19 research outputs found

    Security for the signaling plane of the SIP protocol

    Get PDF
    VOIP protocols are gaining greater acceptance amongst both users and service providers. This thesis will aim to examine aspects related to the security of signaling plane of the SIP protocol, one of the most widely used VOIP protocols. Firstly, I will analyze the critical issues related to SIP, then move on to discuss both current and possible future solutions, and finally an assessment of the impact on the performance of HTTP digest authentication, IPsec and TLS, the three main methods use

    Some Implementation Issues for Security Services based on IBE

    Get PDF
    Identity Based Encryption (IBE) is a public key cryptosystem where a unique identity string, such as an e-mail address, can be used as a public key. IBE is simpler than the traditional PKI since certificates are not needed. An IBE scheme is usually based on pairing of discrete points on elliptic curves. An IBE scheme can also be based on quadratic residuosity. This paper presents an overview of these IBE schemes and surveys present IBE based security services. Private key management is described in detail with protocols to authenticate users of Private Key Generation Authorities (PKG), to protect submission of generated private keys, and to avoid the key escrow problem. In the security service survey IBE implementations for smartcards, for smart phones, for security services in mobile networking, for security services in health care information systems, for secure web services, and for grid network security are presented. Also the performance of IBE schemes is estimated

    Pairing-based cryptosystems and key agreement protocols.

    Get PDF
    For a long time, pairings on elliptic curves have been considered to be destructive in elliptic curve cryptography. Only recently after some pioneering works, particularly the well-known Boneh-Franklin identity-based encryption (IBE), pairings have quickly become an important tool to construct novel cryptographic schemes. In this thesis, several new cryptographic schemes with pairings are proposed, which are both efficient and secure with respect to a properly defined security model, and some relevant previous schemes are revisited. IBE provides a public key encryption mechanism where a public key can be an arbitrary string such as an entity identifier and unwieldy certificates are unnecessary. Based on the Sakai-Kasahara key construction, an IBE scheme which is secure in the Boneh-Franklin IBE model is constructed, and two identity-based key encapsulation mechanisms are proposed. These schemes achieve the best efficiency among the existing schemes to date. Recently Al-Riyami and Paterson introduced the certificateless public key encryption (CL-PKE) paradigm, which eliminates the need of certificates and at the same time retains the desirable properties of IBE without the key escrow problem. The security formulation of CL-PKE is revisited and a strong security model for this type of mechanism is defined. Following a heuristic approach, three efficient CL-PKE schemes which are secure in the defined strong security model are proposed. Identity-based two-party key agreement protocols from pairings are also investigated. The Bellare-Rogaway key agreement model is enhanced and within the model several previously unproven protocols in the literature are formally analysed. In considering that the user identity may be sensitive information in many environments, an identity-based key agreement protocol with unilateral identity privacy is proposed

    Pairing-based cryptosystems and key agreement protocols

    Get PDF
    For a long time, pairings on elliptic curves have been considered to be destructive in elliptic curve cryptography. Only recently after some pioneering works, particularly the well-known Boneh-Franklin identity-based encryption (IBE), pairings have quickly become an important tool to construct novel cryptographic schemes. In this thesis, several new cryptographic schemes with pairings are proposed, which are both efficient and secure with respect to a properly defined security model, and some relevant previous schemes are revisited. IBE provides a public key encryption mechanism where a public key can be an arbitrary string such as an entity identifier and unwieldy certificates are unnecessary. Based on the Sakai-Kasahara key construction, an IBE scheme which is secure in the Boneh-Franklin IBE model is constructed, and two identity-based key encapsulation mechanisms are proposed. These schemes achieve the best efficiency among the existing schemes to date. Recently Al-Riyami and Paterson introduced the certificateless public key encryption (CL-PKE) paradigm, which eliminates the need of certificates and at the same time retains the desirable properties of IBE without the key escrow problem. The security formulation of CL-PKE is revisited and a strong security model for this type of mechanism is defined. Following a heuristic approach, three efficient CL-PKE schemes which are secure in the defined strong security model are proposed. Identity-based two-party key agreement protocols from pairings are also investigated. The Bellare-Rogaway key agreement model is enhanced and within the model several previously unproven protocols in the literature are formally analysed. In considering that the user identity may be sensitive information in many environments, an identity-based key agreement protocol with unilateral identity privacy is proposed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Security in peer-to-peer multimedia communications

    Get PDF
    Le architetture peer-to-peer (p2p) sono diventate molto popolari negli ultimi anni in conseguenza della grande varietà di servizi che esse possono fornire. Nate principalmente per l'utilizzo come semplice metodo scalabile e decentralizzato per scambiarsi file, sono adesso diventate molto popolari anche per una gran quantità di altri servizi, sfruttando la possibilità di condividere tra peer la banda, la potenza computazionale, la capacità di memorizzazione ed altre risorse. Tra i possibili usi per cui una tale architettura può essere sfruttata, un campo emergente è lo studio dell’applicazione di tecnologie p2p a comunicazioni VoIP in modo da superare alcuni dei problemi di cui soffrono correntemente le piattaforme centralizzate basate su SIP. Sfortunatamente, i problemi di sicurezza delle reti p2p sono ancora un campo di studio aperto, sia per il recente sviluppo di una tale piattaforma, sia per i rischi intrinseci di un ambiente distribuito stesso. Questa tesi ha lo scopo di studiare i problemi di sicurezza e le possibili soluzioni in modo da garantire una comunicazione sicura p2p. La ricerca è stata condotta in due direzioni: sicurezza a livello di routing e sicurezza a livello applicativo. Questi rappresentano I due possibili step di uno scenario di comunicazione: prima di tutto si deve trovare in modo sicuro la posizione di chi si vuole chiamare (che può essere memorizzata in una rete p2p stessa), e questo è un problema di lookup sicuro; in un secondo momento bisogna assicurarsi che la persona con cui si sta andando a parlare è veramente chi si voleva e che la comunicazione stessa sia confidenziale e non possa essere modificata; questi sono problemi di autenticazione e confidenzialità. Per quanto riguarda il primo punto, si sono studiati molti possibili attacchi a reti p2p strutturate e non strutturate, concentrandosi particolarmente sul Sybil attack da cui molti altri attacchi possono derivare. Dopo un analisi delle possibili contromisure presentate negli anni, ci siamo focalizzati sull’algoritmo DHT Kademlia, uno dei più usati nel mondo, studiando tramite simulazioni la degradazione delle performance in presenza di nodi malevoli. Si sono inoltre studiate contromisure basate su fiducia e reputazione e si è cercato di applicarle ad una rete Kademlia operante in un ambiente con un numero crescente di nodi malevoli. Per quanto riguarda il secondo punto, come prima cosa abbiamo studiato gli attuali key agreement protocol, focalizzandoci sul numero di messaggi scambiati e cercando di trovare possibili punti deboli persino in protocolli ed algoritmi largamente utilizzati. In un secondo tempo si è proposto un nuovo key agreement protocol basato su MIKEY e ZRTP che li integra nella procedura standard di INVITE di SIP. E’ stata inoltre fatta un’analisi del protocollo proposto. Su queste basi, si è andati oltre, aggiungendo anche metodi di autenticazione basati sui certificati ed un modo per gestire in maniera p2p certificati e firme. Infine, si è anche pensato ad un’architettura dove i certificati sono memorizzati in una rete p2p stessa tramite l’utilizzo di DHT.Peer-to-peer (P2P) architectures became very popular in the last years as a consequence of the great variety of services they can provide. When they were born, they were mainly deployed as a simple, decentralized and scalable way to exchange files, but they have now become very popular also for a lot of different services, exploiting the possibility of sharing bandwidth, computing power, storage capacity and other resources between peers. Among the possible uses such an architecture can be deployed for, an emerging field of study is the application of P2P technologies to VoIP communication scenarios in order to overcome some of the current issues centralized SIP-based platforms suffer of. Unfortunately, security issues in P2P networks are still an open field of investigation both because of the recent development of such a platform and for the inherent risks of a distributed environment itself. This thesis is meant to investigate the security issues and the possible solutions in order to setup a secure P2P communication. The research was conducted into two directions: - Security issues at routing level; - Security issues at application level. They represent the two steps of a possible communication scenario: first of all one must find in a secure way the location of the callee (maybe stored in a peer-to-peer network), this is a problem of secure lookup; then one must ensure that the person he is going to talk with is really who he wanted and that the communication itself is secret and cannot be tampered, these are problems of authentication and confidentiality. As regards the first point, we studied several possible attacks to structured and unstructured peer-to-peer networks particularly focalizing onto the disruptive Sybil attack from which many other attack can be derived. After an analysis of the possible countermeasures presented over the years, we focalized onto the Kademlia algorithm, one of the most used in the world, studying through simulations the degradation of performances in presence of malicious nodes. We also studied trust and reputation countermeasures and tried to apply them to a Kademlia-based network operating in an environment where there is a growing number of malicious nodes. For the second point, first of all we studied current key agreement protocols focusing on the number of messages and trying to find out possible drawbacks even in widely accepted protocols and algorithms. In a second time we proposed a new key agreement protocol based upon MIKEY and ZRTP integrating them into the standard SIP invite procedure. An analysis of the proposed protocol is also provided. On this basis we got further, adding also certificate-based authentication to our model and a way to manage in a P2P way certificates and signatures. Finally we also provided an architecture where certificates are stored in a P2P network itself with the use of a DHT

    Cryptographic Schemes based on Elliptic Curve Pairings

    Get PDF
    This thesis introduces the concept of certificateless public key cryptography (CLPKC). Elliptic curve pairings are then used to make concrete CL-PKC schemes and are also used to make other efficient key agreement protocols. CL-PKC can be viewed as a model for the use of public key cryptography that is intermediate between traditional certificated PKC and ID-PKC. This is because, in contrast to traditional public key cryptographic systems, CL-PKC does not require the use of certificates to guarantee the authenticity of public keys. It does rely on the use of a trusted authority (TA) who is in possession of a master key. In this respect, CL-PKC is similar to identity-based public key cryptography (ID-PKC). On the other hand, CL-PKC does not suffer from the key escrow property that is inherent in ID-PKC. Applications for the new infrastructure are discussed. We exemplify how CL-PKC schemes can be constructed by constructing several certificateless public key encryption schemes and modifying other existing ID based schemes. The lack of certificates and the desire to prove the schemes secure in the presence of an adversary who has access to the master key or has the ability to replace public keys, requires the careful development of new security models. We prove that some of our schemes are secure, provided that the Bilinear Diffie-Hellman Problem is hard. We then examine Joux’s protocol, which is a one round, tripartite key agreement protocol that is more bandwidth-efficient than any previous three-party key agreement protocol, however, Joux’s protocol is insecure, suffering from a simple man-in-the-middle attack. We show how to make Joux’s protocol secure, presenting several tripartite, authenticated key agreement protocols that still require only one round of communication. The security properties of the new protocols are studied. Applications for the protocols are also discussed

    Deniable Key Establishment Resistance against eKCI Attacks

    Get PDF
    In extended Key Compromise Impersonation (eKCI) attack against authenticated key establishment (AKE) protocols the adversary impersonates one party, having the long term key and the ephemeral key of the other peer party. Such an attack can be mounted against variety of AKE protocols, including 3-pass HMQV. An intuitive countermeasure, based on BLS (Boneh–Lynn–Shacham) signatures, for strengthening HMQV was proposed in literature. The original HMQV protocol fulfills the deniability property: a party can deny its participation in the protocol execution, as the peer party can create a fake protocol transcript indistinguishable from the real one. Unfortunately, the modified BLS based version of HMQV is not deniable. In this paper we propose a method for converting HMQV (and similar AKE protocols) into a protocol resistant to eKCI attacks but without losing the original deniability property. For that purpose, instead of the undeniable BLS, we use a modification of Schnorr authentication protocol, which is deniable and immune to ephemeral key leakages
    corecore