese, 2012). For example, a reflection model may describe the architecture and
performance-relevant aspects of the managed system, whereas adaptation models would
describe how to evaluate the performance model (evaluation model) and change it in case
adaptations are required (change model).

Runtime Model

Evaluation 

Model

Change 

Model
Analysis Model

Environment 

Model
System Model

Reflection 

Model

Adaptation 

Model

Figure 2.5.: Classification of different model types that constitute a run-time model ac-
cording to Vogel et al. (2011).
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Building a run-time model of the managed system is a non-trivial task. One specific chal-
lenge is to find a suitable abstraction level that allows to model the system components,
their interactions, and their behavior with sufficient accuracy. Furthermore, the abstrac-
tion level should also support automated decision-making and enable the specification of
adaptation processes at the model level.

Modeling adaptation at the architectural level is a popular approach (e.g., Kramer and
Magee, 2007; Oreizy et al., 1999; Garlan et al., 2004; Floch et al., 2006). Architecture-level
(run-time) models describe the system’s structure and behavior at the level of the software
architecture.Models may also capture some aspects of the operating environment in which
the managed elements are deployed and they may also describe the operational goals of
the managed system. More details about different types of architecture- and model-based
approaches for autonomic and self-adaptive systems will be presented and discussed in
Chapter 3 as part of related work.

2.1.4. The Descartes Research Project and Self-Aware Computing Sys-
tems

In the 17th century, the French philosopher and mathematician René Descartes described
the bidirectional link between the mind and the body as the dualism principle (“the mind
controls the body, but the body can also influence the mind”), sometimes paraphrased in
his famous words “cogito, ergo sum” (Descartes, 1644).

The Descartes Research Projectthat funded the approach presented in this thesis, pursues
the vision of self-aware computing systems that have built-in online QoS prediction and self-
adaptation capabilities to address the challenges of autonomic performance and resource
management (Kounev, 2011). In this context, self-aware computing systems are considered
as a sub-class of autonomic computing systems (Dagstuhl Seminar, 2015). In analogy to
an autonomic computing system with its four self-chop properties (cf. Section 2.1.1), a
computing system is considered to be self-aware if it possesses, and/or is able to acquire
at run-time, the following three properties, ideally to an increasing degree the longer the
system is in operation:

• Self-Reflective: The system is aware of its software architecture, execution environ-
ment, and hardware infrastructure on which it is running as well as of its operational
goals (e.g., performance and resource efficiency targets, or other QoS requirements)

• Self-Predictive: The system is able to predict the effect of dynamic changes (e.g.,
changing service workloads) as well as predict the effect of possible adaptation actions
(e.g., changing system configuration, adding/removing resources),

• Self-Adaptive: The system proactively adapts as the environment evolves in order to
ensure that its operational goals are continuously met.

The three properties in the above definition are obviously not binary, and different systems
may satisfy them to a different degree. However, in order to speak of “self-awareness”, all
three properties must apply to the considered system.

To realize self-aware computing systems as defined above, novel model-based methods to
design and engineer self-aware systems from the ground up are needed (cf. Chapter 1).
The envisioned self-aware computing systems should have built-in self-reflective and self-
predictive capabilities, encapsulated in the form of online system architecture models. In
analogy to Descartes’ dualism principle, these models are intended to serve as a mind to the
system (the body) with a bidirectional link between the two. The models should capture
the relevant influences (with respect to the system’s operational goals) of the system’s soft-
ware architecture, its configuration, its usage profile, and its execution environment (e.g.,
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physical hardware, virtualization, and middleware). The models are also assumed to ex-
plicitly capture the system’s operational goals and policies (e.g., QoS requirements, service
level agreements, efficiency targets) as well as the system’s adaptation space, adaptation
strategies and processes.

In general, self-awareness, as defined above, can be considered with respect to one or mul-
tiple QoS properties. The approach presented in this thesis is focused on managing system
performance requirements and resource efficiency. Note that previously in Section 2.1.1,
definitions of the various self-* properties were presented, among them also a definition of
the “self-aware” property. Compared to the definition given in Section 2.1.1, the definition
given here is more detailed and explicitly includes the self-reflection property. In the con-
text of self-aware computing systems, we are thus looking for sophisticated modeling and
prediction techniques that can be leveraged to achieve a detailed reflection of the system,
which will be discussed in detail in Chapter 4.

2.2. Software Performance Engineering

Software engineering aims at addressing the challenges of the software development process
by means of an engineering discipline. A characteristic of such a discipline is the availability
of a catalog of methods and practices plus guidelines for the systematic selection of these
practices. Software Performance Engineering (SPE) is a systematic quantitative approach
to the cost-effective development of software systems to meet performance requirements
(Smith, 1981). Motivated by the fact that systems suffering from insufficient performance
can cause projects to fail, a major goal of SPE is to conduct performance evaluation of
software architectures as early as possible (Smith and Williams, 2002). To achieve this goal,
predicting the performance of software systems is an important step, which is in the focus
of research since the end of the 1990’s (Koziolek, 2010). Today, performance models and
performance prediction techniques are gaining importance in research on cloud computing
and Green IT, as such methods and techniques promise the ability to predict at run-time
how the performance of running applications would be affected if service workloads change,
or to predict the effect of changing resource allocations. We refer to this ability as online
performance prediction.

In the following, we present the terminology for the two types of performance models we
use in this thesis (Section 2.2.1). Next, Section 2.2.2 introduces the concepts of model-
driven performance engineering and in Section 2.2.3, we give an overview of Palladio
Component Model (PCM) as example of an architecture-level performance model. Finally,
Section 2.2.4 explains how architecture-level performance models can be used for online
performance prediction.

2.2.1. Performance Models: Classification and Terminology

We distinguish between predictive performance models and descriptive architecture-level
performance models. Predictive performance models capture the temporal system be-
havior and can be used for performance prediction by means of analytical or simulation
techniques (e.g., queueing networks). They are normally used as high-level system perfor-
mance abstractions and as such, they do not explicitly distinguish the degrees of freedom
and performance-influencing factors of the system’s software architecture and execution
environment. They are high-level in the sense that: i) complex services are modeled as
black boxes without explicitly capturing their internal behavior and the influences of their
deployment context, configuration settings, and input parameters, and ii) the execution
environment is abstracted as a set of logical resources (e.g., CPU, storage, network) with-
out explicitly distinguishing the performance influences of the various layers (e.g., physical
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infrastructure, virtualization and middleware) and their configuration. Finally, predictive
performance models typically impose many restrictive assumptions such as single work-
load class, single-threaded components, homogeneous servers, or exponential service and
request inter-arrival times.

Descriptive architecture-level performance models provide means to model the performance-
relevant aspects of system architectures at a more detailed level of abstraction. Architecture-
level in this context is meant in a broader sense covering both the system’s software
architecture and its execution environment. Such models describe the software archi-
tecture using models such as UML that are annotated with descriptions of the system’s
performance-relevant behavior. Over the past decade, a number of architecture-level per-
formance meta-models have been developed by the performance engineering community
which we review later as part of the related work presented in Section 3.2.2. The com-
mon goal of these efforts is to make it possible to predict the system performance for a
given workload and configuration scenario by transforming architecture-level performance
models into predictive performance models in an automatic or semi-automatic manner
(cf. Section 2.2.2).

Architecture-level performance models provide a powerful tool for performance prediction.
They are normally built manually during system development and are intended for use
in an offline setting at design and deployment time to evaluate alternative system designs
and/or to predict the system performance for capacity planning purposes. However, there
are fundamental differences between offline and online scenarios for performance prediction.
This leads to different requirements on the underlying performance abstractions of the
system architecture and the respective performance prediction techniques suitable for use
at design-time vs. run-time (Brosig et al., 2013). This specific challenge is addressed in the
work of (Brosig, 2014), which is focused on using architecture-level performance models
for performance prediction at run-time.

2.2.2. Model-Driven Software Performance Engineering

A starting point for most approaches to SPE is to describe the architecture of the soft-
ware system (Balsamo et al., 2004; Koziolek, 2010). The architectural model can then be
annotated with estimated or measured information about the system performance (cf. Fig-
ure 2.6). Next, the architecture-level performance model is transformed into a predictive
performance model (e.g., a queueing network or queueing Petri net) to predict and analyze
the metrics of interest.

In the area of SPE, the idea of using model-driven techniques gained attention because
such techniques provide means to formalize the syntax and semantics of performance
models. Furthermore, automated transformation from source models (e.g., an architecture-
level model) to target models (e.g., predictive performance models) can be performed.
The automatic transformation and processing can thus simplify the software performance
engineering process and make it less error-prone. In the following section, we present an
example of a model-driven approach to describe and analyze the performance behavior of
component-based software systems.

2.2.3. The Palladio Component Model (PCM)

The Palladio Component Model (PCM) is a domain specific modeling language to describe
the performance-relevant aspects of component-based software architectures as often used
in business information systems. It is designed to enable early performance, reliability,
and cost predictions for software systems and is aligned with a component-based software
development process. In addition to providing a meta-model, there is a tool to create
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Figure 2.6.: Model-driven software performance engineering (cf. Huber et al., 2010a).

and analyze PCM model instances, the PCM Bench (2014). The following gives a brief
overview of the concepts of PCM. A more detailed and technical description is given by
Becker et al. (2009).

In PCM, software components are units of composition with explicitly defined provided and
required interfaces (Szyperski et al., 2002). The performance of such a software component
is influenced by four factors (Koziolek, 2010), depicted in Figure 2.7. The PCM meta-model
provides means to take all of these factors into account.

Deployment 

Platform

Required

Services

Component

Implementation

Usage 

Profile

Figure 2.7.: Factors influencing component performance (cf. Koziolek, 2010).

A PCM model instance can be divided into four different views according to these four influ-
ence factors. Each influence factor is modeled by a specific role, specifying the performance-
influencing factors in separate models.

The Component Developer models the components and their implementation. At first, the
interfaces (comparable to signature lists) that are provided or required by a component are
specified. Provided interfaces specify the services a component offers. Required interfaces
are external services that the component needs to fulfill its purpose. Furthermore, the
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component developer models the internal behavior of the provided service(s). To this
end, the PCM provides a description language, called Resource Demanding Service Effect
Specification (RD-SEFF), to specify the control flow (e.g., branches, loops, external service
calls) and the resource usage of the provided service(s).

The System Architect models the structure of the system. By interconnecting components
via their provided and required interfaces, it can be specified which specific services a
component uses. Hence, the overall system’s performance depends on the selection of
components, e.g., if a database cache component is used or not.

The System Deployer maps the components of the system model to physical resources.
Thereby, the influence of the deployment platform on the system performance is speci-
fied. Therefore, he must model the hardware environment the system is executed on (like
processor speed, network links, memory usage, etc.). Furthermore, he deploys the system
components on the specified hardware resources.

The Domain Expert models the usage profile of the whole system. He describes which
parts of the system are used by the system’s end-users. This description also comprises
the type of workload issued to the system (open or closed). The workload specifies for
example how many users invoke the system or the interarrival time of invocations.

Usually the performance of a software system does not depend on constant parameter
values because, e.g., resource demands or system usage may vary during execution. PCM
offers random variables to express the uncertainty of such parameters. Random variables
can be specified by various probability distribution functions. Furthermore, it is possible
to specify mathematical expressions by combining variables with mathematical operators.

2.2.4. Online Performance Prediction

A central element of the approach presented in this thesis is the use of an architecture-
level performance model to predict the impact of adaptation actions by adapting and
analyzing the model on-the-fly. Since this analysis has to be performed at run-time, where
only limited time and restricted monitoring data may be available, Brosig (2014) has
presented an approach for tailored online performance prediction. In contrast to black-box
approaches to performance prediction at run-time, such as (Menasce and Virgilio, 2000;
Gambi et al., 2013), the techniques of Brosig allow us to vary and analyze the impact
of multiple degrees of freedom such as system configurations, service compositions, and
resource allocations. These prediction techniques are based on the Descartes Modeling
Language (DML), a novel architecture-level modeling formalism specifically designed for
performance and resource management in online scenarios. As major parts of DML are
part of the contribution of this thesis, DML will be presented in Section 4.2.

The online performance prediction techniques are able to answer performance queries that
can be derived from questions such as: What performance would a new service deployed
on the infrastructure exhibit? How much resources should be allocated to it? How should
the workloads of the services be partitioned among the available resources? If any service
experiences a load spike or a change of its workload, how would this affect the system
performance? Which parts of the system architecture would require additional resources?
What would be the effect of migrating a service or an application component? When
answering such queries at run-time, there is a trade-off between prediction accuracy and
time-to-result. There are situations where the prediction results need to be available in
a short period of time such that the system can be adapted before SLAs are violated.
Accurate fine-grained performance prediction comes at the cost of a higher prediction
overhead and longer time-to-result, whereas coarse-grained performance predictions allow
speeding up the prediction process. The challenge is to balance the trade-off between
prediction accuracy and prediction speed.
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Performance Queries

The approach presented by Brosig (2014) allows to conduct performance predictions on-
the-fly where each prediction is tailored to answering a given performance query. A perfor-
mance query describes which specific performance metrics of which entities are of interest.
For instance, when triggering a performance prediction, the 90th percentile response time
of a specific service or the utilization of a specific resource, such as a database server, may
be of interest. For situations where the prediction speed is critical, performance queries
provide the option to speed up the prediction process at the expense of prediction accu-
racy. Note that in this context, prediction accuracy refers to the accuracy of the model
solving approach and not to the representativeness of the considered models themselves.
It is not intended to specify real-time constraints for the prediction process but to allow
specifying how to trade-off between prediction accuracy and time-to-result.

Therefore, we use trade-off weights that are ranked in an ordinal scale, defined as ordered
set W = {w⊥ := w1, . . . , wK =: w>}. Weight w> has the semantics of fastest prediction
speed compared to the other w ∈ W . Weight w⊥ has the semantics of highest prediction
accuracy compared to the other w ∈ W . A trade-off specification is then given by a
selected weight dw ∈ W that is chosen by the issuer of the performance query. To sum
up, the prediction process is tailored to the required performance metrics as well as to a
given trade-off weight between prediction accuracy and speed.

SELECT r.utilization, s.avgResponseTime
CONSTRAINED AS ‘FastResponse’
FOR RESOURCE ‘AppServerCPU1’ AS r,

SERVICE ‘newOrder’ AS s
USING dmmConnector@modelLocation;

Listing 2.1: Constrained Query

The notion of a performance query, formalized in Gorsler et al. (2014), provides a declara-
tive interface to performance prediction techniques to simplify the process of using architec-
ture-level performance models for performance analysis. The query language provides a
notation to express the required performance metrics for prediction as well as the goals
and constraints of a specific prediction scenario. An illustrative example of such a per-
formance query is depicted in Listing 2.1. It queries for the average response time of a
‘newOrder’ service as well as the average utilization of an application server CPU, and
requests a ‘FastResponse’ prediction (equivalent to w>).

Tailored Prediction Process

Figure 2.8 provides an overview of the prediction process showing the individual steps
and their inputs and outputs. The prediction process is triggered by a performance query
referring to a DML instance specified in the USING clause of the query.

The model composition step marks those parts of DML instance relevant for answering the
query. These markings are kept in a composition mark model which serves as input for the
next step. For instance, if a service is described with multiple service behavior descriptions
such as a fine-grained behavior, a coarse-grained behavior, and a black-box description,
the model composition step chooses a behavior description that provides adequate means
to predict the requested performance metrics considering the specified trade-off weight.

The next step traverses DML instance starting with the usage scenarios specified as part of
the usage profile model. First, it resolves the probabilistic characterizations of the parame-
ter dependencies of DML’s application architecture meta-model. Second, it parameterizes
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Figure 2.8.: Overview of the online performance prediction process (cf. Brosig, 2014).

the performance model on-the-fly using monitoring data. The output is a call graph to-
gether with the corresponding model parameter values, denoted as callstack model. The
call graph determines how the performance model has to be traversed for the performance
prediction.

The next step is the tailored model solving, i.e., it predicts the requested metrics con-
sidering the given trade-off weight. It uses existing model solving techniques based on
established stochastic modeling formalisms. The model solving decides which concrete
model solving technique to apply. In addition, model solving techniques also come with
their own configuration options and can also be tailored to the performance query. There-
fore, for each model solving technique and its configuration options, it is important to
understand how it affects the performance prediction in terms of the specific predictable
metrics, the prediction accuracy, and the prediction speed.

• A fine-grained simulation can provide the best prediction accuracy but has the low-
est prediction speed compared to other solving techniques. Complex performance
metrics such as response time distributions can be provided. A simulation can be
accelerated by reducing the length of the simulation and/or the amount of collected
simulation log data to the minimum that is required to predict the requested met-
rics considering the desired prediction accuracy. For instance, in case only mean
value metrics are requested, the simulation can abstract from complex control flow
constructs such as branches or loops.

• Analytical model solvers typically have lower prediction overhead compared to sim-
ulation, but they are often restricted in terms of the predictable metrics and the as-
sumptions they make about the model input parameters. Analytical solvers such as
LQNS (Franks et al., 1996) often assume exponentially distributed service times and
request inter-arrival times (Balsamo et al., 2004), or have limited capabilities to ana-
lyze complex behavior such as blocking or synchronous resource possession (Menasce
and Virgilio, 2000; Li et al., 2009; Gilmore et al., 2005).

As analytical solving technique, the approach for tailored online performance prediction
developed by Brosig (2014) applies, among others, asymptotic bounds analysis (Bolch
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et al., 1998). As simulation technique, it transforms a DML instance to a Queueing Petri
Net (QPN) (Kounev, 2006) and simulates it using the SimQPN simulation engine (Spinner
et al., 2012). The overhead of a bounds analysis is lower than the overhead of a trans-
formation to a QPN. A bounds analysis can quickly provide upper asymptotic bounds
for the average throughput and the average response time, but this comes at the cost
of lower accuracy. However, the results can still be accurate enough to make quick de-
cisions when approximate performance results are sufficient (Bolch et al., 1998; Menasce
and Virgilio, 2000). Both the transformation itself and the simulation are tailored to
the given performance query. Depending on whether average response times or response
time distributions are requested, different places and different token colors are tracked as
they traverse the simulated QPN. The tracking is implemented using the Probes feature
provided by SimQPN (Spinner et al., 2012). Moreover, SimQPN supports fine-grained
options to control what type and amount of data is logged during the simulation run.
Finally, SimQPN’s simulation stopping criterion is tailored to use non-overlapping batch
means for estimating the variance of mean residence times configured to stop when a cer-
tain confidence level has been reached. The significance level and the desired width of
the provided confidence interval are configured in a way to reflect the specified trade-off
weight.

27





3. Related Work

In recent years, many approaches for automated management of performance and resource
efficiency as well as other system QoS properties have been proposed in the literature. The
related work considered in the following overview resides on the intersection of the areas of
autonomic computing, software engineering, and performance engineering (cf. Figure 2.1).
On the one hand, there is related work in the areas of autonomic computing and software
engineering of self-adaptive systems. Related approaches in these areas typically start at
a high level of abstraction, the system architecture, to achieve self-adaptation and QoS
management. Recent articles surveying approaches in the area of autonomic computing
and self-adaptive software have been presented by Huebscher and McCann (2008) and
Salehie and Tahvildari (2009), respectively. On the other hand, there is related work in
the area of (model-driven) performance engineering, focused on managing the performance
of IT systems at design-time and run-time. Such approaches normally start from different
types of performance models and use these models for evaluating the performance of design
alternatives or for capacity planning at system run-time. In this line of research, Becker
et al. (2012) survey approaches on model-driven performance engineering of self-adaptive
systems. Furthermore, Balsamo et al. (2004) survey different types of performance mod-
eling formalisms, and Koziolek (2010) presents a survey on component-based performance
modeling approaches.

In this chapter, we present an overview of related approaches from the above-mentioned
two major groups. First, we focus on related work from the area of architecture-based self-
adaptive software systems and (model-driven) engineering of such systems (Section 3.1).
We review approaches that employ some kind of (architecture-level) modeling formalism
or model-driven technique to reason about different QoS properties of the system and
its adaptation behavior. For each approach, we summarize its core idea and discuss its
restrictions and limitations compared to the approach presented in this thesis. Second,
we discuss approaches focused on model-based performance and resource management
at run-time using different types of performance models (Section 3.2). We differenti-
ate the considered approaches according to the employed modeling formalism, explicitly
distinguishing between predictive performance models and descriptive (architecture-level)
performance models. Furthermore, we discuss the suitability of the employed modeling
formalisms for online performance prediction as well as their capabilities for automated
decision-making and system adaptation at run-time. Finally, we give a brief overview
of approaches that focus on modeling formalisms to describe the adaptation behavior of
autonomic and self-adaptive systems (Section 3.3).
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3.1. Architecture-Based Self-Adaptive Software Systems

Over the last 15 years, many approaches for engineering of self-adaptive software have
been proposed in the autonomic computing and software engineering communities (cf.
Huebscher and McCann, 2008; Salehie and Tahvildari, 2009). In this section, we discuss
approaches that employ some kind of modeling formalism to describe the architecture of
the system to be adapted or its adaptation behavior. In the considered approaches, the
models created with such formalisms are then either used i) to support different kinds of
reasoning during system adaptation, ii) for the engineering of a self-adaptive system by
generating software artifacts, or iii) by system architects to design self-adaptive systems
or to developed adaptation processes. In general, such approaches are independent of
specific QoS properties but have in common that they start at the architecture level. We
separate the considered approaches into two groups: generic methods for engineering and
evaluating self-adaptive software systems (Section 3.1.1) and specific architecture-based
self-adaptation approaches (Section 3.1.2).

3.1.1. Engineering and Evaluation of Self-Adaptive Software Systems

EUREMA

ExecUtable RuntimE MegAmodels (EUREMA) (Vogel and Giese, 2014) is a model-driven
engineering approach that enables the specification and execution of adaptation engines
for self-adaptive software with multiple feedback loops. EUREMA provides a domain-
specific modeling language to specify adaptation engines using two types of diagrams. To
model a feedback loop with its adaptation activities and runtime models, the EUREMA
language provides a behavioral feedback loop diagram (FLD). Such a diagram specifies
a feedback loop with its adaptation activities and the used run-time models-. In this
context, run-time models provide up-to-date and exact information about the system (cf.
Blair et al., 2009). A structural layer diagram (LD) describes how the described feedback
loop and the adaptable software system are related to each other in a specific situation
of the self-adaptive software. Thus, an LD provides an architectural view that considers
feedback loops encapsulated as black-box modules while white-box views are provided by
FLDs. Furthermore, Vogel and Giese (2014) provide a runtime interpreter that supports
the execution of the specified feedback loops. In contrast to existing work on self-adaptive
software, EUREMA covers the specification and the execution of adaptation engines. The
EUREMA language supports the explicit modeling of feedback loops and their coordinated
execution.

EUREMA provides means to support the explicit design, execution, and adaptation of
feedback loops at a high level of abstraction. Internally, EUREMA relies on runtime
models (Blair et al., 2009) to describe the adaptable software and its environment, which
are updated by monitoring the software and its environment. However, the authors do
not elaborate in detail how these runtime models are used within the EUREMA runtime
interpreter to predict the impact of adaptation actions and how such predictions could
be used to manage performance and resource efficiency in software systems. To evaluate
the expressiveness of the approach, the authors have applied EUREMA to different im-
plementations of self-adaptive systems (PLASMA, Rainbow, and DiVA, cf. Section 3.1.2).
However, the results provide no insights about the question if and how EUREMA can be
used for autonomic performance-aware resource management at run-time.

FORMS

Weyns et al. (2012) claim that models and frameworks like Archstudio, Rainbow, or MU-
SIC (cf. Section 3.1.2) have achieved noteworthy success in many domains, but they are
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not formal enough to unambiguously describe and reason about the primary architectural
characteristics of self-adaptive systems. Thus, they present a FOrmal Reference Model for
Self-adaptation (FORMS) that can be used to describe the crucial aspects of distributed
self-adaptive software systems relevant for reasoning about how the system adapts itself
or how the system coordinates monitoring and adaptation in a distributed setting. To
this end, FORMS provides a small number of formally specified modeling elements that
correspond to the key concerns in the design of self-adaptive software systems.

Although FORMS supports engineers in describing the key concerns of their architectures
and reasoning about important properties via supporting tools, it does not provide means
to actually implement a self-adaptive system. Thus, it cannot be directly used to achieve
autonomic performance-aware resource management, but it provides valuable concepts for
reasoning about such adaptation techniques.

DYNAMICO

Another approach to support the engineering of self-adaptive systems is DYNAMICO (Vil-
legas et al., 2013). The DYNAMICO (Dynamic Adaptive, Monitoring and Control Ob-
jectives) model is a reference model that supports the designers of self-adaptive systems
in assuring the coherence of adaptation mechanisms, adaptation goals, and monitoring
mechanisms with respect to changes in both adaptation goals and adaptation mecha-
nisms. DYNAMICO proposes three different feedback loops for three different control
elements: a control objectives manager that manages changes in the adaptation goals,
an adaptation controller mechanism that handles changes directly at the target system
level, and a monitoring infrastructure controller mechanism that manages changes that
require the deployment of different or additional monitoring infrastructures. Thereby,
DYNAMICO supports three different types of adaptation—preventive, corrective and pre-
dictive adaptations—depending on the different interactions implemented in the control
elements. As a result, DYNAMICO emphasizes the visibility of these control elements and
constitutes a guide to design self-adaptive systems in which the system goals, the target
system itself, or the monitoring infrastructure must be adapted.

The approach presented by Villegas et al. (2013) contains valuable concepts and ideas
for engineering self-adaptive systems and for the approach presented in this thesis. More
specifically, adapting monitoring strategies to changes in the adaptation goals or user
requirements are interesting for deriving performance models of the system. However, they
do not elaborate in more details how their approach can be used to leverage performance
models for predicting the impact of changes in the system environment and to consider
the predicted impact to guide system adaptation.

SimuLizar

With SimuLizar, Becker et al. (2013) propose an approach to support the engineering
of the self-adaptation logic of self-adaptive software systems. SimuLizar is based on the
Palladio Component Model (PCM) (cf. Section 2.2.3) and provides modeling support for
self-adaptation rules as well as a simulation engine that enables the performance prediction
of self-adaptive systems and their various configurations. Thereby, SimuLizar helps to
analyze and validate requirements of the transient phases of self-adaptive software systems
at design-time.

SimuLizar inherits the modeling abstractions for describing the software system architec-
ture and performance properties from PCM. Thus, like PCM for component-based software
systems, SimuLizar is focused on modeling and evaluating self-adaptive software systems
at design-time. However, these modeling abstractions are of limited expressiveness when
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used at run-time (cf. Brosig, 2014). For example, at run-time, explicit support for de-
scribing the performance behavior of the software system at multiple abstraction levels is
necessary since one cannot expect that the monitoring data needed to parameterize the
component models would be available at the same level of granularity for each system
component. Moreover, since SimuLizar is focused on evaluating the self-adaptation logic
of the system at design-time, it is not intended to actually adapt the system to changes in
the system environment.

3.1.2. Architecture-Based Self-Adaptation Approaches

Archstudio

Oreizy et al. (1999) present an infrastructure for system evolution and system adapta-
tion. To provide architecture-based adaptation, their infrastructure relies on the explicit
representation of software components, their interdependencies, and their environmen-
tal assumptions. In their approach, the software system’s architecture is described as a
dynamic architecture, characterized using graphs of components and connectors, and ar-
chitectural changes are regarded as graph-rewrite operations. The approach relies on C2
(Taylor et al., 1996) and Weaves (Gorlick and Razouk, 1991) as architectural formalisms
to describe the software dynamics at the architecture level, and an architecture evolu-
tion manager for guiding and checking all modifications directed toward the architectural
model.

Although the considered adaptations encompass a broad spectrum, such as replacement
of isolated components as well as reconfigurations that are pervasive and physically dis-
tributed, this approach is limited on adapting the software architecture to react on changes
in the system’s operational environment and of the software system’s goal. Furthermore,
the architectural models and the encoded dynamics are used to reason about where and
how to reconfigure the system, but they do not provide means to reason about the adap-
tation impact, e.g., on the performance behavior of the system. Although the authors
present valuable concepts important for engineering self-adaptive software systems, this
approach resides at a high level of abstraction (Oreizy et al., 1999). It remains unclear how
the presented concepts are integrated to support self-adaptive software for performance
and resource management. Furthermore, the approach does not provide means to describe
system adaptation processes at the model-level.

Darwin

Darwin is an Architecture Description Language (ADL) to structure distributed systems
consisting of multiple concurrently executing and interacting components (Magee et al.,
1995). Thereby, Darwin allows the construction of systems from a hierarchically structured
specification of the set of used component instances and their interconnection. Sykes et al.
(2008) use Darwin as the basis for a three layer model to derive adaptation plans and adapt
the component model accordingly. On top, the goal management layer generates reactive
adaptation plans from high-level goals. The change management layer in the middle uses
the generated plans to construct component configurations and directs this to the bottom
layer, the component layer.

However, this approach is restricted to adapting the component architecture of the system
and does not consider adapting the resource infrastructure of the system. Furthermore,
Darwin is not intended to capture the performance-relevant properties or behavior of the
software components and it is thus unsuitable for performance predictions and reasoning
about the impact of adaptation actions on the system performance and resource efficiency.
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Rainbow

Rainbow (Garlan et al., 2004) is a system that provides an engineering approach and a
framework of mechanisms to monitor a system and its execution environment, reflect ob-
servations into an architectural model of the system, determine problem states, select a
course of action, and effect changes (Garlan et al., 2009). Rainbow uses an architectural
model together with existing architectural analysis techniques to reason about changes that
should be made to a system to improve the system’s achievement of the target quality at-
tributes. Like Archstudio (Oreizy et al., 1999), Rainbow uses ADLs as modeling formalism
in which the system architecture is represented as a graph of interacting components. In
addition, Rainbow provides Stitch (Cheng and Garlan, 2012), a programming-language-
like notation to express repair strategies in a form that can be analyzed and automated
by the Rainbow framework.

Like in Archstudio, the employed architectural model is generic and does not explicitly
model performance-related properties that can be leveraged at run-time to reason about
the performance impact of changes in the system environment or the impact of adaptation
actions. The limitation of Stitch is that adaptation strategies are expressed in a strictly
deterministic process-oriented fashion where each step evaluates a set of condition-action
pairs to select the adaptation action. This limits the flexibility to specify adaptation
processes to adapt the system in situations of uncertainty.

DiVA

The approach developed in the DiVA project (Dynamic Variability in complex, Adaptive
systems) is a model-based approach for specifying dynamically adaptive software systems
based on software product lines (Morin et al., 2009). The approach employs four meta-
models providing means to model a system’s software architecture, execution environment,
and variability, as well as a reasoning model that can be used to describe how different
features of the software impact the system QoS. To adapt and optimize component-based
applications at run-time, DiVA uses several formalisms such as event-condition-action rules
or goal-based optimization rules.

In contrast to our approach, DiVA is focused on automating the dynamic adaptation pro-
cess in software product lines to adapt component-based applications at run-time to evolv-
ing design specifications. Thus, the expressiveness of the models to specify performance-
relevant aspects of the software components and the system environment is limited and
the adaptation possibilities of DiVA are restricted to the software architecture level.

Genie

Another approach based on a domain-specific modeling language for modeling adaptive
systems is Genie (Bencomo et al., 2008; Bencomo and Blair, 2009). The modeling language
used in this approach allows to capture the dynamic aspects of component frameworks
such as structural variability as well as environment and context variability (changes in
the environment or requirements of the system). To describe self-adaptation as transitions
between configurations of the adaptable software, Genie uses policies of the form of “on-
event-do-actions” applying architectural changes with the goal to improve the current
state of the system with respect to given QoS properties. Using generative techniques,
Genie allows the systematic construction of middleware-related software artifacts from
high level description models. With Genie, new reconfiguration policies can be modeled
and generated offline while the system is running.

However, Genie does not support reasoning about the performance-related aspects of a
software system and it relies on specific middleware and component frameworks. Further-
more, like other approaches presented in this section, Genie is focused on the middleware
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and component-based applications and thus, the approach does not support the adaptation
of the infrastructure of modern IT systems and services.

MADAM

Another model-driven engineering approach for the development and operation of context-
aware, self-adaptive applications is MADAM (Floch et al., 2006; Geihs et al., 2009). The
MADAM framework consists of a middleware that supports the dynamic adaptation of
component-based applications using an application architecture model based on the Uni-
fied Modeling Language (UML), in which components can be annotated with QoS proper-
ties for adaptation reasoning. In this approach, the application developer can describe the
application variability using a platform-independent adaptation model which is then trans-
formed by corresponding tools into a representation that is used by the middleware for
adaptation management. The adaptations supported by MADAM are parameter adap-
tation, i.e., a fine tuning of applications through the modification of program variables
and deployment parameters, and compositional adaptation, i.e., the modification of the
application component structure and the replacement of components.

The modeling formalism used in MADAM resides at a high level. Components are sim-
ply annotated with properties to qualify the services that are provided or required by
components, which limits the possibilities for fine-grained performance analysis. Further-
more, MADAM does not support adaptations of the infrastructure such as migrating VMs
or changing VM parameters. Finally, this approach is focused on applications in mobile
computing scenarios and the developed applications are targeted to react dynamically
on fluctuations in network connectivity, battery capacity, appearance of new devices and
services, or to changes of user preferences (Geihs et al., 2009).

MUSIC

This approach is the successor of MADAM. While MADAM is focused on mobile comput-
ing scenarios with the underlying assumption of a closed world computing environment,
MUSIC targets ubiquitous computing environments that are characterized by openness,
heterogeneity, and dynamic service discovery and binding (Hallsteinsen et al., 2012).

According to Hallsteinsen et al. (2012), the main goal of MUSIC is to simplify the de-
velopment of adaptive applications that will operate in open and dynamic ubiquitous
computing environments and adapt seamlessly and without user intervention in reaction
to context changes. As adaptation possibilities, MUSIC supports setting configuration
and application parameters, replacing components and service bindings, and redeploying
components on the distributed computing infrastructure. In its core, MUSIC implements
a MAPE-K control loop, employing a coarse-grained QoS-aware architecture model as
shared knowledge to realize the dynamic and automatic adaptation of applications and
services. MUSIC’s adaptation-planning uses utility functions to evaluate the utility of
alternative application configurations in response to context changes to select a feasible
configuration for the current context, and to adapt the application accordingly.

However, like MADAM, the capabilities of this approach to manage performance and
resource efficiency in an autonomic manner are limited as it still uses too coarse-grained
modeling abstractions of the performance properties. Although the application scope
of MUSIC has been extended compared to MADAM, the adaptation capabilities of the
approach remain at the application level and do not consider changes at the infrastructure
level.
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PLASMA

Tajalli et al. (2010) present an approach to self-adaptive software that utilizes modeling and
planning techniques, called Plan-based Layered Architecture for Software Model-driven
Adaptation (PLASMA). The approach uses models based on ADLs and a specification of
the system’s goals as inputs to generate adaptation plans in response to changing system
requirements and goals. PLASMA employs three adaptive layers: i) the bottom application
layer describes the application-level software components, ii) the middle layer (called the
adaptation layer) monitors, manages, and adapts components in the application layer,
and iii) on top the planning layer that manages the adaptation layer and the generation
of plans based on goals and component specifications provided by the system architect. In
PLASMA, it is the responsibility of an adaptation planner to find an adaptation plan that
transforms the current architecture of the application layer to the application goal. The
authors evaluate their approach in the context of a robotic application in which three or
more robots that form a convoy follow a leader robot.

Like the previously described approaches, PLASMA is restricted to adaptations at the ap-
plication architecture level. Although the presented approach is an interesting solution to
generate plans for adapting the software to changing system requirements, the adaptation
planning currently provides no capabilities to predict the impact of possible adaptations
on the system performance and consider this during adaptation planning.

GRAF

The Graph-based Runtime Adaptation Framework (GRAF) presented by Amoui et al.
(2012) is another model-centric approach that uses graph-based models that are inter-
preted at run-time to manage system adaptation. In this approach, an adaptation manager
controls the adaptable software by manipulating a runtime model instead of directly oper-
ating on the adaptable software. The runtime model corresponds to a graph that describes
the adaptable software’s state and a collection of behavior descriptions, captured using a
subset of UML activity diagrams. The adaptation behavior is specified as a set of adap-
tation rules, whereas a single adaptation rule corresponds to an Event–Condition–Action
(ECA) rule (Widom and Ceri, 1996).

GRAF is restricted to adaptations at the architecture-level of software systems, relying on
parameter adaptation and compositional adaptations. Furthermore, the modeling formal-
ism used in GRAF provides only limited expressiveness for performance-related properties
and for specifying adaptation processes.

SLAstic

SLAstic is an online capacity management approach for component-based software systems
with the goal to reduce the operating costs of software systems (van Hoorn et al., 2009;
van Hoorn, 2014). Resource efficiency, in terms of the number of allocated data center
resources, is improved by executing architecture-level adaptations at run-time based on
current workload situations. Based on monitoring and predicting the current and future
performance and efficiency measures, SLAstic plans and executes system adaptations.
Monitoring data is obtained with Kieker (van Hoorn et al., 2012), a framework that enables
application performance monitoring and architecture discovery, and performance metrics
are predicted using simulation (von Massow et al., 2011).

Currently, SLAstic contributes to the planning and execution phases of the MAPE-K con-
trol loop (cf. Section 2.1.2). However, SLAstic’s adaptation possibilities are focused mainly
on the software architecture, e.g., de-/replicating or migrating software components. Thus,
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it desists form a detailed modeling of the resource landscape in which the software sys-
tem is deployed. Furthermore, SLAstic provides no means for the explicit specification of
adaptation actions and processes that can be performed to adapt the software system.

3.2. Model-Based Performance and Resource Management

In this section, we give an overview of different approaches to performance and resource
management at design-time and run-time. More specifically, we discuss approaches that
use some kind of performance model to describe the performance behavior of the system
and predict the performance impact of changes to the system architecture or changes in
the system environment. These performance predictions are then used to, e.g., evaluate
design decisions or for capacity planning. In the following, we further separate the consid-
ered approaches into two groups depending on the applied modeling formalism. The first
group of related work applies predictive stochastic performance models to predict the per-
formance impact of changes (Section 3.2.1), whereas the second group relies on descriptive
architecture-level performance models to describe the performance behavior at the ar-
chitecture level and applies model transformation techniques for performance prediction
(Section 3.2.2).

3.2.1. Predictive Performance Models

With the adoption of virtualization and cloud computing, many approaches to online per-
formance and resource management in dynamic environments have been developed in the
research community. Such approaches are typically based on control theory feedback loops,
machine learning techniques, or stochastic performance models, such as layered queueing
networks or stochastic Petri nets. Approaches based on feedback loops and control theory
(e.g., Abdelzaher et al., 2002; Almeida et al., 2010) can normally guarantee system stabil-
ity by capturing the transient system behavior (Almeida et al., 2010). Machine learning
techniques capture the system behavior based on observations at run-time without the
need for an a priori analytical model of the system (Tesauro et al., 2006; Kephart et al.,
2007). Performance models are typically used in the context of utility-based optimization
techniques. They are embedded within optimization frameworks aiming at optimizing
multiple criteria such as different QoS metrics (Verma et al., 2008; Jung et al., 2010; Mi
et al., 2010). Existing work in this area mainly uses predictive performance models that
capture the temporal system behavior where the platform is normally abstracted as a
black-box, that is, the software architecture and configuration are not modeled explicitly
(e.g., Chen et al., 2005; Bennani and Menasce, 2005; Zhang et al., 2007; Urgaonkar et al.,
2005; Jung et al., 2008). Such models include queueing networks (e.g., Menasce and Vir-
gilio, 2000), layered queueing networks (e.g., Li et al., 2009), queueing Petri nets (e.g.,
Kounev, 2006), stochastic process algebras (e.g., Gilmore et al., 2005), statistical regres-
sion models (e.g., Eskenazi et al., 2004), Kriging models (e.g., Gambi et al., 2013), fuzzy
logic (e.g., Jamshidi et al., 2014), or control engineering approaches based on multiple
models (e.g., Patikirikorala et al., 2012). Models are typically solved analytically, e.g.,
based on mean-value analysis, as presented by Zhang et al. (2007), or by simulation where
analytical solution is not a viable option (Jung et al., 2008).

In summary, existing model-based techniques for online performance and resource man-
agement typically abstract the system as a black-box and do not explicitly model the
software architecture and execution environment. For example, they do not distinguish
performance-relevant behavior at the virtualization level vs. at the level of applications
hosted inside the running VMs. However, explicitly considering such aspects is crucial
for online performance prediction and model-based system adaptation at run-time, as
black-box prediction approaches do not provide enough flexibility to analyze the impact
of fine-granular adaptation actions.
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3.2.2. Architecture-Level Performance Models

In the software performance engineering community, a number of modeling approaches for
building architecture-level performance models of software systems have been proposed
over the last decade (cf. Koziolek, 2010; Balsamo et al., 2004). Such models provide
modeling constructs to capture the performance-relevant behavior of a system’s software
architecture as well as some aspects of its execution environment. The most prominent
meta-models are the UML SPTP (Object Management Group (OMG), 2005) and UML
MARTE profiles (Object Management Group (OMG), 2011c), both of which are extensions
of UML as the de facto standard modeling language for software architectures. Further
proposed meta-models include SPE-MM (Smith et al., 2005), CSM (Petriu and Woodside,
2007), KLAPER (Grassi et al., 2007) and PCM (Becker et al., 2009). The common goal of
these approaches is to predict the modeled system’s performance behavior by transforming
the architecture-level performance model into a predictive performance model.

The restriction of the presented approaches is that they are designed for use at system
design-time in an offline setting. Therefore, they typically assume a static system archi-
tecture and execution environment. However, explicitly considering dynamic changes and
being able to predict their effect at run-time is indispensable for ensuring predictable per-
formance and automated decision-making. A recent survey on model-based approaches
to engineering of software systems confirms the importance of considering the dynamic
aspects of modern IT systems and services as part of architectural models (Becker et al.,
2012). However, the survey also shows that currently, there are no performance modeling
approaches that support the explicit modeling of adaptation strategies and processes at
the architecture level. Note that at the time of publication of this survey, the adaptation
process modeling language presented in Chapter 6 as integral part of DML was under
development.

3.3. Adaptation Process Modeling Languages

In the field of software engineering, there exist various domain-specific languages and
modeling formalisms to describe the dynamic behavior of software. For example, UML
provides activity diagrams to describe the overall control flow of a software system. This
section gives a brief overview of approaches that aim at modeling the adaptation behavior
of autonomic and self-adaptive systems at the architecture level.

Cheng and Garlan (2012) introduce Stitch, a programming language-like notation to ex-
press repair strategies in a form that can be analyzed and automated by the Rainbow
framework (cf. Section 3.1). In Stitch, adaptation strategies as decision trees are con-
structed from adaptation tactics, which are in turn defined in terms of more primitive
operators (Cheng and Garlan, 2012). However, strategies refer to tactics in a strictly de-
terministic, process-oriented fashion. Therefore, the knowledge about system adaptation
specified with Stitch is still application-specific, making it difficult to adapt in situations
of uncertainty.

Da Silva and de Lemos (2009) use Yet Another Workflow Language (YAWL) (van der
Aalst and ter Hofstede, 2005), a modeling language based on Petri nets, to coordinate the
complex adaptation process of a self-adaptive system. The authors execute architectural
reconfiguration using dynamic workflows to adapt to changing requirements at run-time.
They distinguish between abstract and concrete workflows, concepts which correspond to
the concepts of strategies and tactics proposed by Cheng et al. (2006); Cheng and Garlan
(2012). However, the focus of this approach is to automatically generate workflows for
self-adaptation. It does not integrate a detailed architecture-level performance model to
evaluate the impact of the adaptation actions.
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Other domain-specific languages to describe adaptation behavior or processes can be found
in the area of service-oriented systems and business process modeling. For example, Ser-
vice Activity Schemas (SAS), introduced by Esfahani et al. (2009), is an activity-oriented
language for modeling a software system’s functional and QoS requirements. SAS is in-
tended for user-driven composition and adaptation of service-oriented software systems.
Another example is the Business Process Model and Notation (BPMN) (Object Manage-
ment Group (OMG), 2011a), which is a graphical representation for specifying business
processes in a business process model. However, these approaches are mainly focused on
modeling business processes and are thus not suitable for modeling the full spectrum of
self-adaptive mechanisms from conditional expressions to algorithms and heuristics.

When it comes to languages for specifying how to adapt model instances, well-known
methods from the area of graph grammars exist. For example, Agrawal et al. (2003)
present an approach on how to define model transformations based on UML. Another
example of a graph grammar language are Story Diagrams (Fischer et al., 2000), which
are also based on UML and Java. However, these approaches remain on the model level,
i.e., they cannot be used to execute real system adaptations without additional tools.

The shortcoming of all mentioned approaches is that they do not integrate a specific per-
formance modeling formalism and are thus unsuitable for reasoning about the performance
impact of the adaptation actions. Nevertheless, Stitch and Story Diagrams provide use-
ful concepts for describing system adaptation behavior which will be used for evaluation
purposes (cf. Chapter 6).

3.4. Summary

In summary, current modeling formalisms for describing the performance-relevant prop-
erties and behavior of modern IT systems have two major limitations which render them
unsuitable for autonomic performance-aware resource management at run-time. First,
they do not provide sufficiently expressive modeling abstractions to capture the details of
the distributed and layered resource infrastructures of modern IT systems such that on-
line performance prediction and adaptation decision-making at run-time can be supported.
Second, as such modeling formalisms are intended for use at design-time, the modeling
abstractions do not support describing dynamic aspects of modern IT systems, such as a
system’s degrees of freedom for adaptation, or possible adaptation strategies and actions.

Current approaches for developing architecture-based self-adaptive systems usually focus
on maintaining the functionality of the adapted system and are not intended for main-
taining performance and resource efficiency requirements. If the adaptation approaches
are concerned with the QoS properties of the system, such approaches usually aim at
improving multiple QoS properties and therefore provide only coarse-grained modeling
abstractions (like ADLs or UML-based methods) to describe the performance-behavior of
the system. Thus, these approaches do not provide suitable online performance prediction
capabilities necessary for performance-aware system adaptation. Furthermore, most of the
presented approaches are based on component-based system architectures and focus only
on adaptations at the application level. However, for performance and particularly for
resource management, it is important that the resource environment of the entire system
is considered explicitly as part of the designed system models and adaptation processes.

As a result, we conclude that existing model-based system adaptation approaches are
not designed to provide both i) modeling abstractions to describe the system architec-
ture and system adaptation processes and ii) modeling abstractions to describe the de-
tailed performance-relevant properties and behavior of the system necessary for autonomic
performance-aware resource management. Furthermore, current approaches generally pur-
sue a reactive approach to system adaptation. Thus, there exists no holistic model-based

38



3.4. Summary 39

system adaptation approach that covers all aspects relevant for proactive performance-
aware resource management at run-time.
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Proactive Model-Based Performance
and Resource Management
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4. Proactive Model-Based System
Adaptation

Many researchers agree that a promising approach to tackle the challenges and manage
the complexity of autonomic and self-adaptive systems is the use of models (e.g., Blair
et al., 2009; Cheng et al., 2009; Salehie and Tahvildari, 2009; de Lemos et al., 2011). In
this chapter, we present a novel model-based approach for proactive performance and re-
source management focused on two major aspects. First, we aim at reducing complexity
by abstracting from technical details and modeling the performance behavior of the sys-
tem at the architecture-level to support autonomic decision-making at run-time (cf. Blair
et al., 2009). Second, to provide a holistic model-based approach, we also model the sys-
tem adaptation processes at the architecture-level. Thereby, we are able to leverage the
benefits of model-driven engineering (MDE) techniques for the systematic engineering of
self-adaptive software systems (cf. France and Rumpe, 2007; Kounev et al., 2010).

Core of our model-based adaptation approach is a refinement of a generic adaptation con-
trol loop concept used in the software engineering and autonomic computing community.
The adaptation loop is based on the Descartes Modeling Language (DML), a novel domain-
specific modeling language designed to capture both static and dynamic aspects of modern
IT systems at the architecture-level. With DML, we can model all relevant influences of
the system architecture and its resource landscape, as well as dynamic aspects like the sys-
tem’s configuration space and adaptation processes, in a generic, human-understandable
and reusable way. We integrate DML in our adaptation loop and leverage its novel features
and online performance prediction techniques for proactive system adaptation at run-time.

In the following, we give a conceptual overview of our model-based approach to auto-
nomic performance-aware resource management. In Section 4.1, we introduce the generic
MAPE-K adaptation control loop and explain how we refined this concept to integrate
and leverage DML to support proactive system adaptation at run-time. In Section 4.2, we
present the high-level concepts of DML, our holistic modeling approach with which we aim
at describing both static and dynamic aspects of the system and its adaptation process.
More specifically, we discuss requirements for the modeling language. The specific design
and implementation of DML as well as the technical realization of the adaptation control
loop is given in Chapters 5 and 6.
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4.1. Model-Based Adaptation Control Loop

According to Brun et al. (2009), essential elements for building self-adaptive systems are
feedback loops, as they provide a generic mechanism for self-adaptation. In the software
engineering community, such feedback loops conceptually consist of four distinct phases:
Collect, Analyze, Decide, and Act (Cheng et al., 2009). This generic view of feedback
loops is based on the concepts of the autonomic control loop model established by the
autonomic computing community (e.g., cf. IBM Corporation, 2003; Kephart and Chess,
2003). This concept also distinguishes four main phases, Monitor, Analyze, Plan,
and Execute, which are similar to the phases of the software engineering feedback loop.
Additionally, this loop contains a Knowledge (Base), which is shared by the other parts.

ANALYZEEXECUTE

PLAN

Anticipate/Detect 

Problem

Adapt System 

Model

Analyze 

Adaptation 

Impact

Problem

resolved

Problem 

persists

Adapt System

MONITOR

Collect QoS 

Metrics and 

Architectural Data

KNOWLEDGE

Descartes 

Modeling 

Language

Figure 4.1.: Model-based adaptation control loop.

In the following, we present a refined, model-based version of this generic adaptation con-
trol loop concept. Figure 4.1 depicts the four phases of the control loop with the Descartes
Modeling Language (DML) serving as a basis for expressing the available Knowledge.
The following sections briefly describe the purpose of the control loop phases and how
they are linked to DML. In particular, we explain how we integrate DML as a basis for the
knowledge base of the adaptation control loop and how we leverage its novel modeling
concepts and online performance prediction capabilities (cf. Section 2.2.4) for adaptation
decisions at run-time. We also present how we extend the adaptation control loop with an
additional feedback loop to support proactive system adaptation.

4.1.1. Monitor

The basis for managing and adapting a system is to know the current state of the system.
Thus, the adaptation control loop starts by collecting monitoring data from the managed
system. For the performance and resource management purposes of our approach, we are
mainly interested in three groups of monitoring data. First, the monitoring data should
provide information about the current configuration of the system, i.e., structural infor-
mation about the hardware infrastructure, execution environment, deployment of virtual
machines and services, their used resources, etc. Second, the monitoring data should con-
tain different Quality of Service (QoS) property metrics. In our approach, this includes
mainly performance metrics like service response time, throughput or resource utilization,
that can be obtained using monitoring frameworks. In addition to performance metrics,
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it is important to collect further data from the system environment. For example, in our
approach we require workload data in the Analyze phase to be able to forecast changes in
the workload intensity. Third, it is also important to periodically collect information rel-
evant to the goals of the adaptation, e.g., changed customer constraints like Service-Level
Agreements (SLAs). Such information is important to ensure that the adapted system is
aware of its operational goals.

MONITOR

Collect QoS 

Metrics and

Architectural Data

KNOWLEDGE

Extract and 

Calibrate Model

Descartes Modeling 

Language

Figure 4.2.: Relation of the monitor phase to the knowledge base.

In general, the monitoring data is persisted in the knowledge base for reuse in later
phases of the adaptation control loop (cf. Figure 4.2). For example, the work by Brosig
(2014) uses this monitoring data to create an architecture-level performance model (cf. Sec-
tion 2.2.1) of the system. This model reflects the software architecture as well as the
performance-relevant properties and behavior of the monitored system. Furthermore,
Brosig (2014) presents methods to maintain this model instance such that it is up-to-
date and reflects the current state of the monitored system accurately. Conceptually,
this model can be compared to the concept of a runtime model, a model that is causally
connected to the system and should provide up-to-date and exact information about the
system to drive sub-sequent adaptation decisions (Blair et al., 2009). The methods for
the automated extraction and maintenance of such models are presented in Brosig (2014);
Brosig et al. (2013, 2009).

4.1.2. Analyze

The general purpose of this phase is to analyze the monitoring data to detect and antici-
pate violations of the system’s operational goals (e.g., SLA violations, inefficient resource
usage). If a problem is detected, the system state is analyzed to identify its causes (e.g., a
resource bottleneck) such that suitable adaptation strategies can be triggered in the subse-
quent Plan phase. This scenario describes an example of reactive system adaptation. To
enable proactive system adaptation, the approach must be able to anticipate performance
problems before they have actually occurred. To do this, we need techniques to predict
future changes in the system environment. Then, we can apply the predicted changes
to our model and analyze the model to detect if the changes will lead to a performance
problem.

In this thesis, the performance-relevant changes in the system environment that we focus on
are changes of the system’s workload. We leverage workload classification and forecasting
techniques to predict the workload’s future intensity (cf. Chapter 7). We can then use the
predicted workload changes as input to online performance prediction techniques (Brosig,
2014) to analyze the impact of these changes on metrics like response time or resource
utilization. This allows to detect emerging system bottlenecks or inefficient resource usage
and to proactively trigger the search for a solution to the anticipated problem.
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Figure 4.3.: Proactive problem anticipation/detection based on workload classification and
forecasting.

The refinement of the general adaptation control loop to support workload forecasting for
proactive system adaptation is depicted in Figure 4.1. It consists of an additional feedback
loop that runs independent of the overall control loop (cf. Figure 4.3). In this separate
loop, we estimate the workload’s future intensity.

In summary, the purpose of the Analyze phase is to detect possible performance problems
and identify their causes. In the reactive case, the problem analysis can be based on the
obtained monitoring data, directly. However, one vital benefit of our model-based approach
is that we can leverage the model for proactive system adaptation. In the proactive case,
we employ the model and forecasts of changes in the system workload to predict the impact
of these changes. These predictions are then used for problem analysis.

4.1.3. Plan

In the Plan phase, we search for a feasible solution to problems identified in the Analyze
phase. The term solution in this context refers to a system state in which the anticipated
or detected problem has been resolved and that fulfills the system’s operational goals. Note
that the solution must not necessarily be optimal with respect to the given operational
goals. Nevertheless, depending on the specific adaptation options supported by the system
and the possible solutions to a detected problem, the search process can become complex
and comprise several iterations.

We realize the Plan phase as two main steps (depicted in Figure 4.1) executed iteratively
to find a suitable solution to a detected problem. In the first step (Adapt System Model),
we automatically generate a new system configuration on the model level by applying the
adaptation strategy selected as part of the Analyze phase. After applying an adaptation
at the model level, we analyze the adapted model (Analyze Adaptation Impact) using the
online performance prediction techniques of Brosig (2014) to obtain performance metrics
for the system state corresponding to the adapted model.

The prediction results are compared with the previous metric values to evaluate the impact
of the adaptation, e.g., by comparing response time or resource efficiency metrics. If the
applied adaptation is successful, i.e., the detected problem is solved, we can derive a
concrete system adaptation plan that is executed on the system in the following Execute
phase. If the problem is not solved, the Plan phase continues executing, iteratively
generating a different system state while taking into account the determined impact of
previously executed adaptations. Note that we pursue an iterative process that aims at
improving the managed system to maintain its operational goals and if time is short, this
process can be stopped any time.
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Conceptually, this phase is independent of specific types of adaptation processes. For each
problem detected in the Analyze phase, one can imagine different adaptation processes
to solve the problem, using simple event-condition-action rules, well-established meta-
heuristics (like Tabu Search or Simulated Annealing), or optimization algorithms. To
specify such adaptation processes at the model level, DML provides dedicated modeling
abstractions. Further details on how to model adaptation processes using DML and about
the technical realization will be given in Chapter 6.

4.1.4. Execute

In this phase, we apply the actual adaptation on the real system. To this end, we replay
the adaptation actions that have been successfully applied on the model level on the real
system. In this phase, the benefit that we have executed all our adaptations on the model
level pays off as we can omit all adaptation steps that turned out to lead to an invalid
or inadequate system state. To adapt the system and bring it into the desired state, we
execute the actions of the concrete adaptation plan derived in the Plan phase by using
the reconfiguration interfaces provided by the real system (e.g., virtualization platforms
or middleware).

4.1.5. Knowledge

A central element of the adaptation control loop depicted in Figure 4.1 is the knowledge
(base). Conceptually, the knowledge base can contain any form of information and data
required for system adaptation, such as QoS metrics, topology information, or configura-
tion settings (IBM Corporation, 2003). However, an important research question is: What
is a suitable approach to represent this knowledge that allows to reason about the system
properties but that abstracts from the complexity of the managed system?

The approach presented in this thesis uses the Descartes Modeling Language (DML) to
express and capture this knowledge. Briefly, DML provides modeling abstractions to
describe the system’s performance behavior at the architecture-level, explicitly considering
all relevant influences of the system’s operational environment and application architecture.
Furthermore, DML provides modeling abstractions to capture the system’s degrees of
freedom and specify adaptation processes at the model level. In the following Section 4.2,
we introduce the different modeling abstractions provided by DML and describe the role
of DML in our autonomic performance-aware resource management approach.

4.2. Overview of the Descartes Modeling Language

The foundation for our model-based adaptation approach is the Descartes Modeling Lan-
guage (DML), an architecture-level modeling language developed to support the previously
described model-based adaptation control loop. Basically, DML is designed to model
Quality of Service (QoS) and resource management related aspects of modern dynamic IT
systems, infrastructures and services. In the following, we will present an overview of the
structure of DML and explain its major design decisions. Note that some parts of DML
are part of the contributions of Brosig (2014) and will therefore be denoted accordingly in
the following.

The fundamental goal of DML is to provide a holistic model-based approach that can
be used to describe the performance behavior and properties of the system as well as to
model the system’s dynamic aspects like its configuration space and adaptation processes.
The intention is that, using the online performance prediction techniques provided by
Brosig (2014), DML can support the Analyze phase of the adaptation control loop in
problem anticipation and the Plan phase in autonomic decision-making. Furthermore, by
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providing means to specify adaptation processes at the model level, DML can be used to
find suitable system configurations without having to adapt the actual system. However,
these requirements lead to two different concerns that must be addressed by DML. First,
DML has to reflect the performance behavior of the managed system. Second, it must be
suitable to describe the adaptation process of the system. Thus, the important question
is how to separate these concerns (cf. France and Rumpe, 2007, p. 4).

To address this challenge, DML explicitly distinguishes different model types that de-
scribe the system and its adaptation processes from a technical and a logical viewpoint.
Together, these different model types form a DML instance (cf. Figure 4.4). The idea
of using separate models is to separate knowledge about the system architecture and its
performance behavior (technical aspects) from knowledge about the system’s adaptation
processes (logical aspects).
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Figure 4.4.: Relation of the different models of a DML instance and the system, separated
into technical and logical aspects.

Figure 4.4 depicts an overview of the relation of the different models that are part of a
DML instance, the managed system, and the system’s adaptation process, from the tech-
nical and logical viewpoint. In the bottom right corner of Figure 4.4, we see the system
that is managed by a given, usually system-specific, adaptation process, depicted in the
top right corner of Figure 4.4. In the bottom left corner, we see the models that reflect
the technical aspects of the system relevant for model-based performance and resource
management. These aspects are the hardware resources and their distribution (resource
landscape model), the software components and their performance-relevant behavior (ap-
plication architecture model), the deployment of the software components on the hardware
(deployment model), the usage behavior and workload of the users of the system (usage
profile model), and the degrees of freedom of the system that can be employed for run-
time system adaptation (adaptation points model). The resource landscape model, the
deployment model, and the adaptation points model are part of the contributions of this
thesis. The application architecture model and the usage profile model are part of the
work of Brosig (2014).

On top of these models (top left corner of Figure 4.4), we see the adaptation process model
that specifies an adaptation process describing how to adapt the managed system. The
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adaptation process leverages online performance prediction techniques to reason about
possible adaptation strategies, tactics, and actions. The adaptation process model is part
of the contribution of this thesis.

In the following, we introduce the different model types in more detail and list the major
requirements that influenced this design of DML. We look at the different models from a
technical and logical viewpoint to clearly separate these aspects.

4.2.1. Technical Viewpoint

To describe and model the managed system from the technical viewpoint, we take the per-
spective of a system architect. System architects design the system, i.e., they have knowl-
edge about the technical details of the system. This includes the operational environment
and the architecture of the managed system as well as functional and non-functional prop-
erties of the system. Furthermore, to provide flexibility to adapt the system to changes in
its environment, the system architect also knows which entities of the system are intended
to be changed dynamically at run-time.

From the technical viewpoint, we first need a model with a causal connection to the
managed system (Blair et al., 2009). This type of model provides up-to-date and exact
information about the system and is also called reflection model (cf. Vogel et al., 2011).
As this thesis is focused on performance and resource management aspects, the reflection
model should be a model that reflects the performance properties of the system. The
reflection model can then be leveraged to analyze the impact of changes in the system en-
vironment on the system performance. Furthermore, the reflection model should abstract
the system at the architecture level such that we can leverage structural information for
adaptation decisions and for describing adaptation processes at the model level. In the
following, we introduce four different models targeted at describing the performance be-
havior of the system, the resource landscape, application architecture, deployment, and
usage profile model (cf. Figure 4.4). Together, these models constitute an architecture-level
performance model, a model that describes the performance behavior of the system at the
architecture-level (cf. Section 2.2.1 for more details). This architecture-level performance
model is used by Brosig (2014) for online performance prediction (cf. Section 2.2.4) and
thus serves as the reflection model in our model-based system adaptation control loop.

Resource Landscape Model
The purpose of this model is to describe the structure and the properties of both phys-
ical and logical resources of modern distributed IT service infrastructures. Therefore,
the resource landscape model provides modeling abstractions to specify the avail-
able physical resources (CPU, network, HDD, memory) as well as their distribution
within data centers (servers, racks, and so on). To specify the logical resources, the
resource landscape model also supports modeling different layers of resources and
specifying the performance influences of the configuration of these layers. In this
context, resource layers denote the software stack on which software is executed,
including virtualization, operating system, middleware, and runtime environments
(e.g., JVM). In addition, as we also consider systems distributed over multiple data
centers, the model also captures the distribution of resources across data centers.
Modeling the structure and properties of data center resources at this level of detail
is important for accurate performance predictions and to derive causal relationships
of the performance impact during system adaptation. This model is one of the main
contributions of this thesis and explained in detail in Chapter 5.

Application Architecture Model
This model is focused on the application architecture of the managed system. For
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performance analysis, this model must capture performance-relevant information
about the software services that are executed on the system as well as external
services used by the system. In general, this model is focused on describing the per-
formance behavior of the software services after the principles of component-based
software systems (Becker et al., 2009). A software component is defined as a unit
of composition with explicitly defined provided and required interfaces (Szyperski
et al., 2002). The performance behavior of each software component can be de-
scribed independently and at different levels of granularity. The supported levels of
granularity range from black-box abstractions (a probabilistic representation of the
service response time behavior), over coarse-grained representations (capturing the
service behavior as observed from the outside at the component boundaries, e.g., fre-
quencies of external service calls and amount of consumed resources), to fine-grained
representations (capturing the service’s internal control flow and internal resource
demands). The advantage of the support for multiple abstraction levels is that the
model is usable in different online performance prediction scenarios with different
goals and constraints, ranging from quick performance bounds analysis to detailed
system simulation. Moreover, one can select an appropriate abstraction level to
match the granularity of information that can be obtained through monitoring tools
at run-time, e.g., considering to what extent component-internal information can be
obtained by the available tools. The application architecture meta-model is devel-
oped as part of the thesis of Brosig (2014). An overview of the concepts relevant to
this thesis is given in Section 5.3.1.

Deployment Model
To analyze the performance of the modeled system, it is necessary to connect the
modeled software components with the system resources described using the resource
landscape model. The deployment model provides this information by mapping the
software components modeled in the application architecture model to physical or
logical resources described in the resource landscape model. With this mapping,
resource demands of the modeled software components can be traced through the
layers of the resource landscape model down to the physical resources. Thereby,
it is possible to analyze mutual performance influences when sharing resources. A
detailed description of this model is given in Section 5.3.3.

Usage Profile Model
Finally, an important aspect that influences the performance of a system is the way
the system is used. For instance, if the amount of user requests that have to be
processed by the system increases, more resources would normally be required to
process the increased amount of work. The usage profile model can be used to de-
scribe the types of requests that are processed by the system and the frequency with
which new requests arrive. In fact, the usage profile is a frequently changing prop-
erty of the system environment to which we want to adapt the system proactively.
A description of this model is given in Section 5.3.2.

Together, these four models form an architecture-level performance model that conveys
detailed information about the structural and performance behavior of the system. During
the Analyze and Plan phases, we can leverage these aspects to for proactive system
adaptation and to support reasoning about adequate adaptation decisions.

However, to describe adaptation processes at the model level and to decide how to adapt
the system at run-time, we need additional modeling abstractions to specify the degrees
of freedom of the system, i.e., the parts of the system that can be changed at run-time
to adapt the system to changes in its environment. Vogel et al. (2011) refer to such
mode types as change model, as part of a larger adaptation model. DML provides such an
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additional change model (called adaptation points model, cf. Figure 4.4). This adaptation
points model annotates the architecture-level performance model to describe the degrees
of freedom of the system architecture (cf. Figure 4.4).

Adaptation Points Model
This model provides modeling abstractions to describe the elements of the resource
landscape and the application architecture that can be leveraged for adaptation (i.e.,
reconfiguration) at run-time. Other model elements that may change at run-time
but cannot be directly controlled (e.g., the usage profile), are not in the focus of
this model. Adaptation points on the model level correspond to operations that can
be executed on the system at run-time to adapt the system (e.g., adding virtual
CPUs (vCPUs) to VMs, migrating VMs or software components, or load-balancing
requests). Thus, the adaptation points model defines the configuration space of the
managed system. The model provides constructs to specify the degrees of freedom
along which the system’s state can vary as well as to define boundaries for the
valid system states. This model is part of the contributions of this thesis and it is
introduced in detail in Section 6.1

The purpose of having a model that explicitly describes the adaptation points of the system
is to support separating knowledge of technical system aspects from logical adaptation
aspects (cf. Figure 4.4). By defining explicit adaptation points, we can reuse them to
specify adaptation processes on the model level based on the given adaptation points.
Thereby, the modeled adaptation process is bounded by the specified degrees of freedom
of the system but it is independent of system-specific details. In the next section, we
introduce how we describe the logical aspects of system adaptation at the model level.

4.2.2. Logical Viewpoint

In general, self-adaptive systems follow certain automatic or semi-automatic processes to
adapt to changes in their environment such that their operational goals are continuously
satisfied. These processes are usually implemented by a software entity, often referred to
as agent (cf. Franklin and Graesser, 1997). Such agents are responsible for controlling the
system adaptation processes. Usually, they encapsulate adaptation logic that can be ex-
pressed in the form of simple rules or using complex heuristics or optimization algorithms.
The implementations of adaptation logic is usually highly system specific and thus difficult
to reuse in different contexts. To address this problem, DML provides a domain-specific
modeling language that abstracts from these technical details. Thereby, adaptation pro-
cesses can be specified at the model level, defining when, where, and how the managed
system should be adapted.

Adaptation Process Model
This model can be used to describe processes that keep the system in a state such
that its operational goals are continuously fulfilled, i.e., it describes the way the sys-
tem adapts to changes in its environment. It is based on the previously introduced
architecture-level performance model and adaptation points model which are used
to describe adaptation processes at the model level. With this model, we aim at
abstracting from technical details such that we can describe adaptation processes
from a logical perspective, independent of system-specific details. It is designed to
provide sufficient flexibility to model a large variety of adaptation processes from
event-condition-action rules to complex algorithms and heuristics. Essentially, it
distinguishes high-level goal-oriented objectives, adaptation strategies and tactics,
from low-level system-specific adaptation actions. The modeling language also pro-
vides concepts to describe the operational goals of the managed system such that
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the adaptation process can be driven towards these goals. This model is a core
contribution of this thesis and its concepts are explained in detail in Section 6.2.

4.3. Summary

In this chapter, we introduced the two major conceptual building blocks of our model-based
adaptation approach. First, we presented a refined concept of the MAPE-K adaptation
control loop designed to leverage the novel features of the Descartes Modeling Language
(DML) to realize autonomic performance-aware resource management at run-time. Sec-
ond, we introduced the major concepts of DML that we employ for online performance
prediction and run-time system adaptation.

In summary, with our modeling approach, we provide a clear separation of the techni-
cal and logical concerns when engineering self-adaptive systems. To model the technical
and performance-related aspects of a self-adaptive system, we use an architecture-level
performance model, annotated by an adaptation points model to describe the system’s
degrees of freedom. Our model-based approach is completed by a modeling language that
can be used to describe logical aspects of adaptation processes at the model level. Thus,
with DML, we provide a holistic model-based approach for autonomic performance-aware
resource management.

In the remainder of this thesis, we elaborate the conceptual details of DML. In Chapter 5,
we present the modeling abstractions to describe the resource landscape, application archi-
tecture, deployment, and usage profile of the adapted system. Then, Chapter 6 presents
the modeling abstractions to describe the adaptation points of the managed system as well
as a modeling language to specify adaptation processes. In Section 6.3, we present the
realization of our model-based adaptation control loop using DML and its online perfor-
mance prediction capabilities (cf. Brosig, 2014). Finally, in Chapter 7, we show how to use
workload classification and forecasting techniques to enable proactive system adaptation.

52



5. Modeling System Resource Landscapes
and Their Performance Influences

Koziolek (2010) distinguishes four major types of aspects that are important when mod-
eling the performance of modern IT systems: the usage profile of the system, the imple-
mentation of the software components, the performance of external services used by the
system, and the execution environment. Current architecture-level performance models
as surveyed by Balsamo et al. (2004) and Koziolek (2010) typically describe the system’s
infrastructure and platform as a flat hierarchy of resources. Such models usually abstract
the detailed structure of resources and do not explicitly capture the impact of possibly
multiple resource layers like virtualization or middleware. However, for autonomic system
adaptation and resource management at run-time, such information is crucial to analyze
the possible impact of adaptation operations (like migrating VMs or services) on the sys-
tem performance.

In this chapter, we present a modeling language to describe the resource landscape of
modern distributed IT systems. In Section 5.1, we introduce novel concepts for modeling
the configuration of physical resources as well as the performance-influencing properties
of resource layers. In Section 5.2, we present a method for the automatic quantification of
such performance-influencing properties using virtualization as proof-of-concept. In Sec-
tion 5.4, we present two case studies. The first case study demonstrates how resource
landscape models can be leveraged to improve run-time resource management. The sec-
ond case study evaluates the performance overhead of two representative virtualization
platforms, Citrix XenServer 5.5 and VMware ESX 4.0.

Other important aspects that influence the performance of modern IT systems are the
software system’s design and implementation, the deployment of the software components
on the resource landscape, and the usage profile. Meta-models to describe these aspects
are also part of DML (cf. Chapter 4). However, as they are not in the focus this thesis,
we only give a brief overview of their main concepts (Section 5.3) that are relevant for our
automated system adaptation and resource management approach. More details on how
this meta-models can be used for online performance prediction are part of the work of
Brosig (2014).

5.1. Resource Landscape Meta-Model

The motivation for our resource landscape meta-model is to provide novel modeling ab-
stractions that can be used to describe the complex nature of modern distributed IT
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infrastructures. Briefly, these novel constructs support modeling the distribution of re-
sources within and across the boundaries of data centers, the nested layers of resources,
and the performance influences of the different resource layers. They are explained in more
detail in the following sections.
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Figure 5.1.: The resource landscape meta-model.

Figure 5.1 depicts an overview of the structure of the resource landscape meta-model as a
UML class diagram. The root entity comprising all other model elements is the Distributed-
DataCenter, which consists of one or more DataCenters. DataCenters contain HardwareIn-
frastructures which are either one of the three hardware infrastructure types ComputingIn-
frastructure, NetworkInfrastructure, and StorageInfrastructure, or CompositeHardwareInfras-
tructure. A CompositeHardwareInfrastructure is a structuring element to group further
HardwareInfrastructures. For example, it can be used to combine servers to a cluster or
to group them in a server rack. Current architecture-level performance models usually
abstract from these details and do not provide constructs to model the resource hierarchy
and containment relationships explicitly. However, for resource management at run-time,
the description of the resource landscape and hierarchy of resources is crucial to improve
reasoning about suitable adaptation operations, e.g., to decide if a VM can be migrated
and where it should be migrated to. Here, the novel aspect of our meta-model is that it
allows to model the distribution of resources within and across data centers as well as their
individual configuration.

When designing the resource landscape meta-model, we aimed at a generic approach to
cover all types of infrastructure with the focus on ComputingInfrastructure. More details on
modeling storage and network infrastructures (i.e., the StorageInfrastructure and Network-
Infrastructure entities in the meta-model) can be found in the work of Noorshams et al.
(2013a,b,c) and Rygielski et al. (2013a,b), respectively.

5.1.1. Containers and Containment Relationships

A common reappearing pattern in modern distributed IT service infrastructures is the
nested containment of system entities, e.g., data centers contain servers, servers typically
contain a set of virtual machines (VMs) hosted on a virtualization platform, servers and
VMs run an operating system, which may contain a middleware layer, and so on. This
leads to a tree of nested system entities that may change during runtime because of virtual
machine migration, hardware or software failures, etc. The central element of our resource
landscape meta-model to model these nested layers of resources is the abstract entity
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Container, depicted in Figure 5.1. We distinguish between two major concrete container
entities: the ComputingInfrastructure and the RuntimeEnvironment. The ComputingInfras-
tructure forms the root element in our hierarchy of containers and corresponds to a physical
machine within a data center. This entity cannot be contained in another container, but
it may have nested containers (RuntimeEnvironments). The RuntimeEnvironment is the sec-
ond type of container. It can contain further RuntimeEnvironments. Thereby, we realize
the modeling of nested containers and can create a hierarchy of resources.

Furthermore, each RuntimeEnvironment has the property ofClass to specify the class of
the RuntimeEnvironment. A Container has a property configSpec to specify its Configura-
tionSpecification and a property template referring to a ContainerTemplate. These concepts
will be explained in the following sections.

5.1.2. Classes of Runtime Environments

We distinguish several general classes of runtime environments which are listed in Fig-
ure 5.2: HYPERVISOR for the different hypervisors of virtualization platforms, OS for op-
erating systems, OS VM for virtual machines emulating standard hardware, PROCESS VM
for process virtual machines like the Java VM or the Common Language Runtime (CLR),
MIDDLEWARE for middleware environments, and OTHER for any other type. This list can
be extended if new classes are required. The purpose of distinguishing different classes of
runtime environments is to constrain the possible combinations of runtime environments
within the hierarchy. By setting the ofClass property of the RuntimeEnvironment to one of
these values, we can specify OCL constraints to enforce consistency within the modeled
layers. To prohibit the instantiation of different RuntimeEnvironment classes within the
same container, we specify the following OCL constraint:

context RuntimeEnvironment
inv runtimeEnvironmentLevelCompliance:

self.containedIn.contains
->forAll(r : RuntimeEnvironment | r.ofClass = self.ofClass);

Listing 5.1: OCL invariant checking RuntimeEnvironment compliance.

As a result, a RuntimeEnvironment can only contain containers that are of the same class,
e.g., a hypervisor can only contain virtual machines and not further hypervisors.

«enumeration»
RuntimeEnvironmentClasses

HYPERVISOR
OS
OS_VM
PROCESS_VM
MIDDLEWARE
OTHER

Figure 5.2.: Different runtime environment classes.

Another solution would have been to model the different types of runtime environments as
explicit entities. However, we wanted to design a model that is easy to extend. Modeling
all classes of runtime environments as explicit model entities would have required to also
explicitly model their relations (e.g., OS VM can only be contained in HYPERVISOR)
which makes the meta-model much more complex and difficult to maintain. By using
the ofClass attribute and the RuntimeEnvironmentClasses, new classes can be introduced
by extending the enumeration, which has less impact on the meta-model structure. This
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makes it easier to reuse and extend the model instances. Also, we can assume that model
instances can be built automatically or with tool support and that the tool support will
automatically enforce such constraints.

5.1.3. Resource Configuration Specification

Each Container has its own specific resource configurations that describe the container’s
influence on the system performance. In our meta-model, we distinguish between three
different types of configuration specifications: ActiveResourceSpecification, PassiveResource-
Specification, and CustomConfigurationSpecification, depicted in Figure 5.3.
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Figure 5.3.: Types of resource configurations.

The ActiveResourceSpecification can be used to specify the active resources of a Container.
Active resources can actively execute a task. Examples for active resources are CPUs,
hard disks, and network connections. We further distinguish between ProcessingResource-
Specifications and LinkingResourceSpecifications. The ProcessingResourceSpecification can
be used to specify what ProcessingResourceTypes the modeled entity offers. The currently
supported ProcessingResourceTypes are CPU and HDD. The ProcessingResourceSpecifica-
tion is further defined by its properties schedulingPolicy and processingRate. These pa-
rameters influence the time the active resource needs to process a task. For example,
a CPU can be specified with PROCESSOR SHARING as schedulingPolicy and a process-
ingRate of 2.66 GHz. If a ProcessingResourceSpecification has more than one processing
units (e.g. a CPU has four cores), the attribute number of the entity NumberOfParallel-
ProcessingUnits would be set accordingly, whereas two CPUs would be modeled as two
separate ProcessingResourceSpecifications. The LinkingResourceSpecification can be used
to describe communication links between containers on a high level of abstraction. For
a more detailed modeling of the performance-relevant aspects of the network including
network interface cards, routers, switches, and so on, we refer to the work of Rygielski
et al. (2013b). In this thesis, a LinkingResourceSpecification abstracts from such details
and describes only the communication links between the source container and the target
containers. The source container is the container the LinkingResourceSpecification belongs
to. The links to the target containers are characterized by a shared bandwidth and a Com-
municationLinkResourceType. The currently supported CommunicationLinkResourceType is
LAN.

The PassiveResourceSpecification can be used to specify properties of passive resources such
as semaphores, threads, monitors, etc. Passive resources are not able to process requests.
They usually have a limited capacity which can only be acquired and released. Examples
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for passive resources are the main memory size, the number of database connections, the
heap size of a JVM, or resources in software like thread pools, etc. Passive resources refer
to a PassiveResourceCapacity, the parameter to specify the size of the passive resource, e.g.,
the number of threads or memory size.

If the concepts of ActiveResourceSpecification or PassiveResourceSpecification are not suffi-
cient to model the resource configurations of more complex resources (e.g., a hypervisor),
one can use the CustomConfigurationSpecification. This model entity refers to the abstract
class CustomResourceConfigurationModel which severs as a placeholder for any other custom
model that can be used to describe performance-relevant resource configuration proper-
ties. Instances of CustomResourceConfigurationModels can then be employed during online
performance analysis to consider the performance-relevant properties for this resource. In
Section 5.2, we present an example CustomResourceConfigurationModel that describes the
performance-relevant resource configuration for hypervisors with feature models.

5.1.4. Container Types

With the modeling abstractions presented so far, it is necessary to model each container
and its resource configuration specification explicitly (cf. left-hand side of Figure 5.4). This
can be very time-consuming when creating large model instances, especially when modeling
clusters of several hundred identical machines. Hence, a concept to specify the multiplicity
of model entities can improve model usability and comprehensiveness. However, while
with multiplicities one can specify the number of instances of a model entity, the different
instances are indistinguishable and would all have the same attribute values. This is a
problem since in data centers, there might exist multiple instances of the same container
type but with different resource configurations, i.e., they must be distinguishable. For
example, Virtual Machines (VMs) of the same customer can have a similar default resource
configuration specification, i.e., they are of the same type (cf. Figure 5.4). However, at
run-time, we must be able to distinguish the concrete VM instances because their resource
configuration specification might change.

MetaClass

Container

CustomerA_VM_1 CustomerA_VM_n CustomerB_VM_1

CustomerA_VM_1 CustomerA_VM_n CustomerB_VM_1

M3: Meta-
metamodel

M2: Metamodel 
(Descartes 
Meta-Model)

M1: DMM 
Instance

M0: Objects 
in Reality

MetaClass

Container

CustomerA_VM CustomerB_VM

CustomerA_VM_1 CustomerA_VM_n CustomerB_VM_1

CustomerA_VM_1 CustomerA_VM_n CustomerB_VM_1

Legend:

<<instanceOf>>

MOF Hierarchy Multilevel Modeling

Figure 5.4.: Container instances in the MOF modeling hierarchy (left) and with multilevel
modeling (right).

A conceptually elegant solution to address this problem is the multilevel language engi-
neering approach by Atkinson et al. (2009). This approach introduces additional levels
in the Meta Object Facility (MOF) specified by the Object Management Group (OMG)
(2011b). This way, an instance of a Container can serve as a type for another instance,
i.e., it can be instantiated again (cf. right part of Figure 5.4). With Melanie (Atkinson
and Gerbig, 2012), there exists a tool based on the Eclipse Modeling Framework (EMF)
for multilevel modeling. However, for us this approach was not practical since there is

57



58 5. Modeling System Resource Landscapes and Their Performance Influences

still a fundamental difference between the three-level architecture of EMF, which we use
to realize our approach, and the multilevel modeling concepts.

Another solution would have been to develop a second meta-model for modeling container
types. This meta-model would act as a “decorator model”, i.e., it would extend a resource
landscape model instance. The drawback of this solution is that this would introduce
a further level of meta-modeling, i.e., an additional meta-model to create instances of
container types and thus, container providers (e.g., virtualization platform vendors) must
be familiar with meta-modeling.

For these reasons, we decided to implement a hybrid approach and use ContainerTemplates
to specify the resource configuration of similar container types. All container instances
that are of the same type refer to their container template. These templates are collected
in separate model ContainerRepository (see Figure 5.5). Like a Container, the Contain-
erTemplate also refers to a ConfigurationSpecification to specify the resource configuration
for the ContainerTemplate. A Container instance in the resource landscape model can then
refer to a ContainerTemplate as its resource configuration specification (see Figure 5.1). We
refer to this as a hybrid approach as it supports both ways of modeling containers, either
with templates for a group of container type instances or an individual instance for each
container.

ContainerRepository

ContainerTemplate

ConfigurationSpecification

templates

templateConfig

*

0..*

0..1

1

Figure 5.5.: The container templates repository.

The advantage of this modeling approach is that the general resource configuration spec-
ifications relevant for all instances of one container type can be stored in the container
template. Instance-specific resource configurations deviating from the used container tem-
plate can still be stored in the individual container instance. This way, only differences to
the container template must be modeled and not all individual resource configurations for
all different containers. As the container repository is a separate model instance, it can
also be reused in other resource landscape models. More formally, let

R = {r1, r2, . . . , rn} be the set of resources of a container C.

Furthermore, let RS = I ∪ T be the set of resource configuration specifications for the
resources of the container C with

T as the set of template-specific resource configuration specifications and
I as the set of individual resource configuration specifications.

We assume that for each resource r ∈ R, there exists a resource configuration specification.

Then, during model analysis, the semantic of a container template is the following: If a
container has no individual resource configuration specification ij ∈ I for resource rj ∈ R,
it inherits the specification from its referenced container template resource configuration
specifications T , i.e., rsj = tj . If a container defines its own individual resource configu-
ration specification ij ∈ I, the latter overrides the resource configuration specification of
the template tj ∈ T , i.e., rsj = ij . For example, as a container, assume a VM with two
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processing resources and one networking resource. The resource configuration specification
of the container template of this VM is TVM = {t1, t2, t3}. Therefore, the VM inherits
the initial resource configuration specifications of its template, i.e., RSVM = {t1, t2, t3}.
If we change the resource configuration specification of one resource, e.g., because we add
a virtual CPU to the second processing resource, the new set of resource configuration
specifications is RSVM = {t1, i2, t3}

5.1.5. Example Resource Landscape Model Instance

To illustrate our meta-model concepts, we use an example model instance of the resource
landscape from our cluster environment which we later use for validation. Figure 5.6
depicts a resource landscape model instance in a UML-like notation, showing the hierarchy
of the different resources as well as their configuration templates.
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Figure 5.6.: Example resource landscape model instance.

The root element is the local DataCenter in our computer science department at KIT, which
contains a CompositeHardwareInfrastructure (a cluster environment called AcamarCluster),
and a separate ComputingInfrastructure, the DatabaseServer. The cluster in this example
consists of five ComputeNodes, connected by a 1 Gbit Ethernet LAN. Each compute node
runs XenServer 5.5 as a hypervisor. On top of each XenServer, we execute two VMs. The
DatabaseServer is a separate machine, connected to the cluster with four 1 Gbit Ethernet
connections. It has four six-core CPUs with 2.66 GHz and PROCESSOR SHARING as
scheduling policy. To ease the resource configuration specification of the other containers,
we use the container template mechanism of the resource landscape meta-model.

The resource configuration specification templates for the different container types are
stored in the ExperimentEnvironmentContainerSpecs container repository. The Compute-
NodeTemplate specifies the hardware resource configuration of the cluster compute nodes.
A compute node has two ActiveResourceSpecifications modeling its two CPUs. Each
has four cores with 2.66 GHz and PROCESSOR SHARING as scheduling policy. The
XenServer5.5Template is a template for a RuntimeEnvironment of class HYPERVISOR. It
refers to a CustomConfigurationSpecification, which refers to a CustomResourceConfigura-
tionModel for the XenServer 5.5 hypervisor. Further details of this custom model will be
presented in the following Section 5.2.1 when we discuss the performance influences of the
various resource layers. Finally, the VMTemplate specifies the configuration of the VMs
hosted by the XenServer. This RuntimeEnvironment is of class OS VM and has only one
ActiveResourceSpecification for its virtual CPU (vCPU). It has two cores with 2.66 GHz
and PROCESSOR SHARING as scheduling policy.
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5.2. Performance-Influencing Factors of Resource Layers

Modern IT systems can have a complex stack of resource layers. In this context, we use the
term resource layer to denote any software layer that abstracts from underlying physical
resources and introduces a new layer of virtual resources. Such resource layers (e.g.,
virtualization, middleware, process virtual machines) enable resource sharing through a
flexible mapping of virtual to physical resources. Figure 5.7 depicts an example in which
two components run in a middleware environment on top of virtualized hardware. The
drawback of having multiple resource layers is that each layer can have its own specific
impact on the system performance, ranging from minor additional management overhead,
e.g., due to scheduling, to major interferences due to the sharing of the underlying physical
resources. These influences and their extent usually depend on the configuration of the
different resource layers.
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Figure 5.7.: Schematic overview of resource abstraction layers.

To consider the effect of such influences in the performance analysis process, it is neces-
sary to analyze, quantify, and integrate them in the performance model. In the following
sections, we introduce a method to classify, quantify, and model performance-influencing
factors of resources layers, using virtualization platforms as a proof-of-concept. First, we
identify and classify the performance-influencing factors of virtualization platforms (Sec-
tion 5.2.1). Based on this classification, we conduct automated experiments to quantify the
influences of the identified factors. The results of these experiments are presented in detail
in Section 5.2.2. From these results, we derive a performance model (cf. Section 5.2.3) that
can be employed in the online performance prediction process to improve the prediction
accuracy of architecture-level performance models.

5.2.1. Classification of Performance-Influencing Factors

In this section, we classify the performance-influencing factors of state-of-the-art virtual-
ization platforms, listed in Table 5.1. We focus on those factors that have a considerable
impact on the system performance, i.e., they should be considered in the performance
analysis process. The set of factors we consider as important is based on studies available
in the literature (Barham et al., 2003; Apparao et al., 2006; Padala et al., 2007; Quétier
et al., 2007; Soltesz et al., 2007; Tickoo et al., 2010; VMware, 2007) and on our expe-
riences with virtualization gained in the last years. The goal of our classification is to
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provide a compact hierarchical model of the performance-influencing properties and their
dependencies.

We structure these factors in a so-called feature model (Czarnecki and Eisenecker, 2000).
In our context, a feature corresponds to a performance-relevant property or a configura-
tion option of the considered virtualization platform. The goal of the feature model is to
organize the options that have an influence on the performance of the virtualization plat-
form in a hierarchical structure. Furthermore, the feature model also considers external
influencing factors such as workload profile or type of hardware (e.g., hardware with or
without virtualization support). The model we propose is depicted in Figure 5.8.
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ResourceManagement
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Figure 5.8.: Major performance-influencing factors of virtualization platforms.

The first performance-influencing factor is the VirtualizationType. Different virtualization
techniques might cause different performance overhead, e.g., full virtualization performs
better than other alternatives because of the hardware support. In our feature model, we
distinguish between the three major types of virtualization: FullVirtualization, ParaVirtual-
ization, and BinaryTranslation (cf. Huber et al. (2010b) for an introduction to the different
virtualization approaches). Furthermore, another important performance-influencing fac-
tor is the hypervisor’s architecture (VmmArchitecture). The two options here are mono-
lithic architectures, like in VMware ESX/ESXi, or architectures with a dedicated control
domain (Dom0), like in Xen.

The ResourceManagementConfiguration groups several influencing factors. First, the Cpu-
Scheduling configuration has a significant influence on the virtualization platform’s per-
formance and is influenced by several factors. The first factor CpuAllocation reflects the
number of virtual CPUs allocated to a VM. Most of the performance loss of Central Pro-
cessing Unit (CPU) intensive workloads comes from core and cache inferences (Apparao
et al., 2008; Huber et al., 2011b). Hence, the second factor is CoreAffinity, specifying if
virtual CPUs of VMs are assigned to dedicated physical cores (core-pinning). The third

Table 5.1.: Common virtualization platforms (PV = para-virtualization, FV = full virtu-
alization).

Name Supports Executed On License Since

Xen PV/FV bare metal GPL 09-2003

KVM FV bare metal (L)GPL (v2+) 02-2007

VirtualBox FV OS GPL 02-2007

VMware ESX/ESXi FV/PV bare metal commercial 12-2007
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factor reflects the capability of assigning different CpuPriorities to VMs. For example, the
Xen hypervisor’s cap parameter or VMware’s limits and fixed reservations parameters are
CPU priority configurations. In addition, the level of ResourceOvercommitment influences
the performance due to contention effects caused by resource sharing. Finally, the Memo-
ryAllocation and the NumberOfVMs influence the resource management configuration, too.
Managing virtual memory requires an additional management layer in the hypervisor. The
number of VMs has a direct effect on how the available resources are shared among them.

From an external point of view, an important influencing factor is the WorkloadProfile
executed on the virtualization platform. Virtualizing different types of resources causes
different performance overheads. For example, CPU virtualization is supported very well
whereas I/O and memory virtualization currently suffer from significant performance over-
heads. In our model, we distinguish CPU, Memory and I/O intensive workloads. In the
case of I/O workload, we further distinguish between Disk and Network intensive I/O work-
loads. Of course, one can also imagine a workload mixture as a combination of the basic
workload types.

5.2.2. Automatic Quantification of Performance-Influencing Factors

For some resource layers, a manual quantification of the effect of the various performance-
influencing factors is too expensive, especially in scenarios with a large parameter space.
Therefore, we developed a method based on automated experimental analysis to quan-
tify the performance influences of the identified factors. In the following, we describe a
prototypical implementation of this method for virtualization platforms. We used this
implementation to automatically conduct experiments (Section 5.2.2.1) that quantify the
performance influences captured in our virtualization platform feature model. We then
describe the different types of experiments (Section 5.2.2.2) that are implemented in the
process and how to structure them to assess the performance influence of a given factor. In
Section 5.2.2.3, we provide an overview of several benchmarks that we use for evaluating
the various influence factors. Section 5.2.2.4 gives an overview of the hardware environ-
ments that we use for our experimental analysis. Finally, in Section 5.2.2.5, we present
experiment results for Citrix’s XenServer 5.5 in these hardware environments.

5.2.2.1. Method

The purpose of this method is to reduce the manual overhead for conducting experi-
ments by automating the configuration of the VM and/or benchmark parameters, starting,
cloning, and stopping VMs, and the collection and analysis of the benchmark results. As
a first step of this method, we install the virtualization platform to be evaluated on the
target hardware platform. Next, we create a MasterVM (see Figure 5.9) which serves as
a template for creating multiple VM clones that will later execute a selected benchmark.
To this end, the respective benchmark is installed on the MasterVM together with scripts
to control the benchmark execution (e.g., to schedule benchmark runs). The MasterVM
is the only VM with an external network connection. All other VMs and the MasterVM
are connected via an internal network. The second important part of our method is the
Controller which runs on a separate machine. It adjusts the configuration (e.g., amount
of virtual CPUs) of the MasterVM and the created VM clones as required by the con-
sidered type of experiments. The controller also clones, deletes, starts, and stops VMs
via the virtualization layer’s API. Furthermore, it is responsible for collecting, processing
and visualizing the results. In the presented method, the benchmark choice is left open
and one can use any available benchmark that can measure and quantify the performance-
influencing factor under consideration. In Section 5.2.2.3, we present an overview of several
benchmarks that we recommend for the various types of workloads.
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Figure 5.9.: Schematic view of the experimental setup.

Figure 5.10 shows the process of automated execution of experiments from the controller’s
point of view. At first, the controller starts the MasterVM and then configures the bench-
mark to be executed and schedules the experiment runs. After that, the controller repli-
cates the MasterVM according to the requirements of the respective set of experiments
described in Section 5.2.2.2. Next, the MasterVM must be stopped because it only serves
as a template and it is not intended to run during the experiments. After the VM cloning,
the controller performs further VM-specific configurations for each created clone as re-
quired by the experiment type, e.g., assigning the VMs’ virtual CPUs to physical cores.
Finally, the controller starts the VMs and the benchmarks are executed at the scheduled
starting time. The controller is responsible to detect the end of the benchmark runs and
after the experiments are finished, it triggers the MasterVM to collect the results of all
VMs. This is done by the MasterVM because it is the only connection between the VM
subnet and the controller. If there are further experiments to be executed, the MasterVM
is reconfigured and the whole process starts again from the beginning, continuing until all
experiments are completed. Finally, the controller processes and stores the results from
the experiments. The gray areas of Figure 5.10 depict the parts of the process where
configuration is applied depending on the specific set of experiments considered.

Experiments
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Configure MasterVM

(Benchmark, Run Schedule)
Stop MasterVM Clone MasterVM
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Further 
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Scheduled 

experiment start
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Collect Results

Figure 5.10.: Automated execution of experiments from the controller’s point of view.

5.2.2.2. Experiment Types

We now describe different experiment types to quantify the effect of the performance-
influencing factors we described in the feature model in Section 5.2.1. The feature model
distinguishes between the following categories of influencing factors: (a) virtualization
type, (b) VMM architecture, (c) resource management configuration, and (d) workload
profile. For category (a) and (b), different virtualization platforms must be installed on the
experiment hardware to quantify the performance overhead of the different platforms, or a
plain operating system to compare a virtualized platform with a native system. Experiment
types for these categories are not supported by our automation. However, after installing
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a native operating system or a virtualization platform, one can automate the experiment
types for the following categories (c) and (d).

The number of co-located VMs and other resource management-related factors like core
affinity or CPU scheduling parameters are part of category (c). We investigate the influ-
ence of factors of this category in two different scenarios. The first scenario focuses on
the performance impact when increasing the number of co-located VMs (scalability), the
second focuses on the performance impact when allocating more resources than are actu-
ally available (overcommitment). For scalability, we stepwise increase the number of VMs
in each experiment until all available physical resources are used. For overcommitment,
the number of VMs is increased beyond the amount of available resources. The process is
illustrated in Figure 5.11. As an example resource type, we use the number of available
physical cores c of the machine. In the first case, the number of VMs is increased step-
by-step up to c, whereas in the second case the number of VMs is increased in steps of
multiples of c. Thereby, we achieve an equal distribution of virtual to physical cores. As
an example, to determine the influence of core affinity on scalability and overcommitment,
we execute one experiment series as depicted in Figure 5.11 with activated core affinity
and one series without using core affinity. In the experiment series with core affinity, each
virtual core is automatically pinned to a dedicated physical core such that the virtual cores
are distributed equally over all physical cores.

Set Workload
Set CPU 

Scheduling Parameters

Scalability Benchmarks

(#VMs ≤ c)

Execute
(#VMs = c)

Execute
(#VMs = 1)

...

Overcommitment Benchmarks

(#VMs ≥ c)

Execute
(#VMs = n*c)

Execute
(#VMs = 1*c)

...

c = # available physical cores

Figure 5.11.: Benchmark execution in scalability and overcommitment scenarios.

Finally, for category (d) we execute a set of benchmarks focusing on the different types of
workloads. Furthermore, we also execute VMs with different workload types in parallel to
determine the mutual influences of the workload types.

5.2.2.3. Metrics and Benchmark Selection

To quantify the effects of the performance-influencing factors, one can use different metrics
(e.g., response time, throughput, bandwidth, utilization). We decided to use throughput
(i.e., the number of completed jobs/operations per time unit) as our metric since we
are interested in comparing alternatives at maximum performance. As benchmark candi-
dates for CPU and memory intensive workloads, we considered Passmark PerformanceTest
(2009), a benchmark also used by VMware (2007), and SPEC CPU2006 (2006), an indus-
try standard CPU benchmark. For I/O intensive workloads, we considered Iometer (2006)
(formerly developed by Intel Corp.) and Iperf (2003), also used by Apparao et al. (2006).

Passmark PerformanceTest is a benchmark focused on CPU and memory performance.
The benchmark rating is a weighted average of several single benchmark categories (CPU,
memory, I/O, and so on). In the CPU category the properties of the CPU are benchmarked.
To this end, several benchmark units e.g., integer or floating point operations are executed.
Together, the results of these benchmarks form the CPU Mark rating. The same procedure
is applied for the memory benchmark and so on. To get a comparable overall rating, the
results of each category are weighted and then added up to the final Passmark rating.
SPEC CPU2006 is an industry standard benchmark for evaluating CPU performance.
It is structured in a similar fashion and consists of CINT2006 integer benchmarks and
CFP2006 floating point benchmarks. The benchmark metrics are calculated from several
sub-benchmark results like bzip2 or gcc runs. Both benchmarks have a similar structure
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consisting of sub-benchmarks to calculate an overall metric. However, unlike Passmark,
SPEC CPU2006 does not distinguish between CPU and memory performance and a SPEC
CPU2006 benchmark run can take several hours to complete.

For I/O intensive workloads we used the Iometer benchmark which measures the perfor-
mance of disk and network controllers as well as system-level hard drive performance.
Iometer consists of both a workload generator (executes I/O operations in order to stress
the system) and a measurement tool (examines the performance of the I/O operations).
Furthermore, for network performance measurements, the Iperf benchmark can be used.
It is based on a client-server model and supports the throughput measurement of TCP
and UDP data connections between both endpoints. It establishes a control connection
and a separate data connection for the measurement itself, using the APIs and protocols
for the specified test.

Finally, further workloads that can be leveraged as part of our automated experimental
analysis are provided by SPEC standard benchmarks such as SPECjbb2005 (stressing CPU
and memory performance), SPECmail2009 (stressing I/O performance) and SPECjEnter-
prise2010 (emulating a complex three tier e-business application). These benchmarks are
partly used together with others in the new SPECvirt benchmark which is currently under
development. However, we do not consider this benchmark here as it calculates an overall
metric to compare servers and different virtualization platforms. It is not designed to
analyze the influence of specific factors on the system performance.

5.2.2.4. Experiment Hardware

We conducted experiments in two different hardware environments. Unless stated oth-
erwise, we used Windows 2003 Server as operating system that hosts the benchmark
application.

Environment 1: This experiment environment is a standard desktop HP Compaq dc5750
machine with an Athlon64 dual-core 4600+, 2.4 GHz. It has 4 GB DDR2-5300 of main
memory, a 250 GB SATA HDD and a 10/100/1000-BaseT-Ethernet connection. In some
of our experiments, we also used this hardware to run experiments on a single core of the
CPU by deactivating the second core in the OS.

Environment 2: To be able to evaluate the performance when scaling the number of VMs,
we used a more powerful machine, the SunFire X4440 x64 Server. It has four 2.4 GHz
AMD Opteron six-core processors with 3 MB L2, 6 MB L3 cache each, 128 GB DDR2-667
main memory, eight 300 GB serial attached SCSI storage drives and four 10/100/1000-
BaseT-Ethernet connections.

5.2.2.5. Experiment Results on Citrix XenServer 5.5

We now present experiment results with the Citrix XenServer 5.5 virtualization platform
in the described environments. We chose Citrix XenServer 5.5 as a representative virtu-
alization platform because it is a freely available virtualization platform with a significant
market share. It is based on the bare-metal open source hypervisor Xen. With the Xen
hypervisor, multiple para-virtualized (DomU Guests) or full-virtualized virtual machines
(HVM Guests) can be executed on a single server sharing the physical resources, depicted
in Figure 5.12. A scheduler integrated in the hypervisor schedules the access of all domains
to the available physical CPUs. For access to other devices and for managing the guest
domains, Xen uses a privileged control domain (Dom0). The control domain contains the
device drivers to access the physical devices. All communication of the guest domains with
the physical devices goes through Dom0. This causes additional management overhead
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Figure 5.12.: Architecture of the Xen hypervisor.

in terms of CPU consumption. For example, if a guest domain sends a disk I/O request,
Dom0 requires CPU time to process the request on behalf of the guest domain.

In the following experiments, we evaluate the influence of the following performance-
influencing factors. As VirtualizationType, we use full (hardware) virtualization, since
XenServer supports this feature and it is the most common type used in practice. As al-
ready mentioned, the VmmArchitecture of Xen contains a dedicated control domain Dom0.
Regarding the WorkloadProfile, we investigate CPU, memory and network intensive work-
loads independently and in combination with each other. Concerning the ResourceMan-
agementConfiguration, we investigate the influences of the memory management and the
credit-based CPU scheduler implemented in the Xen hypervisor. The latter is influenced
by the three parameters core affinity, CPU allocation, CPU priority. We also put a special
focus on varying the number of co-located VMs.

We organize our results in four different scenarios. The first scenario summarizes the per-
formance overhead of the Xen hypervisor for CPU, memory, and I/O intensive workloads
compared to a native system. The second scenario presents the influences of core affin-
ity when scaling up resources. The third scenario analyzes the influence of the number of
VMs on the performance of the virtualization platform in situations when over-committing
resources. The fourth scenario compares the mutual performance impact of different work-
load types.

Virtualization Overhead

In this scenario, our goal is to quantify the performance-influencing factors of the Citrix
XenServer 5.5 virtualization platform and compare it to a native system for CPU, memory,
and I/O intensive workloads. To this end, we executed Passmark, SPEC CPU2006 and
Iperf benchmarks in a native and virtualized setup of our two experiment environments.
In the native case, we executed the benchmark directly on the operating system. In the
virtualized environment, the benchmark was executed in a single VM. Experiments with
more than one VM are part of separate scenarios.

The results of these experiments are depicted in Table 5.2. Note that for the SPEC
benchmark results, we can only publish the relative values because of licensing reasons.
The data shown includes absolute values measured in the native and virtualized system
as well as the absolute and relative delta, whereas the relative delta is the ratio of the
absolute delta and the native system performance. For the two CPU intensive benchmarks,
the results show a similar, almost negligible performance overhead. In both cases, the
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Table 5.2.: CPU, memory and network benchmark ratings on the native and virtualized
HP Compaq dc5750.

CPU Benchmark Ratings native virtualized delta (abs.) delta (rel.)

Passmark CPU, 1 core 639.3 634.0 5.3 0.83%

Passmark CPU, 2 cores 1232.0 1223.0 9.0 0.97%

SPECint R© base2006 3.61%

SPECfp R© base2006 3.15%

Memory Benchmark Ratings native virtualized delta (abs.) delta (rel.)

Passmark Memory, 1 core 492.9 297.0 195.9 39.74%

Passmark Memory, 2 cores 501.7 317.5 184.2 36.72%

Network Benchmark Ratings native virtualized delta (abs.) delta (rel.)

Iperf, send 527.0 393.0 134.0 25.43%

Iperf, receive 528.0 370.0 158.0 29.92%

Disk Benchmark Ratings native virtualized delta (abs.) delta (rel.)

Passmark Disk 572.40 407.45 164.95 28.82%

performance degradation when switching from a native to a virtualized system remains
below 4%.

When comparing the performance of a memory-intensive workload (Table 5.2, Figure 5.13b),
one can observe a much higher performance degradation in the virtualized system (about
40%). The reason for the discrepancy between CPU and memory benchmark results is
the fact that at the time of our experiments, CPU virtualization was well-understood and
supported by the hardware, whereas memory virtualization was still rather immature and
had no hardware support (Rosenblum and Garfinkel, 2005).

Table 5.2 and Figure 5.13c depict the results of the network performance measurements
with Iperf. In our experiment setup, the client and server were connected with a DLink
1 Gbit switch. We observe a performance decrease for TCP connections in both directions,
25% upstream (Client to Server) and 30% downstream (Server to Client). This shows that
like for memory virtualization, there is still a relatively high performance loss because of
the missing hardware support. Also interesting is that performance degradation of sending
and receiving network traffic differs by 5%. Furthermore, also the disk I/O benchmark
ratings indicate a high performance loss of 29%.

To gain a better understanding of the exact cause of the overheads, we investigated the
performance degradation for CPU, memory and I/O in more detail by looking at the
more fine-grained Passmark PerformanceTest sub-benchmark results. Figure 5.14a depicts
the Passmark CPU Mark sub-benchmark results, normalized to their native execution.
These results demonstrate that floating point operations are more expensive (up to 20%
performance drop for the Physics sub-benchmark) than other operations.

Furthermore, looking at the fine-grained memory sub-benchmark results depicted in Fig-
ure 5.14b, one can see that for the memory-intensive workloads the main cause for the
overall performance drop stems from the allocation of large memory areas. For the Large
RAM sub-benchmark, performance overhead is almost 97%. The problem was that to repli-
cate our VM template in the CPU overcommitment scenarios, we could only assign 256 MB
main memory to each VM because memory overcommitment is currently not supported
by Citrix XenServer 5.5. We confirmed this in a separate, independent experiment with a
single VM with 3 GB of main memory. In this experiment, we observed that the perfor-
mance overhead for large memory accesses is only 65% instead of 97%, which also improves
the overall memory benchmark results slightly. Hence, increasing memory allocation can
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Figure 5.13.: Native vs. virtualized Passmark CPU and memory results and the Iperf
benchmark results on the HP Compaq 5750.

significantly improve performance for memory-intensive workloads, especially if expensive
swapping can be avoided.

To examine the virtualization overhead for network I/O in more detail, we conducted
further experiments with the Iperf benchmark. The goal of these experiments was to
examine how the additional overhead introduced by the hypervisor to handle I/O requests
is distributed among the running VMs. To this end, we executed four VMs, two VMs
running CPU Mark and two VMs running Iperf. We pinned them pairwise on two physical
cores. Core zero (core0), where the Dom0 is executed, executed a pair of the CPU VM
and the Iperf VM and a different available core (corex) executed the other pair. The CPU
benchmark was executed on both VMs, simultaneously, and the network I/O benchmark
was started separately on one VM. This symmetric setup allows us to compare the results
of VMs executed on core0 with the results on the different corex.

One would expect that there is no performance effect on the VMs running on core0 when
the Iperf VM on corex executes network I/O. However, the results show that the perfor-
mance of the VM running the CPU benchmark on core0 drops up to 13% when the VM on
corex is executing the network I/O benchmark. Figure 5.15 depicts the CPU benchmark
results of VMs executed on core0 (◦) and corex (+). The second VM on corex receives the
network load, hence the benchmark rating of the VM sharing this core drops significantly.
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Figure 5.14.: Sub-benchmark results of the Passmark CPU, Memory, and Disk Mark.
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But also the benchmark rating of the VM on core0 drops, although its paired VM is idle.
Because VMs executed on other cores than core0 did not exhibit this behavior, this indi-
cates that Dom0 mainly uses core0 to handle I/O. This causes a slight performance drop
for VMs simultaneously executed on core0, i.e., about 1% on average. However, this drop
could further increase if further machines on other cores receive network load.

Figure 5.14c shows our detailed sub-benchmark results for disk I/O intensive workloads.
With the Passmark Disk Mark benchmark, we measured a performance overhead of up to
28%. A more detailed look at the benchmark results shows that most of the performance
overhead is caused by sequential read requests, which achieve only 60% of the native
performance, whereas for write requests, the performance overhead remains below 20%.
The performance speed-up for the random seek benchmark can be explained by the struc-
ture of the virtual block device, a concept used in Citrix XenServer 5.5 for block-oriented
read and write operations, minimizing the administration overhead and thus decreasing
access times.

In summary, we can say that for full virtualization the performance overhead of CPU,
memory and I/O virtualization amounts to 5%, 40%, 30%, respectively.

Scalability and Core Affinity

In a virtualized environment, the scheduling of virtual resources to the physical resources
has a significant influence on the VM performance (Apparao et al., 2008). For example,
imagine a machine with 24 cores, each core having its own cache. If a VM is re-scheduled
from one core to another, its performance will suffer from cache misses because the benefit
of a warm cache is lost. To avoid this, current virtualization platforms provide means
to assign cores to VMs, called core affinity or core pinning. With core affinity, the VM
is executed only on the assigned core(s) which in turn has a significant influence on the
cache and core contention and hence on performance. In this scenario, we quantify the
performance influence of core affinity. Additionally, we investigate the performance over-
head when scaling the number of concurrent VMs up to the limit of available resources,
i.e., CPU cores.
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Figure 5.16.: Performance influence of core affinity on CPU and memory benchmarks on
the SunFire X4440. The box plots depict aggregated benchmark results for
all VMs in the experiment.

We tested the effect of core affinity using several experiments on the 24-core SunFire
X4440 (see Table 5.3 and Figure 5.16). When comparing the CPU and memory bench-
mark rating of one VM running with no affinity and one VM pinned to a dedicated core,
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the performance changes about 0.80% for the CPU benchmark and 0.10% for the memory
benchmark. Hence, for one VM there is no significant performance influence when acti-
vating affinity. However, when comparing the benchmark results of the same experiment
for 24 VMs (each VM has one virtual CPU), performance increases with affinity by 88.1
(9.56%) and 46 (18.82%) for the CPU and memory benchmark, respectively.

Table 5.3.: CPU and memory benchmark results for different core affinity experiments.
The values shown are the median over all benchmark runs (200 for one VM,
200 · 24 for 24 VMs) on the SunFire X4440.

CPU Mark Memory Mark

no affinity affinity rel. delta no affinity affinity rel. delta

1 VM 953.60 961.30 0.80% 339.95 339.60 0.10%

24 VMs 832.90 921.00 9.56% 198.40 244.40 18.82%

rel. delta 12.66% 4.19% - 41.64% 28.03% -

The performance loss of one VM without affinity compared to 24 VMs without affinity is
120.7 (12.66%) and 141.55 (41.64%) for the CPU and memory benchmark, respectively.
However, when increasing the amount of VMs from one VM with core affinity to 24 VMs
with core affinity, performance drops only by 40.3 (4.19%) and 95.2 (28.03%), respectively.
Hence, on average, 8.47% of the performance penalty for the CPU benchmark and 13.61%
for the memory benchmark can be avoided when using core pinning. Also interesting
observations are that the variability of the benchmark results increases with the number
of co-located VMs, which can lead to performance degradations of up to 10% in the worst
case.

Another interesting fact observable in Figure 5.16 is that there is little difference in perfor-
mance between 23 VMs and 24 VMs, both with affinity. In the case of 23 VMs, one core is
free and can be used by the hypervisor. However, the median of both measurements devi-
ates only by 0.12% for the CPU benchmark and 0.83% for the memory benchmark. Hence,
leaving one core for the hypervisor has no significant effect on reducing the performance
degradation introduced by virtualization.

To gain further insight and explain why core affinity improves performance, we compared
the benchmark ratings of the individual VMs in settings with and without core affinity.
Figure 5.17a shows the box plot of 24 VMs simultaneously executing the CPU benchmark
without core affinity. There are clearly two categories of VMs, one category (1, 11–19)
performing significantly different from the other (2–10, 20–24). This behavior is not ob-
served in a scenario with core affinity (see Figure 5.17b), when each VM is executed on a
separate physical core. This indicates that XenServer’s scheduler does not distribute the
VMs on the cores, equally. In general, it demonstrates that multi-core environments are
still a challenge for hypervisor schedulers. In Section 5.4.2, we investigate if this effect is
observable on other hypervisor architectures, too.

From the above results we conclude that core affinity has a significant effect on virtualiza-
tion performance. Performance can gain up to 20%, depending on the ratio of executed
virtual machines and available resources.

Overcommitment

In this scenario, we investigate the performance degradation when systematically over-
committing resources. Overcommitment in this context means that the resources issued
to all VMs in total exceed the actually available physical resources. For example, if we have
a dual core machine running four VMs with one virtual CPU each, we have over-committed
the available physical CPU resources by a factor of two.
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Figure 5.17.: CPU benchmark results for 24 VMs executed without and with core affinity.

In the following experiments, we scaled the amount of VMs (each VM is configured with
one virtual CPU) from one up to four times the amount of physically available CPUs
(overcommitment level of x ∈ {1, . . . , 4}). In case of the HP Compaq dc5750 environment,
we increased the number of VMs to 2, 4, 6 and 8 and for the SunFire X4440 to 24, 48,
72 and 96. We also created a single core scenario with the SunFire X4440 in which we
deactivated all but one physical core and increased the number of VMs to 1, 2, 3 and 4.
The trend of the absolute results for the CPU and memory benchmark in the SunFire
X4440 environment is depicted in Figure 5.18.

Figure 5.19 compares the normalized CPU rating of both hardware environments and the
single core scenario. We observe that performance decreases roughly about 1/x. Inter-
estingly, for the CPU benchmark, the measured performance is slightly better than this
expected theoretical value. The reason for this observation is that the execution of a single
benchmark instance cannot utilize the CPU at completely 100%. Hence, there are unused
CPU cycles which are utilized when executing multiple VMs in parallel. When increasing
the number of VMs up to 72, we observed a CPU utilization of all cores at 100%. This
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Figure 5.18.: Absolute scalability and overcommitment experiment results of the CPU and
memory benchmark on SunFire X4440.

effect, however, does not apply to the memory-intensive workload. Therefore, the memory
benchmark rating is slightly worse than the expected theoretical value. Finally, we observe
that the single core performs better than the HP Compaq which in turn is better than the
SunFire. This indicates that more cores cause more scheduling overhead, causing higher
performance degradation. Intuitively, one might also assume that performance decreases
faster or even suddenly drops when over-committing system resources. However, the re-
sults show that the performance degradation can be approximated by 1/x, which is the
optimal theoretical value. Moreover, one can see that the performance degradation is very
similar in both hardware environments (max. 10% deviation). This is remarkable because
one would intuitively assume that the SunFire would perform significantly better because
it has more physical resources. To evaluate performance isolation and the fairness of the
resource sharing, we depicted CPU and memory benchmark measurements box plots over
all 96 VMs in Figure 5.20. They show a low scattering around the median, which indicates
a fair resource sharing and good performance isolation.

As a result, we conclude that the performance degradation from over-committing CPU
resources by increasing the number of VMs is proportional to the overcommitment factor
with an upper limit of 1/x. Furthermore, we observed that the hardware environment has
almost no influence on the scalability and performance degradation and both CPU and
memory workloads are affected in a similar way.

Mutual Influences of Workload Types

The goal of the experiments presented next is to identify the mutual influences of VMs
sharing their resources while serving different workload types. To this end, we pinned two
VMs VMA and VMB on the same physical core other then core0 to avoid interferences
with Dom0. Then, we ran an experiment for each possible combination of benchmark
types. As a result, we calculate the relative performance drop as r = 1 − (ri/rs), where
ri is the interference result and rs the result measured when executing the benchmark on
an isolated VM. Table 5.4 summarizes the results for all combinations of workload types.
Note that we did not run network vs. network experiments because a different hardware
environment with additional network interface cards would have been required.

The results show that there are no significant mutual influences between CPU and memory
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Figure 5.19.: Normalized scalability comparison for CPU and memory benchmarks in the
HP dc5750, SunFire X4440 and single core scenarios in comparison to the
expected value of 1/x.
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Figure 5.20.: Box plots of the CPU and memory benchmark results over all 96 VMs (over-
commitment factor of x = 4).

Table 5.4.: Mutual performance degradation for different workload types on Citrix
XenServer 5.5.

VMA CPU CPU Mem CPU Mem Disk CPU Mem Disk

VMB CPU Mem Mem Disk Disk Disk Net Net Net

rA 46.71% 50.64% 50.33% 23.35% 24.82% 31.16% 52.88% 52.85% 3.07%

rB 52.44% 45.93% 49.04% 1.49% -0.09% 45.99% 40.46% 42.18% 33.31%

74



5.2. Performance-Influencing Factors of Resource Layers 75

intensive workloads. The performance drop for both benchmarks is similar and the drop
also fits the expectation that each VM receives only half of its performance compared to
an isolated execution. An explanation for this is the similarity of both workload types
in terms of the used resources as well as the hardware support for CPU virtualization.
An interesting observation is that the disk benchmark is not influenced by other workload
types except when executed with another instance of the disk benchmark. This indicates
that on Citrix XenServer 5.5, disk intensive workloads do not compete for resources of
CPU and memory intensive workloads. This can be explained with a similar reason as
for the virtualization overhead of Disk Mark. The concept used in Citrix XenServer 5.5
for block-oriented read and write minimizes the administration overhead because the disk
workload can be passed through without requiring major hypervisor intervention.

5.2.3. Derivation of the Performance Model

Based on the experiment results of Section 5.2.2.5, we now propose an analytic perfor-
mance prediction model to predict the performance impact of virtualization. As explained
in Section 5.2.2.3, we measured performance as the amount of benchmark operations pro-
cessed per unit of time, i.e., the throughput of the system under test. In the following, we
calculate a performance overhead factor o which can be used to predict the performance of
a virtualized application pvirtualized = o · pnative, where o can be replaced by one of the for-
mulas of the following sections. To evaluate our performance model, we conducted further
experiments with VMware ESX 4.0. These results are presented in Section 5.4.2.

Overhead of Virtualization

The following equations allow to predict the overhead that is introduced when migrating
a native application to a virtualized platform. These equations assume that there are no
influences by other virtual machines. We consider this case separately in the scalability
and overcommitment scenarios.

For CPU and memory virtualization, we calculate the overhead factors

o{cpu|mem|io} = 1−
relative delta{cpu|mem|io}

100

using the measured relative deltas in Table 5.2. For the CPU overhead, our results
have shown only an insignificant deviation between Passmark PerformanceTest and SPEC
CPU2006. Therefore, and because CPU virtualization is already very mature and hard-
ware supported, we are confident that our measurement results can be generalized. If
specific overhead factors are required, one can use our automated approach to determine
these factors for any other virtualization platform. For memory and I/O overhead, we
recommend to measure the performance overhead for each specific virtualization platform
using our automated approach because our experiments showed significant differences be-
tween the different virtualization platforms and their implementations, respectively.

Scalability

To model the performance-influence when scaling up CPU resources, we use linear equa-
tions derived with linear regression. We define the performance overhead as

oscal = a+ b · cvirt

where cvirt is the number of virtual cores. The coefficients a and b, derived with linear
regression from the experiments in Section 5.2.2.5, are given in Table 5.5. We distinguish
between scenarios without core affinity and scenarios, where the virtual CPUs are pinned
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to the physical cores in an equal distribution. These equations give an approximation of
the performance degradation when scaling up, independent of the virtualization platform.
However, this approximation is only valid until you reach the amount of physical cores
available. The overcommitment scenario is modeled in the next section.

Table 5.5.: Coefficients a, b for the linear equations for CPU and memory performance
when scaling-up and the corresponding coefficient of determination.

Scenario a b R2

CPU 1.008 -0.0055 0.9957

Memory 1.007 -0.0179 0.9924

CPU (with core affinity) 1.003 -0.0018 0.7851

Memory (with core affinity) 1.002 -0.0120 0.9842

Overcommitment

In situations with over-committed CPU resources, we can approximate the performance
overhead as

ooverc =
cphy
cvirt

where x is the overcommitment factor. The overcommitment factor is determined as the
ratio of the available physical resources cphy (here CPU cores), and the provisioned virtual
resources cvirt. For CPU overcommitment, this dependency between the performance
overhead and the overcommitment factor is independent of the virtualization platform
and the amount of executed VMs. Our experiments demonstrated that the performance
overhead simply depends on the ratio of virtual and physical cores. This dependency is
valid at the core level, i.e., if you pin two VMs with one virtual core each on a single
physical core, you experience the same performance drop.

This performance model derived for the virtualization platform Citrix XenServer 5.5 can
now be used as a CustomResourceConfigurationModel to describe the performance-relevant
properties of the virtualization resource layer. This description can then be used in the
performance analysis process to increase prediction accuracy. To assess if the derived
performance model can be applied for other virtualization platforms as well, we conducted
an evaluation with VMware ESX 4.0, presented in Section 5.4.

5.3. Application Architecture, Usage Profile, and Deploy-
ment Meta-Models

To conduct performance predictions on the model level, further aspects than just the
details about resource landscape must be modeled. These additional aspects are captured
in the application architecture meta-model, deployment meta-model, and usage profile
meta-model, which are also part of DML (cf. Section 4.2). Although the application
architecture meta-model and the usage profile meta-model are not in the focus of this
thesis, we briefly explain their main concepts as they are part of the overall model-based
adaptation approach.

5.3.1. Application Architecture Meta-Model

The application architecture is modeled after the principles of component-based software
systems. Szyperski et al. (2002) defined a software component as a unit of composition
with explicitly defined provided and required interfaces. For convenience, we also use the
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term service to refer to a method signature of a software component’s interface. Details
about the meta-model specification of interfaces can be found in Section A.1.

A component may be either a basic (i.e., atomic) component or a composite component. A
composite component may contain several child component instances, assembled through
so-called assembly connectors, connecting required interfaces with provided interfaces. A
component-based system is modeled as a special type of composite component that pro-
vides at least one interface. An example of how a composite component is assembled is
shown in Figure 5.21. Component ComponentA comprises three instances of basic com-
ponents. By assembling components to build a composite component or a system, they
are “instantiated” and each of them is then referred to as assembly context. Assembly con-
texts form the part of the system that can be deployed on the containers of the resource
landscape (see Section 5.3.3 for more details).

<<CompositeComponent>>

ComponentA

<<AssemblyContext>>

Instance_ComponentB

<<AssemblyContext>>

Instance_ComponentC

<<AssemblyContext>>

Instance_ComponentD

Figure 5.21.: Assembly of a composite component.

To describe the performance behavior of a service offered by a component, the application
architecture meta-model supports multiple (possibly co-existing) behavior abstractions at
different levels of granularity (cf. Section A.1 for further details). The behavior descriptions
range from a black-box abstraction (a probabilistic representation of the service response
time behavior), over a coarse-grained representation (capturing the service behavior as ob-
served from the outside at the component boundaries, e.g., frequencies of external service
calls and amount of consumed resources), to a fine-grained representation (capturing the
service’s internal control flow and covering performance-relevant actions). The multiple
abstraction levels make it possible to use the model in different online performance predic-
tion scenarios with different goals and constraints, ranging from quick performance bounds
analysis to detailed system simulation. Moreover, one can choose the modeled abstraction
level depending on the information that monitoring tools can obtain at run-time, e.g., to
what extent component-internal information is available.

Furthermore, the behavior of software components is often dependent on parameters that
are not available as input parameters passed upon service invocation. The application
architecture meta-model provides modeling abstractions and concepts for expressing and
resolving such parameter and context dependencies. For example, probabilistic charac-
terizations of parameter dependencies that are based on monitoring data are supported.
Further details of the application architecture meta-model can be found in Section A.1.
The complete specification of the application architecture model is part of the work of
Brosig (2014).

5.3.2. Usage Profile Meta-Model

To model user interactions with the system (i.e., the usage profile), DML provides a usage
profile meta-model. A usage profile contains one or more usage scenarios, which can be
seen as a combination of UML use cases and UML activities. A usage scenario describes the
workload type (e.g., open or closed workload), the workload intensity (e.g., request arrival
rates), and the user behavior, i.e., which services are called and in what sequence. It can
be used to describe, e.g., which software components of the system are directly invoked by
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users and in what specific usage scenarios. Both workload type and scenario behavior can
contain additional stochastic information to characterize, e.g., the probabilities of choosing
alternative services or the number of users in the system. The usage profile meta-model
is part of the work of Brosig (2014) and the meta-model specification can be found in
Section A.2.

5.3.3. Deployment Meta-Model

To capture the relationship between the resource landscape and the application architec-
ture, one must model the connection between hardware and software. This connection
can be described with the deployment meta-model depicted in Figure 5.22. This model
allocates software component instances of the application architecture meta-model on con-
tainer instances of the resource landscape meta-model.

Deployment

DeploymentContext DistributedDataCenterSystem

AssemblyContext Container

targetResourceLandscapesystem

deployment

deploymentContexts

1

0..*

assemblyContext 1 resourceContainer1

1 1

Figure 5.22.: The deployment meta-model.

A Deployment has a reference to a DistributedDataCenter (the root element of the resource
landscape meta-model) and a System, the root element of the application architecture
meta-model. Note that each element of the application architecture that is deployable
(e.g., basic component, composite component, or a subsystem) is modeled as an Assembly-
Context. The instantiation of two different components of the same type is modeled using
two different AssemblyContexts. The actual connection between assembly context instances
of the application architecture and container instances of the resource landscape is modeled
using DeploymentContexts, i.e., a DeploymentContext is a mapping of an AssemblyContext
to a Container.

5.4. Case Studies

In the following sections, we present two different case studies. In the first case study, we
illustrate the advantages of our resource landscape meta-model in a VM (re-)deployment
scenario. In the second case study, we apply our approach for automated experimen-
tal analysis of performance-influencing factors to the virtualization platform VMware
ESX 4.0, to evaluate the previously presented performance overheads measured for Citrix
XenServer 5.5.

5.4.1. Modeling Data Centers with the Resource Landscape Meta-Model

In this section, we illustrate the novel concepts of the resource landscape meta-model. To
this end, we use an example model instance of the cluster environment in our local data
center. We analyze the model instance using simulation and leverage the modeled resource
landscape information to improve system adaptation and resource management.

Our example data center consists of six compute nodes from our local cluster environment
(see Figure 5.23). Each compute node is equipped with two Intel Xeon E5430 quad-core
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CPUs running at 2.66 GHz and 32 GB of main memory. The machines are connected by
a 1 GBit LAN. On five of these compute nodes we run XenServer 5.5 as a virtualization
platform. The VMs are initially equipped with eight virtual CPUs (each vCPU corresponds
to a physical core, i.e., no over-commitment). The sixth compute node is not virtualized
and hosts the database.

XenServer 5.5 Virtual Machines

GBit LAN

Weblogic Application Server hosting the 

SPECjEnterprise2010 benchmark

SPECjEnterprise

2010

Figure 5.23.: Experiment environment consisting of six virtualized cluster nodes and a
native database server.

On top of this infrastructure and inside the VMs, we execute the SPECjEnterprise2010
benchmark1, a representative, state-of-the-art application we have modeled and used in
the context of automated model extraction (Brosig et al., 2011) and dynamic resource
allocation (Huber et al., 2011a). For this evaluation, the VMs run SPECjEnterprise2010
instances that belong to different customers and each customer has its own performance
requirements, specified as SLAs. On the one hand, it is required to maintain these SLAs,
the system must be able to scale and provide enough resources in situations where, e.g., the
workload varies. On the other hand, it is required that the resources of the data center are
used as efficiently as possible, i.e., we have to find a trade-off between these requirements.

Figure 5.24 shows the resource landscape model instance of our data center and the con-
figuration of the resource containers. It reflects the structure of the resource containers.
The performance-relevant resource configuration specification of the container templates is
given in Figure 5.6. The root element is our local cluster environment called AcamarClus-
ter. It groups all contained ComputeNodes. Such structural information can be beneficial
for system reconfiguration, e.g., for VM migration. Migrating a VM may be restricted for
technical reasons, e.g., the NFS share is only accessible for all compute nodes within the
cluster. Each compute node refers to the ComputeNodeTemplate which specifies the re-
source configuration of the respective compute node. Similarly, the nested XenServer and
VM runtime environments refer to their type-specific templates. Note that ComputeN-
ode6 (Cn6) contains no hypervisor runtime environment as it is a native system. On top
of these containers, we deployed the SPECjEnterprise2010 component instances of the
different customers.

This example illustrates the following benefits of our meta-model. First of all, with the
template mechanism, it is possible to have multiple instances of the same type in the
model instance. If one changes the configuration of the template, all instances in the model
referring to the changed template are affected by the change. However, with the override

1SPECjEnterprise2010 is a trademark of the Standard Performance Evaluation Corp. (SPEC). The
SPECjEnterprise2010 results or findings in this thesis have not been reviewed or accepted by SPEC,
therefore no comparison nor performance inference can be made against any published SPEC result. The
official web site for SPECjEnterprise2010 is located at http://www.spec.org/jEnterprise2010.
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ComputeNode1

XenServer1

VM1

Cust1
SjEApp

ComputeNode6

Oracle11g
Database

VM4

Cust4
SjEApp

ComputeNode2

XenServer2

VM2

Cust2
SjEApp

VM5

Cust5
SjEApp

VM6

Cust6
SjEApp

ComputeNode3

XenServer3

VM3

Cust3
SjEApp

VM7

Cust7
SjEApp

ComputeNode4

XenServer4

VM8

Cust8
SjEApp

ComputeNode5

XenServer5

VM9

Cust9
SjEApp

<<RuntimeEnvironment>>

XenServer5.5Template

<<RuntimeEnvironment>>

VMTemplate

<<ComputingInfrastructure>>

ComputeNodeTemplate

AcamarCluster

Figure 5.24.: Initial deployment (Depl_0) of the SPECjEnterprise2010 benchmark cus-
tomer instances.

mechanism as described in Section 5.1.1, it is also possible to have individual specifications
for each instance of, e.g., a VM. To undo the individual specification of a container, one
can simply delete this specific property to fall back to the template configuration.

To show the benefits of the novel concepts of the resource landscape meta-model for au-
tonomic system adaptation and resource management, we conduct an experiment illus-
trating how the meta-model and its analysis results can improve adaptation and resource
management decisions. To this end, we use the described model instance for run-time
(re-)deployment of virtual machines. The performance predictions are obtained using sim-
ulation of the model instance.

Table 5.6.: Utilization results for different workload intensities and deployment options.

Depl_0 (Default) Depl_0 (High) Depl_1 (High) Depl_2 (High) Depl_3 (High)

Cn1 = VM1(+VM4) 59.5=33.6(+25.9) 92.9=67.2(+25.7) 67.4 66.9 67.4

Cn2 = VM2+VM5+VM6(+VM4) 45.6=25.5+9.6+9.9 45.0=25.5+9.6+9.9 70.9=25.8+9.9+9.6(+25.6) 45.2=25.6+9.9+9.7 45.3=25.6+10.0+9.7

Cn3 = VM3+VM7(+VM4) 62.5=39.8+22.7 61.8=39.2+22.6 62.1=40.0+22.1 88.0=38.5+22.6(+25.9) 61.8=39.4+22.4

Cn4 = VM8(+VM4) 58.2 58.6 58.3 59.0 83.9=58.3(+25.6)

Cn5 = VM9 67.3 67.5 67.8 68.3 67.8

Cn6 = DB 10.5 12.2 12.3 12.3 12.2

Compute Node (VM) 

Utilization [in %]

Deployment Scenario (Workload)

(Re-)Deployment of Virtual Machines

We start with a scenario consisting of nine independent instances of the SPECjEnter-
prise2010 benchmark, each instance for a separate customer. The initial deployment (re-
ferred to as Depl_0) of these benchmark instances in the data center is depicted in
Figure 5.24. Assume that Cust2, Cust6 and Cust9 are gold customers and their SLAs
guarantee an average response time below 20 ms for the default workload, whereas Cust1,
Cust3, Cust4, Cust5 and Cust8 are silver customers with guaranteed response times
below 40 ms. Another constraint is that the utilization of all compute nodes must be be-
low 90% to avoid heavy response time fluctuations at high system load. In this initial
deployment Depl_0 depicted in Figure 5.24 and with the default workload (Default),
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the requirements are fulfilled, i.e., the system is in a valid state (see column Depl_0
(Default) in Table 5.6).

Now, assume that the workload of Cust1 doubles. The simulation results shown in column
Depl_0 (High) of Table 5.6 for the increased workload show that the utilization of the
compute node Cn1 would be above the limit of 90%, requiring a re-deployment of the
VMs on Cn1. Intuitively, one would at first try to migrate the VM with the higher load to
the part of the system with the least utilized resources (e.g., Cn6 or Cn2). However, we
will see that querying the model and using its architectural information leads to different
results.

Table 5.7.: Simulated response times for different deployment options.

Scenario (Workload) Response Time [ms]
Cust2 Cust3 Cust8

Depl_0 (High) 17.10 19.84 26.55

Depl_1 (High) 23.70 19.99 26.65

Depl_2 (High) 17.02 31.88 26.43

Depl_3 (High) 16.95 19.68 62.00

The model and its analysis results show that Cn6 has plenty of resources. However,
migrating any of the VMs to Cn6 is not an option because Cn6 is not virtualized, i.e., it
has no runtime environment HYPERVISOR which could host an OS VM. Migrating VM4 to
Cn5 is impossible because this would again lead to a violation of the utilization threshold
(67.5% + 25.7% > 90%), as would migrating VM1 to any other compute node. Hence,
three options remain: migrating VM4 to either Cn2 (Depl_1), Cn3 (Depl_2) or Cn4
(Depl_3). We can now use the simulation to predict the utilization of the VMs. The
results show that in any case, the utilization values are below the threshold. This means
that from the perspective of resource utilization, we have three possible adaptation options.
But which one is better? Further constraints for the adaptation options results from the
SLAs established with the different customers. Since the workload of the two customers did
not change, system adaptation should have no implications on their SLAs. However, the
predicted response times (see Table 5.7) show that migrating VM4 has a significant impact
on the response time of the customer whose VM has to share its resources. The results
show that adaptation option Depl_1 violates the SLA of the gold customer whereas SLAs
are fine for Depl_2. Depl_3 has no effect on the response times of the gold customers but
the SLA of the silver customer Cust8 is violated. Therefore, the only option to reconfigure
the system without using additional resources is to migrate VM4 to Cn3 (Depl_2).

5.4.2. Quantifying Performance-Influencing Factors of Virtualization

We repeated the experiments on VMware ESX 4.0 to evaluate if the conclusions and the
performance model derived from our analysis of Citrix XenServer 5.5 in Section 5.2.2.5
is applicable for other hypervisor architectures, too. VMware ESX is another industrial
virtualization platform which, in contrast to Xen, is based on a monolithic hypervisor
architecture, i.e., the hypervisor itself contains the device drivers and provides shared
access to the physical devices. In the following sections, we compare the experiment results
we obtained for the different virtualization platforms. We also provide a short experience
report on the portability of our automated experimental analysis approach, which is of
general interest when migrating from one virtualization platform to another as well as for
automatic administration of virtualization platforms.
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Overhead of Virtualization

After repeating the experiments on VMware ESX 4.0, we calculate the relative delta be-
tween the two platforms as VMwareESX 4.0 − CitrixXenServer 5.5

VMwareESX 4.0 . The results in Table 5.8
show almost identical results for the CPU and memory benchmarks because both vir-
tualization platforms use the hardware virtualization support. However, for the I/O
benchmarks, VMware ESX 4.0 performs better. The reason for this is that in Citrix
XenServer 5.5, all I/O workload is handled by the separate driver domain Dom0, which is
less efficient than the monolithic architecture of VMware ESX 4.0. Hence, we can conclude
that for CPU and memory, our performance model can be applied for VMware ESX 4.0,
too. However, for the I/O performance overhead, it is important to distinguish these
architectural differences.

Table 5.8.: Relative deviation of CPU, memory, disk I/O and network I/O results.

Benchmark rel. Delta

CPU Mark 0.15%

Memory Mark 0.19%

Iperf, send 13.91%

Iperf, receive 15.94%

Disk Mark 19.14%

Scalability and Overcommitment

Concerning the performance behavior of VMware ESX 4.0 when scaling up and over-
committing, respectively, we observed a similar trend to the one on Citrix XenServer 5.5.
Figure 5.25 shows this trend for the overcommitment scenario. As one can see, both
platforms behave similarly, with slightly better scalability results for VMware ESX 4.0.
Another observation was that on VMware ESX 4.0, using core affinity did not result in
any performance improvements. This indicates an improved hypervisor scheduling strategy
which takes care of multi-core environments and the cache and core effects we observed in
Section 5.2.2.5.
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Figure 5.25.: Performance behavior in scenarios with CPU overcommitment for Citrix
XenServer 5.5 and VMware ESX 4.0.

82



5.4. Case Studies 83

Mutual Influences of Workload Types

We also repeated the experiments to determine the mutual influences of workload types on
VMware ESX 4.0. Table 5.9 lists the results. For CPU and memory intensive workloads,
the observations are comparable to the ones for Citrix XenServer 5.5. Both workload types
have an equal effect on each other caused by their similarities.

However, for disk intensive workloads, there is a big difference compared to XenServer 5.5.
For VMware ESX 4.0, we observe a high performance degradation of the disk workload
independent of the other workload type. For example, if the disk benchmark is executed
with CPU or memory benchmark, disk benchmark results drop almost 50%, whereas CPU
and memory benchmark results suffer from only 10% and 20% performance loss, respec-
tively. One explanation is that, as VMware’s virtual disk concept requires more CPU than
the mechanism implemented in Xen, both VMs compete for CPU time. The different hy-
pervisor architectures confirm this explanation. In the monolithic architecture of VMware
ESX 4.0, the drivers are integrated in the hypervisor kernel, whereas they are moved to a
separate domain in Xen.

Table 5.9.: Mutual performance degradation for different workload types on VMware
ESX 4.0.

VMA CPU CPU Mem CPU Mem Disk CPU Mem Disk

VMB CPU Mem Mem Disk Disk Disk Net Net Net

rA 47.03% 46.64% 49.23% 10.02% 17.21% 44.53% 9.95% 35.32% 14.87%

rB 48.21% 40.29% 51.34% 49.56% 45.53% 44.82% 65.02% 54.56% 32.74%

Portability of the Automated Analysis

When porting our automated experimental analysis approach to VMware ESX 4.0, we
gained some important experiences. These experiences are helpful when applying our
approach for system adaptation, e.g., when migrating a VM from one platform to others.

The first challenge was that we could not install VMware ESX 4.0 on the HP Compaq
machine because of the lack of driver support. The reason for lacking driver support is
that supporting only commodity hardware keeps the monolithic hypervisor’s footprint low.
In Citrix XenServer 5.5’s architecture, further drivers can be easily implemented in the
Dom0 domain while still keeping the hypervisor’s footprint small. Hence, depending on
the requirements it might be worth selecting the hardware first and then the virtualization
platform, or vice versa. The next technical challenge we faced was that the VMs of
VMware ESX 4.0 are usually intended to be managed via external graphical tools, which
hinders an automated approach. Fortunately, a special command line interface, which
must be activated separately, can be used for automation. As both platforms support the
Open Virtualization Format (OVF) for virtual machines, in theroy, porting the MasterVM
should be easy. Although this standardized XML schema for OVF is in fact implemented
on both platforms, they use a different XML tag semantic to describe the VM geometry.
Hence, the export of a VM from Citrix XenServer 5.5 to VMware ESX 4.0 works in
theory, but practically only with additional tools and workarounds, involving manual XML
editing. Once migrated, one can reuse the concept of automated experimental analysis and
experiment types, but one has to adapt the scripts to the target API. For example, the
credit-based scheduler parameter capacity is named differently on VMware ESX 4.0.

In summary, we can conclude that the process we proposed is generic enough to be ap-
plied on other virtualization platforms, but some manual adjustments might be necessary.
However, this is only a technical limitation given that currently there is no standardized
virtual machine migration mechanism across different virtualization platforms.
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5.5. Summary

In this chapter, we presented a meta-model to describe the resource landscape of modern
dynamic IT infrastructures. The meta-model provides novel constructs to model the var-
ious resource layers of modern IT infrastructures as well as their performance-influencing
factors. Additionally, we proposed a generic method for quantifying the performance-
influencing factors of resource layers like virtualization. We applied this approach to two
representative virtualization platforms, Citrix XenServer 5.5 and VMware ESX 4.0, to
quantify the performance-influencing factors of virtualization and to evaluate the accu-
racy of our approach. We were able to confirm the results for CPU and memory intensive
workloads as well as the observed trends in scalability and overcommitment scenarios.
However, the experiments also showed that there are differences when handling I/O inten-
sive workloads. Moreover, we presented a case study to illustrate the novel concepts of our
resource landscape meta-model for run-time system adaptation. The results showed that
modeling the resource landscape with its hierarchy provides valuable information impor-
tant for run-time system adaptation and resource management, e.g., to exclude migration
targets or to find the most suitable target.
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6. Modeling System Adaptation
Processes

In the software performance engineering community, a number of meta-models for building
architecture-level performance models of software systems have been proposed over the last
decade (Koziolek, 2010; Balsamo et al., 2004). Such models provide modeling constructs
to capture the performance-relevant behavior of a system’s software architecture and its
execution environment. However, as they are typically designed for use at system design-
time in an offline setting, they normally neglect the description of dynamic aspects of
the system, such as varying deployments or adaptation processes, and are thus limited
to analyzing steady states of the modeled system (Becker et al., 2012). As the effect of
possible adaptation actions on the system performance and resource efficiency cannot be
reflected, the use of such models as a basis for autonomic model-based system adaptation
at run-time is insufficient. To fill this gap and provide a holistic model-based approach for
engineering self-adaptive systems, the Descartes Modeling Language (DML) provides two
further sub-meta-models presented in this chapter.

In the following, we introduce two novel meta-models, the adaptation points meta-model
and the adaptation process meta-model. Together, these models form a generic and flex-
ible formalism for modeling the dynamic aspects of self-adaptive systems as well as their
adaptation processes. The adaptation points meta-model, described in Section 6.1, pro-
vides concepts to specify the degrees of freedom of architecture-level performance models.
Concretely, we use the adaptation points meta-model to annotate architecture-level per-
formance models and describe their valid configuration space, i.e., where and in what
range such model instances can be adjusted. Based on the adaptation points meta-model,
Section 6.2 presents a modeling language to describe adaptation processes of self-adaptive
systems at the architecture-level in an intuitive and easily maintainable manner. Our meta-
model distinguishes high-level adaptation objectives from low-level implementation details,
explicitly separating system-specific adaptation operations from system-independent adap-
tation plans. In Section 6.3, we show the architecture of our adaptation framework which
implements our concept of a model-based adaptation control loop, leveraging the distinct
features of DML. Finally, Section 6.4 presents evaluation results, comparing our modeling
approach with Story Diagrams (Fischer et al., 2000) and Stitch (Cheng and Garlan, 2012)
and assessing its applicability.
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6.1. Adaptation Points Meta-Model

Today’s distributed IT systems are increasingly dynamic and offer various degrees of free-
dom for adapting the system at run-time. However, to realize model-based system adap-
tation, these properties must be reflected on the model-level. In this section, we introduce
the adaptation points meta-model as part of the Descartes Modeling Language (DML).
The aim of the adaptation points meta-model is to annotate architecture-level performance
models to describe the degrees of freedom of the resource landscape and the application
architecture, i.e., the points where the system can be adapted at run-time. In other words,
adaptation points at the model level correspond to adaptation operations executable on
the system at run-time. Other model elements that may change at run-time but cannot be
influenced directly (e.g., the usage profile) are not in the focus of this meta-model. For ex-
ample, changing the number of virtual CPUs assigned to VMs, migrating VMs or software
components, or load-balancing requests, are adaptation points of an adaptive system that
can be modeled with our adaptation points meta-model. In contrast, changes in the usage
profile cannot be controlled. Thus, we do not consider them as adaptation points. From a
high-level perspective, the adaptation points meta-model provides possibilities to specify
the boundaries of the system’s configuration space, i.e., it defines the possible valid states
of the system architecture. However, it is not intended to specify how the actual change
has to be performed on the model or the system. This is part of the adaptation process
meta-model which builds on the adaptation points meta-model and will be introduced in
Section 6.2.

name : String

NamedElement

id : String

Identifier

Entity

AdaptableEntity

Figure 6.1.: Relation of Entity and AdaptableEntity.

The core question we face when designing an adaptation points meta-model is how to
denote the entities in the resource landscape or application architecture meta-models that
can be adapted at run-time. On the one hand, having an explicit type like AdaptableEntity
(cf. Figure 6.1) in the meta-models makes it easier to specify adaptation points for a
given model instance (e.g., a resource landscape) since the adaptable entities are already
determined by their type (it is a sub-type of AdaptationEntity). Thus, the advantage is that
it is not necessary to know all details of the resource landscape model instance to specify
adaptation points. However, using AdaptableEntities as a type in the meta-model has the
disadvantage that all adaptable entities must be specified already at meta-model design
time, i.e., further entities cannot be added or removed without changing the meta-model.
It is not always possible to distinguish adaptable entities from non-adaptable entities when
designing the meta-model. For example, imagine the RuntimeEnvironment being of type
AdaptableEntity. Then, any RuntimeEnvironment instance (hypervisors, VMs, JVMs) would
be an adaptable entity, too. The problem is that adaptation points are usually system
specific. For example, some systems support VM migration, whereas others do not. For
these reasons, we also would like to be able to describe adaptation points for meta-model
instances, not only at the meta-model level. This is a difference compared to the approach
of Koziolek and Reussner (2011) that focuses on the meta-model level to describe which
variants of model instances can be created at design time.
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The question of how to denote adaptable entities and on which abstraction level of the
MOF standard (Object Management Group (OMG), 2011b) is also related to the question
where to introduce them, i.e., in which meta-model(s). Since the application architecture
can be adapted as well, it is insufficient to introduce adaptation point modeling constructs
only in the resource landscape meta-model. Hence, to avoid having such constructs in
both meta-models, we decided to introduce our adaptation points concepts in a separate
meta-model. This has the advantage that aspects related to the static system architecture
(resource landscape and application architecture) are decoupled from aspects related to
system adaptation. This separates knowledge about what can be adapted from how to
execute the adaptation. Furthermore, using a separate adaptation points meta-model also
has the advantage that resource allocation algorithms or system adaptation processes can
refer to adaptation points instead of operating on the model instance directly. Thereby,
information about where to change the model instance is not disclosed directly to the
person or program adapting the model. Instead, such information is considered as an
explicit entity of the model-based system adaptation process. Furthermore, the explicit
definition of adaptation points helps to specify valid system configurations. By using
specified adaptation points within system adaptation processes, inconsistent system states
can be avoided. Another benefit of this separation is the support of reuse and improved
maintainability. For example, the adaptation point descriptions in our example might be
reused for other model instances, or for different adaptation processes.

AdaptationPointDescriptions AdaptationPoint AdaptableEntity

VariationType ModelEntityConfigurationRange

minValueConstraint : OclConstraint
maxValueConstraint : OclConstraint

PropertyRange

possibleValues : OclConstraint

SetOfConfigurations

Entity

minValue : EDouble
maxValue : EDouble

ModelVariableConfigurationRange

0..*

adaptationPoints

1adaptableEntity
variationPossibility

1

1

adaptableEntity

0..*

variants

Figure 6.2.: Adaptation points meta-model.

Figure 6.2 depicts the structure of the adaptation points meta-model. The root element
AdaptationPointDescriptions collects all adaptation point annotations for adaptable ele-
ments of architecture-level performance models. We distinguish between two types of
adaptations we can perform on the architecture-level performance model: a) changing at-
tribute values of model entities, e.g., the value of a PassiveResourceCapacity and b) changing
the number of instances of a model entity, e.g., a RuntimeEnvironment. These two types
of AdaptationPoints are modeled as ModelVariableConfigurationRange and ModelEntityCon-
figurationRange, respectively. Note that in our approach, we consider only those parts of a
model to be adaptable that are actually annotated by an AdaptationPoint. The reason is
that even if a system technically supports certain ways to be adapted, there might exist an
instance of the system where it is prohibited to change its configuration. An illustrating
example is given by virtualized systems where in general, the number of virtual resources
assigned to virtual machines can be changed at run-time. However, in some systems, this
feature might be deactivated for reliability reasons.

A ModelVariableConfigurationRange refers to an AdaptableEntity and specifies the range in
which the attribute value of this AdaptableEntity can be altered, restricted by minValue
and maxValue attributes. An AdaptableEntity is a specialization of the abstract class En-
tity (cf. Figure 6.1). The type Entity is just a convenience class and almost all classes
of DML are sub-classes of this abstract class to inherit the name and id attributes. The
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difference of AdaptableEntity compared to Entity is the following. If a meta-model class ex-
tends AdaptableEntity, this denotes that the attribute values of this particular meta-model
class are explicitly adaptable. It is the responsibility of the AdaptableEntity to indicate
which attribute of its child is adaptable. All types with an attribute that is explicitly
adaptable at run-time are modeled as a sub-type of AdaptableEntity. An example for such
an AdaptableEntity is the NumberOfParallelProcessingUnits of a configuration specification
(cf. Figure 5.3).

The ModelEntityConfigurationRange can be used to annotate other architecture-level per-
formance model instance entities that are not a sub-type of AdaptableEntity, e.g., the
instances of a specific RuntimeEnvironment. The ModelEntityConfigurationRange refers to
an Entity, denoting that this referred Entity can be adapted. An Entity can be any entity of
an architecture-level performance model instance, e.g., a Container. The VariationType of
the ModelEntityConfigurationRange specifies in more detail how this model entity can vary.
Currently, we distinguish two variation types: PropertyRange and SetOfConfigurations. In
contrast to the ModelVariableConfigurationRange where we specify an attribute value range,
the idea of the PropertyRange is to specify a range for the referred Entity. We use Object
Constraint Language (OCL) constraints (minValueConstraint and maxValueConstraint) to
check whether the variation is within the valid value range or not. For example, think of
a constraint to set a minimum and maximum amount of VM instances on a server. The
SetOfConfigurations can be used to model any other kind of variability that has no order or
range, e.g., the deployment of a VM (Container) on a set of target hosts (also Containers).
In this case, possible target model instances are collected in the SetOfConfigurations, which
is a list of other Entities. In the example of the VM deployment, this set can contain the
references to different Container instances, i.e., a list of target hosts where the VM can be
deployed on.

In summary, the adaptation points meta-model describes the degrees of freedom and the
configuration space of modern IT systems, specifying adaptation points in architecture-
level performance models. The AdaptableEntity can be used to denote adaptable entities
on the meta-model level, whereas ModelEntityConfigurationRange provides the means for
denoting an adaptable entity on the model instance level. These concepts are not intended
to describe all possible instance variants a system might have but to specify a boundary
within which system adaptation processes can operate. How to model these adaptation
processes based on the adaptation points meta-model will be explained in Section 6.2.

Example

The following example illustrates how to use the adaptation points meta-model to spec-
ify the adaptable parts of the example resource landscape model instance introduced in
Section 5.1.5. Figure 6.3 depicts the example model instance. The variable resources and
model entities we consider here are the number of virtual CPUs (vCPUs) of a VM (NrOfVc-
pus), the number of VM instances (VmInstances), and the location of a VM (VmHost).

Corresponding to these variable elements, the adaptation points model instance contains
three different adaptation points, one ModelVariableConfigurationRange and two ModelEnti-
tyConfigurationRange. NrOfVcpus is of type ModelVariableConfigurationRange and specifies
a configuration range in which the number of virtual CPUs of VmTemplate can be varied,
limited by minValue = 2 and maxValue = 4. Also important to note is that the adaptation
point refers to a ContainerTemplate. This way, we can express that all vCPUs of all VMs
referring to this template can be varied in this range. Referring directly to a Container
means that only the attribute value of this specific container is adaptable.

The second adaptation point we annotate in our example resource landscape model in-
stance is called VmInstances and is an example for the variation type PropertyRange. It
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<<ModelEntityConfigurationRange>> VmHost

variationType = SetOfConfigurations

possibleValues = "XenServer1, XenServer2, ..."

Figure 6.3.: Adaptation points meta-model instance annotating the resource landscape
model example in Figure 5.6.

refers to the RuntimeEnvironment template VmTemplate and specifies a PropertyRange us-
ing OCL constraints (cf. Listing 6.1).

context ModelEntityConfigurationRange
inv minVmInstances:

let similarContainers : Set(Container) = Container.allInstances()
-> select(c | c.template = self.adaptableEntity)

in similarContainers -> size() > 1;

context ModelEntityConfigurationRange
inv maxVmInstances:

let similarContainers : Set(Container) = Container.allInstances()
-> select(c | c.template = self.adaptableEntity)

in similarContainers -> size() < 4;

Listing 6.1: OCL constraints of VmInstances.

Both OCL constraints query for all Container instances and select those which refer to
the same template as the ModelEntityConfigurationRange. The resulting number must be
above one and below four, respectively. The OCL constraints ensure that each XenServer
contains at least one VM and not more than four. Note that for the correct evaluation
of the OCL constraints the context of the OCL constraint must be set to the ModelEn-
tityConfigurationRange instance which actually refers to the model instance entity to be
evaluated. This is important because the context also limits the scope of the adaptation
possibilities.

The third adaptation point VmHost is an example of the variation type SetOfConfigurations.
Its purpose is to specify a changeable location of a VM which can be used for modeling
a VM migration. Therefore, it refers to the RuntimeEnvironment template VmTemplate as
the adaptable model entity. Furthermore, its attribute list possibleValues refers to a set of
target hosts (XenServer1, . . . , XenServerN). This list denotes the possible target hosts for
the referred entity VmTemplate.

6.2. Adaptation Process Meta-Model

Any self-adaptive system follows a certain kind of process with the purpose to adapt itself
to changes in its environment such that operational goals are continuously fulfilled. In
this context, operational goals are either system-wide defined QoS properties the system
has to fulfill or user-specific SLAs (cf. Chapter 2). The adaptation process meta-model we
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present in the following is a modeling language to specify such adaptation processes. In
our meta-model, we define three main elements—Strategy, Tactic, and Action—to describe
the adaptation process at three different levels of abstraction (cf. Figure 6.4). We also refer
to this meta-model as Strategies/Tactics/Actions (S/T/A) adaptation language. At the
highest abstraction level are the strategies. Strategies aim at achieving a given high-level
objective by applying one or more tactics that are defined for this strategy. Tactics are
more system-specific and pursue a short-term goal by executing one or more adaptation
actions. Actions implement the actual adaptation operations on the system model or on
the real system, respectively. Thus, they are the technical part of the adaptation process,
encapsulating system-specific details.

StrategyX

TacticA

Action1

reconfigure

execute

use

trigger / guide

Events / Objectives

System Model /
Real System

StrategyY

TacticB TacticC

Action2

Action3

Action4

Actionn

System- 
Specific

(Technical)

Goal-
Oriented
(Logical)

Figure 6.4.: Main concepts of the adaptation process meta-model and their relations, bridg-
ing different abstraction levels.

The novelty and important advantage of this modeling approach is that it distinguishes
high-level goal-oriented objectives (strategies) from low-level system-specific details (adap-
tation tactics and actions) and explicitly separates platform specific adaptation operations
from system-independent adaptation plans.

Before we explain the modeling abstractions of S/T/A in detail, we want to emphasize
the conceptual difference between strategies, tactics, and actions. A strategy captures the
logical goal-oriented aspect of an adaptation process. It defines the objective that needs
to be accomplished and describes the possible ways to achieve this objective. A strategy
can be a complex, multi-layered plan for accomplishing the objective. However, which
step is taken next will depend on the current state of the system. Thus, in the beginning,
the sequence of tactics applied by the strategy is unknown. Which tactic is applied next
depends on the impact of the tactic, which is evaluated using the online performance
prediction capabilities of DML. This gives us the flexibility to react in unforeseen situations
and switch to different tactics. To give some examples, a defensive strategy for resolving
a resource bottleneck could be “add as few resources as possible stepwise until response
time violations are resolved,” whereas an aggressive strategy would be “add a large amount
of resources in one step so that response time violations are eliminated, ignoring resource
efficiency.”
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In contrast to strategies, tactics and actions realize the technical aspect that follows the
planning of an adaptation. While strategies are focused on how to act, i.e., on deciding
which tactic might be most effective w.r.t. the strategy’s objective given the current
system state, tactics specify precisely which actions to take without explicitly considering
the effect. Therefore, tactics define a specific sequence of actions and initiate the execution
of these actions. Furthermore, we define tactics with the following intrinsic semantics,
inspired by the semantics of transactions in database systems: i) atomicity, i.e., either the
whole tactic with all its contained actions is executed or the tactic must be rolled back,
ii) consistency, i.e., the model’s state must be consistent after applying a tactic, and iii)
determinism, i.e., tactics have the same output when applied on the same model state.
The motivation for the above definition of tactics is to group and execute multiple actions
in an atomic manner leaving the system model in a consistent state. This is important
because after applying a tactic, the effect of a tactic is evaluated leveraging DML’s online
performance prediction capabilities to analyze the tactic’s impact. This impact influences
how the strategy continues to adapt the system. After applying the tactic on the model,
we evaluate the impact of the tactic using online performance prediction techniques. If the
application of a tactic is predicted to contribute towards achieving the pursued adaptation
goal, the tactic is maintained as part of the constructed concrete adaptation plan to be
executed on the real system later. Otherwise, the tactic is rolled back and another tactic is
applied. The configuration of the real system is only changed once we have found a model
state that is predicted to satisfy the adaptation goal. How we actually implement this
behavior is explained in Section 6.3 as part of the realization of the adaptation framework.

The idea of distinguishing three abstraction levels is a valid concept and can be found
in other approaches, too (cf. Section 3.1.2). However, these approaches either do not
consider an end-to-end model-based approach or have limited expressiveness. In contrast
to existing approaches, we propose a generic meta-model explicitly defining the relation
of strategies, tactics and actions to describe adaptation processes at the architecture-level
in an intuitive and easily maintainable manner while still providing the flexibility to react
in situations of uncertainty. In the following, we describe the concepts of our adaptation
process meta-model bottom-up, beginning with the actions (cf. Figure 6.4).

6.2.1. Actions

In Figure 6.5, we depict the meta-model of our adaptation language. Actions are the atomic
elements on the lowest level of the adaptation process’ hierarchy (cf. Figure 6.4). They
represent the execution of an adaptation operation on the model or the real system, re-
spectively. Actions can refer to Parameters to specify a set of input and output parameters.
A parameter is specified by its name and type. Parameters can be used to customize the
action, e.g., to specify the source and target of a migration action or to use return values
(output parameters) of executed actions as input parameters for subsequent actions.

To model an adaptation operation, actions refer to adaptation points that have been
specified with the adaptation points meta-model. However, they do not specify how the
operation is actually implemented, neither at the model nor at the system level. The
interpretation of the modeled action and the implementation of the actual adaptation
operation is the responsibility of the adaptation framework interpreting the adaptation
process model instance. This is important to separate technical system-specific details
from logical aspects. In Section 6.3, we will present an adaptation framework that realizes
the interpretations of adaptation actions for a given resource landscape model instance.
To provide further semantics about how to interpret and perform the adaptation oper-
ation, an Action contains an AdaptationActionOperation. The AdaptationActionOperation
describes the direction and scope of the adaptation operation. The AdaptationOperationDi-
rection specifies in which “direction” to execute the adaptation. Currently, we support
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Figure 6.5.: Adaptation process meta-model.

four different modes: INCREASE, DECREASE, MIGRATE, and NOT SET. For example,
INCREASE indicates to increase the attribute value of an AdaptableEntity or to scale up
the number of instances of a model entity, whereas MIGRATE indicates to move an Entity.
The AdaptationOperationScope specifies where to apply the adaptation operation. This
is important in case the adaptation operation can be applied to multiple model entities.
For example, if the adaptation point refers to a ContainerTemplate, the scope indicates
if the adaptation operation has to be applied to, e.g., ALL instances or the least utilized
LEAST UTIL FIRST instance of the set of Containers referring to this ContainerTemplate.
The mode THIS can be used to indicate that exactly this entity has to be changed. The
list of modes is extensible, however, one must also extend the adaptation framework to
support newly introduced modes.

<<Action>>
AddVM

<<Action>>
AddVCPU

<<Action>>
RemoveVM

<<Action>>
RemoveVCPU

adaptationPoint = NrOfVcpus
direction = INCREASE
scope = MOST_UTIL_FIRST

adaptationPoint = VmInstances
direction = INCREASE
scope = MOST_UTIL_FIRST

adaptationPoint = NrOfVcpus
direction = DECREASE
scope = LEAST_UTIL_FIRST

adaptationPoint = VmInstances
direction = DECREASE
scope = LEAST_UTIL_FIRST

<<Action>>
MigrateVM

adaptationPoint = VmHost
direction = MIGRATE
scope = LEAST_UTIL_FIRST

Figure 6.6.: Example Actions referring to adaptation points.

Example: Figure 6.6 shows five example actions. The type of actions that can be mod-
eled depends on the types of adaptation points that have been defined for the respective
architecture-level performance model, depicted in Figure 6.3. The actions AddVCPU and
AddVM can be used to increase the amount of allocated resources in a system, either
by adding vCPUs to a VM (AddVCPU) or by adding new VMs (AddVM). Similarly, Re-
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moveVCPU and RemoveVM can be used to remove resources. MigrateVM can be used
to move VMs between hosts. To provide the adaptation framework with more details
about how to execute the respective modeled action, these actions also specify an Adapta-
tionOperationDirection and AdaptationOperationScope. In our example, the directions are
either INCREASE or DECREASE, indicating to increase or decrease the vCPUs parameter
or the number of VM instances. The scopes indicate that either the least or most utilized
container instance referring to the container template VmTemplate are the candidate to
execute the adaptation operation. For the action MigrateVM, we specified the Adapta-
tionOperationDirection MIGRATE to indicate that the adaptation framework should move
the model entity the adaptation point VmHost refers to. The scope LEAST UTIL FIRST
specifies that the target host for the migration is the least utilized host from the SetOf-
Configurations specified by the adaptation point.

6.2.2. Tactics

When modeling adaptation processes, each Tactic has a certain purpose (e.g., to scale-up
resources) expressed by its specific AdaptationPlan. The AdaptationPlan describes a process
of how the tactic pursues its purpose, i.e., in which order to apply actions to adapt the
system. Therefore, each AdaptationPlan contains a set of AbstractControlFlowElements.
The order of these control flow elements is determined by their predecessor and successor
relations. Concrete types of the AbstractControlFlowElement are Start and Stop as well
as Loop and Branch. They describe the control flow of the adaptation plan. Start and
Stop denote the beginning and end of the adaptation plan. The Loop element can be
used to specify that the adaptation plan in the body of the loop will be executed n times,
whereas n is given by the attribute iterationCount. A Branch has the semantic of conditional
statement. Its intention is to influence the control flow of the adaptation plan depending
on the current model state. Therefore, it has two attributes, condition and context. In
this thesis, a condition is an OCL expression (invariants) which evaluates to true or false
depending on the current state of the model. The context for evaluating the OCL invariant
is given by the attribute context of the Branch. Furthermore, tactics can refer to Parameters
to specify input or output parameters. These parameters can be evaluated to influence the
control flow, e.g., by specifying iteration counts. Actions are integrated into the control
flow by the ActionReference entity.

The advantage of the tactic’s AdaptationPlan concept is that AdaptationPlans specify a
complex but deterministic part of the adaptation process. This ensures that the previ-
ously mentioned requirement, that Tactics are deterministic, is fulfilled. Furthermore, the
execution of an AdaptationPlan is only complete if all of its sub-steps have been completed.
If any adaptation action on the model fails, the model can be reset to the state before
starting the AdaptationPlan. This ensures the atomicity property. After executing an
AdaptationPlan, we can also check if the adapted model is valid to ensure the consistency
property of Tactics. Given that our model-based system adaptation process relies on model
analysis to guide the adaptation process, it is important to regularly check the impact of
adaptation actions on the system performance. However, model analysis can be costly,
which is why we decided to conduct model analysis only after applying a tactic. Thus,
the AdaptationPlan is also a way to bundle several model adaptation actions to save costly
analysis steps.

Example: In Figure 6.7, we show three example tactics using the previously presented
actions AddResources, RemoveResources, and MigrateVM. The purpose of these tactics is to
increase system resources, e.g., to maintain SLAs, or to consolidate the system resources
to increase efficiency.

The adaptation plan of the tactic AddResources implements a Loop action executed as
many times as specified in iterations, which is an input parameter to this tactic. With this
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<<Tactic>>
AddResources

<<Adaptation Plan>>

<<Loop>>
iterationCount = iterations

<<Action>>
AddVM

FALSE

TRUE

<<Action>>
AddVCPU

allServersAtMaxCap

<<InputParameter>>
name = "iterations"
type = Integer

<<Tactic>>
MigrateVM

<<Adaptation Plan>>

<<Action>>
MigrateVM

<<Tactic>>
RemoveResources

<<Adaptation Plan>> <<Action>>
RemoveVCPU

FALSE

TRUEserverAtMinCapExists
<<Action>>
RemoveVM

Figure 6.7.: Different example Tactics using the previously specified Actions.

parameter one can specify how many resources to add by executing the tactic. The body of
the Loop action implements two actions, AddVCPU and AddVM. Which action is executed
depends on the current state of the underlying architecture-level performance model. In
this example, a Branch with the condition allServersAtMaxCap ensures that the Num-
berOfParallelProcessingUnits is below the maximum value of four. The OCL constraint for
the condition allServersAtMaxCap is given in Listing 6.2. If this constraint evaluates
to true, the AddVCPU action is executed to add an additional vCPU to a VM. Else, the
AddVM action adds a new VM. The adaptation plan of this tactic is also a good example
to illustrate the separation of technical and logical details because the tactic specifies that
resources should be added but it does not specify how to implement this. This is covered
by the framework executing the tactic (cf. Section 6.3).

context RuntimeEnvironment
inv allServersAtMaxCap:

RuntimeEnvironment.allInstances()
-> select(re | re.template = self.template)

-> exists(re | re.configSpec.oclAsType(
resourceconfiguration::ActiveResourceSpecification)
.processingResourceSpecifications

-> forAll(nrOfParProcUnits.number < 4)
and
RuntimeEnvironment.allInstances()
-> select(re | re.template = self.template)

-> forAll(re | re.template.templateConfig.oclAsType(
resourceconfiguration::ActiveResourceSpecification)
.processingResourceSpecifications

-> forAll(nrOfParProcUnits.number < 4)

Listing 6.2: OCL invariant allServersAtMaxCap of the AddResources tactic.

The adaptation plan of the tactic RemoveResources either removes a VM if there is a
runtime environment running at minimum capacity or removes a vCPUs from a VM,
otherwise. The VM to be removed is determined by the OCL constraint identifying the VM
running at minimum capacity (Listing 6.3). This tactic can be considered as a conservative
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tactic, as it removes no more than one resource unit at a time. To remove further resources,
the tactic must be executed again. The advantage of this conservative tactic is that it
reduces the resources stepwise and after each step (i.e., after applying one tactic), the
impact of the tactic is evaluated.

context RuntimeEnvironment
inv serverAtMinCapExists:

RuntimeEnvironment.allInstances()
-> select(re | re.template = self.template

and not re.configSpec -> isEmpty())
->exists(re | re.configSpec.oclAsType(

resourceconfiguration::ActiveResourceSpecification)
.processingResourceSpecifications

-> forAll(nrOfParProcUnits.number > 1))

Listing 6.3: OCL invariant serverAtMinCapExists of the RemoveResources tactic.

Tactic MigrateVM contains an adaptation plan with only one action, MigrateVM. This
tactic’s purpose is to increase resource efficiency by migrating VMs.

6.2.3. Strategies

Any modeled adaptation process pursues an overall goal consisting of one or more different
Objectives. The purpose of a Strategy is to achieve an Objective. An objective contains
one or more Specifications to express the objective in a machine processable way (e.g.,
avg. response time of service x < τ). A Specification refers to a MetricType and defines a
threshold τ for this metric type. The specification also contains a relational operator relOp-
erator (like >,≤,=) that determines how to compare the metric type with the threshold.
The specifications will be used later when evaluating the impact of the tactics used by the
strategy. Note that other, more complex Specifications like goal policies or utility func-
tions referring to multiple metric types (e.g., resource usage vs. utilization) can be added
here, too. All objectives are collected within the OverallGoal. The OverallGoal has no
explicitly defined semantics. It serves as a human-readable description of the overall goal
of the adaptation process. Note that it is explicitly allowed to have multiple alternative
strategies for the same objective because strategies might differ in their implementation
but pursue the same objective.

The execution of a strategy is triggered by a specific Event that occurs during system
operation, e.g., an event emitted periodically to maintain system resource efficiency or an
event caused when a given Objective is violated. Such events trigger the execution of the
strategy they are associated with to ensure that the objective of the strategy is achieved.
In our approach, we assume that events occur sequentially and that they trigger only one
strategy. This avoids inconsistencies through multiple strategies operating at the same
time with possibly conflicting objectives. However, this does not limit our approach to
scenarios without conflicting objectives. In our approach, we can handle such situations by
designing strategies that express the conflicting objectives as utility functions like in the
example by Kephart and Walsh (2004). The respective strategy in such a situation must
contain suitable tactics and apply them such that the trade-off expressed by the utility
function is achieved.

To achieve its objective, a strategy can choose from a set of WeightedTactics. Which tactic
it uses depends on the current weight of the tactics, which is determined by the impact the
tactic achieved when executed. These weights are calculated according to the strategy’s
WeightingFunction, which is explained in Section 6.2.5. The reason why we use weighted
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tactics is that this concept introduces a certain amount of indeterminism at a higher
abstraction level. Having this indeterminism at the strategy level provides flexibility to
find new solutions if a tactic turns out to be inappropriate for the current system state.

Example: Figure 6.8 depicts two example strategies. The first strategy is the Resolve-
Bottleneck strategy with the objective to improve response times to maintain SLAs (90%
quantile of response time rtx < 500 ms), and a ReduceResources strategy with the objec-
tive to optimize resource efficiency (OverallUtilization > 60%). To specify these objectives
on the model level, their specification refer to the respective MetricTypes. The Resolve-
Bottleneck strategy uses only one tactic, namely AddResources, and is triggered by the
SlaViolated event. After the tactic has been successfully applied at the model level, the
architecture-level performance model is analyzed to predict the impact on the metric type
referred by the objective. If the prediction results still reveal SLA violations, the strategy
executes the tactic again until all SLA violations are resolved and the strategy has reached
its objective.

<<Strategy>>
ReduceResources

<<Strategy>>
ResolveBottleneck

<<Event>>
SlaViolated

<<Objective>>
MaintainSLAs

<<Event>>
Scheduled

Optimization

<<Objective>>
OptimizeResourceEfficiency

<<OverallGoal>>
"Maintain SLAs of all 

services using resources 
efficiently"

objective objective

hasObjectives hasObjectives

<<MetricType>>
90%_Quantile_of_rtx

<<MetricType>>
OverallUtilization

<<Specification>>

< 500ms
<<Specification>>

> 60%

<<WeightedTactic>>
AddResources
weight = 1.0

<<Adaptation Plan>>

<<Loop>>
iterationCount = iterations

<<Action>>
AddVM

FALSE

TRUE

<<Action>>
AddVCPU

allServersAtMaxCap

<<InputParameter>>
name = "iterations"
type = Integer

<<uses>>

<<uses>>

<<WeightedTactic>>
RemoveResources
weight = 1.0

<<Adaptation Plan>> <<Action>>
RemoveVCPU

FALSE

TRUEserverAtMinCapExists
<<Action>>
RemoveVM

<<WeightedTactic>>
MigrateVM
weight = 0.5

<<Adaptation Plan>>

<<Action>>
MigrateVM

<<uses>>

Figure 6.8.: Example Strategies using Tactics with assigned weights.

The ReduceResources strategy is triggered with the objective OptimizeResourceEfficiency.
The trigger of the related event could be, e.g., a predefined schedule. The ReduceResources
strategy refers to two tactics. RemoveResources reduces the amount of resources used by
the system whereas MigrateVM aims at increasing resource efficiency by consolidating VMs.
After the execution of the tactic, the underlying architecture-level performance model is
analyzed to predict the effect of the tactic on the system performance. If no SLA violation
is detected, the strategy can continue removing or consolidating resources. In case an SLA
violation occurs, the application of the last tactic must be reverted, i.e., the adaptation
framework must undo the adaptation actions of the tactic’s adaptation plan. Which of
these two tactics is chosen depends on their current weights. In our example, the initial
values are 1.0 for RemoveResources and 0.5 for MigrateVM. The concepts of the weighting
function will be presented with more details in Section 6.2.5.

6.2.4. QoS Data Repository

To evaluate the effect of executed tactics, we use QoS-related metrics that can be measured
at the model and system level, respectively. We collect and store such measurements in a
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repository that can be queried later, e.g., to quantify the effect of tactics on metrics that
are relevant for the strategy’s objective.

This repository is called QoSDataRepository (cf. Figure 6.9). It contains a set of Metric-
Types that can be obtained from the model or system, respectively. The MetricTypes are
identified by their name. Examples for such MetricTypes are the average response time
of servicex, the 90% quantile of response time of servicey, or the average utilization of
resourcen.

timestamp : Date

Result

QosDataRepository
name : String

MetricType
metricList

Impact

before

after

value : Double

MetricValue
1..*

1

1

1

resultHistory

1..*

1..*

impact

List

1..*

*

value

type

Figure 6.9.: The QoS data repository meta-model.

The repository also contains a history of Results. A Result is a set of MetricValues collected
at a given point in time (timestamp). A MetricValue contains the actual value of a Metric-
Type at this time point. Based on this information we can describe the achieved Impact
of a tactic as the difference between two Results that have been obtained before and after
the application of a tactic. For example, if the value of a metric was 500 ms and is 200
ms after the execution, the impact would be -300 ms, i.e., an improvement of the response
time metric.

Our intention was not to define a new meta-model for QoS metrics and values but rather
a quick and easy way to query QoS-relevant data. Thus, we kept this meta-model very
basic to adapt and re-use it in other scenarios. For example, this meta-model can serve
as a decorator model for the Structured Metrics Metamodel (SMM), developed by the
Architecture-Driven Modernization Task Force of the Object Management Group (OMG)
(2012). Thereby, it is easier to reuse other existing tools based on SMM, e.g., the MAMBA
Execution Engine and Query Language of Frey et al. (2012). When decorating SMM, the
class MetricType refers to the ObservedMeasure of the SMM, a MetricValue corresponds to
the Measurement of the SMM, and Result corresponds to Observation. In this way, we can
use data that has already been collected and stored in a repository by measurement tools
like Kieker (van Hoorn et al., 2012). Additionally, for this meta-model we can easily provide
a connector for the Query Engine developed by Gorsler et al. (2014); Gorsler (2013). Then,
one can use the Descartes Query Language (DQL) (Gorsler et al., 2014) to formulate SQL-
like statements to easily query relevant performance data from our repository.

6.2.5. Weighting Function

To decide which tactic to apply next, a strategy chooses the tactic that has the highest
weight. The weight is calculated and assigned directly after executing the tactic, so the
strategy might choose a different tactic in the next adaptation step. The actual value of
the weight of a tactic depends on the impact the tactic achieved in the adaptation process,
i.e., if metrics of interest have been improved or degraded. How to calculate such weights
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can be specified with a WeightingFunction. In our context, a weighting function is formally
specified as follows. Let

T = {t1, t2, . . . , tl} be the set of tactics,

M = {m1,m2, . . . ,mm} be the set of metric types,

S = {1, 2, . . . , n} denote the adaptation iterations of the system adaptation process, and

Vs = {vs(m1), vs(m2), . . . , vs(mm)} be the set of metric values at adaptation step s ∈ S.

Then, we define a weighting function as

f : T × S → R,

i.e., function that assigns a real number (the weight) to the given tactic t at a given
adaptation step s. The idea is that any existing optimization algorithms or meta-heuristics
like Tabu Search or Simulated Annealing (cf. Blum and Roli, 2003) can be used here to
determine the weights depending on the current state of the system. As future work, it is
also possible do define weighting functions that also consider a certain number of previous
system states.

Currently, we specify weighting functions that are based on performance metrics. However,
our approach can be easily extended with other more complex weighting functions and
weighting functions for other QoS properties. Our WeightingFunction uses one or more
WeightedMetrics (cf. Figure 6.5) to calculate the weight for a tactic. A WeightedMetric
assigns a specific weight to the referred MetricType. More formally, we define a weighting
function w : M → R that assigns a real number to any metric type m ∈ M . The weight
of a metric type can be used to express the importance of this metric type to the overall
result of the weighting function. In contrast to the weights of tactics, this weight assigned
to metrics is specified when designing the adaptation process and is fixed during the
adaptation process. In a weighting function, the weights for metrics are used as follows.
To determine the weight for an applied tactic t, we calculate the achieved Impact of t on
each metric m ∈Mt and multiply it with the weight that is assigned to m, where Mt ⊆M ,
containing only the metric types affected by t. More formally, the weight for a tactic t is
calculated as

f(t, s) =
∑

m∈Mt

is(m) · w(m)

where is(m) is the impact of tactic t on metric type m ∈ Mt and w(m) is the weight
assigned to metric type m ∈ Mt. To quantify this impact, we calculate the delta of the
values of the relevant metric types at the timestamps before and after the application of
a tactic

is(m) = vs(m)− vs−1(m).

In other words, the weights of the set of metric types multiplied with the impact of the
applied tactic on these metric types determines the weight that is assigned to the tactic.
The reason why we use weights is that they are machine-processable and they relate
directly to our specification of Objectives, which also refer to the same MetricTypes. The
specification of the WeightingFunction can be based on or even derived from the strategy’s
objective. However, this (automatic) derivation is part of future work.

Example: To illustrate our WeightingFunction concept, we give two example weighting
functions for our example strategies depicted in Figure 6.8. Imagine that the ResolveBot-
tleneck strategy’s objective is to maintain SLAs, but it should prioritize tactics that have
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a beneficial impact on the services of the more important customers. Therefore, assume
that we have two different services, one of a gold customer (servicegold) and one of a sil-
ver customer (servicesilver). For each of these services, we observe the metric types 90%
quantile of the response time, i.e., M = {rtgold, rtsilver}. To prioritize the impact on the
response time of the gold customer’s service over the one of the silver customer, we set
the weighted metrics to w(rtgold) = −2.0 and w(rtsilver) = −1.0. Note that the weights
are negative because improving the response time results in a negative impact. To assure
that a tactic which is beneficial for the gold service gets a higher weight, we can specify a
weighting function

∀s ∈ S : fResolveBottleneck(t, s) :=
∑
m∈M

w(m)is(m)

that assigns weights depending on the impact on the response times of the gold and silver
customer, respectively.

Another example is the weighting function we specified for the ReduceResources strategy
to assign new weights to the tactic RemoveResources and MigrateVM.

∀s ∈ S : fReduceResources(t, s) :=

{
1, if rtgold < τ ∧ rtsilver < τ

0, else.

This function assigns a weight of one to the given tactic t as long as the response time
metrics M are below the given threshold τ , i.e., the SLAs are not violated. Only if an
SLA is violated, the weight of the given tactic is changed to zero to yield precedence
to other tactics. Hence, our example strategy depicted in Figure 6.8 first applies tactic
RemoveResources because it has a weight of one and continues to apply this tactic until the
strategy’s objective is fulfilled or the weighting function assigns a weight of zero. Then,
the strategy would continue with the MigrateVM tactic since it has a weight of 0.5.

6.3. Adaptation Framework Architecture and Implementa-
tion

In this section, we present a framework that implements the model-based adaptation con-
trol loop described in Chapter 4. Input to this framework is a Descartes Modeling Language
(DML) instance. The framework interprets the adaptation process model (cf. Section 6.2)
described as part of DML instance and applies the modeled adaptations on the resource
landscape, application architecture, and deployment models (cf. Section 5.1). The out-
put is an adapted model of the system with a configuration that solves the problem that
triggered the adaptation process.

Figure 6.10 depicts the different software components of our framework. In the following,
we walk through the architecture of our framework, starting at the Analyze phase and
explaining the functionality of each component. The control flow between the components
is depicted in Figure 6.11.

The WCF component forecasts future workload intensities based on the monitored work-
load data. We use the ModelAdaptor to apply the forecasts to the usage profile model of
DML instance stored in the ModelRepository. Next, we query the ModelAnalyzer
employing its online performance prediction techniques to evaluate the impact of the fore-
cast workload changes on the system performance. In case the changes have a negative
impact causing a performance problem, WCF triggers the AdaptationController to
start an adaptation process.
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Figure 6.10.: Architectural overview of the adaptation framework.

The AdaptationController is the core component of our framework. The Adapta-
tionController listens for events that trigger the Plan phase to find a new system
configuration that solves problems detected in the Analyze phase (cf. Section 4.1). When
a problem has been signaled through an event from the Analyze phase, the Adaptation-
Controller launches the adaptation process to find a model configuration that resolves
the identified issues. To start this process, the AdaptationController queries the
ModelRepository for the strategy that has been designed to be triggered upon obser-
vation of the respective event. Next, it selects the tactic with the currently highest weight
from the set of tactics assigned to the strategy (cf. Section 6.2). Then, the Adapta-
tionController passes the selected tactic to the ModelAdaptor, which adapts DML
instance in the ModelRepository according to the tactic’s adaptation plan. The Mode-
lAdaptor is the part of the adaptation framework that executes control flow elements like
loops and branches and implements the execution of the modeled adaptation actions on
the model level. In other words, the ModelAdaptor is the instance within our framework
that ultimately defines the semantic of the modeled adaptation actions.

After the ModelAdaptor has applied the selected tactic, the AdaptationController
calls the ModelAnalyzer to analyze the changed model instance. Depending on the
performed adaptations, the ModelAnalyzer generates a performance query and triggers
the online performance prediction process presented by Brosig (2014) and summarized in
Section 2.2.4. The results of the model analysis are stored in the QoSDataRepsitory.

After model analysis, the AdaptationController triggers the PerformanceEval-
uator to evaluate the impact of the tactic. The PerformanceEvaluator queries the
metric values from the QoSDataRepository for the metrics that are referenced by the
strategy’s weighting function. Next, it uses the weighting function (cf. Section 6.2.5) to
calculate the new weight for the tactic that has been applied last, and assigns this value to
the tactic. Next, the AdaptationController decides if the detected problem has been
solved or if further adaptations of the model with different tactics are required. To decide
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this, the AdaptationController checks if the metric values are within the range that
has been specified by the strategy’s objective. If a valid solution was found, the Adapta-
tionController triggers the Execute phase to adapt the real system. Otherwise, the
process continues until a solution is found or a specific time limit is reached.

In the Execute phase, system-specific adaptors replay the changes recorded by the Mod-
elAdaptor on the actual system without considering adaptation steps that have been
discarded in the model adaptation phase. These adaptors are the system-specific parts
of our framework which must be implemented for the individual technology used in the
adapted system, i.e., adaptors encapsulate the system-specific implementations of the mod-
eled adaptation actions.

Implementation

All components—except of the workload classification and forecasting component WCF—
are implemented in Java as OSGI components, using the Eclipse Equinox OSGi infras-
tructure. For code generation and editing of the model instances, we use the Eclipse
Modeling Framework (EMF). All components are available as stand-alone Java applica-
tions or Eclipse plug-ins (Descartes Research Group, 2013).

To provide continuous workload forecasts, the WCF component is designed as a stand-
alone Java application that is independent of the rest of the framework and is used in the
Analyze phase for workload forecasting (cf. Chapter 7).

The AdaptationController is implemented as a Java thread that connects to the
other components upon creation and then listens for triggering events from the Analyze
phase. When triggered, it starts to adapt the model according to the given strategy until
the problem that caused the event is solved or the period of time available for adaptation
has elapsed.

To adapt a DML model instance, the ModelAdaptor employs the adapter classes gener-
ated by EMF and the EMF reflection API to interpret the adaptation plan and execute
the defined adaptation actions. Furthermore, the ModelAdaptor uses the EMF Change
Model API to track the changes performed on DML instance. This way, we can ensure the
transaction semantics of tactics (cf. Section 6.2) and roll back the model to its previous
state if the application of a tactic fails.

The ModelRepository provides access to the current DML instance. It also uses the
adapter classes generated by EMF to query and inspect the model instances. The Model-
Repository also uses EMF Change Model API to maintain a model history by tracing
all changes that have been applied to the models. Thereby, we are able to switch back to a
previous model state or use the trace to generate an adaptation plan that can be replayed
on the real system in the Execute phase.

The QoSDataRepsitory is implemented as an instance of a meta-model specified in
EMF Ecore. In the context of this thesis, it manages the performance-relevant metrics
measured in the system or predicted by the ModelAnalyzer.

The ModelAnalyzer implements the online performance prediction techniques described
in Section 2.2.4. The actual implementation of this component is not in the scope of this
thesis but presented in Brosig (2014).

The PerformanceEvaluator uses a special query language developed by Gorsler et al.
(2014) to query the performance metrics relevant for evaluating the impact of an adapta-
tion. The weighting functions for quantifying the adaptation impact are implemented in
Java.
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Figure 6.11.: UML sequence diagram of the interactions between the components of the
adaptation framework.
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6.4. Evaluation

In this section, we evaluate the adaptation process meta-model’s generic and flexible for-
malism for modeling system adaptation. First, we assess our adaptation process meta-
model and adaptation framework by comparing them with an existing classification of
adaptation models (Vogel and Giese, 2012). Second, we demonstrate the efficiency and
accuracy of our approach by comparing it with PerOpteryx (Martens et al., 2010), a
framework for multi-objective software architecture optimization. Finally, we show the
reusability of our meta-model in the context of SLAstic (van Hoorn, 2014), a framework
for architecture-based online capacity management.

6.4.1. Comparing the Adaptation Process Meta-Model with Story Dia-
grams and Stitch

Vogel and Giese (2012) compiled an extensive list of requirements for adaptation models,
considered as models that are used for planning and decision-making in adaptive systems.
The list of Vogel and Giese comprises functional requirements (i.e., concepts required for
analysis, decision-making, and planning) and non-functional requirements (requirements
concerning the quality of the adaptation model). Furthermore, the list also includes frame-
work requirements, i.e, requirements regarding the framework interpreting the adaptation
model. Vogel and Giese use this list of requirements to evaluate two approaches, Stitch
(Cheng and Garlan, 2012) and Story Diagrams (Fischer et al., 2000). We now use the same
list to evaluate S/T/A, comparing it to Stitch and Story Diagrams. Table 6.1 shows how
the three adaptation models support the different requirements, distinguishing between no
support (-), partial support (P), and full support (F).

Concerning the functional language requirement Goals (LR-1), the OverallGoal and Ob-
jectives are the concepts used in S/T/A to specify the adaptation goal. Although this
thesis is focused on performance management, S/T/A is designed to also support other
Quality Dimensions (LR-2). With its weights of tactics and metrics, it also provides means
to specify adaptation Preferences (LR-3). S/T/A has explicit Access to Reflection Mod-
els (LR-4) as it refers to the resource landscape and application architecture meta-model
to query information about the current state of the system, which corresponds to Vogel
and Giese’s concept of a reflection model. Adaptations in S/T/A are triggered by Events
(LR-5) that are emitted in the Analyze phase and the Evaluation Conditions (LR-6)
can be described using Objectives. Evaluation Results (LR-7) are not an explicit part of
the S/T/A adaptation language but they can be stored in and queried from the separate
QoS data repository. Adaptation Options (LR-8) are not part of S/T/A but they can
be specified as part of the adaptation points meta-model. The specification of Adapta-
tion Conditions (LR-9) is supported at the level of Tactics and one can define different
strategies tailored for special situations. Adaptation Costs and Benefits (LR-10) can be
expressed by user-defined WeightingFunctions evaluating the impact and possible benefit
of Tactics. Although we currently do not consider adaptation costs explicitly, costs can be
integrated into the WeightingFunction in future work. Persisting the History of Decisions
(LR-11) is not part of S/T/A but it is an important part of the adaptation framework
interpreting S/T/A instances.

Our S/T/A adaptation language can be modularized along the three abstraction levels
Strategies, Tactics, and Actions, but its scalability is limited to these concepts. Thus, it
supports non-functional language requirements Modularity, Abstractions and Scalability
(LR-12) only partially. In S/T/A, Actions are the only elements that actually affect the
model or system, encapsulated in transaction-like Tactics. Thus, we clearly distinguish
concepts that have Side Effects (LR-13). Furthermore, Tactics and Actions support Pa-
rameters (LR-14). However, as S/T/A is formally specified using a meta-model but has no
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Table 6.1.: Comparison of the support of the language requirements (LR) and framework
requirements (FR) of Stitch and Story Diagrams (cf. Vogel and Giese, 2012),
extended with S/T/A: ’-’ indicates no support, ’P’ indicates partial support,
and ’F’ indicates full support.

Functional Language Requirements
Req. S/T/A Stitch SD Req. S/T/A Stitch SD Req. S/T/A Stitch SD
LR-1 F - F LR-5 F P F LR-9 F F F
LR-2 F F F LR-6 F F F LR-10 P F F
LR-3 F F F LR-7 P - F LR-11 P P F
LR-4 F P F LR-8 P F F

Non-functional Language Requirements
Req. S/T/A Stitch SD Req. S/T/A Stitch SD Req. S/T/A Stitch SD
LR-12 P P F LR-14 F P F LR-16 P P P
LR-13 F - P LR-15 P - P LR-17 P P F

Framework Requirements
Req. S/T/A Stitch SD Req. S/T/A Stitch SD Req. S/T/A Stitch SD
FR-1 F P F FR-3 F - P FR-5 F - F
FR-2 P - P FR-4 F - F FR-6 F - F

explicit formal definition of its semantics, the Formality requirement (LR-15) is fulfilled
only partially. The S/T/A concepts are generally independent of an architecture-level
performance model, but we can support Reusability (LR-16) only partially as the S/T/A
model instances are coupled to concrete architecture-level performance model instances
based on DML. Concerning the Ease of Use (LR-17), S/T/A requires understanding of
modeling concepts (e.g., control flow diagrams), but no programming skills, etc.

Looking at the framework requirements (FR), our adaptation framework supports Con-
sistency (FR-1), Incrementality (FR-2) and Reversibility (FR-3) because it works on the
model level (where consistency checks can be executed) and employs techniques provided
by the Eclipse Modeling Framework (EMF) to change models incrementally or reverse
these changes, if necessary. Our adaptation framework also considers Priorities (FR-4)
by assigning weights to tactics and metrics. As S/T/A is designed to be independent of
the model analysis techniques, and adaptation strategies can be designed to suit certain
time constraints, we can also support different Time Scales (FR-5). Our approach also
supports Flexibility (FR-6) because the application of tactics varies during execution of
the adaptation process.

As a result of comparing the support of functional and non-functional requirements we can
rank our S/T/A adaptation language between Stitch, which focuses on system administra-
tion tasks, and the more general-purpose-like Story Diagrams. Note that this comparison
focuses on the conceptual aspects of these languages and is based on information available
in the literature (Vogel and Giese, 2012; Cheng and Garlan, 2012; Fischer et al., 2000). A
more detailed assessment of technical aspects follows in the next section.

6.4.2. Comparing Accuracy and Efficiency Using PerOpteryx

Comparing approaches for self-adaptive systems in terms of properties like accuracy and
efficiency is a big challenge (Cheng et al., 2009; de Lemos et al., 2011). The main rea-
son is that to compare such approaches in a fair manner, the respective concepts and
their implementations must be applicable in the same self-adaptive environment, ideally a
benchmark for self-adaptive systems. Therefore, the compared approaches must provide
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mature tool support such that they can be applied outside of their target domain. Story
Diagrams provide graphical editors to model and validate adaptation models and Stitch
can be used in the Rainbow framework for self-adaptive systems (Garlan et al., 2004).
However, the effort to adapt these approaches and their tools to one of our evaluation
scenarios was too high. Furthermore, we did not have access to the environments in which
Story Diagrams or Stitch have been applied. Thus, we decided to compare the accuracy
of our approach with PerOpteryx, a framework for improving software architectures by
automatically trading-off different design decisions (Martens et al., 2010). We integrated
the concepts of strategies, tactics, and actions into the PerOpteryx framework. The idea is
to execute the adaptation process modeled with S/T/A and compare it with PerOpteryx’s
optimization heuristics to show that our approach can find a suitable system configuration
with sufficient accuracy and improved efficiency.

To improve the software architecture of a given architecture-level performance model,
PerOpteryx searches the space of possible configurations of a given model instance for
candidates that fit given optimization objectives. Therefore, PerOpteryx starts from the
initial system configuration that has been modeled and generates new candidates along the
degrees of freedom specified by the adaptation points meta-model. These new candidates
are evaluated w.r.t. the given optimization objectives and a new optimization iteration
starts with the best fitting candidates. Note that PerOpteryx is targeted at design-time
optimization, i.e., there are no strict time constraints to evaluate a huge number of can-
didates. Although PerOpteryx implements heuristics encapsulating domain knowledge to
reduce the number of candidates that are evaluated, PerOpteryx, with its implemented
genetic algorithms, is not designed for use at run-time where quick results are required.

For our evaluation, we extended PerOpteryx and implemented a strategy and a set of
tactics to constrain the generation of candidates (i.e., system configurations) to find a
candidate that fulfills the objective of the strategy as quickly as possible. For our exper-
iments, we used the same models and settings as in the Business Reporting System case
study used to evaluate PerOpteryx (Martens et al., 2010). Figure 6.12 shows the output
after 100 iterations with a population of 60. It depicts the set of Pareto-optimal candi-
dates (marked by O) when trading-off response time (in seconds) vs. cost (an abstract unit
used by PerOpteryx). We use this Pareto-optimal set of candidates as the baseline for the
following accuracy and efficiency evaluation of our approach.

We assume that in this scenario the response time of the initial candidate (8.4 seconds)
violates an SLA (response times < 5 seconds). This violation triggers our implemented
strategy with the objective to adapt the system such that the response time is below five
seconds. The strategy chooses a tactic from the given set of tactics T = {IncreaseResources,
LoopIncreaseResources, BalanceLoad} depicted in Figure 6.13. The IncreaseResource tactic
implements one action, increasing the CPU capacity of the server with the highest utiliza-
tion by 10% of its initial capacity. LoopIncreaseResources implements the same action but
within a loop action repeating the IncreaseCPU action as often as specified by the loop’s
counter parameter. BalanceLoad migrates a software component from the server with the
highest utilization to the server with the lowest. For the initial system state, we set the
weights of the three tactics to (1.0, 0.0, 0.0). We then use the PerOpteryx framework to ex-
ecute our strategy, choosing a tactic, executing it, and evaluating the resulting candidate.
The evaluation reassigns weights to the tactics according to their effect. In this scenario,
the WeightingFunction is kept simple, assigning a weight of zero to a tactic if it achieves no
positive effect. The strategy continues applying the tactic with the highest weights until it
reaches a state that fulfills the objective specified by the strategy. The resulting candidate
of this process, i.e., system configuration that resolves the SLA violation, is depicted by
the ∗ symbol in Figure 6.12.
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Figure 6.12.: Pareto-optimal candidates found by PerOpteryx (O) and the candidate found
when S/T/A is applied to guide the search process (∗).
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Figure 6.13.: Strategy, tactics, and actions used in the PerOpteryx scenario.

For our evaluation, we define efficiency as how much time is spent to find a system con-
figuration that fulfills the given objectives. In model-based system adaptation, the time
consumed to find a solution mainly depends on two factors. The first factor that can have
a huge influence on the consumed time is the length of the model analysis. Coarse-grained
analysis methods are quicker but produce less accurate results whereas simulation is much
more accurate but also more expensive. To give an example, if we analyze our model
with an LQN Solver (Franks et al., 2011), we obtain coarse-grained results within seconds
whereas a simulation approach takes minutes, but provides much more detailed results.
Thus, for systems of realistic size and complexity, a full-fledged search with PerOpteryx
using simulative model analysis can typically take several hours or even up to several days.
The second factor is how many iterations an adaptation approach needs to find a solution,
i.e., how many model analysis steps the process requires. As model analysis can be ex-
pensive, reducing the number of iterations is essential for increasing the efficiency of our
approach.

To evaluate the efficiency of S/T/A, we compare it to PerOpteryx based on these two
factors. The results depicted in Figure 6.12 show that the configuration found using the

106



6.4. Evaluation 107

S/T/A model is not optimal. However, it fulfills the given objective and was found within
eight iterations whereas the standard evolutionary search of PerOpteryx provides the first
SLA-fulfilling candidate after ten iterations (cf. Figure 6.14). Thus, using S/T/A models
can be more efficient to find a close to optimal solution than a full-fledged optimization
approach. Furthermore, we see that five out of the eight iterations executed the LoopIn-
creaseResources tactic which executes two nested adaptation actions. In total, this results
in saving five (out of thirteen) model analyses that would have been necessary without
S/T/A. As a result, if strategies and tactics are specified to operate in an efficient manner,
solutions can be found more efficiently. Note, that there are also further ways to speed up
the analysis, for example, leveraging techniques for caching previous analysis steps.
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Figure 6.14.: Comparison of the candidates of the PerOpteryx evolutionary search (O)
with the candidates of S/T/A (◦).

Finally, we emphasize that the contribution of our adaptation process meta-model is not a
new optimization algorithm. Instead, our goal, which is illustrated with the described sce-
nario, is to focus system adaptation processes such that a system configuration that fulfills
given objectives is found as quickly as possible, i.e., the resulting system configuration must
not necessarily be globally optimal. We can say that the accuracy with which a solution
is found depends on the accuracy of the used architecture-level performance model and
employed model analysis technique. If the architecture-level performance model reflects
the system state within a given confidence level, the solutions found by S/T/A maintain
the same accuracy. Furthermore, as the analysis time is a major factor influencing the
efficiency of the adaptation process, one must carefully trade-off between accuracy and
efficiency, i.e., if efficiency is key, one must sacrifice a certain amount of accuracy and vice
versa.

6.4.3. Reusing Adaptation Plans in SLAstic

This section illustrates how the generic concepts of our adaptation process meta-model
can be used in other adaptation scenarios based on architecture-level performance models.
The results presented in the following have been created in cooperation with the University
of Kiel, which also provided SLAstic, a framework for architecture-based online capacity
management (van Hoorn, 2014; von Massow et al., 2011). SLAstic aims to increase the re-
source efficiency of distributed component-based software systems employing architectural
run-time adaptations. SLAstic also relies on architectural models describing a system’s
QoS-relevant aspects and adaptation capabilities including assembly, deployment, QoS
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objectives, and reconfiguration capabilities. SLAstic’s purpose is to determine required
adaptations proactively in order to derive and execute appropriate adaptation plans. Its
OverallGoal is to increase a system’s efficiency, i.e., providing only as much capacity as
required to satisfy the requested QoS objectives. In this scenario, we show how our adap-
tation process meta-model can be used to specify and execute architectural adaptation
plans. An adaptation manager of the SLAstic framework executes these plans to perform
the modeled actions with the goal to bring a real or simulated system from a current to a
desired configuration.

The rest of this section presents some results of a lab experiment, employing SLAstic
to control the capacity of a software system deployed on an Eucalyptus-based IaaS cloud
environment, which is compatible with the Amazon Web Services (AWS) API (Eucalyptus
Systems Inc., 2013). The five S/T/A actions depicted in Figure 6.15 correspond to the
set of architectural run-time adaptation operations currently supported by the SLAstic
framework: allocate and deallocate execution containers (i.e., physical or virtual servers),
as well as migrate, replicate, and dereplicate a given software component to or, respectively,
from a given execution container. Input parameters refer to types from the SLAstic meta-
model. Note that these actions are the same regardless of whether SLAstic is connected to
an IaaS environment or, for example, to a simulator for run-time adaptable PCM instances
(von Massow et al., 2011).

<<Action>>
allocateContainer

input
type:ExecutionContainerType

output
container:ExecutionContainer

<<Action>>
deallocateContainer

input
type:ExecutionContainerType

<<Action>>
migrateComponent

input
type:ExecutionContainerType

output
component:DeploymentComponent

to:ExecutionContainer

<<Action>>
replicateComponent

input
component:AssemblyComponent

output
component:DeploymentComponent

to:ExecutionContainer
<<Action>>

dereplicateComponent
input

component:DeploymentComponent

Figure 6.15.: Actions of the SLAstic online capacity management scenario.

In the cloud scenario, an adaptation manager receives pre-calculated AdaptationPlan in-
stances and executes them by interacting with the AWS API and the allocated nodes
according to the actions specified in Figure 6.15. To do so, SLAstic’s adaptation man-
ager maintains mappings between architectural model entities and their system-specific
counterparts, e.g., mapping execution container types (ExecutionContainerType) to pairs of
machine image and VM type, or mapping logical software component instances (Assembly-
Component) to the respective software artifacts to be deployed. For example, when exe-
cuting the allocateContainer action, the adaptation manager calls the AWS service run-
instances and performs subsequent initialization actions, such as starting an application
server and system-level monitoring. As a second example, replicateComponent involves
steps like deploying a software artifact (e.g., .war or .ear archives) corresponding to an
assembly component into an application server on a previously allocated machine and
updating the load-balancing configuration.

In our evaluation, we expose a Java-based application (JPetStore 5.0) to a probabilistic
workload with varying intensity based on a 24-hour workload profile obtained from an
industrial system. The profile was scaled to an experiment duration of 24 minutes plus
2 minutes cooldown. In this setting, we made the assumption that we have a good un-
derstanding of the correlation between application-level workload intensity—in this case,
the number of requests to a software component per minute—and the CPU utilization.
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For each software component, we defined a rule set specifying the number of component
instances to be provided at certain workload intensity levels, e.g., five instances in periods
with a workload intensity of 27, 000 requests per minute. Deviations between the num-
ber of component instances specified in the rule set and the number of instances actually
allocated, trigger the adaptation planner to create an adaptation plan with the goal to
achieve the requested architectural configuration. This plan is then sent to the adaptation
manager for execution.
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Figure 6.16.: Online capacity management executing modeled adaptation plans.

We executed the experiment with and without adaptation being enabled. In the latter
scenario, a fixed number of 6 nodes was allocated throughout the entire experiment. Fig-
ure 6.16 shows the measured CPU utilization and the varying number of allocated nodes
with adaptation enabled. The number of allocated nodes in this experiment varies between
one and six. Comparing the results of both settings, the average CPU utilization increased
with adaptation enabled, while (average) response times were very similar (5 ms measured
at the application’s entry points). More importantly, this scenario gives an example for
decoupling adaptation planning from execution by using instances of our meta-model to
describe pre-calculated adaptation plans. We successfully exchanged these adaptation
plans between planning and executing parties to achieve a desired system configuration
in a cloud scenario. This illustrates how the generic concepts of our adaptation process
meta-model can be applied in other contexts, too.

6.5. Summary

In this chapter, we presented two meta-models, one to describe the adaptation points of
a dynamic system and the second for modeling adaptation processes. Furthermore, we
presented an architecture of an adaptation framework which implements the model-based
adaptation control loop presented in Chapter 4, leveraging the novel features of DML
as a basis for autonomic performance-aware and resource management. We evaluated
our approach by comparing it with two other adaptation languages (Stitch and Story
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Diagrams) and applying it in two different scenarios in the context of multi-objective
software architecture optimization and online capacity management, respectively.

The results showed that our adaptation language and adaptation framework fulfill all es-
sential requirements for adaptation models (Section 6.4.1). We also demonstrated how our
adaptation language can improve the efficiency of system adaptation processes. However,
we also observed that the efficiency highly depends on how strategies and tactics are mod-
eled as well as on the desired accuracy of the solution. Vice versa, the accuracy of the
the model analysis influences efficiency, since conduction detailed analysis can be time-
consuming and depends on the accuracy of the underlying architecture-level performance
model. Finally, we demonstrated the reusability of our adaptation process meta-model in
the context of SLAstic, where pre-calculated architectural adaptation plans can be used
to exchange information between the adaptation planning and the execution phase.
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7. Self-Adaptive Workload Classification
and Forecasting

A vital benefit of model-based adaptation approaches is that models can be leveraged to
analyze the impact of changes in the system environment on the system’s performance.
However, a major challenge is to predict such changes in the environment accurately and
continuously at system run-time. In the context of performance and resource management,
a significant performance-influencing factor that is subject to change at run-time is the
system’s workload (cf. Chapter 4). Consequently, if we are able to predict the workload,
i.e., the intensity with which the system is used, we can employ the model-based approach
presented in the previous chapters to analyze and detect possible future performance prob-
lems and proactively adapt the system to maintain performance requirements.

In this chapter, we present an approach for self-adaptive Workload Classification and
Forecasting (WCF) at run-time. We use well-established time series analysis techniques
to identify the characteristics of workloads. Based on the identified characteristics, we
select suitable forecasting methods to predict future workload intensities. These predic-
tion results can then be used as input to model-based system adaptation approaches. Our
approach automatically adapts the selection of the most effective forecasting method as
the workload evolves during operation. Based on this mechanism, we are able to adjust
the forecasting method at run-time to the given workload and forecasting requirements,
thereby improving the forecasting accuracy without introducing significant additional com-
putational overhead.

In Section 7.1, we explain the meanings of different terms we use in this chapter, discuss
the characteristics workloads can expose, and present a survey of the most common time
series analysis methods that we use for workload forecasting. In Section 7.2, we present
our approach for self-adaptive Workload Classification and Forecasting (WCF), selecting
from different time series analysis methods to achieve accurate forecasting results. Sec-
tion 7.3 describes the implementation of our process, which is evaluated in Section 7.4.
The approach presented in this chapter has been developed in collaboration with Herbst
(2012) and published in (Herbst et al., 2014).

7.1. Time Series Analysis

Modern IT systems usually host multiple types of applications which offer different kinds
of software services. These services are used by different users, which can be either humans
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or other systems. The invocation of a software service by a user is called request. Within
the set of requests of a software service, we further distinguish different request classes.
A request class is a category of requests characterized by statistically indistinguishable
resource demands, i.e., requests of the same class consume the same amount of physical
or virtual resources. For each request class, we can observe a distinct workload which we
define as a time series of request arrival rates. In this thesis, a time series is a stochastic
process, i.e., a collection of random variables X = {xt : t ∈ T}, indexed by a totally
ordered set T (the set of “time points”). Each xt, a non-negative random number from
the sample space N0, corresponds to the request arrival rate, the number of unique request
arrivals of the same request class during the respective time interval [t, t+ 1). The elapsed
time between two time points in the time series is defined by a value and a time unit.
Furthermore, the number of time series points that add up to the next upper time unit
or another time period of interest is called the frequency of a time series. This is an
important attribute of a time series which can be used as a starting point to search for
seasonal patterns.
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Figure 7.1.: Examples of three time series of arrival rates.

Figure 7.1 shows examples of three workloads over a period of three days. Each time
series captures the number of request arrivals per hour for a given request class, i.e., the
sampling interval in this example is an hour. One can also recognize a pattern repeating
every 24 time series points. This is the frequency of these time series, which is 24 hours or
one day. In time series A and B, we can also recognize a decreasing trend of the workload
intensity behavior, respectively. The workload intensity behavior (WIB) is a description of
the changes in the workload intensity over time including the shape of seasonal patterns
and trends as well as the level of noise and bursts. Characterizing this intensity behavior
is important to classify the workload. In the following Section 7.1.1, we first present the
different characteristics that workload intensity behaviors can exhibit, which we leverage in
this thesis for workload classification. Depending on the identified characteristics, different
forecasting methods are applicable. In Section 7.1.2, we present a survey of the most
common time series forecasting methods.

7.1.1. Workload Intensity Behavior Characteristics

According to the theory of time series analysis (Box et al., 2008; Hyndman, 2008; Shumway,
2011), a time series can be decomposed into the three components trend, season, and noise.
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The relative weights and shapes of these components characterize the respective workload
intensity behavior.

The trend component can be described by a monotonically increasing or decreasing func-
tion (in most cases a linear function) that can be approximated using common regression
techniques. A break within the trend component is usually caused by system extrinsic
events and therefore cannot be forecast based on historic observations. However, such
breaks can be detected in retrospect, i.e., it is possible to estimate the likelihood of a
change in the trend component by analyzing the durations of historic trends.

The seasonal component captures recurring patterns that are composed of at least one
or more frequencies, e.g., daily, weekly, or monthly patterns. These frequencies can be
identified by using a Fast Fourier Transformation (FFT) or by auto-correlation techniques.

The noise component is an unpredictable overlay of various frequencies with different
amplitudes changing quickly due to random influences on the time series. The noise can
be reduced by applying smoothing techniques like weighted moving average (WMA), by
using lower sampling frequency, or by a low-pass filter that eliminates high frequencies.
Finding a suitable trade-off between the amount of noise reduction and the respective
potential loss of information can enhance the forecast accuracy.

Figure 7.2 illustrates the decomposition of a time series into the above mentioned compo-
nents, as presented by Verbesselt et al. (2010). The first row shows the actual time series
data. The second row contains detected (yearly) seasonal patterns, whereas the third row
shows estimated trends and several breaks within these trends. The remainder depicted in
the bottom row is the non-deterministic noise component computed by the difference be-
tween the original time series data and the sum of the trend and the seasonal components.
The authors also offer an implementation of their approach for time series decomposition
and detection of breaks in trends or seasonal components (Verbesselt, 2009).
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Figure 7.2.: Example time series decomposed into season, trend and noise components
(cf. Verbesselt et al. (2010)).

The theory of time series analysis differentiates between static and dynamic stochastic
processes. In static process models, it is assumed that the trend and seasonal compo-
nents remain constant, whereas in dynamic (non-static) process models, these components
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change or develop over time and therefore have to be approximated periodically to achieve
good forecast accuracy. Still, the trend and seasonal components are considered to be
deterministic and the quality of their approximation is important input for forecasting
methods. Depending on the applied stochastic model, the seasonal, trend and noise com-
ponents can be considered either as multiplicative or additive.

A shortcoming of decomposing a time series into these components (e.g., by using the
BFAST approach by Verbesselt et al. (2010)) is that the decomposition induces a high
computational overhead. Hence, characteristics of a time series that can be computed
with low overhead at run-time are crucial for efficient workload classification. In the
following, we describe such characteristics.

The burstiness index is a measure for the weight of fluctuations (bursts) within the time
series and calculated by the ratio of the maximum observed value to the median within a
time frame.

The length of the time series mainly influences the accuracy of approximations for the
above mentioned components and limits the space of applicable forecasting methods.

The number of either increasing or decreasing consecutive monotonic values within a time
frame indirectly characterizes the influence of the noise and seasonal components. A small
value can be interpreted as a sign of a high noise level and a hint to apply a time series
smoothing technique.

The maximum, median, and quartiles are important indicators of the distribution of the
time series data and can be unified in the quartile dispersion coefficient (QDC), defined
as the distance of the quartiles divided by the median value.

The standard deviation and the mean value are combined in the coefficient of variation
(COV), which characterizes the dispersion of the time series value distribution as a dimen-
sionless quantity.

Absolute positivity of a time series is an important characteristic because intervals contain-
ing negative or zero values can influence the forecast accuracy and even the applicability
of certain forecasting methods. As arrival rates cannot be negative by nature, a time series
that is not absolutely positive should be subjected to a simple filter eliminating the zero
or negative values or it should be analyzed using specialized forecasting methods.

The relative gradient is defined as the relation of the absolute gradient of the latest quarter
of a time series period to the median of this quarter. It captures the steepness of the latest
quarter of the period. A positive relative gradient shows that the last quarter of the period
changed less than the median value, a negative value indicates a steep section within the
time series (e.g., the limb of a seasonal pattern).

As mentioned previously, the frequency of a time series represents the number of time
series values that form a period of interest (in most cases simply the next bigger time-
unit). These values are an important input as they are used as starting points for the
search for seasonal patterns.

7.1.2. Survey of Forecasting Methods

In this section, we compare the most common forecasting approaches in the field of time
series analysis. In a brief summary, we highlight their requirements, advantages and dis-
advantages, based on (Box et al., 2008; Hyndman, 2008; Hyndman and Khandakar, 2008;
Shumway, 2011; De Livera et al., 2011; Hyndman et al., 2002; Shenstone and Hyndman,
2005). All presented forecasting methods have been implemented in the R forecast package
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by Hyndman (2009) and documented in (Hyndman and Khandakar, 2008). The imple-
mented forecasting methods are based either on the innovations state-space approach (Hyn-
dman, 2008) or on the auto-regressive integrated moving averages (ARIMA) approach for
stochastic process modeling (Box et al., 2008). These two general approaches for stochas-
tic process modeling have common aspects, but are not identical as in both cases there
exist model instances that have no counterpart in the other approach. Both have different
strengths and weaknesses as discussed, e.g., by Hyndman and Khandakar (2008). Note
that further forecasting methods, like the Theta model (Assimakopoulos and Nikolopoulos,
2000) or the Holt-Winters approach (Goodwin, 2010), are covered in our presented list as
a special case of exponential smoothing.

In the following sections, we discuss the properties of different forecasting methods we con-
sider for our online workload classification and forecasting approach. Table 7.1, summarizes
the presented forecasting methods and their most important properties, the requirements
to apply the respective method as well as its benefits and shortcomings. Concerning the
computational complexity, the description in common O-notation is not feasible in most
cases as the shape of seasonal patterns contained in the time series data as well as the used
optimization thresholds during a model fitting procedure strongly influence the computa-
tional overhead. Therefore, we evaluated the computational complexity of the individual
methods by running experiments with a representative amount of method executions on a
machine with an Intel Core i7 CPU (2.7 GHz). The forecasting methods can only utilize a
single core, as multi-threading is not yet fully supported by the existing implementations.

7.1.2.1. Naive Forecast

The underlying assumption of the naive forecasting method is that the next observation is
most likely the same as the one that was currently observed. This method is usually em-
ployed as the reference method for comparing forecast approaches (Hyndman and Koehler,
2006). It can be combined with a random-walk factor or a drift. This method induces no
computational overhead besides the calculation of a confidence interval and requires only
a single time series point to be applicable. The naive method is identical to the moving
averages method with a sliding window of size one.

7.1.2.2. Moving Averages

The moving averages (MA) method computes the unweighted mean of the previous n time
series points as the point forecast for the next interval. As the time series develops, the
sliding window of n time series points and the respective mean develops, too. Compared
to the naive method, this method is able to smooth out a certain noise level by averaging
over the sliding window. The computational overhead is very low, i.e., in O(log(n)).

7.1.2.3. Simple Exponential Smoothing

The simple exponential smoothing (SES) method extends the MA approach by weighting
the more recent values of the sliding window with exponentially higher factors. In the
first step of SES, the parameters of the used exponential function are estimated for the
given time series data by employing an iterative optimization process. In the second step,
point forecasts and confidence intervals are computed iteratively. This method smooths
out a certain noise level and reacts on the influences of trend or seasonal patterns due to
the exponential weighting in a more flexible manner than MA. But still, as this method
inherently damps any changes in the values, it does not extrapolate trends or other de-
velopments due to seasonal patterns. Experiments showed that the SES method returns
a result below 80 milliseconds when applied on less than 100 values. This computational
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Table 7.1.: Summary of forecasting methods based on time series analysis.
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overhead is mainly induced by the parameter estimation step. SES is suitable for short-
term forecasts and can be applied on a time series of small size. In the SES method no
trend or seasonal component is considered. This is covered in the ETS method. The SES
method is equal to an application of the ARIMA((p, d, q) = (0, 1, 1)), cf. Section 7.1.2.9.

7.1.2.4. Cubic Smoothing Splines

As demonstrated and discussed by Hyndman et al. (2002), cubic smoothing splines (CS)
can be fitted to univariate time series data to obtain a linear forecast function that es-
timates the trend of the time series. The smoothing parameters are estimated using a
likelihood approach, enabling the construction of confidence intervals. The authors define
this approach is a special case of the ARIMA((p, d, q) = (0, 2, 2)) model (cf. Section 7.1.2.9)
with a restricted parameter set. They demonstrate that this restriction does not affect the
forecast accuracy. This approach tends to estimate trends better than the SES method,
but seasonal patterns cannot be captured. Also, this method sometimes overestimates
a trend in steep parts of a time series. The computational overhead remains below 100
milliseconds when applied on 30 values. We have observed that the computation time rises
for more values without an observable improvement in the forecast accuracy.

7.1.2.5. ARIMA(1,0,1) Stochastic Process Model

The ARIMA((p, d, q) = (1, 0, 1)) model is an instance of the Auto-Regressive Integrated
Moving Averages (ARIMA) framework described in Section 7.1.2.9. It assumes a sta-
tionary stochastic process (constant mean value) as it does not make use of the inte-
gration (I(d)) part (unlike SES and CS). Therefore, it can also be considered as an
ARMA((p, q) = (1, 1)) process model (Shumway, 2011). This method is not as sensi-
tive to steep parts in a time series as the CS method. Like in SES and CS, the application
of the auto-regressive moving average includes a parameter estimation that induces the
major computational effort. Our experiments showed that this method returns results
below 70 milliseconds when applied on the last 100 values.

7.1.2.6. Croston’s Method for Intermittent Time Series

Croston’s method, as presented by Shenstone and Hyndman (2005), is specialized for fore-
casting of intermittent time series. In contrast to other methods, it is applicable to time
series that contain zero values. Internally, the original time series is decomposed into a
time series without zero values and a second time series that captures durations of zero val-
ued intervals. These two time series are then independently forecast using the SES method
and then unified. As this method uses no underlying stochastic model, confidence intervals
cannot be computed. This method is based on SES, and the computational overhead is
slightly higher with 100 milliseconds computation time on 100 values.

7.1.2.7. Extended Exponential Smoothing

Hyndman (2008) and Hyndman and Khandakar (2008) present an extended exponential
smoothing or Error-Trend-Seasonal (ETS) method. This method is based on the innova-
tions state space approach by Hyndman (2008). ETS explicitly models an error (or noise),
a seasonal, and a trend component in individual SES equations that are combined in the
final forecast result in an either additive or multiplicative (or neglected) manner. In addi-
tion, damping the influence of one of these components is possible. The forecast process
starts with the selection of an optimized model, before the parameters of the single SES
equations are estimated. Having the model and the parameters adapted to the time series,
point forecasts and confidence intervals are computed. This method is able to detect and
capture sinus like seasonal patterns that are contained at least three times in the time
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118 7. Self-Adaptive Workload Classification and Forecasting

series. In such cases, the ETS has a computation time of 15 seconds on 200 time series
values. In case of more complex patterns, this method is multiple times faster, but unable
to detect the pattern, resulting in worse forecast accuracy.

7.1.2.8. tBATS Innovations State Space Modeling Framework

The tBATS innovations state space modeling framework presented by De Livera et al.
(2011) has recently been integrated into the R forecasting package. It extends the ETS
state space model for a better handling of more complex seasonal effects by making use of
a trigonometric representation of seasonal components based on Fourier transformations,
by the incorporation of Box-Cox transformations, and by use of ARMA error correction.
tBATS relies on a method that reduces the computational burden of the maximum likeli-
hood estimation. In experiments, processing times of up to 18 seconds have been observed
on 200 values, but in several cases a processing time of five to seven seconds still resulted
in appropriate forecast accuracy.

7.1.2.9. ARIMA Stochastic Process Modeling Framework

The ARIMA (Auto-Regressive Integrated Moving Averages) stochastic process modeling
framework is presented in Box et al. (2008). The ARIMA model space is defined by seven
parameters (p, d, q) and (P,D,Q)m, where the first tuple defines the model’s trend and
noise component. The non-negative integer parameters p, d, and q refer to the order of
the autoregressive (AR), integrated (I), and moving average (MA) parts of the model,
respectively. The second tuple (P,D,Q)m is optional and defines a model for the seasonal
component. The parameter m stands for the frequency of the seasonality. The model
selection is a difficult process that can be realized via space limitation and intelligent model
space traversion using different unit-root tests (KPSS, HEGY or Canova-Hansen) and
Akiake’s information criterion (AIC). Hyndman and Khandakar (2008) propose a process
for automated model selection that is implemented in the auto.arima() function of the
R forecast package. A selected ARIMA model is then fitted to the time series data to
compute point forecasts and confidence intervals. The model selection and further fitting
induces a high computational overhead of up to 50 seconds on 200 values with a high
variance. The reason is that the model selection process depends on the actual data itself
and not only on the quantity of the data. Experiments also showed that this ARIMA
approach achieves better confidence intervals than the tBATS approach in most cases.

7.2. Workload Classification and Forecasting

In this section, we present a self-adaptive Workload Classification and Forecasting (WCF)
process that can be used for selecting suitable forecasting methods at run-time. Over
time, a workload intensity behavior may change and develop in a way that affects its
characteristics, i.e., the workload intensity behavior class is not fixed and needs to be up-
dated periodically. Therefore, to take such changes into account, our classification process
must be self-adaptive, i.e., it must consider changes of the workload intensity behavior
and of given forecasting objectives and automatically adapt the selection of appropriate
forecasting methods.

An overview of the Workload Classification and Forecasting (WCF) process is sketched
in Figure 7.3. Input of the WCF process is a trace of a workload intensity behavior,
a set of forecasting objectives, and possible feedback about the accuracy of the previous
forecast. Essentially, we distinguish two phases in this process, the classification phase and
the forecasting phase. In the classification phase, we extract the characteristics of a given
workload intensity behavior trace. Based on the identified characteristics, we use a decision
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Figure 7.3.: Overview of the workload classification and forecasting (WCF) process.

tree (cf. Section 7.2.6) to classify the workload intensity behavior and to select a suitable
forecasting method. The assignment of the forecasting method also defines the class of
the workload intensity behavior (WIB class). Then, in the forecasting phase, we apply the
assigned forecasting method according to the given forecasting objectives. Our process also
supports evaluating the accuracy of forecasts and uses the evaluation results as feedback
for the next classification cycle. The classification and forecasting phases are executed
iteratively, with a frequency that can be specified by the user. Thereby, our approach is
able to continuously adapt the classification of the workload intensity behavior based on
the evolution of the workload over time. However, the two phases must not necessarily
follow each other iteratively. They can also be executed in parallel, i.e., the classification
of the workload intensity behavior may be updated while also forecasting is performed.

In the following, we explain in detail the individual parts of our self-adaptive WCF ap-
proach.

7.2.1. Forecasting Objectives

Time series forecasts can be used for a variety of purposes from short term proactive
resource provisioning to long term capacity planning. Depending on the purpose, different
forecasting methods with different configurations may provide better or quicker results.
Our approach explicitly takes into account the forecasting objectives guiding the forecast
result processing to control the forecasting overhead. Our approach supports specifying
the following parameters as forecasting objectives:

1. The Highest Overhead Group parameter is a value in the interval [1, 4] that specifies
the highest overhead group that the WCF approach can choose from. This value
refers to the overhead groups we introduce in Section 7.2.2.

2. The Forecast Horizon parameter is a tuple of two positive integer values quantifying
the number of time series points to be forecast. The first value of the tuple defines
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120 7. Self-Adaptive Workload Classification and Forecasting

the Start Horizon and defines the number of time series points to be forecast at
the beginning. The second value defines the Maximum Horizon, i.e., the maximum
number of time series points to be forecast. The start value can then be dynamically
increased stepwise up to the maximum value. This is necessary because of the
significant differences of the forecasting methods in terms of processing times and
feasibility for long term forecasts.

3. The Confidence Level parameter can be a value α ∈ [0, 100) defining the percentage
of how many of the calculated confidence intervals have to include the forecast mean
value.

4. The Forecasting Period parameter is a positive integer i specifying how often in terms
of the number of time series points a forecasting method is executed. For example,
if i = 1 a forecast is executed for every new time series point that is added to the
time series. If i = 10, the forecast is executed for every tenth time series point.

By specifying these parameters according to the characteristics of the considered fore-
casting scenario, one can influence the classification and forecasting process in finding a
suitable forecasting method for the given workload intensity behavior. For example, as-
sume an offline capacity planning scenario, where there is sufficient time to analyze the
workload intensity behavior and make forecasts for a relatively long time period. In such a
case, one can set the objectives to the highest overhead group and to the desired maximum
forecast horizon. Furthermore, if high forecasting confidence is required, one could also
set α = 95 to specify a high confidence level.

7.2.2. Forecasting Methods Overhead Groups

In Section 7.1.2, we have presented a survey of different time series forecasting methods
and discussed their computational overhead. In the following, we divide these forecasting
methods into the following groups.

Group 1 – Negligible Overhead
This group contains methods with almost no overhead, such as the Moving Average
(MA) and the Naive forecasting methods.

Group 2 – Low Overhead
This group contains methods with low overhead such as the fast forecasting methods
Simple Exponential Smoothing (SES), Cubic Spline Interpolation (CS), the prede-
fined ARIMA101 model, and the specialized Croston’s Method for intermittent time
series. The processing times of forecasting methods in this group are below 100 ms
for a maximum of 100 time series points.

Group 3 – Medium Overhead
This group stands for medium overheads and contains the forecasting methods Ex-
tended Exponential Smoothing (ETS) and tBATS. The processing times are below
30 seconds for less than 200 time series points.

Group 4 – High Overhead
This group stands for high overheads and contains again tBATS and additionally
the ARIMA forecasting framework with automatic selection of an optimal ARIMA
model. The processing times for methods in this group are below 60 seconds for less
than 200 time series points.

7.2.3. Forecasting Methods Partitions

In addition to groups of computational overhead, we distinguish three major partitions
of forecasting methods. Each partition contains forecasting methods that are applicable
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7.2. Workload Classification and Forecasting 121

in different situations during the run-time workload classification and forecasting process.
When a time series of request arrival rates is added for classification and no historic data
of its workload intensity behavior is available yet, the only option is to apply fast and
naive forecasting methods to obtain a basic forecast. At a later point in time, when more
observations become available, it may be useful to apply methods that can interpolate the
trends within the time series. And again at a later point in time, when about three periods
within the time series have already been observed, it is possible to detect deterministic
seasonal patterns by using complex time series analysis, decomposition and forecasting
methods.

Therefore, our classification process distinguishes three partitions according to the amount
of historic data available in the time series: an initial partition, a fast partition, and a
complex partition. These partitions are related to the overhead groups of the forecasting
methods. Having a short time series, i.e., for the initial partition, only forecasting meth-
ods in the overhead group 1 can be applied. A medium length of a time series may allow
application of methods contained in the overhead group 2 and a long time series (complex
partition) enables the use of methods in overhead groups 3 and 4. The two thresholds
that define when a time series is considered as short, medium or long can be configured as
parameters of the classification process. Based on experience gained from experiments, we
recommend to set the threshold for the transition from initial to fast to a value τ ∈ [5, p2 ]
observations (five being the minimal amount of observations needed for Cubic Spline In-
terpolation and p being the length of a period in time series points). The fast to complex
threshold should be set to a value τ ≥ 3p because most methods in the respective overhead
group need at least three pattern occurrences to identify them.

7.2.4. Evaluating Forecasting Accuracy

In an online scenario, workload intensity behaviors are not stationary, i.e., their charac-
teristics can change over time. Accordingly, the most appropriate forecasting method can
also change and must be adapted at run-time. It is the responsibility of the classification
process to detect such changes and adjust the WIB class to the forecasting method that
yields the most accurate results for the given workload intensity behavior considering the
forecasting objectives.

To evaluate the accuracy of a forecasting method, a number of metrics assessing the
differences between forecast results and corresponding observations have been proposed
(cf. Hyndman and Koehler (2006) for an overview). The Mean Absolute Scaled Error
(MASE) is usually the metric of choice that enables consistent comparisons of forecasting
methods across different data samples. The MASE metric for an interval [m,n] ∈ T is
defined as follows:

MASE[m,n] =
1

n−m+ 1

n∑
t=m

(

∣∣∣∣errortb[m,n]

∣∣∣∣),
whereas errort is defined as

errort = forecastt − observationt, t ∈ [m,n]

and b[m,n] as the average change within the observation

b[m,n] =
1

n−m
·

n∑
i=m+1

|observationi − observationi−1| .

Essentially, the MASE metric compares the forecast accuracy with the accuracy of the
naive forecasting method. If the MASE value is close to one or even bigger, the computed
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forecast results are of no value because their accuracy is equal or even worse than using
the naive forecasting method. This means that one could use monitoring data for resource
provisioning, directly. In turn, the closer the metric value is to zero, the better the accuracy
of the selected forecasting method.

In our classification process, we select the forecasting method providing the lowest MASE
value for the given workload intensity behavior. The best point in time during the WCF
process to precisely calculate the MASE metric is just before the next forecast execution is
triggered, i.e., when both the observation values as well as the forecast results are available.
The results are used as forecast accuracy feedback in the classification phase. However, in
an online scenario where we need forecast results for proactive resource provisioning, no
observations are available to assess the quality of the forecasts. In such situations when
no observations are available, the MASE metric can also be used to assess the accuracy of
different forecasting methods by comparing them with the naive forecast. Thus, we execute
two or more forecasting methods in parallel during the forecasting phase and compare their
accuracy in configurable intervals using the MASE metric to ensure that the currently
chosen WIB class still produces the most accurate results compared to other approaches.
This comparison of forecasting methods is also triggered when the evaluation of forecast
results with observations seems implausible or shows low accuracy (MASE[m,n] ≥ 1).

7.2.5. Non-Absolutely Positive Workloads

The workloads considered in this thesis contain time series of request arrival rates. These
time series are non-negative, as there cannot be a negative number of requests per time
period. However, the time series might contain zero values, as there might exist time
periods where no requests arrive. The problem is that the majority of forecasting methods
assume absolutely positive time series as input (cf. Section 7.1). Such forecasting methods
are not numerically stable, i.e., they interrupt after a division by zero and thus cannot
return a forecast result. Therefore, we need to eliminate zeros from the time series before
passing it to the forecasting method.

However, if zero values appear regularly in the time series, it is better to use Croston’s
forecasting method for intermittent demands which is developed for such time series. This
method decomposes the time series into two different time series. A strictly positive time
series and another time series containing the period duration when the time series was
zero. The forecast is then executed independently for both time series and combined later
on.

However, the classification of a workload intensity behavior would be highly sensitive to
zero values if only a few observations of zero values immediately caused a switch to the
Croston’s forecasting method. To configure this sensitivity, we introduced a threshold for
the rate of zero values. We recommended setting this threshold to a reasonable value
between 20% and 40%.

7.2.6. Decision Tree

The decision tree depicted in Figure 7.4 is the core element for selecting a suitable fore-
casting method. To determine a suitable forecasting method for a given workload, one
follows the branches by evaluating the identified workload intensity behavior characteris-
tics (cf. Section 7.1.1). The thresholds in the conditions of the branches are parameterized.
The values of these thresholds are either derived from the forecasting objectives or based on
empirical values obtained during our experiments. The leaves of the decision tree contain
one or several recommended forecasting methods. In case a leave contains more than one
suitable forecasting method, the forecasting phase executes all of them and evaluates their
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Figure 7.4.: Decision tree for workload classification and selection of appropriate forecast-
ing methods.

estimated forecast accuracy using the MASE metric to select the most accurate result.
Before the next iteration of the forecasting phase, i.e., when real system observations are
available, we can also determine the accuracy of the forecast values compared to the real
observations using the MASE metric. These results are then employed in the decision tree
in the next iteration of the classification phase.

7.3. WCF Architecture and Implementation

We implemented our self-adaptive workload classification and forecasting process in Java.
In the following, we refer to this implementation as WCF system. For workload forecasting,
we used the implementations provided by the forecasting package (Hyndman, 2009) for
R, a language and environment for statistical computing (R Project, 2013). Figure 7.5
depicts the architecture of our WCF System as a UML component diagram.

Architecture

The central component of the WCF System is the WCFManager. It is responsible for
accepting and managing the workload intensity behavior traces to be classified and fore-
cast and the respective configuration settings. The WCFManager periodically triggers the
classification and forecasting processes according to the forecasting objectives. In addi-
tion, it also implements management functionality to persist the given workload intensity
behavior traces, configurations, and results. A more detailed description of how to interact
with the WCFSystem using its interfaces is presented in the following.

The WIBClassification component realizes the classification phase of the WCF pro-
cess and implements the previously presented decision tree. This component receives a
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<<System>>
WCFSystem

<<BasicComponent>>
WIBClassification

<<CompositeComponent>>
WCFManager

<<BasicComponent>>
Forecasting

<<BasicComponent>>
RServerBridge

<<ExternalSystem>>
RServer

<<Interface>>
WCFSystemManagement 

<<Interface>> 
ForecastResult

Figure 7.5.: Architecture of the WCF System.

workload intensity behavior trace from the WCFManager and selects a forecasting method
for this workload intensity behavior according to the decision tree. It returns the result,
i.e., the selected WIB class, to the WCFManager component.

The Forecasting component implements the forecasting phase of our WCF process.
It executes the forecasting method that has been selected by the WIBClassification
component. To obtain forecasting results, the Forecasting component uses an external
system, the RServer. This is basically a TCP/IP server that allows other programs to use
the facilities of R, a language and environment for statistical computing (R Project, 2013).
To communicate with the RServer, the Forecasting component uses the RServer-
Bride. This is a wrapper which encapsulates the controlling of R and that processes the
results from the R environment.

Interfaces

The WCFSystem provides two interfaces. The WCFSystemManagement interface offers
management functionality to register new or remove existing workload intensity behaviors,
and to read and update the ForecastingObjectives of a workload intensity behavior.
By setting the forecasting objectives (cf. Section 7.2.1), the user can influence the execu-
tion and thus the results of the classification and forecasting processes. In addition, the
WCFSystemManagement interface can be used to trigger executions of a classification or
a forecast manually.

The second interface provided by WCFSystem is the ForecastResult interface, which
is used for data exchange. By default, data is read from and written to buffers, to support
the integration of the WCFSystem into a pipes-and-filters architecture. The reason for
this design decision is that our WCF system should be able to process data provided
at tun-time as an input stream by monitoring frameworks. In this case, input data are
newly monitored arrival rate values of the registered workload intensity behaviors, which
are provided constantly and in fixed but configurable periods. The output data of the
WCFSystem are forecast results, which are written into a buffer, too. This buffer can then
be used by a resource provisioning system or a system adaptation component for further
processing. Another option supported by the WCFSystem is to write the forecast results to
a file for manual result interpretation. More details on the integration of the WCFSystem
in our model-based adaptation process follows below.
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Control Flow

The UML sequence diagram in Figure 7.6 illustrates the control flow of an exemplary use
case of the WCFSystem. Note that we omitted the RServerBridge in this diagram as
it simply acts as a wrapper for the interface of the RServer.

To register a new workload intensity behavior, a user can invoke the registerWIB(ts,
forecasting_objectives) method of the WCFSystemManagement interface. This
triggers the WCFManager to create a new record for this workload intensity behavior. The
parameters of this method are a reference to the time series buffer as well as the forecasting
objectives for this time series. The referred time series buffer in this context is the entity
that continuously provides new monitoring data for the time series.

:Forecasting:WCFManager :WIBClassification :RServer

createWIB()

classify(ts, forecasting_objectives)

wib_class

if(classification_period)

if(forecasting_period)

forecast(ts, forecasting_objectives)

createForecaster(wib_class)

fc_resultfc_result

removeWIB(ts)

notifyUser()

while(active)

forecast(ts)

createForecaster()

destroyWIB()

writeResults()

registerWIB(ts,
 forecasting_objectives)

Figure 7.6.: UML sequence diagram illustrating an exemplary use case of the WCF system.

While the WCFManager is active, it periodically triggers the classification and forecasting
of its registered workload intensity behaviors, depending on the specified time periods. For
classification, the WCFManager invokes the classify method of the WIBClassifica-
tion component. Arguments are a reference to the time series (ts) that shall be classified
and the specified forecasting_objectives. The WIBClassification then classi-
fies the workload intensity behavior according to the process we specified in Section 7.2
and returns the result wib_class to the WCFManager component.

To obtain workload forecasts, the WCFManager calls the createForecaster(wib_class)
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126 7. Self-Adaptive Workload Classification and Forecasting

method of the Forecasting component. This creates a Forecaster object which acts
as a proxy for the forecasting method specified by the wib_class argument and im-
plemented in the RServer. Then, the WCFManager can pass the time series ts and
the forecasting_objectives to the created Forecaster to trigger the forecasting
process using the forecast method. The Forecaster then uses the RServerBride
to communicate with the RServer and start the forecast. When finished, it receives
the results from the RServer, processes and passes them to the WCFManager . The
WCFManager stores the results in the configured location and notifies the user that new
forecasting results are available.

To remove a workload intensity behavior from the classification and forecasting process,
the user can invoke removeWIB(ts). Then, the WCFManager component will trigger no
further classifications or forecasting.

Integration

An important requirement for the architecture of the WCF system is that it can be in-
tegrated in a pipes-and-filters architecture. The reason is that data must be processed
at system run-time. According to Buschmann et al. (1996, p. 53), “the pipes-and-filters
architectural pattern provides a structure for systems that process a stream of data. Each
processing step is encapsulated in a filter component. Data is passed through pipes be-
tween adjacent filters.”

ANALYZEMONITOR

Kieker WCFSystem ModelAnalyzer

Figure 7.7.: Integration of the WCFSystem in the model-based adaptation approach.

Similarly, in our context of model-based system adaptation, the Monitor phase continu-
ously provides new workload data that must be processed at run-time by our WCFSystem
and directly provided to the Analyze phase. Figure 7.7 sketches a possible integration
of the WCFSystem into our model-based adaptation control loop (cf. Chapter 4). In this
example, Kieker, a framework for monitoring and analyzing a software system’s run-time
behavior (van Hoorn et al., 2012), continuously delivers monitoring data of the service’s
request arrival rates. These data are piped into our WCFSystem that processes the data
at run-time and delivers its forecasts to the ModelAnalyzer that can use the forecasts
to detect problems for the workload forecasts.

7.4. Evaluation

To evaluate our self-adaptive workload classification and forecasting (WCF) approach, we
conduct experiments with different settings and real-world workload intensity behavior
traces. The goal of this evaluation is to assess the applicability of our approach and its
accuracy compared to other forecasting methods in different situations. For the evaluation,
we use two different real-world workload intensity behavior traces. These traces exhibit
different characteristics like frequency, trends, seasonal patterns, bursts, noise, etc.

Wikipedia Germany Page Requests: This workload is the time series of the number of
page requests per hour at the web-page of Wikipedia Germany. It has been extracted
from the publicly available server logs for October, 2011 (Wikimedia Project, 2011).
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Transaction Processing This workload contains the transaction arrivals every 15 minutes
of a transaction processing service monitored in a mainframe system over one week,
from Monday to Sunday. This data has been provided by an industrial collaboration
partner.

7.4.1. Experiment Design

In the following four experiments, we assess the accuracy of the forecast results of our self-
adaptive WCF approach. We will show that by adapting the forecasting method at run-
time to suit the characteristics of the workload, we can improve the forecasting accuracy
compared to using a fixed forecasting method. Thus, the basis for our comparison is the
accuracy achieved with other forecasting methods that have been selected manually from
the list of methods surveyed in Section 7.1. To quantify the forecast result accuracy, we
calculate a relative error for every single forecast point.

relativeErrort =
|forecastV aluet − observedArrivalRatet|

observedArrivalRatet

In the first experiment, the WCF approach is compared to a fixed use of ETS in a sce-
nario with the transactional workload and no training of the forecasting methods. The
experiments II to IV compare a configuration of the WCF approach limited to select
only forecasting methods from a certain overhead group to the individual methods within
the respective overhead group. In these experiments, we use parts of the workload data
as training set for the considered forecasting methods. Additionally, in all experiments
we compare the Naive forecasting method to the other forecasting methods. The Naive
method is equivalent to using just system monitoring without forecasting, i.e., we can use it
as a baseline to quantify and illustrate the benefit of applying forecasting methods in gen-
eral. In each experiment, the manually selected forecasting methods have been executed
with identical forecasting objectives and on the same input data as WCF. This experiment
design enables conclusions if the WCF approach successfully classifies the workload inten-
sity behavior or not. Successful classification in this context means that the forecasting
method that delivers the highest accuracy for a particular forecast execution is selected
by the WCF approach in the majority of cases.

In the following sections, we illustrate the distribution of these relative errors as cumulative
distribution functions. Our charts show the inclusive error classes on the x-axis and on the
y-axis the corresponding percentage of all forecast points. More formally, a point (x, y) in
our charts denotes that y percent of the forecast points have a relative error between 0%
and x%. In other words, functions with a trend to the top left corner of the plot are better
than functions to the bottom right. In addition, we compute the statistical key indexes
(arithmetic mean, median, quartiles, minimum, and maximum) of the error distributions
to enable direct comparison. Finally, we use R (R Project, 2013) to conduct directed,
paired t-tests to determine if the average forecast accuracy of a certain forecasting method
is significantly better than the average forecast accuracy of another method in the context
of the respective experiment.

7.4.2. Experiment I: Comparing WCF with ETS and Naive Forecasting

In this experiment, we compare the forecast accuracy of the WCF approach with ETS
and the Naive forecasting method. We assume that we have just added a new workload
intensity behavior trace to the WCF system, i.e., no historical data is available. The WCF
approach can select forecasting methods from all overhead groups. For this experiment,
we use the transactional workload intensity behavior over five days, from Monday till
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128 7. Self-Adaptive Workload Classification and Forecasting

Table 7.2.: Configuration of experiment I.

Experiment Focus Comparison of WCF to static ETS and Naive

Forecasting Methods WCF, ETS, Naive

Input Data Transactional workload, Monday to Friday,
240 values in transactions per 30 minutes,
frequency = 48,
5 periods (days)

Horizon h = 1 for tsl in [1;24] (1st half period),
(number of forecast points (h) h = 2 for tsl in [25;144] (until 3rd period complete),
for time series length (tsl)) h = 12 for tsl in [145;240] (4th and 5th period)

Friday. The forecast horizon for all methods is configured to increase stepwise, as shown
in Table 7.2.

The forecast values of the tested methods and the observation values are plotted in Fig-
ure 7.8. In the x-axis, we can see how the WCF approach classifies the given workload.
The vertical dashed lines mark the the time point when WCF switches to a higher over-
head group. Regarding the forecast values, the chart shows that ETS has several bursts
during the first three periods and therefore does not stay as close to the observed values
in a number of cases as WCF. Furthermore, during the last forecast executions in the
fourth and fifth period (Thursday and Friday), the WCF approach successfully detects the
pattern of the days before and therefore estimates the time series better than ETS.

This fact is also reflected in Figure 7.9, showing the cumulative error distribution for
each method. The results demonstrate that the WCF approach achieves better forecast
accuracy compared to ETS and Naive. Although ETS induces processing overheads of
715 ms per forecast execution, compared to 45 ms for the Naive forecasts (computation of
the confidence intervals), it can only partly achieve slightly better forecast accuracy than
the Naive method. The WCF approach has an average processing time of 61 ms until
the overhead group 4 methods are selected after the first three periods. For the last two
periods, the processing time per execution of the WCF approach is 13 seconds on average.

In Table 7.3, we summarize the characteristics of the error distributions of the individual
forecasting methods’ accuracies using statistical indexes. In addition, the error distribu-
tions are illustrated with a box plot in Figure 7.10. The WCF approach shows the lowest
median value of 20.7% and the lowest mean value of 47.4%, i.e., on average, WCF is more
accurate than the compared forecasting methods. In addition, the WCF approach has
a significantly smaller maximum error value, i.e., it is more robust than the compared
methods.

Table 7.3.: Experiment I: Characteristics of the error distributions.

Method Min. 25% Quantile Median Mean 75% Quantile Max.

WCF 0.0128% 9.474% 20.77% 47.39% 49.65% 874.3%

ETS 0.0014% 12.2% 32.31% 75.01% 73.36% 1977%

Naive 0.4917% 16.26% 38.05% 78.88% 81.5% 1671%

In Figure 7.11, the percentage error distributions of WCF and ETS are tested in an paired,
directed t-test. The alternative hypothesis is that their true difference in means is less
than zero, i.e., there is a significant difference in the mean forecast accuracy of the tested
forecasting methods. The result shows that there is a significant mean of differences of
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Figure 7.8.: Experiment I: WCF vs. ETS.

129



130 7. Self-Adaptive Workload Classification and Forecasting
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Figure 7.9.: Experiment I: Cumulative error distribution of WCF, ETS and Naive fore-
casts.
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Figure 7.10.: Experiment I: Box plots of the error distributions without outliers.

−0.27. This indicates that the WCF approach achieves a lower forecast error on average
than the compared methods. In addition, we tested the percentage error distributions
of WCF and the Naive method in the same way. The result of a significant mean of
differences of −0.31 confirms that applying the WCF approach is significantly better than
simply using system monitoring data (which is equivalent to the Naive method).

7.4.3. Experiment II: Comparing WCF with Forecasting Methods of Over-
head Group 2

In this experiment, we configure WCF such that it selects only forecasting methods from
overhead group 1 and 2 (WCF2). We then compare this modified WCF2 against the
individual forecasting methods contained in overhead group 2 (CS, ARIMA101 and SES).
Note that the strength of methods from overhead group 2 is the trend extrapolation. As
none of these methods is capable of handling seasonal patterns, high forecast accuracy is
not likely to be achieved for the transactional workload intensity behavior that exhibits
highly complex daily patterns. To achieve acceptable forecast accuracy, we apply the
methods with a high frequency and with a maximum horizon of only two forecast mean
values. We use six days of the transactional workload intensity behavior in this experiment
from Monday until Saturday. More details of the experiment configuration are given in
Table 7.4.

Figure 7.13 depicts the cumulative percentage error distribution for each of the executed
methods. This graph shows that WCF achieves a similar forecast accuracy as SES.
ARIMA101 and CS show lower forecast accuracy (they are constantly below SES and
WCF). As the WCF approach combines the forecasting methods internally through its
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Paired t-test

data: WCF and ETS
t = -2.1129, df = 229,

p-value = 0.01785
alternative hypothesis:

true difference in means
is less than 0

95 percent confidence interval:
-Inf -0.06031597

sample estimates:
mean of the differences

-0.2762366

Paired t-test

data: WCF and Naive
t = -2.7639, df = 229,

p-value = 0.003088
alternative hypothesis:

true difference in means
is less than 0

95 percent confidence interval:
-Inf -0.1267299

sample estimates:
mean of the differences

-0.3148823

Figure 7.11.: Experiment I: Directed, paired t-test on WCF and ETS error distributions
(left) and on WCF and Naive error distributions (right).

Table 7.4.: Configuration of experiment II.

Experiment Focus Comparison of overhead group 2 methods with WCF
restricted to select from group 1 and 2

Forecasting Methods CS, ARIMA101, SES, WCF, Naive

Input Data Transactional workload, Monday to Saturday,
576 values in transactions per 15 minutes,
frequency = 96,
6 periods (days)

Horizon h = 1 for tsl in [1;48] (1st half period),
(number of forecast points (h) h = 2 for tsl in [49;576] (until 6th period complete)
for time series length (tsl))

classification and feedback mechanism, this experiment shows that the self-adaptation of
the WCF approach does not decrease the forecasting accuracy. Regarding the computa-
tional overhead, we observe that for each execution all forecasting methods induce ap-
proximately the same amount of computational overhead, which is only 55 ms on average.
This allows a high frequency of forecast executions.

Figure 7.12 depicts the forecast values of the applied forecasting methods compared to the
observation values. This chart illustrates that the WCF approach constantly stays closer
to the observed values than ARIMA101 (divergences at the beginning) and CS (which
constantly assumes overly strong trends at the edges of seasonal patterns).

Table 7.5.: Experiment II: Characteristics of the error distributions.

Method Min. 25% Quant. Median Mean 75% Quant. Max.

WCF 0.067% 5.063% 18.64% 59.69% 47.94% 3777%

Naive 0.029% 6.215% 19.26% 53.79% 44% 3779%

SES 0.029% 5.935% 20.13% 54.8% 47.24% 3777%

CS 0.005% 7.232% 21.38% 130.4% 50.57% 6476%

ARIMA101 0.114% 7.223% 25.68% 77.39% 65.5% 3776%

In Table 7.5, the error distributions of the individual forecast strategies are characterized
by basic statistical indexes. In addition, the distributions are illustrated as box plots in
Figure 7.14. On the one hand, the WCF approach shows the lowest median error of 18.6%.
On the other hand, the Naive method achieves the lowest mean error of 53.7%. This shows
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Figure 7.12.: Experiment II: WCF, CS, ARIMA101, and SES.
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Figure 7.13.: Experiment II: Cumulative error distribution of WCF, CS, ARIMA101, and
SES.
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Figure 7.14.: Experiment II: Box plots of the error distributions without outliers.

that in the presence of strong seasonal patterns the simple trend extrapolating forecasting
methods are not useful as their accuracy is comparable or worse than the accuracy of the
Naive method.

In Figure 7.15, WCF and CS percentage error distributions are tested by a paired, directed
t-test on the hypothesis that their true difference in means is less than zero. The result in-
dicates that there is a highly significant mean of differences of −0.70 showing that the WCF
approach achieves significantly lower forecast errors. In addition, WCF and ARIMA101
percentage error distributions are tested in the same way with the result of a significant
mean of differences of −0.17. These two results underline that the WCF approach achieves
higher forecast accuracy by its classification mechanism than the compared methods (CS
and ARIMA101).

As the SES method achieved the highest accuracy in this experiment, we expect a high
similarity of the percentage error distributions of WCF and SES. Accordingly, we did
not detect a significant difference of means in the paired t-test (cf. Figure 7.16). When
comparing the error distributions of the WCF approach and the Naive forecasting method,
we detected a small but significant mean of differences of 0.058 using the paired, directed
t-test. This result could be interpreted as indication that the Naive method is as good
as the WCF approach in this scenario. However, this observation would quickly change
if the workload intensity behavior stops exhibiting strong seasonal patterns, e.g., when
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Paired t-test

data: WCF and CS
t = -4.8649, df = 570,

p-value = 7.418e-07
alternative hypothesis:

true difference in means
is less than 0

95 percent confidence interval:
-Inf -0.4675543

sample estimates:
mean of the differences

-0.7069751

Paired t-test

data: WCF and ARIMA101
t = -5.7216, df = 570,

p-value = 8.529e-09
alternative hypothesis:

true difference in means
is less than 0

95 percent confidence interval:
-Inf -0.1260808

sample estimates:
mean of the differences

-0.177067

Figure 7.15.: Experiment II: Directed, paired t-test on WCF and CS error distributions
(left) and on WCF and ARIMA101 error distributions (right).

Paired t-test

data: WCF2 and SES
t = 1.9554, df = 570,

p-value = 0.9745
alternative hypothesis:

true difference in means
is less than 0

95 percent confidence interval:
-Inf 0.09009366

sample estimates:
mean of the differences

0.04889562

Paired t-test

data: WCF2 and Naive
t = 2.3452, df = 570,

p-value = 0.00968
alternative hypothesis:

true difference in means
is greater than 0

95 percent confidence interval:
0.0175491 Inf

sample estimates:
mean of the differences

0.05899171

Figure 7.16.: Experiment II: Directed, paired t-test on WCF and SES error distributions
(left) and on WCF and Naive error distributions (right).

considering data of higher resolution (seconds, minutes) for short term trend interpolation
or considering highly aggregated data for long term trend extrapolation (weeks, months,
years). Unfortunately, this could not be validated as no high resolution and long term
real-world workload intensity behavior data was available.

7.4.4. Experiment III: Comparing WCF with Forecasting Methods of
Overhead Group 3

In this experiment, we compare the forecast accuracy of the WCF approach configured to
use only forecasting methods from overhead group 3 (WCF3) with the individual methods
contained in overhead group 3 (ETS and tBATS). The strength of these two methods is
the seasonal pattern detection. Therefore, at the beginning of the experiment, we train
all compared methods using three time periods from the Wikipedia workload. In total, we
use 21 days (one week) of the Wikipedia workload intensity trace, three days as training
set and the rest for evaluating the forecast accuracy. More details on the experiment
configuration are given in Table 7.6.

The cumulative percentage error distribution for each of the executed methods is given
in Figure 7.18. The WCF approach and tBATS achieve a similar forecast accuracy. ETS
is only slightly worse. The big gap to the Naive forecast indicates that as expected,
the complex forecasting methods provide much more accurate results, i.e., they can be
beneficial for proactive resource management.
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Figure 7.17.: Experiment III: WCF, ETS, tBATS and ETS.
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Figure 7.18.: Experiment III: Cumulative error distribution of WCF, ETS, tBATS and
Naive.
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Table 7.6.: Configuration of experiment III.

Experiment Focus Comparison of overhead group 3 forecasting methods
with WCF that is restricted to select from group 3

Forecasting Method ETS, tBATS, WCF, Naive

Input Data Wikipedia workload, 3 weeks,
504 values in page requests per hour,
frequency = 24,
21 periods as days,
training set = first 3 days (Monday to Wednesday)

Horizon h = 12 for tsl in [73;504] (4th until 21st period),
(number of forecast points (h) no forecasts for the first 3 periods
for time series length (tsl))

All three forecast strategies induce approximately the same amount of computational over-
head as they belong to the same overhead group. On average, tBATS needs 10 seconds
per execution, ETS 14 seconds and WCF 19 seconds (as it executes both tBATS and ETS
every second time). In this experiment, their computations are based on the last seven
observed periods, i.e., on a maximum number of 168 time series points.

The forecast values of the individual methods and the observation values for the first ten
days of this experiment are plotted in Figure 7.17. The chart illustrates the high forecast
accuracy of all three forecasting methods, especially at the edges of the daily seasonal
patterns. It also shows that the changes in the amplitudes of the daily patterns, e.g., from
Sunday to Monday, induce higher forecast errors than the rather constant amplitudes of
working days.
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Figure 7.19.: Experiment III: Box plots of the error distributions without outliers.

Table 7.7.: Characteristics of the error distributions of experiment III.

Method Min. 25% Quant. Median Mean 75% Quant. Max.

tBATS 0.0209% 3.793% 10.93% 22.76% 28.33% 185.2%

WCF 0.0209% 3.915% 11.63% 24.01% 29.42% 209.6%

ETS 0.0294% 4.807% 11.62% 27.44% 32.41% 241.2%

Naive 0.0081% 12.98% 80.73% 127.4% 89.13% 1013%

Table 7.7 summarizes the characterizing statistical indexes of the error distributions of the
compared forecasting methods. In addition, box plots are depicted in Figure 7.19. In this
experiment, tBATS shows the lowest median error value of only 10.9%. The low maximum
errors of all three forecasting methods underline the benefit of the forecast values obtained
by applying complex methods compared to using the Naive method. The experiment also
shows that, as the WCF approach is a combination of tBATS and ETS, it cannot be
better than these for individual executions. However, the error values are more close to
the tBATS method which performs best in this scenario.

When comparing the error distributions of the WCF approach and ETS using a paired,
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138 7. Self-Adaptive Workload Classification and Forecasting

Paired t-test

data: WCF and ETS
t = -4.1869, df = 430,

p-value = 1.716e-05
alternative hypothesis:

true difference in means
is less than 0

95 percent confidence interval:
-Inf -0.02077467

sample estimates:
mean of the differences

-0.03426498

Paired t-test

data: WCF and tBATS
t = 1.1914, df = 430,

p-value = 0.2341
alternative hypothesis:

true difference in means
is not equal to 0

95 percent confidence interval:
-0.008086287 0.032979603

sample estimates:
mean of the differences

0.01244666

Figure 7.20.: Experiment III: Directed, paired t-test on WCF and ETS error distributions
(left) and on WCF and tBATS error distributions (right).

directed t-test (cf. Figure 7.20), the computed mean of differences is small but signifi-
cant having a value of −0.034. This means that the WCF approach constantly achieves
a slightly higher accuracy. The mean of differences between WCF’s and tBATS’ error
distributions is insignificant. The reason is that in this experiment, the WCF approach
selected tBATS as forecasting method in about 80% of the forecast executions, which is
good, as it demonstrates that WCF is able to continuously select the better performing
forecasting method.

7.4.5. Experiment IV: Comparing WCF with Forecasting Methods of
Overhead Group 4

In this experiment, we compare the forecast accuracy of the WCF approach using only
overhead group 4 forecasting methods (WCF4) with the individual forecasting methods of
overhead group 4 (ARIMA and tBATS) and the Naive forecasting method. The configu-
ration of this experiment is the same as for experiment IV and is summarized in Table 7.8.

Table 7.8.: Configuration of experiment IV.

Experiment Focus Comparison of overhead group 4 forecasting methods
with WCF restricted to select from group 4

Forecast Strategies ARIMA, tBATS, WCF4, Naive
(overhead group)

Input Data Wikipedia workload, 3 weeks,
504 values in page requests per hour,
frequency = 24,
21 periods as days,
training set = first 3 days (Monday to Wednesday)

Horizon h = 12 for tsl in [73;504] (4th until 21st period),
(number of forecast points (h) no forecasts for the first 3 periods
for time series length (tsl))

The cumulative percentage error distribution for each of the executed forecasting methods
is shown in Figure 7.22. ARIMA and the WCF approach achieve both a similar forecast
accuracy with tBATS being only slightly worse. Like in experiment III, the big gap to
the Naive forecasting method shows that the forecast values obtained by applying such
complex forecasting methods can be beneficial for proactive resource management. In
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Figure 7.21.: Experiment IV: Comparison of WCF, tBATS, ARIMA.
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Figure 7.22.: Experiment IV: Cumulative error distribution of WCF, tBATS, ARIMA, and
Naive.
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addition, the results illustrate the even higher forecast accuracy of the WCF4 approach
and the ARIMA method compared to the WCF3 approach in experiment III.

The computational overhead per forecast execution is on average 22 seconds for the WCF
approach and ten seconds for tBATS. ARIMA required 15 seconds on average per forecast
execution but the measurements showed a higher variance with a maximal duration of 56
seconds. The computations of the forecasts are based on the last seven observed periods,
i.e., on a maximum number of 168 time series values.

The forecast values of the individual forecasting methods and the actual observation values
are plotted in Figure 7.21 for the first ten days of the workload. The shapes of the time
series in this experiment show similar characteristics as in experiment III with even closer
estimations of the pattern amplitudes.
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Figure 7.23.: Experiment IV: Box plots of the error distributions without outliers.

Table 7.9.: Characteristics of the error distributions of experiment IV.

Method Min. 25% Quant. Median Mean 75% Quant. Max.

WCF 0.0272% 4.389% 10.12% 17.49% 22.67% 125.5%

ARIMA 0.0096% 4.193% 9.608% 19.89% 22.77% 340.6%

tBATS 0.0209% 3.793% 10.93% 22.76% 28.33% 185.2%

Naive 0.0081% 12.98% 80.73% 127.4% 89.13% 1013%

In Table 7.9, we summarize the characterizing statistical indexes of the error distributions
of the compared forecasting methods. In addition, Figure 7.23 depicts the box plots of
the error distributions. ARIMA shows the lowest median value of only 9.6%. The WCF4
approach has the lowest mean error values and achieves this improvement by choosing
the better performing method. In this scenario, both methods (ARIMA and tBATS)
are selected with a similar probability resulting in a combination of their strengths for
particular situations. In addition, WCF4 has the lowest maximum error and therefore the
highest trustworthiness from the compared methods. These results show that a measurable
improvement can be achieved by using our self-adaptive WCF approach.

The comparison of the WCF approach with ARIMA and tBATS in paired, directed t-tests
detects a highly significant mean of differences within the percentage error distributions
in both cases (cf. Figure 7.24). This indicates that the WCF approach is able to correctly
select the forecasting method that is more likely to show higher accuracy. This demon-
strates that our approach of dynamically selecting forecasting methods at run-time has no
negative impact on the forecasting accuracy.

If we use the directed, paired t-test to compare the error distributions of WCF4 and
WCF3 from experiment III (cf. Figure 7.25), a highly significant mean of differences of
−0.65 is observed. The WCF4 approaches’ internal use of ARIMA has obviously caused
this improvement in accuracy of WCF4 compared to WCF3. The mean of differences
of −1.1 is detected when comparing the WCF4 approach to the Naive method using the
directed, paired t-test. This large mean of differences of the percentage errors indicates the
high potential of the WCF4 approach in this scenario to deliver accurate forecast results.
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Paired t-test

data: WCF4 and ARIMA
t = -1.843, df = 430,

p-value = 0.03301
alternative hypothesis:

true difference in means
is less than 0

95 percent confidence interval:
-Inf -0.002530368

sample estimates:
mean of the differences

-0.02396612

Paired t-test

data: WCF4 and tBATS
t = -4.2109, df = 430,

p-value = 1.55e-05
alternative hypothesis:

true difference in means
is less than 0

95 percent confidence interval:
-Inf -0.03208695

sample estimates:
mean of the differences

-0.05272829

Figure 7.24.: Directed, paired t-test on WCF and ARIMA error distributions (left) and on
WCF and tBATS error distributions (right).

Paired t-test

data: WCF4 and WCF3
t = -5.255, df = 430,

p-value = 1.168e-07
alternative hypothesis:

true difference in means
is less than 0

95 percent confidence interval:
-Inf -0.04473058

sample estimates:
mean of the differences

-0.06517494

Paired t-test

data: WCF4 and Naive
t = -11.6577, df = 430,

p-value < 2.2e-16
alternative hypothesis:

true difference in means
is less than 0

95 percent confidence interval:
-Inf -0.9436938

sample estimates:
mean of the differences

-1.099108

Figure 7.25.: Experiment IV: Directed, paired t-test on WCF4 and WCF3 error distribu-
tions (left) and on WCF4 and Naive error distributions (right).

7.5. Summary

In this chapter, we presented an approach for self-adaptive workload classification and fore-
casting (WCF) at run-time. The approach automatically identifies relevant characteristics
of the considered workload intensity behavior and selects suitable forecasting methods ac-
cording to the configured user-specific forecasting objectives. Especially at the beginning
of an observed workload intensity series, when limited historical data is available, a static
decision made by a user may not be appropriate for the whole lifetime of the workload
intensity. In such cases, the dynamic design of our approach and the flexibility to react
on changes in the workload intensity behavior enables WCF to continuously adapt its
classifications based on the observed forecasting accuracy, thereby increasing the overall
accuracy of the forecast results. Our approach supports online and continuous forecast
processing with controllable computational overheads, realized by scheduling workload in-
tensity behavior classifications and forecasting method executions in configurable periods.

We evaluated the applicability and the forecasting accuracy of the proposed approach in
four experiments with different settings and workloads. In all experiments, the processing
times of all forecasting methods remained within the boundaries specified by their cor-
responding overhead groups in such a way that the forecast results were available before
their corresponding request arrival rates could be observed through monitoring. Moreover,
the results demonstrated that our approach can significantly improve the forecasting accu-
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racy with an acceptable additional computational overhead. Thus, we conclude that our
approach can be effectively applied at run-time to provide workload forecasts for proactive
performance and resource management.
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Part III.

Validation and Conclusion
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8. Validation

In this chapter, we evaluate how the individual contributions that have been presented and
evaluated in isolation in the Chapters 5 to 7 can be integrated into a holistic model-based
approach for autonomic performance-aware resource management. In Section 5.4, we eval-
uated the capability of the modeling abstractions of the resource landscape meta-model to
describe the performance relevant aspects of the infrastructure of modern IT systems and
services. In Section 6.4, we assessed the applicability of the adaptation points and adap-
tation process meta-models to describe dynamic system aspects and adaptation processes.
Furthermore, an evaluation of the performance prediction capabilities of the modeling ab-
stractions and their suitability for online performance prediction has been presented as
part of the work of (Brosig, 2014). What is currently missing is an end-to-end validation
of our approach, covering all of its constituent parts. In this chapter, we close this gap
and present the end-to-end evaluation and validation of our approach in the context of
three representative and real-life case studies, demonstrating the benefits of autonomic
performance and resource management in modern dynamic IT systems, infrastructures
and services.

This chapter is structured as follows. First, in Section 8.1, we discuss the goals of our vali-
dation and formulate specific questions to be answered as part of the validation. Next, we
present three detailed case studies addressing the specific validation goals and questions.
The first case study, presented in Section 8.2, is based on the SPECjEnterprise2010 bench-
mark deployed in a virtualized cluster environment. In this case study, we add/remove
virtual CPUs, start/stop VMs, or migrate VMs in response to different changes in the sys-
tem environment (e.g., workload changes, new services that are composed or deployed at
run-time) to maintain the performance and resource efficiency of the system. The second
case study, presented in Section 8.3, evaluates the applicability of our Workload Classifica-
tion and Forecasting (WCF) approach for proactive system adaptation at run-time. In this
case study, we use realistic workloads to investigate the potential of exploiting workload
forecasts for proactive system adaptation. In the third case study, presented in Section 8.4,
we apply our approach in the context of our industrial partner Blue Yonder. In this case
study, we evaluate the applicability of our approach in a heterogeneous resource environ-
ment, assessing its capability to trade-off different performance requirements of multiple
customers while maintaining resource efficiency. Finally, in Section 8.5, we summarize the
results and discuss their external validity.
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8.1. Validation Goals

In Chapter 1, we claim to provide a holistic model-based approach for autonomic perfor-
mance-aware resource management. We summarize the goal of our validation in the fol-
lowing sentence:

The concepts and modeling abstractions presented in this thesis are suitable
to model proactive or reactive system adaptation processes; architecture-level
performance models can be used to evaluate at run-time the impact of possible
adaptation actions for adaptation decisions to maintain multiple performance
requirements and resource efficiency.

We structure the validation goal into three major parts: the evaluation of the capabilities of
the developed modeling abstractions with respect to describing the performance-relevant
behavior and the adaptation processes of systems, the evaluation of the prediction ca-
pabilities of the architecture-level performance model for automated system adaptation,
and the end-to-end evaluation of the integration of these concepts to realize the proactive
model-based adaptation approach presented in this thesis. In the following sections, we
discuss these parts of the validation in more detail.

8.1.1. Modeling Capabilities

When developing new modeling abstractions, it is important to evaluate their expressive-
ness and appropriateness to meet the intended purpose. The evaluation of these proper-
ties for the modeling abstractions developed in this thesis, the resource landscape meta-
model and the adaptation points and adaptation process meta-models, has already been
presented in Sections 5.4 and 6.4. In Section 5.4, we showed how to use the resource
landscape meta-model to model modern distributed data centers and illustrated the ad-
vantages of the developed modeling abstractions in a VM (re-)deployment scenario. The
results demonstrated that modeling the resource landscape with its hierarchy provides
important information that can be used to support adaptation decisions, e.g., to exclude
migration targets or to find the most suitable target. In Section 6.4, we evaluated the
flexibility and suitability of the adaptation points and adaptation process meta-model to
specify system adaptation processes by comparing them with an existing classification of
adaptation models (Vogel and Giese, 2012). In addition, we demonstrated the potential of
the modeled adaptation processes for autonomic system adaptation by comparing it with
optimization heuristics implemented in PerOpteryx (Martens et al., 2010), a framework
for automated software architecture improvement. The results showed that our adapta-
tion language and adaptation framework fulfill all essential requirements for adaptation
models and demonstrated how the adaptation process meta-model can guide the system
adaptation. In summary, the results showed that the modeling formalisms presented as
part of this thesis are sufficiently expressive to provide the information needed to sup-
port run-time system adaptation and that they can be effectively used to describe system
adaptation processes. Note that the evaluation of the expressiveness of the application
architecture meta-model is part of the work of Brosig (2014).

8.1.2. Prediction Capabilities of the Architecture-Level Performance Model

An essential element for the success of the approach presented in this thesis is the usability
of the employed online performance prediction techniques for performance and resource
management at run-time. Thus, it is important to evaluate if the architecture-level perfor-
mance model as part of DML enables performance predictions that are sufficiently accurate
to support adaptation decisions and to drive autonomic decision-making. Given that the
development of the online performance prediction techniques is part of the work of Brosig,
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the validation of these techniques can be found in Brosig (2014). Nevertheless, we include
details about the architecture-level performance models that we created for each case study
as well as the obtained prediction accuracy in the respective sections. The results show
that the provided modeling abstraction levels are suitable to tailor the prediction process
to given accuracy and run-time requirements and that the results of the online performance
prediction can be effectively used for run-time system adaptation.

8.1.3. End-to-End Validation of the Model-Based Adaptation Approach

The third essential part of the validation is the evaluation of all constituent parts of our
approach as a whole. It is important to show that the integration is capable of enabling
autonomic performance-aware resource management and to analyze how the approach
performs in different situations and under varying conditions. In the following, we discuss
the goals of this part of the validation.

In contrast to the evaluation presented in the respective sections of Chapters 5 to 7 con-
sidering the individual parts of our approach in isolation, the purpose of the validation
presented in this chapter is to validate our approach end-to-end. Our preferred validation
method would be to use a benchmark or some kind of widely accepted exemplary scenario
to evaluate the quality and performance of our approach and to compare it against other
approaches. However, creating a benchmark for self-adaptive software systems is still a
challenge as no practical way to characterize self-adaptation capabilities currently exists,
especially when comparing alternative systems concerning performance and dependability
(Almeida and Vieira, 2011). To give an example, it is a challenge to evaluate not only the
impact of an adaptation on the performance and dependability of the system, but also the
overall impact of the adaptation with respect to subsequent changes. Thus, we decided to
set up our own case studies for assessing and analyzing the behavior of our approach in
different situations and under varying conditions. The case studies were carefully selected
to ensure the external validity of the results. The systems considered in the case studies
are as realistic as possible without making any system-specific assumptions, and the se-
lected evaluation scenarios are based on real-life problems, e.g., of our industrial partner
Blue Yonder. To create realistic setups for our experiments, we employed technologies that
are extensively used in industry and studied applications from different domains (business
information systems and compute-intensive applications). Finally, we also used different
real-life workload traces from the Wikimedia Project (2011) as well as traces provided by
our industrial collaboration partners. Briefly, the case studies we use for our validation
and their respective goals are:

Case Study 1: Here we apply our model-based approach in a homogeneous and virtual-
ized resource environment to allocate resources dynamically in order to accommodate
changes in the environment, such as varying workload intensities or deployment of
new services. As target application, we use the SPECjEnterprise2010 benchmark
(Section 8.2). The goal of this case study is to demonstrate how we can take advan-
tage of the possibilities provided by virtualization to build a model-based adaptation
process that adapts the system at run-time to changes in the application workloads
or in the system configuration.

Case Study 2: Here we apply our Workload Classification and Forecasting (WCF) ap-
proach on real-life workload traces showing how it can be used to proactively adapt
systems to changes in their workloads (Section 8.3). The goal of this case study is
to demonstrate how WCF can be used to reduce SLA violations through proactive
resource provisioning at run-time.

Case Study 3: Here we apply our model-based system adaptation approach in the context
of an example project of our industrial partner Blue Yonder to evaluate how it
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performs in heterogeneous resource environments with multiple different performance
requirements (Section 8.4). Compared to case study 1, the goal of this case study is
to evaluate whether our approach is applicable in an environment with heterogeneous
resources and whether it can be used to trade-off different performance requirements
of multiple customers.

With these case studies, our goal is to demonstrate that we are able to leverage WCF
and online performance prediction to realize the holistic model-based system adaptation
process presented in Chapter 4. The case studies are intended to help us answer several
specific questions presented in the following.

Q1: Can our proposed architecture-level model-based approach be effectively
used to enable autonomic performance-aware resource management?

To answer this question, we apply our approach in the context of the described case studies
to evaluate whetherit is capable of improving the resource efficiency of the studied systems
under varying conditions. In these case studies, we model the system performance behav-
ior using the modeling formalism presented in Chapter 5 as well as the system’s adaptation
process that maintains its operational goals, specified with the modeling formalism pre-
sented in Chapter 6. We apply the adaptation framework presented in Section 6.3 to
interpret and execute the modeled adaptation process. Thereby, we can assess if the pre-
sented online performance prediction and model-based system adaptation techniques can
be combined to maintain the system performance and resource efficiency requirements.

Furthermore, we claim that our model-based approach can be effectively used for proactive
resource provisioning. Thus, we have to validate whether the workload intensity forecasts
of the WCF approach presented in Chapter 7 can be used to adapt the system proactively.
This leads to the question:

Q2: Can the workload classification and forecasting mechanism be effectively
used to enable proactive resource provisioning?

This question is addressed in Section 8.3, where we apply WCF to realistic workloads to
predict future workload intensities. We use the workload forecasts as input to our model-
based system adaptation approach in order to evaluate if the presented techniques can
be used for proactive system adaptation and if they provide benefits compared to trigger-
based approaches. To answer if the workload forecasts can be used for proactive system
adaptation, we analyze the effect of our proactive adaptation approach on metrics like
resource efficiency and SLA violations.

A further important question to investigate is the effectiveness of our approach compared
to other approaches.

Q3: How does our approach perform compared to other approaches?

As mentioned previously and discussed by Almeida and Vieira (2011), it is currently a
challenging task to benchmark self-adaptive software systems and thereby compare related
approaches. Thus, to assess the effectiveness of our approach, we compare it against a static
resource allocation approach as well as against a reactive, trigger-based approach. Such
approaches are common practice in industry and thus serve as a baseline. To quantify the
difference of our approach to the other approaches, we directly compare metrics like SLA
violations and resource efficiency. Also, when comparing the different approaches, it is
important to consider other metrics such as the computational overhead or the effect and
frequency of adaptation actions.
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Another claim of this thesis is that our approach is capable of modeling adaptation pro-
cesses that trade-off different adaptation goals, e.g., different performance requirements of
diverse customers. This leads us to the question:

Q4: Does our approach support adaptation processes for trading-off multiple
objectives?

This question is addressed in the case study presented in Section 8.4 which considers
multiple customers with diverging performance requirements. In the scenarios of this case
study, we analyze how the modeled adaptation process adjusts the assigned resources to
changes in the customer requirements, considering the performance requirements of other
customers sharing the resources.

In each of the following sections, we first discuss the individual goals of the respective case
study with respect to the formulated validation questions. We then present in detail how
our approach is applied to the specific case study and discuss the results of the conducted
experiments. Finally, Section 8.5 gives a summary of the results of all case studies and
discusses in detail the answers to the presented questions as well as the validity of the
results of our end-to-end validation.

8.2. Model-Based Resource Allocation in Virtualized Envi-
ronments

In this case study, we apply our approach in a virtualized cluster environment. As appli-
cation, we selected the SPECjEnterprise20101 benchmark which is designed to represent
a state-of-the-art enterprise system. The goal of the case study is to demonstrate how we
can build a model-based adaptation process that exploits the flexibility of virtualization
to adapt the system at run-time to changes in application workloads (Validation Question
Q1). Furthermore, to answer validation question Q3, we evaluate the efficiency of our
approach compared to static resource assignment.

The presentation of this case study is structured as follows. First, we give an overview of
the SPECjEnterprise2010 benchmark and the adaptation process that we use in this case
study (Section 8.2.1). Then, in Section 8.2.2, we present the employed architecture-level
performance model of the application and the modeled adaptation process. Finally, we
present the evaluation results in Section 8.2.3.

8.2.1. Overview of the SPECjEnterprise2010 Benchmark and the Em-
ployed Adaptation Process

In this section, we explain the architecture of the SPECjEnterprise2010 benchmark, the
hardware infrastructure, and the deployment of the software components that we use in our
experiments. Furthermore, we introduce the system’s degrees of freedom that we leverage
for system adaptation. Based on these degrees of freedom, we specify a generic resource
allocation algorithm to maintain the performance requirements and resource efficiency of
the system.

1SPECjEnterprise2010 is a trademark of the Standard Performance Evaluation Corp. (SPEC). The
SPECjEnterprise2010 results or findings in this thesis have not been reviewed or accepted by SPEC,
therefore no comparison nor performance inference can be made against any published SPEC result. The
official web site for SPECjEnterprise2010 is located at http://www.spec.org/jEnterprise2010.
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8.2.1.1. Architecture of the SPECjEnterprise2010 Benchmark

SPECjEnterprise2010 is a standard benchmark developed by SPEC’s Java subcommittee
providing a representative workload to evaluate the end-to-end performance and scala-
bility of Java EE-based application servers. The benchmark workload is generated by
an application that is modeled after an automobile manufacturer, comprising customer
relationship management (CRM), manufacturing and supply chain management (SCM).

The business logic is divided into three domains: orders domain, manufacturing domain
and supplier domain (cf. Figure 8.1). To give an example of the business logic implemented
by the benchmark, consider a car dealer that places a large order with the automobile
manufacturer. The large order is sent to the manufacturing domain, which schedules
a work order to manufacture the ordered vehicles. In case some parts needed for the
production of the vehicles are depleted, a request to order new parts is sent to the supplier
domain. The supplier domain selects a supplier and places a purchase order. When the
ordered parts are delivered, the supplier domain contacts the manufacturing domain and
the inventory is updated. Finally, upon completion of the work order, the orders domain
is notified.

The application logic in the three domains is implemented using Enterprise JavaBeans
(EJBs) which are deployed on the considered Java EE application server. The domains
interact with a database server via Java Database Connectivity (JDBC) using the Java
Persistence API (JPA). The communication between the domains is asynchronous and is
implemented using point-to-point messaging provided by the Java Message Service (JMS).
The workload of the orders domain is triggered by dealerships whereas the workload of
the manufacturing domain is triggered by manufacturing sites. Both, dealerships and
manufacturing sites are emulated by the benchmark driver, a separate supplier emulator is
used to emulate external suppliers. The communication with the suppliers is implemented
using Web Services. While the orders domain is accessed through Java Servlets, the
manufacturing domain can be accessed either through Web Services or EJB calls, i.e.,
via Remote Method Invocation (RMI). As shown in Figure 8.1, the system under test
spans both the Java application server and the database server. The emulator and the
benchmark driver must be deployed outside of the system under test so that they do not
affect the benchmark results.

The benchmark driver executes five benchmark operations (cf. Figure 8.1). A dealer may
Browse through the catalog of cars, Purchase cars, or Manage his dealership inventory,
i.e., sell cars, or cancel orders. A manufacturer may place work orders for producing
vehicles, which are triggered either over a web service interface (CreateVehicleWS) or
via an RMI call (CreateVehicleEJB).

8.2.1.2. Hardware Setup

The benchmark application is deployed in the hardware environment depicted in Figure 8.2.
We use seven blade servers from a local cluster environment. Each blade server is equipped
with two Intel 4-core CPUs and 32 GB of main memory. The machines are connected by
a 1 GBit Ethernet LAN.

On top of each machine, we run Citrix XenServer 5.5 as a virtualization layer. Inside the
XenServer VMs, we run the benchmark components (application servers, driver agents,
emulator, and load balancer). Each component runs in its own VM, initially equipped
with two dedicated vCPUs. As operating system, these VMs execute CentOS 5.3. As
Java EE application server, we use the Oracle WebLogic Server (WLS) 10.3.3. The load
balancer is haproxy 1.4.8 using round-robin as load balancing strategy. The driver agents
are provided by the Faban framework that is shipped with the benchmark. The database

152



8.2. Model-Based Resource Allocation in Virtualized Environments 153

Figure 8.1.: SPECjEnterprise2010 benchmark architecture.

is an Oracle 11g database server instance deployed on a separate cluster node, hosting a
dedicated VM with eight vCPUs running Windows Server 2008.

The SPECjEnterprise2010 benchmark application is deployed in this environment in an
application server cluster of WLS nodes. Two types of dynamic changes are considered
with respect to which the system is expected to adapt. First, the application usage profile
changes periodically, i.e., the benchmark workload intensity and/or operation mix. Second,
we have modified the benchmark such that it is also possible to activate or deactivate a
service to emulate adding/removing services.

8.2.1.3. Degrees of Freedom

The system has the following degrees of freedom that we use to adapt the system to changes
in the usage profile. First, we can add/remove WLS nodes to/from the WLS cluster. The
load-balancer distributes the user requests equally among all WLS nodes that belong to the
cluster. The minimum amount of cluster nodes is one, the maximum is restricted by the
available hardware. The second and more fine-granular possibility to adapt the system is
to add or remove vCPUs to/from a VM. Here, the minimum is two vCPUs, the maximum
is four, as we require that all allocated resources are not shared among different VMs.
Third, we can migrate VMs between the physical hosts. These adaptations are applicable
at run-time, i.e., they can be applied while the benchmark application is running.

8.2.1.4. Resource Allocation Algorithm

To adapt the described system to changes in its environment, we need an adaptation pro-
cess that performs adaptation actions to maintain performance requirements and resource
efficiency. We now present a generic resource allocation algorithm that consists of two
phases. The PUSH phase allocates additional resources until all client SLAs are satisfied.
The PULL phase optimizes the resource efficiency by deallocating resources that are not
utilized efficiently. In the following, we give a formal description of this algorithm.
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Figure 8.2.: Experiment setup.

Formally, we define the system as a 3-tuple M = (T, S,C) where:

T = {t1, t2, ..., tm} is the set of resource types,
S = {s1, s2, ..., sn} is the set of services offered by the system,
C = {c1, c2, ..., cl} is the set of client workloads and respective SLAs. Each ci ∈ C is a

triple (s, λ, ρ) where s ∈ S is the service used, λ is the workload intensity (expected
request arrival rate), and ρ is the client requested average response time (SLA).

Furthermore, we define the following functions:

V ∈ [S → 2T ] specifies which resource types are required by service s ∈ S,

F ∈ [S × T → Is,t], referred to as resource allocation function, assigns to each service
s ∈ S a set of instances Is,t of resource type t ∈ T (e.g., a Container or Con-
tainerTemplate, cf. Section 5.1.1). Each resource type instance is assumed to be
allocated a given number of identical processing resources (cf. ActiveResource-
Specifications in Section 5.1.3). Formally, the resource type instance i ∈ Is,t
is represented as a triple (π, κ, κ), where π is the processing rate of its processing
resources, κ is the number of processing resources currently allocated (e.g., allocated
vCPUs), and κ is the maximum number of processing resources that can be allocated
(e.g., number of CPUs on a physical machine),

D ∈ [S → R+] specifies the resource demand of service s ∈ S. If a service does not
require a resource, the demand D(s) is set to zero.

We define the following performance metrics:

X(c) is the total number of requests of client workload c ∈ C completed per unit of time
(request throughput),

R(c) is the average response time of a service request in client workload c ∈ C,

U(t) is the average utilization of resource type t ∈ T over all instances of the resource,

U(t) is the maximum allowed average utilization for resource type t ∈ T .

Finally, we define the following predicates:

PX(c) for c ∈ C is defined as (X(c) = c[λ]),

PR(c) for c ∈ C is defined as (R(c) ≤ c[ρ]),

PU (t) for t ∈ T is defined as (U(t) ≤ U(t)).
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For a configuration represented by a resource allocation function F to be acceptable the
following condition must hold (∀c ∈ C : PX(c) ∧ PR(c)) ∧ (∀t ∈ T : PU (t)). For example,
this condition can be checked in the Analyze phase to detect performance problems,
or we can use it during the Plan phase to evaluate if an adaptation action violates the
performance requirements.

From a high-level perspective, the resource allocation algorithm is implemented as follows.
Each time there is a change in the set of client workloads C −→ C̃ (e.g., a new client
workload c̃ = (s, λ, ρ) is scheduled for execution or a change in the workload intensity λ
of an existing workload is forecast), we use our online performance prediction mechanism
to predict the effect of this change on the performance requirements expressed by the
previously defined predicates. If an SLA violation is detected, the PUSH phase of our
algorithm is executed which allocates additional resources until all client SLAs are satisfied.
After the PUSH phase finishes, the PULL phase is executed to optimize the resource
efficiency. If no SLAs are violated, the PULL phase starts directly. In the following, we
describe the PUSH and PULL phases in more detail.

PUSH Phase

The following algorithm written in mathematical style pseudo code presents our basic
heuristic for allocating resources to services such that client SLAs are satisfied.

Algorithm 1: PUSH

while ∃c ∈ C̃ : ¬PR(c) do
forall the t ∈ V (c[s]) : ¬PU (t) do

while cap(c, t) ≤ cap(c, t) do
if ∃i ∈ F (c[s], t) : i[κ] < i[κ] then

i[κ]← i[κ] + 1
else

F (c[s], t)← F (c[s], t) ∪ {̂i}
end

end

end

end

Basically, while there exists a client response time SLA that is violated, the algorithm
increases the amount of allocated resources for all resource types used by the service that
currently exceed their maximum allowed utilization U(t). This is based on the assumption
that violations are caused by at least one resource type used by the respective service
has become a bottleneck. Increasing the number of allocated resources works as follows:
If there is an instance of the overutilized resource type t (e.g., a VM) that has some
unallocated processing resources available (e.g., virtual CPUs), additional resources are
allocated. Otherwise, a new instance of the resource type î is added (e.g., a new VM is
started). In our algorithm, an additional resource instance increases the total capacity by
one. Our algorithm assumes that there is an infinite amount of resources available and
hence, this capacity increase is repeated until the amount of allocated resources reaches
cap(ĉ, t), defined as

cap(ĉ, t) =


∑
c∈C̃

c[λ] ·D(c[s])∑
c∈C

c[λ] ·D(c[s])

 · cap(ĉ, t), (8.1)
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where cap(ĉ, t) is defined as the capacity assigned in the previous step. The above is
an estimated upper bound on the capacity of resource type t required to handle client
workload ĉ, based on a factor calculated by the changes in required resources (arrival rate
times resource demand) and cap(ĉ, t). It is calculated as the ratio of the newly specified
arrival rates and the original arrival rates both multiplied with their respective resource
demands. This estimation of the upper bound is intended to reduce the number of scenarios
for which online performance prediction that have to be performed when searching for an
acceptable configuration. Note that this is just one possibility to estimate an upper bound
and other, more fine-grained estimates could be applied here as well.

PULL Phase

The PULL phase aims to optimize the resource efficiency by trying to release resources
that are not utilized much by the current client workloads.

Algorithm 2: PULL

forall the c ∈ C do
I ← ∅
while ∃t ∈ V (c[s]) : U(t)− U(t) ≥ ε ∧ I 6= F (c[s], t) do

if ∃i ∈ F (c[s], t)\I : i[κ] > 0 then
i[κ]← i[κ]− 1
if ∃c ∈ C : ¬PR(c) then

i[κ]← i[κ] + 1
I ← I ∪ i

end
if i[κ] = 0 then

F (c[s], t)← F (c[s], t)\{i}
end

end

end

end

The algorithm is applied to all client workloads c ∈ C. While there is an instance of a
resource type t assigned to service s of the currently considered workload c whose delta
between the maximum utilization U(t) and current utilization U(t) is greater than a pre-
defined constant ε, the amount of resources allocated to this service will be decreased,
i.e., for a resource type instance i of t which currently has some resources allocated (e.g.,
virtual CPUs), the amount of allocated resources is decreased. If the client SLAs are pre-
dicted to be violated after this change, the change is reversed. In case after the change,
the instance has no remaining allocated resources, the instance i can be removed from the
set of resource type instances (e.g., VM can be shut down). Note that the set of a resource
type instances can also become empty, e.g., if there is no service left using the respective
resource type t.

The resource allocation algorithm presented in this section is designed to find a system
configuration that fulfills specified performance requirements. However, we do not claim
that the resulting system configuration is optimal with respect to resource efficiency as the
development of efficient optimization algorithms is not in the focus of this thesis.

8.2.2. Applied DML Instance

In this section, we introduce the different models that are part of DML instance we use to
adapt the SPECjEnterprise2010 system to changing customer workloads. The adaptation
process we model is the previously defined resource allocation algorithm.
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8.2.2.1. Architecture-level Performance Model

DML-based architecture-level performance model that we use in this case study has been
extracted automatically from a running benchmark deployment using the method pre-
sented by Brosig et al. (2011).

Briefly, the three main steps of the extraction process are: i) extraction of the application
architecture, ii) extraction of the performance-relevant control flow, and iii) extraction of
resource demands. The extraction uses monitoring data collected at system run-time with
the Oracle WebLogic Diagnostics Framework (WLDF) running on the WLS instances.
More details on the model extraction process can be found in Brosig et al. (2011).
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Figure 8.3.: Overview of the modeled SPECjEnterprise2010 benchmark components (cf.
Brosig, 2014).

Figure 8.3 gives an overview of the resulting architecture reflected by the application ar-
chitecture model of DML. The model shows a load balancer that distributes incoming
requests to a cluster of of identical application servers each hosting an instance of the
SPECjEnterprise2010 benchmark application, which themselves are connected to an emu-
lator instance and a database instance. A benchmark application instance is a composite
component which consists of several component instances, e.g., a SpecAppServlet com-
ponent or a PurchaseOrderMDB component. These components reside in the repository
as well. In total, the architecture-level performance model of the benchmark application
consists of 28 components whose services are described by 63 fine-grained service behavior
abstractions. In total, the model contains 51 internal actions, 41 branch actions, and four
loop actions.

The usage model representing the benchmark workload was specified manually. Each of
the five benchmark operations are modeled as individual usage scenarios. Figure 8.4 shows
the usage scenario of benchmark operation Manage in a notation similar to UML activity
diagrams. It consists of several system calls, two branches with corresponding transition
probabilities, and a loop action. The loop iteration number is given as a probability
mass function. For instance, in the depicted example, with a probability of 55% the
loop body is executed only once, with a probability of 11% the loop iterates two times.
The probabilities of the loop iteration numbers are derived from monitoring data. The
remaining four benchmark operations are of similar complexity.

The resource landscape model describing the hardware environment in which we execute
the SPECjEnterprise2010 benchmark was also specified manually. A model instance of
the cluster nodes hosting one VM is depicted in Figure 8.6. The individual Containers are
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Figure 8.4.: Usage scenario for the Manage benchmark operation (cf. Brosig, 2014).

annotated with their respective ActiveResourceSpecifications. For example, the Databas-
eServer is annotated with four ActiveResourceSpecifications representing four CPUs with
four cores each.

Overall, the extracted model predicts the performance behavior very well, as evaluated
for various scenarios presented in (Brosig et al., 2011). In summary, Figure 8.5 shows
that resource utilization is predicted with a relative error of mostly 5% in a scenario with
four application server nodes. Response times, which are typically much harder to predict
accurately, are predicted with a relative error of about 10 to 20%. In this case study, we
use the extracted architecture-level performance models to predict the impact of possible
adaptations at run-time. A comprehensive and extensive evaluation of the accuracy of the
employed performance models can be found in Brosig et al. (2011).
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Figure 8.5.: Evaluation of the accuracy of the employed performance models (cf. Brosig,
2014).
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8.2.2.2. Adaptation Points Model and Adaptation Process Model

As explained in Section 8.2.1.3, we have three degrees of freedom that we can use to
adapt the SPECjEnterprise2010 system: the number of VM instances (WLS nodes), the
number of vCPUs of a VM, and the host of a VM. These adaptation points and their
respective boundaries are specified with the adaptation points meta-model. They are
depicted together with the resource landscape model in Figure 8.6.
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Figure 8.6.: Resource landscape and adaptation points of the SPECjEnterprise2010 bench-
mark deployment.

Based on the adaptation points, we have modeled an adaptation process using the adap-
tation process modeling language presented in Chapter 6. The modeled process is an
instantiation of the resource allocation algorithm introduced in Section 8.2.1.4. More
specifically, VMs correspond to a resource type t ∈ T of the algorithm, and the number of
vCPUs of a VM correspond to the capacity κ of a resource type instance.

Figure 8.7 shows a schematic representation of the adaptation process model instance and
its strategies, tactics, and actions. The PUSH strategy is triggered if an SLA violation
is detected, i.e., the predicate PR(c) evaluates to false. The strategy uses the IncreaseRe-
sources tactic to add resources until the problem is resolved, i.e., PR(c) is true. The way
the tactic increases the amount of resources allocated to the application server depends
on the capacity of the VM. If the number of assigned vCPUs is below the maximum
(cap(VM) < maxCap(VM)), the control flow of the IncreaseResources tactic uses the ad-
dVCPU action to assign an additional virtual core to the VM. Otherwise, the tactic adds
another VM to the application server cluster (addVM). The PULL strategy’s purpose is
to maintain resource efficiency. It is triggered after the PUSH strategy or on a scheduled
basis, and removes resources until the SLAs start being violated again. Here, we can
leverage the architecture-level performance model to predict if the application of a tactic
would lead to an SLA violation. The PUSH strategy has three tactics to increase resource
efficiency: RemoveVM, MigrateVM, or ReleaseVCPU. The different weights express which
tactic to execute next. The weights of the tactics change during the adaptation of the
system, depending on their performance and resource efficiency impact (cf. Section 6.2.5).
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Figure 8.7.: A schematic representation of the adaptation process’ strategies, tactics, and
actions.

8.2.3. Evaluation

As part of the evaluation scenarios presented in the following, we specifically address the
evaluation questions Q1 and Q3. We demonstrate that our approach is able to automati-
cally adapt to the different changes in the system environment, such as adding new services
or varying service workloads (Q1), and we evaluate the effectiveness of our approach com-
pared to static resource provisioning (Q3).

8.2.3.1. Scenario 1: Adding a New Service

In this scenario, we evaluate if our approach is able to adapt the system in situations where
new services are deployed in the environment on-the-fly such that performance require-
ments are maintained. Assume that there are four services executed in our environment
and one application server node with two vCPUs is sufficient to handle the workload (de-
fault configuration c0 in Figure 8.8). The SLAs for the different services correspond to the
average response times we measured for the default arrival rates settings of the benchmark
driver. Using the tuple (service name, arrival rate, response time) as notation for SLA
specification, the SLAs for the four currently running services are: (CreateVehicleEJB,
15, 54ms), (Purchase, 12.5, 80ms), (Manage, 12.5, 80ms), and (Browse, 25, 80ms).
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Figure 8.8.: The response times of the five services and their respective SLAs (denoted by
the dashed lines) before and after adapting the system.

Now a new service with the SLA (CreateVehicleWS, 15, 54ms) is added. After adding
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the new service to the model, the Analyze phase detects SLA violations for the services
CreateVehicleWS and Purchase (cf. Figure 8.8). To resolve this problem, the modeled
adaptation process is triggered to find a new system configuration that can maintain the
SLAs. The adaptation process starts with the PUSH strategy, trying to increase the
resources in the WLS cluster. As the currently active VM has some capacity left (it uses
only two vCPUs), the IncreaseResources adds an additional vCPU to the existing VM
(configuration c1). After adapting the model, the analysis of the model indicates satisfied
SLAs, i.e., a resolution of the problem that triggered the adaptation. To maintain resource
efficiency, an additional adaptation strategy is now triggered that checks if the system
can be further reconfigured to increase resource efficiency while maintaining SLAs. In
this case, nothing can be done and therefore, the resulting configuration recommended
by the modeled adaptation process consists of one node with three vCPUs. To confirm
these results, we have conducted experiments measuring the service response times in
the different configurations. The results are depicted in Figure 8.8 and show that with
the default resource allocation, the SLAs of CreateVehicleWS and Purchase cannot
be maintained. However, after applying our modeled adaptation process, all SLAs are
satisfied. This experiment also shows that for fine-granular changes such as adding a
single service, we need fine-granular models and analysis techniques to find the proper
system configuration.

8.2.3.2. Scenario 2: Increasing Workload

In this scenario, we evaluate our approach when the workload of all services deployed in
our environment increases. We increase the workload in two steps, from 2x to 4x, and
from 4x to 6x (see Figure 8.9). The standard workload (1x) is the workload as defined in
the previous scenario for all five services.

Our starting point is that five services are running on one node (c1) with twice the standard
workload and the following SLAs (CreateVehicleEJB, 30, 74ms), (CreateVehicleWS,
30, 74ms), (Purchase, 25, 130ms), (Manage, 25, 130ms), and (Browse, 50, 130ms),
which are all initially satisfied. Now, we increase the workload to 4x the standard load.
For this new workload, we can detect a violation of the SLAs. After applying the adapta-
tion process leads to a system configuration with two VMs, one with four vCPUs and one
with three vCPUs (c2). Applying this reconfiguration to our experiment environment, the
measurement results depicted in Figure 8.9 a) confirm that all SLAs are maintained, i.e.,
the adaptation was successful.

In the second step, we increase the workload to 6x the standard load, not changing the
SLAs. Again, this leads to a violation of the SLAs. Now, the adaptation process recom-
mends to add a further VM, i.e., we now use two VMs with four vCPUs and one VM
with three vCPUs (c3). However, our measurements depicted in Figure 8.9 b) show that
after reallocation the SLAs of the Browse and the Purchase services are still violated.
A detailed analysis of the SPECjEnterprise2010 component response times revealed that
the reason is the database, which was not powerful enough to handle the new workload.
Hence, we have to scale the database to investigate if the recommended configuration is
valid. This is explained in the following section.

8.2.3.3. Scenario 3: Scaling the Database

To scale the database, we moved the DBMS to a more powerful machine with four 6-
core AMD CPUs and 128 GB main memory and connected the machine to our cluster
environment with four 1 Gbit Ethernet links. Furthermore, the DBMS was deployed on a
VM but on a native Windows 2008 Server. With this setup, the DBMS was able to handle
the increased load and we can confirm that configuration c3, that was recommended by
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Figure 8.9.: The response times when increasing the workload intensity from 2x to 4x and
4x to 6x, respectively (SLAs denoted by the dashed lines).

our adaptation process, is sufficient to maintain the SLAs if we increase the workload to
6x the standard workload (cf. Figure 8.10).

Next, we tried to further scale the workload from 6x to 8x. With this configuration,
we again detect SLA violations and the adaptation process suggested to add one further
node (c4). However, in the real system we measured only an insignificant reduction of
the response times with this new configuration (cf. Figure 8.10). This time the problem
was the load balancer which was fully utilized, busy with handling over 5500 sessions per
second. Our approach was not able to detect this problem since we have not considered
the load balancer in our application-level performance model. However, even though the
load balancer can be easily integrated into our model, this would not help to further scale
the experiment environment because the model’s analysis results would then also limit
the size of the application server cluster to four nodes. To further increase the size of
the application server cluster, one would have to reconfigure or scale the load balancer
performance to to increase its throughput.

8.2.3.4. Scenario 4: Decreasing Workload

This scenario evaluates how our approach adapts resource allocations in situations when
the workload decreases. In such scenarios, the approach should release resources that are
not needed while ensuring that SLAs are not violated. This improves system efficiency
because the released resources can then be assigned to other VMs (in case of released
vCPUs) or one can switch a whole physical machine into standby mode in case all its VMs
are released or migrated.

162



8.2. Model-Based Resource Allocation in Virtualized Environments 163

M
ea

n 
R

es
po

ns
e 

T
im

e 
[s

ec
]

0.
0

0.
4

0.
8

EJB WS Purchase Manage Browse

6x workload (c3)
8x workload (c3)
8x workload (c4)

Figure 8.10.: The response times when increasing the workload intensity from 6x to 8x
with the DBMS deployed on a more powerful machine. SLAs are denoted by
the dashed lines.

Assume the situation that all services are executed with 6x the standard workload on
three nodes and all SLAs are satisfied (c3). Now, we decrease the workload to 5x the
standard load. In the Analyze phase, we can detect the workload decrease and trig-
ger the Plan phase to execute an adaptation. In this scenario, the adaptation process
recommends a configuration c2 in which two nodes are sufficient to handle the decreased
workload. The measurement results are depicted in Figure 8.11, demonstrating that the
recommended system configuration is correct, as configuration c2 requires less resources
but still maintains the SLAs.
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Figure 8.11.: The response times when decreasing the workload intensity from 6x to 5x to
4x before and after adaptation and with further decreased resources (SLAs
denoted by the dashed lines).

Next, we decreased the workload to 4x the standard load. Again, our approach predicts
that two nodes (c2) are sufficient to handle the decreased workload. To confirm that
resource allocations cannot be further reduced while satisfying the SLAs, we conducted an
experiment where we further reduced the allocated resources manually to one node (c1).
The results for this configuration show that it would violate the SLAs, hence the previously
found configuration is valid.
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8.2.3.5. Scenario 5: Migration of Virtual Machines

In the previous scenario, we have shown that the system efficiency can be improved by
adjusting the number of allocated resources to match the current workload intensity. How-
ever, when reducing resources by removing application server nodes (stopping VMs), it is
possible that some of the physical machines are not utilized efficiently. For example, one
configuration might consist of two 8-core machines, each running one VM with 4 cores,
i.e., each machine is not fully utilized. Therefore, our adaptation process considers mi-
grating VMs to consolidate them on fewer physical machines in order to further increase
the resource efficiency. For this scenario, assume that we have just experienced a workload
decrease from 6x standard workload to 4x and the system now runs with two application
server nodes, each on a separate physical machine. Now, through VM live migration, our
approach can consolidate these two VMs on a single machine.
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Figure 8.12.: Response time measurements during migration of an application server node.

Figure 8.12 shows the effect of the migration on the services’ response times. We can
observe a significant increase of the response time for all services directly after starting the
migration which was triggered 700 seconds after the begin of the experiment. The response
times remain increased as long as the VM is being migrated (approx. 500 seconds). In
a similar experiment under light load conditions, the migration takes only approximately
two minutes. Therefore, the time taken to migrate the VM depends on the load of the
migrated VM. Hence, when migrating a VM, our approach must trade-off penalties due to
violated SLAs with the benefits of increased efficiency, an aspect that we evaluate in the
next subsection.

8.2.3.6. Scenario 6: Resource Usage and Efficiency

To illustrate the potential efficiency gains achieved by our approach, we use real-life work-
load data of a mainframe provided by our industrial partner IBM (Herbst et al., 2013a).
The data, shown in Figure 8.13, reports the number of started transactions during one
week from Monday to Sunday in 15 minute time frames (in total 575 frames). We as-
sume that the maximum of this workload corresponds to our maximum of 8x the standard
workload.

With our approach, we can dynamically adapt the amount of allocated resources to the
changing workload. The bottom curve of Figure 8.13 depicts the development of the
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Figure 8.13.: Active nodes for a workload distribution over six days.

allocated resources if we apply the presented adaptation process to assign and release
resources. In a static scenario, one would assign four dedicated nodes to guarantee SLAs in
peak load situations, depicted by the dashed line in the bottom of Figure 8.13. Specifically,
one would use four nodes for all 575 time frames, i.e., 2300 active nodes in total. With
a dynamic resource allocation approach, only

∑575
i=1 active nodes(i) = 1002 active nodes,

i.e., 43.57% of the resources of the static assignment are needed. Thereby approximately
56% of the resources available can be released. These resources can be either used for
other customers or applications, or the application can be consolidated to free physical
machines and switch them to standby mode. Given that the monitoring time frames are
15 minutes and the migration of a VM takes only around seven minutes, we can achieve
improved efficiency for approximately eight minutes.

In this case study, we used our approach to adequately react on changes in the system
environment to adapt the system accordingly. However, the approach presented in this
thesis is also capable of proactive system adaptation. Thus, to evaluate the proactiveness of
our approach, the following case study demonstrates how we can use workload forecasting
techniques to anticipate performance problems and adapt the system before such problems
actually occur.

8.3. Proactive Model-Based System Adaptation

In Chapter 7, we presented an approach for self-adaptive Workload Classification and
Forecasting (WCF) at run-time. WCF uses well-established time series analysis techniques
to identify the characteristics of workloads such that we are able to automatically select
suitable forecasting methods to estimate future workload intensities. Due to the large
spectrum of integrated forecasting methods, WCF offers a high degree of flexibility to
influence the forecast accuracy by adapting the selected forecasting methods to the given
workload intensity behavior (WIB). The experiment results in Section 7.4 have shown

165



166 8. Validation

that WCF is able to select appropriate forecasting methods, thereby improving the overall
forecast accuracy significantly. Nevertheless, the question remains if WCF is capable of
forecasting the workload behavior with sufficient accuracy such that the forecasts are useful
for proactive performance and resource management at run-time.

In this section, we present two scenarios to demonstrate how WCF can be used to reduce
SLA violations and for proactive resource provisioning at run-time (Validation Question
Q2). First, we will apply WCF to a typical web server workload and evaluate the quality of
the forecasts to avoid SLA violations. The adaptation behavior of the approach presented
in the previous case study was only reactive. Thus, the second scenario evaluates the
applicability of WCF for proactive resource provisioning at run-time by applying it to the
transactional workload of the SPECjEnterprise2010 case study presented in Section 8.2.
Simultaneously, we evaluate the effectiveness of our approach compared to static and
reactive adaptation approaches (Validation Question Q3).

8.3.1. Scenario 1: Proactively Reducing SLA Violations with WCF

For the following experiment, we assume that there is a system consisting of three web
servers responsible for handling a variable amount of page requests. We assume that the
system is linearly scalable from one to three server instances, i.e., the average resource
demand per request is constant for all three server instances. Furthermore, we assume
that the considered system implements a trigger-based resource provisioning approach that
reacts on observed SLA violations. If the arrival rate, i.e., the number of page requests per
hour grows above a certain threshold, the SLA of the average response time is assumed
to be violated and the system adds an additional server. Similarly, if the arrival rate
decreases below a certain threshold, we assume that the resource efficiency is violated and
the system releases a running server. In the following, we use the term SLA violations also
for resource efficiency violations.

In this scenario, we apply our WCF approach to forecast the workload, i.e., the page re-
quests from the web servers. The goal of this scenario is to demonstrate that we can use
our WCF approach to forecast the arrival rates of the system. With these forecasts, we
can then proactively add or release server instances to avoid SLA violations. As a repre-
sentative workload, we use the number of page requests of Wikipedia Germany obtained
from the Wikimedia Project (2011). We assume that WCF has no historical knowledge
about the Workload Intensity Behavior (WIB). To achieve accurate forecast results, WCF
has to identify the WIB characteristics and select applicable forecasting methods from the
four overhead groups presented in Section 7.2.2. A summary of the WCF configuration
for this scenario is given in Table 8.1.

In Figure 8.14, the WCF forecast values are plotted together with the corresponding
confidence intervals and the observed workload. On the x-axis, we show the forecasting
method that has been chosen by WCF in the respective period to forecast the next h
time series points. The two dotted lines represent the given thresholds that define when
a server instance is added or released. To generate some variation in the amount and
occurrence of SLA violations, the upper threshold is placed such that it is not reached in
every daily seasonal period, e.g., not on the weekends. If we look at the quality of the
forecasts to anticipate SLA violations, i.e., an intersect of the forecast time series with one
of the thresholds, we can see that SLA violations cannot be reliably anticipated in the first
three daily periods. The reason is the relatively little information about the WIB that
is available to classify and forecast the workload. For the following daily periods, as the
amount of available information grows, we can reliably anticipate SLA violations in the
majority of cases. Only when the amplitude of the daily pattern changes, e.g., before and
after weekends, the forecast mean values deliver false positives or do not anticipate the
need for additional computing resources in time.
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Figure 8.14.: Observed workload (Wikipedia page requests) and the forecasts of WCF for
21 days.
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Table 8.1.: Settings of WCF.

Forecasting Method WCF(1-4)
(overhead group)

Input Data Wikipedia Germany, 3 weeks,
WIB trace 504 values in page requests per hour,

frequency = 24, 21 periods (days)

Forecast Horizon h = 1 for 1st half period
(= Forecasting Frequency) h = 3 until 3rd period is complete
(number of forecast points h) h = 12 from 4th period

Confidence Level 80%

To evaluate the benefit of our WCF approach for proactive resource provisioning, we com-
pare the amount of SLA violations between a reactive approach based on the monitored
workload and a proactive approach using WCF. In the reactive case, adding and removing
of server instances is triggered when the monitored workload reaches the specified thresh-
old. Thus, every intersection of the observed workload time series with one of the threshold
lines indicates an SLA violation. In total, we count 76 SLA violations listed in Table 8.2.

Table 8.2.: Summary of the SLA violations of the reactive and proactive approaches.

Approach Result

Reactive 76 SLA violations

Proactive 42 SLA violations correctly anticipated
(using WCF) plus 15 almost correct anticipations

6 cases of false positives
13 cases of false negatives (not detected)

To quantify SLA violations for the proactive approach using WCF, we first have to count
the number of correct, incorrect and “almost correct” forecasts for all threshold inter-
sections of the observed workload. With the term “almost correct” forecasts we refer to
intersections with the thresholds where the accurate value was forecast slightly too late
or too early compared to the configured forecast horizon (cf. Table 8.2). If the forecast
value is correct, i.e., it corresponds to the observation, the threshold intersection has been
predicted accurately. If the forecast value is incorrect, i.e., it indicates a threshold inter-
section although there is actually no intersection, this could lead to either a false negative
or a false positive SLA violation. The false positives lead to predicted SLA violations
when there are actually no violations, whereas the false negatives refer to situations where
there has been an SLA violation that was not anticipated. Table 8.3 provides a detailed
list of the SLA violations we counted for our forecasts. The term “reactive” in Table 8.3
indicates that the threshold intersection forecast was too late, i.e., an SLA violation occurs
which must be handled reactively. As “proactive” we denote threshold intersections that
are forecast correctly, i.e., we can proactively adapt the system to avoid SLA violations.

In summary, in the best case, i.e., if we count the almost correct forecasts as correct, 57 out
of 76 (75%) of all SLA violations of the reactive approach can be avoided (cf. Table 8.2).
In the worst case, we have to accept 6 false positives, 13 false negatives, and 15 incorrect
anticipations, but we can still avoid 55% of the SLA violations of the reactive approach.
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Table 8.3.: Detailed list of the SLA violations in the reactive and proactive approaches.
Day Lower Threshold: 1 or 2 Server Instances Upper Threshold: 2 or 3 Server Instances

Direction Action Type Comment Direction Action Type Comment

1 up reactive not detected n/a none
1 down reactive not detected n/a none
2 up reactive not detected up proactive short prov. time
2 down reactive not detected down reactive not detected
3 up reactive not detected up proactive short prov. time
3 down reactive not detected down reactive not detected
4 up proactive up reactive not detected
4 down proactive down reactive not detected
5 up proactive up proactive
5 down proactive down proactive
6 up proactive up proactive false positive
6 down proactive down proactive false positive
7 up proactive slightly too early n/a none
7 down proactive slightly too early n/a none
8 up proactive up reactive not detected
8 down proactive slightly too late down proactive
9 up proactive slightly too late up proactive slightly too late
9 down proactive down proactive slightly too early

10 up proactive up proactive slightly too late
10 down proactive down proactive
11 up proactive up proactive
11 down proactive down proactive
12 up proactive up proactive
12 down proactive down proactive
13 up proactive up proactive false positive
13 down proactive down proactive false positive
14 up proactive slightly too early n/a none
14 down proactive slightly too early n/a none
15 up proactive up reactive not detected
15 down proactive down proactive
16 up proactive up proactive slightly too late
16 down reactive not detected down proactive slightly too early
17 up proactive up proactive slightly too late
17 down proactive down proactive
18 up proactive up proactive
18 down proactive down proactive
19 up proactive up proactive
19 down proactive down proactive
20 up proactive up proactive false positive
20 down proactive down proactive false positive
21 up proactive slightly too early n/a none
21 down proactive n/a none
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8.3.2. Scenario 2: WCF for Proactive Resource Provisioning at Run-Time

In this scenario, we apply WCF to forecast the transactional workload of the SPECjEnter-
prise2010 case study presented in Section 8.2. The purpose is to demonstrate the potential
efficiency gains achieved by of our proactive model-based system adaptation. Therefore, we
compare the total amount of allocated resources and the number of SLA violations of our
proactive approach with the static and reactive resource allocation approaches presented
in Scenario 6 in Section 8.2.

To realize proactive system adaptation, we use the workload forecasts to adjust the usage
profile model of SPECjEnterprise2010. Then, we use the online performance prediction
techniques by Brosig (2014) to determine the impact of the forecast workload change on the
service response times. If we anticipate an SLA violation, we start our system adaptation
approach to allocate more resources such that the SLAs are maintained. Similarly, if we
predict a workload decrease, we can leverage the architecture-level performance model to
analyze if we can reduce resources without violating SLAs.

As a representative workload, we use the the same workload as in Section 8.2, a transac-
tional workload provided by IBM from a real-life deployment of an IBM z10 mainframe
server (Herbst et al., 2013a). As opposed to the previous scenario, we now assume that
WCF has historical knowledge about the WIB which can be used to select appropriate
forecasting methods. A summary of the WCF configuration for this scenario is given in
Table 8.4.

Table 8.4.: Settings of WCF.

Forecasting Method WCF(1-4)
(overhead group)

Input Data CICS, Monday to Saturday,
WIB trace 576 values in transactions per 15 minutes,

frequency = 96, 6 periods (days)

Forecast Horizon h = 1 for 1st half period
(number of forecast points h) h = 2 until 6th period is complete

The top of Figure 8.15 depicts the workload we used before in the SPECjEnterprise2010
case study (solid line) in comparison to the forecasts of WCF (dashed line). Recall that the
considered workload is the number of started transactions during one week from Monday
to Sunday in 15 minute time frames (in total 575 frames).

It shows that the forecast values fit the actual workload quite well except for the peaks
appearing between the days. At the bottom of Figure 8.15, we plotted the number of
allocated server nodes. The gray area delimited by the solid line depicts the course of the
assigned nodes if we use the reactive approach as presented in the SPECjEnterprise2010
case study in Section 8.2. If we use the forecasts for proactive resource allocation based
on our model-based adaptation approach, we observe a different development of allocated
resources, depicted by the difference between the solid and the dashed lines.

To quantify the differences between the static, reactive and proactive resource allocation
approaches, we compared the total amount of allocated resources as well as the number of
resulting SLA and resource efficiency violations.

In the static resource allocation approach, we assigned four dedicated nodes to guarantee
SLAs even in peak load situations, i.e., we experience zero SLA violations. However, in
this case, four nodes are active for all 575 time frames, i.e., 2300 active nodes in total.
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Figure 8.15.: Active nodes for a workload distribution over six days using a static, reactive,
and proactive approach.

In the reactive case, we perform an adaptation action (adding or removing a node) if an
SLA is violated or if a resource is not utilized efficiently (cf. Section 8.2). During the
considered six days, the reactive approach allocated a total amount of 1002 active nodes
and performed 109 adaptation actions (cf. Table 8.5). Out of these 109 adaptation actions,
in 52 cases, nodes were added due to SLA violations, and in 57 cases, one or multiple nodes
were removed to increase resource efficiency. Thus, with the reactive approach, only 44%
of the resources of the static assignment are needed. However, this advantage comes at
the cost of some SLA violations.

In the proactive case, we count a total resource allocation of 1040 servers and 43 SLA and
resource efficiency violations. As a result of this experiment, we can say that proactive
resource provisioning needed approximately 5% more resources than the reactive approach
(1002 vs. 1040), but avoided approximately 60% of the SLA and resource efficiency vio-
lations of the reactive approach. Regarding the applicability of WCF, this experiment
shows that in almost 20% of the cases, the forecast was too late, which resulted in an
SLA violation. However, this could be further improved by choosing more suitable time
intervals for forecasting and adaptation.

Table 8.5.: Summary of the SLA and resource efficiency violations as well as the amount
of allocated resources for the static, reactive, and proactive approaches.

Approach SLA and efficiency violations Allocated
Too late Too early False pos. False neg. Total Resources

Static 0 (–) 2300 (100%)

Reactive 109 (100%) 1002 (43.57%)

Proactive 20 6 5 12 43 (39.45%) 1040 (45.22%)
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As a result, we conclude that the reactive and proactive model-based system adaptation
approaches save approximately the same amount of resources (cf. Table 8.5). However, the
important difference is that the proactive approach, compared to the reactive approach,
significantly reduces the amount of SLA violations.

8.3.3. Evaluation

Our previous experiments, presented in Section 7.4, showed that WCF can significantly
improve the forecasting accuracy with acceptable additional computational overhead. The
experiments presented in this section additionally demonstrated the applicability of the
forecasts obtained with WCF for proactive resource provisioning at run-time. In the
first scenario, we used WCF to forecast typical web server workloads, and analyzed if the
forecasts can be used to predict SLA violations. In the second scenario, we applied WCF to
the transactional workload of our SPECjEnterprise2010 case study presented in Section 8.2.
We then used the workload forecast in our model-based approach to proactively adapt the
system resources to changes in the workload. In summary, the results show that with
WCF, we are able to reduce the number of SLA violations by approximately 55% to
75%. However, this comes at the cost of approximately 5% increased overall resource
usage compared to a reactive, trigger-based approach. Thus, we conclude that WCF can
support proactive model-based performance and resource management.

8.4. Model-Based System Adaptation in Heterogeneous En-
vironments

In this case study, we apply our approach in a heterogeneous resource environment provided
by our industrial partner Blue Yonder. Blue Yonder is a leading service provider in the field
of predictive analytics and big data. The company offers enterprise software services that
are based on forecasts of, e.g., enterprise sales, costs, or churn rates. Blue Yonder employs
machine learning techniques to obtain accurate forecasts based on historical data provided
by their customers. Usually, supervised machine learning can be applied, consisting of
a training step that is used to infer a mathematical model from the available historical
data. This model can then be used to calculate forecasts based on a given input data
set. Training the model and calculating the forecasts requires a considerable amount of
computational resources depending on the amount of customers, their input data, and
their Service-Level Agreements (SLAs).

Currently, Blue Yonder uses dedicated resources for each customer to fulfill their respec-
tive SLAs. When acquiring new customer projects, Blue Yonder normally has to estimate
how much resources are required to sustain the workloads of the new customers and en-
sure adequate performance. This estimation is based on the experience of Blue Yonder’s
employees and can range from few low-budget desktop machines to hundreds of cores on
high-end servers, depending on the customer’s amount of data to be analyzed and on the
time available for the analysis. More importantly, this estimation is generally a worst-case
estimation, i.e., the system capacity is dimensioned to support the peak workload intensity.

Given the increasing number of servers and respective operating costs, Blue Yonder is
interested in increasing resource efficiency by sharing resources among different customers.
As Blue Yonder has detailed information from their customers about when, how many, and
which type of requests are expected to arrive (request schedule), a self-adaptive approach
that assigns the required amount of resources to new customers and dynamically adapts
the amount of resources according to the actual customer demand appears to be promising.

The major goal of this case study is to evaluate if our approach is applicable in Blue Yon-
der’s scenario and if it is capable of increasing the system’s resource efficiency (Validation
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Question Q1). Additionally, it is crucial that the adaptation is capable of considering the
different performance requirements of Blue Yonder’s customers. A particular challenge of
this case study is that our approach is faced with a heterogeneous hardware environment—
low-cost desktop computers and high-end servers—and with different performance require-
ments of multiple concurrent customers. Thus, a further research question targeted here
is whether our approach is applicable in an environment with heterogeneous resources
and whether it can be effectively used to trade-off different performance requirements of
multiple customers (Validation Question Q4).

In the following, we first explain the architecture of Blue Yonder’s system and present
the respective architecture-level performance model, modeled with the Descartes Model-
ing Language (DML). Next, we specify an adaptation process using DML’s adaptation
process model to adapt the system to changes in the environment considering the previous
requirements. Finally, we present the results when applying our model-based self-adaptive
performance and resource management approach in Blue Yonder’s system.

8.4.1. Blue Yonder System Architecture

A typical Blue Yonder system consists of three main software component types: the
Gateway Server (GW), the Prediction Server (PS), and a third party component, the
database (DB). These software components can be distributed in a heterogeneous resource
environment, e.g., as depicted in Figure 8.16. The GW is the communication endpoint
to the Blue Yonder system. Users can invoke a set of different services via HTTP. In
the considered sample project, the available services are train, predict and results.
As their names suggest, the train service initiates the training step of the supervised
learning algorithms. The predict service initiates the calculation of the forecasts using
the trained prediction model, and finally the results service provides the results to the
customer. To train the prediction model, the train service accepts historical data. The
GW receives this data, parses it and generates a job, which is put into the GW’s queue and
scheduled for processing. Then, an active PS takes the job from the queue, processes it
(i.e., trains the prediction model) and stores the results in the database. After training,
a user can invoke the predict service to calculate a forecast based on the trained pre-
diction model. The user sends the data for which the forecast should be made to the GW.
The GW reads the data and generates one or several jobs—depending on the size of the
data—which are scheduled for processing. These jobs are again processed by one or several
PS and the results are stored in the database for retrieval by the user (results service).
Technically, GW and PS are independent operating system processes that can be started
and stopped on any machine in the resource landscape. The database for our case study is
a standard MySQL database. Each customer has its own GW, PS, and DB instances, which
are deployed in Blue Yonder’s resource landscape. The number of component instances
and their distribution in the system environment is called topology.

Blue Yonder System

Gateway

Server

Prediction

Server

Database
<<Interface>>

IGateway

  train()

  predict()

  results()

Low-Budget Desktop Computers

<<Interface>>

IDatabase

  write()

  query()

<<Interface>>

IPredictionServer

  train()

  predict()

High-End Servers

Figure 8.16.: Topology of an example Blue Yonder system with heterogeneous hardware.

173



174 8. Validation

In our scenario, the resource landscape consists of a heterogeneous hardware environ-
ment comprising two low-budget machines (desc1 and desc2) and two high-end ma-
chines (desc3 and desc4). Each of the low-budget machines is equipped with one AMD

Athlon
TM

Dual Core Processor 5200B with two cores and no hyper-threading. The high-
end machines are equipped with an Intel R© CoreTM i7-3770 CPU with four cores and
hyper-threading, i.e., eight logical cores. All four hardware machines are located in the
same network, connected with a 1 GBit Ethernet.

An example topology is depicted in Figure 8.16. In the depicted default setup, the database
runs on a dedicated high-end machine. GW and PS instances can be distributed over the
two low-budget machines and the second high-end machine.

8.4.1.1. Degrees of Freedom and Adaptation Process

The types of workload changes that occur in the system environment are changes in the
customer workloads. A customer’s workload is characterized by the service that is called
(train, predict), the number of requests to the service (request arrival rate, typically
one to ten requests at the same time), the execution type of the requests (sequential
or parallel), and the requests’ size (the number of records per request, typically varying
between 10,000 and 500,000). To react on changes in the environment, additional PS
instances can be started on other machines or they can be migrated between machines at
run-time.

Service Type: train vs. predict
Nr. of Requests: 1 to 10

Request Execution: sequential vs. parallel
Record Size: 10,000 to 500,000 records per user requests

PS Deployment: high-end vs. low-budget machines

Our experiments showed that the maximum number of PS instances per machine is limited
by two times the available cores. If we try to overcommit a machine, i.e., deploy more
PS instances than this limit, the performance decreases significantly due to resource con-
tention. The challenge in this case study is that our approach is faced with a heterogeneous
hardware environment and with different performance requirements of multiple concurrent
customers. For example, upon a workload change of a given customer, the adaptation pro-
cess has to decide whether to start/stop a PS on a low-budget or a high-end machine while
taking into account the performance requirements and topology of other customers.

An adaptation of the system topology is triggered by an updated request schedule, i.e., a
change in the workload of one or more customers. The goal of this triggered adaptation
process is to find a deployment of PS instances such that the customer’s SLAs are ful-
filled and resources are used as efficiently as possible. The found deployment can then be
transformed into a topology configuration that can be used to reconfigure the Blue Yon-
der system accordingly. Conceptually, the triggered adaptation process can be separated
into the following steps: i) allocate new PS instances to find a deployment that fulfills
all customer SLA’s, ii) consolidate the deployment of the PS instances on less hardware
resources, and iii) reduce PS instances as long as SLAs are fulfilled. Furthermore, as the
process should be able to trade-off the requirements of different customers, there should
exist an additional step that aims at resolving possible resource bottlenecks that may arise
when customers share resources. For example, the allocation of an additional PS instance
on a machine with PS instances of other customers might cause a performance degradation
for the other customers due to resource contention.
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8.4.2. Applied DML Instance

In this section, we present DML instance that describes the system architecture, perfor-
mance behavior, and the adaptation process that adapts Blue Yonder’s system to changing
customer workloads. First, we introduce the architecture-level performance model of Blue
Yonder’s system that we use for performance analysis and then describe the modeled
adaptation points and adaptation process.

8.4.2.1. Architecture-Level Performance Model

Figure 8.17 depicts in a UML-like notation a simplified version of the architecture-level
performance model we created for the Blue Yonder system using DML. It shows the re-
source landscape, application architecture, usage profile, and deployment of Blue Yonder’s
system. The model also includes parametric descriptions of the performance behavior of
the software components.

In the center of Figure 8.17, we see the resource landscape model, consisting of a DataCen-
ter BYDC that contains the previously described hardware. The resource configuration
specifications of the ComputingInfrastructures are attached as annotations. The Computing-
Infrastructure nodes are connected with a 1 GBit Ethernet.

Figure 8.17 shows that there are four different component instances in the resource land-
scape: one gateway server instance (GatewayServer), two PS instances (PredictionServerA
and PredictionServerB), and one database instance (Database). This depicted deployment
is only one possible deployment variant of Blue Yonder’s system. During an adaptation
process, when the model is changed, the model instance may look different, e.g., further
PS instances might be deployed on other machines.

Each of the depicted software components provides one or more of the previously described
services. For some of these services, we have depicted the fine-grained description of their
performance-relevant behavior. For example, the top of Figure 8.17 depicts the fine-grained
behavior of the predict service offered by the GatewayServer component. This behavior
contains two InternalActions that require a certain amount of CPU resources to parse and
schedule the prediction job (parsePredictionJobs and schedulePredictionJobs, respectively).
After parsing and scheduling the job, it is passed to one of the available PS instances.
In this example of the service’s behavior descriptions, the probability for each branch is
50% as there are only two PS instances. However, during the adaptation process, when
the number of PS instances changes, the respective probabilities have to be adjusted
accordingly.

Figure 8.17 also shows an example for the usage profile model. In the depicted example,
ten customers use the train service with a record size of 500,000.

In contrast to the case study presented in Section 8.2, we were not able to automatically
extract an architecture-level performance model of the Blue Yonder system due to the lack
of detailed monitoring tools. Thus, we created the model instance manually. To obtain a
representative performance model, we conducted a large set of experiments varying differ-
ent parameters to analyze the dependencies of the resource demands on these parameters
(Schott, 2013; Rattu, 2012). The parameters we varied in our experiments were mainly
induced by the parameters that vary at run-time: the requested service type (train
vs. predict), the number of requests (request arrival rate), the record size (10,000 to
500,000 records per user request), the execution type of the requests (sequential or paral-
lel), and the number of parallel requests (1 to 10). Furthermore, to investigate the impact
of the heterogeneous hardware environment and the mutual influences of multiple PS in-
stances, we also varied the PS deployment (high-end vs. low-budget machine) and the
number of PS instances (1 to 8).
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Figure 8.17.: DML instance describing a deployment of the Blue Yonder system.
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The metrics we observed during our experiments to derive the service resource demands
were average CPU utilization and average response time, i.e., the time a user request
spends in the system. To obtain these data, we measured the request throughput and the
CPU utilization during the experiments and extracted the timing values from the log files
of the system. We then used the R framework for statistical computing (R Project, 2013)
to derive the resource demands for the modeled InternalActions using linear regression. For
example, the parametric resource demand rd derived for schedulePredictionJobs
depicted in Figure 8.17 is

rd = (0.5506 + (7.943 · 10−8 · recordsize)) · 2700

This resource demand depends on an external influencing parameter recordsize that
corresponds to the number of records in the user request. Note that the additional mul-
tiplication by 2700 is necessary to adjust the resource demand to the processing rates of
the hardware (cf. Figure 8.17). We have derived such parametric resource demands for all
InternalActions in our model and more details can be found in the master’s theses of Schott
(2013) and Rattu (2012).

To evaluate the accuracy of the performance predictions provided by the model, we con-
ducted several experiments that are independent of the experiments we used to derive
the service resource demands. In Figure 8.18, we compare the predicted with the mea-
sured response times of the train and predict services for five parallel user requests
with a varying amount of PS instances. The figure shows that the response time of the
train service improves until five PS instances are used, whereas the predict response
time improves further. The reason is that the five parallel train requests in this ex-
periment can be distributed to five PS instances, i.e., an additional PS instance does not
speed-up the training. In contrast, predict requests can be split into several jobs which
can be distributed over an arbitrary number of PS instances to speed-up performance.
This experiment result confirms that the modeled behavior of the Blue Yonder system is
representative.
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Figure 8.18.: Comparison of predicted and measured response times of the train and
predict services for five parallel requests and a varying number of PS in-
stances running on the high-end machine desc4.

In another scenario we evaluated the prediction accuracy for different workload mixes.
Table 8.6 shows the absolute and relative prediction error for the average response time
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and Table 8.7 shows the absolute prediction errors for the CPU utilization on different
hardware nodes. The results showed that the prediction error did not exceed 30%.

Table 8.6.: Measured and predicted average response times and their relative errors for
nine parallel predict requests for varying mixed data record sizes with six
PS instances allocated on desc4.

Record Sizes Response Time [sec] Error
[in 1,000 records] measured predicted [in %]

50 & 100 194.50 175.26 -9.9
100 & 200 366.48 325.16 -11.3
150 & 300 545.05 485.65 -10.9
250 & 500 937.24 780.91 -16.7

We also conducted further experiments to evaluate the accuracy in situations where mul-
tiple customers use the system in parallel or where we vary the amount and deployment
of the PS instances (Schott, 2013). The results also confirmed the prediction error for
response time and utilization of approximately 30%.

Table 8.7.: Measured and predicted average CPU utilization and their absolute errors for
nine parallel predict requests for varying mixed data record sizes with six
PS instances allocated on desc4.

Record Sizes desc2 [%] desc3 [%] desc4 [%]
[in 1,000 records] meas. pred. err. meas. pred. err. meas. pred. err.

50 & 150 9.42 27.6 18.2 17.11 6.0 11.1 51.56 38.9 12.7
100 & 200 10.35 19.4 9.1 16.54 4.0 12.5 49.19 40.8 8.4
150 & 300 10.51 16.2 5.7 16.33 3.3 13.0 47.79 41.4 6.4
250 & 500 10.20 13.7 3.5 16.65 2.8 13.9 44.67 41.9 2.8

8.4.2.2. Adaptation Points Model and Adaptation Process Model

To apply our model-based performance-aware resource management approach, we first
have to define and model the adaptation points of the system we want to adapt. Based
on the adaptation points, we can then model the adaptation process.

In our case study, we consider multiple adaptation points for the Blue Yonder system. The
adaptation points are customer-specific, i.e., they exist for each customer’s PS instances
deployed in the system. First, we can increase or decrease the number of PS instances that
are assigned to a customer. The minimal number of PS instances is one. The maximum
number of PS instances is limited to two times the available cores of the machine. The
reason is that our experiments indicated a significant performance degradation due to
resource contention if we increase the number of PS Instances above this limit.

The second adaptation point is the deployment of PS instances. By starting and stopping
PS instances or by consolidating PS instances on fewer machines, we can improve resource
efficiency and lower operational costs. For example, it can be beneficial to consolidate the
PS instances of multiple low-budget machines on a single high-end machine.

Finally, the number of PS instances in a data center is also limited to avoid significant
performance degradation due to resource contention. The adaptation points can be speci-
fied as follows with S being the set of servers of the Blue Yonder environment that do not
host the database:
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Number PS Instances per server s: Min: 1, Max: #cores(s) · 2
Deployment of PS Instances: S

Number of PS Instances per Data Center : Min: 1, Max:
∑

s∈S #cores(s) · 2

In the adaptation points model, these numbers are specified as OCL constraints that can
be checked on the architecture-level performance model.

As mentioned previously, the trigger of an adaptation is an updated request schedule.
The request schedule specifies which customers will request which services and with what
amount of data. Furthermore, it also contains the customer-specific SLAs. The purpose of
the adaptation process presented in the following is to allocate available resources among
Blue Yonder’s customers such that their SLAs are fulfilled. Moreover, the resources should
be used as efficiently as possible to save operating costs. Thus, the output of our adapta-
tion process is a deployment model that fulfills the required SLAs. The found deployment
model can then be transformed into a topology configuration that can be used to recon-
figure the Blue Yonder system accordingly. In the following, we describe an adaptation
process that fulfills these requirements. It is modeled using the adaptation process mod-
eling language presented in Section 6.2. To execute the adaptation process, we use our
adaptation framework presented in Section 6.3. It interprets the adaptation process model
and adapts the previously introduced architecture-level performance model accordingly.
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Figure 8.19.: Schematic representation of the adaptation process model used in this case
study.

The adaptation process that we use in this case study consists of the following strate-
gies: FindDeployment, ReduceDeployment, and ConsolidateDeployment. The FindDeploy-
ment strategy launches new PS instances until all customer SLAs are fulfilled. It contains
two different tactics starting the new PS instances on low-budget machines and high-end
machines, respectively. ReduceDeployment removes unnecessary PS instances from ma-
chines to save operating costs, e.g., if the workload of a customer has decreased. Finally,
ConsolidateDeployment migrates PS instances between machines with the goal to improve
efficiency. A schematic representation of the adaptation process model is depicted in
Figure 8.19a for one customer. All these strategies exist for each customer that has PS
instances deployed in this environment. Furthermore, as the process should be able to

179



180 8. Validation

trade-off the requirements of different customers, we have also defined an additional strat-
egy ResolveResourceBottleneck that aims at resolving possible resource bottlenecks that
may arise when customers share resources. Figure 8.19b depicts a schematic representa-
tion of these strategies for two example customers A and B.

8.4.3. Evaluation

Blue Yonder currently uses dedicated resources for each customer to fulfill their respective
SLAs. The amount of resources is estimated based on the experience of Blue Yonder and
can range from few low-budget desktop machines to hundreds of cores on high-end servers.
Consequently, Blue Yonder is interested in dynamically adapting the amount of resources
according to the actual customer demand. The following scenarios specifically address
the evaluation questions Q1 and Q4. We evaluate the applicability of our approach in
adapting Blue Yonder’s heterogeneous resource environment to changes in the customer
workloads such that the customer performance requirements are satisfied while ensuring
efficient resource usage (Q1). We show that the approach is applicable in a heterogeneous
resource environment and that it can trade-off diverging performance requirements of
different customers (Q4).

8.4.3.1. Scenario 1: Adjusting Resources to Workload Changes Considering a
Heterogeneous Resource Environment

The goal of this scenario is to evaluate the effectiveness of our approach in adapting
resource allocations to workload changes such that customer SLAs are fulfilled while con-
sidering the heterogeneous nature of the hardware environment.

Our scenario starts with the default topology (one GW on desc2, one PS on desc4, one
DB on desc3) and a customer that issues one predict request with 500,000 records.
We assume that all records of this customer must be completed within 3,600 seconds (one
hour). The default topology is sufficient to process this load without SLA violations.

However, if the customer increases the number of requests to 50 (indicated by the dotted
line in Figure 8.20), the default topology is not able to handle the load within the given
time. Thus, this workload increase event triggers the FindDeployment strategy with the
objective to find a system configuration that can handle the load without SLA violations.
Since the IncreaseResources-HighEnd tactic initially has the highest weight, the
adaptation framework selects this tactic to add resources to the system. By applying the
tactic, another PS instance is launched on the high-end machine desc4, which improves
the response time of the system towards the strategy’s objective, but SLAs are still violated.
Thus, the adaptation framework continues applying this tactic.

After the 16th iteration, the response time cannot be further improved. This corresponds
to our experience from the experiments that the maximum number of PS instances on
each machine is limited by two times the available cores. If we try to overcommit the
resources of a machine, i.e., deploy more PS instances per machine than this limit, the
performance decreases significantly due to resource contention. For example, for the low-
budget machines where we have two cores without hyper-threading, four PS instances can
be executed in parallel with negligible resource contention. Given that after 16 iterations,
applying the tactic did not further improve the response time of the system, the adaptation
framework revokes the application of this tactic and decreases its weight. However, since
the objective has not been achieved yet, the adaptation process continues and applies the
IncreaseResources-LowBudget tactic in the next iteration. This tactic adds another
PS instance to the low-budget machine desc1, which further improves the response time.
The adaptation framework keeps applying this tactic for three additional iterations until
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all SLA violations are resolved. In summary, our modeled adaptation process suggests a
deployment of 20 PS instances, four on desc1 and 16 on desc4. As Figure 8.20 shows,
this deployment is sufficient to handle the increased load. This experiment shows that
with our approach we are able to model an adaptation process that utilizes the available
capacity without overcommitting the resources.
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Figure 8.20.: Amount of PS instances in the system after adapting the system environment
to changes in the workload of a customer.

In the next step, we reduce the workload from 50 to 40 parallel requests, i.e, less resources
should be sufficient to maintain the SLA of one hour. Thus, the ReduceDeployment
strategy is triggered. The adaptation framework applies the DecreaseResources tactic
to reduce the amount of active PS instances. This tactic is repeated until SLAs start being
violated, indicating that the process has removed too many PS instances. At that point, the
application of the latest iteration of the tactic is revoked, and the adaptation process ends.
However, the system configuration after applying this strategy may be further optimized in
case PS instances are distributed over several machines that can be consolidated. To this
end, the ConsolidateDeployment strategy applies the MigrateResources tactic,
migrating the PS instances from the low-budget machine to the high-end server. As a
result of our adaptation process, the four PS instances running on the low-budget machine
are released (cf. Figure 8.20).

8.4.3.2. Scenario 2: Trading-Off Resource Allocations Between Customers

In this scenario, we show that our approach is applicable in scenarios where changes of the
workload behavior of one customer affect the performance experienced by other customers.
The goal is to show that our approach, compared to trigger-based approaches, can trade-
off different performance requirements of customers with different priorities. Therefore, we
have added two further strategies to our adaptation process model depicted in Figure 8.19b.

The initial Blue Yonder topology in this scenario comprises four PS instances that are
deployed on desc1 (see Figure 8.21). Two of these PS instances belong to customer A,
which is a gold customer. The other two PS instances belong to customer B and C,
respectively, which are silver customers. A gold customer is a customer with higher priority,
i.e., violating this SLA causes higher penalties. Thus, to minimize penalties caused by
major response time fluctuations, gold customers have the additional constraint that PS
instances of such customers must not be executed on machines that are overcommitted.
Overcommitted machines execute two times more PS instances than there are available
cores (cf. previous scenario).

In this scenario, we assume that we observe an SLA violation for customer B due to a work-
load increase (cf. Figure 8.22), triggering our adaptation process. The process first applies
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Figure 8.21.: Details of the different system configurations explored as part of the adapta-
tion process triggered by a workload change of one customer affecting other
customers.

the IncreaseResourcesCustomerB tactic of the ResolveResourceBottleneck-
OfCustomerB strategy, because this tactic has the highest weight. Applying this tactic
starts another PS instance for customer B on desc1 (topology c2). However, in the
new topology, the SLAs of the gold customer A are now violated due to mutual perfor-
mance influences. This SLA violation triggers the ResolveResourceBottleneckOf-
CustomerA strategy and the adaptation framework executes the IncreaseResources-
CustomerA tactic. However, this tactic cannot be applied because of the constraint that
PS instances of gold customers must not be executed on overcommited machines. As a
result, the tactic is revoked and its weight is reduced. In the next iteration, the adapta-
tion process applies the MigrateResourcesCustomerA tactic to migrate a PS instance
of customer A to desc4 (topology c3). The migration reduces response times, but still
does not eliminate the SLA violation of customer A. Nevertheless, the tactic contributed
towards the strategy’s objective, and thus, the adaptation process continues by migrating
the second PS instance of customer A to desc4 (topology c4). This resolves the problem
and the adaptation process completes.

This scenario shows that using our model-based approach we can take into account the
mutual performance influences between different customers (adding a new PS instance for
customer B affected customer A) and model a process that ensures SLA compliance for all
customers. In the considered scenario, a conventional trigger-based approach would simply
add a PS instance. The issue that adding this further instance leads to an SLA violation
for customer A would only be detected after the system has been reconfigured. Of course,
then a new trigger would start further adaptations to address this issue, however, penalty
costs would arise due to the SLA violations that will already have occurred.

8.5. Discussion

The presented case studies are illustrative and representative examples of how our model-
based approach can be used to implement performance and resource management at the
system architecture level. In different scenarios, we showed how to use the modeling
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Figure 8.22.: Response times of the different customers during the adaptation process
(SLAs are denoted by the dashed lines).

abstractions presented in this thesis to specify adaptation processes that leverage architec-
tural and performance-relevant information about the system for automated adaptation
decisions. More specifically, the results demonstrate that: i) our approach can be used
to describe the performance-relevant aspects of homogeneous and virtualized resource en-
vironments as well as of heterogeneous resource environments consisting of low-budget
desktop machines and high-end servers, ii) the model-based approach can be applied
in different domains such as business information systems (SPECjEnterprise2010) and
compute-intensive applications (Blue Yonder example application), iii) the adaptation pro-
cess meta-model can be used to describe different types of adaptation processes, and iv)
our approach can be effectively used to adapt a system proactively, i.e., before performance
or resource efficiency problems occur. In the following, we discuss the overall results ob-
tained in these case studies with respect to the overhead and efficiency of the approach,
and discuss possible threats to validity.

In the presented case studies, we focused on analyzing the performance of our approach
compared to reactive, trigger-based adaptation approaches. The results in the considered
scenarios showed that both the reactive and the proactive adaptation approach needed
only approximately 45% of the resources of the static allocation approach. Furthermore,
the proactive approach reduced SLA violations by up to 60%. Moreover, our approach
enables the search for a solution to an anticipated or detected problem at the model level
without having to experiment with the actual system. Thereby, it is possible to save costly
adaptations on the real system.

If we analyze the overhead of our proactive model-based system adaptation in more detail,
we can divide it into the factors depicted in Figure 8.23: the overhead for workload classifi-
cation and forecasting and the overhead of the model-based adaptation process. Regarding
the overhead of our workload classification and forecasting approach, our experiments pre-
sented in Section 7.4 with WCF on a single-core machine showed that the overhead ranges
within seconds up to a few minutes depending on the data and configuration settings.
Compared to the overhead for workload classification and forecasting, the overhead for
model-based system adaptation is significantly higher. This overhead is determined by
two main factors: the number of iterations to find a solution at the model level and the
overhead caused by the performance analysis of the model for each iteration. The number
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Figure 8.23.: Major overhead factors of proactive model-based system adaptation.

of iterations to find a solution depends on the specification of the adaptation process. The
more efficient the design of the adaptation process with respect to the adaptation goals,
the less iterations are required to find a solution. The overhead for performance model
analysis depends on the analysis techniques used for performance prediction and the com-
plexity of the model. In the multitude of experiments conducted for this thesis as well
as in the thesis of Brosig (2014), the time to obtain results varied between seconds and a
few minutes in the worst case. In summary, the adaptation overhead of our approach is
dominated by the number of iterations to find a suitable model configuration multiplied
with the time for performance model analysis.

Thus, we have to discuss whether the model-based approach is quick enough to provide a
solution before actual performance or resource efficiency problems occur. The results of
the first case study presented in Section 8.2 using SPECjEnterprise2010 as a representative
business information system show that the 15 minute time window in which we receive
updates of the request arrival rates is short but sufficient to find a solution and adjust the
system accordingly. In the case study with Blue Yonder’s compute-intensive application
presented in Section 8.4, the execution of requests can take up to several hours and thus,
the search for a solution with our model-based approach is even less critical since its
overhead is negligible compared to the typical response time of a request. Finally, the case
study presented in Section 8.3 shows that WCF can be effectively applied at run-time to
provide workload forecasts within the given time constraints.

These considerations show that the overhead of our approach is justifiable and the results
demonstrate that the approach can deliver suitable solutions in time in all investigated
scenarios.

With our end-to-end validation, we comprehensively demonstrated the applicability of our
model-based approach for proactive performance-aware resource management in different
systems and configurations. Nevertheless, typically asked questions threatening the valid-
ity of our results are the question how representative the presented case studies are and
how realistic our settings are compared compared to the settings in real-life data centers.
To reduce this threat and to increase the external validity of our validation as far as possi-
ble, we used our available resources to create setups that are as realistic as possible without
making system-specific assumptions, and selected evaluation scenarios based on real-life
problems, e.g., of our industrial partner Blue Yonder. To create realistic setups, in our
infrastructure we employed technologies that are extensively used in industry (Xen and
VMware hypervisors, Oracle Weblogic Application Servers, MySQL and Oracle Database
Systems). As software services hosted on the infrastructure, we used real-life applica-
tions from industry (Blue Yonder example project) or applications that are recognized by
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industry as representative standard benchmarks (SPECjEnterprise2010). As these appli-
cations belong to different domains—business information systems (SPECjEnterprise2010)
and compute-intensive applications (Blue Yonder)—our case studies also cover different
situations with different requirements and needs. Finally, we also used different realistic
workloads obtained from the Wikimedia Project (2011) and IBM. For these reasons, we
are convinced of the representativeness of the case studies and the obtained results.

A further crucial question is whether our approach is generally applicable for proactive
system adaptation. The answer is that proactive adaptations can be performed only in sit-
uations where the workload of the adapted system can be forecast with sufficient accuracy.
This limitation of our approach comes from the limitations of the forecasting methods we
employ in our Workload Classification and Forecasting (WCF) approach. As these meth-
ods normally work well for workloads that exhibit a certain degree of seasonal or trend
behavior, WCF and therefore our proactive system adaptation is limited to applications
with such a workload intensity behavior. Thus, in situations with a completely arbitrary
workload intensity behavior, it is not possible to apply WCF reliably. Nevertheless, our
model-based adaptation approach can still be applied in a reactive manner.

Finally, there remains the question of whether the comparison of our approach with other
adaptation approaches is sufficient. The preferred way to compare our approach with other
solutions in this area would be to use a benchmark for self-adaptive systems. However,
currently such benchmarks do not exist (Almeida and Vieira, 2011). A second option would
be to apply related approaches (such as the ones mentioned in Section 3.1.2) in the context
of our case studies. The problem is that these approaches are either targeted at other QoS
aspects besides performance or they focus only on adaptation at the application level and
do not include the system’s operational environment as part of the considered adaptation
possibilities. However, for performance and particularly for resource management, it is
inevitable that the resource environment is considered explicitly as part of the adaptation
process and the underlying system models. Furthermore, it is also technically unfeasible
to apply alternative research approaches due to deviating underlying assumptions, such
as the employed performance or QoS models, and the lack of publicly available tools or
unsupported features. For these reasons, we focused on comparing our approach with static
resource allocation and reactive, trigger-based approaches, which are predominantly used
in industry today. Although we have not directly deployed our case study applications
in a real-life threshold-based system such as, e.g., the Amazon Elastic Compute Cloud
(Amazon Web Services, 2010), the behavior of our reactive approach and such systems
is closely related. Nevertheless, due to the careful selection of the case studies and the
various considered application scenarios we are convinced of the general applicability of
our approach and the external validity of the results.
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9. Conclusions and Outlook

In this chapter, we conclude this thesis with a summary of the contributions presented
in this thesis. Moreover, we discuss ongoing and future work in the area of engineering
self-adaptive software systems and autonomic performance-aware resource management.

9.1. Summary

Recent trends like cloud computing and virtualization show that service providers are
adopting to more flexible and dynamic systems. The motivation for this trend is that ser-
vice providers want to allocate resources at run-time depending on changes in the system
environment to reduce operating costs. However, due to the inherent complexity of dy-
namic systems, the development of methods that automatically adapt a system to changes
in its environment is a challenging task (Kramer and Magee, 2007; Blair et al., 2009).
In Chapter 1, we argued that sophisticated modeling techniques are needed, specifically
designed for performance and resource management at run-time. These techniques should
allow capturing both static and dynamic aspects of the managed system, including all
performance-relevant influences of the system’s execution environment, its architecture,
as well as its adaptation space, adaptation strategies and processes, in a generic, human-
understandable and reusable way. Moreover, model-based system adaptation mechanisms
are needed that apply such modeling and prediction techniques end-to-end to drive au-
tonomic decision-making at run-time. In contrast to trial-and-error approaches working
on the system directly, with model-based system adaptation mechanisms it is possible to
search for suitable system configurations at the model level and thereby avoid unnecessary
and possibly costly adaptations.

In this thesis, we presented a systematic approach for engineering self-adaptive systems
with autonomic performance-aware resource management capabilities. Core concepts of
this approach is a process model for proactive model-based system adaptation
which is based on the Descartes Modeling Language (DML), a novel architecture-level
modeling language specifically designed to support the autonomic adaptation process by
leveraging online performance prediction and proactive model-based system adaptation
techniques (cf. Chapter 4). In summary, DML provides sophisticated modeling abstrac-
tions to describe two major concerns of autonomic performance-aware resource manage-
ment at run-time. First, it provides modeling abstractions to create performance models
of the system that reflect the performance-relevant properties and behavior of the system
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and its distributed infrastructure at the architecture-level. Such architecture-level per-
formance models serve as the basis for online performance prediction techniques which
can be used to continuously predict at run-time a) the effect of changes in the system
environment, such as application workloads, on the system performance and resource effi-
ciency, and b) the impact of possible adaptation actions. Second, DML provides generic
and flexible formalisms to model the dynamic aspects of self-adaptive systems and their
adaptation processes. This abstraction from technical and system specific details reduces
the inherent complexity of modern dynamic IT infrastructures and services and thereby
eases the systematic development of self-adaptive systems.

In Huber et al. (2011a), we showed that architecture-level performance models provide a
suitable abstraction layer for model-based performance and resource management. How-
ever, current architecture-level performance models are typically targeted at system design-
time analysis and abstract from the complexity of modern dynamic IT service infrastruc-
tures. In Chapter 5, we introduced modeling abstractions to describe the structure
and configuration (e.g., memory, bandwidth, and so on) of both physical and logical
resources of modern distributed IT infrastructure. Innovative aspects of these modeling
abstractions are that they provide constructs to model the hierarchy of nested resource lay-
ers as well as the influences of these layers on the overall system performance. We showed
that considering the performance influences of nested resource layers, e.g., the overhead
introduced by virtualization, is important for obtaining detailed performance predictions.
Furthermore, we showed that structural details of the resource landscape are important
to be considered when specifying adaptation processes as well as for decision-making dur-
ing the adaptation process. The proposed modeling abstractions have been published in
Huber et al. (2012a).

To ease the quantification of the performance-influencing properties of logical resource lay-
ers (such as virtualization or middleware), we also presented a method for the identifi-
cation, classification, and automatic quantification of performance-influencing
properties, using virtualization as proof-of-concept (cf. Section 5.2). This method and
the results obtained for the XenServer virtualization platform have been published in Hu-
ber et al. (2010b). The evaluation of the results on VMware ESX as well as the derivation
of a performance model to estimate the overhead of virtualization platforms has been
published in Huber et al. (2011b).

In Chapter 6, we proposed modeling abstractions to describe the degrees of free-
dom of the system that can be employed for run-time system adaptation. Using the
presented architecture-level performance model as a basis, these modeling abstractions
simultaneously describe the valid configuration space of the system. We also proposed a
flexible modeling language to specify adaptation processes that keep the system
in a state such that its operational goals are continuously fulfilled. With this modeling
language, it is possible to specify adaptation processes at the model level in a generic,
human-understandable and reusable way. To execute the specified adaptation processes,
we presented a framework that interprets and executes the modeled adaptation processes
on the architecture-level performance model. The framework relies on the online perfor-
mance prediction techniques by Brosig (2014) to assess the impact of the adaptation and
consider this during the adaptation process accordingly. With this approach, it is possi-
ble to abstract from technical, system-specific details and shift the inherent complexity of
system adaptation to the adaptation framework. The modeling formalism to describe the
system adaptation possibilities has been published in Huber et al. (2012a). The concepts of
the proposed modeling language for specifying adaptation processes has been initially pub-
lished in Huber et al. (2012b). An extension of these concepts as well as the architecture
of the adaptation framework have been presented in Huber et al. (2014).
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To proactively adapt the system, we presented a method for self-adaptive workload
classification and forecasting at run-time (cf. Chapter 7). This method automati-
cally identifies relevant characteristics of given workloads and selects suitable forecasting
methods according to the configured user-specific forecasting objectives. The dynamic de-
sign of this method and the flexibility to continuously adapt the selection of the forecasting
method based on the observed forecasting accuracy increases the overall accuracy of the
forecast results. Our experiments showed that the proposed method supports continuous
forecasts at run-time with significant accuracy improvements and controllable computa-
tional overheads. The results of the workload forecasts provide the input for online per-
formance prediction with the goal to predict the impact of the forecast workload intensity
change on the system performance and to trigger subsequent system adaptation if neces-
sary. The proposed method and the achieved results have been published in Herbst et al.
(2013a) and refined in Herbst et al. (2014).

Finally, we integrated all individual parts to a coherent approach for autonomic perfor-
mance-aware resource management, implementing the presented concepts of a holistic
model-based adaptation control loop. In Chapter 8, we presented the end-to-end valida-
tion of our approach in three different representative case studies, demonstrating
that our model-based approach can be effectively used for autonomic performance-aware
resource management. The selected evaluation scenarios have been derived from typical
real-life problems of, e.g., our industrial partner Blue Yonder, a leading service provider
in the field of predictive analytics and big data. With the presented case studies, we
covered a broad spectrum of configurations with different types of applications, hardware
environments, deployment configurations, and workloads to investigate the applicability
of our approach under various conditions. For example, as applications we selected the
SPECjEnterprise2010 benchmark application modeling a representative, state-of-the-art
business information system, and a real-world compute-intensive application from Blue
Yonder. The employed hardware environments consisted of homogeneous virtualized clus-
ter environments as well as heterogeneous environments consisting of low-budget and high-
performance machines. As workloads, we used different real-life workload traces from
Wikimedia Project (2011) and our industrial collaboration partners.

In summary, the validation results showed that our approach can provide significant re-
source efficiency gains of more than 50% without sacrificing performance guarantees, and
that it is able to trade-off performance requirements of different customers in heterogeneous
hardware environments. Furthermore, we showed how our approach enables proactive sys-
tem adaptation, reducing the amount of SLA violations by 60% compared to trigger-based
approaches. From the scientific perspective, the results of these case studies show that
DML allows the specification and execution of proactive system adaptation processes at
the model level to perform autonomic system adaptation such that the system’s operational
goals are maintained. This shows that architecture-level performance models and online
performance prediction can be effectively used for proactive autonomic performance-aware
resource management, thereby achieving significant performance and resource efficiency
gains in modern dynamic IT service infrastructures.

9.2. Outlook

The approach and results presented in this thesis provide the basis for several opportunities
for ongoing and future work, summarized in the following paragraphs.

Modeling Additional QoS Properties

The current version of the Descartes Modeling Language (DML) is focused on performance
including capacity, responsiveness and resource efficiency aspects. In future work, it is
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desirable to extend DML abstractions to support modeling additional QoS properties. For
example, the architecture-level performance model could be extended to support mean time
to failure annotations, such that it is possible to reason about the reliability of the system.
This information could also be used to specify adaptation processes for increasing the
system availability and reliability, e.g., by replicating critical VMs or software components.
Furthermore, information about additional QoS properties could also be used to trade-off
different QoS requirements during the system adaptation process. Thereby, DML could
also be used for engineering more dependable and secure systems.

Refining Network and Storage Infrastructure Models

Currently, the modeling abstractions of the resource landscape model of DML are focused
on computational resources and provide only basic possibilities to model networking or
storage infrastructure resources. However, other researchers are already working on ex-
tending DML to provide sophisticated modeling abstractions for the network and storage
infrastructure (Rygielski et al., 2013a,b; Noorshams et al., 2013c,b). In the future, these
extensions should be integrated into DML to support online performance prediction for
these infrastructure types. Thereby, it would be possible to better estimate the impact of
these resource types on the performance and resource efficiency of the system and consider
this during the system adaptation process.

Explicit Consideration of Adaptation Costs

During an adaptation process, different adaptation actions might exhibit different costs
in terms of execution time or impact on the performance and efficiency of the running
system. For example, a VM migration takes more time than adding virtual resources and
has a significant impact on the network performance. On the other hand, the performance
gain of VM migrating could be higher than adding virtual resources. Thus, it would be
interesting to investigate methods to quantify the adaptation cost of different adaptation
actions and to extend the modeling abstractions to express such costs explicitly. Then,
the expressed costs can be considered in the adaptation process to trade-off adaptation
costs with their achieved impact on system performance and efficiency.

Empirical Validation

To quantify the extent to which our model-based approach eases the development process
of self-adaptive systems, it would be interesting to conduct empirical studies in large-
scale data centers. In these studies, our approach would be applied from scratch, and
system administrators unexperienced with DML would define system adaptation processes
using DML as modeling formalism. These studies could help to assess how our model-
based approach helps to reduce the complexity engineering self-adaptive software systems.
Furthermore, they could also reveal possible improvements of the approach and pointers
for future work.

Benchmarks for Self-Adaptive Systems

As mentioned in Section 8.1, it is a challenging task to develop benchmarks for self-adaptive
software systems (Almeida and Vieira, 2011) and to develop metrics that can be used to
compare different approaches. The case studies with their different evaluation scenarios
and goals that have been presented in this thesis provide a good starting point for designing
and developing benchmarks for self-adaptive software systems. Thus, future work could
elaborate suitable ways to distribute the case studies or search for ways to provide the
whole infrastructure setup such that other researchers and practitioners could compare
related approaches or test new adaptation processes. The case studies could also lend
themselves very well to evaluate the set of metrics that has recently been published by
Herbst et al. (2013b) to quantify the elasticity of self-adaptive systems.
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Self-Aware Computing Systems

The long-term vision of the Descartes Research Project—the research project that funded
this thesis—is to develop a new method for the engineering of self-aware computing sys-
tems. Such systems are designed from the ground up with built-in online QoS prediction
and self-adaptation capabilities used to enforce QoS requirements in a cost- and energy-
efficient manner (cf. Section 2.1.4). The concepts presented in this thesis as well as in the
thesis of Brosig (2014) lay the foundation for this vision. In the next steps, the presented
model extraction, prediction, and adaptation techniques must be seamlessly integrated
and tightly coupled to the system. In the future, the overall approach should be applied in
industrial cooperations to showcase the applicability of our approach and thereby establish
the vision a self-aware computing paradigm where computing systems are designed from
the ground up with built-in self-reflective, self-predictive, and self-adaptive capabilities.
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A. Additional Meta-Model Specifications

In the following sections, we give further details about the application architecture and
usage profile meta-model specifications that have been mentioned briefly in Section 5.3.
These concepts are part of the work of Brosig and the complete specification can be found
in Brosig (2014).

A.1. Application Architecture Meta-Model

A.1.1. Service Behavior Descriptions

To describe the performance behavior of a service offered by a software Component, the
application architecture meta-model introduced by Brosig (2014) and briefly presented
in Section 5.3.1 supports multiple (possibly co-existing) behavior abstractions at different
levels of granularity (cf. Figure A.1). Figures A.2 to A.4 show the meta-model specifications
for the three types of service behavior abstractions.

Component

BlackBoxBehavior

CoarseGrainedBehavior

FineGrainedBehavior

ServiceBehaviorAbstraction

0..*

0..*

0..*

Signature
1

Interface

1..*

0..*

Figure A.1.: Core meta-model specification of the service behavior abstractions.

A BlackBoxBehavior can be described with a ResponseTime characterization. The Re-
sourceDemand captures the total service time required from a given ProcessingResource-
Type, specified in the resource landscape meta-model. This representation captures the
view of the service behavior from the perspective of a service consumer without any addi-
tional information about the service’s behavior.

A CoarseGrainedBehavior consists of ExternalCallFrequencies and ResourceDemands. An
ExternalCallFrequency characterizes the type and the number of external service calls. This
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BlackBoxBehavior

ResponseTime
0..1

Figure A.2.: Meta-model specifications of the black-box behavior description.

behavior abstraction captures the service behavior when observed from the outside at the
service providing component’s boundaries. Information about the service’s total resource
consumption and information about external calls made by the service is required, however,
no information about the service’s internal control flow is assumed.

ResourceDemand

CoarseGrainedBehavior

ExternalCallFrequency

ExternalCall CallFrequency

0..*

1 1

0..1

ProcessingResourceType

1

0..*

Figure A.3.: Meta-model specifications of the coarse-grained behavior description.

The fine-grained behavior abstraction captures the performance-relevant aspects of the
service control flow as abstraction of the actual control flow. Performance-relevant aspects
are component-internal computation tasks, the acquisition and release of locks, as well as
external service calls, hence also loops and branches where external services are called.

FineGrainedBehavior

AbstractAction

1 0..*

ExternalCallAction InternalAction LoopAction

ResourceDemand LoopIterationCount

synchronizationBarrier : Boolean

ForkAction BranchAction

BranchingProbabilities

ComponentInternalBehavior
{ordered}

forksbody

0..*

110..*

AcquireAction

ReleaseAction

0..*

1

1

0..1

{ordered}

PassiveResource

0..1 1

branch-
transitions

0..1 0..1 0..1

ExternalCall

1

Figure A.4.: Meta-model specifications of the fine-grained behavior description.

The fine-grained behavior abstraction contains a ComponentInternalBehavior that models
the abstract control flow of a service implementation. Calls to required services are modeled
using so-called ExternalCallActions, whereas internal computations within the component
are modeled using InternalActions. Access to PassiveResources with semaphore semantics
(e.g., thread pools) can be modeled via AcquireAction to obtain the resource and ReleaseAc-
tion to release the resource. Nested control flow actions like LoopAction, BranchAction or
ForkAction are only used when they affect calls to required services (e.g., if a required ser-
vice is called within a loop, a corresponding LoopAction is modeled; otherwise, the whole
loop would be captured as part of an InternalAction). The nested control flow actions
contain further ComponentInternalBehavior models. LoopActions and BranchActions can be
characterized with loop iteration counts respectively branching probabilities. ForkActions
can be modeled either with or without a synchronization barrier. A barrier for the group
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of the ForkActions forks means that the control flow only proceeds when all forks reached
the barrier.

A.1.2. Signature

An Interface of a software Component provides one or more services that are described by
their Signature (cf. Figure A.1). A Signature is uniquely defined by its return type and
possible input Parameters (cf. Figure A.5). Each Parameter has a name and refers to a
DataType.

Parameter

name : String 0..1
Signature

Interface

DataType
returnTypeparameters

1

0..*
1..*

Figure A.5.: Meta-model specification for a signature.

To ensure that the services specified by an interface are unique, we use the OCL constraint
given in Listing A.1.

context Interface
inv SignaturesMustBeUnique:

let sigs : Bag(
Tuple(serviceName : String,

parameters : Sequence(DataType)))
= self.signatures

->collect(sig : Signature | Tuple{
serviceName : String = sig.name,
parameters : Sequence(DataType)

= sig.parameters.dataType
->asSequence()})

in sigs->isUnique(s|s);

Listing A.1: Signatures must be unique.

A.2. Usage Profile Meta-Model

In order to derive performance predictions for certain workloads, the workloads must be
specified. The usage profile meta-model is intended to allow such specifications of the
user interactions with the system. Figure A.6 shows the usage profile modeling abstrac-
tions. A UsageProfileModel consists of multiple UsageScenarios. A UsageScenario refers to
a description of a WorkloadType (either an open workload or a closed workload) and a
ScenarioBehavior. The latter allows to model the control flow of optionally parameterized
system calls and delays with branches and loops. Delays, as well as branching probabilities
and loop iteration counts, are described explicitly.
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UsageProfileModel

UsageScenario ScenarioBehaviorWorkloadType
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Figure A.6.: Usage profile meta-model.
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