Cryptographic Schemes based on
Elliptic Curve Pairings

Sattam S. Al-Riyami

Technical Report
RHUL-MA-2005-2
2 February 2005

Royal Holloway

University of London

Department of Mathematics
Royal Holloway, University of London

Egham, Surrey TW20 0EX, England
http://www.rhul.ac.uk/mathematics/techreports

https://core.ac.uk/display/78876439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Cryptographic Schemes based on
Elliptic Curve Pairings

Sattam S. Al-Riyami

Thesis submitted to the University of London
for the degree of Doctor of Philosophy

Information Security Group
Department of Mathematics
Royal Holloway, University of London
2004

Declaration

These doctoral studies were conducted under the supervision of Dr. Kenneth G.
Paterson and Prof. Chris Mitchell.

The work presented in this thesis is the result of original research carried out by
myself, in collaboration with others, whilst enrolled in the Department of Math-
ematics as a candidate for the degree of Doctor of Philosophy. This work has not
been submitted for any other degree or award in any other university or educational
establishment.

Sattam S. Al-Riyami

Acknowledgements

I’'m privileged to have crossed path with Kenny Paterson, who offered me many hours
of his precious time every month. From his inspirational assistance and criticism I
learned a lot about doing research and presenting it and will remain forever grateful.
Also I'd like to thank Chris Mitchell for his continued guidance and for his supervision
during the first year of my Ph.D..

I’'m deeply grateful to all the lecturers, secretaries and students in the maths depart-
ment, they provided me with an excellent research environment during my doctoral
studies. In particular Alex Dent, Geraint Price, Paula Valenca and Simos Xenitellis
for insightful discussions. I'd like to express my gratitude to Priya Gopalan, Jane
Klemen, Caroline Kudla and Andreas Pashalidis for proof reading content of this
thesis. Finally, and most importantly, I owe thanks to my government for sponsor-
ing me, and my family and god for self-evident reasons.

Abstract

Cryptographic Schemes based on Elliptic Curve Pairings:
Contributions to Public Key Cryptography and Key Agreement Protocols

This thesis introduces the concept of certificateless public key cryptography (CL-
PKC). Elliptic curve pairings are then used to make concrete CL-PKC schemes and
are also used to make other efficient key agreement protocols.

CL-PKC can be viewed as a model for the use of public key cryptography that is
intermediate between traditional certificated PKC and ID-PKC. This is because, in
contrast to traditional public key cryptographic systems, CL-PKC does not require
the use of certificates to guarantee the authenticity of public keys. It does rely on
the use of a trusted authority (TA) who is in possession of a master key. In this
respect, CL-PKC is similar to identity-based public key cryptography (ID-PKC).
On the other hand, CL-PKC does not suffer from the key escrow property that is
inherent in ID-PKC. Applications for the new infrastructure are discussed.

We exemplify how CL-PKC schemes can be constructed by constructing several
certificateless public key encryption schemes and modifying other existing ID based
schemes. The lack of certificates and the desire to prove the schemes secure in the
presence of an adversary who has access to the master key or has the ability to
replace public keys, requires the careful development of new security models. We
prove that some of our schemes are secure, provided that the Bilinear Diffie-Hellman
Problem is hard.

We then examine Joux’s protocol [90], which is a one round, tripartite key agree-
ment protocol that is more bandwidth-efficient than any previous three-party key
agreement protocol, however, Joux’s protocol is insecure, suffering from a simple
man-in-the-middle attack. We shows how to make Joux’s protocol secure, present-
ing several tripartite, authenticated key agreement protocols that still require only
one round of communication. The security properties of the new protocols are stud-
ied. Applications for the protocols are also discussed.

Contents

1 Introduction 12
1.1 Motivation e e e 12
1.2 Overall Structure and Summary of Contributions 13
1.3 Publications and Origins of Contributions 15

I Definitions and Preliminary Topics 16

2 Definitions 17
2.1 Abstract Algebra and the Main Groups 17
2.2 Elliptic Curves e 18
2.3 Bilinear Maps from Elliptic Curve Pairings 22
2.4 The Bilinear Diffie-Hellman Problem and Related Problems 24

2.4.1 The Bilinear Diffie-Hellman Generator, Problem and Assumption 25
2.4.2 Related Problems and Assumptions 26
2.4.3 Implications of Bilinear Maps 29
2.5 Other Notation e 30

3 Preliminary Topics 31
3.1 Efficiency e 32
3.2 Public Key Cryptography 37

3.2.1 Cryptographic Primitives 38
3.2.2 The Lack of Authenticity 40
3.2.3 PKC with Authenticity of Public Keys from Certificates 41
3.2.4 Identity-based PKC 45
3.2.5 Cryptographic Workflow 47
3.3 Cryptographic Key Agreement Protocols 49
3.3.1 General Attack Classifications 50
3.3.2 The Diffie-Hellman Protocol 50
3.3.3 Joux’s Protocol 52
3.4 Authenticated Key Agreement Protocol Goals and Attributes 56
3.4.1 Extensional Security Goals 57
3.4.2 Security Attributes oL 57
3.4.3 Further Attributes 58
3.5 Provable Security Basics 0oL 59

CONTENTS

3.5.1 Cryptographic Hash Functions
3.5.2 Random Oracles
3.5.3 Security notions for PKE,
3.6 Survey of Pairing-based Schemes

IT Certificateless Public Key Cryptography

4 Certificateless Public Key Cryptography
4.1 Introduction
4.2 Defining CL-PKC
4.3 Related Work L
4.3.1 Identifier-based Cryptography
4.3.2 Self Certified Keys oL
4.3.3 Gentry’s Certificate-based Encryption Scheme
4.4 An Adversarial Model for CL-PKC
4.5 Key Generation Techniques for CL-PKC
4.5.1 Identifier Context: Excluding P4
4.5.2 Identifier Context: Including P4
4.6 Properties of CL-PKC oo
4.6.1 Revocation in CL-PKC
4.6.2 Certificate Freeo oo oo
4.6.3 Flexibility via Cryptographic Workflow
4.6.4 Low Interaction
4.6.5 Trust, Non-repudiation and Cryptographic Evidence
4.6.6 Interoperability of CL-PKC Implementation
4.6.7 Efficiency
4.7 Summary of CL-PKCo

5 CL-PKE — OWE Security
5.1 Introduction
5.2 Certificateless Public Key Encryption
5.3 OWE Security Model for CL-PKE
54 A CL-PKE Scheme with OWE Security
5.5 Security of the BasicCL-PKE Construction
5.5.1 EIG-BasicPub
5.5.2 BF-BasicPub
5.5.3 Security of EIG-BasicPub L.
5.5.4 Security of BF-BasicPub o000
5.5.5 Security of BasicCL-PKE
5.6 SUMMATY it i e e

6 CL-PKE — Semantic Security

78

79
80
82
83
83
83
85
86
87
88
90
91
91
92
94
95
97
101
101
102

104
104
105
107
111
113
114
115
116
117
118
129

130

CONTENTS

8

6.1 Introduction 131
6.2 IND-CCA Security Model for CL-PKE 131
6.3 A CL-PKE Scheme with Chosen Ciphertext Security 136
6.4 The Fujisaki-Okamoto Hybridisation Technique 139
6.4.1 A Basic PKE Scheme 139
6.4.2 A Symmetric Encryption Scheme 140
6.4.3 The Fujisaki-Okamoto Hybrid PKE Scheme 141
6.4.4 Security Results o 143
6.5 Security of the FullCL-PKE Construction 145
6.5.1 EIG-HybridPub 145
6.5.2 BF-HybridPub o 147
6.5.3 Security of EIG-Hybridpub 149
6.5.4 Security of BF-Hybridpub 150
6.5.5 Security of FUlCL-PKE 151
6.6 SummAary e e 172
Generic CL-PKE Schemes 173
7.1 Introduction 173
7.2 Some Generic CL-PKE Constructions 174
7.3 Analysisof CBE 178
7.3.1 Gentry’s Definition for CBE 178
7.3.2 Gentry’s Security Model for CBE 181
7.3.3 Gentry’s Concrete CBE Scheme 184
7.4 Secure CBE from Secure CL-PKE 186
7.4.1 CBE Schemes from CL-PKE Schemes 188
7.4.2 Security of CBE schemes from CL-PKE Schemes 189
7.5 Summary e e e 193
Further CL-PKC Schemes 195
8.1 Introduction L 196
8.2 A General Set Up for CL-PKC 197
8.3 CL-PKE Schemes 198
8.3.1 A Basic CL-PKE Scheme 198
8.3.2 A Full CL-PKE Scheme 200
8.4 A Certificateless Signature Scheme 202
8.5 A Certificateless Authenticated Key Agreement Protocol 204
8.6 Hierarchical CL-PKE 206
8.7 Proxy Decryption 211
8.8 Summary 212

CONTENTS

IITI Pairing-based Key Agreement

9 Tripartite Authenticated Key Agreement
9.1 Introduction
9.1.1 Contributions
9.1.2 Related Worko
9.2 One Round Tripartite Authenticated Key Agreement Protocols . . .
9.2.1 TAK Key Generation
9.2.2 TAK Key Generation Notes
9.2.3 Rationale for the TAK Keys’ Algebraic Forms.
9.3 Security Model
9.4 Security Proofs for TAK-1
9.5 Heuristic Security Analysis of TAK Protocols
9.5.1 Shim’s Man-in-the-Middle Attack on TAK-2
9.5.2 Known Session Key Attack on TAK-1
9.5.3 Forward Secrecy Weakness in TAK-3
9.5.4 Key-Compromise Impersonation Attack on TAK-1
9.5.5 Unknown Key-Share Attacks
9.5.6 Insider and Other Attacks
9.5.7 Security Summary
9.6 Shim’s Tripartite Key Agreement Protocol
9.6.1 Shim’s Protocol
9.6.2 The Problem
9.7 Tripartite Protocols with One Off-line Party
9.8 Non-Broadcast — Tripartite AKC Protocols
9.8.1 A Six Pass Pairing-Based AKC Protocol
9.8.2 A Six Pass Diffie-Hellman based AKC Protocol
9.8.3 Analysis of AKC Protocols
9.9 Summary e e e

Bibliography

214

215
216
217
219

. 224

225
226
228
230
233
240
240
241
242
242
244
246
249
250
250
251
251
253
254
256
257
257

259

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5

4.1

6.1

8.1

9.1

9.2
9.3
9.4
9.5
9.6
9.7

Elliptic curve operations defined over the real number field R: addition

of two points and doubling of a point. 19
A PKE adversary impersonating entity Ato B. 41
The Diffie-Hellman protocol. 51
A three party Diffie-Hellman protocol. 52
Joux’s one round protocol. L. 53
Overview of pairing-based publications. 65

Authentication (or witnessing/enrolling) of entity A by the TA for
ID-PKC, CL-PKC(A), CL-PKC(B) and traditional certificate-based
PKC respectively. Authentications performed by the PKG and KGC,

only need to occur before using the private key. 88
A summary of the lemmas and results of Chapters 5 and 6. 169
Certificateless authenticated key agreement protocol. 206

Two party authenticated key agreement protocols for the Unified Model,

MQV and selected MTI key agreement protocols. 220
The station-to-station (STS) key agreement protocol. 223
Tripartite authenticated key agreement (TAK) protocol. 225
Shim’s tripartite protocol. 250
Off-line TAK protocol. 252
TAKC protocol from pairings. 254
Diffie-Hellman based TAKC protocol. 257

List of Tables

4.1 Comparison of the properties of traditional PKC, CL-PKC and ID-PKC.102

9.1 Efficiency comparison for one round tripartite key agreement protocols.227
9.2 Comparison of security goals and attributes for one round tripartite

key agreement protocols.

10

Abbreviations

AK: Authenticated Key Agreement

AKC: Authenticated Key Agreement
with Confirmation

BDH: Bilinear Diffie-Hellman

BDHP: Bilinear Diffie-Hellman Problem

BF: Boneh and Franklin

BLS: Boneh, Lynn and Shacham

DH: Diffie-Hellman

DLP: Discrete Logarithm Problem

CA: Certification Authority

CCA: Chosen Ciphertext Attack

CBE: Gentry’s Certificate-based

Encryption

CDHP: Computational Diffie-Hellman
Problem

CL-: Certificateless

CPA: Chosen Plaintext Attack

CRHF: Collision Resistant Hash
Function

CRL: Certificate Revocation List

DBDHP Decisional Bilinear Diffie-
Hellman Problem

DDHP: Decisional Diffie-Hellman
Problem

FFS: Function Field Sieve

GDHP: Generalised Diffie-Hellman

Problem
HCL-: Hierarchical Certificateless
1D: Identifier
1D-: Identifier-based
IND-: Indistinguishability of
Encryptions
IP: Internet Protocol

KDC: Key Distribution Center
KGC: Key Generating Center
KTC: Key Translation Center

11

MAC:
MOV:
MTI:
OCSP:
OWE:
OWHE:
PKC:
PKE:
PKG:
PKI:
PKS:
PoP:
SEM:
STS:
TA:
TAK:

TAKC:

Message Authentication Code
Menezes, Okamoto and Vanstone
Matsumoto, Takashima and Imai
Online Certificate Status Protocol
One-Way Encryption

One-Way Hash Function

Public Key Cryptography

Public Key Encryption

Private Key Generator

Public Key Infrastructure

Public Key Signature

Proof of Possession

Security Mediator
Station-to-Station

Trusted Authority

Tripartite Authenticated Key
Agreement

Tripartite Authenticated Key
Agreement with Confirmation

CHAPTER 1

Introduction

Contents
1.1 Motivation e e 12
1.2 Overall Structure and Summary of Contributions 13
1.3 Publications and Origins of Contributions 15

The aim of this chapter is to provide an introduction and present the overall structure
of the thesis. This chapter also describes the main contributions of the thesis to public

key cryptography and key agreement protocols.

1.1 Motivation

This thesis explores cryptographic schemes based on elliptic curve pairings. Part I is
an analysis of cryptographic elliptic curve pairings which will form the basis for the
concrete solutions to the cryptographic problems addressed in both Part II and Part
IIT of this thesis. Next, we will briefly outline the main motivations behind these

concrete solutions.

The space occupied between two topics or concepts provides fertile ground for sci-
entific research. Part of this thesis finds its roots in the space beteen the two ap-
proaches for developing trust in PKC, these are, firstly certificate-based PKC and
secondly identity-based public key cryptography (ID-PKC). Both the ID-PKC and
certificate-based PKC model are well studied in cryptography. These two established
approaches clearly raise a range of questions such as: Are they any other ways of

establishing trust using PKC?, for example, does any desirable model lie in between

12

1.2 Overall Structure and Summary of Contributions

ID-PKC and certificate-based PKC?, can public keys be managed and used without
certificates? The pursuit for the answers to these questions led to the discovery of a
new notion in public key cryptography called certificateless public key cryptography
(CL-PKC), which is set out in Part IT of this thesis.

A recent and important development in cryptographic protocols which uses elliptic
curve pairings is Joux’s protocol [90]. While Joux’s protocol is a very efficient three
party key agreement protocol, it is not suitable for open networks because it does not
provide authentication. This characteristic of Joux’s protocol hampers many of its
practical applications; Part III attempts to remedy this clear weakness in the Joux
protocol. As we shall see, achieving high levels of security using Joux’s protocol is
no simple task. We develop and provide analysis of authenticated versions of Joux’s

tripartite protocols for certificate-based infrastructures in Part III of this thesis.

1.2 Overall Structure and Summary of Contributions

We briefly outline the structure of this thesis and highlight its main contributions:

Part I: In this part, we explain and present relevant background material. In
Chapters 2 and 3, we cover the nomenclature and definitions necessary for under-
standing the remainder of the thesis. We cover elliptic curve pairings, provable
security and some computational and decisional problems. We provide expositions
for certificate-based and identity-based cryptography and cryptographic workflows.
These are required for understanding Part IT of this thesis. We explain key agreement
protocols and authenticated key agreements protocol goals and attributes. These are
prerequisites for understanding Part III of this thesis. We end Part I with a sur-
vey of the development of pairing-based cryptography, which also shows how this
thesis relates to the wider body of research. We also highlight some cryptographic

applications.

Note, that after covering Part I, the reader can move on to either Part IT or Part I1I

13

1.2 Overall Structure and Summary of Contributions

of this thesis, as they are independent parts that tackle different aspects of pairing-
based cryptography.

Part II: In this part, we introduce and develop CL-PKC. In Chapter 4, we start by
describing CL-PKC, comparing it to ID-PKC and standard certificate-based PKC.
As the reader shall appreciate, CL-PKC is competitive and has the potential to be
used in real world applications. In Chapters 5 and 6, we exemplify the certificateless
concept by presenting some very efficient certificateless public key encryption (CL-
PKE) schemes and prove their security in an appropriate model. In Chapter 7, we
show how arbitrary identity-based public key encryption (ID-PKE) schemes and ar-
bitrary standard public key encryption (PKE) schemes can be combined to construct
CL-PKE schemes. Also in Chapter 7, we examine in detail Gentry’s certificate-based
encryption (CBE) model [76] and identify some of its shortcomings. We describe
a simple modification to the CBE model and show how CL-PKE schemes can be
transformed into CBE schemes in this modified model. Finally, Chapter 8 builds on
existing ID-PKC results to provide some certificateless schemes that can be easily

bootstrapped from existing identity-based schemes.

Part III: In Part III, we address the problem with Joux’s protocol, namely its lack
of authentication. In Chapter 9, we construct some tripartite authenticated key
agreement protocols that preserve the communication advantages of Joux’s protocol.
We then analyze their security properties. We also explain how to transform some
authenticated two party Diffie-Hellman based protocols, and tripartite pairing-based
protocols into tripartite authenticated protocols, having one party offline. We provide
a brief analysis of Shim’s protocol [138], showing that it does not make mathematical
sense. Finally, we examine the communication advantages of authenticated versions
of Joux’s protocol in different network settings, providing a pass-optimal authen-
ticated and key confirmed tripartite protocol that generalises the station-to-station

protocol [59].

Discussions summarising the merits of this research and pointing towards future re-

search ideas are presented throughout the thesis. As our pairings survey will demon-

14

1.3 Publications and Origins of Contributions

strate, it has emerged that pairings from elliptic curves are a very powerful primitive
and can be used to build novel cryptographic schemes with interesting properties.
This thesis provides further evidence for this, by presenting one round tripartite

authenticated key agreement protocols and schemes for certificateless public key

cryptography.

1.3 Publications and Origins of Contributions

This thesis contains some previous research published with K.G. Paterson [4, 5, 6, 7].
The CL-PKC encryption model of Section 5.2, security model of Section 6.2 and
much of the content of Chapter 8 were originally described in [6, 7]. Some contents
of Chapter 9 first appeared in [4] and was later improved on and published in [5].
Finally, the ideas developed in Section 7.2 are a direct result of communication with
D. Boneh.

15

Part 1

Definitions and Preliminary
Topics

16

CHAPTER 2

Definitions

Contents

2.1 Abstract Algebra and the Main Groups 17
2.2 EllipticCurvesot v i i it 18
2.3 Bilinear Maps from Elliptic Curve Pairings 22

2.4 The Bilinear Diffie-Hellman Problem and Related Prob-
lems e e e e e e e e e e e e e 24

2.4.1 The Bilinear Diffie-Hellman Generator, Problem and As-
sumption Lo 25
2.4.2 Related Problems and Assumptions 26
2.4.3 Implications of Bilinear Maps 29
2.5 Other Notation 30

The primary aims of this chapter are to define elliptic curve pairings and to establish
some notational conventions which are used throughout this thesis. Furthermore,
we introduce basic ideas of complexity theory and explore the relationships between

several different cryptographic definitions.

2.1 Abstract Algebra and the Main Groups

We will make free use of basic concepts about groups, rings and fields [114, Chap.2].
The notation G is used to denote a group which is a set with some binary operation.

We let G* denote the set of non-identity elements of the group.

17

2.2 Elliptic Curves

Definition 2.1 The number of elements in G, denoted |G/, is called the order of G.
A group G is finite if |G| is finite.

Definition 2.2 A group G is cyclic if there is an element g € G such that for each

a € G there is an integer ¢ with a = ¢g°. Such an element ¢ is called a generator of G.

A field is denoted F and F denotes the algebraic closure of F. A finite field of order
t is denoted F;.

The main groups used in this thesis are Z,, G; and Gy. The group Z, denotes the
set of integers under addition modulo n. We will use {0,1,...,n — 1} to denote the
elements of Z,, and {1,2,...,n — 1} to denote the elements of Z). The two other
groups are an additive group G; and a related multiplicative group Go. Both are
cyclic groups of large prime order related to elliptic curves over finite fields. In the
sequel, the foundation used to describe Gy is covered and in Section 2.3, the bilinear

maps which links Gy and Gy are described.

2.2 Elliptic Curves

We will very briefly introduce some basic theory of elliptic curves. Most of the results
in this introduction comes from [25, 97]. The aim of this section is to introduce elliptic

curves, point compression and point representation.

Elliptic curves can be defined using several different equations. An elliptic curve E

over a field F is commonly given by an affine Weierstrass equation of the form
V2 + arzy + asy = 23 + avx® + auz + ag, (2.1)

where a; € F for i = 1,2,3,4,6. The elliptic curve E(F) is defined to be the set of
points (z,y) € F x F that satisfy this equation, along with a point at infinity denoted

as co. In order for this cubic curve to be an elliptic curve it must be smooth. This

18

2.2 Elliptic Curves

_~

N

Figure 2.1: Elliptic curve operations defined over the real number field R: addition
of two points and doubling of a point.

means there is no point of E(F) where both partial derivatives vanish. Thus, for any

(x,y) € E(F), both the conditions
a1y — 3z% — 2a9x —ay =0 (2.2)

and

2y+aiz+az3=0 (2.3)

cannot be simultaneously satisfied.

Without loss of generality, the elliptic curve equation can be simplified and given in
the short Weierstrass form if the characteristic of F is neither 2 or 3. This form of
equation is:

y? =2 +ax+b (2.4)

where a,b € F. The elliptic curve is still required to be smooth.

If K is any extension field of F, the set {(z,y) € K x K : E(K)} U {oco} with some
group operation, 4, can be used to form a group, denoted (F(K),+), known as an

elliptic curve group.

We look at the elliptic curve over the real number field in Figure 2.1, to help illustrate

19

2.2 Elliptic Curves

how the group operation is defined in the general case. To define the operation on

points called point addition on E(K), the following rules are followed:

Let P € E(K). Then P+ oo = P and co+ P = P. So oo serves as the additive
identity for the group. If P = oo then we define —P = oco. In what follows,
we will let the notation F(K)* denote the group E(K) excluding the identity

element oo.

Let P = (z,y) € E(K)*. Then —P = —(x,y) = (z,—y) and P + (—P) = 0.

So the inverse of P is —P.

Let P = (z,y) € E(K)* and Q = (2/,¢/) € E(K)*. If z # 2/, then P+Q = —R,
where —R is a reflection of R in the z-axis and R is the point of intersection of
the line joining P and) with E. This geometric construction can be visualised

using the left diagram of Figure 2.1.

Let P € E(K)*. Then P+ P = —R, here —R is a reflection of R in the z-axis.
R is the point of intersection for the tangent v at P with E. This point doubling

can be visualised using the right diagram of Figure 2.1.

It can be shown that F(K) is commutative and associative under addition, that is,
P+Q=Q+Pand (P+Q)+R=P+ (Q+R)forall P,Q,R c E(K) [141, §2].
Thus, the composition rules yield an abelian group (F(K),+) with identity element

oo. From here on the symbol + will be omitted from the representation and E(K)

will be used instead. We will write P = (z,y) for a point in the group E(K). The

geometric definitions presented here lead to algebraic formulae for the group law

which are valid for any characteristic of the underlying field. These can be found in
[25, p. 33].

The notation mP denotes the scalar multiplication of P € E(K) by m € Z. The

value of mP is the following: for m = 0 it is equal to oo; for m < —1 it is equal to

(—m)(—P); and for m > 1 it is equal to P+ ...+ P.
—_—

m points

20

2.2 Elliptic Curves

In general, scalar multiplication on elliptic curves is believed to be hard to invert. In

Section 2.4.2, this inversion problem is examined in more detail.

A point compression technique is possible within an affine coordinate system, where
elliptic curve points are written in the form (x,y), because for every z coordinate a
maximum of two possible y coordinates exist. This allows the x coordinate to be sent
along with a bit, denoted y. For example, in F; if ¢ is an odd prime, then we can take
7y = y mod 2. Specifications of compression algorithms for the z and y coordinates
in F; and Fon are described in [87, Annex A]. If a compressed point is used by a
scheme, extra computation will be required to decompress it to the standard affine

representation, (x,y).

Alternative trade-offs between computational complexity (in point addition and point
doubling) and storage/communicational bandwidth can be achieved by switching to
a different coordinate system to represent the elliptic curve. A popular coordin-
ate systems for elliptic curve cryptography is the projective coordinate system. In
the projective coordinates (X,Y,Z) over Iy, the defining equation of the curve in

Weierstrass form can be taken as
Y2Z = X3 +aXZ?+0273. (2.5)

The affine coordinates (z,y) of points resulting from equation 2.4 are related to
the projective coordinates (X,Y,Z) of points resulting from equation 2.5 by the
equations: * = X/Z and y = Y/Z. The point co in this coordinate system is defined
to be the triple (0,1,0).

In this thesis, extensive use will be made of pairings on elliptic curves. For cryp-
tographic applications, our focus will be on elliptic curves defined over finite fields.
The preferred finite fields are Fy, Fon and F3n, where t is a large prime and n € Z*.
Curves defined over Fon allow more efficient bit computations than those defined
over Fsn. Generally, curves defined over Fs» require smaller key sizes than those
defined over Fon for equivalent security. However, this advantage may be eliminated
if efficient algorithms for fields of characteristic three can be found, we will return to

this issue in Section 3.1.

21

2.3 Bilinear Maps from Elliptic Curve Pairings

2.3 Bilinear Maps from Elliptic Curve Pairings

We let P denote a generator of i, where G; is an additive group of some large
prime order q. Let G2 be a related multiplicative group with |Ga| = |G1|. A pairing

is a map é: Gy X G; — Go with the following properties:

1. The map € is bilinear: Given Q, W, Z € 1, we have
Consequently, for any a,b € Zg:

&(aQ, bW) = é(Q, W)™ = é(abQ, W) = é(Q, abW) = é(bQ, W)".

2. The map é is non-degenerate: é(P, P) # 1g,, where 1g, is the identity element
of GQ.

3. The map é is efficiently computable.

This pairing map é is sometimes called an admissible pairing. We will show that
since € is bilinear, the map ¢é is also symmetric.

Proof. Being symmetric means that for any Q,W € Gq, the equality é(Q, W) =
é(W, @) holds. Both @Q,W € G; can be represented using some generator P and
some a,b € Zg: let Q = aP and W = bP. Then we have é(Q, W) = é(aP,bP) and
by bilinearity of é we have é(Q, W) = é(aP,bP) = é(P, P)® = é(bP,aP) = é(W, Q).

g

Typically, Gy is a subgroup of the group of points on an elliptic curve over a finite
field, i.e. E(F¢). G is then a subgroup of the multiplicative group of a related finite
field. Currently, the parameters are chosen so that G; has around 2! elements and
Gy is a subgroup of Fir where 7 is known as the security multiplier (or embedding
degree) and t" has roughly 1024 bits. With the increase in value of r, the pairing

computation efficiency decreases.

22

2.3 Bilinear Maps from Elliptic Curve Pairings

The map é is derived by modifying either the Weil pairing [112] (with both inputs
in the same cyclic group) or Tate pairing [69] (with related inputs in the left hand
side of the pairing map) on an elliptic curve over F;. The computational complexity
of the Tate pairing is less than that of the Weil pairing. The Weil and Tate pairing
need to be modified because the pairings may always output 1g, in the right hand
side of the pairing map?!. Verheul [147] introduced a valuable tool for modifying
these pairings called distortion maps. Distortion maps are applicable to a special
class of curves called supersingular curves. A distortion map, ®, is an efficiently
computable group endomorphism from E(F;) to E(F;). Applying ® to one of the
inputs to a pairing ensures the two inputs are linearly independent, therefore, one
obtains a non-trivial pairing result. An alternative modification to eliminate trivial
pairing results uses trace maps [36, §4.1] (these are group isomorphisms from E(Fr)

to E(Fy)); this technique works on all curves.

Note that many of our schemes can be adapted to situations in which two different
groups, denoted as G} and G, are used instead of G;. The pairing map becomes
¢ : G} x G} — Gy with similar properties to the é map. However, the map ¢’ is
generally not symmetric. The use of unmodified pairings can increase the range of

curves for which our cryptographic schemes can be realised.

Some discussions on security of these elliptic curve pairings and its relation to un-
derlying computation problems is covered next in Section 2.4. However, more com-
prehensive descriptions of how these groups, pairings and other parameters should
be selected in practice for efficiency and security are beyond the scope of this thesis
and are described elsewhere. See, for example, [12, 13, 32, 33, 36, 66, 73, 74] for

implementation of pairings and selection of curves with suitable properties.

We simply assume throughout the remainder of this thesis that suitable groups Gq
and G2, a map é and an element P € (1 can be chosen, and that elements of G;

and Gs can be represented by bit strings of the appropriate lengths.

21The self pairing of any point with itself in an unmodified Weil pairing always returns the trivial
result 1g,.

23

2.4 The Bilinear Diffie-Hellman Problem and Related Problems

2.4 The Bilinear Diffie-Hellman Problem and Related Problems

We introduce here the computational problems that will form the basis of security for
many of our schemes. Many cryptographic primitives are based on number theoretic
problems. These cryptographic problems and assumptions exist within the frame-
work of complexity theory. The definitions for the two frequently used complexity

theory terms, negligible function and polynomial time algorithm, are as follows:

Definition 2.3 A function e(k) is called negligible (in the parameter k) if for every
¢ > 0 there exists an integer k. > 0 such that for all k& > k., e(k) < k~°.

Negligibility is usually used to formalise the hardness of a problem. Since usually
we do not know the exact running time of an algorithm (which is the number of bit
operations executed by the algorithm) on an input, the big-O notation is used to
represent the order of the asymptotic upper bound. Many definitions presented here

are adapted from [114].

Definition 2.4 Let f and g be functions of parameter k. We write f(k) = O(g(k)) if
there exists a positive constant ¢ and a positive integer ko such that 0 < f(k) < cg(k)
for all k& > k.

The term ‘worst-case running time’ of an algorithm is used in Definition 2.5 to
represent an upper bound on the execution time for any input, expressed as a function

of the input size.

Definition 2.5 A polynomial time algorithm is an algorithm whose worst-case run-

ning time function is of the form O(k¢), where k is the input size and ¢ is a constant.

Informally, we regard a polynomial time algorithm as being efficient. A polynomial
time algorithm uses resources, such as memory and computation power, which are
bounded by a polynomial function in k. It is assumed that processes such as the

initialisation of such an algorithm is also performed in polynomial time. Hence, the

24

2.4 The Bilinear Diffie-Hellman Problem and Related Problems

running time refers to the whole process and not just the adversary’s actions. Subex-
ponential algorithms possess asymptotically slower running times than polynomial
time algorithms and asymptotically faster running times than that of exponential
time algorithms. If a deterministic algorithm, A, has a random variable as input
which affects the output of A, then A will be viewed as a probabilistic algorithm
with an internal random variable instead of a random input. In this thesis, the al-
gorithms are always non-uniform, which means that they can behave differently for

inputs of different sizes [17, §B.2.3].

Negligibility of functions and complexity of algorithms are parametised by values k.
In cryptographic algorithms, the value of k is important. This is because it can ‘tune’
many parameters, such as the size of cryptographic groups and key lengths, within

those algorithms?-2.

The larger k is, the more computation is required to run an
algorithm and in Section 3.5 the reader will see that this is precisely what we want
to achieve when bounding an adversary’s probability of success. Hence, k& from here
on will be called the security parameter. When dealing with the security parameter
as input, many authors choose to represent it as 1%, that is, the string of 1’s of length
k. Here we use the notation of k directly as an input to our algorithms. However, it

should be understood that an input of length k is actually being used.

2.4.1 The Bilinear Diffie-Hellman Generator, Problem and Assumption

The bilinear Diffie-Hellman definitions presented here were first formally given in
[32].

Definition 2.6 We say that a randomized algorithm Z§ is a bilinear Diffie-Hellman
(BDH) parameter generator, if:

1. ZG takes a security parameter k as input, for integer k£ > 1,

22Not all security related parameters are scalable, for example, the entropy and length of user
chosen passwords does not scale with computation power.

25

2.4 The Bilinear Diffie-Hellman Problem and Related Problems

2. ZG runs in polynomial time in k£, and

3. ZG outputs a prime number ¢, the description of groups Gi, Gs of prime order

q and a pairing map é: G; x G; — Ga.

Formally, the output of the algorithm ZG(k) is (G, Ga, é)%3. The output ¢ is con-
tained in the description of groups Gi, G2. Polynomial time (in k) algorithms for
computing both é and group action in groups G, Go are also included in the de-

scription of (G1, Ga, é).

Definition 2.7 Let (G1,Ga,é) be output by algorithm ZG(k) and let P be a gen-
erator of Gy. The bilinear Diffie-Hellman problem (BDHP) in (Gi,Go,é) is as fol-
lows: Given (P, aP,bP,cP) with uniformly random choices of a,b,c € Zy, compute
é(P, P)%¢ € Go. An algorithm A has advantage ¢ in solving the BDHP in (Gy, G, é)
if

Pr [A(P, aP,bP,cP) = (P, P)| > e,

Here the probability is measured over the random choices of a, b, c € Zy, P € G and

the random bits of A.

The BDH assumption states that no probabilistic polynomial time algorithm has
non-negligible advantage (in k) in solving the BDHP for (G1, G2, €) generated by ZG

on input k.

2.4.2 Related Problems and Assumptions

The hardness of the BDHP forms the security foundation for many pairing-based
cryptographic schemes. Other important computational problems related to pairing-

based schemes exist. Some of these are covered here.

23Throughout this thesis the notation (x1,z2,...,x,) denotes a n-tuple formed of the n objects
Z1,%2...,Tn. Often, as is the case here, all the x;s in the n-tuple do not come from the same set.

26

2.4 The Bilinear Diffie-Hellman Problem and Related Problems

Definition 2.8 Let (G1, G, é) be output by algorithm ZG (k) and let P be a gener-
ator of Gi. The generalized bilinear Diffie-Hellman problem (GBDHP) in (G, G2, é)
is as follows: Given (P,aP,bP,cP) with uniformly random choices of a,b,c € Z,
output a pair (Q € G}, é(P, Q)™ € Gy). An algorithm A has advantage € in solving
the GBDHP in (Gy, Go, &) if

Pr [A(P, aP,bP,cP) = (Q,é(P,Q)™)| > e.

Here the probability is measured over the random choices of a,b,c € Z;, P € G} and

q
the random bits of A.

Similarly, the GBDH assumption states that no probabilistic polynomial time al-
gorithm has non-negligible advantage (in k) in solving the GBDHP for (Gq, Gy, é)
generated by ZG on input k. Notice that an algorithm used to solve the BDHP can be
used to solve the GBDHP in which the algorithm outputs the choice Q = P. While
the GBDHP may appear to be in general easier to solve than the BDHP because the
algorithm gets to choose @), no polynomial-time algorithm is known for solving either
the GBDHP or the BDHP when the groups G; and Gs and the pairing é are appro-
priately selected. If the GBDHP algorithm also outputs s € Z; such that Q) = sP,
then the problems are equivalent. The GBDHP is the foundation of security for the

schemes in Chapter 8.

Dupont and Enge [65] defined a version of the generalised BDHP in the context
of unmodified pairings, which is a natural generalisation of the BDHP to that
setting. In that version [65] of the generalised BDHP, the problem instance is
(P,Q,aP,bP,cP,cQ) with uniformly random choices of a,b,c € Z;, P € G} and
Q € GY*, and the problem objective is to output e'(P,Q)%*¢ € Gz. The setting
is in context of parameters of the form (¢/, G|, G}, G3) where the pairing map is
¢ : G} x G — Gy. This problem is believed to be hard and if G| = G} = Gy,
(Q = P, and the input is modified then the above problem is the BDHP. Notice that
in the general case when Q # P, the value of ¢Q is also provided, whilst the pair
(aQ,bQ) is not provided. Also notice that the problem instance (not the solving
algorithm, as in Definition 2.8) contains @ as input. This problem and the GBDHP

27

2.4 The Bilinear Diffie-Hellman Problem and Related Problems

we describe in Definition 2.8 are incomparable because of the differences in settings,
the nature of element () and the information provided (i.e., group elements) to the

solving algorithm.

Definition 2.9 We define a number of computational and decisional problems that
are related to the BDHP:

e Let G be a finite cyclic group and let g be a generator of G. The discrete log-
arithm problem (DLP)in G is as follows: Given (g, g%) with uniformly random
choice of a € ZTG‘, find a € G.

e Let G be a finite cyclic group and let g be a generator of G. The computa-
tional Diffie-Hellman problem (CDHP)in G is as follows: Given (g, g%, g°) with

uniformly random choices of a,b € Z*GP find g* € G.

e Let G be a finite cyclic group, and let g be a generator of G. The decisional
Diffie-Hellman problem (DDHP) in G is as follows: Given (g, g%, g%, ¢¢) with

uniformly random choices of a, b, c € Z|*G|’ determine if g% = ¢°.

Note here that G is a multiplicative group and that computational assumptions
related to above problems can be stated for a system specified parameter generator
in an obvious manner. The CDHP can be easily solved if one can compute a given
g and g%, which is precisely the DLP. In fact, solving the DLP is the only known
method to solve the CDHP. For the lower bound on the hardness of the CDHP for

various elliptic curves, see [117].

The GBDHP is related to a genalisation of the CDHP in G; and Go in the same
way that the BDHP is related to the standard CDHP in those groups [32, 73]. The
generalisation of the CDHP is the following: Given g, a generator of a finite cyclic
group G, and (g2, g*) with uniformly random choices of a,b € Z|*G|, find a generator

v € G and v® € G. An associated decisional problem can also be defined for the
BDHP.

28

2.4 The Bilinear Diffie-Hellman Problem and Related Problems

Definition 2.10 Let (G, Gy, é) be output by algorithm ZG and let P be a generator
of G1. The decisional bilinear Diffie-Hellman problem (DBDHP) in (G1,Ga,é) is as
follows: Given (P,aP,bP,cP) € Gy and a random element) € G5 with uniformly
random choices of a,b,c € Zj, determine whether QQ = é(P, P)®¢ or not. A dis-
tinguisher A for the DBDHP in (Gq, G2, é) has advantage € in solving the DBDHP
if

| Pr[A(P,aP,bP,cP,Q) = 1] —

Pr [A(P,aP,bP,cP,é(P,P)*) =1]| >e

Here the probability is measured over the random choices of a,b,c € Zy, Q € Gj,
P € G} and the random bits of A.

2.4.3 Implications of Bilinear Maps

Some relationships between the computational and decisional problems described in

the previous section will be explored next.

As a consequence of bilinearity we will show that the BDHP for parameters (G1, G, é)
is no more difficult to solve than the CDHP in either G; or Gs.

Proof. Given (P,aP,bP,cP) € G}, let v = é(P, P)®¢ be the solution to the BDHP
in (G1,Gg,é). We have two ways of solving the BDHP by using CDHP oracles:
(i) By solving the CDHP on input (P,aP,bP) in additive group Gi, we can find
abP € Gy. Given abP one can compute é(abP,cP) = v € Gg, which is the solution
to the BDHP.

(73) By solving the CDHP on input (é(P, P),é(aP, P),é(bP,cP)) in multiplicative

group Gy, we can find é(P, P)™® = v € Gs, which is the solution to the BDHP.
Il

The reverse relationship is not known.

Another consequence of bilinearity is that if we are operating in the context of the
tuple (G1, Go, é), the DDHP in G; can be solved in polynomial time. Suppose that
an entity wants to confirm that ¢P = abP for the tuple (P,aP,bP,cP) where a, b

29

2.5 Other Notation

and c are elements of Z;. Then that entity simply needs to verify that the equality
é(aP,bP) = é(P, cP) holds; if it does, then in the tuple (P, aP, bP, cP) we must have
c¢P = abP. This valuable insight was pointed out by Joux and Nguyen [92]. The
groups where the DDHP is easy and the CDHP is hard are called gap groups.

If an efficient map é is obtained from the Weil or Tate Pairing, then this may lead to
a sub-exponential algorithm for the DLP on elliptic curves. To illustrate this using a
modified pairing, suppose we let P, Q) € G and suppose the pair (P, @) is an instance
of the DLP in G;. The goal of the solving algorithm is to determine a € Z, such
that @ = aP. Let p = é(P,P),p = é(Q, P) € Go and consider the pair (u, p) as an
instance of the DLP in Gs. By bilinearity we know that p = pu®. So the ability to
solve the DLP in Go gives the ability to solve it in Gy, if there is a sub-exponential
algorithm for the former and r is small. However, even if there is a sub-exponential
algorithm in Go, it may be no better than existing algorithms in G; because r may
be large. Hence, if we want the DLP to be hard in G, elliptic curves which can be
used by this map must be chosen carefully so that the DLP remains hard in Gs.

The first application of the elliptic curve pairings to cryptography was for solving the
DLP on elliptic curves. An unmodified Weil pairing was used by Menezes, Okamoto
and Vanstone [112] to mount an attack on supersingular curves (which have r < 6).
Another bilinear map, called the Tate pairing was used by Frey and Riick [69] in a

similar attack. As before, these attacks really only work when r is small.

2.5 Other Notation

Throughout this thesis, a string x is a member of {0,1}* where the superscript ‘*’
symbolises an unspecified bit length. When z and y are strings, z||y denotes their
concatenation. The symbol @, denotes a bit-wise exclusive OR (XOR) operator. For

protocol messages ‘Sends to’ is denoted by ‘—’.

30

CHAPTER 3

Preliminary Topics

Contents

3.1 Efficiencyt 32
3.2 Public Key Cryptography 37
3.2.1 Cryptographic Primitives 38
3.2.2 The Lack of Authenticity 40
3.2.3 PKC with Authenticity of Public Keys from Certificates . . 41
3.2.4 Identity-based PKC 45
3.2.5 Cryptographic Workflow 47
3.3 Cryptographic Key Agreement Protocols 49
3.3.1 General Attack Classifications 50
3.3.2 The Diffie-Hellman Protocol 50
3.3.3 Joux’s Protocol 52

3.4 Authenticated Key Agreement Protocol Goals and At-
tributes o oo s e 56
3.4.1 Extensional Security Goals 57
3.4.2 Security Attributes 57
3.4.3 Further Attributes 58
3.5 Provable Security Basics 59
3.5.1 Cryptographic Hash Functions 60
3.5.2 Random Oracles 61
3.5.3 Security notions for PKE 62
3.6 Survey of Pairing-based Schemes 64

31

3.1 Efficiency

The aim of this chapter is to give an overview of cryptographic infrastructures and
protocols, and the foundations of provable security. A literature review of pairing-
based cryptography is also presemted, with the aim of putting into perspective the

contributions of this thesis.

3.1 Efficiency

Before introducing the concept of efficiency, we will introduce some basic terminology.
An entity (or party) is someone or something which sends, receives, or manipulates
information. It may be a human being or a computer terminal. This entity could
be runing a scheme, which is a general term referring to a set of algorithms used
to provide specific services. For example, an encryption scheme provides a confid-
entiality service. Formal descriptions of specific schemes and services are given in
Section 3.2 and Section 3.5.1. A protocol is an algorithm involving multiple com-
municating parties, defined by a sequence of steps precisely specifying the actions
required of the parties in order to achieve a specified objective. Technically, since a
protocol’s objective could be to provide a specific service, all schemes can be called
protocols. For example, an encryption scheme can be considered a protocol in which
only one message is sent between two entities. In this thesis, however, we will make
a distinction and reserve the term protocol for interactions which achieve the class
of objectives introduced in Section 3.3. Moreover, schemes can be used as tools (or

primitives) within a protocol.

The security parameter, number of entities and nature of the communication and
computer system all affect efficiency. Given that the efficiency of schemes and proto-
cols is a principal factor shaping research in real world applications, it is important

to define relevant efficiency criteria.

Computational complexity: To measure the amount of computation, two com-
putational attributes are defined: computational overhead and the ability to

perform precomputation.

32

3.1 Efficiency

e Computational overhead: This property refers to the cost of all arithmetic
computations. Sometimes this is quantified in terms of time for specific
algorithms on specific processors. In most schemes and protocols in this
thesis, elliptic curve pairings are usually the dominant calculation. With
recent advances in efficient implementation of pairings [12, 74], however,
the complexity of a pairing computation is now of a similar order of mag-

nitude to that of an elliptic curve point multiplication.

e Precomputation: This property refers to the potential for entities to pre-
compute part of a protocol or scheme in their spare time. This precom-
putation, which is typically performed in an offline stage, may facilitate a

faster response in an online stage.

It may also be desirable that one or more entities (perhaps with limited compu-
tational environments) perform fewer computations than other entities (with

more powerful computational environments).

Communication complexity: It is an advantage when a protocol has low com-
munication overhead. Designing protocols with a minimal number of passes,
rounds and broadcasts is also usually advantageous. We now define these im-
portant communication criteria and discuss the relevant scenarios for using

rounds, broadcasts or passes.

e Communication overhead: This property measures the number of bits
transmitted by each participating entity. In many protocols or schemes,
keys are communicated. When keys are communicated, protocols and
schemes based on elliptic curves can have a low communication overhead.
This is because, for comparable cryptographic strength, the elliptic curve
key size (denoted Nec) grows only slightly faster than that of the cube root
of the corresponding conventional key size (denoted Ncy). More precisely,

with current algorithmic knowledge [25, §1.3],
Nec = BNy (log(Nen log 2))*/° (3.1)

_2(64/9)'/3 . L
where 3 = Toa 22 ~ 4.91. Equation 3.1 may not hold for elliptic curve

schemes which are pairing-based because they use special curves with ad-

33

3.1 Efficiency

ditional properties. Special curves and curves which have been proven in-
secure are usually avoided in traditional elliptic curve cryptography. Fur-
thermore, Coppersmith’s algorithm [55] which was originally described for
fields of characteristic two, may be generalised to fields with small char-
acteristic and the performance of the Function Field Sieve (FFS) [2, 91]
(designed for fields with small characteristic) is only well known for fields
of characteristic two. Note, however, that recently the first implementa-
tion of the FFS in characteristic three has been carried out by Granger et
al. in [80]. These algorithms may allow for better attacks on some curves
— recall Section 2.4.3. Hence, the size of the elliptic curve key for pairings

(denoted Npair—ec) is at least Nec for the same level of security.

e Passes: The number of passes is the total number of messages exchanged

in the protocol.

e Broadcast: A broadcast message is a message that is sent to every party

in a protocol.

e Rounds: A round consists of all the messages that can be sent and received
in parallel within one time unit (synchronised communication is assumed).
It is desirable to minimise the number of rounds so as to tolerate network

delays.

These notions of communication complexity are each more or less appropriate
depending on the particular network architecture that is used. For example,
wireless systems operate usually in broadcast mode, as do Ethernet systems in
non-switched environments. Therefore, in these systems every packet propag-
ates to (and is available to) all nodes. Thus, the number of rounds and broad-
casts are a more natural way of measuring a protocol’s communication com-
plexity for such systems. On the contrary, the Internet Protocol running over
a public network like the Internet is based on the concept of point-to-point

communication, where the number of passes is the right measure.

Storage complexity: This is primarily a measure of memory needed for storage
(for example, keys, certificates and algorithms) and working memory required

to run a cryptographic scheme or protocol. The notion of storage complexity

34

3.1 Efficiency

also extends to the memory required to store and run a scheme or a protocol’s
actual algorithms. Storage complexity can be difficult to quantify as it is

implementation dependent.

System complexity: We believe that the notions of communication, computa-
tional and storage complexities are insufficient to describe a scheme or a pro-
tocol. This is because in most circumstances, a cryptographic scheme or pro-

tocol does not exist in isolation.

Thus, we extend the scope of complexity by introducing the notion of system
complexity. Entities include servers, trusted authorities (TAs) and participat-
ing parties. Every protocol or scheme contains a set of algorithms. A set of
entities and algorithms form an integrated system. Thus, an integrated system

encapsulates the set of elements that collectively work as a unit.

We introduce this qualitative measure because it gathers some practical effi-
ciency characteristics of a scheme or a protocol. Some of these characteristics
are subtle, but cannot be taken for granted. System complexity captures the
way entities participate in schemes or protocols. Moreover, the relationships
between different schemes and protocols are also captured. We define the terms

flexibility, interactivity and interoperability next.

e Flexibility: This property relates to how an entity uses the algorithms of
a specific scheme or protocol. A flexible scheme or protocol is one which is
adaptable in deployment. This might be achieved by reducing the degree
of temporal ordering required for executing different algorithms within the
scheme or protocol. For example, a flexible scheme can render practical
efficiency gains in the system because processes such as registration need
not be performed in a particular order. This can create efficient applic-
ations which use novel cryptographic workflows. See Sections 3.2.5 and
4.6.3 for examples. A flexible protocol is one where the messages trans-
mitted in a protocol are independent of each other, in the sense that they
can be sent and received in any order. A protocol with this property is

labelled as a message independent protocol.

e Interactivity: This property relates to how the entities interact in a scheme

35

3.1 Efficiency

or protocol. The number of interacting entities, nature of entity inter-
action and number of interactions may be examined. Decreasing the in-
volvement of online servers and TAs usually reduces the number of rounds
when looking at the communication complexity of any algorithm. When
the scheme or protocol relies on less entities, it usually has less points of
failure. Thus, the instantiation of a low-interaction protocol or scheme
within the system makes it simpler and more fault tolerant. Additional
improvement in efficiency is achieved if the interaction does not require
an authentic or confidential channel to be set up. Further benefits occur
when the number of interactions is reduced. Non-interactive is a term in-
dicating that no interaction at all is required between entities. It is most
useful in describing certain types of encryption schemes and key distri-
bution schemes. If an encryption scheme is non-interactive, it does not
require an interaction with any entity prior to an encryption taking place.
Similarly, a non-interactive key distribution scheme does not require any
interaction between entities to set up a shared key. The reader is referred

to the survey in Section 3.6 for examples of such schemes.

e Interoperability: This property relates a protocol’s or a scheme’s interac-
tion with other protocols and schemes. The ability to share algorithms
and keys across multiple protocols and schemes is always desirable. This
generally allows the system to be optimised and decreases the system’s
inherent complexity and inefficiencies, for then not every algorithm or key
need to be set up independently. For example, code (algorithms) within
the system can be reused thereby reducing storage. Chapter 8 contain

examples of interoperable algorithms.

Of course, a flexible and low-interaction scheme or protocol which is interop-

erable is generally considered very desirable.

36

3.2 Public Key Cryptography

3.2 Public Key Cryptography

Cryptography is about the prevention and detection of malicious activities. The four
fundamental goals of cryptography are [114]: (i) confidentiality: keeps data secret
from all but those authorized to access it; (ii) data integrity: ensures data has not
been altered by unauthorized or unknown means; (iii) authentication: corroboration
of the identity of an entity — subdivided into two classes: entity authentication when
it relates to entities and data origin authentication when it relates to information
with corroboration of the identity (by definition this provides data integrity); (iv)

non-repudiation: prevents an entity from denying previous commitments or actions.

We distinguish between asymmetric and symmetric cryptography. Asymmetric cryp-
tography is often called public key cryptography (PKC). PKC involves two distinct
keys, K,up and K. The public key, K, can be widely distributed without com-
promising its corresponding private key, Ky i». In some systems, K., remains only
known to the entity that generated it, whilst in other systems K,,;, is given to an

user by another entity. We will return to this issue in Section 3.2.4.

Symmetric cryptography involves only secret keys. The secret key must remain
only known to the entities who use it. Block ciphers, stream ciphers, and message

authentication codes (MACs) are all examples of symmetric primitives.

Symmetric cryptography requires the secret keys to be securely distributed between
the entities. The distribution of secret keys requires prior communication of shared
secret keys or secure channels. In practice, for symmetric cryptography, a secure
channel is very difficult to achieve in the absence of an online TA which acts as either
a key distribution center (KDC) or a key translation center (KTC). More innovative
and effective ways of key management and achieving a wider set of cryptographic
goals can be obtained by using PKC. To use PKC in practice, a TA is required. This
TA is called a certification authority (CA) if certified public keys are used. The CA
need not be online. The focus of this thesis is on PKC and particular attention will

be paied to CAs in Section 3.2.3.

37

3.2 Public Key Cryptography

3.2.1 Cryptographic Primitives

Cryptographic primitives can be used when communicating in the presence of an
adversary. Modern cryptographic primitives are developed after defining security
through classifying possible attacks and modelling an adversary’s capabilities to
mount those attacks. A primitive’s security is then shown to be directly related
to the hardness of some well-defined and widely studied computational problem, like

the computational problems in Section 2.4.

The meaning of the term secure for public key encryption (PKE) and public key sig-
nature (PKS3!) schemes is the subject of Section 3.5. Next, we define PKE schemes
which provide confidentiality and PKS schemes which provide non-repudiation, data

integrity and data origin authentication.

3.2.1.1 Public Key Encryption

A PKE scheme, Ilpg, is usually specified by three algorithms; Key-Generation, Encrypt
and Decrypt. These three algorithms do not include an algorithm which only deals
with setting up of the scheme. Our definition of Ilpk includes a Setup algorithm to,
for example, explicitly define the groups in which we are operating. This separation
is useful in developing future concepts. For example, we construct schemes where
the description of the key generation algorithm can be altered without affecting
the system’s parameters — see Section 7.2. In many practical applications of PKE,
the output of the Setup algorithm is separated from the output of Key-Generation
algorithm. Hence, we specify IIpk by four algorithms: Setup, Key-Generation, Encrypt
and Decrypt, where:

Setup: is a probabilistic polynomial time algorithm, which takes as input a security

3-1This abbreviation can be avoided, since signature schemes are practically always assumed to be
in the public key cryptography setting. However we use it for consistency, since the abbreviation
PKE is in use.

38

3.2 Public Key Cryptography

parameter k and returns system-wide parameters ‘params’. The finite message (or
plaintext) space, M and finite ciphertext space, C are included in params. Both M
and C are defined by the security parameter k.

Key-Generation (K): is a probabilistic polynomial time algorithm, which takes as
input params and returns two keys; a public key K, and a private key K,.;,. We

write (Kpriv, Kpup) < KC(params).

Encrypt (£): is a probabilistic polynomial time algorithm, which takes as input a
message M € M, params, and the public key K,,;. It returns a ciphertext C' € C.
When clear, we write C' < (M, K,p) as shorthand. We do not include params as

input to simplify presentation.

Decrypt (D): is a polynomial time algorithm, which takes as input a ciphertext
C € C, params, and a private key K,.;,. It returns a message M € M or a message
1 indicating an invalid ciphertext C. When clear, we write M «— D(C, Kpiv), as

before, we do not include params as input to simplify presentation.

The output M should result from applying algorithm D with inputs k¥ and K,;, on a
ciphertext C' generated by using algorithm &£ with inputs k and K, on message M.
We say that a PKE scheme is sound if M is the output of D(E(M, Kpup), Kpriv) for
all (Kpriv, Kpup) < K(params). Algorithm &£ is probabilistic to avoid an undesirable
property where the output of the encryption scheme does not change for a fixed
message input. With this property, the scheme cannot acheive semantic security — see
Section 3.5. Algorithm D is usually deterministic, although, probabilistic decryption

algorithms also exist.

3.2.1.2 Signature

A PKS scheme is specified by four algorithms: Setup, Key-Generation, Sign and Verify,

where:

39

3.2 Public Key Cryptography

Setup: is a probabilistic polynomial time algorithm, which takes as input a security
parameter k and returns system-wide parameters ‘params’. The finite message space,
M and finite signature space, S are included in params. Both M and S are defined

by the security parameter k.

Key-Generation (K): is a probabilistic polynomial time algorithm, which takes as
input params and returns two keys; a verification key K,,; and a signing key Kiy.

We write (Kpriv, Kpup) < K(params).

Sign (X): is a probabilistic polynomial time algorithm which takes as inputs params,
a message M € M to be signed and a signing key Kp;,. It outputs a signature
Sig € S. When clear, we write Sig < X(M, Kpip) to simplify presentation, as

before, we omit params.

Verify (V): is a polynomial time algorithm which takes as inputs params, a message
M € M and verification key K, and Sig € S as the signature to be verified. It

returns valid or invalid. When clear, we write {valid, invalid} « V(M, Sig, Kpup).

The output valid should result from applying algorithm V with inputs & and K,,; on a
signature Sig generated by using algorithm ¥ with inputs k& and K,,;, on message M.
We say that the PKS scheme is sound if valid is the output of V(M, X(M, Kppiv), Kpus)
for all (Kpriv, Kpup) < K(params). This definition does not encapsulate all types of
digital signatures, such as for example, digital signatures with message recovery.
Algorithm V can be probabilistic, in which case it should output valid or invalid for

valid or invalid signatures with high probabilities.

3.2.2 The Lack of Authenticity

Figure 3.1 illustrates how a PKE scheme adversary, who is between an encryptor B
of a ciphertext, and its decryptor A, can impersonate a honest decryptor A. The

adversary achieves this, by replacing A’s public key K, with a false public key

40

3.2 Public Key Cryptography

/ _Kp_“_b_ ---K
M pub U]
‘ e/
/ K. ...
— Y C priv
€y, (M) = C" |-
C
- (4)- - DKpri'u (C) = M
Entity B Adversary Entity A

Figure 3.1: A PKE adversary impersonating entity A to B.

;;ub’ which is then acquired by B. Similar impersonation settings exist between the

signer and verifier in signature schemes.

The following question arises from the need to prevent these kinds of attacks: how
does B know (that is, authenticate) which particular public key is A’s? To an-
swer this question data origin authentication is required. Authenticating public keys
means providing assurance (through supportive evidence) to the entity which re-
ceives a public key of the entity’s identity to which the public key refers. Many data
origin authentication methods exist; the usual method for providing authentication
of public keys is by using certificates. An alternative method of providing this au-
thentication is achieved by using identity-based public key cryptography (ID-PKC).
Next, an explanation of both methods is provided in Sections 3.2.3 and 3.2.4.

3.2.3 PKC with Authenticity of Public Keys from Certificates

The usual way to guarantee the identity and/or identifiers (for example, age, sex or
address of the entity) of the public key holder is based on a CA. The CA’s digital
signature binds entity A’s identity and/or identifier ID 4 to the corresponding public
key, for generality, ID 4 will henceforth only be called an identifier. The CA’s signa-
ture, when sent along with the identifier and public key, forms a digital certificate

which can be verified by any entity in possession of the CA’s public key. This certi-

41

3.2 Public Key Cryptography

ficate provides a binding, assured by the CA, between the identifier and the public
key. Digital certificates can contain further information, such as cryptographic al-
gorithms to be used in conjunction with the public key in the certificate. The most
widely adopted certificate format is the X.509 standard [149]; it specifies the other
fields included (and bound into the certificate by the CA) in the certificates. The
CA is the crucial entity for supporting digital certificates in a traditional public key
infrastructure (PKI). A PKI is a security infrastructure whose services are imple-
mented to deploy and manage the use of public key cryptography. Basic elements
which make up a PKI include services, technology, processes and policies. For a more
comprehensive description of PKI consult [1]. A basic certificate issued by a CA for

entity A is of the form:

CeI‘tA = (IDA ”Kpub,AHE(IDA”Kpub,Av Kpriv,CA))'

Here, (-, Kpriv,ca) denotes the CA’s signature. Entity A’s public key is Kpup,a-

Even though we can achieve secure (that is, confidential and authentic) communic-
ation using PKE and PKS schemes alone, asymmetric key agreement protocols play
a very important role in PKC and modern applications. This is because the ses-
sion keys produced by key agreement protocols can be used in symmetric encryption
schemes. The latter are generally more efficient than PKE schemes. Furthermore, it
is an advantage to have a unique shared session key, because if it is compromised, it
does not necessarily affect the security of long term keys. A compromise is more likely
for session keys because they are exposed to various applications and machines. The
long term key remains safe since it is usually securely stored and accessed through a
special interface. Furthermore, the compromise of a session key does not necessarily
affect the security of other session keys. In Section 3.3 we discuss some key agreement
protocols, and in Section 3.4 we study the properties of key agreement protocols in

more detail.

42

3.2 Public Key Cryptography

3.2.3.1 An Example: A Version of the ElGamal PKE Scheme with Authenticity
of Public Keys from Certificates

Here we will build on the original ElGamal PKE scheme [68], whose security is based
on the CDHP. The group used in the original ElGamal scheme is G = Z;, but we
present a scheme in the context of an arbitrary abelian group, G, which may be
derived from an elliptic curve. Additionally, we will be presenting the scheme in
a standard certificate setting and will be using a hash function, denoted Hs. This
non-standard example will familiarise the reader with a building block for the scheme

in Chapter 5 and will make concrete some PKE concepts.

The PKE scheme with a certified public key is constructed using four algorithms:
Setup, Key-Generation, Encrypt and Decrypt. The functions for all four algorithms

are described below.

Setup: This algorithm has input k& and runs as follows: (i) generate output G, and
additive group of some large prime order ¢; (i7) choose an arbitrary generator P € G;
(4ii) select a CA-key sca uniformly at random from Zj and set Poa = scaP; (iv)
choose a cryptographic hash function Hs : G — {0,1}". Here n will be the bit-length

of plaintexts. Properties of cryptographic hash functions are covered in Section 3.5.1.

The system parameters params define the collection of publicly known parameters
which are specific to a cryptographic scheme. For this scheme the system paramet-
ers are params = (G, n, P, Pca, Hs). Included in the parameters for this certificate
setting is Poa, where the CA-key is sca € Zj. For the time being, we simply assume
that params is authentically available to all parties, later on we will indicate how.

The message space is M = {0,1}" and the ciphertext space is C = G x {0, 1}".

Key-Generation: For entity A, this algorithm runs as follows: (i) Choose a random
x € Zy; (ii) set the private key to be Kprpya = z; (i) set the public key to be

Kpub,A =Py =zP € G".

43

3.2 Public Key Cryptography

Note that to use a standard certificate-based PKE scheme, entity A must now be is-
sued a certificate which has to be acquired and verified by entity B before encryption.
This is an integral part of any standard certificate-based scheme. The certificate for

this scheme will shown in detail later.

Encrypt (£): To encrypt M € M for entity A with public key Py € G*, perform
the following steps: (i) choose a random value 7 € Z; (#i) compute and output the
ciphertext: C' = (rP, M & Hs(rPa)).

Decrypt (D): Suppose C = (U, V) € C. To decrypt this ciphertext using the private
key Kpriv, 4, compute and output: V & Hs(zU).

It is easy to see that if C' = (U = rP,V) is equal to E(M, Py), then D(C,z) = M.
The security of this scheme will be discussed in Chapter 5.

Before using the encryption algorithm entity A must register and be granted by the
CA a certificate of the form:

Certy = IDAHPAHE(IDA”PA, SCA)-

This certificate is granted once the CA checks that entity A knows the private key of
P4 or checks that A is the legitimate owner of the P4. We assume that all entities
have an authentic copy of Pca, for example, a root CA is embedded in their system.
Either certification hierarchies (for example, certificate chains) or cross certificates
may be used in practice to facilitate interoperability. This is so that certificates
issued by one CA can be verified by entities certified by other CAs. For a detailed
discussion on certification topologies and certificate trust models see [114, §13.6] or
[1, Chap.9]. Entity B will acquire Cert4 from either entity A or a public directory.
The certificate Cert4 is then used in order to verify the authenticity of the public
key P4. The verification algorithm run by entity B is of the form V(Certa, Pca).
Entity B uses P4 for encryption only if the output of V(Cert 4, Pca) is valid.

44

3.2 Public Key Cryptography

3.2.4 Identity-based PKC

Shamir [135] was the first to show that the authenticity problem in public key cryp-
tography can be solved without the use of certification. The concept was named
identity-based public key cryptography (ID-PKC) by Shamir and has subsequently
also became known as identifier-based public key cryptography in some circles. In
ID-PKC, entity A’s public key Kp,; is not delivered to entity B. This eliminates
the attack presented in Figure 3.1. Rather in ID-PKC entity B encrypts a message
for entity A or verifies a signature from entity A using a public key which is derived
from only entity A’s identifier ID4 € {0, 1}*. The TA has a new role in ID-PKC, and
is renamed the Private Key Generator (PKG) to reflect this. The role of the PKG is
to issue the private key corresponding to the public key (derived from the identifier
ID4) to entity A. This issuing only occurs after entity A is authenticated by the
PKG. To generate private keys the PKG makes use of a master-key which must be
kept secret. The requirement to have an authentic CA public key is replaced by the
requirement to have authentic PKG parameters. Notice that both the PKG and the
entity know the private key.

In his 1984 paper [135], Shamir was only able to construct a concrete identifier-based
public key signature (ID-PKS) scheme. Developing a concrete satisfactory identifier-
based public key encryption (ID-PKE) scheme remained an open problem. Of note
were the solutions designed to solve this problem which required: tamper resistant
hardware [57]; non-colluding users [145]; a public directory [121]; high computation
complexity for each encryption [146]; very high computation cost by the PKG for
each private key generation [86, 111].

The year 2001 witnessed the publication of two different ID-PKE schemes. An ID-
PKE scheme was put forward by Cocks [54]%2. The security of Cock’s scheme is based
on the Quadratic Residuosity problem. Providentially, the Quadratic Residuosity
problem is a well studied number theoretic problem. Due to message expansion,

however, the scheme has a high communication overhead. Another ID-PKE scheme

32Cocks’ ID-PKE scheme in [54] is said to have been discovered four years earlier.

45

3.2 Public Key Cryptography

was proposed by Boneh and Franklin [32]. The Boneh-Franklin encryption scheme
(abbreviated to BF ID-PKE scheme) used the pairing techniques described in Section

2.3 and is very efficient. This scheme is described next.

3.2.4.1 An Example: The BF ID-PKE Scheme

The BF ID-PKE scheme was the first fully practical and secure ID-PKE scheme. It
has much in common with the version of the ElGamal encryption scheme in Sec-
tion 3.2.3.1. The security of BF ID-PKE [32] was proven by Boneh and Franklin
to be based on the hardness of the BDHP. The scheme is constructed using four al-
gorithms: Setup, Extract, Encrypt and Decrypt. The functions for all four algorithms

are described in [32]. Here, we will provide a basic exposition of the scheme.

Setup: This algorithm runs as follows: (i) run ZG on input k to generate output
(G1, Gy, é) as described in Section 2.3; (ii) choose an arbitrary generator P € Gy;
(4ii) select a master-key s uniformly at random from Zj and set Py = sP; (iv) choose
cryptographic hash functions H; : {0,1}* — G} and Hsy : G2 — {0,1}". Here, n is
the bit-length of plaintexts.

The system parameters are params= (Gi,Go, é,n, P, Py, Hi, Hy). The master-key
is s € Z;. The message space is M = {0,1}" and the ciphertext space is C =
G1 x {0, 1}”.

To use the scheme, entity B creates entity A’s public key from A’s identifier 1D 4.
This is done by computing H;(ID4) € G} as we will see in the encryption algorithm

next.

Encrypt (£): To encrypt M € M for entity A with identifier ID4 € {0,1}*, perform
the following steps: (i) compute Q4 = Hi(ID4) € G7; (ii) choose a random value
T € Zy; (14i) compute and output the ciphertext: C' = (rP, M & H2(é(Qa, P)"))-

46

3.2 Public Key Cryptography

The group element Q4 when used with params is the public key K, for user A in
this scheme. For entity A to decrypt the ciphertext C, it first needs to obtain his
private key from the PKG. The PKG uses the algorithm Extract, described next, to

generate A’s private key.

Extract: For ID4 € {0,1}* this algorithm runs as follows: (i) compute Q4 =
H,(ID4) € G7; (i7) set private key to be da = sQ 4.

Decrypt (D): Suppose C' = (U, V) € C. To decrypt this ciphertext using the private
key da, compute and output: V & Hs(é(da,U)).

The value é(Qa, FPy)" used in encryption is the same as the value é(d4,U) used in

encryption since, using bilinearity,
é(Qa, Py)" =¢é(Qa,sP) =¢é(Qa,P)” =é(sQa,rP) = é(da,U).

Therefore, if C = (U = rP,V) is output by £(M,Q4) for entity A then D(C,d4)
outputs M.

The above ID-PKE scheme is labelled Basicldent in [32] and is used as a building
block for a more complicated scheme which is labelled Fullldent in [32]. The scheme
Fullldent is the scheme used in practice because it is proven secure in a stronger model.
We will be compare ID-PKC to standard certificate-based PKC (and certificateless
PKC) and discuss properties of ID-PKC such as the PKG key escrowing capabilities
in Chapter 4.

3.2.5 Cryptographic Workflow

ID-PKC schemes enjoy the property that an entity’s private key can be determined
after its public key has been generated and used. This is a useful feature. An entity
B can encrypt a message for A using A’s identifier string, 1D 4, of B’s choice. This

identifier should contain A’s identity, but might also contain conditions (attributes

47

3.2 Public Key Cryptography

or actions) that A must satisfy before the PKG will deliver the corresponding private
key.

This condition, for example, could be that A has a valid driver’s licence. The encryp-
ted message then could be A’s new insurance document. In this way, B can create a
cryptographic workflow that A must carry out before being able to access some piece
of information (for example, the insurance document). The cryptographic workflow
is a sequence of operations (for example, authentications) that need to be performed
by an entity in order to achieve a certain goal®3. This kind of application cannot be
easily supported using traditional certificate-based systems, as the temporal ordering
of private key before public key and public key before certificate (which needs to be

distributed) are fixed in those systems.

Forcing A to visit multiple TAs [49], or combining sets of private keys to satisfy a
set of conditions using a single TA [143], are innovative applications of ID-PKC’s
cryptographic workflow. In the following, we will show a simple application of the
workflow concept which does not use the more sophisticated techniques introduced

in [49, 143]. These later techniques are discussed further in the survey in Section 3.6.

3.25.1 An Example Use of an ID-PKE Scheme

In the scenario below we will exploit the cryptographic workflow property of ID-PKE

schemes.

Problem: Entity B, who is a software merchant (for example, company.com), wants
a simple solution for distributing the serial-number of the company’s software to a
customer A. Entity B wants to keep the serial-number confidential, that is, entity B

intends to mitigate its liability and risk of serial-number exposure. Furthermore, B

330ther published examples using ID-PKC’s flexibility can be found in [32, §1.1.2] (that is, delega-
tion of decryption keys) and [49, 143]. Furthermore, HP Laboratories’ Trusted Systems Lab recently
provided demonstrations using ID-PKE of data tagging (a way of securing data which is independent
of software, where tags reflect policies) and role-based/time-based/group-based encryption.

48

3.3 Cryptographic Key Agreement Protocols

wants to allow entities without credit cards to purchase and access the serial-number
in an online fashion. This is so the serial-number needed to run the software is

obtained as soon as payment is made.

Solution: Using an ID-PKE scheme, B simply encrypts the serial-number with the
customer’s identifier containing the condition that the customer pays amount $X into
B’s account. That is, the identifier is set to ‘ID 4||paid B $X’. The PKG (for example,
a bank that is prepared to accept payments from A for B), will only provide A with
the private key matching the above identifier d4 once A has provided evidence of
being entity A and the transaction (or receipt of the transaction) has gone through.

The private key is used to decrypt the ciphertext containing the serial-number.

Analysis: The ID-PKE scheme allows the temporal ordering of algorithms to be
changed. This is used to realise a cryptographic workflow with two conditions to be
satisfied: an activity; forcing A to perform a $X transaction, and an attribute; A is
who he claims to be. Entity B tailors a workflow for A to follow and the PKG acts

as the workflow enforcer.

3.3 Cryptographic Key Agreement Protocols

Before presenting some key agreement protocols, which will be commonly referred
to in thesis, we further explore the concept of protocols provided in Section 3.1, and

specifically key agreement protocols as described in [114, Chap.12.2].

The class of protocols whereby a shared secret becomes available to two or more
parties for subsequent cryptographic use are known as key establishment protocols.
Key establishment is further subdivided into key transport and key agreement. In
key transport, one party creates or obtains a secret value and securely transfers it
to the other parties. For example, the PKG in the ID-PKE scheme presented in
Section 3.2.4.1 acts as a key transport agent, securely transporting the private key

da to entity A. Key transport is not considered here in any more detail.

49

3.3 Cryptographic Key Agreement Protocols

Definition 3.1 ([114]) A key agreement protocol is a key establishment technique in
which a shared secret is derived by two (or more) parties as a function of information
contributed by, or associated with, each of the parties, (ideally) such that no party

can pre-compute the resulting value.

3.3.1 General Attack Classifications

An attack occurs when the intended goals of a protocol are not met or the desired
security attributes do not hold. A passive attack occurs when an adversary can
prevent the protocol from accomplishing its goals by simply observing the protocol
runs. In contrast, an active attack is one in which the adversary may delete, inject,
alter or redirect messages, or interleave multiple instantiations of the same protocol
and the like.

Next, both the original Diffie-Hellman Protocol [58] and a simplified version of Joux’s
protocol [90] are presented. The goal of these protocols is to provide good keys. This
goal states that the key is selected uniformly at random from the key space, so
that no adversary has an information-theoretic advantage when mounting a guessing

strategy to determine the key.

3.3.2 The Diffie-Hellman Protocol

Diffie and Hellman [58] revolutionised cryptography by introducing the first key
agreement protocol not based on shared secrets. In this section, we consider the

original Diffie-Hellman protocol.

Let k be a security parameter that determines the size of a large prime p, and in
what follows, g denotes a generator of Z;. In the Diffie-Hellman protocol, we assume
that entities A and B share the common values g and p (embedded in the system or

acquired via some other mechanism). Then integers a and b, where 1 < a,b < p—2,

50

3.3 Cryptographic Key Agreement Protocols

are selected uniformly at random by entities A and B respectively. The ordering
of protocol messages is irrelevant and either entity can initiate the protocol. The
message flows are given in Figure 3.2. We choose to present the original variant
of this protocol because we will be using it as a building block for the protocols in

Section 9.1.2.1 and Section 9.8.2.

Protocol Messages

1. A—B: ¢g“modp
2. B—A: ¢®modp

Figure 3.2: The Diffie-Hellman protocol.

Protocol description: Entity B computes Kp = (¢%)® mod p after obtaining mes-
sage 1 in Figure 3.2 and A computes K4 = (¢”)* mod p once the communication in
Figure 3.2 is complete. The values of K 4 and K are both equal to K 45 = g% mod p.
This can serve as the secret key shared by A and B. The values a and b should be
deleted at the end of the protocol run.

The protocol’s achievement of agreeing a good key in the face of passive adversaries
could be related to the hardness of either the CDHP or the DDHP in Zj, depending
whether a hash function (modelled as a random oracle — see Section 3.5.2) is used
to derive a key or not. To make this claim concrete requires the development of an

appropriate security model, such models are the topic of Chapter 9.

The Diffie-Hellman protocol can be extended to three parties. For three parties it
takes two rounds and six broadcasts to establish a key. The first three message
broadcasts are transmitted in the first round and the rest of the protocol broadcasts
are transmitted in the next round. As in the two party case, we assume all parti-
cipants here agree on suitable parameters g and p in advance. The message flows of

this protocol are given in Figure 3.3.

o1

3.3 Cryptographic Key Agreement Protocols

Protocol Messages

A— B,C: g¢g*modp
B— A,C: ¢®modp
C— A B: ¢g°modp
A— B,C: ¢"mod p||g° mod p
B — A,C: ¢® mod pHng mod p
C — A,B: ¢%mod p|¢g* mod p

S O Lo e =

Figure 3.3: A three party Diffie-Hellman protocol.

Protocol description: After the first three broadcasts of Figure 3.3, entity A
computes (g*)* mod p and (¢¢)® mod p, B computes (g%)® mod p and (¢¢)® mod p
and C' computes (g*)° mod p and (g*)° mod p. Once the protocol in Figure 3.3 is
complete K 4, Kp and K¢ are computed by A, B and C respectively where K4, Kp
and K¢ are all equal to Kapc = ¢®° mod p. This value can serve as the secret key
shared by A, B and C. The values a, b and ¢ should be deleted at the end of the

protocol run.

3.3.3 Joux's Protocol

Joux [90] introduced a very simple and elegant one-round protocol in which the
secret session key for three parties could be created in a single round using three
broadcasts. Joux’s protocol simplifies the Diffie-Hellman protocol extension shown
in Figure 3.3 and is used to establish a shared secret key with minimal communication
complexity. The protocol makes use of pairings on elliptic curves and requires each
entity to transmit only a single broadcast message containing some public value.
This should be contrasted with the obvious extension of the Diffie-Hellman protocol

to three parties in Figure 3.3, which requires six rounds and six broadcasts.

52

3.3 Cryptographic Key Agreement Protocols

We assume that A, B and C' share the common values (G1, Gg, €), which are determ-
ined by the security parameter k. In Joux’s protocol, P is the generator of the group
G of prime order g as specified in Section 2.3 and a, b, ¢ € Zj are selected uniformly
at random by A, B and C respectively. As in the Diffie-Hellman protocol in Figure
3.2, the ordering of protocol messages is irrelevant and any of the three entities can

initiate the protocol. The message flows are given in Figure 3.4.

Protocol Messages

1. A—B,C: aP
2. B—AC: bP
3. C—AB: cP

Figure 3.4: Joux’s one round protocol.

Protocol description: Once the communication in Figure 3.4 is complete, A com-
putes K4 = é(bP,cP)%, B computes Kp = é(aP,cP)’ and C' computes Ko =
é(aP,bP)°. By bilinearity of ¢, K4 Kp and K¢ are all equal to K pc = é(P, P)®°.
This can serve as the secret key shared by A, B and C.

Although not explicitly mentioned in [90], the success of this protocol in achieving
its aim of agreeing a good key for the three entities in the face of passive adversaries
can be related to the hardness of either the BDHP or the DBHDP. As is the case
with the two party Diffie-Hellman protocol, depending on how the key is derived the

protocol relies on either the computational or decisional problem.
The reader will notice that our version of Joux’s protocol is simpler than the original.
It uses a modified pairing which allows us to avoid sending two points per participant.

This modification of Joux’s protocol was first performed by Verheul [147, §5.1].

Returning to encryption schemes, the ElGamal encryption scheme [68] can be viewed

53

3.3 Cryptographic Key Agreement Protocols

as a Diffie-Hellman protocol [58] in key transfer mode [114]. A more complicated
informal argument illustrates why compromising the basic BF ID-PKE scheme is
related to compromising Joux’s protocol [90]. This informal argument forms the
basis for a formal proof of security. The argument can be understood by considering
an instance of Joux’s protocol in which the three public values exchanged by A,
B and C are sP, rP and Q4 = &P respectively, and the session key agreed is
Kapc = é(P, P)*™*. Here, we can think of entity A as the decryptor, entity B as
the encryptor and entity C' as the trusted PKG. To obtain the Boneh and Franklin
encryption of message M, the session key Kapc is input to a hash function and
the result is XORed with M. In order to decrypt M, the problem an attacker
needs to solve is: given (P,rP,sP, ¢(P) determine Kapc = é(P,P)S*. This is an
instance of the BDHP. Thus, supposing the BDHP is hard, to determine é(P, P)&"*
either r, s or £ must be known. The PKG, with the knowledge of s, can compute
Ko = é((P,rP)® = Kapc. Entity B, with the knowledge of r, computes Kp =
é(EP,sP)" = Kypc during encryption. For decryption, entity A cannot compute
Kapc on its own. This is because £ is unknown to all entities because of the way it
is computed by hashing ID 4; obtaining & from &P is equivalent to solving the DLP
in Gy. The PKG, however, furnishes A with dg = s£P. Notice that d4 contains
both s and £. Hence, A unlike in Joux’s protocol (which uses one private value and
two public values) computes K 4pc using one private value, s¢ P (A’s private key),
and one public value, P, by computing K4 = é(s{(P,rP) = Kspc. Compromising
da = sQa = s&P compromises only entity A’s private key because every entity has

a unique £ based on its identifier ID.

3.3.3.1 Bit Security

More properly, in Joux’s protocol the session key should be derived by applying a
suitable key derivation function. The key derivation function, denoted KDF, should
be used on the quantity é(P, P)*°, thus, Kopc = KDF(é(P, P)®°). For otherwise,
an attacker might be able to get partial information about session keys even if the

BDHP is hard. Note that knowing some bits of é(P, P)?¢ does not necessarily

54

3.3 Cryptographic Key Agreement Protocols

enable the attacker to find é(P, P)®¢ completely, so we have not contradicted the
BDH assumption.

Bit security results of [75] suggest that a KDF for Joux’s protocol can be constructed
by taking the most significant bits of the trace of é(P, P)®¢. The resulting key is no
less secure than using all the bits of é(P, P)? as the key. One might also consider
using a one way function such as a hash function (defined in Section 3.5.1) as the
KDF. The disadvantage of using hash functions, compared to using the trace, is that
hash functions are generally less efficient and it is harder to establish security. A
similar argument encouraging the use of a key derivation function can be made for

the Diffie-Hellman protocol. For examples of key derivation functions see [9, 87].

3.3.3.2 Man-in-the-Middle Attacks

Unfortunately, just like the unauthenticated two-party Diffie-Hellman protocol, Joux’s
protocol is only secure in the face of a passive adversary. In many practical applica-

tions, this does not model well the capabilities of a real world adversary.

In a more realistic model, the adversary is active, making both the Diffie-Hellman
protocol and Joux’s protocol susceptible to powerful impersonation attacks, similar
to those presented in Figure 3.1. This is a textbook man-in-the-middle attack on
protocols which do not have a mechanism to authenticate their users. The attack
allows an adversary to masquerade as any entity to any other entity in the network

since it is assumed that all the network traffic goes via the adversary.

Here we present a man-in-the-middle attack on Joux’s protocol. For protocols, let
E denote an adversary who replaces the public values from A to B and B to A with
a'P,b'P € Gy. Here ',V € Z; are chosen by E. In what follows, E4 indicates that
F is impersonating A by sending or receiving messages intended for or originating

from A.

55

3.4 Authenticated Key Agreement Protocol Goals and Attributes

1. Entity A sends aP to Epc.

2. The adversary E,4 initiates a run of Joux’s protocol by sending @’ P to B and

C.
3. Entity B sends bP to F4 and C; C sends c¢P to F4 and B.

4. The adversary Ep forwards b'P instead of bP to A and E¢ simply forwards
cP to A.

Entities B and C' (following the protocol) compute Kg,pc = é(P, P)@'b Entity A
(following the protocol) computes a key Kap,c = é(P, P)@c_ Since E can compute
Kap,c and Kg,pc, E can read all the traffic and can masquerade as any of A, B or
C to the other two entities, that is, £/ can also impersonate C' to A. Impersonations
are performed by simply decrypting/re-encrypting (to and from A), deleting, re-
placing, decrypting/re-encrypting (to and from C') and/or injecting (by encrypting)

messages.

Solutions to this problem for the Diffie-Hellman protocol are well known. In Chapter
9 we consider how the security of Joux’s protocol can be enhanced to prevent man-
in-the-middle and other types of attacks. In preparation for this, we next provide

definitions of protocol goals and protocol attributes.

3.4 Authenticated Key Agreement Protocol Goals and Attributes

Here we discuss the various security attributes and goals for key agreement protocols.
A security goal is an essential property that a protocol should possess. Every protocol
should be designed with specific security goals in mind. Based on application, how-
ever, the importance of a security attribute spans from an essential requirement on
par with a security goal, to a dispensable property, inessential for the key agreement

protocol to possess.

56

3.4 Authenticated Key Agreement Protocol Goals and Attributes

3.4.1 Extensional Security Goals

An extensional goal [37, 129] for a protocol is defined to be a design goal that is
independent of the protocol details. Below, three desirable and widely-agreed ex-
tensional goals for key agreement protocols are listed. A further discussion of these
can be found in [114, Chapter 12]. The first goal we try to achieve is implicit key
authentication. This goal, if met, assures an entity that only the intended other
entities can compute a particular key. This level of authentication results in what is
known as an authenticated key agreement (AK) protocol. Explicit key authentication
is the second desirable goal. This goal is met if each entity is also assured that the
intended other entities have actually computed the key. The resulting protocol is
called an authenticated key agreement with confirmation (AKC) protocol. The final

goal is that the protocol provides a good key as we described in Section 3.3.1.

In the context of public key cryptography, short-term public values are generally only
used once to establish a session and are sometimes called ephemeral keys. Conversely,
long-term public keys are static keys used primarily to authenticate the protocol’s

participants.

3.4.2 Security Attributes

A number of desirable security attributes have been identified for key agreement
protocols [26, 27, 99] and our definitions are borrowed from these sources. Depending

on the application scenario, these attributes can be vital in excluding realistic attacks.

Known session key security: A protocol is known session key secure if it still
achieves its goals in the face of an adversary who has learnt some previous

session keys.

(Perfect) forward secrecy: A protocol enjoys forward secrecy if, when the long-

term private keys of one or more entities are compromised, the secrecy of

57

3.4 Authenticated Key Agreement Protocol Goals and Attributes

previous session keys remains unaffected. Perfect forward secrecy refers to the
scenario when the long term private keys of all the participating entities are

compromised.

No key-compromise impersonation: Suppose A’s long-term private key is dis-
closed. Then of course an adversary can impersonate A in any protocol in which
A is identified by this key. We say that a protocol resists key-compromise im-
personation when this loss does not enable an adversary to impersonate other

entities to A as well and obtain the session key.

No unknown key-share: In an unknown key-share attack, an adversary convinces
a group of entities that they share a key with the adversary, whereas in fact,
the key is shared between the group and another party. This situation can be
exploited in a number of ways by the adversary when the key is subsequently

used to provide encryption or integrity [93].

No key control: It should not be possible for any of the participants (or an ad-
versary) to force the session key to a preselected value or predict the value
of the session key. For a discussion of how protocol participants can partially
force the values of keys to particular values and how to prevent this using

commitments at the expense of extra protocol rounds see Mitchell et al. [115].

Some of the properties presented here are formalised in the context of security models

to be presented in Section 9.3.

3.4.3 Further Attributes

It is desirable to reduce the computational, communicational, storage and system
complexities of any protocol. As will become evident from our examination of Joux’s
protocol in Chapter 9, communication advantages that a protocol apparently pos-
sesses can disappear when one considers either a different network architecture or

more stringent security requirements. Additionally, timestamps although a crucial

58

3.5 Provable Security Basics

part of a PKI for documentation and legal use [3, 40, 88], can in certain circumstances
be undesirable in authentication protocols due to their implementation difficulties.
Essentially the difficulties arise due to complexity in synchronisation and the in-
appropriateness of ‘relative’ time in a multi-clock setting, see [59, 125] for further

details.

A protocol is role symmetric when messages transmitted and computations per-

formed by all the entities have the same structure.

3.5 Provable Security Basics

By examining indistinguishability and semantic security, Goldwasser and Micali [79]
introduced the provable security paradigm. Instead of using an information theoretic
framework, provable security is based on complexity theory. This is because modern
cryptography assumes that the adversary attacking the cryptographic scheme or
protocol is furnished with limited resources. Theoreticians and standards bodies
now view a ‘provably secure’ scheme very favourably; some consider it a crucial

attribute for any scheme.

To bound the adversary’s resources, semantic security makes use of security para-
meters, as introduced in Section 2.4. The adversary is modelled as an algorithm,
interacting with a challenger and/or oracles simulating participants in the system.
The schemes that are labelled as secure are only secure with respect to all polynomial

time (in security parameter k) adversaries.

An outline of the process that is followed in order to obtain a proof of security for
a scheme or protocol, is as follows: (i) Provide a formal definition the goal(s) of the
scheme or protocol. (ii) Provide a formal adversarial model (the access model). (i)
Define what it means for the scheme or protocol to be secure (the attack goal(s) it
should withstand). For examples of this see Section 3.5.3. (iv) Provide a proof of

security for the scheme or protocol by ‘reducing’ to a known hard computational

59

3.5 Provable Security Basics

problem. This reduction is explained in what follows.

The reduction shows that the adversary can be transformed to an algorithm that
solves a computational problem that is known to be hard. It does so by simulating
the adversary’s attack environment. The success probability of solving the hard
computational problem can be related to that of the adversary. The very assumption
that the computational problem is hard (in the sense of there being no polynomial
time algorithm in k& which can solve it) shows that no adversaries with non-negligible

probability of success can exist.

The security proofs in this thesis require the hash functions used in our schemes
and protocols to be instantiated by random oracles. First formulated by Bellare and
Rogaway [21], this approach allows for the scheme or protocol to be provably secure
in the random oracle model. To understand the origins of this model we next turn

to hash functions.

3.5.1 Cryptographic Hash Functions

Cryptographic hash functions are functions which have many uses in cryptography.
Hash functions can play an important role in implementing and/or proving the se-

curity of PKS schemes, PKE schemes and key agreement protocols.

A hash function H is an efficiently computable algorithm that maps an input = of
arbitrary finite bitlength, to an output H(x) of fixed bitlength n. We next list the
properties of a Collision Resistant Hash Function (CRHF), H, with inputs z, 2’ and

outputs y, ¥ in the same manner which is described in [114, §9.2.2]:

1. preimage resistance: for essentially all pre-specified outputs, it is computation-
ally infeasible to find any input which hashes to that output, i.e., to find any
preimage =’ such that H(z') = y when given any y for which a corresponding

input is not known.

60

3.5 Provable Security Basics

2. 2nd-preimage resistance: it is computationally infeasible to find any second
input which has the same output as any specified input, i.e., given z, to find a
2nd-preimage ' # x such that H(x) = H(2').

3. collision resistance: it is computationally infeasible to find any two distinct
inputs x, 2’ which hash to the same output, i.e., such that H(xz) = H(x').
(Note that here there is free choice of both inputs.)

A CRHEF is also sometimes called a strong one way hash function. If the last condition
is not satisfied, the hash function is considered a weak one-way hash function or a
One-Way Hash Function (OWHF). The above description of hash functions although
informal suffices for this thesis. This is because we would not be using the above
definition of a hash function directly in our security proofs, we will return to this topic
in the next section. For relations and separations between formal definitions from a
provable-security viewpoint see Rogaway and Shrimpton [128]. For a brief survey of

the publications which discuss hash function security-notions see [128, Appendix A].

A cryptographic hash function H : X — Z is usually designed to act as a compression
function, mapping elements in X = {0,1}* to elements in Z = {0,1}". The hash
function can also be designed to map elements of one group to elements of another
group. In practice, however, mapping between groups is difficult and may require
mapping to some intermediate set and using some deterministic encoding operations
to map to and from the groups. Such a construction was shown for a hash function

mapping the set of binary strings {0,1}* into a group Gj in [33, §4.3] and [36, §3.2].

3.5.2 Random Oracles

To provide a better security assurance than a heuristic one, the concept of ideal
hash functions was introduced. Ideal hash functions are functions whose outputs are
computationally indistinguishable from a random output. The heuristic step in the
random oracle methodology is replacing this ideal H with a member of the family

of all truly random functions from X to Z, chosen uniformly at random. Since all

61

3.5 Provable Security Basics

queries to H are answered by selecting an output at random, H is now effectively
selected uniformly at random from the family of all functions. When queried on the
same input the oracle is defined to produce the same output, since H (its analogy)
will behave this way in the real world. Hence, in the random oracle model, no

adversary can make use of the underlying structure of the real hash function.

On one hand, provided the adversary has no insight into H, using this black box
idealised approach to model hash functions clearly captures the security essence of
the overall scheme or protocol. Moreover, the abstraction allows for simple efficient
protocols and schemes to be designed and proved secure. On the other hand, critics
of this abstraction argue that, in the real world, no single deterministic polynomial
time function can provide a good implementation of the random oracle. In other
words, they argue that the random oracle methodology is flawed. For more detailed

expositions see [21, 42].

3.5.3 Security notions for PKE

In this section, we define notions of security for standard PKE schemes. First we
define the notion of one-way encryption (OWE), which is a weak notion of security.

In all the definitions, there are two parties, the adversary A and the challenger C.

One-way encryption security for PKE: We say that a PKE scheme is OWE se-
cure if no polynomially bounded adversary A has a non-negligible advantage against

the challenger in the following game:

Setup and Challenge: The challenger takes a security parameter k as input and
runs both the Setup and Key-Generation algorithms. The challenger picks a random
plaintext M € M and computes C*, the encryption of M under a public key, K,
output by the Key-Generation algorithm. It gives A the resulting parameters params

and a public key K, and the ciphertext C*.

62

3.5 Provable Security Basics

Guess: After performing some computations, A outputs a guess M’ € M. The
adversary wins the game if M = M’. We define A’s advantage in this game to be
Adv(A) :=Pr[M = M'].

The probability is measured over the random bits used by the challenger and the ad-
versary. Next, we define a stronger notion than OWE security. The next definition of
security for a PKE scheme involves indistinguishability of encryptions against a fully-
adaptive chosen ciphertext attacker (the goal-access model pair which corresponds
this security notion is IND-CCA3) [16, 64, 126].

Chosen ciphertext security for PKE: We say that a PKE scheme is semantically
secure against an adaptive chosen ciphertext attack (“IND-CCA secure”) if no poly-
nomially bounded adversary A has a non-negligible advantage against the challenger

in the following game:

Setup: The challenger takes a security parameter k£ as input and runs both the
Setup and Key-Generation algorithms. It gives A the resulting system parameters

params and a public key K, output by the Key-Generation algorithm.
Phase 1: Adversary A may make decryption queries on ciphertexts of its choice.

Challenge Phase: Once A decides that Phase 1 is over, it outputs two equal length
plaintexts My, M1 € M, where My # M;. The challenger now picks a random
bit b € {0,1} and computes C*, the encryption of M; under the public key K,
Ciphertext C* is delivered to A.

Phase 2: Now A may make further decryption queries as in Phase 1. However, no
decryption query can be made on the challenge ciphertext C* for public key K
that was used to encrypt Mj.

34Some authors label CCA as CCA2 (the notion of IND-CCA2 was introduced by [126]), to
contrast it with the non-adaptive chosen ciphertext attack (CCA1) model (the notion of IND-CCA1
was introduced by [120]). The CCA1 model does not allow the adversary access to the decryption
oracle after being offered a challenge ciphertext.

63

3.6 Survey of Pairing-based Schemes

Guess: Finally, A outputs a guess b’ € {0,1}. The adversary wins the game if
b=1V. We define A’s advantage in this game to be Adv(A) := 2| Pr[b = V'] — 3|.

The probability is measured over the random bits used by the challenger and the
adversary. The notion of indistinguishability of encryptions against chosen plaintext
attack (IND-CPA) is defined in the same way as IND-CCA, except that the IND-CPA

adversaries are not given any access to a decryption oracle.

3.6 Survey of Pairing-based Schemes

Public Key Cryptography emerged from the ideas of Diffie and Hellman’s seminal
paper [58]. These ideas have been extended in many ways to develop a number of
cryptographic schemes based on the hardness of the CDHP or other hard problems
such as the RSA inversion problem [114, §3.3]. A comparable but more rapidly
moving trend has recently occurred in the field of elliptic curve pairings. This followed
Boneh and Franklin’s paper [32], which introduced to the wider research community
a practical and provably secure ID-PKE scheme. This efficient and simple ID-PKE
scheme allowed for the extension of scope in ID-PKC. Numerous identifier-based
schemes were subsequently developed. A classification of this large body of research
into pairings is represented in Figure 3.5, where identifier-based publications are
represented by rectangular boxes. Non-identifier-based publications are represented
by the curved boxes. Publications in dotted boxes are either superseded by newer,
improved publications, or considered to have a major flaw. Surveys and publications

on the implementation of elliptic curve pairings are not included.

It can be seen in Figure 3.5 that some publications occured before that of Boneh and
Franklin [32]; most importantly the work of Sakai, Ohgishi and Kasahara [133], Joux
[90] and Verheul [147]. Sakai et al. [133] presented a non-interactive identifier-based
key agreement protocol and ID-PKS schemes. In the schemes of Sakai et al., a hash
function is used to map identifiers to elements of a group G7; this function and the

way in which Sakai et al. use pairings is found in many subsequent publications. Joux

64

3.6 Survey of Pairing-based Schemes

1999

2000

2001

2002

2003

Joux
[90

A4

Smart |
[142]

AlRiyami,
Paterson

Ol

Zhang, Liu
Kim [151]

Misunari,
Sakia,
Kasahara
[116]

Dupont,
Enge [65]

Chen,
Kudla
[50]

Reddy,
Nalla [127]

<

Smart
[143]

Duursma,
Lee [67

Barua,

Dutta,

Sarkar
[14]

ID based non-ID
Sakia Ohaishi based
akia, Ohgishi, _— .
Kasahara [133] Citation w/ some form of genesis
B Verheul
[147
Y
Boneh, Franklin [32]
Boneh,
Lynn,
Shacham
o
A\
Verheul Paterson
[148 [123]
Hess [83] |4
—| Cha, Cheon
\ [47]
- Horwitz, Chen, v
: Lynn[85] : Harrison,
............ Smart, o Lynn [108]
Soldera [49] oldyreva
\i [28]
Chen, Boneh,
Harrison, Gentry,
Moss, p| Lynn,
Smart, Shacham
Soldera [48] y Malone-Lee
[109]
Zhang,
| Kim [150]
Bellare,
Palacio
oy (9 \ /
Dodis, Lin, Wu, Libert,
Franklin, »| Zhang Quisquater
Katz,Miyaji, [106 [103]
Yung [6
Zhang,
Sakia, Lipe-| Saf_avi-Naini, ¢ Nalla1,1F;eddy
Kasahara [132] Lin [152] [119]
Boneh,
- A4 Mironov,
Libert, Canetti, W_
Quisquater Halevi, : H o Y
102 . Han, Yueng, -
[102] Katz[43 Wang [82]
Gentry [76] Lin, Wu
[105]
AlRiyami, Paterson [7] Chen, Zhang
Kim [51]
Baek, Zheng
[11]

Tvl K.agreement “]Authentication m Hierarchy |]] Infrastructure mEncryption |]] Signatures [I]I Signcryption [I]
ime

Figure 3.5: Overview of pairing-based publications.

65

3.6 Survey of Pairing-based Schemes

[90] presented a tripartite protocol whose properties and relation to BF ID-PKE weref
described in Section 3.3.3. Verheul [147] presented a distortion map which maps a
point on the elliptic curve to an unrelated point. The main benefit of doing this was
described in Section 2.3. A second benefit of distortion maps is that they ensure that
both inputs to the pairing map are in a ‘small’ group with compact representation
of elements. Another benefit is that it produces a simpler representation for the
points. This is because only a single group G is required, rather than two different
groups (one of which is large), on the left hand side of the pairing map. For example,
this improvement is demonstrated in [147] on Joux’s protocol where one point rather
than two needs to be broadcasted by all three entities. A scheme using a variant
of the ElGamal PKE scheme is also presented in [147] using this modified pairing
map. This scheme allows for an escrow-able encryption service with only one public
key. Sakai, Ohgishi and Kasahara [133] were the first to conceive of and explore the
suitability of pairings to construct identifier-based cryptographic schemes. Boneh
and Franklin [32], however, were the first to construct a provably secure and efficient
ID-PKE scheme, which resulted in the proliferation of ID-PKC. Some concepts from
previous publications were developed, modified and formalised to produce the BF

ID-PKE scheme, whose basic version was presented in Section 3.2.4.1.

Figure 3.5 captures the relationship between various pairing publications (up to the
end of 2003) in cryptography. The schemes in the publications are classified and
placed in the most appropriate column category. The categories of the columns are:
(i) key agreement protocols; (ii) authentication schemes; (iii) hierarchical schemes;
(tv) infrastructure related schemes; (v) encryption schemes; (vi) signature schemes;
and (vii) signcryption schemes. Arrows illustrate some relationships between pub-
lications. Publications at the base of an arrow are cited and thematically originated
from the publications at the head of the arrow.

The following descriptions highlight the evolution of pairing-based schemes:

35For an alternative pairing scheme survey see Paterson [122], for ID-PKC surveys which include
many pairing schemes see Kudla [98] and Gagné [72].

66

3.6 Survey of Pairing-based Schemes

Key agreement protocols: Several protocols have been proposed. These include
identifier-based and group key agreement protocols. Only some of the proposals

provide a comprehensive security treatment.

e Unauthenticated protocols: Joux provides an unauthenticated single round
broadcast protocol [90] which was presented in Section 3.3.3. Duursma
and Lee [67] show how to extend Joux’s protocol [90] for use in an unau-

thenticated group with 3™ entities.

e Identifier-based protocols: Amongst other schemes, Sakai, Ohgishi and
Kasahara [133] present a non-interactive identifier-based key agreement
protocol. Dupont and Enge [65], unaware of Sakai et al.’s [133] work, pro-
posed an analogy of the Sakai et al. protocol in the setting of unmodified
pairings. Dupont and Enge’s protocol [65] is proven secure provided that
a certain generalisation of the BDHP is hard, see Section 2.4.2 for details.
Smart [142] designed an identifier-based protocol which used two pairing
computations and showed how to add key confirmation. This protocol
and all of the remaining identifier-based protocols require short-term pub-
lic keys to be exchanged. Smart’s protocol [142] was modified by Chen
and Kudla [50] who presented several protocols, each which provided at
least one of the following improvements: (i) use of only a single pairing
computation; (i7) forward security against the PKG; and/or (¢4i) interop-
eration of users with identities registered using different PKGs. Shim [137]
provided an alternative protocol to Smart’s protocol [142] and Chen and
Kudla’s protocols [50]. Shim’s protocol [137] uses one pairing computa-
tion. It has been found, however, to be vulnerable to a man-in-the-middle
attack by Sun and Hsieh [144].

Zhang, Lui and Kim’s protocol [151] and Nalla and Reddy’s three pro-
tocols [118] are tripartite identifier-based key agreement protocols. We
observe that these protocols combine ideas from the work of Smart [142]
and Al-Riyami and Paterson [4] (see certificate-based protocols below and
Chapter 9). The security of Nalla and Reddy’s protocols [118], is under-
mined by a man-in-the-middle attack [139] on the first proposed protocol

and more serious passive attacks [52] on the subsequent two protocols.

67

3.6 Survey of Pairing-based Schemes

Binary [127] or ternary trees [14] are used to construct efficient conference
identifier-based key agreement protocols. The security of the group pro-
tocols is based on the existence of secure identifier-based key agreement
protocols. Barua, Dutta and Sarkar’s protocol [14] uses two and three
party identity key agreement protocols, while Reddy and Nalla’s protocol
[127] uses only a two party identifier-based key agreement protocol.

Scott [134] presents a different kind of authenticated key exchange whose
properties are particularly suited for the Client-Server environment. An
entity using Scott’s protocol is assumed to be using a token in conjunction

with a password.

o Certificate-based protocols: Al-Riyami and Paterson [4] present tripartite
certificate-based key agreement protocols whose one round variants do not
require signatures. One of the protocols was rendered insecure by Shim
[136]; the full attack is covered in Section 9.5.1. In any case, Shim [138]
presented an alternative one round tripartite protocol. Shim’s protocol is
vulnerable to an attack presented by Sun and Hsieh [144]. Moreover, the
protocol cannot be implemented as it does not make mathematical sense

for reasons that are described in Section 9.6.

Authentication schemes: A traitor tracing mechanism, which can trace author-
ized entities who give their keys to unauthorised entities in a broadcast en-
cryption scheme, was introduced by Mitsunari, Sakai and Kasahara [116]. The
scheme’s security is based on the hardness of a problem dubbed the ‘k-weak

Diffie-Hellman problem’, whose hardness remains an open problem.

Kim and Kim [95, 96] present, in two publications, interactive identification
(or entity authentication) protocols. The protocols allow entity A to convince
an entity B, of A’s identifier by proving a private value corresponding to a
public value. Proofs of security for the schemes in [95, 96] are also provided.
Nevertheless, Zhang, Xu and Feng [154] showed that the identification scheme
in [96] is actually insecure against a passive attacker. This attack is always
possible because any entity can trivially impersonate the prover using only

public information. The private value of the prover is not actually required to

68

3.6 Survey of Pairing-based Schemes

run the protocol successfully. Although the protocol in [95] shares the same
key generation method as in [96], the modified protocol actions in [95] between

the prover and verifier ensures that the attack by Zhang et al. does not work.

Smart [143] shows how to use the BF ID-PKE scheme to construct an access
control mechanism using key calculus techniques to broadcast encrypted data.
The scheme extends the ideas of Boneh and Franklin [32] and Chen et al.
[49] (see identifier-based infrastructure) to create a flexible scheme which is
appropriate for use in access control structures because the workload is shifted
to the decryptor. This work’s contributions can also be categorised as being in

the area of infrastructure related schemes.

Hierarchical schemes: The notion of an identifier-based hierarchy was intro-
duced by Horwitz and Lynn [85]. The motivation for hierarchical schemes
was to improve identifier-based infrastructures by spreading the workload of
a PKG. The hierarchy introduced in [85] consisted of two levels: the upper
level with total collusion resistance and the lower level with partial collusion
resistance. In addition to the partial collusion resistance, another drawback
of the scheme of [85] was that the efficiency of key generation and encryption
decreased proportionally with the number of entities in the system, thus, it was
not truly scalable. The open problem presented by Horwitz et al. was ‘to con-
struct a two-level hierarchical ID-PKE scheme that is totally collusion-resistant
on the lower level and at least partially collusion-resistant on the upper level’
[85, p.479]. Gentry and Silverberg [77] solved this problem, by presenting
a totally collusion-resistant scheme supporting an arbitrary number of levels
which scaled in a natural way. Further improvements were presented in [77]
for two users who are close in the hierarchical tree. The improvement, which
is an extension of the non-interactive identifier-based key agreement protocol
by Sakai et al. [133], required the encryptor to use a dual identity form of the
hierarchical ID-PKE scheme. Both publications [77, 85] present provably se-
cure ID-PKE schemes and the work of Gentry and Silverberg [77] also extends
hierarchy to ID-PKS schemes.

Infrastructure related schemes: The infrastructure surrounding ID-PKC has

69

3.6 Survey of Pairing-based Schemes

been examined by a number of authors [11, 48, 49, 77, 132]. Applications
of pairings to certificate-based infrastructures can be found in [76, 148]. We
develop a new type of infrastructure in Part II of this thesis. Some work of

that part appears in [7].

e Identifier-based infrastructure: The PKG is considered both the bottle-
neck and single point of failure in an identifier-based public key infrastruc-
ture (ID-PKI). By extending the identifier infrastructure created by the
ID-PKC scheme of [32], Chen et al. [49] provide applications for ID-PKC
and demonstrate how an entity can combine private keys obtained from
multiple PKGs to form a single working private key. The applications
make use of ID-PKC’s cryptographic workflow property which was de-
scribed in Section 3.2.5. Sakai and Kasahara [132] also examine the use
of multiple PKGs and introduce an alternative ID-PKC infrastructure to
[32]. Sakai and Kasahara [132], however, do not provide any security
analysis for any of their efficient schemes. The advantages of using the
ideas of [49, 132] instead of multiple ID-PKE (or ID-PKS) schemes us-
ing different PKGs one after the other, are that the schemes of [49, 132]
offer: (i) computational efficiency; (i7) decryption (or verification) does
not necessarily need to be applied in the opposite order to encryption (or
signing); and (7i7) as a consequence of i) and the flexibility of i), crypto-
graphic workflows between the PKGs are practical. We will be re-visiting
cryptographic workflows in Section 4.6.3.

The mechanisms by which ID-PKC’s PKGs can operate on more than two
levels has been demonstrated in two publications: a pure identifier-based
infrastructure [77]; and a hybrid ID-PKC infrastructure using certificate
chains as in Chen et al. [48] or identifier-based linked TAs. Complementing
ID-PKI with traditional PKI at the higher levels of the hierarchy as in
[48] is a very practical solution for building a general purpose keying
infrastructure because key escrow is eliminated between intermediate TAs,
who most probably: (i) do not need the flexibility of an ID-PKI; and (i)
are furnished with sufficient resources to manage keys using certificates.

Novel applications presented in both infrastructures [48, 77] use the short

70

3.6 Survey of Pairing-based Schemes

signature scheme of [36]. The short signature scheme of [36] is described

in the certificate-based signature schemes part of this survey below.

The distributed PKG approach discussed by Boneh and Franklin [32] re-
quires PKGs to share the system’s master-key. This idea was adapted by
Libert and Quisquater in [102] who present a threshold ID-PKE and a
mediated ID-PKE scheme based on the BF ID-PKE. The proof of secur-
ity for the ID-PKE scheme in [102] is proposed in a weaker model than
that of the ID-PKE in Boneh et al. [32], while the proof of security for
the mediated ID-PKE scheme uses the same weak model as that provided
in Ding and Tsudik [60]*>%. Mediated versions of ID-PKC are schemes
where an online security mediator (SEM) keeps part of each user’s private
key. Every decryption and signature generation requires the user to ob-
tain help from the SEM by getting a token related to the user’s private
key. If the SEM is instructed not to help the user, the user’s private key

is effectively revoked.

Dodis and Yung [63] and Back and Zheng [11] offer an alternative threshold
solution to the Boneh and Franklin solution to the private key escrow prob-
lem by using the distributed PKG approach of threshold cryptography to
share private keys of identifiers instead of the system’s master-key. The
solution by Dodis and Yung [63] makes use of the hierarchical ID-PKE of
Gentry and Silverberg [77] to construct a (n — 1,7)37 threshold ID-PKE
scheme. This of course makes the private key more exposure resilient. The
solution by Baek et al. [11] adds identifier-based threshold decryption to
the BF ID-PKE scheme and also provides mediated ID-PKE scheme. This

scheme offers stronger security assurances than the ones presented in [102].

e Certificate-based infrastructure: A solution for multi-show digital certi-
ficates is proposed by Verheul [148] in which an entity constructs from its
original certificate a ‘self-blindable’ un-linkable certificate with the same

attributes as the original certificate.

36The work in [60] transforms the mediated schemes of [31] into identifier-based schemes. The
schemes are constructed using an RSA primitive.

3TA (n — 1,n) threshold encryption scheme distributes the private key amongst n entities and
requires the components from all n entities to decrypt.

71

3.6 Survey of Pairing-based Schemes

Gentry [76] explores a certificate-based encryption scheme which facilit-
ates an infrastructure for traditional public key cryptography that does
not require certificate revocation. A more brief explanation of [76] is given

in Section 4.3.3 and a detailed explanation is in Section 7.3.

e Other Infrastracture: A new infrastructure coined ‘certificateless public
key cryptography’ is proposed in [7]. This work is presented and extended
in Part II of this thesis.

Encryption schemes: Verheul’s main motivation in [147] was to prove that XTR
(an efficient method or working with a specific subgroup) is more secure than
supersingular elliptic curve cryptosystems. As a by-product of his investig-
ation into this question, Verheul [147, §5.2] described an escrow-able elliptic
curve ElGamal encryption scheme. The BF ID-PKE scheme uses the same
Weil pairing map as the one presented by Verheul and was covered in Section
3.2.4.1. Ideas from the BF ID-PKE scheme formed the basis of at least two
non-identifier based encryption schemes: a certificate-based encryption scheme
[76]; and a certificateless encryption scheme [7] (these were already mentioned
above). The fully forward secure public key encryption schemes in [43, 94]
were built from the hierarchical identifier-based encryption scheme of Gentry
and Silverberg [77]. The scheme by Katz [94] and its corresponding security

analysis were improved in Canetti, Halevi and Katz in [43].

Key-insulated PKE was first introduced and formalised by Dodis et al. [62].
The goal was to minimise the damage caused by private key exposure. The
private keys are stored on insecure devices and are refreshed at fixed time
intervals via interaction with a physically secure device. The physically secure
device stores a master key. The notion of ID-PKE was proved to be equivalent
to that of a (not strong) key-insulted PKE by Bellare and Palacio in [19].
Although this idea was discussed briefly in [62], the work of Bellare and Palacio
in [19] contains a more concrete discussion that utilises the BF ID-PKE scheme

(and hence pairings) to construct a key insulated PKE scheme.

In Dodis et al. [61], the definition and concrete realisation of an intrusion-

resilient PKE scheme are presented. In the definition intrusion-resilient schemes,

72

3.6 Survey of Pairing-based Schemes

time is divided into periods and the public key remains fixed but the secret
key is periodically updated. Secret information is stored by both a user and a
base and the function of the base is to periodically update the user’s key. The
scheme in Dodis et al. [61] is based on the forward secure PKE scheme of Katz
[94] and extends the key insulation ideas in [62]. This is because intrusion-
resilient PKE schemes are secure even if the base and user are compromised,
as long as they are not compromised simultaneously. Additionally, previous
time periods remain secure even if both user and base are compromised sim-
ultaneously. The scheme in Dodis et al. [61] is proven secure in the standard

model, that is, without random oracles provided that the DBDHP is hard.

Signature schemes: Many interesting signature schemes have been created using
pairings on elliptic curves. They are categorised as either identifier-based or

certificate-based.

o Identifier-based signature schemes: Sakai, Ohgishi and Kasahara [133]
were the first to realise an ID-PKS using pairings. The set up and extrac-
tion method presented in this work is very similar to those presented in
subsequent ID-PKS schemes [47, 82, 83, 105, 123, 150, 152]. The scheme
is not very efficient and does not have a security proof.

Cha and Cheon [47], Paterson [123] and Hess [83] independently produced
ID-PKS schemes at about the same time. Paterson’s scheme [123] and its
security are closely related to that of the generalised ElGamal signature
scheme. The schemes of Cha and Cheon [47] and Hess [83] (unlike the
schemes in [123, 133]) are provably secure (in the random oracle model)
against existential forgery on adaptively chosen message and identities,
provided the CDHP is hard. Security against existential forgery means
that the adversary cannot forge a signature on a single message, where
the adversary has little or no control over that message [114, §11.2.4].
Hess [83] shows how general exponent group signatures schemes (such as
the ElGamal and Schnorr signature schemes) give rise to pairing-based
ID-PKS schemes. Hess [83] compares the efficiency of the first of his four
schemes to the schemes of Cha and Cheon [47] and Paterson [123]. The

73

3.6 Survey of Pairing-based Schemes

most efficient scheme in [83], scheme 4, should be avoided due to an attack
by Cheon [53]. Hess also proposes the use of multiple PKGs (as in [32])

to mitigate the inherent risk of key escrow in the ID-PKS schemes.

Zhang and Kim [150] produced blind and ring ID-PKS schemes. Blind sig-
nature schemes are interactive two-party protocols which allow an entity
to get a message signed by another entity without revealing any inform-
ation about the message to the other party. Ring signatures are group
signatures without managers which provide anonymity for the signer, since
the signature could have been produced by any entity in the ring. The
security of the schemes is discussed in [150]. Zhang, Safavi-Naini and Lin
[152] constructed proxy ID-PKS, proxy blind ID-PKS and proxy ring ID-
PKS schemes from pairings. These schemes allow the proxy signer to sign
on behalf of the original signer. Applications of proxy ID-PKS schemes
are also described in [152]. Lin and Wu [105] showed how to construct a
ring ID-PKS scheme that is computationally more efficient than the ring
ID-PKS scheme presented by Zhang and Kim [150].

Han, Yueng and Wang [82] constructed an undeniable ID-PKS scheme
and showed that it has the soundness property. Unfortunately, Zhang,
Safavi-Naini and Susilo [153] demonstrated two attacks on it. The most
serious attack allows the attacker to forge a valid confirmer signature of
any ID on an arbitrary message and confirm this signature to the verifier.
Unlike traditional group ID-PKS schemes, Chen, Zhang and Kim [51]
produced a group signature scheme where each user concatenates a public
key and timestamp in the identifier string presented to the PKG. This is
to reduce the level of trust that is needed in the PKG. The set up of this
scheme is similar to that of a certificateless signature scheme (except that

it also includes time as in Gentry’s scheme [76]).

e Certificate-based signature schemes: Boneh, Lynn and Shacham (BLS)
[36] showed how to construct short signatures based on the hardness of
the CDHP. Signing in the BLS signature scheme requires a single multi-
plication in G; and verification requires two pairing computations. The

BLS signature is novel because it offers a similar level of security to that

74

3.6 Survey of Pairing-based Schemes

of a DSA signature and requires roughly only half the bits to represent a
signature. The signature is the coordinate of an element of G;. This
optimisation is possible because the signature uses a point compression
technique — recall Section 2.2. The paper provides guidance on selecting
elliptic curves so that the DDHP in G is easy, whilst the CDHP in G,
is hard, that is, Gy is gap group. The fact that DDHP in G; is a easy is

crucial for the verification of BLS signatures.

As in the BLS scheme, gap groups were used by Boldyreva [28] to construct
efficient threshold signature, multisignature and blind signature schemes.
A (t,n) threshold signature distributes the secret key amongst n entities
and any subset of more than ¢ is required to construct a signature. Lin,
Wu and Zhang [106] used the BLS signature to construct a structured
multisignature scheme that forces the verifier to follow a particular order
of verification which is predetermined by the group of signers.

Boneh, Gentry, Lynn and Shacham [34] introduce the concept of ‘aggreg-
ate signatures’ which allows for a single short signature to be produced
from n signatures on n distinct messages from n distinct users. The
scheme is based on the BLS signature scheme and is useful, for example,
in reducing the size of certificate chains. However, unlike the BLS scheme,
this scheme requires the extra structure provided by the pairing map and
does not work with every gap group. Aggregate signatures are shown to
give rise to verifiably encrypted signatures in [34]. A verifiably encrypted
signature allows the verifier to test whether a ciphertext is the encryp-
tion of a signature on a given message. Boneh, Mironov and Shoup [35]
produced a PKS scheme which is secure in the standard model against
existential forgery under a chosen message attack, provided the CDHP
is hard. This scheme is efficient compared to other signature schemes

provably secure in the standard model.

Signcryption schemes: Signcryption was first proposed by Zheng in [155]. In
[155] Zheng defines signcryption as a cryptographic method that fulfils both
the functions of encryption and signature, but with a cost smaller than that

required when executing a signature then an encryption algorithm. All the

75

3.6 Survey of Pairing-based Schemes

signeryption schemes except for [38] are more efficient in terms of communica-
tion and computation than a direct composition of the ID-PKE scheme [32] and
a signature. For example, a way this composition can be performed is called
‘encrypt-then-sign’. A direct composition of a encrypt-then-sign identifier-
based scheme provides to the encryption scheme two security services; non-
repudiation and authentication. Generally, since the schemes are more efficient
than this encrypt-then-sign approach, they are considered fairly interesting.
The schemes in [38, 103, 108, 109, 119] are identifier-based and add at least
integrity and authenticity services to the BF ID-PKE scheme [32]. The se-
curity proof of Lynn’s scheme [108] extends that of the BF ID-PKE scheme
[32] by allowing the adversary to select two identities, the encryptor and de-
cryptor. Neither Lynn’s [108] nor Nalla and Reddy’s [119] schemes provide
non-repudiation. Integrity is achieved by both schemes due to the inability
of an attacker to forge ciphertext. For this reason we believe that Nalla and
Reddy’s signcryption scheme is more accurately labelled as an authenticated
encryption scheme. Therefore, it was inaccurate of the authors to compare the

efficiency of their scheme in [119] to that of Malone-Lee [109].

Malone-Lee’s signeryption scheme [109] uses a variant of an ID-PKS scheme
of Hess [83], and reduces the computation of an encrypt-and-sign technique
by one point multiplication. Malone-Lee’s scheme, however, does not achieve
semantic security because the plaintext’s signature can be obtained from the
ciphertext — for more details see [103]. Libert and Quisquater in [103] provided
an identifier-based signcryption scheme that is semantically secure (provided
the BDHP is intractable) and publicly verifiable. The scheme’s efficiency is

comparable to that of Malone-Lee’s scheme.

Boyen’s signcryption scheme [38] is a sign-then-encrypt scheme. A direct com-
position of a sign-then-encrypt identifier-based scheme provides three security
services: confidentiality, unlinkability and anonymity. Boyen’s composition
adds non-repudiation and authentication to the scheme’s security services. In
[38] a formalisation of these properties is presented. Thus, Boyen’s signcryption
scheme differs from Libert et al.’s scheme [103] because it additionally offers

unlinkability and anonymity.

76

3.6 Survey of Pairing-based Schemes

The reader will have noticed that pairing-based cryptography has rapidly developed
over the last few years. The tremendous rate at which this topic is evolving ap-
pears not to be slowing down. Recently there has been some further developments
in pairing based schemes, the works presented in [18, 29, 30] are some notable ex-
amples. The very rich ‘structure’ pairings provide makes them a very powerful and
flexible tool for cryptographic schemes to be build upon. Hence, this recent surge
in constructing cryptographic schemes from pairings in unsurprising and we anti-
cipate that pairings will give birth to further models for the use of PKC. However,
this prompts the need for more thorough analysis of the theoretical underpinnings
of pairings such as the security of different curves and the security of the BDHP and

its related problems.

7

Part 11

Certificateless Public Key
Cryptography

78

CHAPTER 4

Certificateless Public Key Cryptography

Contents
4.1 Introduction 0o 80
4.2 Defining CL-PKC 82
4.3 Related Worko 83
4.3.1 Identifier-based Cryptography 83
4.3.2 Self Certified Keys 83
4.3.3 Gentry’s Certificate-based Encryption Scheme 85
4.4 An Adversarial Model for CL-PKC 86
4.5 Key Generation Techniques for CL-PKC 87
4.5.1 Identifier Context: Excluding P4 88
4.5.2 Identifier Context: Including P4 90
4.6 Propertiesof CL-PKC 91
4.6.1 Revocation in CL-PKC 91
4.6.2 Certificate Free o0 92
4.6.3 Flexibility via Cryptographic Workflow 94
4.6.4 Low Interaction L. 95
4.6.5 Trust, Non-repudiation and Cryptographic Evidence 97
4.6.6 Interoperability of CL-PKC Implementation 101
4.6.7 Efficiency 101
4.7 Summary of CL-PKC, 102

In this chapter a new paradigm for public key cryptography, called certificateless
public key cryptography (CL-PKC), is proposed. Based on the key generation method,
all CL-PKC schemes exist in one of two settings. Both settings are analysed and
compared to ID-PKC and traditional certificate-based PKC.

79

4.1 Introduction

4.1 Introduction

A major difficulty in developing secure systems based on public key cryptography
is the deployment and management of infrastructures to support the authenticity of
cryptographic keys: there is a need to provide an assurance to the user about the
relationship between a public key and the identity (or authority) of the holder of
the corresponding private key. As we saw in Section 3.2.3, in a traditional PKI this
assurance is delivered in the form of a certificate, essentially a signature by a CA on
a public key. The problems of PKI technology are well documented, see for example
[81]. Of note are the issues associated with certificate management, including re-
vocation, storage, distribution and the computational cost of certificate verification.

These are particularly acute in processor or bandwidth-limited environments [56].

As described in Section 3.2.4, ID-PKC tackles the problem of authenticity of keys
in a different way to traditional PKI. In ID-PKC an entity’s public key is derived
directly from certain aspects of its identity, for example, an Internet protocol (IP)
address belonging to a network host, or an electronic mail (e-mail) address associated
with a user. Private keys are generated for entities by the PKG. In Section 3.2.4.1
we showed an ID-PKC scheme, the BF ID-PKE scheme [32] and we illustrated how
it precipitated the rapid development of ID-PKC in our survey in Section 3.6.

On the one hand the direct derivation of public keys in ID-PKC eliminates the
need for certificates and some of the problems associated with them. On the other
hand the dependence on a PKG, who uses a system-wide master key to generate
private keys, inevitably introduces key escrow to ID-PKC systems. For example,
the PKG can decrypt any ciphertext in an ID-PKE scheme. Equally, if not more
problematic is the notion that the PKG can forge any entity’s signatures in an ID-
PKS scheme, so ID-PKC cannot offer true non-repudiation in the way that standard
PKI can. The escrow problem can be solved to a certain extent by the introduction
of multiple PKGs and the use of threshold techniques, but this necessarily involves
extra communication and infrastructure. Moreover, the compromise of the PKG’s

master key could be disastrous in an ID-PKC system, and is usually more severe

80

4.1 Introduction

than the compromise of a CA’s signing key in a traditional PKI. This is because
the PKG’s master key (in addition to being able to compute new private keys) can
be used to compute all the private keys in the system. For example, an adversary
equipped with the PKG’s master key can read previously encrypted communications
and produce valid signatures for any entity without the need to use new identifiers.
In a traditional PKI, the adversary needs to issue a new certificate and get entities
to accept the new public keys in them, before being able to mount any attack. For
these reasons, it seems that the use of ID-PKC may be restricted to small, closed

groups or to applications with limited security requirements.

In this chapter, we introduce a new paradigm for public key cryptography, which
we name certificateless public key cryptography (CL-PKC). The concept of CL-PKC
grew out of a search for public key schemes that do not require the use of certificates,
and yet do not have the inherent key escrow feature of ID-PKC. The solution we
propose enjoys both of these properties. As we shall see, the properties of CL-PKC
are in some sense intermediate between traditional PKI and ID-PKC. We will discuss
the model and properties of CL-PKC, as well as provide several examples of CL-
PKC applications. CL-PKC can be used to support encryption schemes, signature
schemes, key agreement protocols and other public key schemes. A certificateless
encryption scheme is denoted a CL-PKE scheme, whilst a certificateless signature
scheme is denoted a CL-PKS scheme. We will not be presenting any concrete schemes
in this chapter. This chapter, however, puts into context the schemes presented in

Chapters 5 through 8.

Next we define CL-PKC and then discuss publications related to CL-PKC in Sec-
tion 4.3. This is because our concept shares some features with identifier-based
cryptography [32, 135], the self-certificated keys of [78, 124] and Gentry’s recently
proposed certificate-based encryption [76]. In Section 4.4 we outline a general ad-
versarial model for CL-PKC. To understand the functionality of CL-PKC we study
the initial enrolment of entities in Section 4.5 and in Section 4.6 we cover properties
and applications of CL-PKC. A summary and a comparison table of CL-PKC with
traditional PKI and ID-PKC is provided in Section 4.7.

81

4.2 Defining CL-PKC

4.2 Defining CL-PKC

Here we sketch the defining characteristics of CL-PKC (more precisely CL-PKC(A))
which will serve to assist the reader in understanding CL-PKC’s adversarial model

and properties.

A CL-PKC system still makes use of a TA which we name the Key Generating
Center (KGC). By way of contrast to the PKG in ID-PKC, this KGC does not have
access to entities’ private keys. Instead, the KGC supplies an entity A with a partial
private key D4 which the KGC computes from an identifer ID4 for the entity and
a master key. As before we will equate A with its identifier ID4. The process of
supplying partial private keys should take place confidentially and authentically: the
KGC must ensure that the partial private keys are delivered securely to the correct

entities.

The entity A then combines its partial private key D4 with some secret information
T4 to generate its actual private key S4. This way A’s private key is not available
to the KGC. The entity A also combines its secret information x4 with some public
parameters to compute its public key P4. Note that, in general, A need not be in
possession of S4 before generating P4: all that is needed to generate both is the
same secret information. The system is not identifier-based, because the public key

is no longer computable from an identifier alone.

Entity A’s public key might be made available to other entities by transmitting it
along with messages (for example, in a signing application) or by placing it in a
public directory (this would be more appropriate for an encryption setting), but no
further security is applied to the protection of A’s public key. In particular, there is
no certificate for A’s key. To encrypt a message for A or verify a signature from A,

entity B makes use of P4 and ID 4.

We now sketch a simple modification to the defining characteristics of CL-PKC.
Instead of the KGC computing the partial private key D4 from only an identifer

82

4.3 Related Work

ID4 for the entity and a master key, the partial private key D 4 is computed from an
identifier 1D 4, a public key P4 for the entity and a master key. With this alteration
on how D4 is computed, the process of supplying partial private keys need not
take place confidentially and authentically. We label CL-PKC schemes with this
modification in place as CL-PKC(B) schemes.

A more formal model defining certificateless public key encryption (CL-PKE) will be
given in Section 5.2. Much of this model is also applicable for our other certificateless
primitives. In this chapter, we focus on developing the generic properties of CL-PKC,
without reference to specific certificateless cryptographic primitives such as signature

or encryption.

4.3 Related Work

4.3.1 Identifier-based Cryptography

Our work on CL-PKC owes much to the pioneering work of Boneh and Franklin [32]
on identifier-based public key encryption. Recall that identitifier-based cryptography
and the basic scheme of Boneh and Franklin were described in Section 3.2.4. In fact,
the CL-PKE schemes in Chapters 5, 6 and 8 are derived from their scheme. Our
security proofs require significant changes and new ideas to handle new types of
adversary. Likewise, we will show in Chapter 8 that our certificateless signature, key

exchange and hierarchical schemes arise by adapting existing ID-PKC schemes.

4.3.2 Self Certified Keys

Another alternative to traditional certificate-based PKI called self-certified keys was
introduced by Girault [78]. Girault’s schemes combine characteristics of RSA and

discrete logarithms. The concept of self-certified keys was further developed by

83

4.3 Related Work

Petersen and Horster [124] and Saeednia [130]. The schemes presented in [78, 124,
130] are structurally somewhat similar to our CL-PKC schemes. In a self-certified
scheme, an entity chooses its private key = and corresponding public key y and
delivers y to a TA. The TA combines y with the identity ID of that entity to produce
a witness w. This witness may simply be the TA’s signature on some combination
of y and ID as in [78], part of a signature as in [124], or the result of inverting a
trapdoor one-way function based on y and ID [130]. Given w, ID and the TA’s public
key, any party can extract y, while only the TA can produce the witness w from y
and ID. The schemes offer implicit certification, in that the authenticity of a public

key is verified implicitly through the subsequent use of the correct private key.

As in CL-PKC, self-certified keys enable the use of public key cryptography without
certificates. However, it can be argued that the witness in a self-certified scheme is
really just a lightweight certificate linking ID and y. As we shall see, our CL-PKC
schemes do not have such witnesses. The self-certified schemes have an advantage
over some of our CL-PKC schemes in that the communication between an entity and
the TA need not be confidential: there are no partial private keys to be transported
to entities. Moreover, the private key in self-certified systems needs to be chosen
before the public key can be generated, so the elegant applications of ID-PKC to
controlling workflows cannot be realized in self-certified systems. Nor do the self-
certified schemes enjoy security proofs. Indeed Saeednia [131] has recently pointed
out a basic flaw in the scheme of [78] which allows a cheating TA (who knows the fac-
torisation of system-wide values) to extract an entity’s private key; the consequence

is that far larger (and less efficient) parameters are needed to create a secure scheme.

Girault stated in [78] that “Self-certified public keys contribute to reduce the amount
of storage and computation in public key systems.” This primary goal of using
self-certified keys was effectively eliminated by Saeednia’s observation [131]. Fur-
thermore, there is no other benefit using self-certified keys instead of the traditional
certificate-based model Petersen and Horster summarised this in [124] by saying:
“Self-certified keys offer no structural advantage over certificate-based keys, they

offer a concept of equal possibilities for which many useful applications are known.”

84

4.3 Related Work

Self-certified keys should not be confused with the related concept of ‘Self Certific-
ation’ [100]. Self certification allows for the explicit authentication of public keys
and proof of possession of private keys. This is done by each entity issuing a cer-
tificate for themselves using their own private key. Self certification has been used
in conjunction with traditional certificate-based PKI [101] (where a signer generates
temporary signing keys) and self-certified keys [100] (where the schemes in [124] are
extended by adding certificates) and there is no reason why it could not also be used
in conjunction with identity based or certificateless infrastructures. Of course some
properties and benefits of these infrastructures are altered due to the addition of

these self certificates.

4.3.3 Gentry's Certificate-based Encryption Scheme

Recent work of Gentry [76] exploits pairings to simplify certificate revocation in
traditional PKI systems. In Gentry’s model, an entity A’s private key consists of two
components: a first component which that entity chooses for itself and keeps private,
and a component which is time-dependent and is issued to A on a regular basis by
a CA. Matching the two private key components are two public key components.
The first of these is chosen by A while the second can be computed by B using only
some public parameters of the scheme’s CA together with the current time value
and the assumed value of A’s public key. Due to the structure of the certificate-
based encryption (CBE) scheme, entity B is assured that A can only decrypt if he
is in possession of both private components. Thus, the second private component
acts as an implicit certificate for relying parties: one that a relying party can be
assured is only available to A provided that A’s certification has been issued for
the current time period by the CA. This approach provides an implicit revocation
mechanism for PKIs: notice that there is no need for B to make any status checks
on A’s public key before encrypting a message for A; rather B’s assurance that only
A can decrypt comes through trusting the CA to properly update and distribute the

second components of private keys.

85

4.4 An Adversarial Model for CL-PKC

Gentry’s schemes [76] are presented in the context of a traditional PKI model,
whereas our work in this and the next two chapters departs from the traditional
PKI and ID-PKC models to present a new paradigm for the use of public-key cryp-
tography. The CBE scheme’s certificate can be verified like a signature as explicit
proof of certification. If explicit verification is used, many of the analysis presented
in this chapter is inappropriate. However, the two models bear some conceptual
resemblance: both make use of keys that are composed of two parts, one chosen by
an entity for itself and the other derived from a trusted authority. In fact, it may be
possible to modify Gentry’s work [76] to divorce it from the setting of a traditional
PKI. Conversely, we can modify our scheme to provide CBE functionality by the
simple expedient of including a time period (that is, expiry information) and public
keys in identifier strings, we will be showing this in Section 7.4.1. The concrete real-
izations of the two models are different and they are independently developed. Even

S0, they are closely related. These issues will be further discussed in Section 7.3.

4.4 An Adversarial Model for CL-PKC

Due to the lack of authenticating information for public keys (in the form of a
certificate, for example), we must assume that an adversary can replace A’s public
key by a false key of the adversary’s choice. This might seem to give the adversary
tremendous power and to be disastrous for CL-PKC. However, we will see that
specific schemes can be developed where an active adversary who attacks in this way
gains nothing useful: without the correct private key, whose production requires the
partial private key and therefore the cooperation of the KGC, an adversary will not be
able to decrypt ciphertexts encrypted under the false public key, produce signatures
that verify with the false public key, and so on. (Formally, in the encryption setting,
the adversary will not be able to decrypt a challenge ciphertext or distinguish the

encryptions of distinct messages of his choice.)

Of course, we must assume that the KGC does not mount an attack of this type:

armed with the partial private key and the ability to replace public keys, the KGC

86

4.5 Key Generation Techniques for CL-PKC

could impersonate any entity in generating a private/public key pair and then making
the public key available. Thus, we must assume that while the KGC is in possession of
the master key and hence all partial private keys, it is trusted not to replace entities’
public keys. However, we assume that the KGC might engage in other adversarial
activity, eavesdropping on ciphertexts and making decryption queries, for example.
In this way, users invest roughly the same level of trust in the KGC as they would in
a CA in a traditional PKI. Further explanation on why we use the term roughly here
is made in Section 4.6.5. A formal model for the capabilities of adversaries and a
definition of security for certificateless encryption schemes will be given in Chapters
5 and 6.

4.5 Key Generation Techniques for CL-PKC

Names, e-mail adresses or IP addresses of hosts are often proposed as potential
identifiers ID 4. The identifier ID 4 could additionally include conditions (in the form
of attributes) that A satisfies. For example, the identifier might contain A’s age,
or sex, or date of birth, or even A’s public key P4. Since we wish to examine the
last case in detail, we denote an identifier of A which contains the public key Pa,
as ID4||P4. This will eliminate any ambiguity in our analysis and make explicit the

benefits of including Pj.

In Figure 4.1, we illustrate the main differences in the registration processes by
showing the nature of the communication and communication channel in traditional
certificate-based PKC, CL-PKC and ID-PKC. Notice that we have two registration
procedures for CL-PKC, both of which will be explored next. First we will outline
the benefits of excluding P4 from the identifier. Then we outline an alternative key
generation technique where P4 is included as part of the identifier. As we shall
see, including P4 in the identifier enhances the resilience of our schemes against a

cheating KGC and allows for non-repudation of certificateless signatures.

87

4.5 Key Generation Techniques for CL-PKC

PKG KGC KGC CA
7 Y| Y| ! Y 7 Y
SR 3
< < = . .
Q da A D4 < v Dy ké :CertA
- - - : = :
- : < :
1 9 1
A A @ A
Types of channel: _ p_)le_IiE: - authentic authentic & confidential

Figure 4.1: Authentication (or witnessing/enrolling) of entity A by the TA for ID-
PKC, CL-PKC(A), CL-PKC(B) and traditional certificate-based PKC respectively.
Authentications performed by the PKG and KGC, only need to occur before using
the private key.

45.1 Identifier Context: Excluding P,

The setting in which public keys are explicitly excluded from the identifiers CL-PKC
will be named CL-PKC(A). Here we assume that the KGC is trusted not to replace
the public keys of users and will only issue one copy of each partial private key to
the correct recipient. This may involve an unacceptable level of trust in the KGC
for some users. This setting also allows users to create more than one public key for
the same partial private key. This property can be desirable in some applications,

but undesirable in others.

An example of a desirable application for CL-PKC(A) is in the construction of simple
key renewal schemes with forward security. For each cryptographic use entity A uses
a unique public key, P4 j, where j € N. Once P4 ; is used, entity A updates it to
Py j+1)- The onetime use of each P, ; ensures that the compromise of one public
key (for example, via the exposure of its private key or part of the private key but

not the exposure of the partial private key) does not result in the compromise of

88

4.5 Key Generation Techniques for CL-PKC

any prior public keys. Hence P4 ; can be viewed as a short-term key and these
schemes offer forward security. In fact, our schemes extends the notion of forward
security because the compromise of one public key does not result in the compromise
of any other public keys. Moreover, this setting can be used to construct schemes
which are related to key-insulated PKC [62] and intrusion-resiliant PKC [61] — recall
the survey in Section 3.6. The difference, however, is that CL-PKC(A) schemes are
not refreshed by distinct time periods and the public key does not remain fixed.
Instead CL-PKC(A) operates under a somewhat opposite notion to [61, 62] where
the identifier remains fixed and the public key changes. In CL-PKC(A), entity A
is able to create a new private key for each ‘refreshed’ public key without being
forced to re-interact with the TA (KGC), hence, CL-PKC(A) can provide a simple

non-interactive key renewal mechanism.

Also notice that the benefit of using CL-PKC(A) in this way arises for two types of

schemes:

1. Schemes where the public key is easily transported to the party who makes use
of it, for example, CL-PKS schemes and key agreement protocols where the

public keys are included with the signatures or message passes respectively.

2. Schemes where the KGC goes offline or cannot afford to maintain the computa-
tional overhead required to regularly compute new partial private keys. Recall
that the functionality of a PKG is performed by a base station in the model of

[61] and a secure device in the model of [62].

In CL-PKC(A) a cheating KGC can replace an entity’s public key with one for which
it knows the secret value without any fear of being implicated. This is because the
user with the partial private key could also have been responsible for replacing the
public key. Thus, we must assume that no KGC would engage in such an action, and
that users trust the KGC not to do so. Note that this action is not equivalent to a
CA forging a certificate in a traditional PKI: the existence of two valid certificates
would surely implicate the CA (although the CA could perhaps revoke the entity’s

original certificate first). We will discuss this topic in more detail in Section 4.6.5.

89

4.5 Key Generation Techniques for CL-PKC

452 Identifier Context: Including P4

Here we sketch a simple binding technique which ensures that each user can only
create one public key for which he/she knows the corresponding private key; this
technique transforms CL-PKC(A) to what we call CL-PKC(B). In our technique an
entity A must first fix its secret value, x 4, and its public key, P4. The identifier is set
to ID4||P4. The partial private key D 4 which is delivered to entity A is derived from
a function with input ID4||P4 and the private key, Sy, is derived from a function
with inputs ID4||P4 and 4. We see that this D4 and S4 are now bound to A’s
choice of public key. This binding effectively restricts A to using a single public key,

P4, since A can only compute a single private key using Dy.

In general, with this binding in place there is no longer any need to keep partial
private keys secret: knowledge of the partial private key D4 does not help an ad-
versary create the unique private key S that matches the particular public key Py
which is bound to D 4. We note that this property must actually be proved for any

concrete scheme.

This binding technique is particularly important in the context of signatures: it
ensures a stronger form of non-repudiation than is otherwise possible for our certific-
ateless signature scheme in Section 8.4. Without the binding an entity can repudiate
a signature by producing a second private key and claim that the KGC created the
signature using that private key. This is no longer possible with the binding in place:
the existence of two private keys for an identity can only result from the existence
of two partial private keys binding that identity to two different public keys; only
the KGC can create these two partial private keys. Thus, our binding technique can
make the KGC’s replacement of a public key apparent and equivalent to a CA for-
ging a certificate in a traditional PKI. This binding also reduces the degree of trust
that users need to have in the KGC in our certificateless schemes. This is because in
CL-PKC(B) a cheating KGC who replaces an entity’s public key can be implicated
in an event of a dispute. The issue of trust and the issue of non-repudiation will be

examined in more detail in Section 4.6.5.

90

4.6 Properties of CL-PKC

4.6 Properties of CL-PKC

In this section we will discuss the issues of revocation, system complexity and trust
in CL-PKC.

4.6.1 Revocation in CL-PKC

There are numerous ways of performing revocation in CL-PKC schemes. Revocation
(of keys) in CL-PKC systems can be handled in the same way as in ID-PKC systems.
In [32, §1.1.1] the idea of appending validity periods (for example, year, date or time)
to identifiers ID 4 is given as one convenient solution. In the context of CL-PKC, this
ensures that any partial private key, and hence any private key, has a limited shelf-
life. Notice that this technique can be used to send messages into the future. This is
because all entities in the system can assume that the TA would not issue a relevant
partial private key until the appropriate time. So time no acts as trigger for when
the KGC is allowed to check the entities identifier and issue a new partial private key.
Therefore decryption, which requires the partial private key with the correct time,
is only possible after the appropriate time. If the identifier in the partial private
key contains both the public key and validity periods, then the partial private key
becomes a Gentry-like implicit certificate, that is, a type of short lived certificate

system which can have future validity periods.

Alternatively revocation can be performed by revoking the identifier, a component of
the identifier (such as an address attribute), or the public key of a particular entity
using standard certificate-based revocation techniques. For example, this can be done
by deploying a analogue of the online certificate status protocol (OCSP) or variants
of certificate revocation lists (CRLs). Note that the standard revocation techniques
when used in the CL-PKC setting may require less bandwidth than certificate-based
counterparts. This because only public keys and/or identifiers need to be revoked and
not certificates, which are typically larger. This dual way of tackling the revocation

problem in CL-PKC allows for a ‘best of both worlds’ solution to be deployed.

91

4.6 Properties of CL-PKC

Finally, by exploring a method of updating private keys (that is, implicit revocation
of private keys) in ID-PKC, we can create an alternative CL-PKC revocation method.
This method reduces the exposure time of the master-key in ID-PKC and is suitable
for users of ID-PKC who require stronger than usual security. The method is straight-
forward: it requires regularly updating the PKC’s public key sP in params (by using
a new s for every month, for example). In ID-PKC each entity will have to re-
establish an authentic and confidential channel with the PKC to obtain a private
key for the updated s — recall Figure 4.1. This interaction is clearly expensive,
therefore, such a solution is impractical. CL-PKC(B), however, only requires an
authentic channel with the KGC. This authentic channel can be reduced to a public
channel if the public key of the entity remains unchanged. This is because when the
entity’s public key remains the same, the KGC knows that only that entity owns
the public key’s matching private key so re-authentication is not required. Hence,
this revocation solution becomes practical because of its low-interaction. Actually
this is a solution for releasing a partial private key only at the right time and is
related to the intrusion-resilient public key [61], key-insulated public key [62] and
certificate-based [76] solutions. See Section 4.6.4 for more examples extending this

low-interactiveness property of CL-PKC.

4.6.2 Certificate Free

It bears repeating that our CL-PKC schemes are certificate-free. CL-PKC eliminates

many of the problems associated with traditional certificate-based PKC. For example:

e CL-PKC storage and communication bandwidth is low because the identi-
fier only contains relevant information; certificate-related redundancies are not

present.

o CL-PKC potentially reduces the computational bandwidth, as certificates do

not need to be verified before the public keys are used.

e CL-PKC offers its users a higher degree of privacy due to its inclusion of only

92

4.6 Properties of CL-PKC

relevant information in the identifier. Certificates can contain a lot of poten-
tially irrelevant information (based on application), and with the increase of
identity theft, mitigating the risk of putting personal information (such as an

address or a date of birth) into the wrong hands is highly desirable.

Furthermore, due to the distributive nature of certificates, another inherent property
of certificate-based PKI is its static centralised point of control and static certificate
content. This can be restrictive and is seen to be the root of many business and legal
related problems. For example, entity B cannot initiate any secure communication
with entity A unless A owns a certificate in advance. Furthermore, entity B may
reject using the public key in the valid certificate because it either originated from an
untrusted CA (to B) or because it did not contain the precise information required
by B. Hence, unless entity A knows for sure its certificate will be accepted by B,
it will not get a certificate in advance. Thus, entity A has no incentive to pay for
a certificate except in two scenarios: (i) the certificate is tailored for a very specific
pre-determined application, or (77) the certificate content is very broad in an attempt
to capture all applications. From the CA’s point of view, the first scenario is ideal
for business, however, it requires some prior communication with B to determine
what B requires A’s certificate to contain. If A wishes to communicate securely with
multiple Bs (who each have different certificate requirements), then A is required
to re-authenticate himself with the CA if each certificate contains a different public
key, we will return to this issue in Section 4.6.4. The second scenario requires the
publication of a single certificate which is neither profitable for the CA nor desirable

for all Bs. These problems can be mitigated by using CL-PKC.

In the CL-PKC setting, entities using the system can easily specify the content of
the identifier (hence, they apply logic into the system) and so they play a more
prominent role in the system. This is related to concept of cryptographic workflow
which was previously discussed in Section 3.2.5. This transforms the role of TAs
from policy pre-distributors (often ‘blanket’ policies) to that of policy enforcers. In
CL-PKC, the public key P4 can either be for a specific TA (KGC) chosen by the
public key owner, A, as in standard certificate-based PKC, or any TA (KGC) chosen

93

4.6 Properties of CL-PKC

by the entity communicating using the public key, B — provided all KGCs share some

public parameters. Both these settings are examined next.

e Dynamic point of control and identifier content: An encryptor applying some
logic (by adding some conditions, for example) during encryption can pick the
TA and dictate the policy under which the ciphertext he encrypted can be
decrypted. For example, the schemes in Chapter 6 provide this property.

e Static point of control and dynamic identifier content: A decryptor can use a
public key that is restricted to a specific TA and hence dictate the TA with
which he is willing to deal. The encryptor only applies some logic during
encryption which dictates the policy under which the ciphertext he encrypted
can be decrypted. For example, the schemes in Chapter 8 provide this property.

4.6.3 Flexibility via Cryptographic Workflow

It was illustrated in [48, 122, 143] how ID-PKC can be used as a tool to enforce
cryptographic workflows, a concept which we covered in Section 3.2.5. CL-PKC
supports cryptographic workflow in the same way as ID-PKC. Furthermore, a very
similar workflow procedure to that explored in Section 3.2.5 can be constructed using
CL-PKC. To understand the similarities, let us consider the example presented in
Section 3.2.5.1. The problem in this example remains the same, which is that B needs
a simple solution for distributing a serial-number to a customer A in the absence
of a credit card infrastructure. The solution to this problem, however, needs to be
adapted in a minor fashion to take into account A’s public key which is present in the
CL-PKC setting. The only difference in the solution is that B additionally includes
A’s public key in the encryption stage and that a partial private key D, is obtained
from the KGC — instead of d 4 from the PKG. Now D 4 is used to compute S 4, which
in turn is used to decrypt the ciphertext containing the serial-number. Notice that

everything else including the identifier, ‘ID 4|[paid B $X’, remain unchanged.

Unlike in ID-PKC, in the above example the TA cannot escrow all communications.

94

4.6 Properties of CL-PKC

Moreover, the consequences of a master key compromise are far less disastrous for
both the TA and B. After all, the livelihood of B may rest on the fact that its serial-
numbers remain confidential. In the case where a certificate-based PKI is used, no
elegant solution exists unless we use a specialised payment infrastructure such as
credit card infrastructure. In the absence of any additional payment infrastructure,
one solution is for A to obtain all the conditions that B will require in advance,
then apply for a one time certificate containing all these suitable conditions. The
certificate Cert 4 has to be obtained first, since only after its successful verification will
B encrypt the serial-number with the public key K5 4. Notice that extra rounds of
communication are required. Alternative solutions involving secret sharing between

B and the CA are also not as elegant as the one using CL-PKC demonstrated above.

4.6.4 Low Interaction

We have already described in Section 4.5.1 how CL-PKC(A) can be used to provide
a non-interactive key renewal mechanism. Nevertheless, CL-PKC is generally con-
sidered more interactive when compared with ID-PKC: after all some ID-PKC schem-
es are non-interactive. However, in the next example we show a surprising result,
which is that a certificateless public key signature (CL-PKS) scheme can require less
interaction when compared with either a standard certificate-based PKS scheme or
an ID-PKS scheme. This benefit always holds for situations where the signing entity
reuses the same public key with different identifiers. Moreover, the CL-PKS scheme

has better non-repudiation properties when compared to ID-PKS schemes.

4.6.4.1 An Example Use of a CL-PKS Scheme

In the scenario below we exploit the low interactiveness of CL-PKS schemes.

Problem: Entity A (for example, a manager) needs to sign many documents. Each

document, however, needs to be signed using a different policy. Policies frequently

95

4.6 Properties of CL-PKC

change and some policies could be conflicting. The policy could include fields such

as role of the signer, date of policy, liabilities and penalties etc.

Solution: Using a CL-PKS scheme, set the identifier of A to be ‘ID 4||policy;||Pa’.
Entity A authenticates himself to the KGC once with the identifier ‘ID 4 ||policy, || P4’
using the communication channels illustrated for CL-PKC in Figure 4.1 to obtain
Dy, for i = 1. All subsequent partial private keys with different policies required
during signing can be obtained from the KGC by simply using public channels as
long as the same P4 is included in the identifier. This is because only ID 4 owns P4’s
matching x 4. The KGC can check whether entity A with identity string ID 4 satisfies

(or continues to satisfy) each new policy before issuing a new Dy ; for ¢ > 2.

Analysis: The signature and verification procedure is just like that used in ID-
PKS schemes. The reason this CL-PKS scheme is considered less interactive than
an ID-PKS is because no additional authentication is required when requesting new
partial private keys. Moreover, private channels are not required to distribute the
new partial private keys. An additional property of CL-PKS schemes is that they

provide non-repudiation, unlike ID-PKS schemes.

In context of traditional PKI, if we allow a CA to produces two certificates Cert 4 1
and Cert4 o with different policies (for example, policy; and policys) for a single
public key Kp. 4, then potential problems are created. This is because the two
policies in the certificates can be contradictory and during disputes the verifier (or
signer) can claim that Kpup,a (or Kpriy, 4) was used under the certificate Cert4 2 and
not Cert 4 1. This problem arises because the binding between the policy and public
key in standard certificate-based cryptography is not as explicit as in CL-PKC. Of
course if different values of K, 4 are used for each policy, then a new K, 4,; needs
to be computed each time by A. However, for each Ky, 4, entity A needs to re-
authenticate himself to the CA, and provide a proof of possession of the private key

matching Kpup A -

96

4.6 Properties of CL-PKC

4.6.5 Trust, Non-repudiation and Cryptographic Evidence

Trust is a fundamental resource which needs to be explicitly defined in any new cryp-
tographic system. It is particularity important to understand the trust relationships
between entities and their TAs in public key systems. Girault [78] presented a simple
formalisation of trust in public key systems making use of a TA by defining three

levels of trust, which are:

e Trust Level 1: The TA knows (or can easily compute) entities’ private keys.

The TA can impersonate any entity at any time without being detected.

e Trust Level 22 The TA does not know (or cannot easily compute) entities’
private keys. However, the TA can still impersonate an entity by generating

false guarantees using false authentication.

e Trust Level 3: The TA does not know (or cannot easily compute) entities’
private keys. The TA can still impersonate any entity, however, the fraud of

the TA can be detected.

A CA in traditional certificate-based PKI is often assumed not to issue new certific-
ates binding arbitrary public keys and entity combinations of its choice. This is so
the CA does not bind public keys where it knows the corresponding private key. In
a traditional PKI, if the CA forges certificates, then the CA can be identified as hav-
ing misbehaved through the existence of two valid certificates for the same identity.
Hence, traditional PKIs achieve Trust Level 3. By contrast, ID-PKC only achieves
Trust Level 1 because the PKG knows every entity’s private key. It is instructive to
examine the Trust Level that is achieved by CL-PKC. When compared to ID-PKC
the trust assumptions made of the TA (that is, KGC) in CL-PKC are much reduced:
in ID-PKC users must trust the PKG not to abuse its knowledge of private keys in
performing passive attacks, while in CL-PKC users need only trust the KGC not
to actively propagate false public keys. In our CL-PKC(A) schemes a new public
key could have been created by the legitimate user or by the KGC, and it cannot

97

4.6 Properties of CL-PKC

be easily decided which is the case. This means that our CL-PKC(A) schemes only
achieve Trust Level 2. Notice that using a self certificate (recall Section 4.3.2) does
not improve the fundamental trust relationship (that is, Trust Level) between each
entity and the TA in CL-PKC(A). This is because the KGC can still impersonate any
entity by generating false self certificates. Furthermore, self certificates generated by

the entities are indistinguishable from the self certificates generated by the KGC.

As we have seen in Section 4.5.2, we can further strengthen security against a ma-
licious KGC in our schemes by allowing entities to choose identifiers, which bind
together their public keys and identities. Now the existence of two different working
public keys for the same identity will identify the KGC as having misbehaved. By
a ‘working’ public key we mean that the private key operation matching the public
key has been executed. The existence of two working public keys for an identity can
only result from the existence of two partial private keys binding that identity to two
different public keys; only the KGC can create these two partial private keys. With
this binding in place, CL-PKC(B) reaches a higher trust level than CL-PKC(A). The
Trust Level attained by CL-PKC(B) is between Trust Level 2 and Trust Level 3. We
explain below why CL-PKC(B) does not fully attain Trust Level 3, but first we take

a closer look at encryption schemes in a traditional PKI.

A dishonest CA in standard PKC can be detected trying to impersonate A if it issues
a new certificate binding its public key to A’s identifier string. This new certificate

contains the CA’s chosen public key, K, ca ,, and will have the form:

Certca, = (IDaAl|Kpub,ca |Z(D A K pub,ca L)s Kpriv,ca)-

Entity B encrypts for entity A using the (false) public key Kb ca, from Certca ,;
the CA can decrypt the ciphtertext with K., ca, and then re-encrypt using A’s
original public key, K, 4, from Cert4. Note here that the private key of the CA,
Kpriv,ca, which is used for signing certificates is not the same as the private key
used in the impersonation, that is, K jyca,. Entities A and B can only see that
an attack has taken place if they later compare the certificate that B verified before

encrypting to A with the certificate A owns. The attack is detectable only if A and

98

4.6 Properties of CL-PKC

B suspect it has taken place. The evidence is the CA’s signature on the false public
key. Since certificates are intended to be public and readily available, this evidence

is easily gathered by A or B.

Now let us examine the same set of issues for CL-PKC(B). A misbehaving KGC
in CL-PKC(B) can be detected trying to impersonate A if it issues for itself a new
partial private key, binding its chosen public key Pca, to A’s identifier string. This
new partial private key will be produced by a key generation function with input
ID || Pca,, instead of input ID 4|/ P4. Entity B encrypts for A using the public key
Pca ,; the CA can decrypt and then re-encrypt using A’s original public key, Pj.
Entities A and B can only see that an attack has taken place if they later compare
the public key that B used in encrypting to A with the public key A has. The attack
is detectable only if A and B suspect it has taken place. If the partial private key is
public, the evidence implicating the KGC is the false partial private key. However,
unlike the situation with a traditional PKI, we cannot assume that the partial private
key is always accessible. It may well be available in a CL-PKC(B) scheme, but there

is no guarantee of this for A or B.

When the partial private key is not public, then evidence implicating the KGC is a
single message encrypted with two different working public keys. One cannot simply
implicate the KGC when the same message is found to be encrypted with two different
public keys, by claiming that entity A has one working public key, and the KGC has
the other. This is because the evidence can be disputed by the KGC, as it cannot
be always assumed that entity B is an honest participant. A dishonest participant
B could encrypt the same message once with P4 and send it to A and then encrypt
the message with P’j. If we assume that B is honest, then when A and B meet, B
can claim that it only encrypted the message using P). The KGC is then implicated
because it is the only entity that could have translated the ciphertext which B
encrypted using P to one which uses the correct public key, P4, by decrypting and
re-encrypting. Hence, the binding does not make the Trust Level of the CL-PKC(B)
encryption scheme identical to that of certificate-based PKC: rather, it rests slightly

below Trust Level 3, and the exact level depends on the availability of partial private

99

4.6 Properties of CL-PKC

keys and the honesty of participants. This motivates us to redefine Trust Level 3 as
follows: “The TA does not know (or cannot easily compute) entities’ private keys.
The TA can still impersonate any entity, however, the fraud of the TA can always
be detected.” Thus, on their own, CL-PKC(B) encryption schemes do not achieve
Level 3, while certificate-based PKC schemes do.

Now we consider the Trust Level for primitives other than encryption. Any commu-
nication which offers a proof of possession (PoP) of the private key corresponding
to the public key, such as a signature or communication using keys agreed in an
authenticated key agreement protocol, will provide evidence of a working public key
which can be used to implicate the KGC. Consequently, any CL-PKC(B) scheme in
which the cryptographic primitive is accompanied by a PoP of the private key will
automatically achieve Trust Level 3, since the entities are always able to implicate
the KGC.

The levels of trust defined in this section are related to non-repudiation (see p.37 for
a definition). CL-PKC(B) schemes which achieve Trust Level 3, such as a signature
scheme, automatically provide non-repudiation. This is because non-repudiation,
which in essence is the inability of an entity to deny having used the private key

(known only to himself), can only be attained with Trust Level 3 schemes.

Another important link between Trust Level 3 and non-repudiation arises because an
entity will have to convince a court (or a legal system) of the TA’s wrong doing and
the court’s decision will be based upon the evidence. This legal process is expensive,
and so it is only practical for som cases. Furthermore, in cases where secrets are lost
(often associated with encryption and key agreement), the legal process is insufficient,
since compensation is usually irrelevant. If the legal process will not be used (or does
not exist), the main advantage of deploying a Trust Level 3 encryption scheme instead

of Trust Level 2 encryption scheme diminishes.

100

4.6 Properties of CL-PKC

4.6.6 Interoperability of CL-PKC Implementation

As will become apparent, the CL-PKC schemes in this thesis are very closely related
to existing pairing-based ID-PKC schemes. One consequence of this is that any
infrastructure deployed to support pairing-based ID-PKC, for example, a PKG can
also be used to support our CL-PKC schemes: in short, the two types of schemes can
easily co-exist. In fact, an entity can be granted a private key for a pairing-based I1D-
PKC scheme and immediately convert it into a private key for our CL-PKC scheme.
In this way, an entity who wishes to prevent the PKG from exploiting the escrow
property of an identifier-based system can do so, although, at the cost of losing the

identifier-based nature of its public key.

4.6.7 Efficiency

All the schemes we present in Chapters 5, 6 and 8 use a small number of pairing cal-
culations for each cryptographic operation, some of which can usually be eliminated
when repeated operations involving the same entities (identifiers) take place. Public
keys are usually small in size because they are elements of Gi, which is usually a

subgroup of the group of points on an elliptic curve of moderate size.

The infrastructure needed to support CL-PKC is lightweight when compared to a
traditional PKI. This is because, just as with ID-PKC, the need to manage certific-
ates is completely eliminated. This immediately makes CL-PKC attractive for low-
bandwidth, low-power situations, for example, mobile security applications, where
the need to transmit and check certificates has been identified as a significant limit-
ation [56]. Note, however, that the signature schemes enjoying very short signatures
[36] could also be used to significantly decrease the size of certificates and create a
lightweight PKI.

101

4.7 Summary of CL-PKC

4.7

Summary of CL-PKC

In this chapter we introduced the concept of certificateless public key cryptography, a

model for the use of public key cryptography that complements (and is intermediate

between) the identity-based approach and traditional PKI.

ID-PKC | CL-PKC(A) | CL-PKC(B) | Trad. PKC
Certificate-free Yes Yes Yes No
Cryptographic Workflow Yes Yes Yes No
Level of Trust 1 2 2/ 30 3
Non-repudiation of Sig. No No(@) Yes Yes
Non-interactive*") Yes No(®) No No

Table 4.1: Comparison of the properties of traditional PKC, CL-PKC and ID-PKC.

(4)

(i)

(iid)

(iv)

Trust Level 3 is achieved provided any of the following three conditions are true: the
scheme provides a PoP of the private key; the partial private key is public; or the
entity communicating by using the public key is assumed to be honest.

To create a signature, the KGC in CL-PKC(A) also needs to replace the public key
of the entity before signing a message. In ID-PKC, the PKG produces a signature by
using the entity’s private key. Since the PKG in ID-PKC does not need to alter any
value in the system, the two notions of non-repudiation for CL-PKC(A) and ID-PKC
are not identical.

Note that non-interactive schemes, although desirable, cannot produce forward secure
schemes. Non-interactivity is only relevant for key agreement and encryption schemes.

Not non-interactive in the usual sense, however, it produces a mechanism for non-
interactive key renewal — see Section 4.5.1.

A summary of CL-PKC’s core properties can be found in Table 4.1 and the nature of

CL-PKC’s witnessing channel was illustrated in Figure 4.1. Moreover, we explained

in Sections 4.6.1 and 4.6.4 why entity A does not always need an authentic channel

when communicating with the KGC in CL-PKC(B) in Figure 4.1. For example, we

showed in Section 4.6.4 how repeated interactions with the KGC using the same

public key can eliminate the need for re-authentication. CL-PKC has other distinct

properties, which were demonstrated by the examples in Sections 4.5 and 4.6.3. The

use and applications of identifiers in CL-PKC allows for a granular approach to many

problems. The identifiers we used are very simple and it can be adapted to benefit

102

4.7 Summary of CL-PKC

many different real world operations and processes.

To summarise, Shamir in [135, p. 47] stated when discussing the idea of ID-PKC :

The scheme is ideal for closed groups of users such as executive of multina-
tional company or the branches of a large bank, since the headquarters
of the corporation can server as a key generation center that everyone

trusts. ...

Many of the ideas and twists for ID-PKC carry forward to CL-PKC, however, the
implicit restrictions of ID-PKC captured by using the word ‘closed’ does not hold
in CL-PKC and this is to do with ‘trust’. The underlying trust model of CL-PKC
was examined and analysed in this chapter. As a result, the converse word ‘open’ is
more appropriately describes CL-PKC because, for example, properties such as true

non-repudiation is seldom required in closed groups.

Now that we have outlined the general properties of CL-PKC, we briefly consider
examples of specific CL-PKE schemes. In Chapter 5 we will consider a simple CL-
PKE scheme which is secure in a weak model. This CL-PKE scheme is built upon
in Chapter 6, where we will provide a CL-PKE scheme which is secure in a stronger
model. Furthermore in Chapter 6, we demonstrate some generic CL-PKE schemes
that make use of any ID-PKE scheme and any standard PKE scheme. To round off
the subject of CL-PKC, in Chapter 8 we derive some further examples of certific-
ateless schemes. These schemes all share a common setting. A scheme’s satisfactory
deployment is related to its functionality and overall performance. If public keys can
used naturally (in efficient schemes) in conjunction with conditions and workflows,

then the ideas discussed in this chapter can achieve their full potential.

103

CHAPTER 5

CL-PKE — OWE Security

Contents
5.1 Imntroduction00 104
5.2 Certificateless Public Key Encryption 105
5.3 OWE Security Model for CL-PKE 107
5.4 A CL-PKE Scheme with OWE Security 111
5.5 Security of the BasicCL-PKE Construction 113
5.5.1 EIG-BasicPub 114
5.5.2 BF-BasicPub 115
5.5.3 Security of EIG-BasicPub L. 116
5.5.4 Security of BF-BasicPub 0L 117
5.5.5 Security of BasicCL-PKE 118
5.6 SUummary it ittt e e e e e e e e e 129

In this chapter we define the concept of certificateless public key encryption (CL-
PKE). To illustrate CL-PKE, we focus on a simple construction that is secure in a
weak model. This chapter will serve as a building block for the sequel, in which we

will construct a CL-PKE scheme that is secure in a much more robust model.

5.1 Introduction

The only way to make concrete the concepts in Chapter 4 is by presenting actual

CL-PKC schemes. Proposing a simple and yet practical certificateless public key en-

104

5.2 Certificateless Public Key Encryption

cryption (CL-PKE) scheme, the subject of this chapter, is an important advancement
of CL-PKC.

One of the main contributions of this chapter is the precise definition of the concept
of CL-PKE in Section 5.2. Another important contribution is a set of security res-
ults which will be reutilised in Chapter 6. This will make the next chapter easier to
follow and will familiarise the reader with many provable security techniques. Fur-
thermore, the simple CL-PKE scheme of this chapter will help the reader understand
the concept of CL-PKC and our other CL-PKE schemes.

We will study an adversarial model for CL-PKE in Section 5.3. The adversarial
model is a one-way encryption model (OWE). It captures an adversary who can
replace public keys and another who has access to the master key (but does not
replace public keys). We then consider a simple and computationally efficient CL-
PKE scheme in Section 5.4. We prove that it is secure in our OWE security model,
provided that the BDHP is hard, in Section 5.5. Note that this scheme was not
presented in [6]. The OWE model is weak, and may not be appropriate for all
applications. Ultimately, we will prove the security of a related CL-PKE scheme in

a stronger model in the next chapter.

5.2 Certificateless Public Key Encryption

In this section we present a formal definition for certificateless public key encryption
(CL-PKE). We also examine the capabilities which may be possessed by adversaries
against a CL-PKE scheme and from this, derive a security model for CL-PKE. This
security model used in this chapter will serve as a building block for the stronger

model presented in Chapter 5.
A CL-PKE scheme is specified by seven randomized algorithms: Setup, Partial-

Private-Key-Extract, Set-Secret-Value, Set-Private-Key, Set-Public-Key, Encrypt and

Decrypt. We describe the function of each of these algorithms in turn.

105

5.2 Certificateless Public Key Encryption

Setup: This algorithm takes security parameter k£ as input and returns the system
parameters params and master-key. The system parameters includes a description of
the message space M and ciphertext space C. Usually, this algorithm is run by the
KGC. We assume throughout that params are publicly and authentically available,
but that only the KGC knows master-key.

Partial-Private-Key-Extract: This algorithm takes params, master-key and an identifier
for entity A, ID4 € {0,1}*, as input. It returns a partial private key D 4. Usually
this algorithm is run by the KGC and its output is transported to entity A over a

confidential and authentic channel.

Set-Secret-Value: This algorithm takes as inputs params and an entity A’s identifier

ID4 as inputs and outputs A’s secret value x 4.

Set-Private-Key: This algorithm takes params, an entity A’s partial private key Dy
and A’s secret value x4 as input. The value x4 is used to transform D4 into the

(full) private key Sa. The algorithm returns S4.

Set-Public-Key: This algorithm takes params and entity A’s secret value x 4 as input

and from these constructs the public key P4 for entity A.

Normally both Set-Private-Key and Set-Public-Key are run by an entity A for itself,
after running Set-Secret-Value. The same secret value x 4 is used in each. Separating
them makes it clear that there is no need for a temporal ordering on the generation
of public and private keys in CL-PKE. Usually, A is the only entity in possession of

S4 and x4, and x4 will be chosen at random from a suitable and large set.

Encrypt (£°): This algorithm takes as inputs params, a message M € M, and the
public key P4 and identifier ID4 of an entity A. It returns either a ciphertext C' € C
or the null symbol L indicating an encryption failure. Such a failure will always

occur in the event that P4 does not have the correct form®!. In our scheme, this is

5!The encryption schemes in [6] and Chapter 8 could fail for reasons to do with the structure of
the public key.

106

5.3 OWE Security Model for CL-PKE

the only way an encryption failure will occur. We write {C, 1} « E°V(M, P4, 1D).

Decrypt (DCY): This algorithm takes as inputs params, C' € C, and a private key S.
It returns a message M € M or a message | indicating a decryption failure. We
write {M, L} « DCE(C, S4).

Naturally, we insist that output M should result from applying algorithm Decrypt
with inputs params, S4 on a ciphertext C' generated by using algorithm Encrypt with

inputs params, P4, ID4 on message M. In other words:

DOL(ECY (M, P4, 1D L), S4) = M.

5.3 OWE Security Model for CL-PKE

Given this formal definition of a CL-PKE scheme, we are now in a position to define
one-way encryption (OWE) adversaries for such a scheme. A formal description of
OWE security for standard PKE schemes can be found in Section 3.5.3; our definition
of OWE security for CL-PKE builds on this definition. The usual models for security
of PKE were strengthened for ID-PKC in [32] to handle adversaries who can extract
the private keys of arbitrary entities and who choose the identifier ID.y, of the entity
on whose public key they are challenged. This extension is appropriate because
the compromise of some entities’ private keys should not affect the security of an
uncompromised entity’s encryptions. It also shows that the scheme is secure in the

presence of colluding entities.

Here, we further extend the model of [32] to allow adversaries who can extract
partial private keys, private keys, or both, for identities of their choice. Given that
our scheme has no certificates, we must further strengthen the model to allow for
adversaries who can replace the public key of any entity with a value of their choice.
We must also consider carefully how a challenger should respond to key extraction

for identities whose public keys have been changed.

107

5.3 OWE Security Model for CL-PKE

In the next chapter, we will consider an even stronger adversary who can also decrypt

arbitrary ciphertexts of his choice.

Here we provide a list of the actions that a general adversary against a CL-PKE
scheme may carry out and a discussion of how each action should be handled by the

challenger for that adversary.

1. Extract partial private key of A: Challenger C responds by running al-
gorithm Partial-Private-Key-Extract to generate the partial private key D4 for
entity A.

2. Extract private key for A: As in [32], we allow our adversary .4 to make
requests for entities’ private keys. If A’s public key has not been replaced then
C can respond by running algorithm Set-Private-Key to generate the private
key S4 for entity A (first running Set-Secret-Value for A if necessary). Also as
in [32], we insist that A does not at any point extract the private key for the
selected challenge identifier ID.y,. In [6], we argued that it was unreasonable to
expect C to be able to respond to an extract private key query if A has already
replaced A’s public key. We always disallowed this in the model essentially
because it would be impossible to simulate. Even if it were possible to simulate
this for the schemes in [6], it would not (immediately) lead to an attack on those
schemes. However, in the scheme of this chapter (and Chapter 6) it does lead
to an attack. Therefore, the grounds on which we adopt this restriction in
our model has altered from [6] — this is a subtle but important point. Let us
consider heuristically why an attack could exist for the scheme in this chapter.
The private key consists of two separate components: a partial private key
(corresponding to a particular identity) and a secret value (corresponding to
a particular public key). Here, if and adversary A is, for example, allowed to
replace the public key for any identifier ID with the challenge public key, P,
then A can derive from the private key for identifier ID the secret value zy
corresponding to Py, by making an extract private key request on ID. Then if
A makes a partial private key request on ID.y, A can construct the private key

of IDg, from the partial private key and the secret value zg,.

108

5.3 OWE Security Model for CL-PKE

3. Request public key of A: Naturally, we assume that public keys are available
to A. On receiving a first request for A’s public key, C responds by running al-
gorithm Set-Public-Key to generate the public key P4 for entity A (first running

Set-Secret-Value for A if necessary).

4. Replace public key of A: Adversary A can repeatedly replace the public
key P4 for any entity A with any value P of its choice. We assume here that
the adversary’s choice P is a valid public key; this assumption can be removed
(and our schemes remain secure) at the cost of some additional complexity in
our definitions. The current value of an entity’s public key is used by C in
any computations (for example, preparing a challenge ciphertext) or responses
to A’s requests (for example, replying to a request for the public key). We
insist that A cannot both replace the public key for the challenge identifier
IDon before the challenge phase and extract the partial private key for IDg, in
some phase — this would enable A to receive a challenge ciphertext under a

public key for which it could compute the private key.

We also want to consider adversaries who are equipped with master-key, in order to
model security against an eavesdropping KGC. As discussed in Section 4.1, we do
not allow such an adversary to replace public keys: in this respect, we invest in the
KGC a similar level of trust as we do in a CA in a traditional PKI — recall Section
4.6.5. So we will distinguish between two adversary types, with slightly different

capabilities:

CL-PKE Type I OWE Adversary: Such an adversary A; does not have access
to master-key. However, A; may request public keys and replace public keys with
values of its choice and extract partial private and private keys for all for identities of
its choice. As discussed above, we make several natural restrictions on such a Type

I adversary:

1. Adversary Aj cannot extract the private key for 1Dy, at any point.

2. Adversary A cannot request the private key for any identifier if the corres-

109

5.3 OWE Security Model for CL-PKE

ponding public key has already been replaced.

3. Adversary A; cannot both replace the public key for the challenge identifier
IDon before the challenge phase and extract the partial private key for IDg, in

some phase.

CL-PKE Type IT OWE Adversary: Such an adversary Aj; does have access to
master-key, but may not replace public keys of entities. Adversary A;; can compute
partial private keys for itself, given master-key. It can also request public keys and
make private key extraction queries for identities of its choice. The restrictions on

this type of adversary are:

1. Adversary Aj; cannot replace public keys at any point.

2. Adversary Aj; cannot extract the private key for IDg, at any point.

One-way encryption security for CL-PKE: We say that a CL-PKE scheme is
OWE secure if no polynomially bounded adversary A of Type I or Type II has a

non-negligible advantage against the challenger in the following game:

Setup: The challenger takes a security parameter k as input and runs the Setup
algorithm. It gives A the resulting system parameters params. If A is of Type I,

then the challenger keeps master-key to itself, otherwise, it gives master-key to A.

Phase 1: Adversary A issues a sequence of requests, each request being either a
partial private key extraction, a private key extraction, a request for a public key or
a replace public key command for a particular entity. These queries may be asked

adaptively, but are subject to the previously defined rules on adversary behaviour.

Challenge Phase: Once A decides that Phase 1 is over it outputs an identifier 1D,
on which it wishes to be challenged. Again, the adversarial constraints given above

apply. In particular, IDg, cannot be an identifier for which the private key has been

110

5.4 A CL-PKE Scheme with OWE Security

extracted. Moreover, if A is of Type I, then 1Dy, cannot be an identifier for which
both the public key has been replaced and the partial private key extracted. The
challenger now picks a random plaintext M € M and computes C*, the encryption

of M under the current public key Py, for IDg,. Then C* is delivered to A.

Phase 2: Now A issues a second sequence of requests as in Phase 1, again subject
to the rules on adversary behaviour above. In particular, no private key extraction
on IDgy, is allowed, and, if A is of Type I, then the partial private key for 1D, cannot

be extracted if the corresponding public key was replaced in Phase 1.

Guess: Finally, A outputs a guess M’ € M. The adversary wins the game if
M = M'. We define A’s advantage in this game to be Adv(A) := Pr[M = M.

Notice that the definition of OWE for standard PKE is similar to that for CL-PKE. In
CL-PKE we additionally have extraction queries, request/replace public key queries
and the adversary is challenged on an identifier /public key pair of its choice — not a

random public key.

5.4 A CL-PKE Scheme with OWE Security

The algorithms for BasicCL-PKE, our OWE secure CL-PKE scheme, are as follows:

Setup: This algorithm runs as follows:

1. Run ZG on input k to generate output (G, Gg, é). Recall the definition of ZG
in Section 2.4.1.

2. Choose an arbitrary generator P € Gy.
3. Select a random master-key s € Z; and set Py = sP.

4. Choose cryptographic hash functions H; : {0,1}* — GJ, Ha : Go — {0,1}"
and Hs : G; — {0,1}". Here n will be the bit-length of plaintexts.

111

5.4 A CL-PKE Scheme with OWE Security

The system parameters are params = (G1, Go, é,n, P, Py, Hy, Ha, H5). The master-
key is s € Z;. The message space is M = {0,1}" and the ciphertext space is
C= (Gq X {0, 1}”.

Partial-Private-Key-Extract: This algorithm takes as input an identifier ID4 € {0, 1}*,
and carries out the following steps to construct the partial private key for entity A

with identifier 1D 4:

1. Compute Q4 = H1(ID4) € Gj.

2. Output the partial private key Dg4 = sQ4 € G7.

The reader will notice that the partial private key of entity A here is identical to
that entity’s private key in the BF ID-PKE scheme described in Section 3.2.4.1. Also
notice that A can verify the correctness of the Partial-Private-Key-Extract algorithm
output by checking é(Dy, P) = é(Qa,Py). Observe that Dy is actually a BLS
signature [36, §3] on an identifier string. In fact, D4 forms a certificate only if the
identifier string binds an identity and a public key. Certificates should be publicly
available so that they can be verified by any entity.

Set-Secret-Value: This algorithm takes as inputs params and an entity A’s identifier

ID 4. It selects a random x4 € ZZ and outputs x4 as A’s secret value.

Set-Private-Key: This algorithm takes as inputs params, entity A’s partial private
key Dy and A’s secret value z4 € Zj. The output of the algorithm is the pair
Sa = (Da,x4). So the private key for A is just the pair consisting of the partial

private key and the secret value.

Set-Public-Key: This algorithm takes params and entity A’s secret value x4 € Zj
as inputs and constructs A’s public key as P4 = x4P. A valid public key is any
Py € GT.

Encrypt: To encrypt M € M for entity A with identifier ID4 € {0,1}* and a public

112

5.5 Security of the BasicCL-PKE Construction

key P4, perform the following steps:

1. Check that P, is in G7, if not output L . This checks the validity of the public
key.

2. Compute Q4 = Hi(ID4) € Gj.
3. Choose a random value r € Z;‘Z‘.

4. Compute and output the ciphertext:

C=(UV)=(rP,Mo Hyé(Qa,Po)") ® Hs(rPa)).

Decrypt: Suppose C' = (U, V) € C. To decrypt this ciphertext using the private key

Sa = (Da,x4), compute and output

V@& Hy(é(Da,U)) @ Hs(xAU).

When C'is a valid encryption of M using P4 and ID 4, it is easy to see that decrypting
C using Sq4 = (Da,x4) will result in an output M. This concludes the description
of BasicCL-PKE.

5.5 Security of the BasicCL-PKE Construction

In order for us to prove the security of BasicCL-PKE we need to introduce two stand-
ard PKE schemes: EIG-BasicPub and BF-BasicPub. The security of both these PKE
schemes is examined in Sections 5.5.3 and 5.5.4 respectively. These proofs form a
foundation which the security proofs in Section 5.5.5 are built upon. Recall that the

adversaries appropriate for standard PKE schemes were defined in Section 3.5.3.

113

5.5 Security of the BasicCL-PKE Construction

55.1 EIG-BasicPub

Here, we define a public key encryption scheme EIG-BasicPub. The scheme is obtained
by choosing a particular G and modifying the parameters of the certified ElGamal
encryption scheme of Section 3.2.3.1. We generate parameters (G, Go, €) using ZG,
and set G = G and include Go and é in the parameters of the scheme of Section
3.2.3.1. The reason we explicitly include both Go and é in the parameters is to

highlight the context in which G is generated. This is useful for security purposes.

Formally, EIG-BasicPub is specified by four algorithms: Setup, Key-Generation, En-
crypt and Decrypt.

Setup:

1. Run ZG on input k to generate (G, Ga,é) with the usual properties. Choose
a generator P € (.

2. Choose cryptographic hash function Hs : G; — {0, 1}".

The message and ciphertext spaces for EIG-BasicPub are M = {0,1}" and C =
Gy x {0,1}™. The system parameters are params= (G1, Gy, é,n, P, Hs).

Key-Generation:

1. Choose a random x € ZZ and set R = xP.

2. Set the public key K, to be (G1,Go,é,n, P, Hs, R) = (params, R) and the
private key to be K., = x. Notice that the value of K, now also includes
params. This is because we are looking at the PKE scheme in isolation —

without any established system settings.

Encrypt: To encrypt M € M, perform the following steps:

114

5.5 Security of the BasicCL-PKE Construction

1. Choose a random value r € Z;.

2. Compute and output the ciphertext: C = (rP, M & Hs(rR)).

Decrypt: To decrypt C = (U,V) € C using private key Kp.y = x, compute and
output: V & Hs(2U).

This concludes the description of EIG-BasicPub.

5.5.2 BF-BasicPub

This scheme is denoted BasicPub in [32]. Here, this scheme is specified by four
algorithms: Setup, Key-Generation, Encrypt and Decrypt.

Setup:

1. Run ZG on input k to generate (G, Ga,é) with the usual properties. Choose
a generator P € (.

2. Choose a random s € Zj; and set Py = sP.

3. Choose cryptographic hash function Hs : Gy — {0, 1}".

The message and ciphertext spaces for BF-HybridPub are M = {0,1}" and C =
G1 x {0,1}™. The system parameters are params= (G1, G, é,n, P, Py, Hs).

Key-Generation:

1. Choose a random @ € GJ.

2. Set the public key to be K, = (G1,Go,¢é,n, P, Py, Hy,Q) = (params, Q) and
the private key to be K., = sQ € Gj.

115

5.5 Security of the BasicCL-PKE Construction

Encrypt: To encrypt M € M, choose a random 7 € Z; and set the ciphertext to be:

C={(rP,M & Ha(&(Q, Ry)")).

Decrypt: To decrypt C = (U, V) € C using the private key Kp;,y = sQ compute:
V @& Hy(e(sQ,U)) = M.

This concludes the description of BF-HybridPub.

5.5.3 Security of EIG-BasicPub

Lemma 5.1 Suppose that Hy is a random oracle and that there exists an OWE
adversary A against EIG-BasicPub with advantage € which makes at most ¢5 queries
to Hs. Then there is an algorithm B that solves the CDHP in Gy with advantage at
least (e —)/g5 and which runs in time O(time(A)). Here Gy is obtained from the
output (Gi, Go, é) of ZG.

Proof. Let A be an OWE adversary against EIG-BasicPub who makes at most g5
queries to random oracle Hs and who has advantage e. We show how to construct

an algorithm B which interacts with A to solve the CDHP in G;.

Suppose B has as inputs (G1, Gg, é) and (P,aP,bP) (where a,b € Z; are unknown to
B). Let D = abP € G, denote the solution to the CDHP on these inputs. Algorithm
B creates a public key (G1,Go,é,n, P, Hs, R) for A by setting R = aP. Then B
gives this public key to A. Algorithm B now sets U = bP, chooses V randomly from
{0,1}", and gives A the challenge ciphertext C' = (U, V).

Notice that the (unknown) private key is now D = abP and the (unknown) decryp-

tion of C'is M =V @& Hs(D). Hence the solution D to the CDHP can be derived

from examining A’s Hj queries.

116

5.5 Security of the BasicCL-PKE Construction

To simulate Hs queries by A, B maintains a list of pairs (Z;, Hs ;). To respond to an
Hs query Z, B first checks if Z = Z; for some Z; already on the list. If it is, then B
responds with Hs j. Otherwise, B chooses H uniformly at random from {0, 1}" and

places (Z, H) on the Hj list.

Eventually, A will output its guess M’ for the decryption of C. Now B chooses a
random pair (Z;, Hs ;) from the Hjs list and outputs Z; € G as the solution to the
CDHP. (If the list is empty, B just outputs a random element of Gj.)

It is easy to see that A’s view in B’s simulation is the same as in a real attack. So
A’s advantage in this simulation will be e. We let H be the event that D is queried
of Hs during B’s simulation and let § denote the probability that event H occurs.

Now
e = Pr[M' = M]
= Pr[M’' = M|H]|Pr[H] + Pr[M’ = M|~H] Pr[-H]
< 54 5(1-0)

where we have used the fact that if H does not occur, then Hs has not been queried

on input D, so that Aj;’s view must be independent of the value of M.

Rearranging, we see that § > € — 2% Since B’s output is of the form Z; chosen
randomly from the Hj list, we see that B’s success probability is at least §/qs. The

lemma follows.

O

5.5.4 Security of BF-BasicPub

The following result concerning the OWE security of BF-BasicPub is proven by Boneh

and Franklin in in [33, Lemma 4.3].

Result 5.2 Suppose that Hy is a random oracle. Suppose there exists an OWE
adversary A against BF-BasicPub which makes at most ¢» queries to Hs and which
has advantage €. Then there exists an algorithm B to solve the BDHP which runs

in time O(time(A)) and has advantage at least (€ — 5)/qo.

117

5.5 Security of the BasicCL-PKE Construction

5.5.5 Security of BasicCL-PKE

Lemma 5.3 Suppose that H; and Hy are random oracles and that there exists an
Type IT OWE adversary Aj; against BasicCL-PKE with advantage € which makes at
most ¢ queries to Hy. Then there is an OWE adversary against EIG-BasicPub with

advantage at least €/q; which runs in time O(time(Arr)).

Proof. Let Arr be a Type I OWE adversary against BasicCL-PKE. Suppose A;j; has
advantage € and makes q; queries to random oracle H;. We show how to construct
from A;; an OWE adversary B against the PKE scheme EIG-BasicPub.

Let C denote the challenger against our OWE adversary B for EIG-BasicPub. The
challenger C begins by supplying B with a public key

Kpub = <G1,G2,é,n,P, H57R> = <params, R)

Adversary B mounts an OWE attack on the key K, using help from A;; as follows.

First of all B chooses an index I with 1 < I < g;. Then B simulates the algorithm
Setup of BasicCL-PKE for Aj; by choosing a random s € Z7, setting Py = sP and
supplying A;; with params = (G1, Go, é,n, P, Py, H1, H2, H5) and the value s. Here,

Hi and Hy are additional random oracles.

Adversary A;;r may make queries of H; or Hy at any time. These are handled as

follows:

H, queries: The H; queries are simulated by B. For an ID; query, B will choose a
random Q; € G} and return H;(ID;) = Q; for 1 < i < ¢;. For each i where i # I, B

chooses a random x; € Z, and maintains a table with entries (Q;, ;).

Hs queries: Adversary B simulates these and answers Hs queries by maintaining a
list of queries and replies. We do need to assume in the course of the proof that Hs

is a random oracle.

118

5.5 Security of the BasicCL-PKE Construction

Phase 1: Now A;; launches Phase 1 of its attack, by making a series of requests,
each of which is either a private key extraction or a request for a public key for a
particular entity. (Recall that a Type II adversary cannot replace public keys and
can make partial private key extraction queries for himself given s.) We assume
that Aj; always makes the appropriate H1 query on ID before making one of these

requests for that identifier. B replies to these requests as follows:

Private Key Extraction: If the request is on ID; then B aborts. Otherwise, if the
request is on ID; with i # I, then B outputs (sQ;, x;).

Request for Public Key: If the request is on ID; then B returns R. Otherwise, if

the request is on ID; for some ¢ with ¢ # I, then B returns z; P.

Challenge Phase: At some point, Aj; decides to end Phase 1 and picks IDg, on
which it wants to be challenged. We can assume that |D., has already been queried
of Hi but Aj; has not extracted the private key for this identifier. Algorithm B
responds as follows. If IDg, # ID; then B aborts. Otherwise B requests from C a
challenge ciphertext. C picks a random M € M and responds with the challenge
ciphertext C’ = (U’, V'), such that C’ is the EIG-BasicPub encryption of M under
Kpup. Then B computes §' = é(U’, sQr) and sets C* = (U’, V' @ H>(¢')) and delivers
C* to Ayrr. It is not hard to see that C* is the BasicCL-PKE encryption of M for

identifier ID; (with public key R).

Phase 2: Adversary B continues to respond to requests in the same way as it did in
Phase 1. Of course, we now restrict A7 to not make private key extraction requests

on IDch-

Guess: Eventually, A;; will make a guess M’. Algorithm B outputs M’ as its guess
for the decryption of C*.

Analysis: Now we analyze the behavior of B and Aj; in this simulation. We
claim that if algorithm B does not abort during the simulation then algorithm A;j;’s

view is identical to its view in the real attack. Moreover, if B does not abort then

119

5.5 Security of the BasicCL-PKE Construction

Pr[M = M'] > e.

We justify this claim as follows. B’s responses to H; and Ho queries are uniformly
and independently distributed in G} and {0, 1}" respectively, as in the real attack.
All responses to Aj’s requests are valid, provided of course that B does not abort.
Furthermore, the challenge ciphertext C* is a valid BasicCL-PKE encryption of M.
Thus, by definition of algorithm A;; we have that Pr[M = M'| > e.

The probability that B does not abort during the simulation remains to be calculated.
Examining the simulation, we see that B can abort for two reasons: (i) because Ay
made a private key extraction on ID; at some point, or (ii) because Ay did not

choose IDy, = ID;. We name the events that can cause B to abort as Q7 and Qs.

Notice that the event —Qy implies the event =Q; (if Ay chooses ID¢y, equal to 1Dy,

then no private key extraction on ID; is allowed). Hence we have

Pr[B does not abort] = Pr[-Q; A =Q5]
= Pr[-Qy]
= 1/a

where the last equality follows from B’s random choice of I being independent of

Ajr’s choice of IDg,.

Thus we see that B’s advantage is at least €/¢q; and the proof is complete.
O

Lemma 5.4 Suppose that Hi, Hy and Hy are random oracles and that there exists
an Type I OWE adversary A; against BasicCL-PKE. Suppose A; has advantage e,
runs in time ¢, makes at most qi, ¢o and g5 queries to Hy, Hy and Hj respectively.
Then there is an algorithm B which acts as either a BF-BasicPub or an EIG-BasicPub
OWE adversary. Moreover, B either has advantage at least €¢/4¢q; when playing as
a BF-BasicPub adversary, or has advantage at least ¢/4¢q; when playing as an EIG-

BasicPub adversary. Algorithm B runs in time O(time(Ay)).

Proof. Let A be a Type I IND-CCA adversary against BasicCL-PKE. Suppose A;

has advantage €, runs in time ¢, makes q1, g2 and g5 queries to random oracles Hi,

120

5.5 Security of the BasicCL-PKE Construction

Hy and Hj respectively. We show how to construct from A; an adversary B that
acts either as an OWE adversary against the PKE scheme BF-BasicPub or as an
OWE adversary against the PKE scheme EIG-BasicPub. We assume that challengers
Cr and Cyy for both types of games are available to B.

Adversary B begins by choosing a random bit ¢ and an index I uniformly at random
with 1 <1 < ¢q. If ¢ =0, then B chooses to play against C; and aborts C;;. Here, B
will build an OWE adversary against BF-BasicPub and fail against C;;. When ¢ = 1,
B chooses to play against C;; and aborts C;. Here, B will build a OWE adversary
against EIG-HybridPub and fail against C;. In either case, C will denote the challenger

against which B plays for the remainder of this proof.

We define three events H, Fy and Fi:

e H: Adversary A; chooses ID; as the challenge identifier 1Dg,.
e Fu: Adversary Aj extracts the partial private key for entity IDj.

e Fi: Adversary Ay replaces the public key of entity ID; at some point in its
attack.

The general strategy of the proof is as follows. If (¢ = 0) A Fy occurs, B will have to
abort and will be unsuccessful. If =Fy A H occurs, then B’s success probability will
be related to that of A;. On the other hand, if (¢ = 1) A F; occurs, B will again have
to abort and will be unsuccessful. If =F; A 'H occurs, then B’s success probability
will again be related to that of A;. Overall, we will show that B’s advantage in its
mixed-game strategy is non-negligible if A;’s is. It is then easy to see that B has a

non-negligible advantage for at least one of the two game types.
If ¢ = 0, then C is an OWE challenger for BF-BasicPub and begins by supplying B with

a public key Kpup = (G1,Go,é,n, P, Py, H2, Q). If c = 1, then C is an OWE challenger
for EIG-BasicPub and so supplies B with a public key K, = (G1,G2,é,n, P, Hs, R).

121

5.5 Security of the BasicCL-PKE Construction

Then B simulates the algorithm Setup of BasicCL-PKE for A;. When ¢ = 0, B will
handle Hy queries, while when ¢ = 1, B will handle Hy queries. Additionally, when
¢ =1, B chooses a random s € Z; and sets Py = sP. Thus, B supplies A; with
params= (Gq, Go,é,n, P, Py, Hy, Ho, H5). Here H;j is a random oracle that will be
controlled by B.

Adversary A; may make queries of the random oracles Hy, Ho and Hs, at any time

during its attack. These are handled as follows:

H, queries: Adversary B maintains a list of tuples (ID;, Q;, b;, z;, P;) which we call
the Hj list. The list is initially empty, and when A queries Hy on input ID € {0, 1}*,

B responds as follows:

1. If ID already appears on the H; list in a tuple (ID;, Q;, b;, z;, P;), then B re-
sponds with H;(ID) = Q;.

2. Suppose ID does not already appear on the list and ID is the I-th distinct
H; query made by A;. For ¢ = 0, B outputs Hi(ID) = @, selects a random
xy € Zy and adds the entry (ID,Q, L,zr,x;P) to the H; list. For ¢ =1, B
selects by € Zj, outputs H1(ID) = by P and adds the entry (ID,b;P,bs, L , R)
to the Hy list.

3. Otherwise, when ID does not already appear on the list and ID is the -th
distinct Hy query made by A; where i # I, B picks random w;,b; € Z, sets
Q; = b;P, outputs Hy(ID) = Q; and adds (ID, b; P, b;, x;, z; P) to the H; list.

Notice that with this specification of Hi, the BasicCL-PKE partial private key for
ID; (i # I) is equal to b; Py while the public key for ID; (i # I) is P; = x;P and
the private key for ID; (i # I) is (b; Py, z;). These can all be computed by B. When
c =1, B sets the public key of ID; to be R and can compute the partial private key
of ID; as sbyP. When ¢ = 0, B knows neither the partial private key nor the private
key for ID;y.

122

5.5 Security of the BasicCL-PKE Construction

H, queries: When ¢ = 0 any H> queries made by A; are passed to C to answer.
When ¢ = 1 any Hs queries made by Aj are simulated by B using the standard
approach of maintaining a list of queries and replies. We do need to assume in the

course of the proof that Hs is a random oracle.

Hs queries: Any Hjs queries made by A are passed to C to answer when ¢ = 1.
When ¢ = 0, B maintains a list of tuples (u;, Hs ;) which we call the Hs list. The list

is initially empty, and when A queries Hs on input p € Gq, B responds as follows:

1. If p already appears on the Hp list in a tuple (u;, Hs;), then B responds with
Hs(p) = Hs ;.

2. Suppose u does not already appear on the list. If the Hs query is made before
the challenge phase, then B goes to step 3 below. Otherwise, let P, denote
the value of the public key for the challenge identifier D¢, during the challenge
phase, let C* = (U*, V*) be the challenge ciphertext delivered to .A; by B, and
let £ be the value, to be defined below, used by B in the challenge phase. B
tests if p satisfies é(u, P) = é(U*, Pa,). If equality holds, then B adds (u,§) to
the Hj list and outputs £ = Hs(u). If the equality does not hold, then B goes
to step 3.

3. Supposing u to be the i-th distinct Hs query made by Az, B selects a random
Hs; € {0,1}", outputs Hs(p) = Hs; and adds (u;, Hs ;) to the Hs list.

Informally, the reason we simulate Hy this way is to make sure that if A; queries
Hs in the course of its attack, then Hys behaves consistently and produces the same
output as that produced during it use in the construction of the challenge ciphertext.
Recall that the value of Py, could be selected by Aj, hence, the corresponding private

key is unknown to B — and it could also be unknown to A;.

Phase 1: After receiving params from 5, A; launches Phase 1 of its attack, by
making a series of requests, each of which is either a partial private key extraction

for an entity, a private key extraction for an entity, a request for a public key for

123

5.5 Security of the BasicCL-PKE Construction

an entity or a replacement of a public key for an entity. We assume that A; always
makes the appropriate H; query on the identifier ID for that entity before making

one of these requests. B replies to these requests as follows:

Partial Private Key Extraction: Suppose the request is on ID;. There are three

cases:

1. If ¢ # I, then B replies with b; Py.
2. If i =1 and ¢ = 1, then B replies with b Fp.

3. If i = I and ¢ = 0, then B aborts.

Private Key Extraction: Suppose the request is on ID;. We can assume that the

public key for ID; has not been replaced. There are two cases:

1. If i # I, then B outputs (b; Py, x;).

2. If i = I, then B aborts.

Request for Public Key: If the request is on ID; then B returns P; by accessing
the Hy list.

Replace Public Key: Suppose the request is to replace the public key for ID; with

value Pi’ . There are three cases:

1. If i = I and ¢ = 1, then B aborts.

2. If i = I and ¢ = 0, then B replaces the current entry in the H; list with the
new entry P; and updates the tuple to (ID7,Q, L, L, Py).

3. Otherwise, B replaces the current entry in the Hj list with the new entry P/
(i # I) and updates the tuple to (ID;,b; P, b;, L, P/) .

124

5.5 Security of the BasicCL-PKE Construction

Challenge Phase: At some point, A should decide to end Phase 1 and pick ID., on
which it wishes to be challenged. We can assume that |D., has already been queried
of H; but that A; has not extracted the private key for this identifier. Algorithm
B responds as follows. If ID., # ID; then B aborts. Now B requests a challenge

ciphertext of its challenger C. There are now two cases:

e When ¢ = 0, C picks a random M € M and responds with the challenge
ciphertext ¢’ = (U’, V'), a BF-BasicPub encryption of M under K, Now
B checks each entry (u;, Hs;) in the Hs list to see if it satisfies the equality
é(ui, P) = é(U’, Puy). Tt is easy to see that at most one entry can do so. If B
finds that the j-th entry satisfies the equality, then B sets C* = (U', V' @ Hs ;)
and delivers C* to A as the challenge ciphertext. Otherwise, if no entry
satisfies this test, B selects a random £ € {0,1}", sets C* = (U, V' @) and
delivers C* to Aj.

e When ¢ = 1, C picks a random M € M and responds with the challenge
ciphertext C’ = (U’,V’), such that C’ is the EIG-BasicPub encryption of M
under K. Then B sets C* = (U, V' & Ha(é(U’,brsP))) and delivers C* to
Ar.

It is easy to see that in both cases C* is the BasicCL-PKE encryption of M for
identifier ID¢, under public key Pg,. We now let P, denote the particular value of
the public key for identifier 1D, during the challenge phase (A7 may change this

value in Phase 2 of its attack).
Phase 2: Adversary B continues to respond to A;’s requests in the same way as it
did in Phase 1. However, the same restrictions, as identified in Section 5.3, on A;j’s

behaviour apply in this phase.

Guess: Eventually, A; will make a guess M’. Algorithm B outputs M’ as its guess
for the decryption of C*.

125

5.5 Security of the BasicCL-PKE Construction

Analysis: Now we analyze the behavior of B and A in this simulation. We claim
that if algorithm B does not abort during the simulation, then algorithm A;’s view
is identical to its view in the real attack. Moreover, if this is the case, then Pr[M =
M'] > e. This is not hard to see: Adversary B’s responses to all hash queries
are uniformly and independently distributed as in the real attack. All responses to
Aj’s requests are valid, provided of course that B does not abort. Furthermore, the
challenge ciphertext C* is a valid BasicCL-PKE encryption of M under the current
public key for identifier IDy,. Thus, by definition of algorithm A; we have that
Pr[M =M'] > e

So we must examine the probability that B does not abort during the simulation.

Examining the simulation, we see that B can abort for one of four reasons:

0. Because ¢ = 0 and the event F{ occurred during the simulation.
1. Because ¢ = 1 and event F; occurred during the simulation.
2. Because A; made a private key extraction on ID; at some point.

3. Or because Ay chose IDg, # ID;.

We name the event (¢ = i) A F; as H; for i« = 0,1. We also name the last two
events here as o and F3. Of course, F3 is the same as event =H. Now A; makes ¢1
queries of H; and chooses ID., from amongst the responses ID;, while B’s choice of
I is made uniformly at random from the set of ¢; indices i. So the probability that
IDe, = IDy is equal to 1/q;. Hence Pr[H] = 1/¢;. Notice too that the event —F3
implies the event ~F» (if A; chooses ID., = IDy, then no private key extraction on
ID; is allowed). Gathering this information together, we have:
Pr[B does not abort] = Pr[-Ho A —Hi A ~Fa A ~F3]
Pr[-Ho A =H1 A 'H]

Pr[-Ho A =H1|H] - Pr[H]
= q% - Pr[=Ho A =H1|H].

126

5.5 Security of the BasicCL-PKE Construction

Notice now that the events Hy and H; are mutually exclusive (because one involves

¢ = 0 and the other ¢ = 1). Therefore we have

Pr[=Ho A =H1|H] = 1 — Pr[Ho|H] — Pr[H1|H].

Moreover,
Pr[H;|H] = Pr[(c=1)AF;|H]
— PrF|(HA(c=) Prle=1
= 3 Pr[Fi[H]

where the last equality follows because the event F;|H is independent of the event
¢ =1. So we have

1 1 1
Pr[B does not abort] = o <1 —5 Pr[Fo|H] — 3 Pr[]—"ﬂ'H]) .
1

Finally, we have that Pr[Fy A Fi|H] = 0 because of the rules on adversary behaviour
described in Section 5.2 (an adversary cannot both extract the partial private key
and change the public key of the challenge identifier). This implies that Pr[Fy|H] +
Pr[F1|H] < 1. Hence we see that
1
Pr[B does not abort] > —.
21
It is now easy to see that B’s advantage is at least ﬁ. It follows that either B’s
advantage as a Type [adversary against BF-BasicPub or B’s advantage as a Type 11

adversary against EIG-BasicPub is at least 5--. The running time of B is O(time(A;)).

This completes the proof of the lemma.
0

Next is our main theorem about the security of BasicCL-PKE in our OWE model.

Theorem 5.5 Let Hy, Hy and Hs be random oracles. Suppose further that there
is no polynomially bounded algorithm that can solve the BDHP with non-negligible
advantage. Then BasicCL-PKE is OWE secure.

Proof. The proof of Theorem 5.5 is performed in two parts, one for a Type I adversary

and one for a Type II adversary. We first consider a Type I adversary.

127

5.5 Security of the BasicCL-PKE Construction

Type I adversary: Lemma 5.4 provides a reduction relating the OWE security of
BasicCL-PKE to that of EIG-BasicPub or BF-BasicPub in the OWE model for standard
PKE. Lemma 5.1 and Result 5.2 relate the security of these PKE schemes to the
hardness of the CDHP or BDHP respectively.

By actually composing the intermediate security results we can relate the security
of BasicCL-PKE against Type I adversaries directly to the hardness of the BDHP
or CDHP. Suppose hash functions H;, Hs and Hy are random oracles. Suppose
Ar is a Type I adversary against BasicCL-PKE, that runs in time time(A;) and has
advantage € against BasicCL-PKE. Then there is an algorithm B with running time
O(time(Ay)). Algorithm B either solves the CDHP in G; with advantage at least

1(6 1)
¢ \4p 27)°

or algorithm B solves the BDHP in (Gq, Go, é) with advantage at least
1 < € 1 >
g2 \4q1 2")°

Type II adversary: Lemma 5.3 shows that the OWE security of BasicCL-PKE can
be reduced to the OWE security of a related (normal) public key encryption scheme
EIG-BasicPub. Lemma 5.1 relates the security of EIG-BasicPub to the hardness of the
CDHP in Gy.

As above, we can relate the security of BasicCL-PKE against Type I adversaries
directly to the hardness of the CDHP. Suppose hash functions Hi, Ho and Hj are
random oracles. Suppose Ajr is a Type II adversary against BasicCL-PKE, that
runs in time time(A;;), and has advantage e against BasicCL-PKE. Then there is
an algorithm B with running time O(time(.A;7)) that solves the CDHP in Gy with

1(6 1>
s \a 2")

Compared to the CDHP (in G; output by algorithm ZG(k)), the BDHP (in (G, G2, €)

output by the same algorithm ZG(k)) is an easier problem, in the sense that an

advantage at least

128

5.6 Summary

algorithm to solve the CDHP in Gy can be transformed into an algorithm to solve
the BDHP in (G, Go, é) — see the proof in p.29. Hence the security of BasicCL-PKE

rests on the hardness of the BDHP.
O

5.6 Summary

In this chapter, we showed how our concept of certificateless public key cryptography
can be realized by specifying a certificateless public key encryption (CL-PKE) scheme
that is based on bilinear maps. The scheme BasicCL-PKE has one-way encryption
security in the random oracle model, assuming that the BDHP is hard. In Chapter 6
we will build on and improve the CL-PKE scheme presented in this chapter. We will
construct a scheme which is secure in a more robust model, one allowing decryption
queries by the adversary and in which the adversary’s task is to distinguish which of

the two messages has been encrypted.

129

CL-PKE - Semantic Security

CHAPTER 6

Contents
6.1 Introduction 131
6.2 IND-CCA Security Model for CL-PKE 131
6.3 A CL-PKE Scheme with Chosen Ciphertext Security . 136
6.4 The Fujisaki-Okamoto Hybridisation Technique 139
6.4.1 A Basic PKE Scheme 139
6.4.2 A Symmetric Encryption Scheme 140
6.4.3 The Fujisaki-Okamoto Hybrid PKE Scheme 141
6.4.4 Security Results 143
6.5 Security of the FullCL-PKE Construction 145
6.5.1 EIG-HybridPub 145
6.5.2 BF-HybridPub 147
6.5.3 Security of EIG-Hybridpub 149
6.5.4 Security of BF-Hybridpub 150
6.5.5 Security of FullCL-PKE 151
6.6 SUMMATY . . . ¢+ v v v v v v vt e e e e e e e e e e 172

In this chapter we develop an adversarial model for a certificateless public key en-

cryption (CL-PKE) scheme. The adversarial model is fully adaptive, it captures an

adversary who has access to the master key (but does not replace public keys) and

another who can replace public keys. We propose an efficient CL-PKE scheme and

prove that it is secure in the fully adaptive adversarial model, provided that the BDHP

is hard.

130

6.1 Introduction

6.1 Introduction

The work presented in this chapter focuses on CL-PKE schemes. We will present an
adversarial model for CL-PKE which formally captures the adversarial capabilities.
The model we present in this chapter is a natural generalization of the fully adaptive,
multi-user model of [32] to the CL-PKC setting, and involves two distinct types of
adversary: one who can replace public keys at will and another who has knowledge
of the master key but does not replace public keys. Recall that the derived OWE
security model for CL-PKE in Chapter 5 was weak and not fully adaptive, we will
rectify this here by giving adversaries additional adaptive access to decryption or-
acles. The stronger model of this chapter which is fully-adaptive and involves the
indistinguishibility of encryptions, is used to prove the semantic security of a con-
crete, efficient CL-PKE scheme. The semantically secure CL-PKE scheme of this
chapter is based on the owe secure CL-PKE scheme of Chapter 5.

6.2 IND-CCA Security Model for CL-PKE

Given the formal definition of a CL-PKE scheme in Section 5.2, and the subsequent
security treatment of CL-PKE, we are now in a position to define stronger adversaries
for CL-PKE than that of Chapter 5. The definition will involve the indistinguishab-
ility of encryptions against a fully-adaptive chosen ciphertext (IND-CCA) attacker.

Recall the definition of IND-CCA security for PKE in Section 3.5.3. In that defin-
ition, there are two parties, the adversary A and the challenger C. The adversary
operates in three phases after being presented with a random public key. In Phase
1, A may make decryption queries on ciphertexts of its choice. In the Challenge
Phase, A chooses two messages My, M; and is given a challenge ciphertext C* for
one of these two messages M; by the challenger. In Phase 2, A may make fur-
ther decryption queries, but may not ask for the decryption of C*. The attack
ends with A’s guess O’ for the bit b. The adversary’s advantage is defined to be

131

6.2 IND-CCA Security Model for CL-PKE

Adv(A) =2(Pr[t) = b] — %)6'1.

There are two alternative ways to think of the model which we will present in this
section. One is an extension of the IND-CCA model described above and the other is
an extension of the model described in Chapter 5. The IND-CCA model is extended
in the same way as the OWE model was extend in Chapter 5. We now briefly
examine the model of Chapter 5, which was an extension to the model in [32]. The
model allowed adversaries to extract partial private keys, or private keys, or both,
for identities of their choice. Furthermore, it allowed for adversaries to replace the
public key of any entity with a value of their choice. In this chapter we must extend
this model and consider how a challenger should respond to decryption queries for
identities whose public keys may have been changed. Moreover, the adversarial
definition which we will present is an indistinguishability-based definition, so the

nature of the challenge phase differs from that in Chapter 5.

Here then is a list of the actions that an IND-CCA adversary against a CL-PKE
scheme may carry out and a discussion of how each action should be handled by the

challenger for that adversary.

1. Extract partial private key of A: Identical to Extract partial private
key of A in Section 5.3.

2. Extract private key for A: Identical to Extract private key for A in
Section 5.3.

3. Request public key of A: Identical to Request public key of A in Section
5.3.

4. Replace public key of A: Identical to Replace public key of A in Section
5.3.

6-11n [32], an extension to the standard IND-CCA security model was presented for ID-PKE. This
extension was labelled IND-ID-CCA and handles adversaries who can extract the private keys of
arbitrary entities and who choose the identifier ID., of the entity on whose public key they are
challenged.

132

6.2 IND-CCA Security Model for CL-PKE

5. Decryption query for ciphertext C and entity A: If A has not replaced
the public key of entity A, then C responds by running the algorithm Set-
Private-Key to obtain the private key S4, then running Decrypt on ciphertext
C and private key S4 and returning the output to A. However, if A has
already replaced the public key of A, then in following this approach, C will
(in general) not decrypt using a private key matching the current public key.
So C’s reply to A’s decryption query is likely to be incorrect. Indeed C most
likely will not even know what the private key matching the current public key
is! In defining our security model for CL-PKE, we have two options: we could
simply accept that these decryptions will be incorrect, or we can insist that
C should somehow properly decrypt ciphertexts even for entities whose public
keys have been replaced. The former option could be argued for on grounds of
reasonableness: after all, how can C be expected to provide correct decryptions
when A gets to choose the public key? On the other hand, the latter option
results in a more powerful security model, because now decryption queries made
under public keys that have been changed will potentially be far more useful
to A. For this reason, we adopt the latter option for our model, even though
it substantially complicates our proofs of security. (These decryptions will be
handled using special purpose knowledge extractors in our security proofs.)
Naturally, as in [32], we prohibit A from ever making a decryption query on
the challenge ciphertext C* for the combination of identifier ID., and public
key P, that was used to encrypt M. However A is, for example, allowed to
replace the public key for IDg, with a new value and then request a decryption
of C*, or to change another entity A’s public key to P, (or any other value)
and then request the decryption of C* for entity A.

We also want to consider adversaries who are equipped with master-key, in order to
model security against an eavesdropping KGC. As discussed in Section 4.1, we do
not allow such an adversary to replace public keys: in this respect, we invest in the
KGC a similar level of trust as we do in a CA in a traditional PKI — recall Section
4.6.5. So by adapting the adversaries of Chapter 5 we will distinguish between two

adversary types:

133

6.2 IND-CCA Security Model for CL-PKE

CL-PKE Type I IND-CCA Adversary: Such an adversary A; does not have
access to master-key. However, A; may request public keys and replace public keys
with values of its choice, extract partial private and private keys and make decryption
queries, all for identities of its choice. As discussed above, we make several natural

restrictions on such a Type I adversary:

1. Adversary A; cannot extract the private key for 1D, at any point.

2. Adversary A cannot request the private key for any identifier if the corres-

ponding public key has already been replaced.

3. Adversary A; cannot both replace the public key for the challenge identifier
IDg, before the challenge phase and extract the partial private key for ID.y, in

some phase.

4. In Phase 2, A; cannot make a decryption query on the challenge ciphertext
C* for the combination of identifier ID., and public key P, that was used to
encrypt M.

CL-PKE Type II IND-CCA Adversary: Such an adversary Aj; does have
access to master-key, but may not replace public keys of entities. Adversary Aj; can
compute partial private keys for itself, given master-key. It can also request public
keys, make private key extraction queries and decryption queries, both for identities

of its choice. The restrictions on this type of adversary are:

1. Adversary Aj; cannot replace public keys at any point.
2. Adversary Aj; cannot extract the private key for IDg, at any point.

3. In Phase 2, A cannot make a decryption query on the challenge ciphertext
C* for the combination of identifier IDg, and public key Py, that was used to
encrypt M.

134

6.2 IND-CCA Security Model for CL-PKE

Chosen ciphertext security for CL-PKE: We say that a CL-PKE scheme is se-
mantically secure against an adaptive chosen ciphertext attack (“IND-CCA secure”)
if no polynomially bounded adversary A of Type I or Type II has a non-negligible

advantage against the challenger in the following game:

Setup: The challenger takes a security parameter k as input and runs the Setup
algorithm. It gives A the resulting system parameters params. If A is of Type I,

then the challenger keeps master-key to itself, otherwise, it gives master-key to A.

Phase 1: Adversary A issues a sequence of requests, each request being either a
partial private key extraction, a private key extraction, a request for a public key,
a replace public key command or a decryption query for a particular entity. These
queries may be asked adaptively, but are subject to the previously defined rules on

adversary behaviour.

Challenge Phase: Once A decides that Phase 1 is over it outputs the challenge
identifier 1Dy, and two equal length plaintexts My, M7 € M. Again, the adversarial
constraints given above apply. In particular, ID., cannot be an identifier for which
the private key has been extracted. Moreover, if A is of Type I, then 1D, cannot be
an identifier for which both the public key has been replaced and the partial private
key extracted. The challenger now picks a random bit b € {0,1} and computes C*,
the encryption of M under the current public key Py, for IDg,. Then C* is delivered
to A.

Phase 2: Now A issues a second sequence of requests as in Phase 1, again subject
to the rules on adversary behaviour above. In particular, no private key extraction
on IDgy, is allowed, and, if A is of Type I, then the partial private key for 1D, cannot
be extracted if the corresponding public key was replaced in Phase 1. Moreover, no
decryption query can be made on the challenge ciphertext C* for the combination

of identifier IDy, and public key P, that was used to encrypt M.

Guess: Finally, A outputs a guess b’ € {0,1}. The adversary wins the game if

135

6.3 A CL-PKE Scheme with Chosen Ciphertext Security

b=1'. We define A’s advantage in this game to be Adv(A) :=2|Pr[b =] — 3|.

6.3 A CL-PKE Scheme with Chosen Ciphertext Security

We showed in Section 5.4 how to combine the BF ID-PKE scheme of Section 3.2.4.1
and a variant of the ElGamal PKE Scheme of Section 3.2.3.1 to produce the OWE-
secure CL-PKE scheme BasicCL-PKE. The scheme we present here is an IND-CCA
version of BasicCL-PKE, obtained essentially by applying the Fujisaki-Okamoto hy-
bridisation technique (see Section 6.4) to BasicCL-PKE. Note that the scheme presen-
ted here differs from the one given in [6]. As with BasicCL-PKE, this scheme can also
be regarded as resulting from the optimisation of a double encryption construction
for CL-PKE — we will present such double encryption constructions for CL-PKE in
Section 7.2.

The algorithms for FullCL-PKE, our IND-CCA secure CL-PKE scheme, are as follows:

Setup: This algorithm runs as follows:

1. Run ZG on input k to generate output (Gq, Gg, é). Recall the definition of ZG
in Section 2.4.1.

2. Choose an arbitrary generator P € Gy.
3. Select a random master-key s € Z; and set Py = sP.

4. Choose cryptographic hash functions H; : {0,1}* — Gj, Hy : G2 — {0,1}",
Hy : {0,1}" x {0,1}" — Zj, Hy : {0,1}" — {0,1}" and H; : G; — {0,1}".
Here n will be the bit-length of plaintexts.

The system parameters are params= (Gi,Go,é,n, P, Py, Hy, Hy, H3, Hy, H5). The
master-key is s € Z;. The message space is M = {0,1}" and the ciphertext space is

136

6.3 A CL-PKE Scheme with Chosen Ciphertext Security

C = Gy x {0,1}?". Notice that this is identical to Setup of BasicCL-PKE in Section
5.4, except for the additional hash functions H3 and Hjy.

Partial-Private-Key-Extract: This algorithm takes as input an identifier ID 4 € {0, 1}*,
and carries out the following steps to construct the partial private key for entity A

with identifier ID 4:

1. Compute Q4 = H1(ID4) € Gj.

2. Output the partial private key D4 = sQ4 € GJ.

The observations concerning D 4 from Chapter 6 also apply to here.

The algorithms Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key and Set-
Public-Key are identical to BasicCL-PKE. They are included here for completeness.

Set-Secret-Value: This algorithm takes as inputs params and an entity A’s identifier

ID4. It selects a random x4 € ZZ and outputs x4 as A’s secret value.

Set-Private-Key: This algorithm takes as inputs params, entity A’s partial private
key D and A’s secret value z4 € Zj. The output of the algorithm is the pair
Sa = (Da,x4). So the private key for A is just the pair consisting of the partial

private key and the secret value.

Set-Public-Key: This algorithm takes params and entity A’s secret value x4 € Z; as
inputs and constructs A’s public key as P4 = x4 P. The test of validity for a public
key P4 is that P4 € G}. Comparing to the scheme in [6], we see that our public key
has no ‘Y4’ component, and there is no structural requirement that Y4 = sX 4. We

will discuss this further in Chapter 8.

Encrypt: To encrypt M € M for entity A with identifier ID4 € {0,1}* and a public
key P4, perform the following steps:

137

6.3 A CL-PKE Scheme with Chosen Ciphertext Security

1. Check that P, is in G7, if not output L . This checks the validity of the public
key.

2. Compute Q4 = Hi(ID4) € G7.

3. Choose a random o € {0,1}".

4. Set r = H3(o, M).

5. Compute and output the ciphertext:

C = <7°P,O' @HQ(é(QA,PO)T) @ H5(rPy), M @ Hy(0)).

Notice that Ha(é(Qa, Po)") is identical to the mask used in the BF ID-PKE scheme
in Section 3.2.4.1, while H5(rPy) is the same as the mask used in the ElGamal PKE

scheme in Section 3.2.3.1.

Decrypt: Suppose C' = (U,V,W) € C. To decrypt this ciphertext using the private
key Sa = (Da,za):

1. Compute V & H3(é(DA,U)) @ Hs(xaU) = o'.
2. Compute W @ Hy(o") = M.

3. Set " = Hs(o/,M’) and test if U = r'P. If not, output L and reject the
ciphertext.

4. Output M’ as the decryption of C.

When C'is a valid encryption of M using P4 and ID 4, it is easy to see that decrypting
C will result in an output M’ = M. This concludes the description of FullCL-PKE.

We note that W in FullCL-PKE can be replaced by W = EETU)(M), where ESV™ is
a symmetric encryption algorithm meeting the definition of Section 6.4.2. Also note

that our security proofs will require some modifications to handle this case.

138

6.4 The Fujisaki-Okamoto Hybridisation Technique

6.4 The Fujisaki-Okamoto Hybridisation Technique

Fujisaki and Okamoto [71] provided an elegant conversion from an OWE secure PKE
scheme to a IND-CCA secure PKE scheme in the random oracle model. To introduce
this conversion we need to define two schemes: a basic PKE scheme and a symmetric

encryption scheme.

6.4.1 A Basic PKE Scheme

In order to apply the Fujisaki-Okamoto result, we need to define a PKE scheme with
certain properties. Hence, an alternative PKE definition to that specified in Section

3.2.1.1 will be presented next.

We specify a basic PKE scheme I1°*%¢ by four algorithms: Setup, Key-Generation,
Encrypt and Decrypt, where:

Setup: Similar to the Setup algorithm of the PKE scheme in Section 3.2.1.1. However,
the finite message space is now denoted as M®**¢ and a finite coin space, COINbsic,
is defined. Both MY and COINY5¢ are defined by the security parameter k.

Key-Generation (K): is identical to the Key-Generation algorithm of the PKE scheme
in Section 3.2.1.1.

Encrypt (£9%5%¢): is a probabilistic polynomial time algorithm, which takes as input
a x € M5 params, the public key K, and a random element r € COINPbasic

It returns a ciphertext y = S%iff(ac; r)eC.

Decrypt (DY) is a deterministic polynomial time algorithm, which takes as input a

y € C, params, and a private key Ki,. It returns a message x = D¢ (y) € Mbasic,

priv

As we can see, the definition of basic PKE scheme involves a random value r in

139

6.4 The Fujisaki-Okamoto Hybridisation Technique

the encryption algorithm and the decryption algorithm is a deterministic algorithm

which never outputs L .

6.4.2 A Symmetric Encryption Scheme

We specify a symmetric encryption scheme I1°¥" by three algorithms: Setup, Encrypt
and Decrypt, where:

Setup: is a probabilistic polynomial time algorithm, which takes as input a security
parameter k and returns system-wide parameters ‘params’. The finite message space
is M®¥™ the finite key space is K PSC and the finite ciphertext space is C. The
values of M*¥™ K SPC and C are defined by the security parameter k.

Encrypt (£%¥™): is a deterministic polynomial time algorithm, which takes as input

x € M®*¥™ params and a key K € KPSC. It returns a ciphertext y = £ (z) € C.

Decrypt (D®¥™): is a deterministic polynomial time algorithm, which takes as input

y € C, params and a key K € KPSC. It returns a message © = DY (y) € M*™.

This concludes the description of a symmetric encryption scheme. This description

will also called upon in Chapter 9.

We introduce the security notion called find-guess for symmetric encryption schemes.
In [71] this indistinguishability notion does not allow the adversary access to any
encryption oracle. For an alternative security treatment of symmetric encryption

schemes see [15].

Find-guess security for symmetric encryption: We say that a symmetric en-
cryption scheme is secure against a find-guess attack if no polynomially bounded
adversary A has a non-negligible advantage against the challenger in the following

game:

140

6.4 The Fujisaki-Okamoto Hybridisation Technique

Setup: The challenger takes a security parameter k as input and runs the Setup
algorithm and selects a random key K € K PSC which it keeps secret. It gives A a

description of the message space MY,

Find Phase: This is a challenge phase where adversary A outputs two equal length
plaintexts zg,x; € M"Y, The challenger now picks a random bit b € {0,1} and
computes y* = ;7" (xp), the encryption of M, under the random key K € KPSC.
Ciphertext y* is delivered to A.

Guess: Finally, A outputs a guess b’ € {0,1}. The adversary wins the game if
b=1'. We define A’s advantage in this game to be Adv(A) :=2|Pr[b =] — 3|.

6.4.3 The Fujisaki-Okamoto Hybrid PKE Scheme

We specify the hybrid PKE scheme II", which is constructed from a basic PKE
scheme meeting the definition of Section 6.4.1 and a symmetric encryption scheme
meeting the definition of Section 6.4.2, by four algorithms: Setup, Key-Generation,
Encrypt and Decrypt. We have:

Setup: is similar to the Setup algorithm of the PKE scheme in Section 3.2.1.1. How-
ever, the finite message space is now denoted as M™ and the finite coin space
is COIN". Both M™ and COIN™ are defined by the security parameter k.
Additionally choose cryptographic hash functions G : Mb¢ — KPSC and H :
Mbasic x MSYm COINbaSiC.

Key-Generation (K): is identical to the Key-Generation algorithm of the PKE scheme
in Section 3.2.1.1.

Encrypt (£™): is a probabilistic polynomial time algorithm, which takes as input

M € MM, params, the public key K,y and a random element o € Mbasic Tt
returns a ciphertext €Y (M;o) € C.
pub

141

6.4 The Fujisaki-Okamoto Hybridisation Technique

To encrypt M € M™, perform the following steps:

1. Choose a random o € Mbasic,
2. Set ry = H(o, M).
3. Set ro = G(0).

4. Compute and output the ciphertext:

&, (M;o) = (c1,¢2)
(Epesic(ay 1), E4™ (M)
(€350 H (0, M), Egim (M)

Decrypt (D"): is a deterministic polynomial time algorithm, which takes as in-

put (ci,c2) € C, params and a private key Kppip. It returns a message M =
h

D%m(<01,02>) e MM,

To decrypt (c1, c2) € C using private key Kpyiy, do the following:

1. Compute D??;jfv (1) =0
2. Set r, = G(0’) and compute ’szm(@) =M.

3. Set r] = H(o/, M’) and test if ¢; = S}’(‘;Sj;(a/;). If not, output L and reject
the ciphertext.

4. Output M’ as the decryption of C.
This concludes the description of the hybrid PKE scheme.
Note that in the hybrid PKE scheme definition, the hybrid message space M™ is

equal to M*¥™. We say that IT" is the result of applying the Fujisaki-Okamoto

hybridisation technique to the schemes I1°#5*¢ and IT*¥"™.

142

6.4 The Fujisaki-Okamoto Hybridisation Technique

6.4.4 Security Results

The following result concerning IND-CPA security of the scheme 11" appears as [71,

Lemma 10].

Result 6.1 Suppose that G and H are random oracles and that there exists an
IND-CPA adversary A against I1"Y with advantage €(k) which has running time (k)
and makes at most g4, g, queries to G, H respectively. Suppose IIbesic is OWE
secure against adversaries with running time ¢;(k) and advantage €1 (k) and II59"™ is
Find-Guess secure against adversaries with running time ¢2(k) and advantage es(k)

where

t(k) = min(ti(k),t2(k)) — O(l1 +12) and
e(k) = 2(qq+qn) - e1(k) + e2(k).

Here, [and Iy are the sizes of M€ and M*¥™ respectively.

Before exploring any more security results, we define a property of PKE schemes

called y-uniformity [70, 71].

Definition 6.1 Let £ be the encryption algorithm of a PKE scheme meeting the
definition of Section 6.4.1. For a given z € M and y € {0, 1}*, define

y(z,y) = Pr[r < random element in COIN :y = &k, (w;7)].

We say that the PKE scheme is y-uniform (in k) if for any (K, Kpriv), any = € M
and any y € {0,1}", v(z,y) < 7.

The scheme IT" was shown in [71] to be an IND-CCA secure PKE scheme. A key
reason for this is that the scheme II™ is plaintext aware, which implies IND-CCA
security in the random oracle model [16]. Plaintext awareness is a property that
allows the adversary to output a ciphtertext only if it actually knows the corres-

ponding plaintext. Hence, the intuition is that plaintext awareness ensures that the

143

6.4 The Fujisaki-Okamoto Hybridisation Technique

adversary gains nothing from querying the decryption oracle. This idea was intro-
duced by Bellare and Rogaway [23] and further refined and formalised by Bellare,
Desai, Pointcheval and Rogaway [16]. The IND-CCA security result makes use of a
special purpose algorithm called a knowledge extractor. This algorithm handles all
decryption queries and, with a high probability, outputs the correct decryption of
ciphtertexts.

Next we consider an important special case of the Fujisaki-Okamoto construction in
Section 6.4.3, in which the symmetric encryption algorithm is replaced by a one-time
pad, that is, &Y™ (z) = K &z and D™ (y) = K ©y. We let II"* denote this hybrid
scheme. If we define M*¥™ and KSPC to be {0,1}%2, then the cryptographic hash
functions are G : Mbsi¢ — [0,1}2 and H : M x {0,1}2 — COINY>*, The
hybrid encryption of plaintext M becomes:

A .
EKZ;(M) = <5§%S£§(O';H(O', M)),G(o) ® M). (6.1)
In this setting the following lemma applies.

Lemma 6.2 Suppose that G and H are random oracles and that there exists an
IND-CPA adversary A against II"Y* with advantage ¢(k) which has running time
t(k) and makes at most qq4, g5, queries to G, H respectively. Then there is an OWE

adversary B against T1°*¢ with running time ¢;(k) and advantage ¢ (k) where

t(k) = tl(k‘) — O(ll + ZQ) and
e(k) = 2(gg+qn) - e1(k).

Here, I; and ly are the sizes of M€ and M®¥™, the asymmetric and symmetric

(that is, one-time pad) message space respectively.

Proof. The result follows by specialising Result 6.1 to the setting of II"*. In IT"*
the symmetric encryption scheme is replaced with a one-time pad. Since the key
K for this one-time pad is chosen uniformly at random and used only once in the
find-guess game of Section 6.4.2, a find-guess adversary gains no advantage and we

have €3(k) = 0. The lemma follows.

144

6.5 Security of the FullCL-PKE Construction

g

Now we are in a position to state a result concerning the IND-CCA security of II"*,

The result appears as [71, Theorem 14].

Result 6.3 Suppose II"* is constructed from a ~-uniform PKE scheme I1%*%¢ and
the one-time pad. Suppose that G and H are random oracles and that there exists
an IND-CCA adversary A against II"* with advantage (k) which has running time
t(k) and makes at most ¢4 decryption queries and at most g4, g, queries to G, H
respectively. Then there is an OWE adversary B against I1°**¢ with running time

t1(k) and advantage €1 (k) where
t(k) = 1 (k) - (’)((qg + qh) . (ll + lg)) and (6.2)
ek) = (2gg+aqn)-e(k)+1) - (1—y—27"2)"% 1. (6.3)

Here, I; and Iy are the sizes of M?*¢ and MY respectively.

The II"* hybridisation construction is used to form the hybrid schemes in Sections
6.5.1 and 6.5.2. As we shall see, Lemma 6.2 and Result 6.3 will be used to prove the

security of these schemes.

6.5 Security of the FullCL-PKE Construction

We need the following two PKE schemes, EIG-HybridPub and BF-HybridPub, as they
appear in intermediate steps of the security proof for FullCL-PKE. The IND-CCA
and IND-CPA adversaries appropriate for PKE schemes were described in Section

3.5.3.

6.5.1 EIG-HybridPub

We define a public key encryption scheme EIG-HybridPub. The scheme is obtained
by applying the hybridisation construction described in Section 6.4 to the encryption

145

6.5 Security of the FullCL-PKE Construction

scheme EIG-BasicPub of Section 5.5.1.

This scheme is specified by four algorithms: Setup, Key-Generation, Encrypt and
Decrypt.

Setup:

1. Run ZG on input k to generate (G, Ge, é) with the usual properties. Choose
a generator P € (.

2. Choose cryptographic hash functions Hj : {0, 1}"x{0, 1}" — Zy, Hy : {0, 1}" —
{0,1}" and Hs : G; — {0,1}".

The message and ciphertext spaces for EIG-HybridPub are M = {0,1}" and C =
G x {0,1}?". The system parameters are params= (G, Go, é,n, P, H3, Hy, Hs).

Key-Generation:

1. Choose a random z € Zj; and set R = xP.

2. Set the public key K, to be (G, Go, é,n, P, H3, Hy, Hs, R) = (params, R) and
the private key to be Ky, = .

Encrypt: To encrypt M € M, perform the following steps:

1. Choose a random o € {0,1}".
2. Set r = Hz(o, M).
3. Compute and output the ciphertext:

C = (rP,o ® H5(rR), M ® Hy(0)).

146

6.5 Security of the FullCL-PKE Construction

Decrypt: To decrypt C' = (U, V, W) € C using private key Ki, = , do the following:

1. Compute V @ Hs(zU) = o'.
2. Compute W @& Hy(o') = M'.

3. Set ' = Hs(o',M') and test if U = r/P. If not, output L and reject the
ciphertext.

4. Output M’ as the decryption of C.

This concludes the description of EIG-HybridPub.

6.5.2 BF-HybridPub

The scheme BF-HybridPub is denoted BasicPub™ in [32]. This scheme applies the
hybridisation technique which we described in Section 6.4 to the PKE scheme BF-
BasicPub of Section 5.5.2.

This scheme is specified by four algorithms: Setup, Key-Generation, Encrypt and
Decrypt.

Setup:

1. Run ZG on input k to generate (G1,Go, é) with the usual properties. Choose
a generator P € Gy.

2. Choose a random s € ZZ and set Py = sP.

3. Choose cryptographic hash functions Hy : Gy — {0,1}", Hs : {0,1}" x
10,1}" — Z; and Hy: {0,1}" — {0,1}".

147

6.5 Security of the FullCL-PKE Construction

The message and ciphertext spaces for BF-HybridPub are M = {0,1}" and C =
G x {0,1}?". The system parameters are params= (G, Gy, é,n, P, Py, Ho, H3, Hy).

Key-Generation:

1. Choose a random @ € G7.

2. Set the public key to be Ky = (G1, Go, é,n, P, Py, Ha, H3, Hy, Q) = (params, Q)
and the private key to be K.y = sQ.

Encrypt: To encrypt M € M, perform the following steps:

1. Choose a random o € {0,1}".
2. Set r = H3z(o, M).
3. Compute and output the ciphertext:

C = <T’P,0’ S, HQ(é(Q,PO)T),M@ H4(J)>

Decrypt: To decrypt C = (U,V,W) € C using private key K,y = sQ, do the

following:

1. Compute V & Hy(é(sQ,U)) = o'.
2. Compute W @ Hy(o") = M.

3. Set " = Hs(o/,M’) and test if U = r'P. If not, output L and reject the
ciphertext.

4. Output M’ as the decryption of C.

This concludes the description of BF-HybridPub.

148

6.5 Security of the FullCL-PKE Construction

6.5.3 Security of EIG-Hybridpub

We will prove that EIG-Hybridpub is IND-CPA and IND-CCA secure in the random

oracle model.

Lemma 6.4 Suppose that Hs and Hy are random oracles and that there exists
an IND-CPA adversary A against EIG-HybridPub with advantage € which makes at
most g3 and g4 queries to H3 and H, respectively. Then there is an OWE adversary
against EIG-BasicPub with advantage at least €/2(¢3 + ¢4) and which runs in time
time(A) + O(n). Here G, is obtained from the output (G1, Ge, é) of ZG.

Proof. This is proven by applying Lemma 6.2 to the scheme EIG-HybridPub, setting

l1 =n and Iy = n.
O

The scheme EIG-HybridPub can be shown to be IND-CPA secure in the random oracle
model provided the CDHP is hard by composing the reductions in Lemma 6.4 and

Lemma 5.1.

Lemma 6.5 Suppose that H3 and H4 are random oracles and that there exists an
IND-CCA adversary A against EIG-HybridPub with advantage € which makes at most
q3 and q4 queries to H3 and H, respectively and at most g4 decryption queries. Then
there is an OWE adversary against EIG-BasicPub with advantage at least
(e+1)(1—-qgt -2 -1
2(q3 + qa)

and which runs in time time(A) + O(n(g3 + q4)).

Proof. We apply Result 6.3 to EIG-HybridPub, setting l; = n, ly = nand v = ¢~'. We

1

take v = ¢, since ¢ is the order of Gy which determines the number of encryption

variants for a given message.
O

149

6.5 Security of the FullCL-PKE Construction

The scheme EIG-HybridPub can be shown to be IND-CCA secure in the random oracle
model provided the CDHP is hard by composing the reductions in Lemma 6.5 and

Lemma 5.1.

6.5.4 Security of BF-Hybridpub

We will prove that BF-Hybridpub is IND-CPA secure in the random oracle model.

Lemma 6.6 Suppose that H3 and H,4 are random oracles and that there exists an
IND-CPA adversary A against BF-HybridPub with advantage € which makes at most
q3 and ¢4 queries to Hs and Hy4 respectively. Then there is an OWE adversary
against BF-BasicPub with advantage at least €¢/2(¢3 + g4) and which runs in time
time(A) + O(n).

Proof. This is proved by applying Lemma 6.2 to the scheme BF-HybridPub, setting

l1 =n and ly = n.
O

The scheme BF-HybridPub can be shown to be IND-CPA secure in the random oracle
model provided the BDHP is hard, by composing the reductions in Lemma 6.6 and
Result 5.2.

Result 6.3 is used in [33] to prove that BF-HybridPub is IND-CCA secure in the
random oracle model provided the BDHP is hard. This is shown in [33] by combining
Result 6.3 and Result 5.2. In [33, Theorem 4.5] the values of [; and I are both equal
to n (since o and M are of length n) and ~ is correctly set to 1/q, where ¢ is the
size of the groups Gi, Gs. However, in stating their result, Boneh and Franklin set

the value 27" in equation 6.3 to be equal to ¢ '.

Because of this, in the work of
[33], the message length n needs to grow at least as fast as k in order to obtain
security. This assumption is not mentioned anywhere in [33]. In proving the security

of FullCL-PKE, we do not need to use this result concerning the IND-CCA security of

150

6.5 Security of the FullCL-PKE Construction

BF-HybridPub. Unlike [33], however, we did not specify n as a function of the group
size ¢ in Lemma 6.5, concerning the IND-CCA security of EIG-HybridPub.

6.5.5 Security of FullCL-PKE

On our route to proving the main theorem concerning the security of FullCL-PKE we
need to prove three lemmas. Lemma 6.7 and Lemma 6.8 are concerned with Type
IT and Type I adversaries against FullCL-PKE respectively, and Lemma 6.9 handles

the decryption queries required to simulate Lemma 6.8.

Lemma 6.7 Suppose that H; and Hs are random oracles and that there exists
a Type II IND-CCA adversary Aj; against FullCL-PKE with advantage e which
makes at most ¢; queries to Hi;. Then there is an IND-CCA adversary against
EIG-HybridPub with advantage at least €/¢; which runs in time O(time(Arr)).

Proof. Let Arr be a Type II IND-CCA adversary against FullCL-PKE. Suppose Arr
has advantage € and makes ¢ queries to random oracle H;. We show how to construct
from Aj; an IND-CCA adversary B against the PKE scheme EIG-HybridPub.

Let C denote the challenger against our IND-CCA adversary B for EIG-HybridPub.
The challenger C begins by supplying B with a public key

Kpub = <GlyG27é7n7P7 H37H47H57R> - <params, R>

Adversary B mounts an IND-CCA attack on the key K, using help from A;; as

follows.

First of all B chooses an index I with 1 < I < g;. Then B simulates the algorithm
Setup of FullCL-PKE for A;; by choosing a random s € Zg, setting Fy = sP and
supplying A;; with params = (G1,Go, é,n, P, Py, Hy, Hs, H3, Hy, H5) and the value

s. Here, Hy and Hy are additional random oracles.

151

6.5 Security of the FullCL-PKE Construction

Adversary Aj; may make queries of H; or Ho at any time. These are handled as

follows:

Hi queries: The Hp queries are simulated by B. For an ID; query, B will choose a
random @; € G} and return H;(ID;) = @Q; for 1 < i < ¢;. For each i where i # I, B

chooses a random z; € Z, and maintains a table with entries (Q;, x;).

Hjy queries: Adversary B simulates these and answers Hs queries by maintaining a
list of queries and replies. We do need to assume in the course of the proof that Hy

is a random oracle.

Phase 1: Now A;j; launches Phase 1 of its attack, by making a series of requests,
each of which is either a private key extraction, a request for a public key for a
particular entity, or a decryption query. (Recall that a Type II adversary cannot
replace public keys and can make partial private key extraction queries for himself
given s.) We assume that Aj; always makes the appropriate H; query on ID before

making one of these requests for that identifier. B replies to these requests as follows:

Private Key Extraction: If the request is on ID; then B aborts. Otherwise, if the
request is on ID; with i # I, then B outputs (sQ;, x;).

Request for Public Key: If the request is on ID; then B returns R. Otherwise, if

the request is on ID; for some ¢ with ¢ # I, then B returns x; P.

Decryption Queries: If the request is to decrypt (U, V, W) under the private key
for 1Dy, then B computes £ = é(U, sQr) and relays the decryption query (U,V &
Hy(&),W) to C. The FullCL-PKE decryption of (U,V,W) under the (unknown)
private key for ID; is equal to the EIG-HybridPub decryption of (U,V & Hy(§), W)
under the (unknown) private key corresponding to K. Hence C’s response to B’s
request can be relayed to Aj;. On the other hand, if the request is to decrypt
(U, V, W) under the private key for ID; (i # I), then B can perform this decryption
himself using the private key (sQ;, z;) for ID;.

152

6.5 Security of the FullCL-PKE Construction

Challenge Phase: At some point, Aj; decides to end Phase 1 and picks ID., and
two messages My, M7 on which it wants to be challenged. We can assume that Aj;
has not extracted the private key for this identifier. Algorithm B responds as follows.
If IDg, # IDy then B aborts. Otherwise IDy, = ID; and B gives C the pair My, M;
as the messages on which it wishes to be challenged. C responds with the challenge
ciphertext ¢ = (U’, V!, W'), such that C’ is the EIG-HybridPub encryption of M
under K,,; for a random b € {0,1}. Then B computes &' = é(U’,sQr) and sets
C* = (U, V' & Hy(&'),W') and delivers C* to Aj;. It is not hard to see that C* is
the FullCL-PKE encryption of M, for identifier ID; (with public key R).

Phase 2: Adversary B continues to respond to requests in the same way as it did in
Phase 1. Of course, we now restrict A7 to not make private key extraction requests
on IDy,. If any decryption query relayed to C is equal to the challenge ciphertext C”
then B aborts.

Guess: Eventually, Ay will make a guess b’ for b. B outputs O’ as its guess for b.

Analysis: Now we analyze the behavior of B and Aj; in this simulation. We
claim that if algorithm B does not abort during the simulation then algorithm Aj;’s
view is identical to its view in the real attack. Moreover, if B does not abort then
2|Pr[b=b]— 3| > e

We justify this claim as follows. B’s responses to H; and Ho queries are uniformly
and independently distributed in G} and {0,1}" respectively, as in the real attack.
All responses to Ajr’s requests are valid, provided of course that B does not abort.
Furthermore, the challenge ciphertext C* is a valid FullCL-PKE encryption of M,
where b € {0,1} is random. Thus, by definition of algorithm A;; we have that
2|Pr[b=b]— 3| > e

The probability that B does not abort during the simulation remains to be calculated.

Examining the simulation, we see that B can abort for three reasons: (i) because Ay

made a private key extraction on ID; at some point, (i7) because A;r did not choose

153

6.5 Security of the FullCL-PKE Construction

IDey, = IDy, or (iii) because B relayed a decryption query on C' = (U", V', W’) to C
in Phase 2.

Because of the way that B converts ciphertexts, this last event happens only if
Ajrr queries B on the ciphertext C* = (U', V' @ H(¢'), W’) in Phase 2. However,
this is exactly Ajr’s challenge ciphertext on which Ajs is forbidden from making a

decryption query, since
(U, V'® Hy(¢') @ Ho(e(U',5Qq)), W' = (U, V' W').

So this event never occurs in B’s simulation. We name the remaining events that

can cause B to abort as Q1 and Qs.

Notice that the event —Qy implies the event =Q; (if A;; chooses ID¢y, equal to 1Dy,

then no private key extraction on ID; is allowed). Hence we have

Pr[B does not abort] = Pr[-Q; A —Qq]
= Pr[_‘QQ]
= 1/a
where the last equality follows from B’s random choice of I being independent of

Ajr’s choice of IDg,.

Thus we see that B’s advantage is at least €/q; and the proof is complete.
[l

Lemma 6.8 Suppose that H; (1 <i < 5) are random oracles and that there exists
a Type I IND-CCA adversary A against FullCL-PKE. Suppose A; has advantage e,
runs in time ¢, makes at most ¢; queries to H; (1 < i < 5) and makes at most ¢4
decryption queries. Then there is an algorithm B which acts as either a BF-HybridPub
or an EIG-HybridPub IND-CPA adversary. Moreover, B either has advantage at least
€A% /4q; when playing as a BF-HybridPub adversary, or has advantage at least €/4¢q;
when playing as an EIG-HybridPub adversary. Algorithm B runs in time ¢ + O((g3 +
q4)qqt’). Here t’ is the running time of the BasicCL-PKE encryption algorithm and

A>1— (g3 + q1) - eown(t + O((g3 + q1)qat’s a2, g5)) — 4g~ 1 — 27"+,

154

6.5 Security of the FullCL-PKE Construction

where eowe (T, ¢, ¢") denotes the highest advantage of any OWE adversary against
BasicCL-PKE which operates in time 7" and makes ¢’ hash queries to Hy and ¢” hash

queries to Hs.

Proof. Let A; be a Type I IND-CCA adversary against FullCL-PKE. Suppose Ar
has advantage €, runs in time ¢, makes ¢; queries to random oracle H; (1 < i < 5)
and makes g4 decryption queries. We show how to construct from A; an adversary
B that acts either as an IND-CPA adversary against the PKE scheme BF-HybridPub
or as an IND-CPA adversary against the PKE scheme EIG-HybridPub. We assume
that challengers C; and Cjyy for both types of games are available to B.

Adversary B begins by choosing a random bit ¢ and an index I uniformly at random
with 1 <1 < ¢q. If ¢ =0, then B chooses to play against C; and aborts C;;. Here, B
will build an IND-CPA adversary against BF-HybridPub and fail against C;;. When
¢ =1, B chooses to play against C;; and aborts C;. Here, B will build a IND-CPA
adversary against EIG-HybridPub and fail against C;. In either case, C will denote
the challenger against which B plays for the remainder of this proof.

As in Lemma 5.4, we define three events H, Fy and Fi:

e H: Adversary A; chooses ID; as the challenge identifier 1Dg,.
e Fy: Adversary Aj extracts the partial private key for entity ID;.

e F1: Adversary Aj replaces the public key of entity ID; at some point in its
attack.

The general strategy of the proof is similar to that of the proof of Lemma 5.4. If
(¢ = 0) A Fy occurs, B will have to abort and will be unsuccessful. If -Fy AH occurs,
then B’s success probability will be related to that of A;. On the other hand, if
(c = 1) A Fy occurs, B will again have to abort and will be unsuccessful. If —=F; A'H
occurs, then B’s success probability will again be related to that of A;. Overall, we

will show that B’s advantage in its mixed-game strategy is non-negligible if A;’s is.

155

6.5 Security of the FullCL-PKE Construction

It is then easy to see that B has a non-negligible advantage for at least one of the

two game types.

If ¢ = 0, then C is an IND-CPA challenger for BF-HybridPub and begins by supplying
B with a public key K, = (G1,Go,é,n, P, Py, Hy, H3, Hy,Q). 1If ¢ = 1, then C
is an IND-CPA challenger for EIG-HybridPub and so supplies B with a public key
Kpup = (G1,Go,é,n, P, H3, Hy, Hs, R).

Then B simulates the algorithm Setup of FullCL-PKE for A;. When ¢ = 0, B will
handle Hs queries, while when ¢ = 1, B will handle Hy queries. Additionally, when
¢ = 1, B chooses a random s € Z; and sets Iy = sP. Thus, B supplies A; with
params= (G, Go,é,n, P, Py, H1, Ho, H3, Hy, H5). Here H; is a random oracle that
will be controlled by B.

Adversary A; may make queries of the random oracles H;, 1 < i < 5, at any time

during its attack. These are handled as follows:

H, queries: Adversary B maintains a list of tuples (ID;, Q;, b;, x;, P;) which we call
the Hj list. The list is initially empty, and when A; queries H; on input ID € {0, 1}*,

B responds as follows:

1. If ID already appears on the H; list in a tuple (ID;, Q;, b;, z;, P;), then B re-
sponds with H;(ID) = Q;.

2. Suppose ID does not already appear on the list and ID is the I-th distinct
H, query made by A;. For ¢ = 0, B outputs H;(ID) = @, selects a random
r; € Zy and adds the entry (ID,Q, L, xr, 2/ P) to the H; list. For ¢ =1, B
selects by € Zy, outputs Hi(ID) = by P and adds the entry (ID,b;P,bs, L , R)
to the Hy list.

3. Otherwise, when ID does not already appear on the list and ID is the i-th

*
q’

Q; = b; P, outputs H;(ID) = Q; and adds (ID, b; P, b;, z;, x; P) to the H list.

distinct H; query made by Aj where i # I, B picks random x;,b; € Z;, sets

156

6.5 Security of the FullCL-PKE Construction

Notice that with this specification of Hy, the FullCL-PKE partial private key for 1D;
(i # I) is equal to b; Py while the public key for ID; (i # I) is P; = z; P and the
private key for ID; (i # I) is (b; Py, z;). These can all be computed by B. When
c =1, B sets the public key of ID; to be R and can compute the partial private key
of IDy as sby P. When ¢ = 0, B knows neither the partial private key nor the private
key for ID;.

Hy queries: When ¢ = 0 any Hy queries made by A; are passed to C to answer.
When ¢ = 1 any Hs queries made by Aj are simulated by B using the standard
approach of maintaining a list of queries and replies. We do need to assume in the

course of the proof that Hs is a random oracle.

Hs; and H, queries: Adversary B passes Aj’s Hs and Hy queries to C to answer,
but keeps lists (0, M;, H3 j) and (o}, Hy;) of A;’s distinct queries and C’s replies to

them.

Hs queries: Any Hs queries made by Aj are passed to C to answer when ¢ = 1.
When ¢ = 0, B maintains a list of tuples (u;, Hs ;) which we call the Hs list. The list

is initially empty, and when A queries Hs on input u € G1, B responds as follows:

1. If p already appears on the Hp list in a tuple (u;, Hs;), then B responds with
Hs(p) = Hsi-

2. Suppose p does not already appear on the list. If the Hs query is made before
the challenge phase, then B goes to step 3 below. Otherwise, let P, denote
the value of the public key for the challenge identifier ID, during the challenge
phase, let C* = (U*, V*, W*) be the challenge ciphertext delivered to A; by B,
and let & be the value, to be defined below, used by B in the challenge phase.
B tests if p satisfies é(u, P) = é(U*, Pe,). If equality holds, then B adds (u, &)
to the Hj list and outputs £ = Hs(u). If the equality does not hold, then B
goes to step 3.

3. Supposing i to be the i-th distinct Hs query made by Aj, B selects a random

157

6.5 Security of the FullCL-PKE Construction

Hs; € {0,1}", outputs Hs(p) = Hs; and adds (u;, Hs ;) to the Hs list.

We simulate Hs this way for the same reasons as those discussed in the proof of

Lemma 5.4.

Phase 1: After receiving params from B, A; launches Phase 1 of its attack, by
making a series of requests, each of which is either a partial private key extraction
for an entity, a private key extraction for an entity, a request for a public key for
an entity, a replacement of a public key for an entity or a decryption query for an
entity. We assume that A; always makes the appropriate Hy query on the identifier
ID for that entity before making one of these requests. I replies to these requests as

follows:

Partial Private Key Extraction: Suppose the request is on ID;. There are three

cases:

1. If i # I, then B replies with b; Py.
2. If i =1 and ¢ = 1, then B replies with b; F.

3. If i =1 and ¢ =0, then B aborts.

Private Key Extraction: Suppose the request is on ID;. We can assume that the

public key for ID; has not been replaced. There are two cases:

1. If i # I, then B outputs (b; Py, z;).

2. If ¢ = I, then B aborts.

Request for Public Key: If the request is on ID; then B returns P; by accessing
the H1 list.

158

6.5 Security of the FullCL-PKE Construction

Replace Public Key: Suppose the request is to replace the public key for ID; with

value Pi’ . There are three cases:

1. If i = I and ¢ = 1, then B aborts.

2. If i = I and ¢ = 0, then B replaces the current entry in the H; list with the
new entry P; and updates the tuple to (ID7,Q, L, L, Py).

3. Otherwise, B replaces the current entry in the Hj list with the new entry P/
(i # I) and updates the tuple to (ID;,b; P, b;, L, P/) .

Decryption Queries: Suppose the request is to decrypt ciphertext (U, V, W) for
IDy, where the private key that should be used is the one corresponding to the current
value of the public key for ID;. Notice that even when ¢ = I, B cannot make use of
C to answer the query, because B is meant to be an IND-CPA adversary. Instead
B makes use of an algorithm K& to perform all the decryptions. This algorithm,
essentially a knowledge extractor in the sense of [16, 71|, is not perfect, but as we
shall show below, the probability that it decrypts incorrectly is sufficiently low that
it can be used in place of a true decryption algorithm making use of private keys.
Algorithm K& is defined as follows:

Algorithm K&: The input to the algorithm is a ciphertext C = (U,V,W), an
identifier ID, and the current value of the public key P;. We assume that KCE also
has access to the H3 and Hy lists. Algorithm K& operates as follows:

1. Find all triples (o, M;, H3 ;) on the Hs list such that
<U, V> = BaSiCCL—PKE—Encryp’qDe’PE (Jj7 Hg?j).

Here, BasicCL—PKE-EncryptDA7PA(M;7’) denotes the BasicCL-PKE encryption
of message M for ID4 using public key P4 and random value r. Collect all

these triples in a list .S7. If S} is empty, output L and halt.

159

6.5 Security of the FullCL-PKE Construction

2. For each triple (oj, M;, Hs ;) in S, find all pairs (o}, Hy;) in the Hy list with
oj = o;. For each such match, place (0;, M;, H3 j, Hy;) on a list Sa. If Sy is

empty, then output L and halt.

3. Check in Sy for an entry such that W = M; @ Hy;. If such an entry exists,
then output M; as the decryption of (U, V,W). Otherwise, output L .

Lemma 6.9 shows that ICE correctly decrypts with high probability.

Challenge Phase: At some point, A; should decide to end Phase 1 and pick 1Dy,
and two messages mg, m1 on which it wishes to be challenged. We can assume that
IDen has already been queried of Hy but that A; has not extracted the private key
for this identifier. Algorithm B responds as follows. If IDg, # ID; then B aborts.
Otherwise IDg, = ID; and B gives C the pair mg, m1 as the messages on which it

wishes to be challenged. There are now two cases:

e When ¢ = 0, C responds with the challenge ciphertext C' = (U’, V', W), a BF-
HybridPub encryption of m; under K, for a random b € {0,1}. Now B checks
each entry (u;, Hs;) in the Hj list to see if it satisfies the equality é(u;, P) =
é(U', Py). It is easy to see that at most one entry can do so. If B finds that
the j-th entry satisfies the equality, then B sets C* = (U’,V' @& Hs ;, W') and
delivers C* to Aj as the challenge ciphertext. Otherwise, if no entry satisfies
this test, B selects a random £ € {0,1}", sets C* = (U’, V' @&, W') and delivers
C* to Aj.

e When ¢ = 1, C responds with the challenge ciphertext C' = (U, V', W'),
such that C’ is the EIG-HybridPub encryption of m; under K,,; for a random
b € {0,1}. Then B sets C* = (U, V' & Hy(é(U',brsP)), W) and delivers C*
to Aj.

It is easy to see that in both cases C* is the FullCL-PKE encryption of my, for identifier
IDen under public key Pg,. We now let P, denote the particular value of the public

160

6.5 Security of the FullCL-PKE Construction

key for identifier IDy, during the challenge phase (A; may change this value in Phase
2 of its attack).

Phase 2: Adversary B continues to respond to Aj’s requests in the same way as it
did in Phase 1. However, the same restrictions as identified in Section 6.2 on Aj’s

behaviour apply in this phase.

Guess: Eventually, A; should make a guess b’ for b. Then B outputs b’ as its guess
for b. If A; has used more than time ¢, or attempts to make more than ¢; queries
to random oracle H; or more than ¢4 decryption queries, then B should abort Aj
and output a random guess for bit b (in this case algorithm K& has failed to perform

correctly at some point).

Analysis: Now we analyze the behavior of B and A; in this simulation. We claim
that if algorithm B does not abort during the simulation and if all of B’s uses of the
algorithm K& result in correct decryptions, then algorithm A;’s view is identical to
its view in the real attack. Moreover, if this is the case, then 2| Pr[b = /] — 1| > e.
This is not hard to see: Adversary B’s responses to all hash queries are uniformly
and independently distributed as in the real attack. All responses to Aj’s requests
are valid, provided of course that B does not abort and that K& performs correctly.
Furthermore, the challenge ciphertext C* is a valid FullCL-PKE encryption of m
under the current public key for identifier IDg,, where b € {0,1} is random. Thus,
by definition of algorithm A; we have that 2| Pr[b =] — 3| > e.

So we must examine the probability that B does not abort during the simulation
given that the algorithm & performs correctly. Examining the simulation, we see

that B can abort for the same four reasons as in Lemma 5.4, that is:

0. Because ¢ = 0 and the event Fy occurred during the simulation.
1. Because ¢ = 1 and event F; occurred during the simulation.

2. Because A; made a private key extraction on ID; at some point.

161

6.5 Security of the FullCL-PKE Construction

3. Or because Aj chose IDy, # ID;.

We can use a proof identical to that of Lemma 5.4 to establish a lower bound on the
probability that B does not abort. We obtain:
1
Pr[B does not abort] > —.
2q1
Now we examine the probability that algorithm ICE correctly handles all of A;’s gq4
decryption queries. We will show in Lemma 6.9 below that the probability that K&

correctly replies to individual decryption queries is at least A, where A is bounded as

in the statement of that lemma.

It is now easy to see that B’s advantage is at least ﬁ)\qd. It follows that either B’s
advantage as an adversary against BF-HybridPub or B’s advantage as an adversary
against EIG-HybridPub is at least z--A%. The running time of B is time(Ar) + qq -
time(KE) = t + O((¢g3 + qa)qqt’) where ' is the running time of the BasicCL-PKE

encryption algorithm. This completes the proof of the lemma.
O

Lemma 6.9 In the simulation in the proof of Lemma 6.8, Algorithm & correctly

replies to individual decryption queries with probability at least A\ where

A>1— (g3 + q1) - eown(t + O((g3 + q)qat’s a2, q5)) — 4g~ 1 — 27"+,

Here t is the running time of adversary A, ¢’ is the running time of the BasicCL-PKE
encryption algorithm, and eowg (7, ¢, ¢”) denotes the highest advantage of any Type
I OWE adversary against BasicCL-PKE which operates in time T and makes ¢’ hash

queries to Hy and ¢” hash queries to Hs.

Proof. We recall that queries to K& come in the form of a ciphertext C' = (U, V, W),
an identifier ID; and the current value of the public key P, for that identifier. We
also assume that K& has access to the Hs and Hy lists as they stand at the point
where the decryption query is made. We model the fact that A; obtains a challenge

162

6.5 Security of the FullCL-PKE Construction

ciphertext by considering an additional list of ciphertexts) in our proof. This
list is empty until the challenge phase and thereafter consists of just the challenge
ciphertext C* = (U*, V*, W*).

We define a sequence of events:

e Inv is the event that there exists some C' = (U',V/,WW') € Y and some
(0j, Mj, Hs ;) on the Hs list or some (o}, Hy;) on the Hy list such that the
BasicCL-PKE decryption of (U’, V') under the private key corresponding to Py,
and Dy, is equal to o; or o}. (For us, Inv has zero probability until after a
non-abortive challenge phase in Aj’s attack because) is empty up to this

point.)

L1 is the event that S is non-empty.

Lo is the event that S5 is non-empty.

Find is the event that there exists an entry (oj, M;, Hs j, Hy;) in So such that
W = Mj D H4’i.

Fail is the event that the output of algorithm K€ is not the decryption of C
under the private key corresponding to identifier ID, and public key P;.

We want to bound the probability of the event Fail for a particular execution of

algorithm KCE. To do so, we follow the proof of [71, Lemma 11] to obtain:

Pr[Fail] < Pr[Inv] 4 Pr[Fail|=lnv A =£4]
+ Pr[Fail|=Inv A £1 A =L9]
+ Pr[Fail|=Inv A £1 A L2 A =Find]
+ Pr[Fail|=Inv A £1 A L2 A Find].

We proceed to bound each of the terms in the above inequality.

Claim: Pr[lnv] < (g3 + q1) - eowr(time(B), g2, gs5).

Proof. Here eowg(T,q',q") denotes the highest advantage of any Type I OWE ad-

versary against BasicCL-PKE which operates in time 7' and makes ¢’ hash queries to

163

6.5 Security of the FullCL-PKE Construction

H, and ¢” hash queries to Hs, while time(B) denotes the running time of adversary

B in the proof of Lemma 6.8.

We sketch how to construct an OWE adversary B’ against BasicCL-PKE by adapting
adversary B in the proof of Lemma 6.8. Our adversary B’ will have a chance of being

successful provided that the event Inv occurs in the course of A;’s attack.

Adversary B’ begins by choosing a random bit ¢ and, as with B, it selects an index
I uniformly at random with 1 < I < ¢;. Let ¢1, g3 and g4 denote the number of Hy,

Hj3 and Hj4 queries made in Aj’s attack respectively.

The running time of the adversary will be the same as that of B. The existence of

this adversary will be used to bound the probability of the event Inv.

In fact B’ is closely related to B. B’ is given by its challenger C’ the system parameters
of BasicCL-PKE which are

<G1>G27évn7P7P07HlaH27H5>

(and the value s when ¢ = 1). B’ now passes A;’s Hy, Hay, Hs, Hy and Hs queries
to C’' to answer, but keeps lists of all distinct queries made by A; and C’s replies to

them. B’ answers the following requests as follows:

e Partial private key extraction queries: If i = I and ¢ = 0, then B’ aborts.

Otherwise, B’ passes Aj’s queries to C’ to answer.

e Private key extraction queries: If i = I then B’ aborts. Otherwise, B’ passes

Ap’s queries to C’' to answer.
e Request for public key queries: B’ passes Aj’s queries to C’ to answer.

e Replace public key queries: If i = I and ¢ = 1, then B’ aborts. Otherwise, B

passes Aj’s queries to C’ to answer.

e Decryption queries: B’ uses an algorithm K& to handle A;’s decryption queries

(so these responses may be incorrect).

164

6.5 Security of the FullCL-PKE Construction

When Aj picks IDq, and mg, m1 on which it wishes to be challenges. If 1Dy, # IDy,
then B’ aborts. Otherwise B’ forwards 1Dy, to C’ and responds to Aj’s request for
a challenge ciphertext with C* = (U’, V', W*) where (U’, V') is the BasicCL-PKE
challenge ciphertext given to B’ by C’ and W* is chosen uniformly at random from

{0,1}".

Eventually A; outputs a bit &’. If necessary (when A; runs for too long or makes too
many hash queries), B stops A;. Note that B’ may also be forced to stop because it
cannot respond to a particular query from Aj. After stopping for whatever reason,
B’ chooses an element uniformly at random from the set {o; : 1 < j < g3} U {0} :

1 <i < ¢4} and outputs this element as its guess for o*.

It can be argued that, up to the point where Inv occurs in B”’s simulation, the two
simulations B and B’ are indistinguishable to A;. This is because we ensured that B’s
simulation aborts in the exact situations that B’s simulation aborts. Furthermore,
all the queries in B’’s simulation which are handled by C’ are indistinguishable from
those handled in B’s simulation. So the probability that Inv occurs in B”’s simulation
is exactly the same that it does in B’s. Because of the relationship between the
BasicCL-PKE and FullCL-PKE public keys, it can also be seen that if event Inv occurs,
then B’ has probability 1/(¢s+ q4) of outputting the correct BasicCL-PKE decryption
of (U',V'). So B'’s overall success probability is at least Pr[Inv]/(¢3 + ¢4). But this
is not greater than the highest success probability of any Type I OWE adversary
against BasicCL-PKE that operates in the same time as B’ and that makes ¢ and
g5 hash queries. Since the running time of B’ is the same as that of B, the claim

follows.
O

Claim: PrlFail|-Inv A =£] <3/¢+3-27".

Proof. We analyse the event Fail|=Inv A =L as follows. Here K& outputs L because
S1 is empty, but this is an incorrect decryption. So in fact there exists a message M
such that C' = (U, V, W) encrypts M under IDy, Py. It is easy to see that, because
(U,V) is a valid BasicCL-PKE ciphertext for 1Dy, Py, there exist unique o € {0,1}"

165

6.5 Security of the FullCL-PKE Construction

and r € Z; such that:
(U, V) = BasicCL-PKE-Encryptp, p, (03 7).

Since 57 is empty, we deduce that H3 has not been queried on an input containing

g.

We consider two cases: either a valid C' # C* has been produced by A; from a
message M using coins r = H3(o, M) without ¢ having been queried of Hj, or in
fact C = C* and this query occurs after the challenge phase. In the former case, it
is easy to see that C' will be a valid ciphertext with probability at most 1/¢q, because
a valid ciphertext C' = (U,V, W) will have U = rP where r € Z; is the output of

random oracle Hs on a query not made by A;j.

We consider the latter case, where C' = C* is a valid ciphertext, further. Now K&
can only ever be queried on this ciphertext for a combination of identifier and public
key 1Dy, Py not equal to IDg,, P, because of the rules on adversary behaviour. We
also know that ID., = ID; (because to receive this query, B must not have aborted

at the challenge phase). Suppose then that
C* = (r*P,o* @ Ho(é(Q, Py)") ® Hs(r* Pay), my ® Hy(c*))

where r* = Hs(c*,m;) and, as usual, P, denotes the value of IDg,’s public key at
the time when the challenge ciphertext was computed. The values o*, Hy(o*) and
r* are unknown to B and K& (since B’s challenger produces C*). Since C = C*, we
have rP = U = U* = r*P and so r = r*. The probability that ¢ # ¢* is 1/q. For
suppose that o # o*. Then we have Hs(o, M) = r = r* = H3(c*, my), giving equal
outputs for random oracle H3 from distinct inputs. The probability of this event is
1/q. So with probability 1 —1/q, we have 0 = ¢*. But then because r = r*, we must

have
Hy(é(Qe, Po)") ® Hs(rPy) = Ha(6(Q, Po)") @ Hy(r* Py). (6.4)

We wish to evaluate the probability that, in fact, we have r Py = r* Py, and é(Qg, Po)" =
é(qQ, PO)T*. To do so, we bound the probability that (6.4) holds and these equalities

are not both satisfied. There are three events to consider:

166

6.5 Security of the FullCL-PKE Construction

1. (rPy # r*Pa) A (6(Qq, Po)" = é(Q, Py)""). From (6.4) we have Hs(rP;) =
Hs(r* Pey) with 7Py # r* Py, so we have a collision for Hj, an event of probab-
ility 277

2. (rPy = 1r*Pa) A (&(Qe, Po)" # é(Q, Py)™"). From (6.4) we have a collision of Ho

on unequal inputs, an event of probability 27".

3. (rPy # r*Pay)A(E(Qe, Po)" # é(Q, Py)™"). Rewriting (6.4), we obtain: Hs(r*Py,) =
Hs(rPy) @ [Hy(6(Qr, Po)™) ® Ha(é(Q, Py)™")]. Since neither pair of oracle inputs

is equal, we again have an event of probability 27".

So with probability 1 — (3-27") we have (r*Py = r*Pa,) A (6(Qr, Po)" = é(Q, Py)" .
Since r = r*, we obtain Py = P, and é(Qy, Py) = é(Q, Fy). From this we have that
Py = Py, and Qy = Q. The second equality implies that with probability 1 — 1/¢,
IDy = ID¢p. Thus, this is in fact the challenge query which is forbidden.

To sum up, L is output incorrectly if any of these four events occur:

C is valid when (C # C*), an event of probability ¢~

e Hj(o, M) = Hsz(o*, M) when (o # o*,C = C*), an event of probability ¢ .

(6.4) holds with unequal inputs into Hy and/or Hs when (0 = ¢*,C = C*), an
event of probability 3 -27".

H,(IDy) = Hi(IDey) when (IDy # IDey, 0 = o*,C = C*), an event of probability

gt

The claim follows.

The probablility of the next three claims are as in [6, Lemma 9].

Claim: PrlFail|=Inv A L1 A =Lg] =27

167

6.5 Security of the FullCL-PKE Construction

Proof. In this situation, K& outputs L because Sy is empty, but this is an incorrect
decryption. So in fact there exists a message M such that C' = (U, V, W) encrypts
M under 1Dy, Py. Now it is easy to see that, because (U, V) is a valid BasicCL-PKE
ciphertext for 1Dy, I, there exist unique o € {0,1}" and r € Z; such that:

(U, V) = BasicCL-PKE-Encrypt,p, p,(0;7).

But S; is non-empty, so we also have, (U, V) = BasicCL-PKE-Encrypt,p, p,(0;; H3 ;),
for some j. This implies that ¢ = o; and r = Hsz; = H3(oj,M). Since Sy is
empty, we can deduce that H; has not been queried on input o. Yet we must have
W = M @ Hy(o) if C is a proper encryption of M. Moreover, we cannot simply
define M by M =W & Hy(o), since r is already defined by r = Hs(oj, M) so M is
already fixed. The probability that W @& Hy (o) outputs the correct M is exactly 27"

and this bounds the probability that K& incorrectly outputs L .
O

Claim: PrlFail|=Inv A £1 A Lo A =Find] = 1/q.

Proof. Here K& outputs L because a failure occurs at step 3, but this is an incorrect
decryption. Arguing as in the previous claim, we deduce that there exists a message
M such that C' = (U, V, W) encrypts M under Dy, Py, using unique o € {0,1}" and
7 € Zy. Moreover, there exists a j with o = o; and r = H3 ;. Now S2 is non-empty,

so there exists an entry (o, M;, H3 j, Hy;) on the Sy list with o, = 0; = 0.

Now suppose that (o, M) has been queried of Hs. Then we would also have an
entry (o, M, Hs;, Hy;) on the Sy list. But since C' is the encryption of M, we
would also have W = M @ Hy;. Then K& would output M instead of L . This
contradiction shows that (o, M) has not been queried of Hs. Yet we must have
Hs(o, M) =r = Hs; if C is a proper encryption of M. The probability of this event
occurring is exactly 1/¢ and this bounds the probability that K& incorrectly outputs

1.
H

Claim: PrlFail|=Inv A L1 A Lo A Find] = 0.

168

6.5 Security of the FullCL-PKE Construction

FullCL-PKE
L=L
R F‘ig“srﬂl‘t’ (IND-CCA)
| L6.7 (Typell)
(Typeh EIG-HybridPub
(IND-CCA)
L6.5
L6.9
BF-HybridPub BasicCL-PKE EIG-HybridPub
(IND-CPA) (OWE) (IND-CPA)
L6.6 L6.4
L5.3 (Type II)
L5.4 v
BF-BasicPub < (Type) > EIG-BasicPub
(OWE) (OWE)
R5.2 L5.1
BDHP CDHP

Figure 6.1: A summary of the lemmas and results of Chapters 5 and 6.

Proof. Here, K& outputs a message M; whose encryption under the combination
IDy, Py yields the ciphertext C with random oracles Hs and Hy as defined in B’s
simulation. Therefore the decryption of C'is M;, and K& never fails in this situation.

The claim follows.
O

Gathering together each of these claims, we finally obtain
Pr{Fail] < (g3 + ¢4) - eows(time(B) + O((g3 + q1)qat’, 42, 45) +4g~" + 27",

The running time of B is time(A;) + g4 - time(KE) = ¢t + O((g3 + q4)qqt’), where ¢/
is the running time of the BasicCL-PKE encryption algorithm. This completes the

proof of the lemma.
0

Figure 6.1 provides an overview of our overall approach to the proof of security for
FullCL-PKE. It can be seen that our security proofs yield reductions to either the
CDHP in G; or BDHP in (G1, Gg, é). To conclude this section we will make a formal
statement relating the security of FullCL-PKE to the hardness of the BDHP.

169

6.5 Security of the FullCL-PKE Construction

Theorem 6.10 Let hash functions H; for 1 < i < 5 be random oracles. Suppose
further that there is no polynomially bounded algorithm that can solve the BDHP
with non-negligible advantage. Then FullCL-PKE is IND-CCA secure.

Proof. As before, the proof of this theorem is performed in two parts where we
relate the advantage of a Type I or Type II attacker against FullCL-PKE to that of
an algorithm to solve BDHP or CDHP. We first consider a Type I adversary.

Type I adversary: Lemma 6.8 provides a reduction relating the IND-CCA secur-
ity of FullCL-PKE to that of EIG-HybridPub or BF-HybridPub in the IND-CPA model
for standard PKE. This reduction makes use of the special-purpose knowledge ex-
traction algorithm to handle decryption queries which was studied in Lemma 6.9.
Furthermore, in order for this knowledge extractor to have a large value of A\, we
require the BasicCL-PKE scheme to be OWE secure if the BDHP is hard — the sub-
ject of Theorem 5.5. Thereafter, we reduce the security to that of EIG-BasicPub or
BF-BasicPub against OWE adversaries using Lemma 6.4 and Lemma 6.6. Lemma
5.1 and Result 5.2 relate the security of these PKE schemes to the hardness of the
CDHP or BDHP respectively. This sequence of reductions is represented in Figure
6.1.

By composing the intermediate security results we can relate the security of FullCL-
PKE against Type I adversaries directly to the hardness of the BDHP or CDHP.
Suppose hash functions H; for 1 < i < 5 are random oracles. Suppose A; is a Type
I adversary against FullCL-PKE. Suppose that .A; runs in time time(.As), makes at
most g; queries of H; (1 < i <5), at most gg decryption queries and has advantage €
against FullCL-PKE. Then there is an algorithm B with running time O(time(Aj) +
n(qs + q4) + qat’ (g3 + q4)), where t’ is the running time of BasicCL-PKE encryption
algorithm (defined in Section 5.4). Either algorithm B solves the CDHP in G; with

advantage at least

14 qd
¢ | 2(q3 + qa) 4q1 q 2n

170

6.5 Security of the FullCL-PKE Construction

where Ay is

1 € 1
1— (g3 +q) —— - —) —4gt —2772
(g3 + q4) " < 0 2n> q

or algorithm B solves the BDHP in (Gq, G2, é) with advantage at least

1\ ad
s 0622
g2 | 2(g3 + q1) 4q1 q 2n

where Ag is

1 € 1
1—(g3+q) ————) —4g ' =272
(@ +a) 2 <4q1 2") !

Type II adversary: Lemma 6.7 shows that the IND-CCA security of FullCL-PKE
can be reduced to the usual IND-CCA security of a related (normal) public key en-
cryption scheme EIG-HybridPub. Lemma 6.5 reduces the security of EIG-HybridPub
to that of a second public key encryption scheme EIG-BasicPub against OWE ad-
versaries. Finally, Lemma 5.1 relates the security of EIG-BasicPub to the hardness of
the CDHP in G;. This sequence of reductions is represented in the right hand side
of Figure 6.1.

As above, we can relate security against Type II adversaries directly to the hardness
of the CDHP. Suppose hash functions H; for 1 < i < 5 are random oracles. Suppose
A is a Type II adversary against FullCL-PKE. Suppose that Aj;; runs in time
time(.Azr), makes at most ¢; queries of H; (1 <1i < 5), at most ¢4 decryption queries
and has advantage € against FullCL-PKE. Then there is an algorithm B with running
time O(time(Azr) + n(gs + ¢q4)) that solves the CDHP in G; with advantage at least

g |Gt t) (=5 =2))

Since the CDHP in G; (output by ZG(k)) is a harder problem than the BDHP
in (G1,Ggo,é) (output by the same ZG(k)), we can finally say that the security of

FullCL-PKE is related to the hardness of the BDHP.
O

171

6.6 Summary

6.6 Summary

The CL-PKE scheme presented here, which is a hybridisation of the CL-PKE scheme
of Chapter 5, enjoys short public and private keys and is secure in an appropriate
and robust model assuming that the BDHP is hard. The standard IND-CCA notion
is the privacy notion most PKE designs aim to achieve. Our model extends the IND-
CCA notion to our new setting, which includes the KGC and is fully adaptive. The
scheme is fast, compact, simple, interoperable and highly practical. Furthermore, it

improves on the previously published scheme in [6].

172

CHAPTER 7

Generic CL-PKE Schemes

Contents
7.1 Introduction00, 173
7.2 Some Generic CL-PKE Constructions 174
7.3 Analysisof CBE0..0.. 178
7.3.1 Gentry’s Definition for CBE 178
7.3.2 Gentry’s Security Model for CBE 181
7.3.3 Gentry’s Concrete CBE Scheme 184
7.4 Secure CBE from Secure CL-PKE 186
7.4.1 CBE Schemes from CL-PKE Schemes 188
7.4.2 Security of CBE schemes from CL-PKE Schemes 189
7.5 SUmMmAary . . . v v v v vt e e e e e e e e e e 193

We explore how CL-PKE schemes can be constructed generically by combining stand-
ard public key encryption (PKE) and identifier-based encryption (ID-PKE) schemes.
We present an analysis of Gentry’s concept of certificate-based encryption (CBE).
We then explore how CBE schemes can be constructed using CL-PKE schemes.

7.1 Introduction

In this chapter we examine how an arbitrary ID-PKE scheme and an arbitrary PKE
scheme can be combined to construct CL-PKE schemes. These generic constructions

are important because they provide a better understanding of CL-PKE schemes.

173

7.2 Some Generic CL-PKE Constructions

Note that the efficient CL-PKE schemes in Chapters 5 and 6 are derived from one
of our generic transformations through a process of optimisation for specific ID-PKE

and standard PKE schemes.

A related idea is that of the optimised double encryption scheme presented by Gentry
[76]. Gentry’s scheme has closely related properties to those of the CL-PKC(B)
encryption scheme described in Chapter 4 and developed in Chapters 5 and 6. Recall
that CL-PKC(B) schemes include a public key in the identifier and do not use time
or a certificate infrastructure as in [76]. This connection between CL-PKE and CBE
was already recognised in [6] and in Section 4.3.3. We will explore it further in this
chapter. To fully explore the relationship between CL-PKE and CBE, we describe
and analyse the CBE definition and the CBE security model. The analysis highlights
numerous weaknesses in the definitions and models of [76]. An improved definition
of CBE is provided. We then use this definition to show how to build IND-CCA
secure CBE schemes from any IND-CCA secure CL-PKE scheme.

7.2 Some Generic CL-PKE Constructions

In what follows generic methods of constructing CL-PKE schemes by combining a
general ID-PKE scheme with a standard PKE schemes will be briefly considered. We
will provide three generic CL-PKE schemes constructed in this way: CL-1, CL-2 and
CL-3. Roughly speaking, for each of the constructions, the Partial-Private-Key-Extract
algorithm is handled by the ID-PKE scheme, and the Set-Private-Key/Set-Public-Key
algorithms are handled by the standard PKE scheme.

A generic scheme of the type constructed here can be used to add cryptographic
workflow to a standard PKE scheme by composing the standard PKE scheme with
an ID-PKE scheme; the resultant scheme no longer requires certificates. Similarly,
a generic scheme can be constructed to enhance the level of trust offered by an ID-
PKE scheme by composing the ID-PKE scheme with a standard PKE scheme; the

resultant scheme will, however, no longer be identifier-based.

174

7.2 Some Generic CL-PKE Constructions

Now let us consider an IND-ID-CCA secure ID-PKE scheme, IT'P, and an IND-CCA
secure standard PKE scheme, IIPX. These will be composed in order to create our
first generic CL-PKE scheme, denoted II®“~!. Note that Canetti et al. [44] show how
IND-CCA secure PKE schemes can be constructed using any CPA secure ID-PKE

scheme. The result in [44] allows II'P and ITIP¥ to share many algorithms.

In what follows we assume that II'P and IIP¥ are compatible in the sense that the
ciphertext space of II'K is equal to the message (plaintext) space of II'”. The seven
algorithms needed to define II°M~! are described next. We assume that schemes ITPK

and IT'P take as input security parameters ki and ky respectively.

Setup: This algorithm runs the Setup algorithm of the scheme IIP¥ and the Setup
algorithm of the scheme IT'°. The message space of II°~1 will be the message space
of TI'P | denoted M, while the ciphertext space of II°T~1 will be the ciphertext space
of TI'P,

Partial-Private-Key-Extract: This algorithm is defined to be the Extract algorithm of
™. So the partial private key D4 of ID4 in TI®“~! is set to be the private key da

of ID4 in the scheme ITP.

Set-Secret-Value and Set-Public-Key: These algorithms are obtained from the Key-
Generation algorithm of ITPK. Algorithm Key-Generation is run, and the output of
Set-Secret-Value algorithm, x4, is defined to be the private key Kp,;, for IIPX while
the output of the Set-Public-Key algorithm, P4, is defined to be the public key K,

for TIPK,

Set-Private-Key: This algorithm outputs S4 = (D4, x4), where, as above D4 is the
private key corresponding to identifier D4 in the scheme ' and x4 is a private
key obtained from the scheme TTPK,

Encrypt: To encrypt M € M for identifier ID4 and public key P4, perform the

following steps:

175

7.2 Some Generic CL-PKE Constructions

1. Check that P4 is a valid public key for II'X if not output L .
2. Compute and output the ciphertext:
C = EW(EPN(M, Pa),1D).

Here, £'P denotes the encryption algorithm of the scheme IT'° and EF¥ denotes

the encryption algorithm of the scheme ITFK,

Decrypt: Suppose C € C. To decrypt this ciphertext using the private key S4 =
(Da,xa), firstly compute D (C, Dy4). If the result is equal to L , then output
L and reject the ciphertext. Otherwise output DYX(DP(C, Dy),z4). Here, DP
denotes the decryption algorithm of II'® and DX denotes the decryption algorithm
of TTPK,

An alternative serial encryption scheme to II®“~! is one which reverses the order
of encryption, such that C = EFX(EP (M, ID), P4). This scheme will be labelled
IICV=2, Here, of course, we require that the ciphertexts output by P can be used

as plaintext for the encryption algorithm of £P.

The scheme denoted I3 is a parallel encryption scheme. As we shall see, details in
the algorithms differ. For TI°—3, we need to assume that II'¥ and II'° are compat-
ible in the sense that they both have the same plaintext space, denoted M. We also
assume that M consists of the set of strings of some length n. The seven algorithms
needed to define TI°*~3 are described next. As with TI*~1 here &P /D' denotes
the encryption/decryption algorithm of the scheme IT'® and £PX /DK denotes the

encryption/decryption algorithm of the scheme ITFK.

Setup: This algorithm runs the Setup algorithm of the scheme ITP¥ and the Setup

algorithm of scheme IT'P.
Partial-Private-Key-Extract: Identical to Partial-Private-Key-Extract of IT¢V~1,

Set-Secret-Value and Set-Public-Key: Identical to Set-Secret-Value and Set-Public-Key

176

7.2 Some Generic CL-PKE Constructions

of TIC—1,
Set-Private-Key: Identical to Set-Private-Key of TI¢F—1,

Encrypt: To encrypt M € M for identifier ID4 and public key P4, perform the

following steps:

1. Check that Py is a valid public key for IIPK if not output L .
2. Choose a random My with the same bit length as M.
3. Set Mg = Mx & M.

4. Compute and output the ciphertext:

C = (EP(M4, 1D), EPR (Mg, Pa)).

Decrypt: Suppose C' = (ca,cp) € C. To decrypt this ciphertext using the private
key S4 = (Da,x4), firstly compute D'P(ca, D4) and DP¥(cg,x4). If either result
is equal to L , then output L and reject the ciphertext. Otherwise output M =
D'P(cp, Da) © DX (cp,w4).

This concludes the description of TI€L3.

Notice that if the BF ID-PKE scheme [32] and the ElGamal PKE scheme [68] are
used directly in the generic construction II®“~1 the resulting construction is com-
putationally rather inefficient: in II®“~1 both £ and £PX are run independently
using different plaintexts, random values and redundancies. The scheme FullCL-PKE
in Chapter 6 can be regarded as an optimisation of II®“~! where the components
of the scheme are Fullldent of [32] and EIG-HybridPub of Section 6.5.1. Our proof
of security for that scheme utilised a particular knowledge extractor which decrypts

ciphertexts with a high probability of success.

Given the proof techniques developed in previous chapters, the main obstacle in

proving the security of these generic constructions in the security model developed

177

7.3 Analysis of CBE

in Chapter 6 appears to be the construction of a general knowledge extractor that
is appropriate to the Type I adversary setting (which is very different to existing
settings). This knowledge extractor is required to decrypt ciphertexts with high

probability of success for an entity whose public key may have been replaced.

7.3 Analysis of CBE

This section will clarify the relationship between the definition and security model of
CBE [76] and those of CL-PKE. This is done because, as we pointed out, some simil-
arities do exist between CBE and CL-PKE(B) schemes. Formalising this relationship
is beneficial as it will elucidate both independently developed models and highlight
any overlaps between them. This process will allow the reader to understand how

CBE is related to our contribution.

When we started to examine the CBE definition and security model, we found them
deficient in many ways. It is not our intention to criticize CBE, even though the

results of our analysis point out some major shortcomings.

7.3.1 Gentry's Definition for CBE

First we provide the formal definition of CBE:

Definition 7.1 ([76]) A certificate-updating certificate-based encryption scheme is
defined by six algorithms (Gen;pgr, Genpk g, Updl, Upd2, £, D) such that:

1. Algorithm Genjgg is a probabilistic ID-PKE key generation algorithm that
takes a security parameter k; and (optionally) the total number of time periods
t as input. It returns SK;pp (the certifier’s master-key) and public parameters
params that include a public key PKjpg, and the description of a string space
A.

178

7.3 Analysis of CBE

2. Algorithm Genpg g is a probabilistic PKE key generation algorithm that takes
a security parameter kg and (optionally) the total number of time periods ¢ as

input. It returns a private key SKpgpr and public key PKpg .

3. At the start of time period 7, the deterministic certifier update algorithm Upd1

takes as input SK;pg, params, 7, A € A and PKpgkp. It returns Cert..

4. At the start of time period 7, the deterministic update algorithm Upd2 takes

as input params, 7, Cert/, and (optionally) Cert,_;. It returns Cert,.

5. Algorithm & is a probabilistic encryption algorithm that takes (params, 7, A,
PKpgp, M) as input, where M is a message. It returns a ciphertext C' on
message M intended for the entity to decrypt using Cert, and SKpxp (and
possibly A).

6. Algorithm D is a deterministic decryption algorithm that takes (params, Cert.,
SKpip, C) as input in time period 7. It returns either M or the special symbol
1 indicating failure. We require DcertTvsKPKE)\(67_7)\1PKIBE7PKPKE (M)) =M

for the given params.

The algorithm Gen;pg is similar to the algorithm setup in an ID-PKE scheme. The
algorithm Genpgp is similar to the combined algorithm setup and K in a standard

PKE scheme, with input to setup and output from A.

Analysing the CBE Definition

We highlight some weaknesses in Definition 7.1:

1. Property (1) of Definition 7.1 requires PK;pgr to be an identifiable element
of the ID-PKE scheme’s parameters that can be labelled as a public key (no-
tice that PKpp is also used during encryption). In the BF ID-PKE scheme

presented in Section 3.2.4.1, PK;pg corresponds to Py. Given that not every

179

7.3 Analysis of CBE

ID-PKE scheme need have this property, Definition 7.1 limits the ID-PKE

schemes that can be used in generating CBE schemes.

2. As we can see from property (1) of Definition 7.1, combining an ID-PKE scheme
with a standard PKE scheme is explicitly required for building a CBE scheme.
This is another limitation in the way CBE schemes are constructed and means
that a general CL-PKE scheme does not necessarily give rise to a CBE scheme,
even though it can have all the functionality of a CBE scheme. This limitation

leads to the discrepancy explained next.

3. None of the concrete schemes in [76] fit the definition of a CBE scheme given in
[76] and reproduced here as Definition 7.1. This is because Gentry’s concrete
CBE schemes are all set up using a single generation algorithm with a single
security parameter and all the key pairs (SKpx g, PKpgE) are computed based
on system wide parameters. Thus, there is a major incompatibility in [76]
between the definition of CBE on the one hand and the concrete CBE schemes

on the other.

4. According to property (5) of Definition 7.1, only publicly available values are
required to run algorithm Upd2. Algorithm Upd2 lacks any secret or private
input such as SK;pp. Hence, any entity can run algorithm Upd2 to update all
the certificates in the system. This of course defeats the purpose of an update

algorithm.

5. In property (6) of Definition 7.1 and the description of encryption schemes
in [76], the public key used in CBE is always assumed to be valid. In no
circumstance does the encryption algorithm output fail and reject the public
key. The encryption algorithms of the concrete CBE schemes in [76, §3] do
not perform any certificate verification, and checking the public key for these
schemes is crucial. We regard this as a weakness which could lead to practical

attacks.

6. The encryption algorithm &£ of Definition 7.1 appears to make use of elements of
both an ID-PKE scheme and a standard PKE scheme. However, the required
relationship between the ID-PKE scheme, the standard PKE scheme and £ is

180

7.3 Analysis of CBE

not specified. Recall that in Section 7.2 we described some examples which
explain why schemes, which are in some sense compatible, are required to

construct a single scheme.

7. All the concrete schemes in [76] and all the algorithms in Definition 7.1 depend
explicitly on time. Although it was noted [76, p.278] that the CBE scheme
need not be used for certificate updating, Gentry [76] did not investigate in

any detail the applications of such a scheme.

It is clear from this analysis that Definition 7.1 has many problems. Therefore in
Section 7.4.1 we provide the reader with an alternative definition for CBE. The

concrete schemes in [76] meet our modified definitions.

7.3.2 Gentry's Security Model for CBE

Security for CBE is defined using two different games in [76]. The adversary chooses
which game to play. A CBE scheme is secure if no adversary can win either game.
In Game 1 the adversary models an uncertified entity and in Game 2 the adversary

models the certifier.

We now describe these IND-CCA aversarial games in more detail, following [76, §2.2].

CBE Game 1 Adversary: The challenger runs Gen;pgr(ki,t), and gives params
to the adversary A;. The adversary then interleaves certification and decryption

queries with a single challenge query. These queries are answered as follows:

e On certification query (7,\, PKpxr, SKpkg), the challenger checks that A €
A and that SKpgg is the private key corresponding to PKpgpg. If so, it runs

Updl and returns Cert!, else it returns L .

e On decryption query (1, \, PKpgp, SKpkg,C), the challenger checks that \ €
A and that SKpgp is the private key corresponding to PKpgp. If so, it

181

7.3 Analysis of CBE

generates Cert; and outputs Deert, SKpxp(C), else it returns L .

e On challenge query (7eh, Ach, PKpK E.ch, SKpK E,chs Mo, M1), the challenger che-
cks that Ay € A and that SKpxgcn is the private key corresponding to

PKpkE,- If so, it chooses random bit b and returns

* —_
Cr = chhv/\chapKIBE:PKPKE,ch(Mb)7

else it returns L .

Finally, A; outputs a guess b’ € {0,1}. The adversary wins the game if b = ¥’
and (Tch, Ach, PKpPKE.chy SKPKE ch, C*)™! was not the subject of a decryption query
after the challenge, and (7eh, Aehs PKprE.ch, SKpKE.ch) Was not the subject of any
certification query. We define A;’s advantage in this game to be Adv(A;) := 2| Pr[b =

b - L.

CBE Game 2 Adversary: The challenger runs Genpgg(ko,t), and gives PKpgp
to the adversary A,. The adversary then interleaves decryption queries with a single

challenge query. These queries are answered as follows:

e On decryption query (7, A, params, SK;pg, C), the challenger checks that A € A
and that SK;pp is the master-key corresponding to params. If so, it generates

Cert, and outputs Dcert, SKpxp A (C), else it returns L .

e On challenge query (7ch, Ach, paramsy,, SKrgg ch, Mo, M1), the challenger checks
that Acn € A and that SK;pg « is the master-key corresponding to paramsg,.
If so, it chooses random bit b and returns C* = & A PK;pp.a.PKpxs (Mb),

else it returns L .

Finally, Ay outputs a guess ' € {0,1}. The adversary wins the game if b = V' and
(Tch, Ach, Paramsy,, SKrpg ch, C*) was not the subject of a decryption query after the
challenge. We define Ajy’s advantage in this game to be Adv(Ay) := 2| Pr[b = '] —3|.

"!Note that SKpx g was omitted here in [76].

182

7.3 Analysis of CBE

Definition 7.2 ([76]) 77 A certificate-updating certificate-based encryption scheme
is secure against adaptive chosen ciphertext attack (IND-CBE-CCA) if no probabil-
istic polynomial time adversary has non-negligible advantage in either CBE Game 1
or CBE Game 2.

Analysing the CBE Security Model

In this section, we present an analysis of the CBE security model, and compare it
to the security model for CL-PKE that was developed in Chapters 5 and 6. Notice
that our CL-PKE security model assumes an adversary who can extract partial
private keys and change public keys even for the challenge identity, whereas Gentry’s
model, in which the equivalent of partial private keys are publicly available and bind
the public keys (and time periods) to identities, simulates the adversary differently.

Unfortunately, some major weaknesses exist in the CBE security model of [76]:

1. Game 1 does not capture an adversary obtaining a ‘certificate’ for an existing
public key that the adversary intends to attack. This method of attack is
natural for an uncertified client. The reason this restriction arises is because
the challenger initially controls the setting of public keys for entities in the CBE
system. We do not have such a restriction in the CL-PKE security model: our

Type I adversaries are truly adaptive in nature.

2. A Game 1 adversary must provide the private key along with the corresponding
public key. This is done by giving private keys to the challenger when making
any query involving public keys (even the challenge query). In CL-PKE, we
allow our Type I adversary to change an entity’s public key without needing to
show the private key. This gives the adversary more flexibility, for example, the
adversary can replace the public key of an entity with that of another (without
knowing the corresponding private key). We are able to handle this in our

proofs by the use of special purpose knowledge extractors.

3. A Game 2 adversary does mot get to choose a public key to attack and is

183

7.3 Analysis of CBE

given a specific public key by the challenger. This is unlike a CL-PKE Type II

adversary.

4. A Game 2 adversary proves knowledge of the master-key corresponding to
params by giving every master-key to the challenger. This adversary can al-
ter the CBE scheme by choosing new parameters for the ID-PKE scheme in
each query. This unnecessarily complicates the way the adversary is modelled.
In CL-PKE, a Type II adversary is given the master-key to allow it to ‘break’
part of the scheme which the KGC is always able to break. Handling only
one master-key is more natural because the aim of the proof is to examine the
security of a system with a pre-specified set of parameters, that is, a system

which has been set up.

It can be argued that the unusual constraint expressed in weakness (2) above can
be removed for the proof of the first concrete scheme in [76]. However, the proof
of security for that scheme suffers from a deficiency. The decryption queries in the
proof of [76, Lemma 1], do not work as defined unless the hash queries are modified in
the simulation by setting ‘P]{ = b; P’ for coin; = 0. Unlike this simulation problem,
the above differences are significant enough to illustrate that the CBE definition and
security model inadequately capture the concept we explored in CL-PKE: a concept
which represents a shift in how public keys are managed and used. CBE is a very
interesting concept for an encryption scheme which is suitable for solving a particular

problem: that of efficient revocation in traditional public key infrastructures.

7.3.3 Gentry's Concrete CBE Scheme

The scheme BasicCBE of [76] is described using the notation established in Chapter

2 as follows:

e Setup: The CA (i) runs ZG on input k to generate (G1, Go, é); (it) chooses Hj :
{0,1}* — Gy and Hy : Gy — {0,1}" for some n; (iii) chooses P € Gy, random

184

7.3 Analysis of CBE

sc € Zy and sets Py = s¢P € Gy and params= (G1, G2, é, P, Py, H1, Ha). The
CA’s secret is s¢ € Zy which is used to issue certificates. The message space
is M ={0,1}". The ciphertext space is C = G1 x {0,1}".

o Set-Key-Pair: Entity A selects a private and public key pair (s4, s4P).

o Certify: (i) Entity A sends ID4|[saP to the CA. (i) The CA produces and
distributes certificate Certq » = scH1(Py||7||IDal|saP) € G1 in time period 7.
Notice that the private key that can be computed by A in time period 7 is
Sa = Certg,+ saH1(IDal|saP) € Gy.

e Encrypt: To encrypt M € M for A, entity B (i) computes H1(ID4|lsaP) € Gy;
(43) computes Hy(Po|7[[IDallsaP) € Gy; (iii) chooses a random value r € Z7;

and (iv) computes:
C = (rP,M & Hy((é(Py, Hi(Po||T||IDal|sAP)) - é(saP, Hi(ID4|lsaP)))")).
Notice that steps (i) and (ii) require only public information.
e Decrypt: To decrypt C = (U, V) € C, entity A computes:

M =V @& Hy(e(U,Sa)).

The semantically secure scheme FullCBE of [76] applies the hybridisation technique
described in Section 6.4 to the scheme BasicCBE above.

Notice that the public key, s4 P, is simply computed according to the parameters
issued by the CA. We described in Section 7.3.1 why the concrete CBE schemes in
[76] fail to meet Definition 7.1. Also notice that the encryption algorithm of scheme
BasicCBE uses the public key s4 P without first checking the validity of the public
key.

Analysis of the Concrete Scheme

Gentry’s schemes BasicCBE and FullCBE use a form of double encryption and have

some overlap in properties with CL-PKE schemes. The CBE schemes BasicCBE

185

7.4 Secure CBE from Secure CL-PKE

and FullCBE were designed to use H; with two different inputs, ‘Pyl|7||IDal[sa P’
and ‘ID4||s4P’, to ensures the separation of both the standard PKE and ID-PKE
schemes. In designing the schemes which we described in Chapters 5 and 6, we make
the separation more explicit by using two hash functions, Ho and Hs. This allows

us to run the simulations required for our proofs.

Notice that the scheme BasicCBE has some mathematical similarities with BasicCL-
PKE, however, as we have seen in Sections 7.3.1 and 7.3.2 the fit between the CBE
and CL-PKE definition and security model are not as natural as one would hope.
Nevertheless, it would be beneficial to be able to translate CL-PKE schemes such as
FullCL-PKE into IND-CBE-CCA secure CBE schemes. In addition to producing an
alternative CBE scheme, the translation could reduce the computational overhead

of the CBE schemes of Gentry [76].

We will show how to translate CL-PKE schemes to a CBE schemes in the next

section.

7.4 Secure CBE from Secure CL-PKE

A very important functional distinction between CBE and CL-PKE is that CL-
PKE allows for an entity to use multiple public keys for the same partial public
key. Furthermore, the public keys in a CL-PKE scheme need not be generated
before the partial private key, whereas the CBE definition requires the public key
to be generated before certification. Nevertheless, in this section, we are able to
show how to construct a CBE scheme using a CL-PKE scheme. After providing
the construction, we prove that the resulting CBE scheme is IND-CBE-CCA secure
(according to Definition ??), provided the CL-PKE scheme is IND-CCA secure (in
the model of Chapter 6).

We begin by providing the following simplified definition of CBE. This definition is

consistent with the concrete CBE schemes of [76] and fixes most of the problems that

186

7.4 Secure CBE from Secure CL-PKE

we have identified above.

Definition 7.3 A certificate-based encryption scheme is defined by five algorithms
(Setup, Set-Key-Pair, Certify, EBE, DCBE) such that:

The
7.3.

. Algorithm Setup is a probabilistic algorithm that takes a security parameter

k. It returns SK;pg (the certifier’s master-key) and public parameters params

that include the description of a string space A.

. Algorithm Set-Key-Pair is a probabilistic algorithm that takes params as input.

It returns a private key SKpgg and public key PKpg g2

. Algorithm Certify is a deterministic certifier update algorithm that takes as

input SK;gg, params, 7, A € A and PKpgpg. It returns Cert,.

. Algorithm £€BF is a probabilistic encryption algorithm that takes (params, 7,

A\, PKpgg, M) as input, where M is a message. It returns a ciphertext C' on

message M intended for the entity to decrypt using Cert, and SKpxg.

. Algorithm D®BF is a deterministic decryption algorithm that takes (params,

Cert,, SKpkg, C) as input in time period 7. It returns either M or the special

symbol L indicating failure. We require Dgg}a SKpip /\(ESEEarams PEprp(M)) =
M.

existing model of security described in Section 7.3.2 also applies to Definition

Although one can strengthen the existing CBE security model, an alternative

security model will not be produced. We have hinted how the CBE security model

can be strengthened in Section 7.3.2. Additionally, in the proof which we present in

Section 7.4.2, we point to how the principles of proving security for CL-PKE can be

used to provide improvements to the CBE security proofs and model.

"2Even though labels PKE and IBE are used to identify components of the scheme, our definition
of CBE does not require the use of PKE and ID-PKE schemes.

187

7.4 Secure CBE from Secure CL-PKE

7.4.1 CBE Schemes from CL-PKE Schemes

In this section we sketch how to construct a CBE scheme, II°BE, from a CL-PKE
scheme TI®" by defining the five algorithms (Setup, Set-Key-Pair, Certify, £°BE,
DOUBE) of the CBE scheme in terms of those of the CL-PKE scheme.

1. Setup: This algorithm takes a security parameter k and returns SK;pp and
public parameters params that includes the description of a string space A. We
use algorithm Setup of II®" to define Setup of II®BE . setting SK;pp and params

of TI®BE to be master-key and params of TTCL.

2. Set-Key-Pair: This algorithm runs the Set-Secret-Value and Set-Public-Key al-
gorithm of the scheme ITCT. Tt takes params as input and should output SKpx g
and PKpgkg. The output SKpgg is defined to be the output x 4 of Set-Secret-
Value and the output PK pg g is defined to be the output P4 of Set-Public-Value.

3. Certify: This algorithm takes as input SK;pg, params, 7, A € A and PKpkpg.
It returns Cert,. We use algorithm Partial-Private-Key-Extract of II°" to define
Certify, setting Cert to be the partial private key for identity

params||T||A\||PK pkE.
4. EOBE. This algorithm takes (params, 7, A\, PKpgp, M) as input, where M
is a message. It returns a ciphertext C' on message M intended for the entity
to decrypt using Cert, and SKpgpr. We use the Encrypt algorithm of I to

define £CBE | setting
C = ECV(M, Pa,IDy),

where ID 4 = params||7||A|PKpkE.

5. DOBE: This algorithm takes (params, Cert,, SKpxp, C) as input in time
period 7. It returns either M or the special symbol L indicating failure. We

use the Decrypt algorithm of I to define DCBE | setting
DCL(C’ <$Av DA>)7

where D 4 is the partial private key for identity ID4 = params||7||\[|PKpk .

188

7.4 Secure CBE from Secure CL-PKE

7.4.2 Security of CBE schemes from CL-PKE Schemes

Next is our main theorem about the IND-CBE-CCA security of CBE schemes con-
structed using CL-PKE schemes.

Theorem 7.1 Suppose that II®" is an IND-CCA secure CL-PKE scheme, and sup-
pose that II®" is used to build a CBE scheme II°BE ag in Section 7.4.1. Then II¢BE
is IND-CBE-CCA secure.

Proof. We begin this proof by considering a Game 1 adversary against II°BE.

Let A; be a Game 1 IND-CCA adversary against II°PF with advantage e. We show
how to construct from A; a Type I IND-CCA adversary B against TV,

Let C denote the challenger against our IND-CCA adversary B for II°". The chal-

HCL

lenger C begins by supplying B with the parameters of . Adversary B mounts

an IND-CCA attack on II°" using help from A; as follows.

Adversary B simulates the algorithm Setup of ITI®BF for A4;. This is done by B setting
SKipg to be master-key of TI°Y and params of TI®BE to be params of II°Y. Now B

forwards params to Aj;.

As we shall see, all A; queries can be handled by B with help from C. In A;’s
environment string of the form params||7||\||PKpk £ are used in certification queries
and decryption queries. Adversary B can translate such strings params||7||A[|PKpk g
into identifier strings for the certificateless scheme. Notice that in this setting, each
public key PKpgk g has a unique identifier string, and the same public key PKpgE

can have multiple identifier strings.

Phase 1: Now A; launches Phase 1 of its attack. Requests made by A; are answered

by B as follows:

189

7.4 Secure CBE from Secure CL-PKE

e All certification queries (which will include PKpkp) are answered by B. On
certification query (73, \i, PKpkE,i, SKpkE,), adversary B checks that A € A
and that SKpgkp,; is the private key corresponding to PKpg ;. If so B sends
ID; = params||7;||\i||PKpk g, and P; = PKpgp,; to C in a replace public key
query. Then B forwards ID; = params||7;||\;| PKpk g, to C in a partial private
key extraction query. C responds with a partial private key D;. Adversary B

forwards D; to A; as the certification response Cert,.

Otherwise B returns L .
e All decryption queries are answered by B. On decryption query
(Tis Mis PKpKEi, SKPKE, i, Ci),

adversary B checks that A € A and SKpkg,; is the private key corresponding
to PKpkpg,;. If these test fail, then B returns L . Otherwise, B performs the

following steps:

1. first B sends ID; = params||7;||\i|| PKpkE; and P; = PKpgp; to C in a
replace public key query. Then B forwards ID; = params||7;||\i| PKpkE.i
to C in a partial private key extraction query. C responds with a partial
private key D;.

2. B performs this decryption himself. B sets x; of II" to be SKpKE,-
Adversary B computes and forwards the output of DCY(C;, (x4, D;)) to

CBE z)

Aj as the decryption response for Dcert7i7SKPKE,i7)\i(

After Phase 2, we will describe how one can remove the need of SKpkp; in

all these queries.

Challenge: At some point, A; should decide to end Phase 1 and picks a challenge

string of the form:
(Tehs Ach, PKprE.ch, SKpPKEch, Mo, My).

B checks that A\, € A and SKpgE a, is the private key corresponding to PKpx g ch-
B also checks that (7ch, Ach, PKprE.ch, SKpKEh) is not the subject of a valid certi-

fication query. If any check fails it returns 1. . Now B checks that the partial private

190

7.4 Secure CBE from Secure CL-PKE

key for IDe, = params||7ch||Ach||PKpi E,ch has not been extracted, if it has, then B
aborts. Otherwise, B sends ID, = params||7eh||Aeh || PKpPrEch and Py = PKpg g ch
to C in a replace public key query. Then B forwards (ID¢p, Pen, Mo, M1) to C in
a challenge query. The challenger C chooses a random bit b and responds with the
challenge ciphertext €’ = E°%(M,, Py, D). Algorithm B sets C* = C” and delivers
C* to A; as the challenge ciphertext. It is easy to see that C* is the CBE encrypion
of My, for (Ten, Ach, PK1BE,chs PKPKE,ch)-

Phase 2: B continues to respond to requests in the same way as it did in Phase 1.
We now restrict \4; to not make a certification query on 7., Aeh and PKpg g qn. We
also restrict A; to not make a decryption query which relays a ciphtertext equal to
C’ = C* with ID¢, and Py, to the challenger. B aborts if needs to relay to C either the
extract partial private key query for IDy, or the decryption query for (C’,1Dey, Pep).

The value SKpkE; can be ommited from certification queries, decryption queries
and challenge queries. When it is omitted B must (¢) check whether PKpx g ; is valid
because the CBE encryption algorithm does not verify public keys and (ii) change
step (2) of decryption as follows: B forwards C; and |D; = params||7;||\i|| PKpkE.i
to C in a decryption query. C responds with a message output from a decryption of
the form DCY(C;, (x4, D;)). Adversary B forwards the message output by C to A; as

CBE z)

the decryption response for DCertTi, SKpicni, /\i(

Guess: Eventually, A; should make a guess b’ for b. The B outputs b’ as its guess
for b.

Analysis:We now analyse the behaviour of B and 4; in this simulation. We claim
that if algorithm B does not abort during the simulation then algorithm A;’s view is
identical to its view in the real attack. Moreover, if B does not abort then 2| Pr[b =

V] -1 >e

We justify this claim as follows. B’s responses to decryption and certification queries

are as in the real attack. All responses to A;’s queries are valid, provided of course

191

7.4 Secure CBE from Secure CL-PKE

that B does not abort. Furthermore, the challenge ciphertext C* is a valid II¢BF
encryption of M, where b € {0,1} is random. Thus, by definition of algorithm .4
we have that 2| Pr[b =] — 1| > e.

The probability that B does not abort during the simulation remains to be calculated.
Examining the simulation, we see that B can abort for two reasons: (i) because B
both replaced the public key and extracted the partial private key for entity D¢,
at some point, or (ii) because B relayed a decryption query on C’ to C for the

combination ID., and P, in Phase 2.

The first event happens only if A; performs a certification queries on the combination
(Tehs Achs PKpK E.ch, SKPKE ch). Because only then would B replace the public key
and extract the partial private key for entity IDg, = params||7eh || Ach || PKpK £ ch. This
is exactly the certification query on which A; is forbidden from making. So this event
never occurs in B’s simulation. Now let us examine the last event. Because of the
way that B relays ciphertexts, this last event happens only if A; queries B on the
combination (7eh, Achs PKprEch, SKpKE ch, C*) in Phase 2. However, this is exactly
Aj1’s challenge ciphertext on which A; is forbidden from making a decryption query.

So this event never occurs in B’s simulation.

Algorithm B never relays a forbidden query to C and so never aborts during the
simulation. Algorithm B produces a perfect simulation of Game 1 for CBE and
so by definition of algorithm Aj, it would output ' = b with probability at least
€. Thus, since the CL-PKE scheme is secure against Type I adversaries, the CBE
scheme is secure against Game 1 adversaries. This completes the proof for the Game

1 adversary.

We showed how a CBE Game 1 adversary is related to a CL-PKE Type I adversary.
We can also show how a CBE Game 2 adversary is related to a CL-PKE Type II
adversary. This can easily be achieved by modifying Game 2 by giving the adversary
the master-key, instead of allowing the adversary to pick a master-key (the motivation

for this modification is given in item (4) in p.184). We omit the routine details of

192

7.5 Summary

this modification and the security proof which results.
O

This result is valuable because it shows that all IND-CCA secure CL-PKE schemes
can be modified as specified in Section 7.4.1 to create IND-CBE-CCA secure CBE
schemes. Therefore, FullCL-PKE and FullCL-PKE2 (of Chapter 8) can be altered to
create IND-CBE-CCA secure CBE schemes. The Scheme FullCL-PKE when modi-
fied to form a CBE scheme is more efficient than the scheme FullCBE of [76]. The
encryption scheme of FullCL-PKE requires only one pairing computation instead of
two and it does not require a multiplication in Ga. Recall that G is a subgroup of
a large finite field, hence, both the pairing evaluations and computations in Go are
expensive. The encryption scheme FullCL-PKE replaces these expensive operations

with a multiplication in G; and an XOR operation.

7.5 Summary

Three generic transformations, which may generate IND-CCA secure CL-PKE schemes
using IND-CCA secure ID-PKE and IND-CCA secure standard PKE schemes have
been discussed. The tool required to produce a semantically secure generic CL-PKE
scheme under an IND-CCA adversary is a general knowledge extractor, whose found-
ations remain the subject of our ongoing research. Thus, proving the security of these

generic constructions remains an open problem.

We analysed CBE [76] and demonstrated several of its weaknesses. More importantly,
we provided an alternative method to construct IND-CCA secure CBE schemes. The
alternative method makes use of only IND-CCA secure CL-PKE schemes. This is
advantageous for both CBE and CL-PKE. On one hand it is beneficial for CBE be-
cause a wider range of CBE schemes can be easily constructed from existing CL-PKE
schemes. On the other hand, it is beneficial for CL-PKE because CL-PKE algorithms
are naturally interoperable with CBE algorithms and because it demonstrates how
to extend the potential use of CL-PKE to produce schemes suitable for streamlining

certificate-based environments. A major benefit of our model is that it is robust

193

7.5 Summary

enough to remain applicable to other models, such as CBE [76].

194

CHAPTER &

Further CL-PKC Schemes

Contents

81 Imntroduction00 196
8.2 A General Set Up for CL-PKC 197
83 CL-PKE Schemes eee.. 198

8.3.1 A Basic CL-PKE Scheme 198

8.3.2 A Full CL-PKE Scheme 200
8.4 A Certificateless Signature Scheme 202
8.5 A Certificateless Authenticated Key Agreement Protocol 204
8.6 Hierarchical CL-PKE 206
8.7 Proxy Decryption, 211
8.8 Summary e e e e e e 212

In this chapter other certificateless public key cryptography (CL-PKC) schemes in-
cluding a certificateless public key encryption (CL-PKE) scheme whose security rests
on the Generalised Bilinear Diffie-Hellman Problem (GBDHP) are demonstrated.
The CL-PKE scheme is developed to demonstrates how certificateless hierarchical
and proxy schemes can be supported. In addition, we show a certificateless public
key signature (CL-PKS) scheme and a certificateless authenticated key agreement
protocol. As with Chapters 5 and 6, our certificateless schemes are all built from

bilinear maps on groups.

195

8.1 Introduction

8.1 Introduction

In this chapter we present an alternative CL-PKE scheme, originally published in
[7]. The scheme is obtained by modifying the ID-PKE scheme of Boneh and Franklin
[32]. We have seen in Chapter 6 how an appropriate adversarial model with proofs
is provided to ensure that the full scheme is secure in the face of both an IND-CCA
adversary who replaces public keys, and an IND-CCA adversary who has access to the
master key but cannot replace public keys. The detailed development of this model
in Chapters 5 and 6 provides some insight into the adaptations required to existing
models that are needed to produce adversarial models for the other certificateless
primitives in this chapter. Note that the aim of this chapter is to demonstrate other

CL-PKE schemes and not to provide security proofs.

We will sketch a number of other CL-PKC primitives: a signature scheme based
on the identity-based scheme of [83]; a key exchange protocol which improves on
the security offered by the schemes of [50, 142]; a hierarchical scheme based on
[77] and proxy encryption schemes. All these schemes can be easily implemented
in conjunction with existing ID-PKC schemes. They use a structured public key
and have desirable security properies when compared with their ID-PKC scheme

counterparts.

The schemes in this chapter share structured public keys and many parameters in the
set up procedure. The structure of a public key is used to construct Diffie-Hellman
tuples. The tuples are verified using two pairing computations because the public
key comprises of two elements in a gap group, where the DDHP is easy and the

CDHP is hard. Next we will study the properties of this set up.

196

8.2 A General Set Up for CL-PKC

8.2 A General Set Up for CL-PKC

In this chapter, all the CL-PKC schemes we describe can share many parameters in
their set up procedures. Our first scheme, BasicCL-PKE2, is a CL-PKE scheme which
is analogous to the scheme Basicldent of [32], and is included to help understand the
setting for the remaining schemes in this chapter. The full scheme which we build
using BasicCL-PKE2, is in turn an analogue of the scheme Fullldent of [32] and is
IND-CCA secure in the model of Chapter 6, assuming the hardness of the GBDHP.

The full CL-PKE scheme, FullCL-PKE2, which corresponds to BasicCL-PKE2, is in
many ways superseeded by the scheme presented in Section 6.3. It is superseeded in

the following ways:

1. The number of pairing computations is higher in FullCL-PKE2 because we check

the structure of the public key.

2. The security of FullCL-PKE2 is based on the hardness of the GBDHP (not the
harder and more studied BDHP).

3. Public keys consist of two points on the elliptic curve (not one as is the case
with FullCL-PKE).

The public keys in the general set up that we describe below are for a specific KGC.
Therefore, the CL-PKE schemes in this chapter do not allow the encryptor to choose
which KGC will authenticate the decryptor. This allows the decryptor to mandate a
particular centralised point of control (that is, a particular KGC) for authentication.
The merits and shortcomings of this property were discussed in Section 4.6.2. This
same propery holds true for the other schemes in this chapter which share a similar
set up. The algorithms of the CL-PKE schemes BasicCL-PKE2 and FullCL-PKE2
share much in common with the ID-PKE scheme of [32] when compared to the
schemes of Chapters 5 and 6. This can be advantageous for deployment, since a
single infrastructure can be used to support both identifier based and certificateless

schemes.

197

8.3 CL-PKE Schemes

8.3 CL-PKE Schemes

In this section, we describe a pair of CL-PKE schemes BasicCL-PKE2 and FullCL-
PKE2.

8.3.1 A Basic CL-PKE Scheme

We describe the seven algorithms needed to define BasicCL-PKE2. As before, we let
k be a security parameter given to the Setup algorithm and ZG be a BDH parameter

generator with input k.

Setup: This algorithm runs as follows:

1. Run ZG on input k to generate output (G, Gg,) where G, and Gy are groups

of some prime order ¢ and é : G; x G; — Gy is a pairing.
2. Choose an arbitrary generator P € Gy.
3. Select a master-key s uniformly at random from Z; and set Py = sP.

4. Choose cryptographic hash functions H; : {0,1}* — G} and Hy : G2 — {0, 1}"™.
Here n will be the bit-length of plaintexts.

The system parameters are params= (G, Go, é,n, P, Py, Hi, H2). The master-key
is s € Z;. The message space is M = {0,1}™ and the ciphertext space is C =
Gl X {0, 1}".

Partial-Private-Key-Extract: This algorithm takes as input an identifier ID4 € {0, 1}*,
and carries out the following steps to construct the partial private key for entity A

with identifier 1D 4:

1. Compute Q4 = H1(ID4) € Gj.

198

8.3 CL-PKE Schemes

2. Output the partial private key D4 = sQ 4 € GJ.

The reader will notice that the partial private key of entity A here is identical to
that entity’s private key in the schemes of [32] and the partial private key of the
schemes BasicCL-PKE and FullCL-PKE in Sections 5.4 and 6.3. As for those schemes,
the correctness of the Partial-Private-Key-Extract algorithm output can be verified by

checking é(D 4, P) = é(Qa, Py).

Set-Secret-Value: This algorithm takes as inputs params and an entity A’s identifier

ID4. It selects x4 € ZZ at random and outputs x4 as A’s secret value.

Set-Private-Key: This algorithm takes as inputs params, an entity A’s partial private
key D4 and A’s secret value x4 € Zj. It transforms partial private key D4 to private

key S4 by computing Sq4 = x4Da = 245Q4 € G].

Set-Public-Key: This algorithm takes params and entity A’s secret value x4 € Zj
as inputs and constructs A’s public key as P4 = (X 4,Y4), where X4 = x4 P and

Yi=x4FP) = x4sP.

Encrypt: To encrypt M € M for entity A with identifier ID4 € {0,1}* and public
key P4 = (X4, Y4), perform the following steps:

1. Check that X 4,Y4 € G} and that the equality é(Xa, Py) = é(Ya, P) holds. If

not, output L and abort encryption.
2. Compute Q4 = Hi(ID4) € GF.
3. Choose a random value r € Z.
4. Compute and output the ciphertext:

C = (rP,M ® Ha(é(Qa,Ya)"))-

Notice that this encryption operation is identical to the encryption algorithm of the

199

8.3 CL-PKE Schemes

ID-PKE scheme in Section 3.2.4.1 (the scheme Basicldent of [32]), except for the
check on the structure of the public key in step 1 and the use of Y4 in place of Py in
step 4.

Decrypt: Suppose C' = (U, V) € C. To decrypt this ciphertext using the private key
Sa, compute and output:
V @ Hy(é(S4,U)).

Notice that if (U = rP,V) is the encryption of M for entity A with public key
Py = (X4,Y4), then we have:

V @® Ho(é(Sa,U)) = V& Hy(é(wa5Qa,rP))
V & Ho(é(Qa,zasP)")
= V& Hy(é(Qa,Ya)")
= M.

Thus decryption is the inverse of encryption. Again, the similarity to the decryption
operation of Basicldent should now be apparent. This completes our description of
BasicCL-PKE2.

We have presented this scheme to help the reader understand our remaining schemes,
and in particular the next scheme and teh schemes in Section 8.6 and 8.7. We do
not analyse its security in detail. It can be shown that BasicCL-PKE2 is secure in
the OWE model of Section 5.3.

8.3.2 A Full CL-PKE Scheme

Now that we have described our basic CL-PKE scheme, we add chosen ciphertext
security to it, adapting the Fujisaki-Okamoto hybridisation technique described in
Section 6.4. The reader should now be very familiar with this adaptation, as it is
similar to the adaptation which generates the scheme FullCL-PKE from BasicCL-PKE
in Chapter 6. The algorithms for FullCL-PKE2 are as follows:

200

8.3 CL-PKE Schemes

Setup: Identical to Setup for BasicCL-PKE2, except that we choose two additional
cryptographic hash functions Hy : {0,1}" x {0, 1}" — Z7 and Hy : {0,1}" — {0, 1}".

Now the system parameters are params= (G, Gs, é,n, P, Py, Hy, Ho, H3, Hy). The
master-key and message space M are the same as in BasicCL-PKE2. The ciphertext

space is now C = Gy x {0,1}*".
Partial-Private-Key-Extract: Identical to BasicCL-PKE2.
Set-Secret-Value: Identical to BasicCL-PKE2.
Set-Private-Key: Identical to BasicCL-PKE2.
Set-Public-Key: Identical to BasicCL-PKE2.

Encrypt: To encrypt M € M for entity A with identifier ID4 € {0,1}* and public
key P4 = (X4, Ya), perform the following steps:

1. Check that X 4,Y4 € G} and that the equality é(X 4, Fy) = é(Y4, P) holds. If

not, output L and abort encryption.
2. Compute Q4 = Hi(ID4) € G7.
3. Choose a random o € {0,1}".
4. Set r = Hz(o, M).
5. Compute and output the ciphertext:

C = (rP,oc® H(é(Qa,Ya)"), M & Hy(0)).

Decrypt: Suppose C' = (U,V,W) € C. To decrypt this ciphertext using the private
key Sa:

1. Compute V @ H(é(Sa,U)) =o'

201

8.4 A Certificateless Signature Scheme

2. Compute W & Hy(o') = M'.

3. Set 7 = Hs(o/,M’) and test if U = r'P. If not, output L and reject the
ciphertext.

4. Output M’ as the decryption of C.

When C'is a valid encryption of M using P4 and ID 4, it is easy to see that decrypting
C will result in an output M’ = M. This concludes the description of FullCL-PKE2.

We have the following result about the security of FullCL-PKE2 from [7, Theorem 1].

Result 8.1 Let hash functions Hy, Hs, H3 and H4 be random oracles. Suppose
further that there is no polynomially bounded algorithm that can solve the GBDHP
in groups generated by ZG with non-negligible advantage. Then FullCL-PKE2 is
IND-CCA secure.

This security result relies on the hardness of the GBDHP and assumes Hy and Hy are
random oracles. In essence, the detailed analysis shows that security against Type
IT adversaries can be reduced to the difficulty of computing the value é(Q 4, x4sP)".
Given that a Type II adversary has s but not =4, this is equivalent to the BDHP
on input (P, Q4,U, X 4). Likewise, security against a Type I adversary who does not
know s but who might replace Y4 by a new value Y} can be reduced to the GBDHP
on input (P,Qa = aP,U = rP, Py = sP), with solution Y, é(P,Y)*"®. For more
details see [6, 7].

8.4 A Certificateless Signature Scheme

We will describe a certificateless public-key signature (CL-PKS) scheme that is based
on a provably secure ID-PKC signature scheme of [83]. Note that we have not
developed a security model for CL-PKS, and we do not prove our scheme to be

secure.

202

8.4 A Certificateless Signature Scheme

In general, a CL-PKS scheme can be specified by seven algorithms:

Setup, Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key, Set-Public-Key,
Sign and Verify. These are similar to the algorithms used to define a CL-PKE scheme:
Setup and params are modified to include a description of the signature space S,
Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key and Set-Public-Key are

just as before and Sign and Verify are as follows:

Sign (X°%): This algorithm takes as inputs params, a message M € M to be signed
and a private key S4. It outputs a signature Sig € S. We write Sig « SV (M, S4).

Verify (V°V): This algorithm takes as inputs params, a message M € M, the identi-
fier ID 4 and public key P4 of an entity A, and Sig € S as the signature to be verified.

It outputs valid, invalid or L . We write {valid, invalid, L} « V&(M, Sig, P4, 1D).

Given this general description, we now define a CL-PKS scheme using a similar basic
set up procedure as the schemes BasicCL-PKE2 and FullCL-PKE2.

Setup: This is identical to Setup for our scheme BasicCL-PKE2, except that now
we have hash function H : {0,1}* x G2 — Z; instead of Ha, hence the params is
(G1,Ga,n,é, P, Py, Hi, H). The signature space is defined as S = Gy x Zj.
Partial-Private-Key-Extract: Identical to BasicCL-PKE2.

Set-Secret-Value: Identical to BasicCL-PKE2.

Set-Private-Key: Identical to BasicCL-PKE2.

Set-Public-Key: Identical to BasicCL-PKE2.

Sign: To sign M € M using the private key S4, perform the following steps:

1. Choose a random value a € Z;.

203

8.5 A Certificateless Authenticated Key Agreement Protocol

2. Compute r = é(aP, P) € Go.
3. Set v=H(M,r) € Z.
4. Compute U = vS4 + aP € Gy.

5. Output as the signature (U,v) € S.

Verify: To verify a purported signature (U, v) on a message M € M for identity ID 4
and public key (X 4,Y4):

1. Check that the equality é(X4, Py) = é(Ya, P) holds. If not, output L and

abort verification.
2. Compute r = é(U, P) - é(Qa,—Ya)".

3. Check if v = H(M,r) holds. If it does, output valid, otherwise output invalid.

For a valid signature, it is easy to check that the Verify algorithm will output valid.
This completes the description of the CL-PKS scheme.

This scheme is related to the first scheme in [83, p.312], which is secure against
existential forgery in the random oracle model. Our verification operation is identical
to the verification algorithm in [83], except for the check on the structure of the public
key in step 1 and the use of Y4 in place of Py in step 2. Our signature algorithm,

however, is identical to that in [83].

8.5 A Certificateless Authenticated Key Agreement Protocol

A number of identity-based two party key-agreement protocols have been described
[50, 142]. All the session keys created in Smart’s protocol [142] can trivially be
recovered by the TA. The protocol of [142] was later modified by Chen and Kudla

204

8.5 A Certificateless Authenticated Key Agreement Protocol

[50] to eliminate this escrow capability. However, the TA in the protocol of [50] can
still perform a standard man-in-the-middle attack by replacing one short-term value
with a value of its choice, and can thus impersonate any entity in an undetectable

way.

Here we introduce a certificateless key agreement protocol which is only vulnerable
to such a man-in-the-middle attack if, in addition to replacing a short-term value,
a user-specific long-term public key is also replaced. If keys are produced using
our binding technique (that is, CL-PKC (B)), then such a man-in-the-middle attack
mounted by the KGC will leave evidence exposing the KGC’s actions. The evidence
is not the replaced public key but is the KGC’s impersonation of a communicating
entity which can only occur if a working public key (that is, an appropriate partial

private key) exists.

The initialization for our certificateless key agreement scheme is formally specified us-
ing five algorithms: Setup, Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-
Key and Set-Public-Key. These are the same as in BasicCL-PKE2. Algorithms Setup,
Set-Secret-Value and Set-Public-Key must be run by entities A and B before exchan-
ging protocol messages. Algorithms Partial-Private-Key-Extract and Set-Private-Key
can be run by entities A and B after exchanging protocol messages and are required

for computing a shared key.

Entities A and B who wish to agree a key first choose random values a,b € Zj re-
spectively. Given the initializations described in the previous paragraph, the protocol

is as follows:

Protocol description: After the above messages are exchanged in Figure 8.1, both
users check the validity of each other’s public keys in the usual way. So entity A
checks é(Xp, Py) = é(Yp, P) and entity B checks é(X 4, Py) = é(Ya,P). Then A
computes K4 = é(Qp, YB)*-é(S4,bP) and B computes é(Qa,Ya)"-é(Sp,aP). It is
easy to see that K = K4 = Kp is a key shared between A and B; to ensure forward
security, A and B can instead use the shared key H (K ||abP) where H is a suitable

205

8.6 Hierarchical CL-PKE

Protocol Messages

1. A— B: aP|(Xa,Ya)
2. B—A: bP|(Xp,YpB)

Figure 8.1: Certificateless authenticated key agreement protocol.

hash function.

The protocol uses only two passes and is bandwidth-efficient. Bandwidth usage can
be reduced further if the same entities agree many keys: then transmission of only
fresh aP, bP is needed in each protocol run. Each side computes four pairings;
this can be reduced to one pairing each if the same entities agree many keys. The
protocol is therefore competitive with those of [50, 142]. Key confirmation can be
added with extra protocol passes. In a CL-PKC (B) setting, key confirmation creates

the evidence required to implicate a cheating KGC.

The key generation method in our protocol is based on the protocol 1’ in [50] — a
modification which adds forward secrecy to Smart’s protocol [142]. Informally, even if
the public key of entity A is replaced with (X’;,Y7), an adverary cannot impersonate
entity A because the shared session key cannot be computed without an appropriate

partial private key, D 4.

8.6 Hierarchical CL-PKE

Recall that in the survey of Section 3.6, we discussed how Gentry and Silverberg [77]
improved the work of [85] by introducing a totally collusion-resistant, hierarchical,
ID-based infrastructure for encryption and signatures. Such an infrastructure spreads

the workload of master servers and produces levels which can be used to support

206

8.6 Hierarchical CL-PKE

short lived keys, for example. However, the hierarchical schemes of [77] still have an
undesirable escrow property. Here, we adapt the hierarchical encryption scheme of

[77] to our certificateless setting and eliminate key escrow to a certain extent.

In general, a hierarchical CL-PKE (HCL-PKE) scheme has a root KGC and a hier-
archy of entities. Each entity other than the KGC is associated with a level ¢ > 1
in the hierarchy and with a string ID-tuple which identifies that entity’s ancestors
in the hierarchy. The ID-tuple string for an entity at level ¢ with identity ID; is
(ID1,IDg,...,I1D;). An HCL-PKE scheme is specified by seven algorithms: Setup,
Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key, Set-Public-Key, Encrypt
and Decrypt. Rather than outline the general function of each algorithm, we present
a concrete scheme, BasicHCL-PKE, whose description should make the general op-
eration of an HCL-PKE scheme clear. The algorithms for BasicHCL-PKE are as

follows.

Setup: This algorithm is identical to Setup for BasicCL-PKE2, except that now the
ciphertext space for a level ¢ ciphertext is C; = G! x {0,1}"™. The system parameters
are params= (G1,Go, é,n, P, Py, Hi, Hy). For ease of presentation, we denote the

master-key by z¢ instead of s (so we have Py = zoP).

Partial-Private-Key-Extract: This algorithm is usually executed by a level ¢ — 1 entity
ID;—; for a child entity ID; at level . When ¢ = 1, this algorithm is executed by the
root KGC for ID;. It takes as input the ID-tuple (IDy,IDq,...,ID;) and carries out
the following steps to construct the partial private key for IDy:

1. Compute Q; = H;(ID1][IDs]|...|[ID;) € G*.

2. Output ID;’s partial private key D; for ¢ > 2 where

¢
Dy =Di g +at1Q¢ = Zivzele’-
i1

If ¢t = 1, then output Dy = z¢@1. The key D; must be transported to ID; over a

confidential and authentic channel.

207

8.6 Hierarchical CL-PKE

Set-Secret-value: This algorithm takes as inputs params and level t entity’s ID-tuple
(ID1,1Dg,...,1Dy) as inputs. It selects z; € Z; at random and outputs z; as ID;’s

secret value.

Set-Private-Key: As for BasicCL-PKE2, except that the private key for ID; is denoted
by St. So St = xtDt-

Set-Public-Key: As for BasicCL-PKE2, except that the public key for ID; is denoted
by Pt = <Xt,Y;§> So Y;g = x[)Xt = (E()l'tP.

Encryption: To encrypt M € M for identity ID; at level ¢ > 1 with ID-tuple
(ID1,1Dg, ..., 1Dy¢), perform the following steps:

1. For each 1 < i <t, check that the equality é(X;, Py) = é(Y;, P) holds. If any

check fails, output 1 and abort encryption.
2. Compute Q; = Hi(ID1|[ID2]| ... |[ID;) € GF for each 2 < i < t.
3. Choose a random r € Zj.

4. Compute and output the ciphertext:

C = <UO>U2> .. ->Ut7v> = <TP7TQ27TQ37 s 7eraM@ HQ(é(Qlan)r)> S Ct‘

Notice that to encrypt a message for a level ¢ entity Dy, the values @; and hence
identities ID; of all the ancestors of ID; are needed. Moreover, to perform the checking

in Step 1 ,all the public keys of these entities are also needed.

Decryption: Suppose C = (Uy,Us,..., U, V) € C; is a BasicHCL-PKE ciphertext for
a level ¢ entity with ID-tuple (IDq,1Do,...ID;). Let the public keys of ID;’s ancestors
be P; = (X;,Y;) (1 <i<t). Then to decrypt the ciphertext C' using the private key

S;, compute and output:

é(St, Uo)
HEZQ é(xe Xi—1,U;)

VEBHQ(

208

8.6 Hierarchical CL-PKE

Using properties of the bilinear map é, we have:

é(St,Uo)
[T s é(@e X-1,Us)

>

(20 Y5y 2im1Qiy 7 P) - [imy é(mimiy Por@y) ™
(Zt 1 Ti— 1Qia""P)' (Zl o LtLj— 1Qz7TP)
(xrx0Q1,7P)
(Q17top)
(Q1,Yy)"

so that decryption is the inverse of encryption.

I
D D A >

This completes our description of BasicHCL-PKE. Using the hybridization technique
described in Section 6.4, it is straightforward to adapt this scheme to obtain a scheme
that is based on the identifier-based hierarchical scheme which is secure against
fully-adaptive chosen ciphertext attackers [77, §3.2]. We must assume here that no
ancestor 1D, of our level ¢ entity ID; replaces the public key of ID;. Even with the
extra binding step in place, our hierarchical schemes do not offer a true equivalent of
trust level 3: although it is then possible to detect that a public key has been replaced
by an ancestor, it is not possible to pinpoint exactly which ancestor is responsible.

The attack by an ancestor at level u runs as follows:

1. An ancestor ID, where 0 < u < t — 1, where the root KGC has identifier
IDg, selects), € Zy and replaces the public key P, of ID; at level ¢ with
P, = (X],Y/) = (2}, P,x],sP). Notice that the new public key satisfies the

usual structural check.

2. Encryption to entity ID; yields a ciphertext of the form:
C = <TP7 TQ?v TQ?,, cee 7TQt7 M ® HQ(é(Qh }/;‘/I)r)> S Ct~

3. If 2<wu<t—1, then ID, can decrypt this ciphertext by computing:

(quUO))
H (/Xl—b) ‘

If u=0or u=1, then ID, can decrypt this ciphertext by computing:

V@HQ(

V @ Hy(é(, D1, Up)).

209

8.6 Hierarchical CL-PKE

Notice that this attack works even if the public key P, = (x¢P, x;sP) is bound with
ID; in Dy, since the tuple (Uy41 ...Uy) is not used in this attack. Furthermore, this
attack works even if the ancestors public key P, = (z, P, z,sP) is bound with the
ID, in D,. Therefore, we cannot allow partial private keys to be made public in
this setting as this would enable any adversary to mount a successful key attack by

replacing the public key of ID;. This attack is demonstrated next.

1. An adversary obtains ID;’s ancestor’s partial private key D1 or D,, where 2 <

u<t—1.

2. The adversary selects x} € Zy and replaces the public key P; for an entity at
level t with P/ = (X],Y]/) = (x| P, x}sP).

3. Encryption to entity ID; yields a ciphertext of the form:

C= <TP7 TQ27TQ37 e 7TQt7 M ® HZ(é(QLYZ)T» S Ct.

4. The adversary decrypts this ciphertext by computing:

é(méDu’ UO))
[lis é(@i Xi1,Us))’

VEBHQ(

or

V b HQ(é($2D1, Uo))

As with the previous attack, this attack works even if public keys are bound with
identifiers in all the partial private keys. We note that an extension of the hybrid
PKI/ID-PKC scheme of [48] has stronger security guarantees. However, this ap-
proach still requires certification for intermediate entities, and our primary focus is
on completely certificate-free infrastructures. The attacks presented here suggests
that there is still work to be done in designing HCL-PKE schemes with stronger

security properties.

210

8.7 Proxy Decryption

8.7 Proxy Decryption

We demonstrate how our HCL-PKE scheme BasicHCL-PKE supports two kinds of
proxy decryption: an entity A with identifier ID; at level ¢ > 1 can efficiently delegate
decryption to either a proxy at level t — 1 (if ¢ > 2) or a proxy at level ¢t + 1. This is
an important feature because the decryption and encryption costs in our HCL-PKE
scheme grow roughly linearly with ¢, so that an unacceptably high computational
burden may be placed on entities located low in the hierarchy, if the hierarchy has

many levels.

To prepare a ciphertext C = (Uy,Us, ..., U, V) encrypting message M for proxy
decryption, entity A with identifier ID; located at level ¢ transforms C by appending

some fixed keying information and a string proxy to it to obtain a new ciphertext:
C'proxy = <07 <xtX17 xtX27 s 7xtXt—1>7 proxy)‘

Here, the value of proxy depends on whether decryption is being delegated to an

entity at level t — 1 or t + 1. So we have two cases:

Proxy at level ¢t — 1:

1. Entity A sets proxy= (x;Up) and forwards Cprox, to level ¢ — 1 entity B with
identifier 1D;_.

2. Entity B decrypts Cproxy using its partial private key by computing:

é(Dy—1 + x4-1Qy, 2:Up)

[Tz é(xe Xio1, Us) > '

Using the properties of the bilinear map é, we can see that:
e(Di—1 + w-1Qy, :Up) _ (S, Up)

[Timo é(e Xio1, Ui) [Timo é(e X1, Ui)
Hence we have M’ = M, and the proxy at level ¢t — 1 can correctly decrypt.

M’:V@HQ(

Proxy at level t + 1:

211

8.8 Summary

1. Entity A sets proxy= (x:Uy, é(2¢Q¢+1,2:Up)) and forwards Cproxy to level ¢ 41
entity B with identifier 1D; ;.

2. Entity B decrypts Cproxy using its partial private key by computing:

M/ — V P H2 é(Dt+17 xtUO) .
e(x1Qui1, 2 U0) - [Ty é(x4 Xio1, Uy)

Using the properties of the bilinear map é, we can see that:

é(Dyy1,2:Up) é(St, Uo)

e Qurr, wiUo) - [Ty eweXi 1, Us) [Tey é(@:Xi 1, Uy)

Hence we have M’ = M, and the proxy at level ¢t — 1 can correctly decrypt.

Notice that the proxy capability that A delegates is one-time only: in each of our
two cases, to perform decryption, B needs a component x;Uy that depends both on
the ciphertext and on A’s secret. Of course, our proxy schemes shield A’s secret x;
and private key S; from all entities, including the proxy. Notice also that the proxy
ciphertext in our level ¢t + 1 proxy scheme contains sufficient information to allow
it to be decrypted by our level t — 1 proxy. So proxy ciphertexts produced for A’s
children can also be decrypted by A’s parent. As the reader will have noticed, we

have not presented any formal security analysis for the schemes in this chapter.

8.8 Summary

In this chapter we have rounded off our treatment of CL-PKC by briefly presenting
a number of certificateless primitives: an encryption scheme, a signature scheme, a
key agreement protocol, a hierarchical encryption scheme and two proxy decryption
schemes. All of these schemes share many parameters in their set up procedures.
Also, they eliminate key escrow from the ID-PKC schemes from which they ori-
ginated. The certificateless schemes presented yield solutions applicable to many

settings.

212

8.8 Summary

In future work we intend to develop security models and proofs for other certificate-
less primitives. We fully expect that certificateless versions of yet more primitives
can be devised by adapting existing identity-based schemes. The importance of
an efficient certificateless signature scheme cannot be understated, since in addi-
tion to offering the benefits of identity based signature schemes [135], it provides
true non-repudiation without the need to store certificates with every verified signa-
ture. In certificate-based schemes, the certificates must be stored if non-repudiation
is required. Therefore, a fruitful area of research may be special-purpose signature
schemes [28, 34, 150] and signcryption schemes [38, 103, 109]. Naturally, we also pur-
sue the creation hierarchical certificateless encryption schemes with better security

assurances.

It would be interesting to see if the ideas of ‘double encryption’ presented in Chapter
6 could be extended to improve on our certificateless authentic key agreement pro-
tocol and signature scheme. Another interesting avenue for research is designing
efficient CL-PKC schemes that are secure in the standard model. We are optim-
istic in this front; recently an efficient selective-ID®! secure ID-PKE scheme and a
pairing-based secure signature scheme were presented by Boneh and Boyen in [29]

and [30] respectively, both schemes did not require the use of random oracles.

8111 the selective-ID model, the adversary must commit in advance to the identifier that it intends
to attack.

213

Part 111

Pairing-based Key Agreement

214

CHAPTER 9

Tripartite Authenticated Key Agreement

Contents

9.1 Imntroduction 00000 216
9.1.1 Contributions oo 217
9.1.2 Related Work 219

9.2 One Round Tripartite Authenticated Key Agreement
Protocols e e e 224
9.2.1 TAK Key Generation 225
9.2.2 TAK Key Generation Notes 226
9.2.3 Rationale for the TAK Keys’ Algebraic Forms 228
9.3 Security Model 0. 230
9.4 Security Proofs for TAK-1 233
9.5 Heuristic Security Analysis of TAK Protocols 240
9.5.1 Shim’s Man-in-the-Middle Attack on TAK-2 240
9.5.2 Known Session Key Attack on TAK-1 241
9.5.3 Forward Secrecy Weakness in TAK-3 242
9.5.4 Key-Compromise Impersonation Attack on TAK-1 242
9.5.5 Unknown Key-Share Attacks 244
9.5.6 Insider and Other Attacks 246
9.5.7 Security Summary 249
9.6 Shim’s Tripartite Key Agreement Protocol 250
9.6.1 Shim’s Protocol 250
9.6.2 The Problem 251
9.7 Tripartite Protocols with One Off-line Party 251
9.8 Non-Broadcast — Tripartite AKC Protocols 253
9.8.1 A Six Pass Pairing-Based AKC Protocol 254
9.8.2 A Six Pass Diffie-Hellman based AKC Protocol 256
9.8.3 Analysis of AKC Protocols 257

215

9.1 Introduction

9.9 SUummaryt ittt it e e e e 257

This chapter develops certificate-based authenticated tripartite protocols. It begins
by describing relevant public key protocols and goes on to propose and examine one
round authenticated protocols which do not rely on digital signatures. Finally, signa-
ture based tripartite authenticated key agreement protocols with key confirmation are

presented in a non-broadcast setting.

9.1 Introduction

To recapitulate Section 3.3, asymmetric key agreement protocols are multi-party
protocols in which entities exchange public information allowing them to create a
common secret key that is known only to these entities and which cannot be de-
termined by any other party. This secret key, commonly called a session key, can
then be used to create a confidential or integrity-protected communications channel
amongst the entities. Beginning with the famous Diffie-Hellman protocol [58], a huge
number of authenticated two-party key agreement protocols have been proposed (see
[27] and [114, Chapter 12.6] for surveys). This reflects the fundamental nature of

key agreement as a cryptographic primitive.

A situation in which three or more parties share a secret key is called conference
keying. The three-party (or tripartite) case is of most practical importance not only
because it is the most common size for electronic conferences, but because it can be
used to provide a range of services for two communicating parties. For example, a
third party can be added to chair or referee a conversation for the purpose of ad hoc

auditing, data recovery or escrow purposes.
One of the most exciting developments in recent years in the area of key agreement

is Joux’s tripartite key agreement protocol using elliptic curve pairings [90]. See

Section 3.3.3 for a description of Joux’s protocol and Section 2.3 for an overview of

216

9.1 Introduction

pairings on elliptic curves. Joux’s protocol (just like the raw Diffie-Hellman protocol),
however, is unauthenticated and suffers from man-in-the-middle attacks as described

in Section 3.3.1.

9.1.1 Contributions

In this chapter it is shown how Joux’s protocol [90] can be transformed into a secure
tripartite protocol that still requires only a single broadcast per entity. In fact,
we present four different one round, tripartite authenticated key agreement (TAK)
protocols in Section 9.2. All these protocols have the same protocol messages, but
different methods for calculating session keys from those messages. Our protocols are
specifically designed to avoid the use of potentially expensive signature computations.
It is clear how Joux’s protocol can be augmented with signatures on the short-term

keys so as to prevent man-in-the-middle attacks.

The reader should not assume that four different session keys (TAK-1 to TAK-4)
are generated from one protocol run. There exist much better ways of deriving
multiple session keys than this; the protocol is not four times as efficient! Rather we
present four protocols and analyze their different security properties. Our one round
protocols build on Joux’s protocol and draw on ideas from the Unified Model [10],
the Matsumoto, Takashima and Imai (MTI) protocols [110], and Menezes, Qu and
Vanstone (MQV) protocols [99].

In Section 9.3, we consider proofs of security for our protocols. Our proofs use
an adaptation of the Bellare-Rogaway model [22] to the public key setting. Our
model is similar to that given by Blake-Wilson, Johnson and Menezes [26] (though
our model extends to the three-party situation, and our extension is different to
that presented in the symmetric-key setting in [24]). Our proofs show that the
first of the TAK protocols is secure and has perfect forward secrecy provided that
the BDHP is hard — see Section 2.4 for more details on the BDHP. Our security

model has the benefits of being relatively simple to understand and allowing the

217

9.1 Introduction

construction of straightforward proofs of security. However, just like earlier models
[22, 26], it assumes perfect public key registration processes and it makes use of
random oracles. Moreover, our proof places a relatively strong technical restriction
on the capabilities of an adversary, namely, that he is not allowed to make any Reveal
queries — see Section 9.3 for a more detailed discussion. Despite these limitations, we
believe our proof to be a useful indicator of the strength of the TAK-1 protocol. We
also note that the authors of earlier work [26] made the same technical restriction,
and were forced to conjecture the security of their other authenticated key agreement
protocol, a protocol similar to our third TAK protocol. Finally, we do not provide
a proof of security for our other protocols. But we note that the MQV protocol, on
which our fourth TAK protocol is modelled, has never been proven secure in any
model, though it has been widely adopted for standardisation [8, 9, 87, 89]. While
we believe security proofs and models to be useful, they are not our sole focus here,

rather we are also interested in providing practical and secure protocols.

In view of the incomplete analysis currently available through provable approaches,
we choose to supplement our proofs of security with ad hoc analysis in Section 9.5.
This allows us to consider attacks on our protocols not included in the security model.
In Section 9.6 we complete the treatment of one round tripartite authenticated key
agreement protocols with three parties online by presenting Shim’s tripartite protocol
[138]. Furthermore, we show that Shim’s protocol does not make mathematical sense.
In Section 9.7 the scenario in which one of three parties is off-line is examined. The
protocol we give for this situation can be applied to key escrow with an off-line escrow

agent.

This chapter’s penultimate section, Section 9.8, examines pairing-based authentic-
ated key agreement with key confirmation in a non-broadcast setting. The main
point we make in that section is that a properly authenticated and key confirmed
protocol based on pairings can be no more efficient (in terms of protocol passes) than
the obvious extension of the station-to-station protocol [59] to three parties. Thus,
the apparent efficiency of Joux’s protocol is lost when it is made secure and when an

appropriate measure of efficiency is used.

218

9.1 Introduction

The final section, Section 9.9, contains conclusions and some ideas for future work.

0.1.2 Related Work

9.1.2.1 Two Party Authenticated Key Agreement Protocols

As we have already noted, our work in this chapter builds on that of Joux [90], and
our one round protocols draw upon some key agreement protocols from the Diffie-
Hellman family, namely, the Unified Model [10], MTT [110] and MQV [99] protocols.

Here we provide a brief introduction to these earlier protocols.

In what follows, Cert 4 and Certp denote the certificates issued by the CA for entities
A and B. Long-term public keys K, 4 and K, g corresponding to the long-term

private keys x and y are in Cert4 and Certp respectively.

In the protocols in Figure 9.1, short-term private keys a and b are selected uniformly
at random by A and B, respectively. In the MQV protocol the value of a and b
are selected uniformly at random from Zj, whilst in the other protocols the random
values are 1 < a,b < p— 2, where p and ¢ are large primes. In the MQV protocol the
generator point P € E(F;) has order ¢. In the other protocols, let g be the generater
of Zy, i.e. 2< g < p—2. Both P and g are fixed and known to all the entities.

Protocol descriptions: In each of the protocols in Figure 9.1 an entity, A, com-
municating to entity B, sends a fresh short-term public value along with a certific-
ate, Cert 4, containing A’s long-term public key. The fresh short-term public value
is ¢* mod p for the MTI/AO and Unified Model protocols, (Kpup,p)* mod p (where
Ky, = ¢g¥ mod p) for the MTI/B0O and MTI/CO protocols, and aP for the MQV
protocol. Corresponding values and certificates are sent by entity B to A. Each party
verifies the authenticity of the certificate received: if any check fails, the protocol
should be aborted; if no check fails, the session keys described next, corresponding

to the protocol in Figure 9.1, should be computed.

219

9.1 Introduction

Unified Model and MTI/AO Protocol Messages

1. A— B: g¢g“mod p|/Certy
2. B— A: g"mod p|Certp

MTI/B0 and MTI/CO Protocol Messages

1. A— B: (¢¥)* mod p||Certy
2. B—A: (¢°)°mod p|Certp

MQV Protocol Messages

1. A— B: aP|Certy
2. B— A: bP|Certp

Figure 9.1: Two party authenticated key agreement protocols for the Unified Model,
MQYV and selected MTI key agreement protocols.

Two Party Authenticated Key Generation: We now explain how session keys

are generated in each protocol.

1. Unified Model:
The keys computed by the entities are:
K4 = H((¢¥)" mod p||(¢")* mod p),
Kg = H((g*)Y mod p||(¢®)® mod p).
Both parties now share the session key K5 = H(¢*¥ mod p||g®® mod p). Here,
H :GxG — {0,1}! is a cryptographic hash function whose function is to derive

a suitable length, [, session key.

2. MTI/AO:
The keys computed by the entities are:

220

9.1 Introduction

Ka=(g")"(¢)* mod p,
Kp = (9")"- (9*)¥ mod p.

Both parties now share the session key Kap = ¢®% mod p.

3. MTI/BO:
The keys computed by the entities are:
Ka=((g")")" " - ¢* mod p,
Kp=((¢")")"" - ¢" mod p.

Both parties now share the session key K45 = ¢g*** mod p.

4. MTI/Co:
The keys computed by the entities are:
Ka=((¢")")" " mod p,
Kp = ((¢¥)*)Y"" mod p.

Both parties now share the session key Kap = g% mod p.

5. MQV:
The keys computed by the entities are:
K4 = h((a + zaP) mod n) - (bP + yP - bP),
Kp = h((b+ ybP) mod n) - (aP + xP - aP).
The notation is described below. Both parties now share the session key K4p =
h(a + zaP)(b+ ybP)P. The notations h and Q are described below.

The Unified Model protocol is a standardised protocol [8, 9, 87] that bears some
similarity with the MTI protocols but utilises a hash function, H, with concaten-
ation instead of a multiplication to combine various components. The MTI suite
of protocols consists of three infinite sequences of protocols: A[x], B[] and Clx],
where k € Z. Each scheme in the sequence can ‘smartly’ update the key Kap to
the next direct scheme in the sequence using shared keying information. For ex-
ample, a shared MTI/AO key, K p = ¢ ** mod p, updates into an MTI/A1 key,
Kap = g™t mod p, if A uses x = 1 in the following MTI/A sequence proced-
ure: (i) A computes L, = z"a; (ii) A sends to B: gFa= mod p; (iii) A computes

K4 = (g¥)Farx - (g"+)* mod p. Of course B also has to perform a procedure similar

221

9.1 Introduction

to A’s and the shared MTI/A[x] key becomes K 45 = g™ t5*¥" mod p. The MTI/C

sequence has the lowest computational complexity for updating the shared key.

If Q is an elliptic curve point, then @ is a mapping from group elements to an integer
range. More specifically in [99], @ is defined to be the integer (Z mod 2[//21) 4 2[//2]
where f = |logyq| + 1 is the bitlength of ¢ and Z is the binary representation of
the x-coordinate of Q). Notice that @ mod ¢ # 0. The cofactor h is an integer such
that h = [(vt +1)?/q] that is used to protect against small subgroup attacks and is

typically small so ¢ is as large as possible.

The MQV protocol was initially proposed by Menezes, Qu and Vanstone [113] and
later improved by eliminating the use of hash functions (to enhance its efficiency)
with Law and Solinas [99]. The improved protocol, which is presented here, is the
most prominent and some versions of it are standardised [8, 9, 87, 89]. A main design
goal of this protocol was to avoid the use of hash functions, however, this goal lead

to a vulnerability which was exposed by Kaliski [93].

90.1.2.2 The Station-to-Station Protocol

The non-broadcast protocols, which will be presented in Section 9.8, build on the
station-to-station (STS) [59] protocol. The STS protocol shown in Figure 9.2 em-
ploys an encryption algorithm £%¥™ from a symmetric encryption scheme and a PKS

scheme’s signing algorithm .

In this chapter we will break our notational convention to simplify the notation. Here,
we let ¥ 4(0) denote A’s signature on the string o (i.e. ¥4(0) = X(0, Kpriv,a)) and
as with Section 6.4.2, £;7™ (o) denotes the encryption of string o using a symmetric
algorithm and key K. The message flows of the STS key agreement protocol are

given in Figure 9.2.

Protocol description: In Figure 9.2 entity A initiates the protocol execution by

222

9.1 Introduction

Sequence of Protocol Messages

1. A— B: g¢%“mod pl|Certy
2. B— A: g®mod p||Certp| ™ (Xp(g° mod p||g® mod p)

Kap

A—B: &Y (S4(g* mod p|lg” mod p))

Kap

Figure 9.2: The station-to-station (STS) key agreement protocol.

sending message (1). After receiving message (1), entity B is able to calculate the
session key K 4p = ¢® mod p. The same session key is calculated by A after receiving
message (2). Messages (2) and (%) contain signatures on the short-term values to
provide key authenticity. Entities A and B verify each other’s signatures. Only
upon successful signature verification does the protocol continue and is the session
key Kap accepted. These signatures are transmitted in encrypted form using the
session key Kap which provides key confirmation. The inclusion of the intended

recipient’s identifier in the signature is an option, see [59, §6] for more details.

9.1.2.3 The Security Models

Our security model is inspired by Blake-Wilson, Johnson and Menezes’ extension [26]
of the Bellare-Rogaway model [22]. More recent work on models for secure protocols

(in particular key agreement protocols) can be found in [20, 39, 45, 46, 140].

9.1.2.4 TAK Protocol History

This chapter includes the major improvements and changes to our original work [4]
presented in [5]. In particular, one of the protocols of [4], namely TAK-1 is proved

to have perfect forward secrecy and another, TAK-2, is no longer explored in any

223

9.2 One Round Tripartite Authenticated Key Agreement Protocols

detail because of a fatal man-in-the-middle attack that was discoverd by Shim [136].

Details of this attack and what can be learned from it can be found in Section 9.5.1.

9.2 One Round Tripartite Authenticated Key Agreement Protocols

The advantage of Joux’s tripartite protocol over any previous tripartite key agree-
ment protocol is that a session key can be established in just one round. The dis-
advantage is that this key is not authenticated, and this allows a man-in-the-middle

attack.

In this section we develop protocols which also need just one round, but which
provide a key which is implicitly authenticated to all entities. Our AK protocols are
generalisations of the standardised [8, 9, 87] Unified Model protocol [10], the MTI
family of protocols [110] and the MQV protocol [99] to the setting of pairings. In
fact, we present a single protocol with four different methods of deriving a session
key. The numbering sequence for these different methods is unrelated to that of the
MTT protocols. Our tripartite protocols use pairings; hence we use the notation G,
G, € and P as established in Chapter 2 and utilised in Joux’s protocol in Section

3.3.3.

In order to provide session key authentication, some form of authenticated long-term
private/public key pairs are needed. As with the other certificate-based protocols
(see Section 3.2.3), a certification authority (CA) is used in the initial set-up stage
to provide certificates, which bind users’ identities to long-term keys. Entity A’s
long-term public key is Kpyp 4 = xP, where o € Z is the long-term private key of A.
Element P is a public value which can be included in certificate in order to specify
which element is used to construct K, and the short-term public values. Similarly,
Certp and Certc are the certificates for entities B and C, with K, p = yP and

Kpup,c = 2P as their long-term public keys.

As usual, in the protocol message flows given in Figure 9.3, short-term private keys

224

9.2 One Round Tripartite Authenticated Key Agreement Protocols

a,b, c € Zy are selected uniformly at random by A, B and C respectively.

Protocol Messages

1. A— B,C: aP|Certy
2. B— AC: bP|Certp
3. C— A/B: cP|Certc

Figure 9.3: Tripartite authenticated key agreement (TAK) protocol.

Protocol description: In Figure 9.3, an entity A broadcasting to B and C, sends
his fresh short-term public value aP along with a certificate Cert containing his
long-term public key. Corresponding values and certificates are broadcast by B and
C to A,C and A, B respectively. Notice that the protocol messages are just the same
as in Joux’s protocol (Figure 3.4, Page 53), except for the addition of certificates.
Each party verifies the authenticity of the two certificates he receives. If any check
fails, the protocol should be aborted. When no check fails, one of four possible session

keys described next should be computed.

9.2.1 TAK Key Generation

1. Type 1 (TAK-1):
The keys computed by the entities are:
K = H(e(bP,cP)"|é(yP, zP)?),
Kp = H(é(aP,cP)®||é(xP, zP)Y),
Ko = H(é(aP,bP)||é(zP,yP)?).
By bilinearity, all parties now share the session key
Kapc = H(&(P, P)®¢||e(P, P)*™#). Here, H : Gy x Gy — {0,1}! is a crypto-

graphic hash function.

2. Type 2 (TAK-2):

225

9.2 One Round Tripartite Authenticated Key Agreement Protocols

The keys computed by the entities are:

Ky =¢é(bP,zP)* - é(yP,cP)® - é(bP,cP)* = é(yP,cP)*-é(bP,a - zP + x - cP),
Kp = é(aP,zP)" - é(xP,cP)’ - é(aP,cP)Y = é(zP,cP)’ - é(aP,b- zP +y - cP),
Kc =é(aP,yP)° - é(xP,bP)¢ - é(aP,bP)* = é(xP,bP)¢ - é(aP,c-yP + z - bP).

The session key is Kapc = é(P, P)(@)z+(ac)y+(be)z,

D>

3. Type 3 (TAK-3):
The keys computed by the entities are:
Ky =é(yP,cP)* - é(bP,zP)* - é(yP, zP)* = é(bP,zP)* - é(yP,x - cP + a - zP),
Kp = é(aP,zP)Y - é(xP,cP)Y - é(xP, zP)* = é(aP, 2P)Y - é(xP,y - cP + b - zP),
Ko = é(aP,yP)* - é(xP,bP)* - é(zP,yP)¢ = é(aP,yP)* - é(xP,z - bP + ¢ - yP).

The session key is Kspc = é(P, P)#v)et(@2)b+yz)a,

4. Type 4 (TAK-4):
The keys computed by the entities are:
K4 = é(bP + H(bP|yP)yP,cP + H(cP||zP)zP)*tH(@aPlzP)z,
Kp = é(aP + H(aP|xP)xP,cP + H(cP|zP)zP)>+HOPIvPy,
K¢ = é(aP + H(aP||zP)zP,bP + H(bP|yP)yP)+HPlIzP)z,
The session key is
Kuapc = é(P, P)(a+H(aP||:cP)x)(b+H(bP||yP)y)(c+H(cPHzP)z). Here, H : G; x G —

Zy is a cryptographic hash function.

90.2.2 TAK Key Generation Notes

e Joux’s protocol [90] and our protocols are all vulnerable to ‘small subgroup’
attacks and variants of them as observed by Lim and Lee [104]. To protect
against this, a verification algorithm should be applied by each entity to ensure
that their received elements are actually in Gy. This is fairly cheap to do when

G is an elliptic curve group.

e In all four cases, key generation is role symmetric and each entity uses know-
ledge of both short-term and long-term keys to produce a unique shared secret

key. No party has control over the resulting session key K4pc and if any one

226

9.2 One Round Tripartite Authenticated Key Agreement Protocols

of a,b,c is chosen uniformly at random, then K4pc is a random element of
Go. Of course delays in receipt of messages from the last entity should not be
tolerated by the other entities. This is because after the last entity sees all the
other participants’ messages, he is capable of fixing a small number of bits in

the final shared secret key. See [115] for more details.

Since all four keys are created after transmitting the same protocol messages,
the communication overhead of each protocol version is identical. However,
TAK-2 and TAK-3 key generation require slightly more computation compared
to TAK-1, even when the number of pairing computations is reduced to two
from three as described in the key generation equations. Better still, TAK-4
requires only a single pairing computation per entity, but in addition requires
three hash function computations by each entity. All the protocols can exploit
pre-computation if entities know in advance with whom they will be sharing a
key. In TAK-1, for example, all entities can pre-compute the term é(P, P)*Y*.
In TAK-2, for example, entity A can pre-compute a - yP and a - zP, with
similar pre-computations for B and C'. However, these terms cannot be re-
used because fresh a, b and ¢ should be used in each new protocol session. We

present a detailed account of the efficiency of the four protocols in Table 9.1.

| Joux | TAK-1 | TAK-2 | TAK-3 | TAKA4
Comp. Overhead
(6, xGa, xGy,+Gy1, H) | 1,0,2,0,0 | 2,0,3,0,1 | 2,1,4,1,0 | 2,1,4,1,0 | 1,0,4,2,3
Overhead w/ Precomp.
(é,xGo, xG1,+Gy, H) || 1,0,1,0,0 | 1,0,1,0,1 | 2,1,2,1,0 | 2,1,2,1,0 | 1,0,3,2,2
Comm. Overhead
(G2, G, Misc.) 0,3,0 0,3,3 Certificates
(Pass,Broadcast,Round) 6,3,1 6,3,1

Table 9.1: Efficiency comparison for one round tripartite key agreement protocols.

e Table 9.1: The computational overhead is expressed as a five-tuple which rep-
resents the number of bilinear-pairings; multiplications in Go; multiplications
in G1; additions in G1; and hash function evaluations in that order. The com-

putational overhead with precomputation expresses the same five-tuple. The

227

9.2 One Round Tripartite Authenticated Key Agreement Protocols

precomputation assumes that entities know in advance who they are commu-
nicating with. Additions in Z, are omitted because they are cheap compared to
the other operations. The total broadcast communication overhead expressed
as triples represents total message sizes, which can be measured using the num-
ber of G elements, G1 elements and miscellaneous elements, in that order. The
final triple represents the total number of passes, broadcasts and rounds, re-
spectively. Furthermore, in Table 9.1, some of the multiplications in G; can
be expressed as exponentiations in Go. However, we choose to do point multi-
plication in Gy followed by the pairing map, since this is more efficient than a
pairing evaluation followed by an exponentiation in Go. This is because Go is
a subgroup of a large finite field (recall Section 2.3) whereas G is a subgroup

of a fairly small curve.

9.2.3 Rationale for the TAK Keys' Algebraic Forms

e Protocol TAK-1 is analogous to the Unified Model protocol, whilst protocols
TAK-2 and TAK-3 have their roots in the MTI/A0 protocol. The MTI-like vari-
ant of TAK-1, in which the agreed key is K sapc = é(P, P)®°t#¥= suffers from a
severe form of key-compromise impersonation attack. This attack does not re-
quire the adversary to learn a long-term private key. Rather, the adversary only
needs to obtain a session key and one of the short-term secret values used in a
protocol run to mount the attack. To illustrate this, suppose E has obtained a,
A’s short-term private key and the session key Kapc = é(P, P)®“t#¥% Then
E can calculate é(P, P)*¥* using a and K apc by computing K apc/é(bP, cP)“.
Knowledge of this value now allows F to impersonate any entity engaging in
a protocol run with A. It would be prudent to derive session (and MAC keys
for key confirmation if desired) by applying a hash function to each Kapc.
This would prevent problems arising from the possible existence of relatively
easy bits in the BDHP. Using a hash function in TAK-1 has the additional
benefit that it allows a security proof to be given (assuming H is modelled by

a random oracle) — see Section 9.3.

228

9.2 One Round Tripartite Authenticated Key Agreement Protocols

e Protocol TAK-4 is modelled on the MQV protocol but avoids that protocol’s

unknown key-share weakness [93] by using a hash function H to combine both
the short-term and long-term private keys. Here H’s output is assumed to be
onto Zy. Note that the protocol resulting from omission of this hash function
produces the key Kapc = é(P, P)@t2)t+v)(e+2) - However, this version of the
protocol (which avoids the use of hash functions for efficiency) suffers from an
unknown key-share weakness similar to that presented for the MQV protocol
in [93], wherein the attacker does know the private key corresponding to his
registered public key. As a consequence, this attack cannot be prevented by
requiring the adversary to provide a PoP for her private key as part of the
registration process (we cannot just assume the PoP occurred). See Section

9.5.5 for further discussion of unknown key-share attacks.

Other MTI-like protocols can be produced if entities A, B and C broadcast the
ordered pairs ayP||azP, bxP||bzP and czP|/cyP respectively (along with the
appropriate certificates). This protocol can be used to produce the MTI/CO0-
like shared secret key Kapc = é(P, P)“bc, which for example A calculates
by Kapc = é(bzP,cxP)® . It can also be used to produce the MTI/B0-
like shared secret key Kapc = é(P,P)®t0cte@ which A can calculate by
Kapc = é(baP,caP)* " - é(P,bxP)* " . é(P,caP)® . Although these pro-
tocols produce a key with forward secrecy, we do not consider them further
here because they require significantly higher bandwidth and do not offer a se-
curity advantage over our other protocols. For example, both protocols suffer
from key compromise impersonation attacks and the MTI/C0 analogue is also

vulnerable to known session key attacks.

Our TAK protocols include long-term private keys in the computation of each Kapc

in order to prevent man-in-the-middle attacks. Shim [136], however, has shown

that simply involving the long-term keys is not sufficient to prevent a man-in-the-
middle attack on TAK-2. Due to this severe vulnerability in the TAK-2 protocol,
the discussion of its security will be limited to Section 9.5.1. The TAK-2 protocol

should be avoided and merely remains in this thesis for completeness and to provide

a contrast with our other protocols. For the remaining protocols, other forms of

229

9.3 Security Model

active attack can still occur. We consider such attacks on a case-by-case basis in

Section 9.5 after considering proofs of security for TAK-1.

9.3 Security Model

In this section, our security model for TAK protocols is introduced. The security
of protocol TAK-1 in this model is considered in detail. Furthermore, the ways in

which it differs from previous work are highlighted.

Our model is similar to those introduced by Bellare and Rogaway [22] and Blake-
Wilson, Johnson and Meneze [26] with some simplifications that are possible because
of the one round nature of our TAK protocols. In particular, we avoid the use of

matching conversations (and session IDs introduced in later work [20]).

We let k be a security parameter, the protocol consisting of probabilistic polynomial
time algorithms which take k as input. We assume a set of protocol participants,
the polynomial bound in k& on the number of participants is 77 (k). Multiple users
are required because we are modelling an open network. Letters A, B, C, ... will be
used to label protocol participants, while E is reserved for our adversary (who is not
a participant). Each participant A is modelled by an oracle IT%, which the adversary
FE can query at will. Here, s is a session number, that determines which random tape

% will use. In previous work, oracles were of the form IT? ; and modelled messages
sent from participant ¢ to participant j in session s. We remove this dependence on
receiving parties; in all our protocols, all messages are broadcast through E to model
active attacks. We omit the dependence on receiving parties since all the messages
are intended to be broadcast. The adversary E is also capable of not delivering any

messages.
Oracles exist in one of several possible states Accept, Reject, or *. In our protocols,

an oracle accepts only after receipt of two properly formulated messages (containing

different certificates to its own) and the transmission of two messages, not necessarily

230

9.3 Security Model

in that order (and with the received messages possibly originating from the adversary
and not the oracles identified in the certificates in those messages). When an oracle
accepts, we assume it accepts holding a session key K that is k bits in length. We also
assume there is a key generation process G which produces a description of groups G
and Go and the map é, assigns random tapes and oracles as necessary, distributes
long-term private keys to participants, and prepares certificated long-term public
keys. Thus our model assumes a perfect certification process and does not capture
attacks based on registration weaknesses like those described in Section 9.5.5. As
usual, the benign adversary is defined to be one that simply passes messages to
and fro between participants. An oracle can reject computing a session key if a
received message is not correctly formulated, that is, not as defined in the protocol
specification. When the oracle’s state is “*’, it has not yet made a decision to accept

or reject.

Adversary F is assumed to have complete control over the network, and we allow E
to make three kinds of query to an oracle II%: Send, Reveal and Corrupt. These have
the usual meanings, as per [26]: Send allows the adversary E to send a message of
her choice to IIY and to record the response, or to induce II% to initiate a protocol
run with participants of E’s choosing; Reveal reveals the session key (if any) held
by II%; while Corrupt produces the long-term private key of an uncorrupted oracle.
Notice that when making a Send query, E does not need to specify the intended
recipients of the oracle’s reply. This is because, in our protocols, the oracle’s replies
are independent of these recipients. In fact, E/ can relay these messages to any party

of her choosing.

In our TAK protocols, each party sends the same message to two other participants
and receives two messages from those participants. In our model three oracles II%,
HtB and II¢, can be said to have participated in a matched session if they have received
messages exclusively generated by each other (via the adversary). In other words,
the two messages II% receives are those generated by II%; and I1%; II%; receives two
messages generated by II% and II¢; and II¢ receives two messages generated by II%
and ITf;.

231

9.3 Security Model

In addition to the above queries, we allow E to make one further Test query of one
of the oracles II; at any point during her attack. This oracle must be fresh, i.e. , the

oracle must:

1. Be in an Accept state.

2. Not have been subject to a Reveal query. An oracle subjected to a Reveal query

is called an ‘opened’ oracle.

3. Not have been subject to a Corrupt query. That is, the oracle should be uncor-

rupted.
4. Not have participated in a matched session with any opened oracle.

5. Not have received messages containing the certificate of a corrupted oracle.

The reply to this Test query is either the session key K held by the oracle, or a random
k-bit string, the choice depending on a fair coin toss. The adversary’s advantage,
denoted advantage” (k), is the probability that E can distinguish K from the random
string. Notice that we remove the unnatural restriction in earlier models [22, 26] that

this Test query be the adversary’s last interaction with the model.

We say that a protocol is a secure TAK protocol if:

1. In the presence of the benign adversary, and when oracles participate in a
matched session, all the oracles always accept holding the same session key,

which is distributed randomly and uniformly on {0, 1}*.

2. Whenever uncorrupted oracles II%, IT%; and IIY, participate in a matched ses-
sion, then all three oracles accept and hold the same session key, which is again

uniformly distributed on {0, 1}*.

3. advantage® (k) is negligible.

232

9.4 Security Proofs for TAK-1

The first condition ensures that a secure TAK protocol does indeed distribute a key
of the correct form. The second condition ensures that this remains true even if all
other oracles are corrupted. The last condition says that no adversary can obtain

any information about the session key held by a fresh oracle.

We can also formally model the forward secrecy properties of TAK protocols. The
model is largely as before, but now the interaction with F is slightly different. In
addition to the usual Send, Reveal and Corrupt queries, we allow E to make one
Test query of an oracle of her choice, say 115. We assume that II° has accepted and
has participated in a matched session with uncorrupted oracles HtB and IT¢,. Thus

% will have calculated a session key in common with IT%, IT%. We further assume
that none of these three oracles has been the subject of a Reveal query. However,
any or all of the oracles 14, 1Ilg, o may be corrupted at any point in E’s attack.
In response to E’s query, E is given the long-term private keys for 115, HtB and IT#
(these oracles are now effectively corrupted). Adversary E is also given either the
session key K held by II% or a random k-bit string, the choice depending on a fair
coin toss. The adversary’s advantage, denoted advantage®! %(k), is the probability
that F can distinguish K from the random string. Again, the Test query need not

be the adversary’s last interaction with the model.

If in the above game, advantage™7*(k) is negligible, it is said that the TAK protocol

has perfect forward secrecy.

9.4 Security Proofs for TAK-1

With the description of our security model in hand, we now state our first theorem:

Theorem 9.1 Protocol TAK-1 is a secure TAK protocol, assuming that the ad-
versary makes no Reveal queries, that the BDHP in (G, Ga, é) is hard and provided

that H is a random oracle.

233

9.4 Security Proofs for TAK-1

Proof. Conditions 1 and 2: Given the assumption that H is a random oracle,

these conditions follow directly from the protocol description.

Condition 3: Suppose that advantage” (k) = n(k) is non-negligible. We show how
to construct from F an algorithm F' which solves the BDHP with non-negligible
probability. We describe F’s operation. F’s input is a description of the groups
G1, G9 and the map €, a non-identity element P € Gq, and a triple of elements
AP, xpP,xcP € Gy with z4,xp,zc chosen randomly from Z:;. F’s task is to

compute and output the value g*4*B*C where g = é(P, P).

F operates as follows. F chooses a triple A, B,C € ID uniformly at random. F
simulates the running of the key generation algorithm G, choosing all participants’
long-term private keys randomly itself, and computing the corresponding long-term
public keys and certificates, but with the exception of II4, IIg and IIo’s keys. As
public values for I1 4, [Ip and Iz, F' chooses the values x4 P, xg P, zc P respectively.

Then F' starts adversary E.

In E’s attack, F' will simulate all the oracles II;, ¢ € ID. So F must answer all the
oracle queries that F makes. F answers E’s queries as follows. F simply answers
E’s distinct H queries at random, maintaining a table of queries and responses as
he proceeds. Note that we do not allow our adversary to make Reveal queries, so F
does not need to answer any queries of this type. F' answers any Corrupt queries by
revealing the long-term private key and replacing the public/private key pair, except
for Corrupt querieson Il 4, IIg or Il. In the event of such queries, F' aborts. F replies
to Send queries in the usual way, with correctly formulated responses a; s P||Cert,

for all oracles II7, where a; s €r Z;.

Finally, we consider how F responds to the Test query on oracle II;. F' generates a
random bit b € {0,1}. If b = 0, F' should respond with the key held by II;, while if
b =1, F should respond with a random k-bit value. Now F' is capable of answering
the Test query correctly except when b = 0 and the tested oracle is an instance of I1 4,

I1p or II¢. In this last case, F’s response should be of the form H(Q||g*A*B8%¢) where

234

9.4 Security Proofs for TAK-1

Q € G, involving the invocation of the random oracle. This use of H should be
consistent with previous and future uses, but of course F' does not know g*A*B*C g0
cannot properly simulate the oracle in this case. Instead, F' responds with a random
k-bit value. This potentially introduces an imperfection into F’s simulation, but we

will argue below that this has no effect on success probabilities.

The final stage is as follows. Let T(k) denote a polynomial bound on the number
of H queries answered by F' in the course of E’s attack. F' picks a value £ uniformly
at random from {1,...,T>(k)}. Now F parses the ¢-th H query into the form Q||[W
where QQ, W € Gy. If this is not possible, F' aborts. If it is, then F' outputs W as its

guess for the value g*A*B*C and stops.

Now we must evaluate the probability that F’s output is correct. Notice that E’s
view of F’s simulation of the oracles is indistinguishable from E’s view in a real attack
provided that F' is not forced to abort when asked a Corrupt query and that E does
not detect that F’s simulation of the random oracle was deficient when responding
to the Test query — further details of these situations are given below. Now E picks
some accepted oracle II7 for its Test query in a real attack. Suppose that IIF has
received two messages containing certificates of oracles 1I;, and II;;. The session
key held by oracle IIj will be of the form H(Ql|g®1*2"3) where Q € G2 and =,
is the long-term private key of II;;, 1 < j < 3. Since by definition, the oracles
II;; are uncorrupted, and E does not ask any Reveal queries, if E is to succeed in
distinguishing this session key from a random string with non-negligible probability
n(k), then E must have queried H on an input of the form Q|| g*1*2%s at some point
in its attack with some non-negligible probability n’(k). The probability that this
event occurs in F’s simulation of the oracles is therefore also n/(k). Since F' outputs
a random query from the list of T5(k) queries, has randomly distributed public keys
xAP, xpP, xc P amongst the T} (k) participants, and is only deemed successful if he

does not abort and his output is of the form ¢g*A*B*C we see that F' is successful

with probability at least:
n'(k)
T1(k)*T(k)

However, this is still non-negligible in k.

235

9.4 Security Proofs for TAK-1

We claim that our argument is not affected by the imperfection introduced into F’s

simulation when F asks a Corrupt query that F' cannot answer: to be successful,

FE must ask a Test query of an uncorrupted but accepted oracle which has received

messages containing certificates of two further uncorrupted oracles. This means that

for E to be successful, at least three distinct, uncorrupted oracles must remain. So

F', having made a random choice of where to place public keys x4 P, xg P, zc P, has
1

at least a TIR)® chance of not facing an unanswerable Corrupt query whenever E is

successful. This factor is already taken into account in our analysis.

One problem remains: what effect on E’s behaviour does F’s deviation have in giving
a random response to the “difficult” Test query? In particular, what effect does it
have on success probabilities? FE’s behaviour can only differ from that in a true
attack run if £ detects any inconsistency in F’s simulation of the random oracle. In
turn, this can only happen if at some point in the attack, E queries H on an input
of the form Q||g“4*B*c. For otherwise, no inconsistency arises. At this point, E’s
behaviour becomes undefined. (In this situation, £ might guess that F’s response to
the Test query is a random key (b = 1) rather than the “correct” key (b = 0). But
we must also consider the possibility that E simply might not terminate.) So we
assume that F' simply aborts his simulation whenever E’s attack lasts longer than
some polynomial bound 75(k) on the length of a normal attack. Notice that H has
been queried on an input of the form Q| g*4*2*¢ at some point in F’s simulation,
and that up until this point, E’s view is indistinguishable from that in a real attack.
Thus, the number of H queries made by E will still be bounded by T5(k) up to
this point, and an input of the required type will occur amongst these. So F’s
usual guessing strategy will be successful with probability 1/T5(k) even when E’s
behaviour is affected by F’s inability to correctly respond to the Test query. Since
this is the same success probability for guessing in the situation where everything
proceeds normally, it is now easy to see that F’s overall success probability is still at

least:
n' (k)
T1 (k)3 T(k)

236

9.4 Security Proofs for TAK-1

Next is our theorem about the security of protocol TAK-1 in our forward security

model.

Theorem 9.2 Protocol TAK-1 has perfect forward secrecy, assuming that the ad-
versary makes no Reveal queries, that the BDHP in (Gq, Gg, é) is hard and provided

that H is a random oracle.

Proof. Suppose that advantage®¥*(k) = n(k) is non-negligible. We show how
to construct from E an algorithm F which solves the BDHP with non-negligible
probability. We describe F’s operation. F’s input is a description of the groups
G1, G2 and the map é, a non-identity element P € Gy, and a triple of elements
rAP,xpP,xcP € Gy with x4,2p,rc chosen randomly from Zj. F’s task is to

compute and output the value g*4*B*C where g = é(P, P).

F operates as follows. F' simulates the running of the key generation algorithm G,
choosing all participants’ long-term private keys randomly itself, and computing the

corresponding long-term public keys and certificates.

F also chooses a triple A, B, C' € ID uniformly at random, and three positive integers
s,t,u that are all bounded above by the number T3(k) of different sessions that E

enters into across all the oracles. Then F starts adversary F.

F must answer all the oracle queries that E makes. F' answers E’s queries as follows.
F simply answers E’s distinct H queries at random, maintaining a table of queries
and responses as he proceeds. Note that we do not allow our adversary to make
Reveal queries, so F' does not need to answer any queries of this type. F' answers
any Corrupt queries by revealing the long-term private key that it holds. F’ replies to
Send queries in the usual way, with correctly formulated responses a; , P||Certy, for
all oracles II}, where a;, €r Zj, except when queried for responses for oracles IT%,
IT%; and II%. In these special cases, F responds with x4 P|Certr,, zpP|Certn,

and xc P||Certy,,, respectively.

237

9.4 Security Proofs for TAK-1

Finally, we consider how F' responds to the Test query on oracle II;. F generates
a random bit b € {0,1}. If b = 0, F should respond with the key held by II;,
while if b = 1, F should respond with a random k-bit value. Now F' is capable of
answering the Test query correctly except in one special case: this is when b = 0,
when the tested oracle is IT%, IT% or IT% and when the tested oracle has participated
in a matched session which comprises exactly these three oracles. In this last case,
F’s response should be of the form H(g"4*B*¢||W) where W € Gg, but F' cannot
properly simulate the oracle in this case. Instead, F' responds with a random k-bit
value. This potentially introduces an imperfection into F’s simulation, but this has
no effect on success probabilities; this can be argued just as in the proof of Theorem

9.1.

Let T5(k) denote a polynomial bound on the number of H queries answered by F' in
the course of E’s attack. F picks a value £ uniformly at random from {1,...,T5(k)}.
Now F parses the -th H query into the form Q||W where Q, W € Go. If this is not
possible, F' aborts. If it is, then F' outputs () as its guess for the value g*A*B*¢ and
stops. Notice that E’s view of F’s simulation of the oracles is indistinguishable from
E’s view in a real attack, provided that E does not detect that F’s simulation of the
random oracle was deficient when responding to the Test query. Now E picks some
accepted oracle II} for its Test query in a real attack. Suppose that II} has received
two messages containing the short-term values of oracles II;, and II;;. The session
key held by oracle IT} will be of the form H(g"1%2%s||W) where W € Gz and z;
is the short-term private key of 1I;;, 1 < j < 3. Since E does not ask any Reveal
queries, if E is to succeed in distinguishing this session key from a random string
with non-negligible probability n(k), then E must have queried H on an input of the
form g¥i1%2%3||IW at some point in its attack with some non-negligible probability
n'(k). The probability that this event occurs in F’s simulation is therefore also n’(k).
Recall that F' outputs a random query from the list of T5(k) queries, has randomly
distributed values x o P, zpP, xcP as short-term keys amongst the T5(k) sessions,
and is only deemed successful if his output is of the form g*4%8%¢. Recall too that

FE only attacks oracles that have participated in matched sessions. Combining these

238

9.4 Security Proofs for TAK-1

facts, we see that F' is successful with probability better than:
n'(k)
T3(k)*To (k)

However, this is still non-negligible in k.
O

We comment on the significance of Theorems 9.1 and 9.2. We emphasise that our
proofs of security do not allow the adversary to make Reveal queries of oracles. This
means that our proofs do not capture known session-key attacks. In fact, protocol
TAK-1 is vulnerable to a simple attack of this type. In Section 9.5.2 we describe the
attack in full. The attack only works on TAK-1 because of the symmetry of the short-
term components, and attacks of this type do not appear to apply to TAK-2, TAK-3
or TAK-4. The attack is analogous to known session key attacks well-understood for

other protocols (see the comments following [26, Theorem 11] for an example).

In Section 9.8.1 we consider a confirmed version of Joux’s protocol. This protocol is
obtained in the usual way by adding three confirmation messages (which are piggy-
backed on other messages in a non-broadcast environment), one for each protocol
participant. The confirmation messages use encryptions and signatures which could
be replaced with MACs using keys derived from the short term values exchanged
during the protocol run. We expect that the techniques used to prove the security
of Protocol 2 of [26] can be adapted to prove that the described confirmed version
of TAK-1 is indeed a secure AKC protocol. The analysis presented in Section 9.8.3

explains why we did not further the research into pairing based AKC protocols.

Finally, the techniques used to prove Theorems 9.1 and 9.2 do not appear to extend to
our other protocols. Nor has any security proof yet appeared for the MQV protocol
(on which TAK-4 is based), although the MQV protocol is widely believed to be
secure and has been standardised [8, 9, 87, 89]. In any case, as we shall see in the
next section, current security models do not handle all the reasonable attack types

and so need to be augmented by ad hoc analysis.

We extended the model in [26] to include forward security and proved that TAK-1

is forward secure. Other models [20, 140] also capture forward security.

239

9.5 Heuristic Security Analysis of TAK Protocols

Furthermore, key-compromise attacks like those described in Section 9.5.4 are not
captured by our model. Finally, our proof assumes that H is a random oracle:
again recent work [39] shows that security proofs for key agreement protocols can be

obtained in the standard model (at some computational cost).

The apparent difficulty in obtaining security proofs for our protocols and the limita-
tions of our security model motivates the additional ad hoc security analysis presented

in the next section.

9.5 Heuristic Security Analysis of TAK Protocols

We present a variety of attacks on the three TAK protocols that are not captured
by the security models of the previous section. These are mostly inspired by earlier
attacks on the two-party MTI protocols. Following this analysis, we summarise
the security attributes of our TAK protocols in Table 9.2. In this section, we use
E 4 to indicate that the adversary E is impersonating A in sending or receiving
messages intended for or originating from A. Similarly, Eg ¢ denotes an adversary
impersonating both B and C. To begin with, we will examine Shim’s attack on

TAK-2 [136].

9.5.1 Shim's Man-in-the-Middle Attack on TAK-2

In the attack demonstrated by Shim [136], adversary E creates short-term private
keys a’,b', ¢’ € Z; and replaces short-term public keys of A, B and C with yy = a'P,
Wy = b'P and pp = ¢ P respectively. As in Section 3.3.1, E4 indicates that E is
impersonating A in sending or receiving messages intended for or originating from

A. Then, entities A, B and C compute the following keys:

Kapppe = é(P,2P)*-é(yP, ug)® - é(uly, Po)® = é(P, P)WW=tacytvce,
Kppape = €(P,zP)"-&(xP,up)’ - é(uy, Pp)¥ = é(P, Py~ betbdatacy,

240

9.5 Heuristic Security Analysis of TAK Protocols

Kopap = e(PyP)*-é(xP,) ey, Pp)” = é(P, P)*vHVeutatz,

Now E with the knowledge of the triple (a’,V', ') is able to compute three different

session keys using the available long-term public keys P, yP and zP as follows:

Kpyoa = éaP,zP)" - é(yP,aP)" - é(aP, P)"'¢ = ¢(p, p)e=tocduyttce
Kp,op = é(bP,zP)” - &(xP,bP)¢ - é(yP, P)"*

Kp,,c = ¢é(cPyP)” -é(aP,cP)" - é(zP, P)""

9

“ / / 10
€(P, P)a bz+bc'x+a' ¢ y7

>

" / / %
e(P, P)a cy+b'cy+a’b z

Since Kappp, = KEB,CA’ Kpe,po = KEA’CB and Kcp, gy = KEA’BC, the attack
renders TAK-2 insecure against a man-in-the-middle attack. The attack is present
because every pairing computation required to produce the key can be computed
using two short-term values which are injected by the adversary. We did not find
this attack because a two party heuristic analysis of the man-in-the-middle attack

was naively used and not extended to the group setting.

9.5.2 Known Session Key Attack on TAK-1

We present a known session key attack on TAK-1 that makes use of session interleav-
ing and message reflection. In the attack, E interleaves three sessions and reflects
messages originating from A back to A in the different protocol runs. The result is
that the session keys agreed in the three runs are identical, so F, upon revealing one
of them, gets keys for two subsequent sessions as well. In what follows, Ep ¢ denotes

an adversary impersonating both B and C.

A is convinced to initiate three sessions with E:
Session a: A — Egc: aP|Certy (1%)
Session f: A— Egc: d P|Certy (19)
Session y: A — Epc: a'Pl|Certy (17)

241

9.5 Heuristic Security Analysis of TAK Protocols

FE reflects and replays pretending to be B and C, to complete session a:
Ep — A: dP|Certp (29
Ec — A: d"P|Certe (3%

Similarly, the second session is completed by Ep ¢ sending a”P|/Certp (2°) and
aP||Certc (8%) to A. In the third parallel session she sends aP|/Certp (27) and
a'P||Certe (37) to A.

If E is now able to obtain the first session key H(&(P, P)*'e"||¢(P, P)*¥#), she then
knows the keys for the next two sessions, as these are identical to this first session

key.

9.5.3 Forward Secrecy Weakness in TAK-3

As shown in the proof of Theorem 9.2, TAK-1 has perfect forward secrecy. Protocol
TAK-4 also appears to have this property because the key K 4pc agreed also includes
the component é(P, P)“bc. However, it is straightforward to see that if an adversary
obtains two long-term private keys in TAK-3, then she has the ability to obtain old
session keys (assuming she keeps a record of the public values aP,bP,cP). Thus
TAK-3 does not enjoy forward secrecy. The protocol can made into one which
enjoys perfect forward secrecy, at extra computational cost, by using the key Kapc -
é(P, P)®¢ in place of the key Kapc.

9.5.4 Key-Compromise Impersonation Attack on TAK-1

We present a key-compromise impersonation attack on TAK-1 that occurs when E
can obtain the long-term private key of one of the entities. Suppose E has obtained
x, A’s long-term private key. Then E can calculate é(P, P)*¥* using x and public
data in B and C"s certificates. Knowledge of this value now allows E to impersonate

any entity engaging in a TAK-1 protocol run with A (and not just A). For example

242

9.5 Heuristic Security Analysis of TAK Protocols

to impersonate C' to both A and B, Ex with possession of x simply broadcasts
' P||Certc and obtains the protocol messages, aP||Cert4 and bP||Certp from A and

B respectively. The adversary Fc can now compute the session key Kapgp, =
H(&(P, P)™||e(P, P)"v?).

Due to the combinations of long-term and short-term key components used in com-
puting K 4pc, these kinds of attacks do not appear to apply to TAK-3 nor to TAK-4.
However, Shim [136] presented ‘partial key compromise impersonation attacks’ on
TAK-3 and TAK-4. These attacks use A’s long-term key to impersonate C' to B.
However, A does not compute the same session key as B and C' do, and the adversary
does not learn A’s session key. So this attack is only meaningful in the scenario where
A does not use its session key to communicate with B or C, but B and C use their
version of the key to communicate with one another. In the attack, the adversary has
A’s long-term key and replaces A’s short-term key in the protocol run. It therefore
is not surprising that B will compute a key that the adversary can also compute.
Indeed this attack is tantamount to a simple impersonation attack on A by the ad-
versary. This is because E' (who has possesion of z) is really just impersonating A

to B (and not C to B) by replacing the short-term public key of A with o’ P.

In fact, no implicitly authenticated conference key agreement protocol, which broad-
casts only certificates and short-term values, can prevent an adversary from mount-
ing a ‘partial key compromise impersonation attack’ of the type described by Shim
[136]. The adversary with A’s long-term private key and A’s (replaced) short-term
private key can of course impersonate any entity in the group (by replacing that
entity’s short-term public key) to any other entity except A. Hence preventing such
an adversary is equivalent to preventing an adversary from impersonating an entity
with knowledge of that entity’s long-term and short-term keys. This is of course
impossible. Given that not all the entities compute a common shared key in a par-
tial key compromise attack, key confirmation (using MACs and the shared key, for

example) is sufficient to prevent this form of attack.

243

9.5 Heuristic Security Analysis of TAK Protocols

9.5.5 Unknown Key-Share Attacks

A basic source substitution attack is applicable to many protocols and applies to all
our TAK protocols. Unknown key-share attacks were first discussed in Diffie et al.
[59] and utilise a potential registration weakness for public keys to create fraudulent
certificates [113]. Since we assumed that the certification process in the model of
Section 9.3 is perfect, the security model does not capture these attacks. Unknown
key share attacks are also known as source substitution attacks because the adversary
forces an entity into believing that a message is from a different source to the actual

source.

In a generic form of this attack, adversary E registers A’s public key K, 4 as her
own, creating Certg which is equal to (IDg|| Kpub, 4[| Z(IDE|| Kpub,a), Kpriv,.ca). Then,
she intercepts A’s message aP|Certs and replaces Certy with her own certificate
Certg. Note that E registered A’s long-term public key P as her own without
knowing the value of x. Therefore she cannot learn the key Kapc. However, B
and C are fooled into thinking they have agreed a key with E, when in fact they
have agreed a key with A. They will interpret any subsequent encrypted messages
emanating from A as coming from FE. This basic attack could be eliminated if the
CA does not allow two entities to register the same long-term public key. However,
this solution may not scale well to large or distributed systems. A better solution is

discussed after highlighting another type of source substitution attack.

A second, less trivial source substitution attack can be found against TAK-3. In this
attack F certifies a related public key without knowing the corresponding private key.
Thus, even if the CA does the previous check, the adversary can still obtain a Certg
from the CA, which contains a component K, g which is a multiple of K,,; 4. The
adversary can then alter the short-term keys in subsequent protocol messages by
appropriate multiples. As with the last attack, the adversary does not create the
shared key. Rather, the attack gives her the ability to fool two participants, B and
C, into believing the messages came from her rather then from the third (honest)

participant, A. This attack is presented next.

244

9.5 Heuristic Security Analysis of TAK Protocols

0.5.5.1 Source Substitution Attack on TAK-3

We present in detail the second source substitution attack on TAK-3.

1. A sends aP|/Certy to Epc.
2. FE computes Ky, g = 0P and obtains a certificate Certg on K,y g-
3. E initiates a run of protocol TAK-3 by sending aP||Certg to B, C.
4. B sends bP||Certp to E,C; C sends cP||Certc to E, B.
5. B and C (following the protocol) compute
Kipe = Kapy . = (P, P)0m)et(0z2)bt(w2)a
6. Ep sends 6bP||Certp to A.
7. E¢ sends 0cP||Certc to A.

8. A (following the protocol) computes a key

KAEB,C — KAEB,C — é(P, P)(&a:y)ch(ﬁmz)bJr(yz)a = Kgge.

9. Now F forwards A’s messages encrypted under key Kppc = Kagg . to B and

C, and fools them into believing that A’s messages come from her.

This attack does not seem to apply to TAK-1 or TAK-4 because of the way in which
long-term private key components are separated from the short-term components in
K apc in TAK-1 and due to the use of a hash function in TAK-4.

The adversary in our attacks does not know her long term private key. Unlike the
more severe attack by Kaliski [93] on the MQV protocol, all these source substitution
attacks are easily prevented if the CA insists that each registering party provides a
PoP of his private key when registering a public key. This can be achieved using a
variety of methods. For example, one might use zero-knowledge techniques or regard
the pair (z,zP) as an ECDSA signature key pair and have the registering party sign
a message of the CA’s choice using this key pair. As an alternative, to prevent all
forms of unknown key share attacks whilst maintaining a single round protocol, the

protocol could be modified using one of the two methods:

245

9.5 Heuristic Security Analysis of TAK Protocols

1. Identities could be included in the key derivation function such that Kz~ =
KDF (K Apc||ID4||IDg||ID¢). This ensures that the parties will create different

keys when under attack.

2. Entity A could identify B and C within the exchanged message, for example by
signing the identities IDp and ID¢. Entities B and C should verify A’s signature
and identify entities A, C' and A, B respectively within their messages. This
ensures that the misrepresented parties will be detected when under attack.
This solution is unattractive due to the computational complexity it could

incur. Hence, our one round protocols avoid the use of signatures.

Method (2) is used within the key confirmation protocols presented in Section 9.8,

making them resistant to unknown key-share attacks.

0.5.6 Insider and Other Attacks

Certain new kinds of insider attacks must be considered when dealing with tripartite
protocols. For example, an insider A might be able to fool B into believing that
they have participated in a protocol run with C', when in fact C has not been active.
An active A can do this easily in our TAK protocols, by choosing C’s value cP and
injecting it into the network along with C’s certificate and stopping B’s message
from reaching C. This kind of attack can have serious consequences for tripartite
protocols: if C' acts as an on-line escrow agent, then B believes a shared key has
been properly escrowed with C' when in fact it has not. On the other hand, when
C' acts as an off-line escrow agent, as in the protocol we describe in Section 9.7, this
insider attack is only significant if C' is providing an auditing function. This lack of
auditability is actually beneficial if protocol participants want to have a deniability
property, as in protocols like IKE, IKEv2 and JFK [84].

Attacks of this type can be prevented in a number of ways. Adding a confirmation
phase, as we do in Section 9.8, prevents them. An alternative requires a complete

protocol re-design, but maintains a one round broadcast protocol: the long-term keys

246

9.5 Heuristic Security Analysis of TAK Protocols

are simply used to sign short-term values (rather than combining them with short-
term keys as in our TAK protocols) and agree the key é(P, P)?°. This approach
requires each participant to maintain a log of all short-term values used, or to use
synchronized clocks and time-stamps, to prevent an attacker simply replaying an old
message. This requirement along with the need to create and verify signatures for

each protocol run makes this solution somewhat unwieldy.

We note that Shim [136] has also found a rather theoretical ‘known-key conspiracy
attack’ on TAK-2. This appears to be what we have called a known session key
attack, but it requires two adversaries to conspire and to reveal three session keys.
A similar attack can also be found on TAK-3, but is easily prevented if TAK-3 is

augmented with a key derivation function.

In addition to the above attacks, we note that TAK-3 is vulnerable to a triangle
attack of the type introduced by Burmester [41]. This atack is described next. It is

somewhat theoretical in nature and thus presented only for completeness.

9.5.6.1 Triangle Attack on TAK-3

The triangle attack on TAK-3 allows an adversary E (who has a certificate Certpg
containing Ky g = AP) to compute a session key K spc previously shared by the
honest parties A, B and C.

1. E eavesdrops to obtain aP, bP and ¢P from the session in which the session
key Kapc = é(P, P)@v)et@)btyz)a is aoreed between A, B, C.

2. F now initiates three protocol runs. The first one is:
E — B,C: aP|Certg (1)
B — E,C: VP|Certp (2%)
C — E,B: dP|Certc (39)

The session key agreed is Kppo = é(P, P)(A)<HA) +(yz)a,

247

9.5 Heuristic Security Analysis of TAK Protocols

3. The second run is:
E— A C: bP|Certg (
A— E,C: d'P|Certy (
C— A E: 'P|Certc (
The session key agreed is Kapc = é(P, P)

19)
20)
3P)
(@A) +(22)b+(Az)a”
4. And lastly:
E — A B: cP|Certg (
A — B,E: d"P|Certy (
(

B — A E: V"P|Certp

The agreed session key is Kopp = é(P, P)@v)et@A)p”+(yA)a™

1)
27)
37)

5. E now obtains three session keys Kgpc, Kapc and Kagg from B or C, A or
C and A or C respectively. For this reason, this attack is regarded as somewhat

theoretical.

6. Finally, session key

Kape = Kppo - é(P,P)~ (A=A

can now be computed by FE.

This triangle attack is possible because of the algebraic relationship between the long
and short term key components in K apc. It can be thwarted using appropriate key
derivation. This attack does not work on TAK-1 because we cannot isolate individual
short term key components (e.g. in step 2 we cannot isolate a from fresh components
b’ and ¢). This type of attack is also eliminated in TAK-4 because of the binding of

each entity’s short and long-term key using a hash function.

248

9.5 Heuristic Security Analysis of TAK Protocols

| Joux | TAK-1 | TAK-2 | TAK-3 | TAK- |

Implicit key authentication No Yes No Yes Yes

Known session key secure No No No Yes(®) Yes

Perfect forward secrecy n/a Yes No Nol##) Yes
Key-compromise impersonation sec. || n/a No No Yes(®) | Yes(®)
Unknown key-share secure No | Yes® No Yes(¥) | Yes(®)

Table 9.2: Comparison of security goals and attributes for one round tripartite key
agreement protocols.
(i) Only when a key derivation function is used; see Section 9.5.6.

(ii7) No forward secrecy when two long-term private keys are compromised, but still has
forward secrecy if only one is compromised.

(iv) Note, however, Section 9.5.4 describes the inevitable ‘partial key compromise imper-
sonation attack’ on this scheme.

(v) If the CA checks that public keys are only registered once, and if inconvenient use (vi).

(vi) If the CA verifies that each user is in possession of the long-term private key corres-
ponding to his public key.

9.5.7 Security Summary

Table 9.2 compares the security attributes that we believe our protocols TAK-1,
TAK-2, TAK-3 and TAK-4 to possess. We have also included a comparison with the

‘raw’ Joux protocol.

Based on this table and the analysis in Section 9.3, we recommend the use of protocol
TAK-4 or protocol TAK-3 along with pre-computation (in the event that the use of a
hash function is not desirable). If perfect forward secrecy is also required, then TAK-
3 can be modified as described in Section 9.5.3. Protocol TAK-4 has the additional
benefit of being the most computationally efficient of all our protocols. Of course,
robust certification is needed for all of our TAK protocols in order to avoid unknown

key-share attacks.

249

9.6 Shim’s Tripartite Key Agreement Protocol

9.6 Shim's Tripartite Key Agreement Protocol

Here we will look at the shortcomings of Shim’s [138] one round tripartite authentic-
ated key agreement protocol based on pairings. We show that the protocol of [138]

does not make mathematical sense.

9.6.1 Shim’s Protocol

Shim’s protocol [138] addresses the lack of authentication in Joux’s protocol [90]
by utilising certified long-term public keys. In the notation we use in this thesis,
Shim’s protocol can be described as follows. The certificates Cert 4, Certp, Certc
as usual contain entity A, B and C’s public keys Ky 4 = vP, Ky p = yP and
Kpup,c = cP respectively. In Shim’s protocol, which we reproduce below, short-term
keys are a,b, c € Z (actually, these should be chosen uniformly at random from Z7)
which are selected by entities A, B and C respectively. The message flows of Shim’s

protocol are given in Figure 9.4.

Protocol Messages

1. A— B,C: a-xzP|Certy
2. B—AC: b-yP|Certp
3. C—ADB: c-zP|Certc

Figure 9.4: Shim’s tripartite protocol.

Protocol description: An entity A computes T4 = a - Ky 4 and broadcasts
it to B and C along with a certificate Certy containing his long-term public key
Kpup, 4. Corresponding values (Tp = bK b g and To = cKpyp) and certificates are
broadcast by B and C to A, C and A, B respectively. According to [138], the shared

250

9.7 Tripartite Protocols with One Off-line Party

key computed by the three parties is
K apc = KDF(é(P, P)=2beePP)™ 11D 4| ID 5 |IDc),

where KDF is a key derivation fuction. Entity A computes this Kapc by first

of all computing the elliptic curve component é(P, P)"”yzabc'e(P Py

Ky = é(TB,Tc)ax'é(KPubvB’KPuva)I. Entities B and C are meant to perform similar

by calculating

calculations.

9.6.2 The Problem

The problem with the protocol of [138] is that the definition of the shared key Kapc
does not make mathematical sense. This is because calculation of the key K apc
requires raising a finite field element é(P, P)®¥%%%¢ (i.e. é(Tg,Tc)*® for entity A) to
the power of another finite field element é(P, P)*¥*. No such operation involving
field elements is possible. It is only possible to raise a finite field element to an
integer power. The finite field element é(P, P)*™¥* cannot be used for this purpose.
So the protocol of [138] is mathematically nonsensical. Even though it makes no

mathematical sense, this protocol has been cryptanalysed by Sun and Hsieh in [144].

Of course, a number of alternative approaches to securing Joux’s protocol [90] are

presented previously in this chapter.

9.7 Tripartite Protocols with One Off-line Party

As we mentioned in the introduction, there is an application of tripartite key ex-
change protocols to the two-party case where one of the parties acts as an escrow
agent. It may be more convenient that this agent be off-line, meaning that he re-
ceives messages but is not required to send any messages. In this section, we adapt
our earlier protocols to this situation. The protocol below is a modified version of

TAK-4. We assume that C is the off-line party and that C’s certificate Cert¢ is

251

9.7 Tripartite Protocols with One Off-line Party

pre-distributed or is readily available to A and B. The message flows of this protocol

are given in Figure 9.5.

Protocol Messages

1. A— B,C: aP|Certy
2. B— AC: bP|Certp

Figure 9.5: Off-line TAK protocol.

Protocol description: The protocol in Figure 9.5 is as in TAK-4, but without the
participation of C. Entities A and B use C’s long-term public key zP in place of his
short-term public value cP when calculating the session key. Thus, the session key
is
Kape = é(P, P)(a+H(aP||mP)z)(b+H(bP||yP)y)(z+H(zPHzP)z).

Let 6 be the output of H(zP|/zP), which is publicly computable and always the
same value. Therefore, in the above key (z + H(zP||zP)z) can be set to (1 + 6)z.
Alternatively, the value (z + H(zP||zP)z) in the session key can be optimised to z

without affecting the security. Thus, the session key becomes

Kapo = é(P, P)@+H@PlzP)a) b+ HOPIyPI))

Note that C' can compute the key when required.

This protocol (whether optimised or not) appears to be resistant to all the previous
attacks except the simple source substitution attack which is easily prevented via
robust registration procedures. It also has forward secrecy, obviously except when
the private key z is compromised. Here z can be viewed as an independent master

key, which can be regularly updated along with the corresponding certificate.

Interestingly, the two party Diffie-Hellman based protocols presented in Figure 9.1

can be transformed into tripartite protocols with one off-line party. This is done by:

252

9.8 Non-Broadcast — Tripartite AKC Protocols

1. Changing the protocol setting to one appropriate for elliptic curve pairings

protocols.

2. Both A and B additionally including entity C' as a recipient of the protocol

messages.

3. Including entity C’s public key in the pairing map. This is done by A replacing
elliptic curve Diffie-Hellman computations of the form K., 4 - Kpyup,p with
computations of the form é(Kpup 'y Kpup, B)Bpriv.a where Kpriv € Zy and Kpyp €
GI.

This evidently can be veiwed as a method of providing escrow to many two party
Diffie-Hellman based protocols. For example, it is easy to see that the key computed
by participants in an ‘escrowable’ MTI/AO protocol is Kapc = é(P, P)(ew+b)(),
which is computable by A, B and C.

9.8 Non-Broadcast — Tripartite AKC Protocols

Up to this point we have considered protocols that are efficient in the broadcast
setting: they have all required the transmission of one broadcast message per parti-
cipant. As we mentioned when discussing communication complexity in Section 3.1,
the number of broadcasts is not always the most relevant measure of a protocol’s use
of communications bandwidth. A good example is the basic broadcast Joux protocol,
which offers neither authentication nor confirmation of keys and requires six passes
in a non-broadcast network. In this section, we introduce a pairing based tripartite
key agreement protocol that also requires six passes, but that offers both key con-
firmation and key authentication, thus, the protocol is an AKC protocol. We show
that any such protocol requires at least six passes. We then compare our protocol to

a tripartite version of the station-to-station protocol [59].

253

9.8 Non-Broadcast — Tripartite AKC Protocols

9.8.1 A Six Pass Pairing-Based AKC Protocol

Our notation in describing our pairing-based tripartite authenticated key agreement
with key confirmation (TAKC) protocol is largely as before. Additionally, to simplify
the notation ¥ 4 (o) denotes A’s signature on the string o (i.e. ¥ 4(0) = X(0, Kpriv,a))-
We assume now that the CA’s certificate Cert4 contains A’s signature verification
key. Also £/ (o) denotes encryption of string o using a symmetric algorithm and
key K, and y denotes the string aP||bP||cP. The message flows of this protocol are

given in Figure 9.6.

Sequence of Protocol Messages

1. A— B: aP|Certy

2. B— C: aP|Certa|bP|Certp

3. C— A: bP|CertpllcP|Certc| €T (Sc(IDallID5(X))

4. A= B: cP|Certc|lEgy (Sc(DAlIDBIX))IEL,, . (Ea(ID5[IDcllX))
5. B—C: & (Ba(Ds[IDc)IEL,,. (E5(1DA]IDc|x))

6. B—A: EZT (Sp(IDalIDo|X))

Figure 9.6: TAKC protocol from pairings.

Protocol description: In Figure 9.6, entity A initiates the protocol execution with
message (1). After receiving message (2), entity C is able to calculate the session key
Kapc = é(P, P)®¢. The same session key is calculated after receiving messages (3)
and (4), by A and B respectively. Messages () and onwards contain signatures on
the short-term values and identities in the particular protocol run. This provides key
authenticity. These signatures are transmitted in encrypted form using the session
key K apc and this provides key confirmation. The confirmations from C to B, A to
C and B to A are piggy-backed and forwarded by the intermediate party in messages
(3), (4) and (&) respectively. More properly, encryptions should use a key derived

from K spc rather than K 4pc itself. The symmetric encryptions can be replaced by

254

9.8 Non-Broadcast — Tripartite AKC Protocols

appending MACs to the signatures with the usual safeguards.

If the expected recipients’ identities were not included in the signatures, this protocol
would be vulnerable to an extension of an attack due to Lowe [107]. This attack
exploits an authentication error and allows a limited form of unknown key-share
attack. To perform it, we assume adversary E has control of the network. The

attack is as follows.

1. E¢ intercepts message (2), then E forwards (2) replacing Certp with Certg
to C as if it originated from E. Thus, C' assumes he is sharing a key with A
and E.

2. E4 intercepts message (&) en route to A. Now E¢ forwards this message

replacing Certy with Certp to A.
3. Entity A receives (3) and continues with the protocol, sending message (4).

4. FE blocks messages (5) and (6), so C and A assume an incomplete protocol run
has occurred and terminate the protocol. However, on receipt of message (4),
entity B already thinks he has completed a successful protocol run with A and

C, whilst C' might not even know B exists.

As usual in an unknown key-share attack, E/ cannot compute the shared key. The
attack is limited because A and C' end up with an aborted protocol run (rather than
believing they have shared a key with B). The attack is defeated in our protocol
because the inclusion of identities in signatures causes the protocol to terminate after

message (3), when A realises that an illegal run has occurred.

We claim that no tripartite AKC protocol can use fewer than six passes, that is, no
fewer than six messages exchanged in the protocol. Thus our protocol in Figure 9.6

is pass optimal. Our reasoning is as follows:

1. Each of the three entities must receive two short-term keys to construct Kapc,

so a total of six short-term values must be received.

255

9.8 Non-Broadcast — Tripartite AKC Protocols

2. The first pass can contain only one short-term key (the one known by the

sender in that pass), while subsequent passes can contain two.

3. From 1 and 2, it can be seen that a minimum of four passes are needed to
distribute all the short-term values to all of the parties. Therefore, only after
at least four passes is the last party (entity B in our protocol) capable of

creating the key.

4. This last party needs another two passes to provide key confirmation to the

other two entities.

5. From 3 and 4, we see that at least six passes are needed in total.

Note that this argument holds whether the network supports broadcasts or not.

0.8.2 A Six Pass Diffie-Hellman based AKC Protocol

The STS protocol presented in Section 9.1.2.2 is a three pass, two-party AKC protocol
designed by Diffie, van Oorschot and Wiener [59] to defeat man-in-the-middle attacks.
Here we extend the protocol to three parties and six passes, a pass-optimal protocol

according to the argument above.

An appropriate prime p and generator g mod p are selected. In Protocol 4 below,
a,b, c € Z,, are randomly generated short-term values and x denotes the concatena-

tion g%||g°|lg¢. As before, we use the notation: £3/™

KABC(') and X 4(+). Again, we assume

that authentic versions of signature keys are available to the three participants. In

Figure 9.7, modulo p operations are omitted for simplicity of presentation.

Protocol description: The protocol in Figure 9.7 is similar in operation to the
protocol presented in Figure 9.6, with additional computations performed before
steps (2), (3) and (4) to compute g?, ¢*°, and ¢ respectively. The shared session
key is Kapc = ¢ mod p.

256

9.9 Summary

Sequence of Protocol Messages

1. A— B: g¢%|Certy

2. B—C: ¢%|Certalg"||Certpllg®

3. C—A: gP|Certplg®|Certcg™ €™ (Sc(IDA[ID5]X))

4. A— B: chCertcHg“ch‘:}?gc(ECUDAH'DBHX))”g}s(ygc(zA(lDB”lDCHX))
5. B—C: &I (Sa(Dg|IDclX)IEL (Sp(IDalIDcX))

6. B— A: S?EC(EB“DAH'DC”X))

Figure 9.7: Diffie-Hellman based TAKC protocol.

9.8.3 Analysis of AKC Protocols

Two immediate conclusions can be drawn from our work in Sections 9.8.1 and 9.8.2.
Firstly, we have given a pairing-based, tripartite AKC protocol using just the same
number of passes as are needed in Joux’s protocol (but with the penalty of introducing
message dependencies). Secondly, this AKC version of Joux’s protocol is no more
efficient in terms of passes than a 3-party version of the STS protocol! Thus, when
one considers confirmed protocols in a non-broadcast environment, the apparent
advantage that Joux’s protocol enjoys disappears. Of course, there is a two round
broadcast version of the TAKC protocol (requiring 6 broadcasts and 12 passes).
Both of our six pass AKC protocols can be performed in 5 rounds in a broadcast

environment.

9.9 Summary

We have taken Joux’s one round tripartite key agreement protocol and used it to

construct one round TAK protocols. We have considered security proofs and heuristic

257

9.9 Summary

security analysis of our protocols, as well as an off-line version of our protocols.
We have preserved the innate communications efficiency of Joux’s protocol while
enhancing its security functionality. We described why Shim’s protocol which was
intended to enhance the security functionality of Joux’s protocol does not work. We
have also considered tripartite variants of the STS protocol, suited to non-broadcast
networks, showing that in the non-broadcast case, pairing-based protocols can offer
no communication advantage over more traditional Diffie-Hellman style protocols.
This investigation provides the reader with some intuition into the advantages of
Joux’s protocol and the security difficulties which accompany it due to its three

party nature.

Future work should consider the security of our protocols in more robust models,
capturing a larger set of realistic attacks. Constructing multi-party key agreement
protocols using our TAK protocols as a primitive might result in bandwidth-efficient
protocols. Finally, it would be interesting to see if the methods of [39] could be
emulated in the setting of pairings to produce TAK protocols secure in the standard

model.

258

Bibliography

1]

C. Adams and S. Lloyd. Understanding Public-Key Infrastructure — Concepts,
Standards, and Deployment Considerations. Macmillan Technical Publishing,
Indianapolis, USA, 1999.

L.M. Adleman. The function field sieve. In L.M. Adleman and M.A. Huang, ed-
itors, Proceedings of Algorithmic Number Theory Symposium — ANTS I, volume
877 of Lecture Notes in Computer Science, pages 108-121. Springer-Verlag,
1994.

S.S. Al-Riyami and C.J. Mitchell. Renewing cryptographic timestamps. In
B. Jerman-Blazic and T. Klobucar, editors, Communications and Multimedia
Security, volume 228 of IFIP Conference Proceedings, pages 9-16. Kluwer,
2002.

S.S. Al-Riyami and K.G. Paterson. Authenticated three party key agreement
protocols from pairings. Cryptology ePrint Archive, Report 2002/035, 2002.
http://eprint.iacr.org/.

S.S. Al-Riyami and K.G. Paterson. Authenticated three party key agreement
protocols from pairings. In K.G. Paterson, editor, Proceedings of 9th IMA
International Conference on Cryptography and Coding, volume 2898 of Lecture

Notes in Computer Science, pages 332—-359. Springer-Verlag, 2003.

S.S. Al-Riyami and K.G. Paterson. Certificateless public key cryptography.
Cryptology ePrint Archive, Report 2003/126, 2003. http://eprint.iacr.

org/, full version of [7].

259

BIBLIOGRAPHY

[7]

[13]

[14]

S.S. Al-Riyami and K.G. Paterson. Certificateless public key cryptography
(extended abstract). In C.S. Laih, editor, Advances in Cryptology — ASIAC-
RYPT 2003, volume 2894 of Lecture Notes in Computer Science, pages 452—
473. Springer-Verlag, 2003.

American National Standards Institute — ANSI X9.42. Public key cryptography
for the financial services industry: Agreement of symmetric keys using discrete

logarithm cryptography, 2001.

American National Standards Institute — ANSI X9.63. Public key cryptography
for the financial services industry: Key agreement and key transport using

elliptic curve cryptography, 2001.

R. Ankney, D. Johnson, and M. Matyas. The Unified Model — contribution to
X9F1, October 1995.

J. Baek and Y. Zheng. Identity-based threshold decryption. Cryptology ePrint
Archive, Report 2003/164, 2003. http://eprint.iacr.org/.

P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for
pairing-based cryptosystems. In M. Yung, editor, Advances in Cryptology —
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages
354-368. Springer-Verlag, 2002.

P.S.L.M. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves with
prescribed embedding degrees. In S. Cimato, C. Galdi, and G. Persiano, editors,
Security in communication networks — SCN 2002, volume 2576 of Lecture Notes

in Computer Science, pages 263-273. Springer-Verlag, 2002.

R. Barua, R. Dutta, and P. Sarkar. An n-party key agreement scheme using
bilinear map. Cryptology ePrint Archive, Report 2003/062, 2003. http://

eprint.iacr.org/.

M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treat-
ment of symmetric encryption. In 38th Annual Symposium on Foundations
of Computer Science — FOCS 1997, pages 394-403. IEEE Computer Society
Press, 1997.

260

BIBLIOGRAPHY

[16]

18]

[19]

[21]

[22]

M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among no-
tions of security for public-key encryption schemes. In Hugo Krawczyk, editor,
Advances in Cryptology — CRYPTO 1998, volume 1462 of Lecture Notes in
Computer Science. Springer-Verlag, 1998.

M. Bellare and S. Goldwasser. Lecture notes on cryptography. Summer course
on “Cryptography and Information Security” at MIT, 2001. http://www.cs.
ucsd.edu/users/mihir/papers/gb.html.

M. Bellare, C. Namprempre, and G. Neven. Security proofs for identity-based
identification and signature schemes. In C. Cachin and J. Camenisch, editors,
Advances in Cryptology — EUROCRYPT 200/, volume 3027 of Lecture Notes
in Computer Science, pages 268-286. Springer-Verlag, 2004.

M. Bellare and A. Palacio. Protecting against key exposure: Strongly key-
insulated encryption with optimal threshold. Cryptology ePrint Archive, Re-
port 2002/064, 2002. http://eprint.iacr.org/.

M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In B. Preneel, editor, Advances in Cryptology —
EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages
139-155. Springer-Verlag, 2000.

M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM Conference on Computer and Commu-

nications Security, pages 62-73. ACM, 1993.

M. Bellare and P. Rogaway. Entity authentication and key distribution. In
D.R. Stinson, editor, Advances in Cryptology — CRYPTO 1993, volume 773 of
Lecture Notes in Computer Science, pages 232-249. Springer-Verlag, 1994.

M. Bellare and P. Rogaway. Optimal asymmetric encryption — how to en-
crypt with RSA. In A. De Santis, editor, Advances in Cryptology — EURO-
CRYPT 199/, volume 950 of Lecture Notes in Computer Science, pages 92—111.
Springer-Verlag, 1994.

261

BIBLIOGRAPHY

[24]

[27]

M. Bellare and P. Rogaway. Provably secure session key distribution: The three
party case. In Proceedings of the 27th Annual ACM Symposium on Theory of
Computing STOC, pages 57-66. ACM, 1995.

LF. Blake, G. Seroussi, and N.P. Smart. Elliptic curves in cryptography. Cam-
bridge University Press, Cambridge, 1999.

S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols and
their security analysis. In Proceedings of the 6th IMA International Confer-
ence on Cryptography and Coding, volume 1355 of Lecture Notes in Computer
Science, pages 30-45. Springer-Verlag, 1997.

S. Blake-Wilson and A. Menezes. Authenticated Diffie-Hellman key agreement
protocols. In S. Tavares and H. Meijer, editors, 5th Annual Workshop on
Selected Areas in Cryptography (SAC 1998), volume 1556 of Lecture Notes in
Computer Science, pages 339-361. Springer-Verlag, 1998.

A. Boldyreva. Efficient threshold signature, multisignature and blind signa-
ture schemes based on the gap-Diffie-Hellman-group signature scheme. In
Y. Desmedt, editor, International Workshop on Practice and Theory in Public
Key Cryptography — PKC 2008, volume 2567 of Lecture Notes in Computer
Science, pages 31-46. Springer-Verlag, 2003.

D. Boneh and X. Boyen. Efficient selective-ID secure identity-based encryption
without random oracles. In C. Cachin and J. Camenisch, editors, Advances in
Cryptology — EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer
Science, pages 223-238. Springer-Verlag, 2004.

D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin
and J. Camenisch, editors, Advances in Cryptology — FUROCRYPT 2004,
volume 3027 of Lecture Notes in Computer Science, pages 56—73. Springer-
Verlag, 2004.

D. Boneh, X. Ding, G. Tsudik, and M. Wong. A method for fast revocation
of public key certificates and security capabilities. In proceedings of the 10th
USENIX Security Symposium, pages 297-308. USENIX, 2001.

262

BIBLIOGRAPHY

32]

[34]

[35]

[38]

D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing.
In J. Kilian, editor, Advances in Cryptology — CRYPTO 2001, volume 2139 of
Lecture Notes in Computer Science, pages 213-229. Springer-Verlag, 2001.

D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing.
SIAM J. Computing, 32(3):586-615, 2003. http://www.crypto.stanford.
edu/~dabo/abstracts/ibe.html, full version of [32].

D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verfiably
encrypted signatures from bilinear maps. In E. Biham, editor, Advances in
Cryptology — EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer
Science, pages 416-432. Springer-Verlag, 2003.

D. Boneh, I. Mironov, and V. Shoup. A secure signature scheme from bilinear
maps. In M. Joye, editor, Topics in Cryptology — CT-RSA 2003, volume 2612
of Lecture Notes in Computer Science, pages 98-110. Springer-Verlag, 2003.

D. Boneh, H. Shacham, and B. Lynn. Short signatures from the Weil pairing.
In C. Boyd, editor, Advances in Cryptology — ASIACRYPT 2001, volume 2248
of Lecture Notes in Computer Science, pages 514-532. Springer-Verlag, 2001.

C. Boyd. Towards extensional goals in authentication protocols. In Proceedings
of the 1997 DIMACS Workshop on Design and Formal Verification of Security
Protocols, 1997. http://www.citeseer.nj.nec.com/boyd97towards.html/.

X. Boyen. Multipurpose identity-based signcryption : A swiss army knife for
identity-based cryptography. In D. Boneh, editor, Advances in Cryptology —
CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages
383-399. Springer-Verlag, 2003. For the full version of this paper see, http:
//eprint.iacr.org/2003/163.

E. Bresson, O. Chevassut, and D. Pointcheval. Dynamic group Diffie-Hellman
key exchange under standard assumptions. In L.R. Knudsen, editor, Advances
in Cryptology — EUROCRYPT 2002, volume 2332 of Lecture Notes in Com-
puter Science, pages 321-336. Springer-Verlag, 2002.

263

BIBLIOGRAPHY

[40]

[42]

[43]

[44]

A. Buldas, H. Lipmaa, and B. Schoenmakers. Optimally efficient accountable
time-stamping. In Y. Zheng and H. Imai, editors, International Workshop on
Practice and Theory in Public Key Cryptography — PKC 2000, volume 1751 of
Lecture Notes in Computer Science, pages 293-305. Springer-Verlag, 2000.

M. Burmester. On the risk of opening distributed keys. In Y. Desmedt, editor,
Advances in Cryptology — CRYPTO 1994, volume 839 of Lecture Notes in
Computer Science, pages 308-317. Springer-Verlag, 1994.

R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology,
revisited. In Proceedings of the 13th Annual ACM Symposium on the Theory
of Computing, pages 209-218. ACM, 1993.

R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption
scheme. In E. Biham, editor, Advances in Cryptology — EUROCRYPT 2003,
volume 2656 of Lecture Notes in Computer Science, pages 255-271. Springer-
Verlag, 2003.

R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-
based encryption. In C. Cachin and J. Camenisch, editors, Advances in Crypto-
logy — EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science,
pages 207-222. Springer-Verlag, 2004. http://eprint.iacr.org/2003/182.

R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. In B. Pfitzmann, editor, Advances in Cryptology
- FEUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science,
pages 453-474. Springer-Verlag, 2001.

R. Canetti and H. Krawczyk. Universally composable notions of key exchange
and secure channels. In L.R. Knudsen, editor, Advances in Cryptology — EURO-
CRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 337—
351. Springer-Verlag, 2002.

J.C. Cha and J.H. Cheon. An identity-based signature from gap Diffie-Hellman
groups. In Y. Desmedt, editor, Public Key Cryptography — PKC 2003, volume
2567 of Lecture Notes in Computer Science, pages 18-30. Springer-Verlag, 2002.

264

BIBLIOGRAPHY

[48]

[50]

[51]

[52]

L. Chen, K. Harrison, A. Moss, D. Soldera, and N.P. Smart. Certification of
public keys within an identity based system. In A.H. Chan and V.D. Gligor,
editors, Information Security, 5th International Conference, ISC, volume 2433

of Lecture Notes in Computer Science, pages 322-333. Springer-Verlag, 2002.

L. Chen, K. Harrison, D. Soldera, and N.P. Smart. Applications of multiple
trust authorities in pairing based cryptosystems. In G.I. Davida, Y. Frankel,
and O. Rees, editors, Infrastructure Security, International Conference, In-
fraSec, volume 2437 of Lecture Notes in Computer Science, pages 260-275.
Springer-Verlag, 2002.

L. Chen and C. Kudla. Identity based authenticated key agreement from pair-
ings. In IEEE Computer Security Foundations Workshop — CSFW-16 2003,
pages 219-233. IEEE Computer Society Press, 2003.

X. Chen, F. Zhang, and K. Kim. A new ID-based group signature scheme
from bilinear pairings. Cryptology ePrint Archive, Report 2003/116, 2003.
http://eprint.iacr.org/.

Z. Chen. Security analysis on Nalla-Reddy’s ID-based tripartite authenticated
key agreement protocols. Cryptology ePrint Archive, Report 2003/103, 2003.
http://eprint.iacr.org/.

J.H. Cheon. A universal forgery of Hess’s second ID-based signature against
the known-message attack. Cryptology ePrint Archive, Report 2002/028, 2002.
http://eprint.iacr.org/.

C. Cocks. An identity based encryption scheme based on quadratic residues.
In B. Honary, editor, Proceedings of 8th IMA International Conference on
Cryptography and Coding, volume 2260 of Lecture Notes in Computer Science,
pages 360-363. Springer-Verlag, 2001.

D. Coppersmith. Evaluating logarithms in GF(2"). In Proceedings of the
16th Annual ACM Symposium on Theory of Computing STOC, pages 201—
207. ACM, 1984.

265

BIBLIOGRAPHY

[56]

[58]

[59]

[62]

[64]

J. Dankers, T. Garefalakis, R. Schaffelhofer, and T. Wright. Public key infra-
structure in mobile systems. IFEE Electronics and Commucation Engineering

Journal, 14(5):180-190, 2002.

Y. Desmedt and J. Quisquater. Public-key systems based on the difficulty of
tampering. In A.M. Odlyzko, editor, Advances in Cryptology — CRYPTO 1986,
volume 263 of Lecture Notes in Computer Science, pages 111-117. Springer-
Verlag, 1986.

W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, IT-22(6):644-654, 1976.

W. Diffie, P.C. van Oorschot, and M. Wiener. Authentication and authentic-
ated key exchanges. Designs, Codes and Cryptography, 2:107-125, 1992.

X. Ding and G. Tsudik. Simple identity-based cryptography with mediated
rsa. In M. Joye, editor, Topics in Cryptology — CT-RSA 2003, volume 2612 of
Lecture Notes in Computer Science, pages 193-210. Springer-Verlag, 2003.

Y. Dodis, M. Franklin, J. Katz, A. Miyaji, and M. Yung. Intrusion-resilient
public-key encryption. In M. Joye, editor, Topics in Cryptology — CT-
RSA 2003, volume 2612 of Lecture Notes in Computer Science, pages 19-32.
Springer-Verlag, 2003.

Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-insulated public key cryptosys-
tems. In L.R. Knudsen, editor, Advances in Cryptology — EUROCRYPT 2002,
volume 2332 of Lecture Notes in Computer Science, pages 65—82. Springer-
Verlag, 2002.

Y. Dodis and M. Yung. Exposure-resilience for free: The hierarchical ID-based
encryption case. In Proceedings of the First International IEEE Security in

Storage Workshop, pages 45-52. IEEE Computer Society Press, 2002.

D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM Journal
of Computing, 30(2):391-437, 2000.

266

BIBLIOGRAPHY

[65]

[67]

[68]

R. Dupont and A. Enge. Provably secure non-interactive key distribution based
on pairings. In Proceedings of the International Workshop on Coding and Cryp-
tography — WCC 2003, pages 165174, 2003. To appear in Discrete Applied

Mathematics.

R. Dupont, A. Enge, and F. Morain. Building curves with arbitrary small MOV
degree over finite prime fields. Cryptology ePrint Archive, Report 2002/094,
2002. http://eprint.iacr.org/.

I. Duursma and H. Lee. Tate-pairing implementations for tripartite key agree-
ment. Cryptology ePrint Archive, Report 2003/053, 2003. http://eprint.

iacr.org/.

T. ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithm. In G.R. Blakley and D. Chau, editors, Advances in Crypto-
logy — CRYPTO 1984, volume 196 of Lecture Notes in Computer Science, pages
10-18. Springer-Verlag, 1985.

G. Frey, M. Miiller, and H. Riick. The Tate pairing and the discrete logarithm
applied to elliptic curve cryptosystems. IEEE Transactions on Information
Theory, 45(5):1717-1719, 1999.

E. Fujisaki and T. Okamoto. How to enhance the security of public-key en-
cryption at minimum cost. In H. Imai and Y. Zheng, editors, International
Workshop on Practice and Theory in Public Key Cryptography — PKC' 1999,
volume 1560 of Lecture Notes in Computer Science, pages 53—-68. Springer-
Verlag, 1999.

E. Fujisaki and T. Okamoto. Secure integration of asymmetric and sym-
metric encryption schemes. In M.J. Wiener, editor, Advances in Crypto-
logy — CRYPTO 1999, volume 1666 of Lecture Notes in Computer Sci-
ence, pages b37-554. Springer-Verlag, 1999. http://citeseer.nj.nec.com/

fujisaki99secure.html.

M. Gagné. Identity-based encryption: A survey. RSA Laboratories Cryptobytes,
6(1):10-19, 2003.

267

BIBLIOGRAPHY

73]

[75]

[76]

S.D. Galbraith. Supersingular curves in cryptography. In C. Boyd, editor,
Proceedings of AsiaCrypt 2001, volume 2248 of Lecture Notes in Computer
Science, pages 495-513. Springer-Verlag, 2001.

S.D. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing.
In C. Fieker and D.R. Kohel, editors, Algorithmic Number Theory 5th Inter-
national Symposium, ANTS-V, volume 2369 of Lecture Notes in Computer
Science, pages 324-337. Springer-Verlag, 2002.

S.D. Galbraith, H.J. Hopkins, and I.LE. Shparlinski. Secure Bilinear Diffie-
Hellman bits. Cryptology ePrint Archive, Report 2002/155, 2002. http://

eprint.iacr.org/.

C. Gentry. Certificate-based encryption and the certificate revocation problem.
In E. Biham, editor, Advances in Cryptology — EUROCRYPT 2003, volume
2656 of Lecture Notes in Computer Science, pages 272-293. Springer-Verlag,
2003.

C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In Y. Zheng,
editor, Advances in Cryptology — ASIACRYPT 2002, volume 2501 of Lecture
Notes in Computer Science, pages 548-566. Springer-Verlag, 2002.

M. Girault. Self-certified public keys. In D.W. Davies, editor, Advances in
Cryptology — EUROCRYPT 1991, volume 547 of Lecture Notes in Computer
Science, pages 490-497. Springer-Verlag, 1992.

S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer

and System Sciences, 28(2):270-299, 1984.

R. Granger, A.J. Holt, D. Page, N.P. Smart, and F. Vercauteren. Function
field sieve in characteristic three. In D.A. Buell, editor, Proceedings of Al-
gorithmic Number Theory Symposium — ANTS VI volume 3076 of Lecture
Notes in Computer Science, pages 223-234. Springer-Verlag, 2004.

P. Gutmann. PKI: It’s not dead, just resting. IFEE Computer, 35(8):41-49,
2002.

268

BIBLIOGRAPHY

[82]

[83]

[84]

[89]

S. Han, K.Y. Yueng, and J. Wang. Undeniable signatures from pairings over
elliptic curves. In ACM Conference on Electronic Commerce — EC 2003, pages
262-263. ACM, 2003.

F. Hess. Efficient identity based signature schemes based on pairings. In
K. Nyberg and H. Heys, editors, Selected Areas in Cryptography 9th Annual
International Workshop, SAC 2002, volume 2595 of Lecture Notes in Computer
Science, pages 310-324. Springer-Verlag, 2003.

P. Hoffman. Features of proposed successors to IKE. Internet Draft, ftp:
//ftp.ietf.org/internet-drafts/draft-ietf-ipsec-soi-features-01.
txth, 2002.

J. Horwitz and B. Lynn. Towards hierarchical identity-based encryption. In
L.R. Knudsen, editor, Advances in Cryptology — EUROCRYPT 2002, volume
2332 of Lecture Notes in Computer Science, pages 466—481. Springer-Verlag,
2002.

D. Hiihnlein, M. Jacobson, and D. Weber. Towards practical non-interactive
public key cryptosystems using non-maximal imaginary quadratic orders. In
D.R. Stinson and S.E. Tavares, editors, Selected Areas in Cryptography — SAC
2000, volume 2012 of Lecture Notes in Computer Science, pages 275—287.
Springer-Verlag, 2000.

IEEE P1363. Standard specifications for public key cryptography, 2000. http:
//grouper.ieee.org/groups/1363/index.html.

International Organization for Standardization. ISO/IEC FCD 18014-1, In-
formation technology — Security techniques — Time-stamping services — Part

1: Framework, September 2001.

ISO/TEC 15946-3. Information technology — security techniques — crypto-
graphic techniques based on elliptic curves — part 3: Key establishment, await-

ing publication.

A. Joux. A one round protocol for tripartite Diffie-Hellman. In W. Bosma,

editor, Proceedings of Algorithmic Number Theory Symposium — ANTS IV,

269

BIBLIOGRAPHY

[91]

[92]

[93]

volume 1838 of Lecture Notes in Computer Science, pages 385-394. Springer-
Verlag, 2000.

A. Joux and R. Lercier. The function field sieve is quite special. In Algorithmic
Number Theory 5th International Symposium, ANTS-V, volume 2369 of Lec-
ture Notes in Computer Science, pages 431-445. Springer-Verlag, 2002.

A. Joux and K. Nguyen. Separating decision Diffie-Hellman from Diffie-
Hellman in cryptographic groups. Cryptology ePrint Archive, Report
2001/003, 2001. http://eprint.iacr.org/.

B. Kaliski, Jr. An unknown key-share attack on the MQV key agreement
protocol. ACM Transactions on Information and Systems Security, 4(3):275—
288, 2001.

J. Katz. A forward secure public-key encryption scheme. Cryptology ePrint
Archive, Report 2002/060, 2002. http://eprint.iacr.org/.

M. Kim and K. Kim. A new identification scheme based on the bilinear Diffie-
Hellman problem. In L. Batten and J. Seberry, editors, Information Security
and Privacy, Seventh Australasian Conference — ACISP, volume 2384 of Lec-
ture Notes in Computer Science, pages 362—-378. Springer-Verlag, 2002.

M. Kim and K. Kim. A new identification scheme based on the gap Diffie-
Hellman problem. SCIS 2002: The 2002 Symposium on Cryptography and
Information Security Shirahama, Japan, 2002.

N. Koblitz. Algebraic Aspects of Cryptography. Algorithms and Computation
in Mathematics. Springer-Verlag, 1999.

C. Kudla. Identity-based cryptography and related applications. Master’s
thesis, Royal Holloway University of London, 2002.

L. Law, A. Menezes, M. Qu, J. Solinas, and S.A. Vanstone. An efficient protocol
for authenticated key agreement. Designs, Codes and Cryptography, 28(2):119-
134, 2003. http://www.cacr.math.uwaterloo.ca/techreports/1998/tech_
reports98.html.

270

BIBLIOGRAPHY

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

108]

B. Lee and K. Kim. Self-certificate: PKI using self-certified key. Conference
on Information Security and Cryptology 2000 — CISC 2000, 10(1):65-73, 2000.
http://citeseer.nj.nec.com/483476.html.

B. Lee and K. Kim. Self-certified signatures. In A. Menezes and P. Sarkar,
editors, Progress in Cryptology — INDOCRYPT 2002, volume 2551 of Lecture
Notes in Computer Science, pages 199-214. Springer-Verlag, 2002.

B. Libert and J.-J. Quisquater. Efficient revocation and threshold pairing based
cryptosystems. In Symposium on Principles of Distributed Computing — PODC
2003, pages 163-171, 2003.

B. Libert and J.-J. Quisquater. Efficient signcryption with key privacy from gap
diffie-hellman groups. In F. Bao, R.H. Deng, and J. Zhou, editors, International
Workshop on Practice and Theory in Public Key Cryptography — PKC 2004,
volume 2947 of Lecture Notes in Computer Science, pages 187-200. Springer-
Verlag, 2004. See http://eprint.iacr.org/2003/023 for the full version.

C. H. Lim and P. J. Lee. A key recovery attack on discrete log-based schemes
using a prime order subgroup. In B.S. Kaliski Jr., editor, Advances in Crypto-
logy — CRYPTO 1997, volume 1294 of Lecture Notes in Computer Science,
pages 249-263. Springer-Verlag, 1997.

C.-Y. Lin and T.-C. Wu. An identity-based ring signature scheme from bilinear
pairings. Cryptology ePrint Archive, Report 2003/117, 2003. http://eprint.

iacr.org/.

C.-Y. Lin, T.-C. Wu, and F. Zhang. A structured multisignature scheme from
the gap Diffie-Hellman group. Cryptology ePrint Archive, Report 2003/090,
2003. http://eprint.iacr.org/.

G. Lowe. Some new attacks upon security protocols. In PCSEFW: Proceedings
of The 9th Computer Security Foundations Workshop, pages 162-169. IEEE
Computer Society Press, 1996.

B. Lynn. Authenticated identity-based encryption. Cryptology ePrint Archive,
Report 2002/072, 2002. http://eprint.iacr.org/.

271

BIBLIOGRAPHY

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

J. Malone-Lee. Identity-based signcryption. Cryptology ePrint Archive, Report
2002/098, 2002. http://eprint.iacr.org/.

T. Matsumoto, Y. Takashima, and H. Imai. On seeking smart public-key-
distribution systems. Transactions on IECE of Japan, E69:99-106, 1986.

U. Maurer and Y. Yacobi. Non-interactive public-key cryptography. In D.W.
Davies, editor, Advances in Cryptology — EUROCRYPT 1991, volume 547 of
Lecture Notes in Computer Science, pages 498-507. Springer-Verlag, 1991.

A. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve logarithms
to logarithms in a finite field. IEEE Transactions on Information Theory,
39(5):1639-1646, 1993.

A. Menezes, M. Qu, and S. Vanstone. Some new key agreement protocols
providing mutual implicit authentications. 2nd Workshop on Selected Areas in

Cryptography (SAC 1995), pages 22-32, May 1995.

A. Menezes, P.C. van Oorschot, and S. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, Boca Raton, 1997.

C. Mitchell, M. Ward, and P. Wilson. Key control in key agreement protocols.
Electronics Letters, 34:980-981, 1998.

S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing. IEICE
Transactions on Fundamentals, E85-A(2):481-484, 2002.

A. Muzereau, N.P. Smart, and F. Vercauteren. The equivalence between the
DHP and DLP for elliptic curves used in practical applications. LMS Journal
Computation and Mathematics, 7:50-72, 2004. http://www.lms.ac.uk/jcm/
7/1ms2003-034/.

D. Nalla and K.C. Reddy. ID-based tripartite authenticated key agreement
protocols from pairings. Cryptology ePrint Archive, Report 2003/004, 2003.
http://eprint.iacr.org/.

272

BIBLIOGRAPHY

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

D. Nalla and K.C. Reddy. Signcryption scheme for identity-based cryptosys-
tems. Cryptology ePrint Archive, Report 2003/066, 2003. http://eprint.

iacr.org/.

M. Naor and M. Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In Proceedings of the 22nd Annual ACM Symposium
on Theory of Computing STOC, pages 427-437. ACM, 1990.

E. Okamoto. Key distribution systems based on identification information. In
C. Pomerance, editor, Advances in Cryptology — CRYPTO 1987, volume 293
of Lecture Notes in Computer Science, pages 194-202. Springer-Verlag, 1987.

K.G. Paterson. Cryptography from pairings: a snapshot of current research.

Information Security Technical Report, 7(3):41-54, 2002.

K.G. Paterson. ID-based signatures from pairings on elliptic curves. Electronics
Letters, 38(18):1025-1026, 2002.

H. Petersen and P. Horster. Self-certified keys — concepts and applications.
In Third International Conference on Communications and Multimedia Secur-
ity, pages 102—116. Chapman and Hall, 1997. http://citeseer.nj.nec.com/
petersen97selfcertified.html.

B. Preneel, B. Van Rompay, J.-J. Quisquater, H. Massias, and J. Serret Avila.
Design of a timestamping system. Technical report, TIMESEC, Katholieke

Universiteit Leuven and Université Catholique de Louvain, 1998.

C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attacks. In J. Feigenbaum, editor, Advances in Crypto-
logy — CRYPTO 1991, volume 576 of Lecture Notes in Computer Science, pages
433-444. Springer-Verlag, 1991.

K.C. Reddy and D. Nalla. Identity based authenticated group key agreement
protocol. In A. Menezes and P. Sarkar, editors, Advances in Cryptology —
INDOCRYPT 2002, volume 2551 of Lecture Notes in Computer Science, pages
215-233. Springer-Verlag, 2003.

273

BIBLIOGRAPHY

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: Defini-
tions, implications, and separations for preimage resistance, second-preimage
resistance, and collision-resistance, 2004. http://www.cs.ucdavis.edu/
“rogaway/papers/index.html. To appear in Fast Software Encryption (FSE)
2004.

A. Roscoe. Intensional specifications of security protocols. In Proceedings 9th
IEEE Computer Security Foundations Workshop, pages 28-38. IEEE Com-
puter Society Press, 1996.

S. Saeednia. Identity-based and self-certified key-exchange protocols. In
V. Varadharajan, J. Pieprzyk, and Y. Mu, editors, Information Security and
Privacy, Second Australasian Conference — ACISP, volume 1270 of Lecture
Notes in Computer Science, pages 303-313. Springer-Verlag, 1997.

S. Saeednia. A note on Girault’s self-certified model. Information Processing

Letters, 86:323-327, 2003.

R. Sakai and M. Kasahara. ID based cryptosystems with pairing on elliptic
curve. Cryptology ePrint Archive, Report 2003/054, 2003. http://eprint.

iacr.org/.

R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. In
The 2000 Symposium on Cryptography and Information Security, Okinawa,
Japan, January 2000.

M. Scott. Authenticated ID-based key exchange and remote log-in with in-
secure token and PIN number. Cryptology ePrint Archive, Report 2002/164,
2002. http://eprint.iacr.org/.

A. Shamir. Identity-based cryptosystems and signature schemes. In G.R.
Blakley and D. Chaum, editors, Advances in Cryptology — CRYPTO 198/,
volume 196 of Lecture Notes in Computer Science, pages 47-53. Springer-

Verlag, 1984.

274

BIBLIOGRAPHY

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

K. Shim. Cryptanalysis of Al-Riyami-Paterson’s authenticated three party
key agreement protocols. Cryptology ePrint Archive, Report 2003/122, 2003.
http://eprint.iacr.org/.

K. Shim. Efficient ID-based authenticated key agreement protocol based on
Weil pairing. FElectronics Letters, 39(8):653-654, 2003.

K. Shim. Efficient one round tripartite authenticated key agreement protocol

from Weil pairing. Electronics Letters, 39(2):208-209, 2003.

K. Shim. A man-in-the-middle attack on Nalla-Reddy’s ID-based tripartite
authenticated key agreement protocol. Cryptology ePrint Archive, Report
2003/115, 2003. http://eprint.iacr.org/.

V. Shoup. On formal models for secure key exchange. IBM Technical Report
R7Z 3120, 1999. http://shoup.net/papers.

J. Silverman. The Arithmetic of Elliptic Curves. Number 106 in Graduate
Texts in Mathematics. Springer-Verlag, 1986.

N.P. Smart. An identity based authenticated key agreement protocol based on
the Weil pairing. Electronics Letters, 38(13):630-632, 2002.

N.P. Smart. Access control using pairing based cryptography. In M. Joye,
editor, Topics in Cryptology — CT-RSA 2003, volume 2612 of Lecture Notes in
Computer Science, pages 111-121. Springer-Verlag, 2003.

H.-M. Sun and B.-T. Hsieh. Security analysis of Shim’s authenticated
key agreement protocols from pairings. Cryptology ePrint Archive, Report
2003/113, 2003. http://eprint.iacr.org/.

H. Tanaka. A realization scheme for the identity-based cryptosystem. In
C. Pomerance, editor, Advances in Cryptology — CRYPTO 1987, volume 293
of Lecture Notes in Computer Science, pages 341-349. Springer-Verlag, 1987.

S. Tsuji and T. Itoh. An ID-based cryptosystem based on the discrete logarithm
problem. IEEE Journal on Selected Areas in Communication, 7(4):467-473,
1989.

275

BIBLIOGRAPHY

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

E.R. Verheul. Evidence that XTR is more secure than supersingular elliptic
curve cryptosystems. In B. Pfitzmann, editor, Advances in Cryptology — EURO-
CRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages 195—
210. Springer-Verlag, 2001.

E.R. Verheul. Self-blindable credential certificates from the Weil pairing. In
C. Boyd, editor, Proceedings of AsiaCrypt 2001, volume 2248 of Lecture Notes
in Computer Science, pages b33-551. Springer-Verlag, 2001.

ITU-T Recommendation X.509. Information technology— open systems inter-
connection — the directory: Public-key and attribute certificate frameworks,
2000.

F. Zhang and K. Kim. ID-based blind signature and ring signature from pair-
ings. In Y. Zheng, editor, Advances in Cryptology — ASIACRYPT 2002, volume
2501 of Lecture Notes in Computer Science, pages 533-547. Springer-Verlag,
2002.

F. Zhang, S. Liu, and K. Kim. ID-based one round authenticated tripart-
ite key agreement protocol with pairings. Cryptology ePrint Archive, Report
2002/122, 2002. http://eprint.iacr.org/.

F. Zhang, R. Safavi-Naini, and C.-Y. Lin. New proxy signature, proxy blind
signature and proxy ring signature schemes from bilinear pairing. Cryptology

ePrint Archive, Report 2003/104, 2003. http://eprint.iacr.org/.

F. Zhang, R. Safavi-Naini, and W. Susilo. Attack on Han et al.’s ID-based
confirmer (undeniable) signature at ACM-EC’03. Cryptology ePrint Archive,
Report 2003/129, 2003. http://eprint.iacr.org/.

Z.-F. Zhang, J. Xu, and D.-G. Feng. Attack on an identification scheme based
on gap Diffie-Hellman problem. Cryptology ePrint Archive, Report 2003/153,
2003. http://eprint.iacr.org/.

Y. Zheng. Digital signcryption or how to achieve cost (signature & encryption)

<< cost(signature) + cost(encryption). In B.S. Kaliski Jr., editor, Advances

276

BIBLIOGRAPHY

i Cryptology — CRYPTO 1997, volume 1294 of Lecture Notes in Computer
Science, pages 165-179. Springer-Verlag, 1997.

277

