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Abstract

Cryptographic Schemes based on Elliptic Curve Pairings:
Contributions to Public Key Cryptography and Key Agreement Protocols

This thesis introduces the concept of certificateless public key cryptography (CL-
PKC). Elliptic curve pairings are then used to make concrete CL-PKC schemes and
are also used to make other efficient key agreement protocols.

CL-PKC can be viewed as a model for the use of public key cryptography that is
intermediate between traditional certificated PKC and ID-PKC. This is because, in
contrast to traditional public key cryptographic systems, CL-PKC does not require
the use of certificates to guarantee the authenticity of public keys. It does rely on
the use of a trusted authority (TA) who is in possession of a master key. In this
respect, CL-PKC is similar to identity-based public key cryptography (ID-PKC).
On the other hand, CL-PKC does not suffer from the key escrow property that is
inherent in ID-PKC. Applications for the new infrastructure are discussed.

We exemplify how CL-PKC schemes can be constructed by constructing several
certificateless public key encryption schemes and modifying other existing ID based
schemes. The lack of certificates and the desire to prove the schemes secure in the
presence of an adversary who has access to the master key or has the ability to
replace public keys, requires the careful development of new security models. We
prove that some of our schemes are secure, provided that the Bilinear Diffie-Hellman
Problem is hard.

We then examine Joux’s protocol [90], which is a one round, tripartite key agree-
ment protocol that is more bandwidth-efficient than any previous three-party key
agreement protocol, however, Joux’s protocol is insecure, suffering from a simple
man-in-the-middle attack. We shows how to make Joux’s protocol secure, present-
ing several tripartite, authenticated key agreement protocols that still require only
one round of communication. The security properties of the new protocols are stud-
ied. Applications for the protocols are also discussed.
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Overall Structure and Summary of Contributions . . . . 13

1.3 Publications and Origins of Contributions . . . . . . . . 15

The aim of this chapter is to provide an introduction and present the overall structure

of the thesis. This chapter also describes the main contributions of the thesis to public

key cryptography and key agreement protocols.

1.1 Motivation

This thesis explores cryptographic schemes based on elliptic curve pairings. Part I is

an analysis of cryptographic elliptic curve pairings which will form the basis for the

concrete solutions to the cryptographic problems addressed in both Part II and Part

III of this thesis. Next, we will briefly outline the main motivations behind these

concrete solutions.

The space occupied between two topics or concepts provides fertile ground for sci-

entific research. Part of this thesis finds its roots in the space beteen the two ap-

proaches for developing trust in PKC, these are, firstly certificate-based PKC and

secondly identity-based public key cryptography (ID-PKC). Both the ID-PKC and

certificate-based PKC model are well studied in cryptography. These two established

approaches clearly raise a range of questions such as: Are they any other ways of

establishing trust using PKC?, for example, does any desirable model lie in between

12



1.2 Overall Structure and Summary of Contributions

ID-PKC and certificate-based PKC?, can public keys be managed and used without

certificates? The pursuit for the answers to these questions led to the discovery of a

new notion in public key cryptography called certificateless public key cryptography

(CL-PKC), which is set out in Part II of this thesis.

A recent and important development in cryptographic protocols which uses elliptic

curve pairings is Joux’s protocol [90]. While Joux’s protocol is a very efficient three

party key agreement protocol, it is not suitable for open networks because it does not

provide authentication. This characteristic of Joux’s protocol hampers many of its

practical applications; Part III attempts to remedy this clear weakness in the Joux

protocol. As we shall see, achieving high levels of security using Joux’s protocol is

no simple task. We develop and provide analysis of authenticated versions of Joux’s

tripartite protocols for certificate-based infrastructures in Part III of this thesis.

1.2 Overall Structure and Summary of Contributions

We briefly outline the structure of this thesis and highlight its main contributions:

Part I: In this part, we explain and present relevant background material. In

Chapters 2 and 3, we cover the nomenclature and definitions necessary for under-

standing the remainder of the thesis. We cover elliptic curve pairings, provable

security and some computational and decisional problems. We provide expositions

for certificate-based and identity-based cryptography and cryptographic workflows.

These are required for understanding Part II of this thesis. We explain key agreement

protocols and authenticated key agreements protocol goals and attributes. These are

prerequisites for understanding Part III of this thesis. We end Part I with a sur-

vey of the development of pairing-based cryptography, which also shows how this

thesis relates to the wider body of research. We also highlight some cryptographic

applications.

Note, that after covering Part I, the reader can move on to either Part II or Part III

13



1.2 Overall Structure and Summary of Contributions

of this thesis, as they are independent parts that tackle different aspects of pairing-

based cryptography.

Part II: In this part, we introduce and develop CL-PKC. In Chapter 4, we start by

describing CL-PKC, comparing it to ID-PKC and standard certificate-based PKC.

As the reader shall appreciate, CL-PKC is competitive and has the potential to be

used in real world applications. In Chapters 5 and 6, we exemplify the certificateless

concept by presenting some very efficient certificateless public key encryption (CL-

PKE) schemes and prove their security in an appropriate model. In Chapter 7, we

show how arbitrary identity-based public key encryption (ID-PKE) schemes and ar-

bitrary standard public key encryption (PKE) schemes can be combined to construct

CL-PKE schemes. Also in Chapter 7, we examine in detail Gentry’s certificate-based

encryption (CBE) model [76] and identify some of its shortcomings. We describe

a simple modification to the CBE model and show how CL-PKE schemes can be

transformed into CBE schemes in this modified model. Finally, Chapter 8 builds on

existing ID-PKC results to provide some certificateless schemes that can be easily

bootstrapped from existing identity-based schemes.

Part III: In Part III, we address the problem with Joux’s protocol, namely its lack

of authentication. In Chapter 9, we construct some tripartite authenticated key

agreement protocols that preserve the communication advantages of Joux’s protocol.

We then analyze their security properties. We also explain how to transform some

authenticated two party Diffie-Hellman based protocols, and tripartite pairing-based

protocols into tripartite authenticated protocols, having one party offline. We provide

a brief analysis of Shim’s protocol [138], showing that it does not make mathematical

sense. Finally, we examine the communication advantages of authenticated versions

of Joux’s protocol in different network settings, providing a pass-optimal authen-

ticated and key confirmed tripartite protocol that generalises the station-to-station

protocol [59].

Discussions summarising the merits of this research and pointing towards future re-

search ideas are presented throughout the thesis. As our pairings survey will demon-
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1.3 Publications and Origins of Contributions

strate, it has emerged that pairings from elliptic curves are a very powerful primitive

and can be used to build novel cryptographic schemes with interesting properties.

This thesis provides further evidence for this, by presenting one round tripartite

authenticated key agreement protocols and schemes for certificateless public key

cryptography.

1.3 Publications and Origins of Contributions

This thesis contains some previous research published with K.G. Paterson [4, 5, 6, 7].

The CL-PKC encryption model of Section 5.2, security model of Section 6.2 and

much of the content of Chapter 8 were originally described in [6, 7]. Some contents

of Chapter 9 first appeared in [4] and was later improved on and published in [5].

Finally, the ideas developed in Section 7.2 are a direct result of communication with

D. Boneh.
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The primary aims of this chapter are to define elliptic curve pairings and to establish

some notational conventions which are used throughout this thesis. Furthermore,

we introduce basic ideas of complexity theory and explore the relationships between

several different cryptographic definitions.

2.1 Abstract Algebra and the Main Groups

We will make free use of basic concepts about groups, rings and fields [114, Chap.2].

The notation G is used to denote a group which is a set with some binary operation.

We let G∗ denote the set of non-identity elements of the group.

17



2.2 Elliptic Curves

Definition 2.1 The number of elements in G, denoted |G|, is called the order of G.

A group G is finite if |G| is finite.

Definition 2.2 A group G is cyclic if there is an element g ∈ G such that for each

a ∈ G there is an integer i with a = gi. Such an element g is called a generator of G.

A field is denoted F and F denotes the algebraic closure of F. A finite field of order

t is denoted Ft.

The main groups used in this thesis are Zn, G1 and G2. The group Zn denotes the

set of integers under addition modulo n. We will use {0, 1, . . . , n− 1} to denote the

elements of Zn and {1, 2, . . . , n − 1} to denote the elements of Z∗
n. The two other

groups are an additive group G1 and a related multiplicative group G2. Both are

cyclic groups of large prime order related to elliptic curves over finite fields. In the

sequel, the foundation used to describe G1 is covered and in Section 2.3, the bilinear

maps which links G1 and G2 are described.

2.2 Elliptic Curves

We will very briefly introduce some basic theory of elliptic curves. Most of the results

in this introduction comes from [25, 97]. The aim of this section is to introduce elliptic

curves, point compression and point representation.

Elliptic curves can be defined using several different equations. An elliptic curve E

over a field F is commonly given by an affine Weierstrass equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, (2.1)

where ai ∈ F for i = 1, 2, 3, 4, 6. The elliptic curve E(F) is defined to be the set of

points (x, y) ∈ F×F that satisfy this equation, along with a point at infinity denoted

as ∞. In order for this cubic curve to be an elliptic curve it must be smooth. This

18



2.2 Elliptic Curves

P

Q

R

P + Q

ν

P

2P

R

ν

Figure 2.1: Elliptic curve operations defined over the real number field R: addition
of two points and doubling of a point.

means there is no point of E(F) where both partial derivatives vanish. Thus, for any

(x, y) ∈ E(F), both the conditions

a1y − 3x2 − 2a2x− a4 = 0 (2.2)

and

2y + a1x + a3 = 0 (2.3)

cannot be simultaneously satisfied.

Without loss of generality, the elliptic curve equation can be simplified and given in

the short Weierstrass form if the characteristic of F is neither 2 or 3. This form of

equation is:

y2 = x3 + ax + b (2.4)

where a, b ∈ F. The elliptic curve is still required to be smooth.

If K is any extension field of F, the set {(x, y) ∈ K × K : E(K)} ∪ {∞} with some

group operation, +, can be used to form a group, denoted (E(K),+), known as an

elliptic curve group.

We look at the elliptic curve over the real number field in Figure 2.1, to help illustrate

19



2.2 Elliptic Curves

how the group operation is defined in the general case. To define the operation on

points called point addition on E(K), the following rules are followed:

• Let P ∈ E(K). Then P +∞ = P and∞+P = P . So∞ serves as the additive

identity for the group. If P = ∞ then we define −P = ∞. In what follows,

we will let the notation E(K)∗ denote the group E(K) excluding the identity

element ∞.

• Let P = (x, y) ∈ E(K)∗. Then −P = −(x, y) = (x,−y) and P + (−P ) = ∞.

So the inverse of P is −P .

• Let P = (x, y) ∈ E(K)∗ and Q = (x′, y′) ∈ E(K)∗. If x 6= x′, then P +Q = −R,

where −R is a reflection of R in the x-axis and R is the point of intersection of

the line joining P and Q with E. This geometric construction can be visualised

using the left diagram of Figure 2.1.

• Let P ∈ E(K)∗. Then P + P = −R, here −R is a reflection of R in the x-axis.

R is the point of intersection for the tangent ν at P with E. This point doubling

can be visualised using the right diagram of Figure 2.1.

It can be shown that E(K) is commutative and associative under addition, that is,

P + Q = Q + P and (P + Q) + R = P + (Q + R) for all P,Q,R ∈ E(K) [141, §2].

Thus, the composition rules yield an abelian group (E(K),+) with identity element

∞. From here on the symbol + will be omitted from the representation and E(K)

will be used instead. We will write P = (x, y) for a point in the group E(K). The

geometric definitions presented here lead to algebraic formulae for the group law

which are valid for any characteristic of the underlying field. These can be found in

[25, p. 33].

The notation mP denotes the scalar multiplication of P ∈ E(K) by m ∈ Z. The

value of mP is the following: for m = 0 it is equal to ∞; for m ≤ −1 it is equal to

(−m)(−P ); and for m ≥ 1 it is equal to P + . . . + P︸ ︷︷ ︸
m points

.
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2.2 Elliptic Curves

In general, scalar multiplication on elliptic curves is believed to be hard to invert. In

Section 2.4.2, this inversion problem is examined in more detail.

A point compression technique is possible within an affine coordinate system, where

elliptic curve points are written in the form (x, y), because for every x coordinate a

maximum of two possible y coordinates exist. This allows the x coordinate to be sent

along with a bit, denoted ỹ. For example, in Ft if t is an odd prime, then we can take

ỹ = y mod 2. Specifications of compression algorithms for the x and y coordinates

in Ft and F2n are described in [87, Annex A]. If a compressed point is used by a

scheme, extra computation will be required to decompress it to the standard affine

representation, (x, y).

Alternative trade-offs between computational complexity (in point addition and point

doubling) and storage/communicational bandwidth can be achieved by switching to

a different coordinate system to represent the elliptic curve. A popular coordin-

ate systems for elliptic curve cryptography is the projective coordinate system. In

the projective coordinates (X, Y, Z) over Ft, the defining equation of the curve in

Weierstrass form can be taken as

Y 2Z = X3 + aXZ2 + bZ3. (2.5)

The affine coordinates (x, y) of points resulting from equation 2.4 are related to

the projective coordinates (X, Y, Z) of points resulting from equation 2.5 by the

equations: x = X/Z and y = Y/Z. The point∞ in this coordinate system is defined

to be the triple (0, 1, 0).

In this thesis, extensive use will be made of pairings on elliptic curves. For cryp-

tographic applications, our focus will be on elliptic curves defined over finite fields.

The preferred finite fields are Ft, F2n and F3n , where t is a large prime and n ∈ Z∗.

Curves defined over F2n allow more efficient bit computations than those defined

over F3n . Generally, curves defined over F3n require smaller key sizes than those

defined over F2n for equivalent security. However, this advantage may be eliminated

if efficient algorithms for fields of characteristic three can be found, we will return to

this issue in Section 3.1.
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2.3 Bilinear Maps from Elliptic Curve Pairings

2.3 Bilinear Maps from Elliptic Curve Pairings

We let P denote a generator of G1, where G1 is an additive group of some large

prime order q. Let G2 be a related multiplicative group with |G2| = |G1|. A pairing

is a map ê : G1 ×G1 → G2 with the following properties:

1. The map ê is bilinear: Given Q,W,Z ∈ G1, we have

ê(Q,W + Z) = ê(Q,W ) · ê(Q,Z) and ê(Q + W,Z) = ê(Q,Z) · ê(W,Z).

Consequently, for any a, b ∈ Zq:

ê(aQ, bW ) = ê(Q,W )ab = ê(abQ, W ) = ê(Q, abW ) = ê(bQ,W )a.

2. The map ê is non-degenerate: ê(P, P ) 6= 1G2 , where 1G2 is the identity element

of G2.

3. The map ê is efficiently computable.

This pairing map ê is sometimes called an admissible pairing. We will show that

since ê is bilinear, the map ê is also symmetric.

Proof. Being symmetric means that for any Q,W ∈ G1, the equality ê(Q,W ) =

ê(W,Q) holds. Both Q,W ∈ G1 can be represented using some generator P and

some a, b ∈ Zq: let Q = aP and W = bP . Then we have ê(Q,W ) = ê(aP, bP ) and

by bilinearity of ê we have ê(Q,W ) = ê(aP, bP ) = ê(P, P )ab = ê(bP, aP ) = ê(W,Q).

�

Typically, G1 is a subgroup of the group of points on an elliptic curve over a finite

field, i.e. E(Ft). G2 is then a subgroup of the multiplicative group of a related finite

field. Currently, the parameters are chosen so that G1 has around 2160 elements and

G2 is a subgroup of Ftr where r is known as the security multiplier (or embedding

degree) and tr has roughly 1024 bits. With the increase in value of r, the pairing

computation efficiency decreases.
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2.3 Bilinear Maps from Elliptic Curve Pairings

The map ê is derived by modifying either the Weil pairing [112] (with both inputs

in the same cyclic group) or Tate pairing [69] (with related inputs in the left hand

side of the pairing map) on an elliptic curve over Ft. The computational complexity

of the Tate pairing is less than that of the Weil pairing. The Weil and Tate pairing

need to be modified because the pairings may always output 1G2 in the right hand

side of the pairing map2.1. Verheul [147] introduced a valuable tool for modifying

these pairings called distortion maps. Distortion maps are applicable to a special

class of curves called supersingular curves. A distortion map, Φ, is an efficiently

computable group endomorphism from E(Ft) to E(Ftr). Applying Φ to one of the

inputs to a pairing ensures the two inputs are linearly independent, therefore, one

obtains a non-trivial pairing result. An alternative modification to eliminate trivial

pairing results uses trace maps [36, §4.1] (these are group isomorphisms from E(Ftr)

to E(Ft)); this technique works on all curves.

Note that many of our schemes can be adapted to situations in which two different

groups, denoted as G′
1 and G′′

1, are used instead of G1. The pairing map becomes

e′ : G′
1 × G′′

1 → G2 with similar properties to the ê map. However, the map e′ is

generally not symmetric. The use of unmodified pairings can increase the range of

curves for which our cryptographic schemes can be realised.

Some discussions on security of these elliptic curve pairings and its relation to un-

derlying computation problems is covered next in Section 2.4. However, more com-

prehensive descriptions of how these groups, pairings and other parameters should

be selected in practice for efficiency and security are beyond the scope of this thesis

and are described elsewhere. See, for example, [12, 13, 32, 33, 36, 66, 73, 74] for

implementation of pairings and selection of curves with suitable properties.

We simply assume throughout the remainder of this thesis that suitable groups G1

and G2, a map ê and an element P ∈ G1 can be chosen, and that elements of G1

and G2 can be represented by bit strings of the appropriate lengths.
2.1The self pairing of any point with itself in an unmodified Weil pairing always returns the trivial

result 1G2 .
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2.4 The Bilinear Diffie-Hellman Problem and Related Problems

2.4 The Bilinear Diffie-Hellman Problem and Related Problems

We introduce here the computational problems that will form the basis of security for

many of our schemes. Many cryptographic primitives are based on number theoretic

problems. These cryptographic problems and assumptions exist within the frame-

work of complexity theory. The definitions for the two frequently used complexity

theory terms, negligible function and polynomial time algorithm, are as follows:

Definition 2.3 A function ε(k) is called negligible (in the parameter k) if for every

c ≥ 0 there exists an integer kc > 0 such that for all k > kc, ε(k) < k−c.

Negligibility is usually used to formalise the hardness of a problem. Since usually

we do not know the exact running time of an algorithm (which is the number of bit

operations executed by the algorithm) on an input, the big-O notation is used to

represent the order of the asymptotic upper bound. Many definitions presented here

are adapted from [114].

Definition 2.4 Let f and g be functions of parameter k. We write f(k) = O(g(k)) if

there exists a positive constant c and a positive integer k0 such that 0 ≤ f(k) ≤ cg(k)

for all k ≥ k0.

The term ‘worst-case running time’ of an algorithm is used in Definition 2.5 to

represent an upper bound on the execution time for any input, expressed as a function

of the input size.

Definition 2.5 A polynomial time algorithm is an algorithm whose worst-case run-

ning time function is of the form O(kc), where k is the input size and c is a constant.

Informally, we regard a polynomial time algorithm as being efficient. A polynomial

time algorithm uses resources, such as memory and computation power, which are

bounded by a polynomial function in k. It is assumed that processes such as the

initialisation of such an algorithm is also performed in polynomial time. Hence, the
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2.4 The Bilinear Diffie-Hellman Problem and Related Problems

running time refers to the whole process and not just the adversary’s actions. Subex-

ponential algorithms possess asymptotically slower running times than polynomial

time algorithms and asymptotically faster running times than that of exponential

time algorithms. If a deterministic algorithm, A, has a random variable as input

which affects the output of A, then A will be viewed as a probabilistic algorithm

with an internal random variable instead of a random input. In this thesis, the al-

gorithms are always non-uniform, which means that they can behave differently for

inputs of different sizes [17, §B.2.3].

Negligibility of functions and complexity of algorithms are parametised by values k.

In cryptographic algorithms, the value of k is important. This is because it can ‘tune’

many parameters, such as the size of cryptographic groups and key lengths, within

those algorithms2.2. The larger k is, the more computation is required to run an

algorithm and in Section 3.5 the reader will see that this is precisely what we want

to achieve when bounding an adversary’s probability of success. Hence, k from here

on will be called the security parameter. When dealing with the security parameter

as input, many authors choose to represent it as 1k, that is, the string of 1’s of length

k. Here we use the notation of k directly as an input to our algorithms. However, it

should be understood that an input of length k is actually being used.

2.4.1 The Bilinear Diffie-Hellman Generator, Problem and Assumption

The bilinear Diffie-Hellman definitions presented here were first formally given in

[32].

Definition 2.6 We say that a randomized algorithm IG is a bilinear Diffie-Hellman

(BDH) parameter generator, if:

1. IG takes a security parameter k as input, for integer k ≥ 1,
2.2Not all security related parameters are scalable, for example, the entropy and length of user

chosen passwords does not scale with computation power.
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2.4 The Bilinear Diffie-Hellman Problem and Related Problems

2. IG runs in polynomial time in k, and

3. IG outputs a prime number q, the description of groups G1, G2 of prime order

q and a pairing map ê : G1 ×G1 → G2.

Formally, the output of the algorithm IG(k) is 〈G1, G2, ê〉2.3. The output q is con-

tained in the description of groups G1, G2. Polynomial time (in k) algorithms for

computing both ê and group action in groups G1, G2 are also included in the de-

scription of 〈G1, G2, ê〉.

Definition 2.7 Let 〈G1, G2, ê〉 be output by algorithm IG(k) and let P be a gen-

erator of G1. The bilinear Diffie-Hellman problem (BDHP) in 〈G1, G2, ê〉 is as fol-

lows: Given 〈P, aP, bP, cP 〉 with uniformly random choices of a, b, c ∈ Z∗
q , compute

ê(P, P )abc ∈ G2. An algorithm A has advantage ε in solving the BDHP in 〈G1, G2, ê〉
if

Pr
[
A(P, aP, bP, cP ) = ê(P, P )abc

]
≥ ε.

Here the probability is measured over the random choices of a, b, c ∈ Z∗
q , P ∈ G∗

1 and

the random bits of A.

The BDH assumption states that no probabilistic polynomial time algorithm has

non-negligible advantage (in k) in solving the BDHP for 〈G1, G2, ê〉 generated by IG
on input k.

2.4.2 Related Problems and Assumptions

The hardness of the BDHP forms the security foundation for many pairing-based

cryptographic schemes. Other important computational problems related to pairing-

based schemes exist. Some of these are covered here.
2.3Throughout this thesis the notation 〈x1, x2, . . . , xn〉 denotes a n-tuple formed of the n objects

x1, x2 . . . , xn. Often, as is the case here, all the xis in the n-tuple do not come from the same set.
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2.4 The Bilinear Diffie-Hellman Problem and Related Problems

Definition 2.8 Let 〈G1, G2, ê〉 be output by algorithm IG(k) and let P be a gener-

ator of G1. The generalized bilinear Diffie-Hellman problem (GBDHP) in 〈G1, G2, ê〉
is as follows: Given 〈P, aP, bP, cP 〉 with uniformly random choices of a, b, c ∈ Z∗

q ,

output a pair 〈Q ∈ G∗
1, ê(P,Q)abc ∈ G2〉. An algorithm A has advantage ε in solving

the GBDHP in 〈G1, G2, ê〉 if

Pr
[
A(P, aP, bP, cP ) = 〈Q, ê(P,Q)abc〉

]
≥ ε.

Here the probability is measured over the random choices of a, b, c ∈ Z∗
q , P ∈ G∗

1 and

the random bits of A.

Similarly, the GBDH assumption states that no probabilistic polynomial time al-

gorithm has non-negligible advantage (in k) in solving the GBDHP for 〈G1, G2, ê〉
generated by IG on input k. Notice that an algorithm used to solve the BDHP can be

used to solve the GBDHP in which the algorithm outputs the choice Q = P . While

the GBDHP may appear to be in general easier to solve than the BDHP because the

algorithm gets to choose Q, no polynomial-time algorithm is known for solving either

the GBDHP or the BDHP when the groups G1 and G2 and the pairing ê are appro-

priately selected. If the GBDHP algorithm also outputs s ∈ Z∗
q such that Q = sP ,

then the problems are equivalent. The GBDHP is the foundation of security for the

schemes in Chapter 8.

Dupont and Enge [65] defined a version of the generalised BDHP in the context

of unmodified pairings, which is a natural generalisation of the BDHP to that

setting. In that version [65] of the generalised BDHP, the problem instance is

〈P,Q, aP, bP, cP, cQ〉 with uniformly random choices of a, b, c ∈ Z∗
q , P ∈ G′∗

1 and

Q ∈ G′′∗
1 , and the problem objective is to output e′(P,Q)abc ∈ G2. The setting

is in context of parameters of the form 〈e′, G′
1, G′′

1, G2〉 where the pairing map is

e′ : G′
1 × G′′

1 → G2. This problem is believed to be hard and if G′
1 = G′′

1 = G1,

Q = P , and the input is modified then the above problem is the BDHP. Notice that

in the general case when Q 6= P , the value of cQ is also provided, whilst the pair

〈aQ, bQ〉 is not provided. Also notice that the problem instance (not the solving

algorithm, as in Definition 2.8) contains Q as input. This problem and the GBDHP
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we describe in Definition 2.8 are incomparable because of the differences in settings,

the nature of element Q and the information provided (i.e., group elements) to the

solving algorithm.

Definition 2.9 We define a number of computational and decisional problems that

are related to the BDHP:

• Let G be a finite cyclic group and let g be a generator of G. The discrete log-

arithm problem (DLP) in G is as follows: Given 〈g, ga〉 with uniformly random

choice of a ∈ Z∗
|G|, find a ∈ G.

• Let G be a finite cyclic group and let g be a generator of G. The computa-

tional Diffie-Hellman problem (CDHP) in G is as follows: Given 〈g, ga, gb〉 with

uniformly random choices of a, b ∈ Z∗
|G|, find gab ∈ G.

• Let G be a finite cyclic group, and let g be a generator of G. The decisional

Diffie-Hellman problem (DDHP) in G is as follows: Given 〈g, ga, gb, gc〉 with

uniformly random choices of a, b, c ∈ Z∗
|G|, determine if gab = gc.

Note here that G is a multiplicative group and that computational assumptions

related to above problems can be stated for a system specified parameter generator

in an obvious manner. The CDHP can be easily solved if one can compute a given

g and ga, which is precisely the DLP. In fact, solving the DLP is the only known

method to solve the CDHP. For the lower bound on the hardness of the CDHP for

various elliptic curves, see [117].

The GBDHP is related to a genalisation of the CDHP in G1 and G2 in the same

way that the BDHP is related to the standard CDHP in those groups [32, 73]. The

generalisation of the CDHP is the following: Given g, a generator of a finite cyclic

group G, and 〈ga, gb〉 with uniformly random choices of a, b ∈ Z∗
|G|, find a generator

v ∈ G and vab ∈ G. An associated decisional problem can also be defined for the

BDHP.

28



2.4 The Bilinear Diffie-Hellman Problem and Related Problems

Definition 2.10 Let 〈G1, G2, ê〉 be output by algorithm IG and let P be a generator

of G1. The decisional bilinear Diffie-Hellman problem (DBDHP) in 〈G1, G2, ê〉 is as

follows: Given 〈P, aP, bP, cP 〉 ∈ G1 and a random element Q ∈ G∗
2 with uniformly

random choices of a, b, c ∈ Z∗
q , determine whether Q = ê(P, P )abc or not. A dis-

tinguisher A for the DBDHP in 〈G1, G2, ê〉 has advantage ε in solving the DBDHP

if
|Pr [A(P, aP, bP, cP,Q) = 1]−
Pr
[
A(P, aP, bP, cP, ê(P, P )abc) = 1

]
| ≥ ε

Here the probability is measured over the random choices of a, b, c ∈ Z∗
q , Q ∈ G∗

1,

P ∈ G∗
1 and the random bits of A.

2.4.3 Implications of Bilinear Maps

Some relationships between the computational and decisional problems described in

the previous section will be explored next.

As a consequence of bilinearity we will show that the BDHP for parameters 〈G1, G2, ê〉
is no more difficult to solve than the CDHP in either G1 or G2.

Proof. Given 〈P, aP, bP, cP 〉 ∈ G4
1, let γ = ê(P, P )abc be the solution to the BDHP

in 〈G1, G2, ê〉. We have two ways of solving the BDHP by using CDHP oracles:

(i) By solving the CDHP on input 〈P, aP, bP 〉 in additive group G1, we can find

abP ∈ G1. Given abP one can compute ê(abP, cP ) = γ ∈ G2, which is the solution

to the BDHP.

(ii) By solving the CDHP on input 〈ê(P, P ), ê(aP, P ), ê(bP, cP )〉 in multiplicative

group G2, we can find ê(P, P )abc = γ ∈ G2, which is the solution to the BDHP.
�

The reverse relationship is not known.

Another consequence of bilinearity is that if we are operating in the context of the

tuple 〈G1, G2, ê〉, the DDHP in G1 can be solved in polynomial time. Suppose that

an entity wants to confirm that cP = abP for the tuple 〈P, aP, bP, cP 〉 where a, b
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and c are elements of Z∗
q . Then that entity simply needs to verify that the equality

ê(aP, bP ) = ê(P, cP ) holds; if it does, then in the tuple 〈P, aP, bP, cP 〉 we must have

cP = abP . This valuable insight was pointed out by Joux and Nguyen [92]. The

groups where the DDHP is easy and the CDHP is hard are called gap groups.

If an efficient map ê is obtained from the Weil or Tate Pairing, then this may lead to

a sub-exponential algorithm for the DLP on elliptic curves. To illustrate this using a

modified pairing, suppose we let P,Q ∈ G1 and suppose the pair 〈P,Q〉 is an instance

of the DLP in G1. The goal of the solving algorithm is to determine a ∈ Zq such

that Q = aP . Let µ = ê(P, P ), ρ = ê(Q,P ) ∈ G2 and consider the pair 〈µ, ρ〉 as an

instance of the DLP in G2. By bilinearity we know that ρ = µa. So the ability to

solve the DLP in G2 gives the ability to solve it in G1, if there is a sub-exponential

algorithm for the former and r is small. However, even if there is a sub-exponential

algorithm in G2, it may be no better than existing algorithms in G1 because r may

be large. Hence, if we want the DLP to be hard in G1, elliptic curves which can be

used by this map must be chosen carefully so that the DLP remains hard in G2.

The first application of the elliptic curve pairings to cryptography was for solving the

DLP on elliptic curves. An unmodified Weil pairing was used by Menezes, Okamoto

and Vanstone [112] to mount an attack on supersingular curves (which have r ≤ 6).

Another bilinear map, called the Tate pairing was used by Frey and Rück [69] in a

similar attack. As before, these attacks really only work when r is small.

2.5 Other Notation

Throughout this thesis, a string x is a member of {0, 1}∗ where the superscript ‘∗’

symbolises an unspecified bit length. When x and y are strings, x‖y denotes their

concatenation. The symbol ⊕, denotes a bit-wise exclusive OR (XOR) operator. For

protocol messages ‘Sends to’ is denoted by ‘→’.
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3.1 Efficiency

The aim of this chapter is to give an overview of cryptographic infrastructures and

protocols, and the foundations of provable security. A literature review of pairing-

based cryptography is also presented, with the aim of putting into perspective the

contributions of this thesis.

3.1 Efficiency

Before introducing the concept of efficiency, we will introduce some basic terminology.

An entity (or party) is someone or something which sends, receives, or manipulates

information. It may be a human being or a computer terminal. This entity could

be runing a scheme, which is a general term referring to a set of algorithms used

to provide specific services. For example, an encryption scheme provides a confid-

entiality service. Formal descriptions of specific schemes and services are given in

Section 3.2 and Section 3.5.1. A protocol is an algorithm involving multiple com-

municating parties, defined by a sequence of steps precisely specifying the actions

required of the parties in order to achieve a specified objective. Technically, since a

protocol’s objective could be to provide a specific service, all schemes can be called

protocols. For example, an encryption scheme can be considered a protocol in which

only one message is sent between two entities. In this thesis, however, we will make

a distinction and reserve the term protocol for interactions which achieve the class

of objectives introduced in Section 3.3. Moreover, schemes can be used as tools (or

primitives) within a protocol.

The security parameter, number of entities and nature of the communication and

computer system all affect efficiency. Given that the efficiency of schemes and proto-

cols is a principal factor shaping research in real world applications, it is important

to define relevant efficiency criteria.

Computational complexity: To measure the amount of computation, two com-

putational attributes are defined: computational overhead and the ability to

perform precomputation.
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• Computational overhead: This property refers to the cost of all arithmetic

computations. Sometimes this is quantified in terms of time for specific

algorithms on specific processors. In most schemes and protocols in this

thesis, elliptic curve pairings are usually the dominant calculation. With

recent advances in efficient implementation of pairings [12, 74], however,

the complexity of a pairing computation is now of a similar order of mag-

nitude to that of an elliptic curve point multiplication.

• Precomputation: This property refers to the potential for entities to pre-

compute part of a protocol or scheme in their spare time. This precom-

putation, which is typically performed in an offline stage, may facilitate a

faster response in an online stage.

It may also be desirable that one or more entities (perhaps with limited compu-

tational environments) perform fewer computations than other entities (with

more powerful computational environments).

Communication complexity: It is an advantage when a protocol has low com-

munication overhead. Designing protocols with a minimal number of passes,

rounds and broadcasts is also usually advantageous. We now define these im-

portant communication criteria and discuss the relevant scenarios for using

rounds, broadcasts or passes.

• Communication overhead: This property measures the number of bits

transmitted by each participating entity. In many protocols or schemes,

keys are communicated. When keys are communicated, protocols and

schemes based on elliptic curves can have a low communication overhead.

This is because, for comparable cryptographic strength, the elliptic curve

key size (denoted Nec) grows only slightly faster than that of the cube root

of the corresponding conventional key size (denoted Ncn). More precisely,

with current algorithmic knowledge [25, §I.3],

Nec = βN1/3
cn (log(Ncn log 2))2/3 (3.1)

where β = 2(64/9)1/3

(log 2)2/3 ≈ 4.91. Equation 3.1 may not hold for elliptic curve

schemes which are pairing-based because they use special curves with ad-
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ditional properties. Special curves and curves which have been proven in-

secure are usually avoided in traditional elliptic curve cryptography. Fur-

thermore, Coppersmith’s algorithm [55] which was originally described for

fields of characteristic two, may be generalised to fields with small char-

acteristic and the performance of the Function Field Sieve (FFS) [2, 91]

(designed for fields with small characteristic) is only well known for fields

of characteristic two. Note, however, that recently the first implementa-

tion of the FFS in characteristic three has been carried out by Granger et

al. in [80]. These algorithms may allow for better attacks on some curves

– recall Section 2.4.3. Hence, the size of the elliptic curve key for pairings

(denoted Npair−ec) is at least Nec for the same level of security.

• Passes: The number of passes is the total number of messages exchanged

in the protocol.

• Broadcast: A broadcast message is a message that is sent to every party

in a protocol.

• Rounds: A round consists of all the messages that can be sent and received

in parallel within one time unit (synchronised communication is assumed).

It is desirable to minimise the number of rounds so as to tolerate network

delays.

These notions of communication complexity are each more or less appropriate

depending on the particular network architecture that is used. For example,

wireless systems operate usually in broadcast mode, as do Ethernet systems in

non-switched environments. Therefore, in these systems every packet propag-

ates to (and is available to) all nodes. Thus, the number of rounds and broad-

casts are a more natural way of measuring a protocol’s communication com-

plexity for such systems. On the contrary, the Internet Protocol running over

a public network like the Internet is based on the concept of point-to-point

communication, where the number of passes is the right measure.

Storage complexity: This is primarily a measure of memory needed for storage

(for example, keys, certificates and algorithms) and working memory required

to run a cryptographic scheme or protocol. The notion of storage complexity
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also extends to the memory required to store and run a scheme or a protocol’s

actual algorithms. Storage complexity can be difficult to quantify as it is

implementation dependent.

System complexity: We believe that the notions of communication, computa-

tional and storage complexities are insufficient to describe a scheme or a pro-

tocol. This is because in most circumstances, a cryptographic scheme or pro-

tocol does not exist in isolation.

Thus, we extend the scope of complexity by introducing the notion of system

complexity. Entities include servers, trusted authorities (TAs) and participat-

ing parties. Every protocol or scheme contains a set of algorithms. A set of

entities and algorithms form an integrated system. Thus, an integrated system

encapsulates the set of elements that collectively work as a unit.

We introduce this qualitative measure because it gathers some practical effi-

ciency characteristics of a scheme or a protocol. Some of these characteristics

are subtle, but cannot be taken for granted. System complexity captures the

way entities participate in schemes or protocols. Moreover, the relationships

between different schemes and protocols are also captured. We define the terms

flexibility, interactivity and interoperability next.

• Flexibility: This property relates to how an entity uses the algorithms of

a specific scheme or protocol. A flexible scheme or protocol is one which is

adaptable in deployment. This might be achieved by reducing the degree

of temporal ordering required for executing different algorithms within the

scheme or protocol. For example, a flexible scheme can render practical

efficiency gains in the system because processes such as registration need

not be performed in a particular order. This can create efficient applic-

ations which use novel cryptographic workflows. See Sections 3.2.5 and

4.6.3 for examples. A flexible protocol is one where the messages trans-

mitted in a protocol are independent of each other, in the sense that they

can be sent and received in any order. A protocol with this property is

labelled as a message independent protocol.

• Interactivity: This property relates to how the entities interact in a scheme
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or protocol. The number of interacting entities, nature of entity inter-

action and number of interactions may be examined. Decreasing the in-

volvement of online servers and TAs usually reduces the number of rounds

when looking at the communication complexity of any algorithm. When

the scheme or protocol relies on less entities, it usually has less points of

failure. Thus, the instantiation of a low-interaction protocol or scheme

within the system makes it simpler and more fault tolerant. Additional

improvement in efficiency is achieved if the interaction does not require

an authentic or confidential channel to be set up. Further benefits occur

when the number of interactions is reduced. Non-interactive is a term in-

dicating that no interaction at all is required between entities. It is most

useful in describing certain types of encryption schemes and key distri-

bution schemes. If an encryption scheme is non-interactive, it does not

require an interaction with any entity prior to an encryption taking place.

Similarly, a non-interactive key distribution scheme does not require any

interaction between entities to set up a shared key. The reader is referred

to the survey in Section 3.6 for examples of such schemes.

• Interoperability: This property relates a protocol’s or a scheme’s interac-

tion with other protocols and schemes. The ability to share algorithms

and keys across multiple protocols and schemes is always desirable. This

generally allows the system to be optimised and decreases the system’s

inherent complexity and inefficiencies, for then not every algorithm or key

need to be set up independently. For example, code (algorithms) within

the system can be reused thereby reducing storage. Chapter 8 contain

examples of interoperable algorithms.

Of course, a flexible and low-interaction scheme or protocol which is interop-

erable is generally considered very desirable.
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3.2 Public Key Cryptography

Cryptography is about the prevention and detection of malicious activities. The four

fundamental goals of cryptography are [114]: (i) confidentiality: keeps data secret

from all but those authorized to access it; (ii) data integrity: ensures data has not

been altered by unauthorized or unknown means; (iii) authentication: corroboration

of the identity of an entity – subdivided into two classes: entity authentication when

it relates to entities and data origin authentication when it relates to information

with corroboration of the identity (by definition this provides data integrity); (iv)

non-repudiation: prevents an entity from denying previous commitments or actions.

We distinguish between asymmetric and symmetric cryptography. Asymmetric cryp-

tography is often called public key cryptography (PKC). PKC involves two distinct

keys, Kpub and Kpriv. The public key, Kpub, can be widely distributed without com-

promising its corresponding private key, Kpriv. In some systems, Kpriv remains only

known to the entity that generated it, whilst in other systems Kpriv is given to an

user by another entity. We will return to this issue in Section 3.2.4.

Symmetric cryptography involves only secret keys. The secret key must remain

only known to the entities who use it. Block ciphers, stream ciphers, and message

authentication codes (MACs) are all examples of symmetric primitives.

Symmetric cryptography requires the secret keys to be securely distributed between

the entities. The distribution of secret keys requires prior communication of shared

secret keys or secure channels. In practice, for symmetric cryptography, a secure

channel is very difficult to achieve in the absence of an online TA which acts as either

a key distribution center (KDC) or a key translation center (KTC). More innovative

and effective ways of key management and achieving a wider set of cryptographic

goals can be obtained by using PKC. To use PKC in practice, a TA is required. This

TA is called a certification authority (CA) if certified public keys are used. The CA

need not be online. The focus of this thesis is on PKC and particular attention will

be paied to CAs in Section 3.2.3.
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3.2.1 Cryptographic Primitives

Cryptographic primitives can be used when communicating in the presence of an

adversary. Modern cryptographic primitives are developed after defining security

through classifying possible attacks and modelling an adversary’s capabilities to

mount those attacks. A primitive’s security is then shown to be directly related

to the hardness of some well-defined and widely studied computational problem, like

the computational problems in Section 2.4.

The meaning of the term secure for public key encryption (PKE) and public key sig-

nature (PKS3.1) schemes is the subject of Section 3.5. Next, we define PKE schemes

which provide confidentiality and PKS schemes which provide non-repudiation, data

integrity and data origin authentication.

3.2.1.1 Public Key Encryption

A PKE scheme, ΠPK, is usually specified by three algorithms; Key-Generation, Encrypt

and Decrypt. These three algorithms do not include an algorithm which only deals

with setting up of the scheme. Our definition of ΠPK includes a Setup algorithm to,

for example, explicitly define the groups in which we are operating. This separation

is useful in developing future concepts. For example, we construct schemes where

the description of the key generation algorithm can be altered without affecting

the system’s parameters – see Section 7.2. In many practical applications of PKE,

the output of the Setup algorithm is separated from the output of Key-Generation

algorithm. Hence, we specify ΠPK by four algorithms: Setup, Key-Generation, Encrypt

and Decrypt, where:

Setup: is a probabilistic polynomial time algorithm, which takes as input a security
3.1This abbreviation can be avoided, since signature schemes are practically always assumed to be

in the public key cryptography setting. However we use it for consistency, since the abbreviation
PKE is in use.
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parameter k and returns system-wide parameters ‘params’. The finite message (or

plaintext) space, M and finite ciphertext space, C are included in params. Both M
and C are defined by the security parameter k.

Key-Generation (K): is a probabilistic polynomial time algorithm, which takes as

input params and returns two keys; a public key Kpub and a private key Kpriv. We

write 〈Kpriv,Kpub〉 ← K(params).

Encrypt (E): is a probabilistic polynomial time algorithm, which takes as input a

message M ∈ M, params, and the public key Kpub. It returns a ciphertext C ∈ C.
When clear, we write C ← E(M,Kpub) as shorthand. We do not include params as

input to simplify presentation.

Decrypt (D): is a polynomial time algorithm, which takes as input a ciphertext

C ∈ C, params, and a private key Kpriv. It returns a message M ∈ M or a message

⊥ indicating an invalid ciphertext C. When clear, we write M ← D(C,Kpriv), as

before, we do not include params as input to simplify presentation.

The output M should result from applying algorithm D with inputs k and Kpriv on a

ciphertext C generated by using algorithm E with inputs k and Kpub on message M .

We say that a PKE scheme is sound if M is the output of D(E(M,Kpub),Kpriv) for

all 〈Kpriv,Kpub〉 ← K(params). Algorithm E is probabilistic to avoid an undesirable

property where the output of the encryption scheme does not change for a fixed

message input. With this property, the scheme cannot acheive semantic security – see

Section 3.5. Algorithm D is usually deterministic, although, probabilistic decryption

algorithms also exist.

3.2.1.2 Signature

A PKS scheme is specified by four algorithms: Setup, Key-Generation, Sign and Verify,

where:
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Setup: is a probabilistic polynomial time algorithm, which takes as input a security

parameter k and returns system-wide parameters ‘params’. The finite message space,

M and finite signature space, S are included in params. BothM and S are defined

by the security parameter k.

Key-Generation (K): is a probabilistic polynomial time algorithm, which takes as

input params and returns two keys; a verification key Kpub and a signing key Kpriv.

We write 〈Kpriv,Kpub〉 ← K(params).

Sign (Σ): is a probabilistic polynomial time algorithm which takes as inputs params,

a message M ∈ M to be signed and a signing key Kpriv. It outputs a signature

Sig ∈ S. When clear, we write Sig ← Σ(M,Kpriv) to simplify presentation, as

before, we omit params.

Verify (V): is a polynomial time algorithm which takes as inputs params, a message

M ∈ M and verification key Kpub, and Sig ∈ S as the signature to be verified. It

returns valid or invalid. When clear, we write {valid, invalid} ← V(M,Sig, Kpub).

The output valid should result from applying algorithm V with inputs k and Kpub on a

signature Sig generated by using algorithm Σ with inputs k and Kpriv on message M .

We say that the PKS scheme is sound if valid is the output of V(M,Σ(M,Kpriv),Kpub)

for all 〈Kpriv,Kpub〉 ← K(params). This definition does not encapsulate all types of

digital signatures, such as for example, digital signatures with message recovery.

Algorithm V can be probabilistic, in which case it should output valid or invalid for

valid or invalid signatures with high probabilities.

3.2.2 The Lack of Authenticity

Figure 3.1 illustrates how a PKE scheme adversary, who is between an encryptor B

of a ciphertext, and its decryptor A, can impersonate a honest decryptor A. The

adversary achieves this, by replacing A’s public key Kpub with a false public key
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Figure 3.1: A PKE adversary impersonating entity A to B.

K ′
pub, which is then acquired by B. Similar impersonation settings exist between the

signer and verifier in signature schemes.

The following question arises from the need to prevent these kinds of attacks: how

does B know (that is, authenticate) which particular public key is A’s? To an-

swer this question data origin authentication is required. Authenticating public keys

means providing assurance (through supportive evidence) to the entity which re-

ceives a public key of the entity’s identity to which the public key refers. Many data

origin authentication methods exist; the usual method for providing authentication

of public keys is by using certificates. An alternative method of providing this au-

thentication is achieved by using identity-based public key cryptography (ID-PKC).

Next, an explanation of both methods is provided in Sections 3.2.3 and 3.2.4.

3.2.3 PKC with Authenticity of Public Keys from Certificates

The usual way to guarantee the identity and/or identifiers (for example, age, sex or

address of the entity) of the public key holder is based on a CA. The CA’s digital

signature binds entity A’s identity and/or identifier IDA to the corresponding public

key, for generality, IDA will henceforth only be called an identifier. The CA’s signa-

ture, when sent along with the identifier and public key, forms a digital certificate

which can be verified by any entity in possession of the CA’s public key. This certi-
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ficate provides a binding, assured by the CA, between the identifier and the public

key. Digital certificates can contain further information, such as cryptographic al-

gorithms to be used in conjunction with the public key in the certificate. The most

widely adopted certificate format is the X.509 standard [149]; it specifies the other

fields included (and bound into the certificate by the CA) in the certificates. The

CA is the crucial entity for supporting digital certificates in a traditional public key

infrastructure (PKI). A PKI is a security infrastructure whose services are imple-

mented to deploy and manage the use of public key cryptography. Basic elements

which make up a PKI include services, technology, processes and policies. For a more

comprehensive description of PKI consult [1]. A basic certificate issued by a CA for

entity A is of the form:

CertA = (IDA‖Kpub,A‖Σ(IDA‖Kpub,A,Kpriv,CA)).

Here, Σ(·,Kpriv,CA) denotes the CA’s signature. Entity A’s public key is Kpub,A.

Even though we can achieve secure (that is, confidential and authentic) communic-

ation using PKE and PKS schemes alone, asymmetric key agreement protocols play

a very important role in PKC and modern applications. This is because the ses-

sion keys produced by key agreement protocols can be used in symmetric encryption

schemes. The latter are generally more efficient than PKE schemes. Furthermore, it

is an advantage to have a unique shared session key, because if it is compromised, it

does not necessarily affect the security of long term keys. A compromise is more likely

for session keys because they are exposed to various applications and machines. The

long term key remains safe since it is usually securely stored and accessed through a

special interface. Furthermore, the compromise of a session key does not necessarily

affect the security of other session keys. In Section 3.3 we discuss some key agreement

protocols, and in Section 3.4 we study the properties of key agreement protocols in

more detail.
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3.2.3.1 An Example: A Version of the ElGamal PKE Scheme with Authenticity
of Public Keys from Certificates

Here we will build on the original ElGamal PKE scheme [68], whose security is based

on the CDHP. The group used in the original ElGamal scheme is G = Z∗
p, but we

present a scheme in the context of an arbitrary abelian group, G, which may be

derived from an elliptic curve. Additionally, we will be presenting the scheme in

a standard certificate setting and will be using a hash function, denoted H5. This

non-standard example will familiarise the reader with a building block for the scheme

in Chapter 5 and will make concrete some PKE concepts.

The PKE scheme with a certified public key is constructed using four algorithms:

Setup, Key-Generation, Encrypt and Decrypt. The functions for all four algorithms

are described below.

Setup: This algorithm has input k and runs as follows: (i) generate output G, and

additive group of some large prime order q; (ii) choose an arbitrary generator P ∈ G;

(iii) select a CA-key sCA uniformly at random from Z∗
q and set PCA = sCAP ; (iv)

choose a cryptographic hash function H5 : G→ {0, 1}n. Here n will be the bit-length

of plaintexts. Properties of cryptographic hash functions are covered in Section 3.5.1.

The system parameters params define the collection of publicly known parameters

which are specific to a cryptographic scheme. For this scheme the system paramet-

ers are params = 〈G, n, P, PCA,H5〉. Included in the parameters for this certificate

setting is PCA, where the CA-key is sCA ∈ Z∗
q . For the time being, we simply assume

that params is authentically available to all parties, later on we will indicate how.

The message space is M = {0, 1}n and the ciphertext space is C = G× {0, 1}n.

Key-Generation: For entity A, this algorithm runs as follows: (i) Choose a random

x ∈ Z∗
q ; (ii) set the private key to be Kpriv,A = x; (ii) set the public key to be

Kpub,A = PA = xP ∈ G∗.
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Note that to use a standard certificate-based PKE scheme, entity A must now be is-

sued a certificate which has to be acquired and verified by entity B before encryption.

This is an integral part of any standard certificate-based scheme. The certificate for

this scheme will shown in detail later.

Encrypt (E): To encrypt M ∈ M for entity A with public key PA ∈ G∗, perform

the following steps: (i) choose a random value r ∈ Z∗
q ; (ii) compute and output the

ciphertext: C = 〈rP,M ⊕H5(rPA)〉.

Decrypt (D): Suppose C = 〈U, V 〉 ∈ C. To decrypt this ciphertext using the private

key Kpriv,A, compute and output: V ⊕H5(xU).

It is easy to see that if C = 〈U = rP, V 〉 is equal to E(M,PA), then D(C, x) = M .

The security of this scheme will be discussed in Chapter 5.

Before using the encryption algorithm entity A must register and be granted by the

CA a certificate of the form:

CertA = IDA‖PA‖Σ(IDA‖PA, sCA).

This certificate is granted once the CA checks that entity A knows the private key of

PA or checks that A is the legitimate owner of the PA. We assume that all entities

have an authentic copy of PCA, for example, a root CA is embedded in their system.

Either certification hierarchies (for example, certificate chains) or cross certificates

may be used in practice to facilitate interoperability. This is so that certificates

issued by one CA can be verified by entities certified by other CAs. For a detailed

discussion on certification topologies and certificate trust models see [114, §13.6] or

[1, Chap.9]. Entity B will acquire CertA from either entity A or a public directory.

The certificate CertA is then used in order to verify the authenticity of the public

key PA. The verification algorithm run by entity B is of the form V(CertA, PCA).

Entity B uses PA for encryption only if the output of V(CertA, PCA) is valid.
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3.2.4 Identity-based PKC

Shamir [135] was the first to show that the authenticity problem in public key cryp-

tography can be solved without the use of certification. The concept was named

identity-based public key cryptography (ID-PKC) by Shamir and has subsequently

also became known as identifier-based public key cryptography in some circles. In

ID-PKC, entity A’s public key Kpub is not delivered to entity B. This eliminates

the attack presented in Figure 3.1. Rather in ID-PKC entity B encrypts a message

for entity A or verifies a signature from entity A using a public key which is derived

from only entity A’s identifier IDA ∈ {0, 1}∗. The TA has a new role in ID-PKC, and

is renamed the Private Key Generator (PKG) to reflect this. The role of the PKG is

to issue the private key corresponding to the public key (derived from the identifier

IDA) to entity A. This issuing only occurs after entity A is authenticated by the

PKG. To generate private keys the PKG makes use of a master-key which must be

kept secret. The requirement to have an authentic CA public key is replaced by the

requirement to have authentic PKG parameters. Notice that both the PKG and the

entity know the private key.

In his 1984 paper [135], Shamir was only able to construct a concrete identifier-based

public key signature (ID-PKS) scheme. Developing a concrete satisfactory identifier-

based public key encryption (ID-PKE) scheme remained an open problem. Of note

were the solutions designed to solve this problem which required: tamper resistant

hardware [57]; non-colluding users [145]; a public directory [121]; high computation

complexity for each encryption [146]; very high computation cost by the PKG for

each private key generation [86, 111].

The year 2001 witnessed the publication of two different ID-PKE schemes. An ID-

PKE scheme was put forward by Cocks [54]3.2. The security of Cock’s scheme is based

on the Quadratic Residuosity problem. Providentially, the Quadratic Residuosity

problem is a well studied number theoretic problem. Due to message expansion,

however, the scheme has a high communication overhead. Another ID-PKE scheme
3.2Cocks’ ID-PKE scheme in [54] is said to have been discovered four years earlier.
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was proposed by Boneh and Franklin [32]. The Boneh-Franklin encryption scheme

(abbreviated to BF ID-PKE scheme) used the pairing techniques described in Section

2.3 and is very efficient. This scheme is described next.

3.2.4.1 An Example: The BF ID-PKE Scheme

The BF ID-PKE scheme was the first fully practical and secure ID-PKE scheme. It

has much in common with the version of the ElGamal encryption scheme in Sec-

tion 3.2.3.1. The security of BF ID-PKE [32] was proven by Boneh and Franklin

to be based on the hardness of the BDHP. The scheme is constructed using four al-

gorithms: Setup, Extract, Encrypt and Decrypt. The functions for all four algorithms

are described in [32]. Here, we will provide a basic exposition of the scheme.

Setup: This algorithm runs as follows: (i) run IG on input k to generate output

〈G1, G2, ê〉 as described in Section 2.3; (ii) choose an arbitrary generator P ∈ G1;

(iii) select a master-key s uniformly at random from Z∗
q and set P0 = sP ; (iv) choose

cryptographic hash functions H1 : {0, 1}∗ → G∗
1 and H2 : G2 → {0, 1}n. Here, n is

the bit-length of plaintexts.

The system parameters are params= 〈G1, G2, ê, n, P, P0,H1,H2〉. The master-key

is s ∈ Z∗
q . The message space is M = {0, 1}n and the ciphertext space is C =

G1 × {0, 1}n.

To use the scheme, entity B creates entity A’s public key from A’s identifier IDA.

This is done by computing H1(IDA) ∈ G∗
1 as we will see in the encryption algorithm

next.

Encrypt (E): To encrypt M ∈ M for entity A with identifier IDA ∈ {0, 1}∗, perform

the following steps: (i) compute QA = H1(IDA) ∈ G∗
1; (ii) choose a random value

r ∈ Z∗
q ; (iii) compute and output the ciphertext: C = 〈rP,M ⊕H2(ê(QA, P0)r)〉.
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The group element QA when used with params is the public key Kpub for user A in

this scheme. For entity A to decrypt the ciphertext C, it first needs to obtain his

private key from the PKG. The PKG uses the algorithm Extract, described next, to

generate A’s private key.

Extract: For IDA ∈ {0, 1}∗ this algorithm runs as follows: (i) compute QA =

H1(IDA) ∈ G∗
1; (ii) set private key to be dA = sQA.

Decrypt (D): Suppose C = 〈U, V 〉 ∈ C. To decrypt this ciphertext using the private

key dA, compute and output: V ⊕H2(ê(dA, U)).

The value ê(QA, P0)r used in encryption is the same as the value ê(dA, U) used in

encryption since, using bilinearity,

ê(QA, P0)r = ê(QA, sP )r = ê(QA, P )rs = ê(sQA, rP ) = ê(dA, U).

Therefore, if C = 〈U = rP, V 〉 is output by E(M,QA) for entity A then D(C, dA)

outputs M .

The above ID-PKE scheme is labelled BasicIdent in [32] and is used as a building

block for a more complicated scheme which is labelled FullIdent in [32]. The scheme

FullIdent is the scheme used in practice because it is proven secure in a stronger model.

We will be compare ID-PKC to standard certificate-based PKC (and certificateless

PKC) and discuss properties of ID-PKC such as the PKG key escrowing capabilities

in Chapter 4.

3.2.5 Cryptographic Workflow

ID-PKC schemes enjoy the property that an entity’s private key can be determined

after its public key has been generated and used. This is a useful feature. An entity

B can encrypt a message for A using A’s identifier string, IDA, of B’s choice. This

identifier should contain A’s identity, but might also contain conditions (attributes
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or actions) that A must satisfy before the PKG will deliver the corresponding private

key.

This condition, for example, could be that A has a valid driver’s licence. The encryp-

ted message then could be A’s new insurance document. In this way, B can create a

cryptographic workflow that A must carry out before being able to access some piece

of information (for example, the insurance document). The cryptographic workflow

is a sequence of operations (for example, authentications) that need to be performed

by an entity in order to achieve a certain goal3.3. This kind of application cannot be

easily supported using traditional certificate-based systems, as the temporal ordering

of private key before public key and public key before certificate (which needs to be

distributed) are fixed in those systems.

Forcing A to visit multiple TAs [49], or combining sets of private keys to satisfy a

set of conditions using a single TA [143], are innovative applications of ID-PKC’s

cryptographic workflow. In the following, we will show a simple application of the

workflow concept which does not use the more sophisticated techniques introduced

in [49, 143]. These later techniques are discussed further in the survey in Section 3.6.

3.2.5.1 An Example Use of an ID-PKE Scheme

In the scenario below we will exploit the cryptographic workflow property of ID-PKE

schemes.

Problem: Entity B, who is a software merchant (for example, company.com), wants

a simple solution for distributing the serial-number of the company’s software to a

customer A. Entity B wants to keep the serial-number confidential, that is, entity B

intends to mitigate its liability and risk of serial-number exposure. Furthermore, B

3.3Other published examples using ID-PKC’s flexibility can be found in [32, §1.1.2] (that is, delega-
tion of decryption keys) and [49, 143]. Furthermore, HP Laboratories’ Trusted Systems Lab recently
provided demonstrations using ID-PKE of data tagging (a way of securing data which is independent
of software, where tags reflect policies) and role-based/time-based/group-based encryption.
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wants to allow entities without credit cards to purchase and access the serial-number

in an online fashion. This is so the serial-number needed to run the software is

obtained as soon as payment is made.

Solution: Using an ID-PKE scheme, B simply encrypts the serial-number with the

customer’s identifier containing the condition that the customer pays amount $X into

B’s account. That is, the identifier is set to ‘IDA‖paid B $X’. The PKG (for example,

a bank that is prepared to accept payments from A for B), will only provide A with

the private key matching the above identifier dA once A has provided evidence of

being entity A and the transaction (or receipt of the transaction) has gone through.

The private key is used to decrypt the ciphertext containing the serial-number.

Analysis: The ID-PKE scheme allows the temporal ordering of algorithms to be

changed. This is used to realise a cryptographic workflow with two conditions to be

satisfied: an activity; forcing A to perform a $X transaction, and an attribute; A is

who he claims to be. Entity B tailors a workflow for A to follow and the PKG acts

as the workflow enforcer.

3.3 Cryptographic Key Agreement Protocols

Before presenting some key agreement protocols, which will be commonly referred

to in thesis, we further explore the concept of protocols provided in Section 3.1, and

specifically key agreement protocols as described in [114, Chap.12.2].

The class of protocols whereby a shared secret becomes available to two or more

parties for subsequent cryptographic use are known as key establishment protocols.

Key establishment is further subdivided into key transport and key agreement. In

key transport, one party creates or obtains a secret value and securely transfers it

to the other parties. For example, the PKG in the ID-PKE scheme presented in

Section 3.2.4.1 acts as a key transport agent, securely transporting the private key

dA to entity A. Key transport is not considered here in any more detail.
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Definition 3.1 ([114]) A key agreement protocol is a key establishment technique in

which a shared secret is derived by two (or more) parties as a function of information

contributed by, or associated with, each of the parties, (ideally) such that no party

can pre-compute the resulting value.

3.3.1 General Attack Classifications

An attack occurs when the intended goals of a protocol are not met or the desired

security attributes do not hold. A passive attack occurs when an adversary can

prevent the protocol from accomplishing its goals by simply observing the protocol

runs. In contrast, an active attack is one in which the adversary may delete, inject,

alter or redirect messages, or interleave multiple instantiations of the same protocol

and the like.

Next, both the original Diffie-Hellman Protocol [58] and a simplified version of Joux’s

protocol [90] are presented. The goal of these protocols is to provide good keys. This

goal states that the key is selected uniformly at random from the key space, so

that no adversary has an information-theoretic advantage when mounting a guessing

strategy to determine the key.

3.3.2 The Diffie-Hellman Protocol

Diffie and Hellman [58] revolutionised cryptography by introducing the first key

agreement protocol not based on shared secrets. In this section, we consider the

original Diffie-Hellman protocol.

Let k be a security parameter that determines the size of a large prime p, and in

what follows, g denotes a generator of Z∗
p. In the Diffie-Hellman protocol, we assume

that entities A and B share the common values g and p (embedded in the system or

acquired via some other mechanism). Then integers a and b, where 1 ≤ a, b ≤ p− 2,
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are selected uniformly at random by entities A and B respectively. The ordering

of protocol messages is irrelevant and either entity can initiate the protocol. The

message flows are given in Figure 3.2. We choose to present the original variant

of this protocol because we will be using it as a building block for the protocols in

Section 9.1.2.1 and Section 9.8.2.

Protocol Messages

1. A→ B : ga mod p

2. B → A : gb mod p

Figure 3.2: The Diffie-Hellman protocol.

Protocol description: Entity B computes KB = (ga)b mod p after obtaining mes-

sage 1 in Figure 3.2 and A computes KA = (gb)a mod p once the communication in

Figure 3.2 is complete. The values of KA and KB are both equal to KAB = gab mod p.

This can serve as the secret key shared by A and B. The values a and b should be

deleted at the end of the protocol run.

The protocol’s achievement of agreeing a good key in the face of passive adversaries

could be related to the hardness of either the CDHP or the DDHP in Z∗
p, depending

whether a hash function (modelled as a random oracle – see Section 3.5.2) is used

to derive a key or not. To make this claim concrete requires the development of an

appropriate security model, such models are the topic of Chapter 9.

The Diffie-Hellman protocol can be extended to three parties. For three parties it

takes two rounds and six broadcasts to establish a key. The first three message

broadcasts are transmitted in the first round and the rest of the protocol broadcasts

are transmitted in the next round. As in the two party case, we assume all parti-

cipants here agree on suitable parameters g and p in advance. The message flows of

this protocol are given in Figure 3.3.
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Protocol Messages

1. A→ B,C : ga mod p

2. B → A,C : gb mod p

3. C → A,B : gc mod p

4. A→ B,C : gba mod p‖gca mod p

5. B → A,C : gab mod p‖gcb mod p

6. C → A,B : gac mod p‖gbc mod p

Figure 3.3: A three party Diffie-Hellman protocol.

Protocol description: After the first three broadcasts of Figure 3.3, entity A

computes (gb)a mod p and (gc)a mod p, B computes (ga)b mod p and (gc)b mod p

and C computes (ga)c mod p and (gb)c mod p. Once the protocol in Figure 3.3 is

complete KA, KB and KC are computed by A, B and C respectively where KA, KB

and KC are all equal to KABC = gabc mod p. This value can serve as the secret key

shared by A, B and C. The values a, b and c should be deleted at the end of the

protocol run.

3.3.3 Joux’s Protocol

Joux [90] introduced a very simple and elegant one-round protocol in which the

secret session key for three parties could be created in a single round using three

broadcasts. Joux’s protocol simplifies the Diffie-Hellman protocol extension shown

in Figure 3.3 and is used to establish a shared secret key with minimal communication

complexity. The protocol makes use of pairings on elliptic curves and requires each

entity to transmit only a single broadcast message containing some public value.

This should be contrasted with the obvious extension of the Diffie-Hellman protocol

to three parties in Figure 3.3, which requires six rounds and six broadcasts.
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We assume that A, B and C share the common values 〈G1, G2, ê〉, which are determ-

ined by the security parameter k. In Joux’s protocol, P is the generator of the group

G1 of prime order q as specified in Section 2.3 and a, b, c ∈ Z∗
q are selected uniformly

at random by A, B and C respectively. As in the Diffie-Hellman protocol in Figure

3.2, the ordering of protocol messages is irrelevant and any of the three entities can

initiate the protocol. The message flows are given in Figure 3.4.

Protocol Messages

1. A→ B,C : aP

2. B → A,C : bP

3. C → A,B : cP

Figure 3.4: Joux’s one round protocol.

Protocol description: Once the communication in Figure 3.4 is complete, A com-

putes KA = ê(bP, cP )a, B computes KB = ê(aP, cP )b and C computes KC =

ê(aP, bP )c. By bilinearity of ê, KA KB and KC are all equal to KABC = ê(P, P )abc.

This can serve as the secret key shared by A, B and C.

Although not explicitly mentioned in [90], the success of this protocol in achieving

its aim of agreeing a good key for the three entities in the face of passive adversaries

can be related to the hardness of either the BDHP or the DBHDP. As is the case

with the two party Diffie-Hellman protocol, depending on how the key is derived the

protocol relies on either the computational or decisional problem.

The reader will notice that our version of Joux’s protocol is simpler than the original.

It uses a modified pairing which allows us to avoid sending two points per participant.

This modification of Joux’s protocol was first performed by Verheul [147, §5.1].

Returning to encryption schemes, the ElGamal encryption scheme [68] can be viewed
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as a Diffie-Hellman protocol [58] in key transfer mode [114]. A more complicated

informal argument illustrates why compromising the basic BF ID-PKE scheme is

related to compromising Joux’s protocol [90]. This informal argument forms the

basis for a formal proof of security. The argument can be understood by considering

an instance of Joux’s protocol in which the three public values exchanged by A,

B and C are sP , rP and QA = ξP respectively, and the session key agreed is

KABC = ê(P, P )ξrs. Here, we can think of entity A as the decryptor, entity B as

the encryptor and entity C as the trusted PKG. To obtain the Boneh and Franklin

encryption of message M , the session key KABC is input to a hash function and

the result is XORed with M . In order to decrypt M , the problem an attacker

needs to solve is: given 〈P, rP, sP, ξP 〉 determine KABC = ê(P, P )ξrs. This is an

instance of the BDHP. Thus, supposing the BDHP is hard, to determine ê(P, P )ξrs

either r, s or ξ must be known. The PKG, with the knowledge of s, can compute

KC = ê(ξP, rP )s = KABC . Entity B, with the knowledge of r, computes KB =

ê(ξP, sP )r = KABC during encryption. For decryption, entity A cannot compute

KABC on its own. This is because ξ is unknown to all entities because of the way it

is computed by hashing IDA; obtaining ξ from ξP is equivalent to solving the DLP

in G1. The PKG, however, furnishes A with dA = sξP . Notice that dA contains

both s and ξ. Hence, A unlike in Joux’s protocol (which uses one private value and

two public values) computes KABC using one private value, sξP (A’s private key),

and one public value, rP , by computing KA = ê(sξP, rP ) = KABC . Compromising

dA = sQA = sξP compromises only entity A’s private key because every entity has

a unique ξ based on its identifier ID.

3.3.3.1 Bit Security

More properly, in Joux’s protocol the session key should be derived by applying a

suitable key derivation function. The key derivation function, denoted KDF, should

be used on the quantity ê(P, P )abc, thus, KABC = KDF(ê(P, P )abc). For otherwise,

an attacker might be able to get partial information about session keys even if the

BDHP is hard. Note that knowing some bits of ê(P, P )abc does not necessarily
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enable the attacker to find ê(P, P )abc completely, so we have not contradicted the

BDH assumption.

Bit security results of [75] suggest that a KDF for Joux’s protocol can be constructed

by taking the most significant bits of the trace of ê(P, P )abc. The resulting key is no

less secure than using all the bits of ê(P, P )abc as the key. One might also consider

using a one way function such as a hash function (defined in Section 3.5.1) as the

KDF. The disadvantage of using hash functions, compared to using the trace, is that

hash functions are generally less efficient and it is harder to establish security. A

similar argument encouraging the use of a key derivation function can be made for

the Diffie-Hellman protocol. For examples of key derivation functions see [9, 87].

3.3.3.2 Man-in-the-Middle Attacks

Unfortunately, just like the unauthenticated two-party Diffie-Hellman protocol, Joux’s

protocol is only secure in the face of a passive adversary. In many practical applica-

tions, this does not model well the capabilities of a real world adversary.

In a more realistic model, the adversary is active, making both the Diffie-Hellman

protocol and Joux’s protocol susceptible to powerful impersonation attacks, similar

to those presented in Figure 3.1. This is a textbook man-in-the-middle attack on

protocols which do not have a mechanism to authenticate their users. The attack

allows an adversary to masquerade as any entity to any other entity in the network

since it is assumed that all the network traffic goes via the adversary.

Here we present a man-in-the-middle attack on Joux’s protocol. For protocols, let

E denote an adversary who replaces the public values from A to B and B to A with

a′P, b′P ∈ G1. Here a′, b′ ∈ Z∗
q are chosen by E. In what follows, EA indicates that

E is impersonating A by sending or receiving messages intended for or originating

from A.
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1. Entity A sends aP to EB,C .

2. The adversary EA initiates a run of Joux’s protocol by sending a′P to B and

C.

3. Entity B sends bP to EA and C; C sends cP to EA and B.

4. The adversary EB forwards b′P instead of bP to A and EC simply forwards

cP to A.

Entities B and C (following the protocol) compute KEABC = ê(P, P )a′bc. Entity A

(following the protocol) computes a key KAEBC = ê(P, P )ab′c. Since E can compute

KAEBC and KEABC , E can read all the traffic and can masquerade as any of A, B or

C to the other two entities, that is, E can also impersonate C to A. Impersonations

are performed by simply decrypting/re-encrypting (to and from A), deleting, re-

placing, decrypting/re-encrypting (to and from C) and/or injecting (by encrypting)

messages.

Solutions to this problem for the Diffie-Hellman protocol are well known. In Chapter

9 we consider how the security of Joux’s protocol can be enhanced to prevent man-

in-the-middle and other types of attacks. In preparation for this, we next provide

definitions of protocol goals and protocol attributes.

3.4 Authenticated Key Agreement Protocol Goals and Attributes

Here we discuss the various security attributes and goals for key agreement protocols.

A security goal is an essential property that a protocol should possess. Every protocol

should be designed with specific security goals in mind. Based on application, how-

ever, the importance of a security attribute spans from an essential requirement on

par with a security goal, to a dispensable property, inessential for the key agreement

protocol to possess.
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3.4.1 Extensional Security Goals

An extensional goal [37, 129] for a protocol is defined to be a design goal that is

independent of the protocol details. Below, three desirable and widely-agreed ex-

tensional goals for key agreement protocols are listed. A further discussion of these

can be found in [114, Chapter 12]. The first goal we try to achieve is implicit key

authentication. This goal, if met, assures an entity that only the intended other

entities can compute a particular key. This level of authentication results in what is

known as an authenticated key agreement (AK) protocol. Explicit key authentication

is the second desirable goal. This goal is met if each entity is also assured that the

intended other entities have actually computed the key. The resulting protocol is

called an authenticated key agreement with confirmation (AKC) protocol. The final

goal is that the protocol provides a good key as we described in Section 3.3.1.

In the context of public key cryptography, short-term public values are generally only

used once to establish a session and are sometimes called ephemeral keys. Conversely,

long-term public keys are static keys used primarily to authenticate the protocol’s

participants.

3.4.2 Security Attributes

A number of desirable security attributes have been identified for key agreement

protocols [26, 27, 99] and our definitions are borrowed from these sources. Depending

on the application scenario, these attributes can be vital in excluding realistic attacks.

Known session key security: A protocol is known session key secure if it still

achieves its goals in the face of an adversary who has learnt some previous

session keys.

(Perfect) forward secrecy: A protocol enjoys forward secrecy if, when the long-

term private keys of one or more entities are compromised, the secrecy of
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previous session keys remains unaffected. Perfect forward secrecy refers to the

scenario when the long term private keys of all the participating entities are

compromised.

No key-compromise impersonation: Suppose A’s long-term private key is dis-

closed. Then of course an adversary can impersonate A in any protocol in which

A is identified by this key. We say that a protocol resists key-compromise im-

personation when this loss does not enable an adversary to impersonate other

entities to A as well and obtain the session key.

No unknown key-share: In an unknown key-share attack, an adversary convinces

a group of entities that they share a key with the adversary, whereas in fact,

the key is shared between the group and another party. This situation can be

exploited in a number of ways by the adversary when the key is subsequently

used to provide encryption or integrity [93].

No key control: It should not be possible for any of the participants (or an ad-

versary) to force the session key to a preselected value or predict the value

of the session key. For a discussion of how protocol participants can partially

force the values of keys to particular values and how to prevent this using

commitments at the expense of extra protocol rounds see Mitchell et al. [115].

Some of the properties presented here are formalised in the context of security models

to be presented in Section 9.3.

3.4.3 Further Attributes

It is desirable to reduce the computational, communicational, storage and system

complexities of any protocol. As will become evident from our examination of Joux’s

protocol in Chapter 9, communication advantages that a protocol apparently pos-

sesses can disappear when one considers either a different network architecture or

more stringent security requirements. Additionally, timestamps although a crucial
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part of a PKI for documentation and legal use [3, 40, 88], can in certain circumstances

be undesirable in authentication protocols due to their implementation difficulties.

Essentially the difficulties arise due to complexity in synchronisation and the in-

appropriateness of ‘relative’ time in a multi-clock setting, see [59, 125] for further

details.

A protocol is role symmetric when messages transmitted and computations per-

formed by all the entities have the same structure.

3.5 Provable Security Basics

By examining indistinguishability and semantic security, Goldwasser and Micali [79]

introduced the provable security paradigm. Instead of using an information theoretic

framework, provable security is based on complexity theory. This is because modern

cryptography assumes that the adversary attacking the cryptographic scheme or

protocol is furnished with limited resources. Theoreticians and standards bodies

now view a ‘provably secure’ scheme very favourably; some consider it a crucial

attribute for any scheme.

To bound the adversary’s resources, semantic security makes use of security para-

meters, as introduced in Section 2.4. The adversary is modelled as an algorithm,

interacting with a challenger and/or oracles simulating participants in the system.

The schemes that are labelled as secure are only secure with respect to all polynomial

time (in security parameter k) adversaries.

An outline of the process that is followed in order to obtain a proof of security for

a scheme or protocol, is as follows: (i) Provide a formal definition the goal(s) of the

scheme or protocol. (ii) Provide a formal adversarial model (the access model). (iii)

Define what it means for the scheme or protocol to be secure (the attack goal(s) it

should withstand). For examples of this see Section 3.5.3. (iv) Provide a proof of

security for the scheme or protocol by ‘reducing’ to a known hard computational
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problem. This reduction is explained in what follows.

The reduction shows that the adversary can be transformed to an algorithm that

solves a computational problem that is known to be hard. It does so by simulating

the adversary’s attack environment. The success probability of solving the hard

computational problem can be related to that of the adversary. The very assumption

that the computational problem is hard (in the sense of there being no polynomial

time algorithm in k which can solve it) shows that no adversaries with non-negligible

probability of success can exist.

The security proofs in this thesis require the hash functions used in our schemes

and protocols to be instantiated by random oracles. First formulated by Bellare and

Rogaway [21], this approach allows for the scheme or protocol to be provably secure

in the random oracle model. To understand the origins of this model we next turn

to hash functions.

3.5.1 Cryptographic Hash Functions

Cryptographic hash functions are functions which have many uses in cryptography.

Hash functions can play an important role in implementing and/or proving the se-

curity of PKS schemes, PKE schemes and key agreement protocols.

A hash function H is an efficiently computable algorithm that maps an input x of

arbitrary finite bitlength, to an output H(x) of fixed bitlength n. We next list the

properties of a Collision Resistant Hash Function (CRHF), H, with inputs x, x′ and

outputs y, y′ in the same manner which is described in [114, §9.2.2]:

1. preimage resistance: for essentially all pre-specified outputs, it is computation-

ally infeasible to find any input which hashes to that output, i.e., to find any

preimage x′ such that H(x′) = y when given any y for which a corresponding

input is not known.
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2. 2nd-preimage resistance: it is computationally infeasible to find any second

input which has the same output as any specified input, i.e., given x, to find a

2nd-preimage x′ 6= x such that H(x) = H(x′).

3. collision resistance: it is computationally infeasible to find any two distinct

inputs x, x′ which hash to the same output, i.e., such that H(x) = H(x′).

(Note that here there is free choice of both inputs.)

A CRHF is also sometimes called a strong one way hash function. If the last condition

is not satisfied, the hash function is considered a weak one-way hash function or a

One-Way Hash Function (OWHF). The above description of hash functions although

informal suffices for this thesis. This is because we would not be using the above

definition of a hash function directly in our security proofs, we will return to this topic

in the next section. For relations and separations between formal definitions from a

provable-security viewpoint see Rogaway and Shrimpton [128]. For a brief survey of

the publications which discuss hash function security-notions see [128, Appendix A].

A cryptographic hash function H : X → Z is usually designed to act as a compression

function, mapping elements in X = {0, 1}∗ to elements in Z = {0, 1}n. The hash

function can also be designed to map elements of one group to elements of another

group. In practice, however, mapping between groups is difficult and may require

mapping to some intermediate set and using some deterministic encoding operations

to map to and from the groups. Such a construction was shown for a hash function

mapping the set of binary strings {0, 1}∗ into a group G∗
1 in [33, §4.3] and [36, §3.2].

3.5.2 Random Oracles

To provide a better security assurance than a heuristic one, the concept of ideal

hash functions was introduced. Ideal hash functions are functions whose outputs are

computationally indistinguishable from a random output. The heuristic step in the

random oracle methodology is replacing this ideal H with a member of the family

of all truly random functions from X to Z, chosen uniformly at random. Since all
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queries to H are answered by selecting an output at random, H is now effectively

selected uniformly at random from the family of all functions. When queried on the

same input the oracle is defined to produce the same output, since H (its analogy)

will behave this way in the real world. Hence, in the random oracle model, no

adversary can make use of the underlying structure of the real hash function.

On one hand, provided the adversary has no insight into H, using this black box

idealised approach to model hash functions clearly captures the security essence of

the overall scheme or protocol. Moreover, the abstraction allows for simple efficient

protocols and schemes to be designed and proved secure. On the other hand, critics

of this abstraction argue that, in the real world, no single deterministic polynomial

time function can provide a good implementation of the random oracle. In other

words, they argue that the random oracle methodology is flawed. For more detailed

expositions see [21, 42].

3.5.3 Security notions for PKE

In this section, we define notions of security for standard PKE schemes. First we

define the notion of one-way encryption (OWE), which is a weak notion of security.

In all the definitions, there are two parties, the adversary A and the challenger C.

One-way encryption security for PKE: We say that a PKE scheme is OWE se-

cure if no polynomially bounded adversary A has a non-negligible advantage against

the challenger in the following game:

Setup and Challenge: The challenger takes a security parameter k as input and

runs both the Setup and Key-Generation algorithms. The challenger picks a random

plaintext M ∈ M and computes C∗, the encryption of M under a public key, Kpub,

output by the Key-Generation algorithm. It gives A the resulting parameters params

and a public key Kpub and the ciphertext C∗.
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Guess: After performing some computations, A outputs a guess M ′ ∈ M. The

adversary wins the game if M = M ′. We define A’s advantage in this game to be

Adv(A) := Pr[M = M ′].

The probability is measured over the random bits used by the challenger and the ad-

versary. Next, we define a stronger notion than OWE security. The next definition of

security for a PKE scheme involves indistinguishability of encryptions against a fully-

adaptive chosen ciphertext attacker (the goal-access model pair which corresponds

this security notion is IND-CCA3.4) [16, 64, 126].

Chosen ciphertext security for PKE: We say that a PKE scheme is semantically

secure against an adaptive chosen ciphertext attack (“IND-CCA secure”) if no poly-

nomially bounded adversary A has a non-negligible advantage against the challenger

in the following game:

Setup: The challenger takes a security parameter k as input and runs both the

Setup and Key-Generation algorithms. It gives A the resulting system parameters

params and a public key Kpub output by the Key-Generation algorithm.

Phase 1: Adversary A may make decryption queries on ciphertexts of its choice.

Challenge Phase: Once A decides that Phase 1 is over, it outputs two equal length

plaintexts M0,M1 ∈ M, where M0 6= M1. The challenger now picks a random

bit b ∈ {0, 1} and computes C∗, the encryption of Mb under the public key Kpub.

Ciphertext C∗ is delivered to A.

Phase 2: Now A may make further decryption queries as in Phase 1. However, no

decryption query can be made on the challenge ciphertext C∗ for public key Kpub

that was used to encrypt Mb.
3.4Some authors label CCA as CCA2 (the notion of IND-CCA2 was introduced by [126]), to

contrast it with the non-adaptive chosen ciphertext attack (CCA1) model (the notion of IND-CCA1
was introduced by [120]). The CCA1 model does not allow the adversary access to the decryption
oracle after being offered a challenge ciphertext.
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Guess: Finally, A outputs a guess b′ ∈ {0, 1}. The adversary wins the game if

b = b′. We define A’s advantage in this game to be Adv(A) := 2|Pr[b = b′]− 1
2 |.

The probability is measured over the random bits used by the challenger and the

adversary. The notion of indistinguishability of encryptions against chosen plaintext

attack (IND-CPA) is defined in the same way as IND-CCA, except that the IND-CPA

adversaries are not given any access to a decryption oracle.

3.6 Survey of Pairing-based Schemes

Public Key Cryptography emerged from the ideas of Diffie and Hellman’s seminal

paper [58]. These ideas have been extended in many ways to develop a number of

cryptographic schemes based on the hardness of the CDHP or other hard problems

such as the RSA inversion problem [114, §3.3]. A comparable but more rapidly

moving trend has recently occurred in the field of elliptic curve pairings. This followed

Boneh and Franklin’s paper [32], which introduced to the wider research community

a practical and provably secure ID-PKE scheme. This efficient and simple ID-PKE

scheme allowed for the extension of scope in ID-PKC. Numerous identifier-based

schemes were subsequently developed. A classification of this large body of research

into pairings is represented in Figure 3.5, where identifier-based publications are

represented by rectangular boxes. Non-identifier-based publications are represented

by the curved boxes. Publications in dotted boxes are either superseded by newer,

improved publications, or considered to have a major flaw. Surveys and publications

on the implementation of elliptic curve pairings are not included.

It can be seen in Figure 3.5 that some publications occured before that of Boneh and

Franklin [32]; most importantly the work of Sakai, Ohgishi and Kasahara [133], Joux

[90] and Verheul [147]. Sakai et al. [133] presented a non-interactive identifier-based

key agreement protocol and ID-PKS schemes. In the schemes of Sakai et al., a hash

function is used to map identifiers to elements of a group G∗
1; this function and the

way in which Sakai et al. use pairings is found in many subsequent publications. Joux
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Figure 3.5: Overview of pairing-based publications.
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[90] presented a tripartite protocol whose properties and relation to BF ID-PKE weref

described in Section 3.3.3. Verheul [147] presented a distortion map which maps a

point on the elliptic curve to an unrelated point. The main benefit of doing this was

described in Section 2.3. A second benefit of distortion maps is that they ensure that

both inputs to the pairing map are in a ‘small’ group with compact representation

of elements. Another benefit is that it produces a simpler representation for the

points. This is because only a single group G1 is required, rather than two different

groups (one of which is large), on the left hand side of the pairing map. For example,

this improvement is demonstrated in [147] on Joux’s protocol where one point rather

than two needs to be broadcasted by all three entities. A scheme using a variant

of the ElGamal PKE scheme is also presented in [147] using this modified pairing

map. This scheme allows for an escrow-able encryption service with only one public

key. Sakai, Ohgishi and Kasahara [133] were the first to conceive of and explore the

suitability of pairings to construct identifier-based cryptographic schemes. Boneh

and Franklin [32], however, were the first to construct a provably secure and efficient

ID-PKE scheme, which resulted in the proliferation of ID-PKC. Some concepts from

previous publications were developed, modified and formalised to produce the BF

ID-PKE scheme, whose basic version was presented in Section 3.2.4.1.

Figure 3.5 captures the relationship between various pairing publications (up to the

end of 2003) in cryptography. The schemes in the publications are classified and

placed in the most appropriate column category. The categories of the columns are:

(i) key agreement protocols; (ii) authentication schemes; (iii) hierarchical schemes;

(iv) infrastructure related schemes; (v) encryption schemes; (vi) signature schemes;

and (vii) signcryption schemes. Arrows illustrate some relationships between pub-

lications. Publications at the base of an arrow are cited and thematically originated

from the publications at the head of the arrow.

The following descriptions highlight the evolution of pairing-based schemes3.5:
3.5For an alternative pairing scheme survey see Paterson [122], for ID-PKC surveys which include

many pairing schemes see Kudla [98] and Gagné [72].
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Key agreement protocols: Several protocols have been proposed. These include

identifier-based and group key agreement protocols. Only some of the proposals

provide a comprehensive security treatment.

• Unauthenticated protocols: Joux provides an unauthenticated single round

broadcast protocol [90] which was presented in Section 3.3.3. Duursma

and Lee [67] show how to extend Joux’s protocol [90] for use in an unau-

thenticated group with 3n entities.

• Identifier-based protocols: Amongst other schemes, Sakai, Ohgishi and

Kasahara [133] present a non-interactive identifier-based key agreement

protocol. Dupont and Enge [65], unaware of Sakai et al.’s [133] work, pro-

posed an analogy of the Sakai et al. protocol in the setting of unmodified

pairings. Dupont and Enge’s protocol [65] is proven secure provided that

a certain generalisation of the BDHP is hard, see Section 2.4.2 for details.

Smart [142] designed an identifier-based protocol which used two pairing

computations and showed how to add key confirmation. This protocol

and all of the remaining identifier-based protocols require short-term pub-

lic keys to be exchanged. Smart’s protocol [142] was modified by Chen

and Kudla [50] who presented several protocols, each which provided at

least one of the following improvements: (i) use of only a single pairing

computation; (ii) forward security against the PKG; and/or (iii) interop-

eration of users with identities registered using different PKGs. Shim [137]

provided an alternative protocol to Smart’s protocol [142] and Chen and

Kudla’s protocols [50]. Shim’s protocol [137] uses one pairing computa-

tion. It has been found, however, to be vulnerable to a man-in-the-middle

attack by Sun and Hsieh [144].

Zhang, Lui and Kim’s protocol [151] and Nalla and Reddy’s three pro-

tocols [118] are tripartite identifier-based key agreement protocols. We

observe that these protocols combine ideas from the work of Smart [142]

and Al-Riyami and Paterson [4] (see certificate-based protocols below and

Chapter 9). The security of Nalla and Reddy’s protocols [118], is under-

mined by a man-in-the-middle attack [139] on the first proposed protocol

and more serious passive attacks [52] on the subsequent two protocols.
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Binary [127] or ternary trees [14] are used to construct efficient conference

identifier-based key agreement protocols. The security of the group pro-

tocols is based on the existence of secure identifier-based key agreement

protocols. Barua, Dutta and Sarkar’s protocol [14] uses two and three

party identity key agreement protocols, while Reddy and Nalla’s protocol

[127] uses only a two party identifier-based key agreement protocol.

Scott [134] presents a different kind of authenticated key exchange whose

properties are particularly suited for the Client-Server environment. An

entity using Scott’s protocol is assumed to be using a token in conjunction

with a password.

• Certificate-based protocols: Al-Riyami and Paterson [4] present tripartite

certificate-based key agreement protocols whose one round variants do not

require signatures. One of the protocols was rendered insecure by Shim

[136]; the full attack is covered in Section 9.5.1. In any case, Shim [138]

presented an alternative one round tripartite protocol. Shim’s protocol is

vulnerable to an attack presented by Sun and Hsieh [144]. Moreover, the

protocol cannot be implemented as it does not make mathematical sense

for reasons that are described in Section 9.6.

Authentication schemes: A traitor tracing mechanism, which can trace author-

ized entities who give their keys to unauthorised entities in a broadcast en-

cryption scheme, was introduced by Mitsunari, Sakai and Kasahara [116]. The

scheme’s security is based on the hardness of a problem dubbed the ‘k-weak

Diffie-Hellman problem’, whose hardness remains an open problem.

Kim and Kim [95, 96] present, in two publications, interactive identification

(or entity authentication) protocols. The protocols allow entity A to convince

an entity B, of A’s identifier by proving a private value corresponding to a

public value. Proofs of security for the schemes in [95, 96] are also provided.

Nevertheless, Zhang, Xu and Feng [154] showed that the identification scheme

in [96] is actually insecure against a passive attacker. This attack is always

possible because any entity can trivially impersonate the prover using only

public information. The private value of the prover is not actually required to
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run the protocol successfully. Although the protocol in [95] shares the same

key generation method as in [96], the modified protocol actions in [95] between

the prover and verifier ensures that the attack by Zhang et al. does not work.

Smart [143] shows how to use the BF ID-PKE scheme to construct an access

control mechanism using key calculus techniques to broadcast encrypted data.

The scheme extends the ideas of Boneh and Franklin [32] and Chen et al.

[49] (see identifier-based infrastructure) to create a flexible scheme which is

appropriate for use in access control structures because the workload is shifted

to the decryptor. This work’s contributions can also be categorised as being in

the area of infrastructure related schemes.

Hierarchical schemes: The notion of an identifier-based hierarchy was intro-

duced by Horwitz and Lynn [85]. The motivation for hierarchical schemes

was to improve identifier-based infrastructures by spreading the workload of

a PKG. The hierarchy introduced in [85] consisted of two levels: the upper

level with total collusion resistance and the lower level with partial collusion

resistance. In addition to the partial collusion resistance, another drawback

of the scheme of [85] was that the efficiency of key generation and encryption

decreased proportionally with the number of entities in the system, thus, it was

not truly scalable. The open problem presented by Horwitz et al. was ‘to con-

struct a two-level hierarchical ID-PKE scheme that is totally collusion-resistant

on the lower level and at least partially collusion-resistant on the upper level’

[85, p.479]. Gentry and Silverberg [77] solved this problem, by presenting

a totally collusion-resistant scheme supporting an arbitrary number of levels

which scaled in a natural way. Further improvements were presented in [77]

for two users who are close in the hierarchical tree. The improvement, which

is an extension of the non-interactive identifier-based key agreement protocol

by Sakai et al. [133], required the encryptor to use a dual identity form of the

hierarchical ID-PKE scheme. Both publications [77, 85] present provably se-

cure ID-PKE schemes and the work of Gentry and Silverberg [77] also extends

hierarchy to ID-PKS schemes.

Infrastructure related schemes: The infrastructure surrounding ID-PKC has
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been examined by a number of authors [11, 48, 49, 77, 132]. Applications

of pairings to certificate-based infrastructures can be found in [76, 148]. We

develop a new type of infrastructure in Part II of this thesis. Some work of

that part appears in [7].

• Identifier-based infrastructure: The PKG is considered both the bottle-

neck and single point of failure in an identifier-based public key infrastruc-

ture (ID-PKI). By extending the identifier infrastructure created by the

ID-PKC scheme of [32], Chen et al. [49] provide applications for ID-PKC

and demonstrate how an entity can combine private keys obtained from

multiple PKGs to form a single working private key. The applications

make use of ID-PKC’s cryptographic workflow property which was de-

scribed in Section 3.2.5. Sakai and Kasahara [132] also examine the use

of multiple PKGs and introduce an alternative ID-PKC infrastructure to

[32]. Sakai and Kasahara [132], however, do not provide any security

analysis for any of their efficient schemes. The advantages of using the

ideas of [49, 132] instead of multiple ID-PKE (or ID-PKS) schemes us-

ing different PKGs one after the other, are that the schemes of [49, 132]

offer: (i) computational efficiency; (ii) decryption (or verification) does

not necessarily need to be applied in the opposite order to encryption (or

signing); and (iii) as a consequence of i) and the flexibility of ii), crypto-

graphic workflows between the PKGs are practical. We will be re-visiting

cryptographic workflows in Section 4.6.3.

The mechanisms by which ID-PKC’s PKGs can operate on more than two

levels has been demonstrated in two publications: a pure identifier-based

infrastructure [77]; and a hybrid ID-PKC infrastructure using certificate

chains as in Chen et al. [48] or identifier-based linked TAs. Complementing

ID-PKI with traditional PKI at the higher levels of the hierarchy as in

[48] is a very practical solution for building a general purpose keying

infrastructure because key escrow is eliminated between intermediate TAs,

who most probably: (i) do not need the flexibility of an ID-PKI; and (ii)

are furnished with sufficient resources to manage keys using certificates.

Novel applications presented in both infrastructures [48, 77] use the short
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signature scheme of [36]. The short signature scheme of [36] is described

in the certificate-based signature schemes part of this survey below.

The distributed PKG approach discussed by Boneh and Franklin [32] re-

quires PKGs to share the system’s master-key. This idea was adapted by

Libert and Quisquater in [102] who present a threshold ID-PKE and a

mediated ID-PKE scheme based on the BF ID-PKE. The proof of secur-

ity for the ID-PKE scheme in [102] is proposed in a weaker model than

that of the ID-PKE in Boneh et al. [32], while the proof of security for

the mediated ID-PKE scheme uses the same weak model as that provided

in Ding and Tsudik [60]3.6. Mediated versions of ID-PKC are schemes

where an online security mediator (SEM) keeps part of each user’s private

key. Every decryption and signature generation requires the user to ob-

tain help from the SEM by getting a token related to the user’s private

key. If the SEM is instructed not to help the user, the user’s private key

is effectively revoked.

Dodis and Yung [63] and Baek and Zheng [11] offer an alternative threshold

solution to the Boneh and Franklin solution to the private key escrow prob-

lem by using the distributed PKG approach of threshold cryptography to

share private keys of identifiers instead of the system’s master-key. The

solution by Dodis and Yung [63] makes use of the hierarchical ID-PKE of

Gentry and Silverberg [77] to construct a (n− 1, n)3.7 threshold ID-PKE

scheme. This of course makes the private key more exposure resilient. The

solution by Baek et al. [11] adds identifier-based threshold decryption to

the BF ID-PKE scheme and also provides mediated ID-PKE scheme. This

scheme offers stronger security assurances than the ones presented in [102].

• Certificate-based infrastructure: A solution for multi-show digital certi-

ficates is proposed by Verheul [148] in which an entity constructs from its

original certificate a ‘self-blindable’ un-linkable certificate with the same

attributes as the original certificate.
3.6The work in [60] transforms the mediated schemes of [31] into identifier-based schemes. The

schemes are constructed using an RSA primitive.
3.7A (n − 1, n) threshold encryption scheme distributes the private key amongst n entities and

requires the components from all n entities to decrypt.
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Gentry [76] explores a certificate-based encryption scheme which facilit-

ates an infrastructure for traditional public key cryptography that does

not require certificate revocation. A more brief explanation of [76] is given

in Section 4.3.3 and a detailed explanation is in Section 7.3.

• Other Infrastracture: A new infrastructure coined ‘certificateless public

key cryptography’ is proposed in [7]. This work is presented and extended

in Part II of this thesis.

Encryption schemes: Verheul’s main motivation in [147] was to prove that XTR

(an efficient method or working with a specific subgroup) is more secure than

supersingular elliptic curve cryptosystems. As a by-product of his investig-

ation into this question, Verheul [147, §5.2] described an escrow-able elliptic

curve ElGamal encryption scheme. The BF ID-PKE scheme uses the same

Weil pairing map as the one presented by Verheul and was covered in Section

3.2.4.1. Ideas from the BF ID-PKE scheme formed the basis of at least two

non-identifier based encryption schemes: a certificate-based encryption scheme

[76]; and a certificateless encryption scheme [7] (these were already mentioned

above). The fully forward secure public key encryption schemes in [43, 94]

were built from the hierarchical identifier-based encryption scheme of Gentry

and Silverberg [77]. The scheme by Katz [94] and its corresponding security

analysis were improved in Canetti, Halevi and Katz in [43].

Key-insulated PKE was first introduced and formalised by Dodis et al. [62].

The goal was to minimise the damage caused by private key exposure. The

private keys are stored on insecure devices and are refreshed at fixed time

intervals via interaction with a physically secure device. The physically secure

device stores a master key. The notion of ID-PKE was proved to be equivalent

to that of a (not strong) key-insulted PKE by Bellare and Palacio in [19].

Although this idea was discussed briefly in [62], the work of Bellare and Palacio

in [19] contains a more concrete discussion that utilises the BF ID-PKE scheme

(and hence pairings) to construct a key insulated PKE scheme.

In Dodis et al. [61], the definition and concrete realisation of an intrusion-

resilient PKE scheme are presented. In the definition intrusion-resilient schemes,
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time is divided into periods and the public key remains fixed but the secret

key is periodically updated. Secret information is stored by both a user and a

base and the function of the base is to periodically update the user’s key. The

scheme in Dodis et al. [61] is based on the forward secure PKE scheme of Katz

[94] and extends the key insulation ideas in [62]. This is because intrusion-

resilient PKE schemes are secure even if the base and user are compromised,

as long as they are not compromised simultaneously. Additionally, previous

time periods remain secure even if both user and base are compromised sim-

ultaneously. The scheme in Dodis et al. [61] is proven secure in the standard

model, that is, without random oracles provided that the DBDHP is hard.

Signature schemes: Many interesting signature schemes have been created using

pairings on elliptic curves. They are categorised as either identifier-based or

certificate-based.

• Identifier-based signature schemes: Sakai, Ohgishi and Kasahara [133]

were the first to realise an ID-PKS using pairings. The set up and extrac-

tion method presented in this work is very similar to those presented in

subsequent ID-PKS schemes [47, 82, 83, 105, 123, 150, 152]. The scheme

is not very efficient and does not have a security proof.

Cha and Cheon [47], Paterson [123] and Hess [83] independently produced

ID-PKS schemes at about the same time. Paterson’s scheme [123] and its

security are closely related to that of the generalised ElGamal signature

scheme. The schemes of Cha and Cheon [47] and Hess [83] (unlike the

schemes in [123, 133]) are provably secure (in the random oracle model)

against existential forgery on adaptively chosen message and identities,

provided the CDHP is hard. Security against existential forgery means

that the adversary cannot forge a signature on a single message, where

the adversary has little or no control over that message [114, §11.2.4].

Hess [83] shows how general exponent group signatures schemes (such as

the ElGamal and Schnorr signature schemes) give rise to pairing-based

ID-PKS schemes. Hess [83] compares the efficiency of the first of his four

schemes to the schemes of Cha and Cheon [47] and Paterson [123]. The
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most efficient scheme in [83], scheme 4, should be avoided due to an attack

by Cheon [53]. Hess also proposes the use of multiple PKGs (as in [32])

to mitigate the inherent risk of key escrow in the ID-PKS schemes.

Zhang and Kim [150] produced blind and ring ID-PKS schemes. Blind sig-

nature schemes are interactive two-party protocols which allow an entity

to get a message signed by another entity without revealing any inform-

ation about the message to the other party. Ring signatures are group

signatures without managers which provide anonymity for the signer, since

the signature could have been produced by any entity in the ring. The

security of the schemes is discussed in [150]. Zhang, Safavi-Naini and Lin

[152] constructed proxy ID-PKS, proxy blind ID-PKS and proxy ring ID-

PKS schemes from pairings. These schemes allow the proxy signer to sign

on behalf of the original signer. Applications of proxy ID-PKS schemes

are also described in [152]. Lin and Wu [105] showed how to construct a

ring ID-PKS scheme that is computationally more efficient than the ring

ID-PKS scheme presented by Zhang and Kim [150].

Han, Yueng and Wang [82] constructed an undeniable ID-PKS scheme

and showed that it has the soundness property. Unfortunately, Zhang,

Safavi-Naini and Susilo [153] demonstrated two attacks on it. The most

serious attack allows the attacker to forge a valid confirmer signature of

any ID on an arbitrary message and confirm this signature to the verifier.

Unlike traditional group ID-PKS schemes, Chen, Zhang and Kim [51]

produced a group signature scheme where each user concatenates a public

key and timestamp in the identifier string presented to the PKG. This is

to reduce the level of trust that is needed in the PKG. The set up of this

scheme is similar to that of a certificateless signature scheme (except that

it also includes time as in Gentry’s scheme [76]).

• Certificate-based signature schemes: Boneh, Lynn and Shacham (BLS)

[36] showed how to construct short signatures based on the hardness of

the CDHP. Signing in the BLS signature scheme requires a single multi-

plication in G1 and verification requires two pairing computations. The

BLS signature is novel because it offers a similar level of security to that
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of a DSA signature and requires roughly only half the bits to represent a

signature. The signature is the x coordinate of an element of G1. This

optimisation is possible because the signature uses a point compression

technique – recall Section 2.2. The paper provides guidance on selecting

elliptic curves so that the DDHP in G1 is easy, whilst the CDHP in G1

is hard, that is, G1 is gap group. The fact that DDHP in G1 is a easy is

crucial for the verification of BLS signatures.

As in the BLS scheme, gap groups were used by Boldyreva [28] to construct

efficient threshold signature, multisignature and blind signature schemes.

A (t, n) threshold signature distributes the secret key amongst n entities

and any subset of more than t is required to construct a signature. Lin,

Wu and Zhang [106] used the BLS signature to construct a structured

multisignature scheme that forces the verifier to follow a particular order

of verification which is predetermined by the group of signers.

Boneh, Gentry, Lynn and Shacham [34] introduce the concept of ‘aggreg-

ate signatures’ which allows for a single short signature to be produced

from n signatures on n distinct messages from n distinct users. The

scheme is based on the BLS signature scheme and is useful, for example,

in reducing the size of certificate chains. However, unlike the BLS scheme,

this scheme requires the extra structure provided by the pairing map and

does not work with every gap group. Aggregate signatures are shown to

give rise to verifiably encrypted signatures in [34]. A verifiably encrypted

signature allows the verifier to test whether a ciphertext is the encryp-

tion of a signature on a given message. Boneh, Mironov and Shoup [35]

produced a PKS scheme which is secure in the standard model against

existential forgery under a chosen message attack, provided the CDHP

is hard. This scheme is efficient compared to other signature schemes

provably secure in the standard model.

Signcryption schemes: Signcryption was first proposed by Zheng in [155]. In

[155] Zheng defines signcryption as a cryptographic method that fulfils both

the functions of encryption and signature, but with a cost smaller than that

required when executing a signature then an encryption algorithm. All the
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signcryption schemes except for [38] are more efficient in terms of communica-

tion and computation than a direct composition of the ID-PKE scheme [32] and

a signature. For example, a way this composition can be performed is called

‘encrypt-then-sign’. A direct composition of a encrypt-then-sign identifier-

based scheme provides to the encryption scheme two security services; non-

repudiation and authentication. Generally, since the schemes are more efficient

than this encrypt-then-sign approach, they are considered fairly interesting.

The schemes in [38, 103, 108, 109, 119] are identifier-based and add at least

integrity and authenticity services to the BF ID-PKE scheme [32]. The se-

curity proof of Lynn’s scheme [108] extends that of the BF ID-PKE scheme

[32] by allowing the adversary to select two identities, the encryptor and de-

cryptor. Neither Lynn’s [108] nor Nalla and Reddy’s [119] schemes provide

non-repudiation. Integrity is achieved by both schemes due to the inability

of an attacker to forge ciphertext. For this reason we believe that Nalla and

Reddy’s signcryption scheme is more accurately labelled as an authenticated

encryption scheme. Therefore, it was inaccurate of the authors to compare the

efficiency of their scheme in [119] to that of Malone-Lee [109].

Malone-Lee’s signcryption scheme [109] uses a variant of an ID-PKS scheme

of Hess [83], and reduces the computation of an encrypt-and-sign technique

by one point multiplication. Malone-Lee’s scheme, however, does not achieve

semantic security because the plaintext’s signature can be obtained from the

ciphertext – for more details see [103]. Libert and Quisquater in [103] provided

an identifier-based signcryption scheme that is semantically secure (provided

the BDHP is intractable) and publicly verifiable. The scheme’s efficiency is

comparable to that of Malone-Lee’s scheme.

Boyen’s signcryption scheme [38] is a sign-then-encrypt scheme. A direct com-

position of a sign-then-encrypt identifier-based scheme provides three security

services: confidentiality, unlinkability and anonymity. Boyen’s composition

adds non-repudiation and authentication to the scheme’s security services. In

[38] a formalisation of these properties is presented. Thus, Boyen’s signcryption

scheme differs from Libert et al.’s scheme [103] because it additionally offers

unlinkability and anonymity.
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The reader will have noticed that pairing-based cryptography has rapidly developed

over the last few years. The tremendous rate at which this topic is evolving ap-

pears not to be slowing down. Recently there has been some further developments

in pairing based schemes, the works presented in [18, 29, 30] are some notable ex-

amples. The very rich ‘structure’ pairings provide makes them a very powerful and

flexible tool for cryptographic schemes to be build upon. Hence, this recent surge

in constructing cryptographic schemes from pairings in unsurprising and we anti-

cipate that pairings will give birth to further models for the use of PKC. However,

this prompts the need for more thorough analysis of the theoretical underpinnings

of pairings such as the security of different curves and the security of the BDHP and

its related problems.
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Chapter 4

Certificateless Public Key Cryptography
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In this chapter a new paradigm for public key cryptography, called certificateless

public key cryptography (CL-PKC), is proposed. Based on the key generation method,

all CL-PKC schemes exist in one of two settings. Both settings are analysed and

compared to ID-PKC and traditional certificate-based PKC.
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4.1 Introduction

A major difficulty in developing secure systems based on public key cryptography

is the deployment and management of infrastructures to support the authenticity of

cryptographic keys: there is a need to provide an assurance to the user about the

relationship between a public key and the identity (or authority) of the holder of

the corresponding private key. As we saw in Section 3.2.3, in a traditional PKI this

assurance is delivered in the form of a certificate, essentially a signature by a CA on

a public key. The problems of PKI technology are well documented, see for example

[81]. Of note are the issues associated with certificate management, including re-

vocation, storage, distribution and the computational cost of certificate verification.

These are particularly acute in processor or bandwidth-limited environments [56].

As described in Section 3.2.4, ID-PKC tackles the problem of authenticity of keys

in a different way to traditional PKI. In ID-PKC an entity’s public key is derived

directly from certain aspects of its identity, for example, an Internet protocol (IP)

address belonging to a network host, or an electronic mail (e-mail) address associated

with a user. Private keys are generated for entities by the PKG. In Section 3.2.4.1

we showed an ID-PKC scheme, the BF ID-PKE scheme [32] and we illustrated how

it precipitated the rapid development of ID-PKC in our survey in Section 3.6.

On the one hand the direct derivation of public keys in ID-PKC eliminates the

need for certificates and some of the problems associated with them. On the other

hand the dependence on a PKG, who uses a system-wide master key to generate

private keys, inevitably introduces key escrow to ID-PKC systems. For example,

the PKG can decrypt any ciphertext in an ID-PKE scheme. Equally, if not more

problematic is the notion that the PKG can forge any entity’s signatures in an ID-

PKS scheme, so ID-PKC cannot offer true non-repudiation in the way that standard

PKI can. The escrow problem can be solved to a certain extent by the introduction

of multiple PKGs and the use of threshold techniques, but this necessarily involves

extra communication and infrastructure. Moreover, the compromise of the PKG’s

master key could be disastrous in an ID-PKC system, and is usually more severe
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than the compromise of a CA’s signing key in a traditional PKI. This is because

the PKG’s master key (in addition to being able to compute new private keys) can

be used to compute all the private keys in the system. For example, an adversary

equipped with the PKG’s master key can read previously encrypted communications

and produce valid signatures for any entity without the need to use new identifiers.

In a traditional PKI, the adversary needs to issue a new certificate and get entities

to accept the new public keys in them, before being able to mount any attack. For

these reasons, it seems that the use of ID-PKC may be restricted to small, closed

groups or to applications with limited security requirements.

In this chapter, we introduce a new paradigm for public key cryptography, which

we name certificateless public key cryptography (CL-PKC). The concept of CL-PKC

grew out of a search for public key schemes that do not require the use of certificates,

and yet do not have the inherent key escrow feature of ID-PKC. The solution we

propose enjoys both of these properties. As we shall see, the properties of CL-PKC

are in some sense intermediate between traditional PKI and ID-PKC. We will discuss

the model and properties of CL-PKC, as well as provide several examples of CL-

PKC applications. CL-PKC can be used to support encryption schemes, signature

schemes, key agreement protocols and other public key schemes. A certificateless

encryption scheme is denoted a CL-PKE scheme, whilst a certificateless signature

scheme is denoted a CL-PKS scheme. We will not be presenting any concrete schemes

in this chapter. This chapter, however, puts into context the schemes presented in

Chapters 5 through 8.

Next we define CL-PKC and then discuss publications related to CL-PKC in Sec-

tion 4.3. This is because our concept shares some features with identifier-based

cryptography [32, 135], the self-certificated keys of [78, 124] and Gentry’s recently

proposed certificate-based encryption [76]. In Section 4.4 we outline a general ad-

versarial model for CL-PKC. To understand the functionality of CL-PKC we study

the initial enrolment of entities in Section 4.5 and in Section 4.6 we cover properties

and applications of CL-PKC. A summary and a comparison table of CL-PKC with

traditional PKI and ID-PKC is provided in Section 4.7.
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4.2 Defining CL-PKC

Here we sketch the defining characteristics of CL-PKC (more precisely CL-PKC(A))

which will serve to assist the reader in understanding CL-PKC’s adversarial model

and properties.

A CL-PKC system still makes use of a TA which we name the Key Generating

Center (KGC). By way of contrast to the PKG in ID-PKC, this KGC does not have

access to entities’ private keys. Instead, the KGC supplies an entity A with a partial

private key DA which the KGC computes from an identifer IDA for the entity and

a master key. As before we will equate A with its identifier IDA. The process of

supplying partial private keys should take place confidentially and authentically: the

KGC must ensure that the partial private keys are delivered securely to the correct

entities.

The entity A then combines its partial private key DA with some secret information

xA to generate its actual private key SA. This way A’s private key is not available

to the KGC. The entity A also combines its secret information xA with some public

parameters to compute its public key PA. Note that, in general, A need not be in

possession of SA before generating PA: all that is needed to generate both is the

same secret information. The system is not identifier-based, because the public key

is no longer computable from an identifier alone.

Entity A’s public key might be made available to other entities by transmitting it

along with messages (for example, in a signing application) or by placing it in a

public directory (this would be more appropriate for an encryption setting), but no

further security is applied to the protection of A’s public key. In particular, there is

no certificate for A’s key. To encrypt a message for A or verify a signature from A,

entity B makes use of PA and IDA.

We now sketch a simple modification to the defining characteristics of CL-PKC.

Instead of the KGC computing the partial private key DA from only an identifer
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IDA for the entity and a master key, the partial private key DA is computed from an

identifier IDA, a public key PA for the entity and a master key. With this alteration

on how DA is computed, the process of supplying partial private keys need not

take place confidentially and authentically. We label CL-PKC schemes with this

modification in place as CL-PKC(B) schemes.

A more formal model defining certificateless public key encryption (CL-PKE) will be

given in Section 5.2. Much of this model is also applicable for our other certificateless

primitives. In this chapter, we focus on developing the generic properties of CL-PKC,

without reference to specific certificateless cryptographic primitives such as signature

or encryption.

4.3 Related Work

4.3.1 Identifier-based Cryptography

Our work on CL-PKC owes much to the pioneering work of Boneh and Franklin [32]

on identifier-based public key encryption. Recall that identitifier-based cryptography

and the basic scheme of Boneh and Franklin were described in Section 3.2.4. In fact,

the CL-PKE schemes in Chapters 5, 6 and 8 are derived from their scheme. Our

security proofs require significant changes and new ideas to handle new types of

adversary. Likewise, we will show in Chapter 8 that our certificateless signature, key

exchange and hierarchical schemes arise by adapting existing ID-PKC schemes.

4.3.2 Self Certified Keys

Another alternative to traditional certificate-based PKI called self-certified keys was

introduced by Girault [78]. Girault’s schemes combine characteristics of RSA and

discrete logarithms. The concept of self-certified keys was further developed by
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Petersen and Horster [124] and Saeednia [130]. The schemes presented in [78, 124,

130] are structurally somewhat similar to our CL-PKC schemes. In a self-certified

scheme, an entity chooses its private key x and corresponding public key y and

delivers y to a TA. The TA combines y with the identity ID of that entity to produce

a witness w. This witness may simply be the TA’s signature on some combination

of y and ID as in [78], part of a signature as in [124], or the result of inverting a

trapdoor one-way function based on y and ID [130]. Given w, ID and the TA’s public

key, any party can extract y, while only the TA can produce the witness w from y

and ID. The schemes offer implicit certification, in that the authenticity of a public

key is verified implicitly through the subsequent use of the correct private key.

As in CL-PKC, self-certified keys enable the use of public key cryptography without

certificates. However, it can be argued that the witness in a self-certified scheme is

really just a lightweight certificate linking ID and y. As we shall see, our CL-PKC

schemes do not have such witnesses. The self-certified schemes have an advantage

over some of our CL-PKC schemes in that the communication between an entity and

the TA need not be confidential: there are no partial private keys to be transported

to entities. Moreover, the private key in self-certified systems needs to be chosen

before the public key can be generated, so the elegant applications of ID-PKC to

controlling workflows cannot be realized in self-certified systems. Nor do the self-

certified schemes enjoy security proofs. Indeed Saeednia [131] has recently pointed

out a basic flaw in the scheme of [78] which allows a cheating TA (who knows the fac-

torisation of system-wide values) to extract an entity’s private key; the consequence

is that far larger (and less efficient) parameters are needed to create a secure scheme.

Girault stated in [78] that “Self-certified public keys contribute to reduce the amount

of storage and computation in public key systems.” This primary goal of using

self-certified keys was effectively eliminated by Saeednia’s observation [131]. Fur-

thermore, there is no other benefit using self-certified keys instead of the traditional

certificate-based model Petersen and Horster summarised this in [124] by saying:

“Self-certified keys offer no structural advantage over certificate-based keys, they

offer a concept of equal possibilities for which many useful applications are known.”
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Self-certified keys should not be confused with the related concept of ‘Self Certific-

ation’ [100]. Self certification allows for the explicit authentication of public keys

and proof of possession of private keys. This is done by each entity issuing a cer-

tificate for themselves using their own private key. Self certification has been used

in conjunction with traditional certificate-based PKI [101] (where a signer generates

temporary signing keys) and self-certified keys [100] (where the schemes in [124] are

extended by adding certificates) and there is no reason why it could not also be used

in conjunction with identity based or certificateless infrastructures. Of course some

properties and benefits of these infrastructures are altered due to the addition of

these self certificates.

4.3.3 Gentry’s Certificate-based Encryption Scheme

Recent work of Gentry [76] exploits pairings to simplify certificate revocation in

traditional PKI systems. In Gentry’s model, an entity A’s private key consists of two

components: a first component which that entity chooses for itself and keeps private,

and a component which is time-dependent and is issued to A on a regular basis by

a CA. Matching the two private key components are two public key components.

The first of these is chosen by A while the second can be computed by B using only

some public parameters of the scheme’s CA together with the current time value

and the assumed value of A’s public key. Due to the structure of the certificate-

based encryption (CBE) scheme, entity B is assured that A can only decrypt if he

is in possession of both private components. Thus, the second private component

acts as an implicit certificate for relying parties: one that a relying party can be

assured is only available to A provided that A’s certification has been issued for

the current time period by the CA. This approach provides an implicit revocation

mechanism for PKIs: notice that there is no need for B to make any status checks

on A’s public key before encrypting a message for A; rather B’s assurance that only

A can decrypt comes through trusting the CA to properly update and distribute the

second components of private keys.
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Gentry’s schemes [76] are presented in the context of a traditional PKI model,

whereas our work in this and the next two chapters departs from the traditional

PKI and ID-PKC models to present a new paradigm for the use of public-key cryp-

tography. The CBE scheme’s certificate can be verified like a signature as explicit

proof of certification. If explicit verification is used, many of the analysis presented

in this chapter is inappropriate. However, the two models bear some conceptual

resemblance: both make use of keys that are composed of two parts, one chosen by

an entity for itself and the other derived from a trusted authority. In fact, it may be

possible to modify Gentry’s work [76] to divorce it from the setting of a traditional

PKI. Conversely, we can modify our scheme to provide CBE functionality by the

simple expedient of including a time period (that is, expiry information) and public

keys in identifier strings, we will be showing this in Section 7.4.1. The concrete real-

izations of the two models are different and they are independently developed. Even

so, they are closely related. These issues will be further discussed in Section 7.3.

4.4 An Adversarial Model for CL-PKC

Due to the lack of authenticating information for public keys (in the form of a

certificate, for example), we must assume that an adversary can replace A’s public

key by a false key of the adversary’s choice. This might seem to give the adversary

tremendous power and to be disastrous for CL-PKC. However, we will see that

specific schemes can be developed where an active adversary who attacks in this way

gains nothing useful: without the correct private key, whose production requires the

partial private key and therefore the cooperation of the KGC, an adversary will not be

able to decrypt ciphertexts encrypted under the false public key, produce signatures

that verify with the false public key, and so on. (Formally, in the encryption setting,

the adversary will not be able to decrypt a challenge ciphertext or distinguish the

encryptions of distinct messages of his choice.)

Of course, we must assume that the KGC does not mount an attack of this type:

armed with the partial private key and the ability to replace public keys, the KGC
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could impersonate any entity in generating a private/public key pair and then making

the public key available. Thus, we must assume that while the KGC is in possession of

the master key and hence all partial private keys, it is trusted not to replace entities’

public keys. However, we assume that the KGC might engage in other adversarial

activity, eavesdropping on ciphertexts and making decryption queries, for example.

In this way, users invest roughly the same level of trust in the KGC as they would in

a CA in a traditional PKI. Further explanation on why we use the term roughly here

is made in Section 4.6.5. A formal model for the capabilities of adversaries and a

definition of security for certificateless encryption schemes will be given in Chapters

5 and 6.

4.5 Key Generation Techniques for CL-PKC

Names, e-mail adresses or IP addresses of hosts are often proposed as potential

identifiers IDA. The identifier IDA could additionally include conditions (in the form

of attributes) that A satisfies. For example, the identifier might contain A’s age,

or sex, or date of birth, or even A’s public key PA. Since we wish to examine the

last case in detail, we denote an identifier of A which contains the public key PA,

as IDA‖PA. This will eliminate any ambiguity in our analysis and make explicit the

benefits of including PA.

In Figure 4.1, we illustrate the main differences in the registration processes by

showing the nature of the communication and communication channel in traditional

certificate-based PKC, CL-PKC and ID-PKC. Notice that we have two registration

procedures for CL-PKC, both of which will be explored next. First we will outline

the benefits of excluding PA from the identifier. Then we outline an alternative key

generation technique where PA is included as part of the identifier. As we shall

see, including PA in the identifier enhances the resilience of our schemes against a

cheating KGC and allows for non-repudation of certificateless signatures.
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Figure 4.1: Authentication (or witnessing/enrolling) of entity A by the TA for ID-
PKC, CL-PKC(A), CL-PKC(B) and traditional certificate-based PKC respectively.
Authentications performed by the PKG and KGC, only need to occur before using
the private key.

4.5.1 Identifier Context: Excluding PA

The setting in which public keys are explicitly excluded from the identifiers CL-PKC

will be named CL-PKC(A). Here we assume that the KGC is trusted not to replace

the public keys of users and will only issue one copy of each partial private key to

the correct recipient. This may involve an unacceptable level of trust in the KGC

for some users. This setting also allows users to create more than one public key for

the same partial private key. This property can be desirable in some applications,

but undesirable in others.

An example of a desirable application for CL-PKC(A) is in the construction of simple

key renewal schemes with forward security. For each cryptographic use entity A uses

a unique public key, PA,j , where j ∈ N. Once PA,j is used, entity A updates it to

PA,(j+1). The onetime use of each PA,j ensures that the compromise of one public

key (for example, via the exposure of its private key or part of the private key but

not the exposure of the partial private key) does not result in the compromise of
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any prior public keys. Hence PA,j can be viewed as a short-term key and these

schemes offer forward security. In fact, our schemes extends the notion of forward

security because the compromise of one public key does not result in the compromise

of any other public keys. Moreover, this setting can be used to construct schemes

which are related to key-insulated PKC [62] and intrusion-resiliant PKC [61] – recall

the survey in Section 3.6. The difference, however, is that CL-PKC(A) schemes are

not refreshed by distinct time periods and the public key does not remain fixed.

Instead CL-PKC(A) operates under a somewhat opposite notion to [61, 62] where

the identifier remains fixed and the public key changes. In CL-PKC(A), entity A

is able to create a new private key for each ‘refreshed’ public key without being

forced to re-interact with the TA (KGC), hence, CL-PKC(A) can provide a simple

non-interactive key renewal mechanism.

Also notice that the benefit of using CL-PKC(A) in this way arises for two types of

schemes:

1. Schemes where the public key is easily transported to the party who makes use

of it, for example, CL-PKS schemes and key agreement protocols where the

public keys are included with the signatures or message passes respectively.

2. Schemes where the KGC goes offline or cannot afford to maintain the computa-

tional overhead required to regularly compute new partial private keys. Recall

that the functionality of a PKG is performed by a base station in the model of

[61] and a secure device in the model of [62].

In CL-PKC(A) a cheating KGC can replace an entity’s public key with one for which

it knows the secret value without any fear of being implicated. This is because the

user with the partial private key could also have been responsible for replacing the

public key. Thus, we must assume that no KGC would engage in such an action, and

that users trust the KGC not to do so. Note that this action is not equivalent to a

CA forging a certificate in a traditional PKI: the existence of two valid certificates

would surely implicate the CA (although the CA could perhaps revoke the entity’s

original certificate first). We will discuss this topic in more detail in Section 4.6.5.

89



4.5 Key Generation Techniques for CL-PKC

4.5.2 Identifier Context: Including PA

Here we sketch a simple binding technique which ensures that each user can only

create one public key for which he/she knows the corresponding private key; this

technique transforms CL-PKC(A) to what we call CL-PKC(B). In our technique an

entity A must first fix its secret value, xA, and its public key, PA. The identifier is set

to IDA‖PA. The partial private key DA which is delivered to entity A is derived from

a function with input IDA‖PA and the private key, SA, is derived from a function

with inputs IDA‖PA and xA. We see that this DA and SA are now bound to A’s

choice of public key. This binding effectively restricts A to using a single public key,

PA, since A can only compute a single private key using DA.

In general, with this binding in place there is no longer any need to keep partial

private keys secret: knowledge of the partial private key DA does not help an ad-

versary create the unique private key SA that matches the particular public key PA

which is bound to DA. We note that this property must actually be proved for any

concrete scheme.

This binding technique is particularly important in the context of signatures: it

ensures a stronger form of non-repudiation than is otherwise possible for our certific-

ateless signature scheme in Section 8.4. Without the binding an entity can repudiate

a signature by producing a second private key and claim that the KGC created the

signature using that private key. This is no longer possible with the binding in place:

the existence of two private keys for an identity can only result from the existence

of two partial private keys binding that identity to two different public keys; only

the KGC can create these two partial private keys. Thus, our binding technique can

make the KGC’s replacement of a public key apparent and equivalent to a CA for-

ging a certificate in a traditional PKI. This binding also reduces the degree of trust

that users need to have in the KGC in our certificateless schemes. This is because in

CL-PKC(B) a cheating KGC who replaces an entity’s public key can be implicated

in an event of a dispute. The issue of trust and the issue of non-repudiation will be

examined in more detail in Section 4.6.5.
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4.6 Properties of CL-PKC

In this section we will discuss the issues of revocation, system complexity and trust

in CL-PKC.

4.6.1 Revocation in CL-PKC

There are numerous ways of performing revocation in CL-PKC schemes. Revocation

(of keys) in CL-PKC systems can be handled in the same way as in ID-PKC systems.

In [32, §1.1.1] the idea of appending validity periods (for example, year, date or time)

to identifiers IDA is given as one convenient solution. In the context of CL-PKC, this

ensures that any partial private key, and hence any private key, has a limited shelf-

life. Notice that this technique can be used to send messages into the future. This is

because all entities in the system can assume that the TA would not issue a relevant

partial private key until the appropriate time. So time no acts as trigger for when

the KGC is allowed to check the entities identifier and issue a new partial private key.

Therefore decryption, which requires the partial private key with the correct time,

is only possible after the appropriate time. If the identifier in the partial private

key contains both the public key and validity periods, then the partial private key

becomes a Gentry-like implicit certificate, that is, a type of short lived certificate

system which can have future validity periods.

Alternatively revocation can be performed by revoking the identifier, a component of

the identifier (such as an address attribute), or the public key of a particular entity

using standard certificate-based revocation techniques. For example, this can be done

by deploying a analogue of the online certificate status protocol (OCSP) or variants

of certificate revocation lists (CRLs). Note that the standard revocation techniques

when used in the CL-PKC setting may require less bandwidth than certificate-based

counterparts. This because only public keys and/or identifiers need to be revoked and

not certificates, which are typically larger. This dual way of tackling the revocation

problem in CL-PKC allows for a ‘best of both worlds’ solution to be deployed.
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Finally, by exploring a method of updating private keys (that is, implicit revocation

of private keys) in ID-PKC, we can create an alternative CL-PKC revocation method.

This method reduces the exposure time of the master-key in ID-PKC and is suitable

for users of ID-PKC who require stronger than usual security. The method is straight-

forward: it requires regularly updating the PKC’s public key sP in params (by using

a new s for every month, for example). In ID-PKC each entity will have to re-

establish an authentic and confidential channel with the PKC to obtain a private

key for the updated s – recall Figure 4.1. This interaction is clearly expensive,

therefore, such a solution is impractical. CL-PKC(B), however, only requires an

authentic channel with the KGC. This authentic channel can be reduced to a public

channel if the public key of the entity remains unchanged. This is because when the

entity’s public key remains the same, the KGC knows that only that entity owns

the public key’s matching private key so re-authentication is not required. Hence,

this revocation solution becomes practical because of its low-interaction. Actually

this is a solution for releasing a partial private key only at the right time and is

related to the intrusion-resilient public key [61], key-insulated public key [62] and

certificate-based [76] solutions. See Section 4.6.4 for more examples extending this

low-interactiveness property of CL-PKC.

4.6.2 Certificate Free

It bears repeating that our CL-PKC schemes are certificate-free. CL-PKC eliminates

many of the problems associated with traditional certificate-based PKC. For example:

• CL-PKC storage and communication bandwidth is low because the identi-

fier only contains relevant information; certificate-related redundancies are not

present.

• CL-PKC potentially reduces the computational bandwidth, as certificates do

not need to be verified before the public keys are used.

• CL-PKC offers its users a higher degree of privacy due to its inclusion of only
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relevant information in the identifier. Certificates can contain a lot of poten-

tially irrelevant information (based on application), and with the increase of

identity theft, mitigating the risk of putting personal information (such as an

address or a date of birth) into the wrong hands is highly desirable.

Furthermore, due to the distributive nature of certificates, another inherent property

of certificate-based PKI is its static centralised point of control and static certificate

content. This can be restrictive and is seen to be the root of many business and legal

related problems. For example, entity B cannot initiate any secure communication

with entity A unless A owns a certificate in advance. Furthermore, entity B may

reject using the public key in the valid certificate because it either originated from an

untrusted CA (to B) or because it did not contain the precise information required

by B. Hence, unless entity A knows for sure its certificate will be accepted by B,

it will not get a certificate in advance. Thus, entity A has no incentive to pay for

a certificate except in two scenarios: (i) the certificate is tailored for a very specific

pre-determined application, or (ii) the certificate content is very broad in an attempt

to capture all applications. From the CA’s point of view, the first scenario is ideal

for business, however, it requires some prior communication with B to determine

what B requires A’s certificate to contain. If A wishes to communicate securely with

multiple Bs (who each have different certificate requirements), then A is required

to re-authenticate himself with the CA if each certificate contains a different public

key, we will return to this issue in Section 4.6.4. The second scenario requires the

publication of a single certificate which is neither profitable for the CA nor desirable

for all Bs. These problems can be mitigated by using CL-PKC.

In the CL-PKC setting, entities using the system can easily specify the content of

the identifier (hence, they apply logic into the system) and so they play a more

prominent role in the system. This is related to concept of cryptographic workflow

which was previously discussed in Section 3.2.5. This transforms the role of TAs

from policy pre-distributors (often ‘blanket’ policies) to that of policy enforcers. In

CL-PKC, the public key PA can either be for a specific TA (KGC) chosen by the

public key owner, A, as in standard certificate-based PKC, or any TA (KGC) chosen
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by the entity communicating using the public key, B – provided all KGCs share some

public parameters. Both these settings are examined next.

• Dynamic point of control and identifier content: An encryptor applying some

logic (by adding some conditions, for example) during encryption can pick the

TA and dictate the policy under which the ciphertext he encrypted can be

decrypted. For example, the schemes in Chapter 6 provide this property.

• Static point of control and dynamic identifier content: A decryptor can use a

public key that is restricted to a specific TA and hence dictate the TA with

which he is willing to deal. The encryptor only applies some logic during

encryption which dictates the policy under which the ciphertext he encrypted

can be decrypted. For example, the schemes in Chapter 8 provide this property.

4.6.3 Flexibility via Cryptographic Workflow

It was illustrated in [48, 122, 143] how ID-PKC can be used as a tool to enforce

cryptographic workflows, a concept which we covered in Section 3.2.5. CL-PKC

supports cryptographic workflow in the same way as ID-PKC. Furthermore, a very

similar workflow procedure to that explored in Section 3.2.5 can be constructed using

CL-PKC. To understand the similarities, let us consider the example presented in

Section 3.2.5.1. The problem in this example remains the same, which is that B needs

a simple solution for distributing a serial-number to a customer A in the absence

of a credit card infrastructure. The solution to this problem, however, needs to be

adapted in a minor fashion to take into account A’s public key which is present in the

CL-PKC setting. The only difference in the solution is that B additionally includes

A’s public key in the encryption stage and that a partial private key DA is obtained

from the KGC – instead of dA from the PKG. Now DA is used to compute SA, which

in turn is used to decrypt the ciphertext containing the serial-number. Notice that

everything else including the identifier, ‘IDA‖paid B $X’, remain unchanged.

Unlike in ID-PKC, in the above example the TA cannot escrow all communications.
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Moreover, the consequences of a master key compromise are far less disastrous for

both the TA and B. After all, the livelihood of B may rest on the fact that its serial-

numbers remain confidential. In the case where a certificate-based PKI is used, no

elegant solution exists unless we use a specialised payment infrastructure such as

credit card infrastructure. In the absence of any additional payment infrastructure,

one solution is for A to obtain all the conditions that B will require in advance,

then apply for a one time certificate containing all these suitable conditions. The

certificate CertA has to be obtained first, since only after its successful verification will

B encrypt the serial-number with the public key Kpub,A. Notice that extra rounds of

communication are required. Alternative solutions involving secret sharing between

B and the CA are also not as elegant as the one using CL-PKC demonstrated above.

4.6.4 Low Interaction

We have already described in Section 4.5.1 how CL-PKC(A) can be used to provide

a non-interactive key renewal mechanism. Nevertheless, CL-PKC is generally con-

sidered more interactive when compared with ID-PKC: after all some ID-PKC schem-

es are non-interactive. However, in the next example we show a surprising result,

which is that a certificateless public key signature (CL-PKS) scheme can require less

interaction when compared with either a standard certificate-based PKS scheme or

an ID-PKS scheme. This benefit always holds for situations where the signing entity

reuses the same public key with different identifiers. Moreover, the CL-PKS scheme

has better non-repudiation properties when compared to ID-PKS schemes.

4.6.4.1 An Example Use of a CL-PKS Scheme

In the scenario below we exploit the low interactiveness of CL-PKS schemes.

Problem: Entity A (for example, a manager) needs to sign many documents. Each

document, however, needs to be signed using a different policy. Policies frequently
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change and some policies could be conflicting. The policy could include fields such

as role of the signer, date of policy, liabilities and penalties etc.

Solution: Using a CL-PKS scheme, set the identifier of A to be ‘IDA‖policyi‖PA’.

Entity A authenticates himself to the KGC once with the identifier ‘IDA‖policy1‖PA’

using the communication channels illustrated for CL-PKC in Figure 4.1 to obtain

DA,i for i = 1. All subsequent partial private keys with different policies required

during signing can be obtained from the KGC by simply using public channels as

long as the same PA is included in the identifier. This is because only IDA owns PA’s

matching xA. The KGC can check whether entity A with identity string IDA satisfies

(or continues to satisfy) each new policy before issuing a new DA,i for i ≥ 2.

Analysis: The signature and verification procedure is just like that used in ID-

PKS schemes. The reason this CL-PKS scheme is considered less interactive than

an ID-PKS is because no additional authentication is required when requesting new

partial private keys. Moreover, private channels are not required to distribute the

new partial private keys. An additional property of CL-PKS schemes is that they

provide non-repudiation, unlike ID-PKS schemes.

In context of traditional PKI, if we allow a CA to produces two certificates CertA,1

and CertA,2 with different policies (for example, policy1 and policy2) for a single

public key Kpub,A, then potential problems are created. This is because the two

policies in the certificates can be contradictory and during disputes the verifier (or

signer) can claim that Kpub,A (or Kpriv,A) was used under the certificate CertA,2 and

not CertA,1. This problem arises because the binding between the policy and public

key in standard certificate-based cryptography is not as explicit as in CL-PKC. Of

course if different values of Kpub,A are used for each policy, then a new Kpub,A,i needs

to be computed each time by A. However, for each Kpub,A,i, entity A needs to re-

authenticate himself to the CA, and provide a proof of possession of the private key

matching Kpub,A,i.

96



4.6 Properties of CL-PKC

4.6.5 Trust, Non-repudiation and Cryptographic Evidence

Trust is a fundamental resource which needs to be explicitly defined in any new cryp-

tographic system. It is particularity important to understand the trust relationships

between entities and their TAs in public key systems. Girault [78] presented a simple

formalisation of trust in public key systems making use of a TA by defining three

levels of trust, which are:

• Trust Level 1: The TA knows (or can easily compute) entities’ private keys.

The TA can impersonate any entity at any time without being detected.

• Trust Level 2: The TA does not know (or cannot easily compute) entities’

private keys. However, the TA can still impersonate an entity by generating

false guarantees using false authentication.

• Trust Level 3: The TA does not know (or cannot easily compute) entities’

private keys. The TA can still impersonate any entity, however, the fraud of

the TA can be detected.

A CA in traditional certificate-based PKI is often assumed not to issue new certific-

ates binding arbitrary public keys and entity combinations of its choice. This is so

the CA does not bind public keys where it knows the corresponding private key. In

a traditional PKI, if the CA forges certificates, then the CA can be identified as hav-

ing misbehaved through the existence of two valid certificates for the same identity.

Hence, traditional PKIs achieve Trust Level 3. By contrast, ID-PKC only achieves

Trust Level 1 because the PKG knows every entity’s private key. It is instructive to

examine the Trust Level that is achieved by CL-PKC. When compared to ID-PKC

the trust assumptions made of the TA (that is, KGC) in CL-PKC are much reduced:

in ID-PKC users must trust the PKG not to abuse its knowledge of private keys in

performing passive attacks, while in CL-PKC users need only trust the KGC not

to actively propagate false public keys. In our CL-PKC(A) schemes a new public

key could have been created by the legitimate user or by the KGC, and it cannot
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be easily decided which is the case. This means that our CL-PKC(A) schemes only

achieve Trust Level 2. Notice that using a self certificate (recall Section 4.3.2) does

not improve the fundamental trust relationship (that is, Trust Level) between each

entity and the TA in CL-PKC(A). This is because the KGC can still impersonate any

entity by generating false self certificates. Furthermore, self certificates generated by

the entities are indistinguishable from the self certificates generated by the KGC.

As we have seen in Section 4.5.2, we can further strengthen security against a ma-

licious KGC in our schemes by allowing entities to choose identifiers, which bind

together their public keys and identities. Now the existence of two different working

public keys for the same identity will identify the KGC as having misbehaved. By

a ‘working’ public key we mean that the private key operation matching the public

key has been executed. The existence of two working public keys for an identity can

only result from the existence of two partial private keys binding that identity to two

different public keys; only the KGC can create these two partial private keys. With

this binding in place, CL-PKC(B) reaches a higher trust level than CL-PKC(A). The

Trust Level attained by CL-PKC(B) is between Trust Level 2 and Trust Level 3. We

explain below why CL-PKC(B) does not fully attain Trust Level 3, but first we take

a closer look at encryption schemes in a traditional PKI.

A dishonest CA in standard PKC can be detected trying to impersonate A if it issues

a new certificate binding its public key to A’s identifier string. This new certificate

contains the CA’s chosen public key, Kpub,CAA
, and will have the form:

CertCAA
= (IDA‖Kpub,CAA

‖Σ(IDA‖Kpub,CAA
),Kpriv,CA).

Entity B encrypts for entity A using the (false) public key Kpub,CAA
from CertCAA

;

the CA can decrypt the ciphtertext with Kpriv,CAA
and then re-encrypt using A’s

original public key, Kpriv,A, from CertA. Note here that the private key of the CA,

Kpriv,CA, which is used for signing certificates is not the same as the private key

used in the impersonation, that is, Kpriv,CAA
. Entities A and B can only see that

an attack has taken place if they later compare the certificate that B verified before

encrypting to A with the certificate A owns. The attack is detectable only if A and
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B suspect it has taken place. The evidence is the CA’s signature on the false public

key. Since certificates are intended to be public and readily available, this evidence

is easily gathered by A or B.

Now let us examine the same set of issues for CL-PKC(B). A misbehaving KGC

in CL-PKC(B) can be detected trying to impersonate A if it issues for itself a new

partial private key, binding its chosen public key PCAA
to A’s identifier string. This

new partial private key will be produced by a key generation function with input

IDA‖PCAA
, instead of input IDA‖PA. Entity B encrypts for A using the public key

PCAA
; the CA can decrypt and then re-encrypt using A’s original public key, PA.

Entities A and B can only see that an attack has taken place if they later compare

the public key that B used in encrypting to A with the public key A has. The attack

is detectable only if A and B suspect it has taken place. If the partial private key is

public, the evidence implicating the KGC is the false partial private key. However,

unlike the situation with a traditional PKI, we cannot assume that the partial private

key is always accessible. It may well be available in a CL-PKC(B) scheme, but there

is no guarantee of this for A or B.

When the partial private key is not public, then evidence implicating the KGC is a

single message encrypted with two different working public keys. One cannot simply

implicate the KGC when the same message is found to be encrypted with two different

public keys, by claiming that entity A has one working public key, and the KGC has

the other. This is because the evidence can be disputed by the KGC, as it cannot

be always assumed that entity B is an honest participant. A dishonest participant

B could encrypt the same message once with PA and send it to A and then encrypt

the message with P ′
A. If we assume that B is honest, then when A and B meet, B

can claim that it only encrypted the message using P ′
A. The KGC is then implicated

because it is the only entity that could have translated the ciphertext which B

encrypted using P ′
A to one which uses the correct public key, PA, by decrypting and

re-encrypting. Hence, the binding does not make the Trust Level of the CL-PKC(B)

encryption scheme identical to that of certificate-based PKC: rather, it rests slightly

below Trust Level 3, and the exact level depends on the availability of partial private
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keys and the honesty of participants. This motivates us to redefine Trust Level 3 as

follows: “The TA does not know (or cannot easily compute) entities’ private keys.

The TA can still impersonate any entity, however, the fraud of the TA can always

be detected.” Thus, on their own, CL-PKC(B) encryption schemes do not achieve

Level 3, while certificate-based PKC schemes do.

Now we consider the Trust Level for primitives other than encryption. Any commu-

nication which offers a proof of possession (PoP) of the private key corresponding

to the public key, such as a signature or communication using keys agreed in an

authenticated key agreement protocol, will provide evidence of a working public key

which can be used to implicate the KGC. Consequently, any CL-PKC(B) scheme in

which the cryptographic primitive is accompanied by a PoP of the private key will

automatically achieve Trust Level 3, since the entities are always able to implicate

the KGC.

The levels of trust defined in this section are related to non-repudiation (see p.37 for

a definition). CL-PKC(B) schemes which achieve Trust Level 3, such as a signature

scheme, automatically provide non-repudiation. This is because non-repudiation,

which in essence is the inability of an entity to deny having used the private key

(known only to himself), can only be attained with Trust Level 3 schemes.

Another important link between Trust Level 3 and non-repudiation arises because an

entity will have to convince a court (or a legal system) of the TA’s wrong doing and

the court’s decision will be based upon the evidence. This legal process is expensive,

and so it is only practical for som cases. Furthermore, in cases where secrets are lost

(often associated with encryption and key agreement), the legal process is insufficient,

since compensation is usually irrelevant. If the legal process will not be used (or does

not exist), the main advantage of deploying a Trust Level 3 encryption scheme instead

of Trust Level 2 encryption scheme diminishes.
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4.6.6 Interoperability of CL-PKC Implementation

As will become apparent, the CL-PKC schemes in this thesis are very closely related

to existing pairing-based ID-PKC schemes. One consequence of this is that any

infrastructure deployed to support pairing-based ID-PKC, for example, a PKG can

also be used to support our CL-PKC schemes: in short, the two types of schemes can

easily co-exist. In fact, an entity can be granted a private key for a pairing-based ID-

PKC scheme and immediately convert it into a private key for our CL-PKC scheme.

In this way, an entity who wishes to prevent the PKG from exploiting the escrow

property of an identifier-based system can do so, although, at the cost of losing the

identifier-based nature of its public key.

4.6.7 Efficiency

All the schemes we present in Chapters 5, 6 and 8 use a small number of pairing cal-

culations for each cryptographic operation, some of which can usually be eliminated

when repeated operations involving the same entities (identifiers) take place. Public

keys are usually small in size because they are elements of G1, which is usually a

subgroup of the group of points on an elliptic curve of moderate size.

The infrastructure needed to support CL-PKC is lightweight when compared to a

traditional PKI. This is because, just as with ID-PKC, the need to manage certific-

ates is completely eliminated. This immediately makes CL-PKC attractive for low-

bandwidth, low-power situations, for example, mobile security applications, where

the need to transmit and check certificates has been identified as a significant limit-

ation [56]. Note, however, that the signature schemes enjoying very short signatures

[36] could also be used to significantly decrease the size of certificates and create a

lightweight PKI.
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4.7 Summary of CL-PKC

In this chapter we introduced the concept of certificateless public key cryptography, a

model for the use of public key cryptography that complements (and is intermediate

between) the identity-based approach and traditional PKI.

ID-PKC CL-PKC(A) CL-PKC(B) Trad. PKC
Certificate-free Yes Yes Yes No
Cryptographic Workflow Yes Yes Yes No
Level of Trust 1 2 2/3(i) 3
Non-repudiation of Sig. No No(ii) Yes Yes
Non-interactive(iii) Yes No(iv) No No

Table 4.1: Comparison of the properties of traditional PKC, CL-PKC and ID-PKC.

(i) Trust Level 3 is achieved provided any of the following three conditions are true: the
scheme provides a PoP of the private key; the partial private key is public; or the
entity communicating by using the public key is assumed to be honest.

(ii) To create a signature, the KGC in CL-PKC(A) also needs to replace the public key
of the entity before signing a message. In ID-PKC, the PKG produces a signature by
using the entity’s private key. Since the PKG in ID-PKC does not need to alter any
value in the system, the two notions of non-repudiation for CL-PKC(A) and ID-PKC
are not identical.

(iii) Note that non-interactive schemes, although desirable, cannot produce forward secure
schemes. Non-interactivity is only relevant for key agreement and encryption schemes.

(iv) Not non-interactive in the usual sense, however, it produces a mechanism for non-
interactive key renewal – see Section 4.5.1.

A summary of CL-PKC’s core properties can be found in Table 4.1 and the nature of

CL-PKC’s witnessing channel was illustrated in Figure 4.1. Moreover, we explained

in Sections 4.6.1 and 4.6.4 why entity A does not always need an authentic channel

when communicating with the KGC in CL-PKC(B) in Figure 4.1. For example, we

showed in Section 4.6.4 how repeated interactions with the KGC using the same

public key can eliminate the need for re-authentication. CL-PKC has other distinct

properties, which were demonstrated by the examples in Sections 4.5 and 4.6.3. The

use and applications of identifiers in CL-PKC allows for a granular approach to many

problems. The identifiers we used are very simple and it can be adapted to benefit
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many different real world operations and processes.

To summarise, Shamir in [135, p. 47] stated when discussing the idea of ID-PKC :

The scheme is ideal for closed groups of users such as executive of multina-

tional company or the branches of a large bank, since the headquarters

of the corporation can server as a key generation center that everyone

trusts. . . .

Many of the ideas and twists for ID-PKC carry forward to CL-PKC, however, the

implicit restrictions of ID-PKC captured by using the word ‘closed’ does not hold

in CL-PKC and this is to do with ‘trust’. The underlying trust model of CL-PKC

was examined and analysed in this chapter. As a result, the converse word ‘open’ is

more appropriately describes CL-PKC because, for example, properties such as true

non-repudiation is seldom required in closed groups.

Now that we have outlined the general properties of CL-PKC, we briefly consider

examples of specific CL-PKE schemes. In Chapter 5 we will consider a simple CL-

PKE scheme which is secure in a weak model. This CL-PKE scheme is built upon

in Chapter 6, where we will provide a CL-PKE scheme which is secure in a stronger

model. Furthermore in Chapter 6, we demonstrate some generic CL-PKE schemes

that make use of any ID-PKE scheme and any standard PKE scheme. To round off

the subject of CL-PKC, in Chapter 8 we derive some further examples of certific-

ateless schemes. These schemes all share a common setting. A scheme’s satisfactory

deployment is related to its functionality and overall performance. If public keys can

used naturally (in efficient schemes) in conjunction with conditions and workflows,

then the ideas discussed in this chapter can achieve their full potential.

103



Chapter 5

CL-PKE – OWE Security
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In this chapter we define the concept of certificateless public key encryption (CL-

PKE). To illustrate CL-PKE, we focus on a simple construction that is secure in a

weak model. This chapter will serve as a building block for the sequel, in which we

will construct a CL-PKE scheme that is secure in a much more robust model.

5.1 Introduction

The only way to make concrete the concepts in Chapter 4 is by presenting actual

CL-PKC schemes. Proposing a simple and yet practical certificateless public key en-
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cryption (CL-PKE) scheme, the subject of this chapter, is an important advancement

of CL-PKC.

One of the main contributions of this chapter is the precise definition of the concept

of CL-PKE in Section 5.2. Another important contribution is a set of security res-

ults which will be reutilised in Chapter 6. This will make the next chapter easier to

follow and will familiarise the reader with many provable security techniques. Fur-

thermore, the simple CL-PKE scheme of this chapter will help the reader understand

the concept of CL-PKC and our other CL-PKE schemes.

We will study an adversarial model for CL-PKE in Section 5.3. The adversarial

model is a one-way encryption model (OWE). It captures an adversary who can

replace public keys and another who has access to the master key (but does not

replace public keys). We then consider a simple and computationally efficient CL-

PKE scheme in Section 5.4. We prove that it is secure in our OWE security model,

provided that the BDHP is hard, in Section 5.5. Note that this scheme was not

presented in [6]. The OWE model is weak, and may not be appropriate for all

applications. Ultimately, we will prove the security of a related CL-PKE scheme in

a stronger model in the next chapter.

5.2 Certificateless Public Key Encryption

In this section we present a formal definition for certificateless public key encryption

(CL-PKE). We also examine the capabilities which may be possessed by adversaries

against a CL-PKE scheme and from this, derive a security model for CL-PKE. This

security model used in this chapter will serve as a building block for the stronger

model presented in Chapter 5.

A CL-PKE scheme is specified by seven randomized algorithms: Setup, Partial-

Private-Key-Extract, Set-Secret-Value, Set-Private-Key, Set-Public-Key, Encrypt and

Decrypt. We describe the function of each of these algorithms in turn.
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Setup: This algorithm takes security parameter k as input and returns the system

parameters params and master-key. The system parameters includes a description of

the message space M and ciphertext space C. Usually, this algorithm is run by the

KGC. We assume throughout that params are publicly and authentically available,

but that only the KGC knows master-key.

Partial-Private-Key-Extract: This algorithm takes params, master-key and an identifier

for entity A, IDA ∈ {0, 1}∗, as input. It returns a partial private key DA. Usually

this algorithm is run by the KGC and its output is transported to entity A over a

confidential and authentic channel.

Set-Secret-Value: This algorithm takes as inputs params and an entity A’s identifier

IDA as inputs and outputs A’s secret value xA.

Set-Private-Key: This algorithm takes params, an entity A’s partial private key DA

and A’s secret value xA as input. The value xA is used to transform DA into the

(full) private key SA. The algorithm returns SA.

Set-Public-Key: This algorithm takes params and entity A’s secret value xA as input

and from these constructs the public key PA for entity A.

Normally both Set-Private-Key and Set-Public-Key are run by an entity A for itself,

after running Set-Secret-Value. The same secret value xA is used in each. Separating

them makes it clear that there is no need for a temporal ordering on the generation

of public and private keys in CL-PKE. Usually, A is the only entity in possession of

SA and xA, and xA will be chosen at random from a suitable and large set.

Encrypt (ECL): This algorithm takes as inputs params, a message M ∈ M, and the

public key PA and identifier IDA of an entity A. It returns either a ciphertext C ∈ C
or the null symbol ⊥ indicating an encryption failure. Such a failure will always

occur in the event that PA does not have the correct form5.1. In our scheme, this is
5.1The encryption schemes in [6] and Chapter 8 could fail for reasons to do with the structure of

the public key.
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the only way an encryption failure will occur. We write {C,⊥} ← ECL(M,PA, IDA).

Decrypt (DCL): This algorithm takes as inputs params, C ∈ C, and a private key SA.

It returns a message M ∈ M or a message ⊥ indicating a decryption failure. We

write {M,⊥} ← DCL(C,SA).

Naturally, we insist that output M should result from applying algorithm Decrypt

with inputs params, SA on a ciphertext C generated by using algorithm Encrypt with

inputs params, PA, IDA on message M . In other words:

DCL(ECL(M,PA, IDA), SA) = M.

5.3 OWE Security Model for CL-PKE

Given this formal definition of a CL-PKE scheme, we are now in a position to define

one-way encryption (OWE) adversaries for such a scheme. A formal description of

OWE security for standard PKE schemes can be found in Section 3.5.3; our definition

of OWE security for CL-PKE builds on this definition. The usual models for security

of PKE were strengthened for ID-PKC in [32] to handle adversaries who can extract

the private keys of arbitrary entities and who choose the identifier IDch of the entity

on whose public key they are challenged. This extension is appropriate because

the compromise of some entities’ private keys should not affect the security of an

uncompromised entity’s encryptions. It also shows that the scheme is secure in the

presence of colluding entities.

Here, we further extend the model of [32] to allow adversaries who can extract

partial private keys, private keys, or both, for identities of their choice. Given that

our scheme has no certificates, we must further strengthen the model to allow for

adversaries who can replace the public key of any entity with a value of their choice.

We must also consider carefully how a challenger should respond to key extraction

for identities whose public keys have been changed.
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In the next chapter, we will consider an even stronger adversary who can also decrypt

arbitrary ciphertexts of his choice.

Here we provide a list of the actions that a general adversary against a CL-PKE

scheme may carry out and a discussion of how each action should be handled by the

challenger for that adversary.

1. Extract partial private key of A: Challenger C responds by running al-

gorithm Partial-Private-Key-Extract to generate the partial private key DA for

entity A.

2. Extract private key for A: As in [32], we allow our adversary A to make

requests for entities’ private keys. If A’s public key has not been replaced then

C can respond by running algorithm Set-Private-Key to generate the private

key SA for entity A (first running Set-Secret-Value for A if necessary). Also as

in [32], we insist that A does not at any point extract the private key for the

selected challenge identifier IDch. In [6], we argued that it was unreasonable to

expect C to be able to respond to an extract private key query if A has already

replaced A’s public key. We always disallowed this in the model essentially

because it would be impossible to simulate. Even if it were possible to simulate

this for the schemes in [6], it would not (immediately) lead to an attack on those

schemes. However, in the scheme of this chapter (and Chapter 6) it does lead

to an attack. Therefore, the grounds on which we adopt this restriction in

our model has altered from [6] – this is a subtle but important point. Let us

consider heuristically why an attack could exist for the scheme in this chapter.

The private key consists of two separate components: a partial private key

(corresponding to a particular identity) and a secret value (corresponding to

a particular public key). Here, if and adversary A is, for example, allowed to

replace the public key for any identifier ID with the challenge public key, Pch,

then A can derive from the private key for identifier ID the secret value xch

corresponding to Pch by making an extract private key request on ID. Then if

A makes a partial private key request on IDch, A can construct the private key

of IDch from the partial private key and the secret value xch.
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3. Request public key of A: Naturally, we assume that public keys are available

to A. On receiving a first request for A’s public key, C responds by running al-

gorithm Set-Public-Key to generate the public key PA for entity A (first running

Set-Secret-Value for A if necessary).

4. Replace public key of A: Adversary A can repeatedly replace the public

key PA for any entity A with any value P ′
A of its choice. We assume here that

the adversary’s choice P ′
A is a valid public key; this assumption can be removed

(and our schemes remain secure) at the cost of some additional complexity in

our definitions. The current value of an entity’s public key is used by C in

any computations (for example, preparing a challenge ciphertext) or responses

to A’s requests (for example, replying to a request for the public key). We

insist that A cannot both replace the public key for the challenge identifier

IDch before the challenge phase and extract the partial private key for IDch in

some phase – this would enable A to receive a challenge ciphertext under a

public key for which it could compute the private key.

We also want to consider adversaries who are equipped with master-key, in order to

model security against an eavesdropping KGC. As discussed in Section 4.1, we do

not allow such an adversary to replace public keys: in this respect, we invest in the

KGC a similar level of trust as we do in a CA in a traditional PKI – recall Section

4.6.5. So we will distinguish between two adversary types, with slightly different

capabilities:

CL-PKE Type I OWE Adversary: Such an adversary AI does not have access

to master-key. However, AI may request public keys and replace public keys with

values of its choice and extract partial private and private keys for all for identities of

its choice. As discussed above, we make several natural restrictions on such a Type

I adversary:

1. Adversary AI cannot extract the private key for IDch at any point.

2. Adversary AI cannot request the private key for any identifier if the corres-
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ponding public key has already been replaced.

3. Adversary AI cannot both replace the public key for the challenge identifier

IDch before the challenge phase and extract the partial private key for IDch in

some phase.

CL-PKE Type II OWE Adversary: Such an adversary AII does have access to

master-key, but may not replace public keys of entities. Adversary AII can compute

partial private keys for itself, given master-key. It can also request public keys and

make private key extraction queries for identities of its choice. The restrictions on

this type of adversary are:

1. Adversary AII cannot replace public keys at any point.

2. Adversary AII cannot extract the private key for IDch at any point.

One-way encryption security for CL-PKE: We say that a CL-PKE scheme is

OWE secure if no polynomially bounded adversary A of Type I or Type II has a

non-negligible advantage against the challenger in the following game:

Setup: The challenger takes a security parameter k as input and runs the Setup

algorithm. It gives A the resulting system parameters params. If A is of Type I,

then the challenger keeps master-key to itself, otherwise, it gives master-key to A.

Phase 1: Adversary A issues a sequence of requests, each request being either a

partial private key extraction, a private key extraction, a request for a public key or

a replace public key command for a particular entity. These queries may be asked

adaptively, but are subject to the previously defined rules on adversary behaviour.

Challenge Phase: Once A decides that Phase 1 is over it outputs an identifier IDch

on which it wishes to be challenged. Again, the adversarial constraints given above

apply. In particular, IDch cannot be an identifier for which the private key has been
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extracted. Moreover, if A is of Type I, then IDch cannot be an identifier for which

both the public key has been replaced and the partial private key extracted. The

challenger now picks a random plaintext M ∈ M and computes C∗, the encryption

of M under the current public key Pch for IDch. Then C∗ is delivered to A.

Phase 2: Now A issues a second sequence of requests as in Phase 1, again subject

to the rules on adversary behaviour above. In particular, no private key extraction

on IDch is allowed, and, if A is of Type I, then the partial private key for IDch cannot

be extracted if the corresponding public key was replaced in Phase 1.

Guess: Finally, A outputs a guess M ′ ∈ M. The adversary wins the game if

M = M ′. We define A’s advantage in this game to be Adv(A) := Pr[M = M ′].

Notice that the definition of OWE for standard PKE is similar to that for CL-PKE. In

CL-PKE we additionally have extraction queries, request/replace public key queries

and the adversary is challenged on an identifier/public key pair of its choice – not a

random public key.

5.4 A CL-PKE Scheme with OWE Security

The algorithms for BasicCL-PKE, our OWE secure CL-PKE scheme, are as follows:

Setup: This algorithm runs as follows:

1. Run IG on input k to generate output 〈G1, G2, ê〉. Recall the definition of IG
in Section 2.4.1.

2. Choose an arbitrary generator P ∈ G1.

3. Select a random master-key s ∈ Z∗
q and set P0 = sP .

4. Choose cryptographic hash functions H1 : {0, 1}∗ → G∗
1, H2 : G2 → {0, 1}n

and H5 : G1 → {0, 1}n. Here n will be the bit-length of plaintexts.
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The system parameters are params = 〈G1, G2, ê, n, P, P0,H1,H2,H5〉. The master-

key is s ∈ Z∗
q . The message space is M = {0, 1}n and the ciphertext space is

C = G1 × {0, 1}n.

Partial-Private-Key-Extract: This algorithm takes as input an identifier IDA ∈ {0, 1}∗,
and carries out the following steps to construct the partial private key for entity A

with identifier IDA:

1. Compute QA = H1(IDA) ∈ G∗
1.

2. Output the partial private key DA = sQA ∈ G∗
1.

The reader will notice that the partial private key of entity A here is identical to

that entity’s private key in the BF ID-PKE scheme described in Section 3.2.4.1. Also

notice that A can verify the correctness of the Partial-Private-Key-Extract algorithm

output by checking ê(DA, P ) = ê(QA, P0). Observe that DA is actually a BLS

signature [36, §3] on an identifier string. In fact, DA forms a certificate only if the

identifier string binds an identity and a public key. Certificates should be publicly

available so that they can be verified by any entity.

Set-Secret-Value: This algorithm takes as inputs params and an entity A’s identifier

IDA. It selects a random xA ∈ Z∗
q and outputs xA as A’s secret value.

Set-Private-Key: This algorithm takes as inputs params, entity A’s partial private

key DA and A’s secret value xA ∈ Z∗
q . The output of the algorithm is the pair

SA = 〈DA, xA〉. So the private key for A is just the pair consisting of the partial

private key and the secret value.

Set-Public-Key: This algorithm takes params and entity A’s secret value xA ∈ Z∗
q

as inputs and constructs A’s public key as PA = xAP . A valid public key is any

PA ∈ G∗
1.

Encrypt: To encrypt M ∈ M for entity A with identifier IDA ∈ {0, 1}∗ and a public
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key PA, perform the following steps:

1. Check that PA is in G∗
1, if not output ⊥ . This checks the validity of the public

key.

2. Compute QA = H1(IDA) ∈ G∗
1.

3. Choose a random value r ∈ Z∗
q .

4. Compute and output the ciphertext:

C = 〈U, V 〉 = 〈rP,M ⊕H2(ê(QA, P0)r)⊕H5(rPA)〉.

Decrypt: Suppose C = 〈U, V 〉 ∈ C. To decrypt this ciphertext using the private key

SA = 〈DA, xA〉, compute and output

V ⊕H2(ê(DA, U))⊕H5(xAU).

When C is a valid encryption of M using PA and IDA, it is easy to see that decrypting

C using SA = 〈DA, xA〉 will result in an output M . This concludes the description

of BasicCL-PKE.

5.5 Security of the BasicCL-PKE Construction

In order for us to prove the security of BasicCL-PKE we need to introduce two stand-

ard PKE schemes: ElG-BasicPub and BF-BasicPub. The security of both these PKE

schemes is examined in Sections 5.5.3 and 5.5.4 respectively. These proofs form a

foundation which the security proofs in Section 5.5.5 are built upon. Recall that the

adversaries appropriate for standard PKE schemes were defined in Section 3.5.3.
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5.5.1 ElG-BasicPub

Here, we define a public key encryption scheme ElG-BasicPub. The scheme is obtained

by choosing a particular G and modifying the parameters of the certified ElGamal

encryption scheme of Section 3.2.3.1. We generate parameters 〈G1, G2, ê〉 using IG,
and set G = G1 and include G2 and ê in the parameters of the scheme of Section

3.2.3.1. The reason we explicitly include both G2 and ê in the parameters is to

highlight the context in which G1 is generated. This is useful for security purposes.

Formally, ElG-BasicPub is specified by four algorithms: Setup, Key-Generation, En-

crypt and Decrypt.

Setup:

1. Run IG on input k to generate 〈G1, G2, ê〉 with the usual properties. Choose

a generator P ∈ G1.

2. Choose cryptographic hash function H5 : G1 → {0, 1}n.

The message and ciphertext spaces for ElG-BasicPub are M = {0, 1}n and C =

G1 × {0, 1}n. The system parameters are params= 〈G1, G2, ê, n, P,H5〉.

Key-Generation:

1. Choose a random x ∈ Z∗
q and set R = xP .

2. Set the public key Kpub to be 〈G1, G2, ê, n, P,H5, R〉 = 〈params, R〉 and the

private key to be Kpriv = x. Notice that the value of Kpub now also includes

params. This is because we are looking at the PKE scheme in isolation –

without any established system settings.

Encrypt: To encrypt M ∈M, perform the following steps:
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1. Choose a random value r ∈ Z∗
q .

2. Compute and output the ciphertext: C = 〈rP,M ⊕H5(rR)〉.

Decrypt: To decrypt C = 〈U, V 〉 ∈ C using private key Kpriv = x, compute and

output: V ⊕H5(xU).

This concludes the description of ElG-BasicPub.

5.5.2 BF-BasicPub

This scheme is denoted BasicPub in [32]. Here, this scheme is specified by four

algorithms: Setup, Key-Generation, Encrypt and Decrypt.

Setup:

1. Run IG on input k to generate 〈G1, G2, ê〉 with the usual properties. Choose

a generator P ∈ G1.

2. Choose a random s ∈ Z∗
q and set P0 = sP .

3. Choose cryptographic hash function H2 : G2 → {0, 1}n.

The message and ciphertext spaces for BF-HybridPub are M = {0, 1}n and C =

G1 × {0, 1}n. The system parameters are params= 〈G1, G2, ê, n, P, P0,H2〉.

Key-Generation:

1. Choose a random Q ∈ G∗
1.

2. Set the public key to be Kpub = 〈G1, G2, ê, n, P, P0,H2, Q〉 = 〈params, Q〉 and

the private key to be Kpriv = sQ ∈ G∗
1.
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Encrypt: To encrypt M ∈M, choose a random r ∈ Z∗
q and set the ciphertext to be:

C = 〈rP,M ⊕H2(ê(Q,P0)r)〉.

Decrypt: To decrypt C = 〈U, V 〉 ∈ C using the private key Kpriv = sQ compute:

V ⊕H2(ê(sQ, U)) = M.

This concludes the description of BF-HybridPub.

5.5.3 Security of ElG-BasicPub

Lemma 5.1 Suppose that H5 is a random oracle and that there exists an OWE

adversary A against ElG-BasicPub with advantage ε which makes at most q5 queries

to H5. Then there is an algorithm B that solves the CDHP in G1 with advantage at

least (ε− 1
2n )/q5 and which runs in time O(time(A)). Here G1 is obtained from the

output 〈G1, G2, ê〉 of IG.

Proof. Let A be an OWE adversary against ElG-BasicPub who makes at most q5

queries to random oracle H5 and who has advantage ε. We show how to construct

an algorithm B which interacts with A to solve the CDHP in G1.

Suppose B has as inputs 〈G1, G2, ê〉 and 〈P, aP, bP 〉 (where a, b ∈ Z∗
q are unknown to

B). Let D = abP ∈ G1 denote the solution to the CDHP on these inputs. Algorithm

B creates a public key 〈G1, G2, ê, n, P,H2, R〉 for A by setting R = aP . Then B
gives this public key to A. Algorithm B now sets U = bP , chooses V randomly from

{0, 1}n, and gives A the challenge ciphertext C = 〈U, V 〉.

Notice that the (unknown) private key is now D = abP and the (unknown) decryp-

tion of C is M = V ⊕ H5(D). Hence the solution D to the CDHP can be derived

from examining A’s H5 queries.
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To simulate H5 queries by A, B maintains a list of pairs 〈Zj ,H5,j〉. To respond to an

H5 query Z, B first checks if Z = Zj for some Zj already on the list. If it is, then B
responds with H5,j . Otherwise, B chooses H uniformly at random from {0, 1}n and

places 〈Z,H〉 on the H5 list.

Eventually, A will output its guess M ′ for the decryption of C. Now B chooses a

random pair 〈Zj ,H5,j〉 from the H5 list and outputs Zj ∈ G1 as the solution to the

CDHP. (If the list is empty, B just outputs a random element of G1.)

It is easy to see that A’s view in B’s simulation is the same as in a real attack. So

A’s advantage in this simulation will be ε. We let H be the event that D is queried

of H5 during B’s simulation and let δ denote the probability that event H occurs.

Now
ε = Pr[M ′ = M ]

= Pr[M ′ = M |H] Pr[H] + Pr[M ′ = M |¬H] Pr[¬H]
≤ δ + 1

2n (1− δ)

where we have used the fact that if H does not occur, then H5 has not been queried

on input D, so that AII ’s view must be independent of the value of M .

Rearranging, we see that δ ≥ ε − 1
2n . Since B’s output is of the form Zj chosen

randomly from the H5 list, we see that B’s success probability is at least δ/q5. The

lemma follows.
�

5.5.4 Security of BF-BasicPub

The following result concerning the OWE security of BF-BasicPub is proven by Boneh

and Franklin in in [33, Lemma 4.3].

Result 5.2 Suppose that H2 is a random oracle. Suppose there exists an OWE

adversary A against BF-BasicPub which makes at most q2 queries to H2 and which

has advantage ε. Then there exists an algorithm B to solve the BDHP which runs

in time O(time(A)) and has advantage at least (ε− 1
2n )/q2.
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5.5.5 Security of BasicCL-PKE

Lemma 5.3 Suppose that H1 and H2 are random oracles and that there exists an

Type II OWE adversary AII against BasicCL-PKE with advantage ε which makes at

most q1 queries to H1. Then there is an OWE adversary against ElG-BasicPub with

advantage at least ε/q1 which runs in time O(time(AII)).

Proof. Let AII be a Type II OWE adversary against BasicCL-PKE. Suppose AII has

advantage ε and makes q1 queries to random oracle H1. We show how to construct

from AII an OWE adversary B against the PKE scheme ElG-BasicPub.

Let C denote the challenger against our OWE adversary B for ElG-BasicPub. The

challenger C begins by supplying B with a public key

Kpub = 〈G1, G2, ê, n, P,H5, R〉 = 〈params, R〉.

Adversary B mounts an OWE attack on the key Kpub using help from AII as follows.

First of all B chooses an index I with 1 ≤ I ≤ q1. Then B simulates the algorithm

Setup of BasicCL-PKE for AII by choosing a random s ∈ Z∗
q , setting P0 = sP and

supplying AII with params = 〈G1, G2, ê, n, P, P0,H1,H2,H5〉 and the value s. Here,

H1 and H2 are additional random oracles.

Adversary AII may make queries of H1 or H2 at any time. These are handled as

follows:

H1 queries: The H1 queries are simulated by B. For an IDi query, B will choose a

random Qi ∈ G∗
1 and return H1(IDi) = Qi for 1 ≤ i ≤ q1. For each i where i 6= I, B

chooses a random xi ∈ Zq and maintains a table with entries 〈Qi, xi〉.

H2 queries: Adversary B simulates these and answers H2 queries by maintaining a

list of queries and replies. We do need to assume in the course of the proof that H2

is a random oracle.
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Phase 1: Now AII launches Phase 1 of its attack, by making a series of requests,

each of which is either a private key extraction or a request for a public key for a

particular entity. (Recall that a Type II adversary cannot replace public keys and

can make partial private key extraction queries for himself given s.) We assume

that AII always makes the appropriate H1 query on ID before making one of these

requests for that identifier. B replies to these requests as follows:

Private Key Extraction: If the request is on IDI then B aborts. Otherwise, if the

request is on IDi with i 6= I, then B outputs 〈sQi, xi〉.

Request for Public Key: If the request is on IDI then B returns R. Otherwise, if

the request is on IDi for some i with i 6= I, then B returns xiP .

Challenge Phase: At some point, AII decides to end Phase 1 and picks IDch on

which it wants to be challenged. We can assume that IDch has already been queried

of H1 but AII has not extracted the private key for this identifier. Algorithm B
responds as follows. If IDch 6= IDI then B aborts. Otherwise B requests from C a

challenge ciphertext. C picks a random M ∈ M and responds with the challenge

ciphertext C ′ = 〈U ′, V ′〉, such that C ′ is the ElG-BasicPub encryption of M under

Kpub. Then B computes ξ′ = ê(U ′, sQI) and sets C∗ = 〈U ′, V ′⊕H2(ξ′)〉 and delivers

C∗ to AII . It is not hard to see that C∗ is the BasicCL-PKE encryption of M for

identifier IDI (with public key R).

Phase 2: Adversary B continues to respond to requests in the same way as it did in

Phase 1. Of course, we now restrict AII to not make private key extraction requests

on IDch.

Guess: Eventually, AII will make a guess M ′. Algorithm B outputs M ′ as its guess

for the decryption of C∗.

Analysis: Now we analyze the behavior of B and AII in this simulation. We

claim that if algorithm B does not abort during the simulation then algorithm AII ’s

view is identical to its view in the real attack. Moreover, if B does not abort then
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Pr[M = M ′] ≥ ε.

We justify this claim as follows. B’s responses to H1 and H2 queries are uniformly

and independently distributed in G∗
1 and {0, 1}n respectively, as in the real attack.

All responses to AII ’s requests are valid, provided of course that B does not abort.

Furthermore, the challenge ciphertext C∗ is a valid BasicCL-PKE encryption of M .

Thus, by definition of algorithm AII we have that Pr[M = M ′] ≥ ε.

The probability that B does not abort during the simulation remains to be calculated.

Examining the simulation, we see that B can abort for two reasons: (i) because AII

made a private key extraction on IDI at some point, or (ii) because AII did not

choose IDch = IDI . We name the events that can cause B to abort as Q1 and Q2.

Notice that the event ¬Q2 implies the event ¬Q1 (if AII chooses IDch equal to IDI ,

then no private key extraction on IDI is allowed). Hence we have

Pr[B does not abort] = Pr[¬Q1 ∧ ¬Q2]
= Pr[¬Q2]
= 1/q1

where the last equality follows from B’s random choice of I being independent of

AII ’s choice of IDch.

Thus we see that B’s advantage is at least ε/q1 and the proof is complete.
�

Lemma 5.4 Suppose that H1, H2 and H5 are random oracles and that there exists

an Type I OWE adversary AI against BasicCL-PKE. Suppose AI has advantage ε,

runs in time t, makes at most q1, q2 and q5 queries to H1, H2 and H5 respectively.

Then there is an algorithm B which acts as either a BF-BasicPub or an ElG-BasicPub

OWE adversary. Moreover, B either has advantage at least ε/4q1 when playing as

a BF-BasicPub adversary, or has advantage at least ε/4q1 when playing as an ElG-

BasicPub adversary. Algorithm B runs in time O(time(AI)).

Proof. Let AI be a Type I IND-CCA adversary against BasicCL-PKE. Suppose AI

has advantage ε, runs in time t, makes q1, q2 and q5 queries to random oracles H1,
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H2 and H5 respectively. We show how to construct from AI an adversary B that

acts either as an OWE adversary against the PKE scheme BF-BasicPub or as an

OWE adversary against the PKE scheme ElG-BasicPub. We assume that challengers

CI and CII for both types of games are available to B.

Adversary B begins by choosing a random bit c and an index I uniformly at random

with 1 ≤ I ≤ q1. If c = 0, then B chooses to play against CI and aborts CII . Here, B
will build an OWE adversary against BF-BasicPub and fail against CII . When c = 1,

B chooses to play against CII and aborts CI . Here, B will build a OWE adversary

against ElG-HybridPub and fail against CI . In either case, C will denote the challenger

against which B plays for the remainder of this proof.

We define three events H, F0 and F1:

• H: Adversary AI chooses IDI as the challenge identifier IDch.

• F0: Adversary AI extracts the partial private key for entity IDI .

• F1: Adversary AI replaces the public key of entity IDI at some point in its

attack.

The general strategy of the proof is as follows. If (c = 0)∧F0 occurs, B will have to

abort and will be unsuccessful. If ¬F0 ∧ H occurs, then B’s success probability will

be related to that of AI . On the other hand, if (c = 1)∧F1 occurs, B will again have

to abort and will be unsuccessful. If ¬F1 ∧ H occurs, then B’s success probability

will again be related to that of AI . Overall, we will show that B’s advantage in its

mixed-game strategy is non-negligible if AI ’s is. It is then easy to see that B has a

non-negligible advantage for at least one of the two game types.

If c = 0, then C is an OWE challenger for BF-BasicPub and begins by supplying B with

a public key Kpub = 〈G1, G2, ê, n, P, P0,H2, Q〉. If c = 1, then C is an OWE challenger

for ElG-BasicPub and so supplies B with a public key Kpub = 〈G1, G2, ê, n, P,H5, R〉.
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Then B simulates the algorithm Setup of BasicCL-PKE for AI . When c = 0, B will

handle H5 queries, while when c = 1, B will handle H2 queries. Additionally, when

c = 1, B chooses a random s ∈ Z∗
q and sets P0 = sP . Thus, B supplies AI with

params= 〈G1, G2, ê, n, P, P0,H1,H2,H5〉. Here H1 is a random oracle that will be

controlled by B.

Adversary AI may make queries of the random oracles H1, H2 and H5, at any time

during its attack. These are handled as follows:

H1 queries: Adversary B maintains a list of tuples 〈IDi, Qi, bi, xi, Pi〉 which we call

the H1 list. The list is initially empty, and when AI queries H1 on input ID ∈ {0, 1}∗,
B responds as follows:

1. If ID already appears on the H1 list in a tuple 〈IDi, Qi, bi, xi, Pi〉, then B re-

sponds with H1(ID) = Qi.

2. Suppose ID does not already appear on the list and ID is the I-th distinct

H1 query made by AI . For c = 0, B outputs H1(ID) = Q, selects a random

xI ∈ Z∗
q and adds the entry 〈ID, Q,⊥, xI , xIP 〉 to the H1 list. For c = 1, B

selects bI ∈ Z∗
q , outputs H1(ID) = bIP and adds the entry 〈ID, bIP, bI ,⊥ , R〉

to the H1 list.

3. Otherwise, when ID does not already appear on the list and ID is the i-th

distinct H1 query made by AI where i 6= I, B picks random xi, bi ∈ Z∗
q , sets

Qi = biP , outputs H1(ID) = Qi and adds 〈ID, biP, bi, xi, xiP 〉 to the H1 list.

Notice that with this specification of H1, the BasicCL-PKE partial private key for

IDi (i 6= I) is equal to biP0 while the public key for IDi (i 6= I) is Pi = xiP and

the private key for IDi (i 6= I) is 〈biP0, xi〉. These can all be computed by B. When

c = 1, B sets the public key of IDI to be R and can compute the partial private key

of IDI as sbIP . When c = 0, B knows neither the partial private key nor the private

key for IDI .
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H2 queries: When c = 0 any H2 queries made by AI are passed to C to answer.

When c = 1 any H2 queries made by AI are simulated by B using the standard

approach of maintaining a list of queries and replies. We do need to assume in the

course of the proof that H2 is a random oracle.

H5 queries: Any H5 queries made by AI are passed to C to answer when c = 1.

When c = 0, B maintains a list of tuples 〈µi,H5,i〉 which we call the H5 list. The list

is initially empty, and when AI queries H5 on input µ ∈ G1, B responds as follows:

1. If µ already appears on the H5 list in a tuple 〈µi,H5,i〉, then B responds with

H5(µ) = H5,i.

2. Suppose µ does not already appear on the list. If the H5 query is made before

the challenge phase, then B goes to step 3 below. Otherwise, let Pch denote

the value of the public key for the challenge identifier IDch during the challenge

phase, let C∗ = 〈U∗, V ∗〉 be the challenge ciphertext delivered to AI by B, and

let ξ be the value, to be defined below, used by B in the challenge phase. B
tests if µ satisfies ê(µ, P ) = ê(U∗, Pch). If equality holds, then B adds 〈µ, ξ〉 to

the H5 list and outputs ξ = H5(µ). If the equality does not hold, then B goes

to step 3.

3. Supposing µ to be the i-th distinct H5 query made by AI , B selects a random

H5,i ∈ {0, 1}n, outputs H5(µ) = H5,i and adds 〈µi,H5,i〉 to the H5 list.

Informally, the reason we simulate H5 this way is to make sure that if AI queries

H5 in the course of its attack, then H5 behaves consistently and produces the same

output as that produced during it use in the construction of the challenge ciphertext.

Recall that the value of Pch could be selected by AI , hence, the corresponding private

key is unknown to B – and it could also be unknown to AI .

Phase 1: After receiving params from B, AI launches Phase 1 of its attack, by

making a series of requests, each of which is either a partial private key extraction

for an entity, a private key extraction for an entity, a request for a public key for
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an entity or a replacement of a public key for an entity. We assume that AI always

makes the appropriate H1 query on the identifier ID for that entity before making

one of these requests. B replies to these requests as follows:

Partial Private Key Extraction: Suppose the request is on IDi. There are three

cases:

1. If i 6= I, then B replies with biP0.

2. If i = I and c = 1, then B replies with bIP0.

3. If i = I and c = 0, then B aborts.

Private Key Extraction: Suppose the request is on IDi. We can assume that the

public key for IDi has not been replaced. There are two cases:

1. If i 6= I, then B outputs 〈biP0, xi〉.

2. If i = I, then B aborts.

Request for Public Key: If the request is on IDi then B returns Pi by accessing

the H1 list.

Replace Public Key: Suppose the request is to replace the public key for IDi with

value P ′
i . There are three cases:

1. If i = I and c = 1, then B aborts.

2. If i = I and c = 0, then B replaces the current entry in the H1 list with the

new entry P ′
I and updates the tuple to 〈IDI , Q,⊥,⊥, P ′

I〉.

3. Otherwise, B replaces the current entry in the H1 list with the new entry P ′
i

(i 6= I) and updates the tuple to 〈IDi, biP, bi,⊥, P ′
i 〉 .

124



5.5 Security of the BasicCL-PKE Construction

Challenge Phase: At some point, AI should decide to end Phase 1 and pick IDch on

which it wishes to be challenged. We can assume that IDch has already been queried

of H1 but that AI has not extracted the private key for this identifier. Algorithm

B responds as follows. If IDch 6= IDI then B aborts. Now B requests a challenge

ciphertext of its challenger C. There are now two cases:

• When c = 0, C picks a random M ∈ M and responds with the challenge

ciphertext C ′ = 〈U ′, V ′〉, a BF-BasicPub encryption of M under Kpub. Now

B checks each entry 〈µi,H5,i〉 in the H5 list to see if it satisfies the equality

ê(µi, P ) = ê(U ′, Pch). It is easy to see that at most one entry can do so. If B
finds that the j-th entry satisfies the equality, then B sets C∗ = 〈U ′, V ′⊕H5,j〉
and delivers C∗ to AI as the challenge ciphertext. Otherwise, if no entry

satisfies this test, B selects a random ξ ∈ {0, 1}n, sets C∗ = 〈U ′, V ′ ⊕ ξ〉 and

delivers C∗ to AI .

• When c = 1, C picks a random M ∈ M and responds with the challenge

ciphertext C ′ = 〈U ′, V ′〉, such that C ′ is the ElG-BasicPub encryption of M

under Kpub. Then B sets C∗ = 〈U ′, V ′ ⊕H2(ê(U ′, bIsP ))〉 and delivers C∗ to

AI .

It is easy to see that in both cases C∗ is the BasicCL-PKE encryption of M for

identifier IDch under public key Pch. We now let Pch denote the particular value of

the public key for identifier IDch during the challenge phase (AI may change this

value in Phase 2 of its attack).

Phase 2: Adversary B continues to respond to AI ’s requests in the same way as it

did in Phase 1. However, the same restrictions, as identified in Section 5.3, on AI ’s

behaviour apply in this phase.

Guess: Eventually, AI will make a guess M ′. Algorithm B outputs M ′ as its guess

for the decryption of C∗.
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Analysis: Now we analyze the behavior of B and AI in this simulation. We claim

that if algorithm B does not abort during the simulation, then algorithm AI ’s view

is identical to its view in the real attack. Moreover, if this is the case, then Pr[M =

M ′] ≥ ε. This is not hard to see: Adversary B’s responses to all hash queries

are uniformly and independently distributed as in the real attack. All responses to

AI ’s requests are valid, provided of course that B does not abort. Furthermore, the

challenge ciphertext C∗ is a valid BasicCL-PKE encryption of M under the current

public key for identifier IDch. Thus, by definition of algorithm AI we have that

Pr[M = M ′] ≥ ε.

So we must examine the probability that B does not abort during the simulation.

Examining the simulation, we see that B can abort for one of four reasons:

0. Because c = 0 and the event F0 occurred during the simulation.

1. Because c = 1 and event F1 occurred during the simulation.

2. Because AI made a private key extraction on IDI at some point.

3. Or because AI chose IDch 6= IDI .

We name the event (c = i) ∧ Fi as Hi for i = 0, 1. We also name the last two

events here as F2 and F3. Of course, F3 is the same as event ¬H. Now AI makes q1

queries of H1 and chooses IDch from amongst the responses IDi, while B’s choice of

I is made uniformly at random from the set of q1 indices i. So the probability that

IDch = IDI is equal to 1/q1. Hence Pr[H] = 1/q1. Notice too that the event ¬F3

implies the event ¬F2 (if AI chooses IDch = IDI , then no private key extraction on

IDI is allowed). Gathering this information together, we have:

Pr[B does not abort] = Pr[¬H0 ∧ ¬H1 ∧ ¬F2 ∧ ¬F3]
= Pr[¬H0 ∧ ¬H1 ∧H]
= Pr[¬H0 ∧ ¬H1|H] · Pr[H]
= 1

q1
· Pr[¬H0 ∧ ¬H1|H].
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Notice now that the events H0 and H1 are mutually exclusive (because one involves

c = 0 and the other c = 1). Therefore we have

Pr[¬H0 ∧ ¬H1|H] = 1− Pr[H0|H]− Pr[H1|H].

Moreover,
Pr[Hi|H] = Pr[(c = i) ∧ Fi|H]

= Pr[Fi|(H ∧ (c = i))] · Pr[c = i]
= 1

2 Pr[Fi|H]

where the last equality follows because the event Fi|H is independent of the event

c = i. So we have

Pr[B does not abort] =
1
q1

(
1− 1

2
Pr[F0|H]− 1

2
Pr[F1|H]

)
.

Finally, we have that Pr[F0 ∧F1|H] = 0 because of the rules on adversary behaviour

described in Section 5.2 (an adversary cannot both extract the partial private key

and change the public key of the challenge identifier). This implies that Pr[F0|H] +

Pr[F1|H] ≤ 1. Hence we see that

Pr[B does not abort] ≥ 1
2q1

.

It is now easy to see that B’s advantage is at least ε
2q1

. It follows that either B’s

advantage as a Type I adversary against BF-BasicPub or B’s advantage as a Type II

adversary against ElG-BasicPub is at least ε
4q1

. The running time of B isO(time(AI)).

This completes the proof of the lemma.
�

Next is our main theorem about the security of BasicCL-PKE in our OWE model.

Theorem 5.5 Let H1, H2 and H5 be random oracles. Suppose further that there

is no polynomially bounded algorithm that can solve the BDHP with non-negligible

advantage. Then BasicCL-PKE is OWE secure.

Proof. The proof of Theorem 5.5 is performed in two parts, one for a Type I adversary

and one for a Type II adversary. We first consider a Type I adversary.
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Type I adversary: Lemma 5.4 provides a reduction relating the OWE security of

BasicCL-PKE to that of ElG-BasicPub or BF-BasicPub in the OWE model for standard

PKE. Lemma 5.1 and Result 5.2 relate the security of these PKE schemes to the

hardness of the CDHP or BDHP respectively.

By actually composing the intermediate security results we can relate the security

of BasicCL-PKE against Type I adversaries directly to the hardness of the BDHP

or CDHP. Suppose hash functions H1, H2 and H5 are random oracles. Suppose

AI is a Type I adversary against BasicCL-PKE, that runs in time time(AI) and has

advantage ε against BasicCL-PKE. Then there is an algorithm B with running time

O(time(AI)). Algorithm B either solves the CDHP in G1 with advantage at least

1
q5

(
ε

4q1
− 1

2n

)
.

or algorithm B solves the BDHP in 〈G1, G2, ê〉 with advantage at least

1
q2

(
ε

4q1
− 1

2n

)
.

Type II adversary: Lemma 5.3 shows that the OWE security of BasicCL-PKE can

be reduced to the OWE security of a related (normal) public key encryption scheme

ElG-BasicPub. Lemma 5.1 relates the security of ElG-BasicPub to the hardness of the

CDHP in G1.

As above, we can relate the security of BasicCL-PKE against Type I adversaries

directly to the hardness of the CDHP. Suppose hash functions H1, H2 and H5 are

random oracles. Suppose AII is a Type II adversary against BasicCL-PKE, that

runs in time time(AII), and has advantage ε against BasicCL-PKE. Then there is

an algorithm B with running time O(time(AII)) that solves the CDHP in G1 with

advantage at least
1
q5

(
ε

q1
− 1

2n

)
.

Compared to the CDHP (in G1 output by algorithm IG(k)), the BDHP (in 〈G1, G2, ê〉
output by the same algorithm IG(k)) is an easier problem, in the sense that an
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algorithm to solve the CDHP in G1 can be transformed into an algorithm to solve

the BDHP in 〈G1, G2, ê〉 – see the proof in p.29. Hence the security of BasicCL-PKE

rests on the hardness of the BDHP.
�

5.6 Summary

In this chapter, we showed how our concept of certificateless public key cryptography

can be realized by specifying a certificateless public key encryption (CL-PKE) scheme

that is based on bilinear maps. The scheme BasicCL-PKE has one-way encryption

security in the random oracle model, assuming that the BDHP is hard. In Chapter 6

we will build on and improve the CL-PKE scheme presented in this chapter. We will

construct a scheme which is secure in a more robust model, one allowing decryption

queries by the adversary and in which the adversary’s task is to distinguish which of

the two messages has been encrypted.
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CL-PKE – Semantic Security

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 IND-CCA Security Model for CL-PKE . . . . . . . . . . 131

6.3 A CL-PKE Scheme with Chosen Ciphertext Security . 136

6.4 The Fujisaki-Okamoto Hybridisation Technique . . . . . 139

6.4.1 A Basic PKE Scheme . . . . . . . . . . . . . . . . . . . . . 139
6.4.2 A Symmetric Encryption Scheme . . . . . . . . . . . . . . . 140
6.4.3 The Fujisaki-Okamoto Hybrid PKE Scheme . . . . . . . . . 141
6.4.4 Security Results . . . . . . . . . . . . . . . . . . . . . . . . 143

6.5 Security of the FullCL-PKE Construction . . . . . . . . . . 145

6.5.1 ElG-HybridPub . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.5.2 BF-HybridPub . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.5.3 Security of ElG-Hybridpub . . . . . . . . . . . . . . . . . . . 149
6.5.4 Security of BF-Hybridpub . . . . . . . . . . . . . . . . . . . 150
6.5.5 Security of FullCL-PKE . . . . . . . . . . . . . . . . . . . . . 151

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

In this chapter we develop an adversarial model for a certificateless public key en-

cryption (CL-PKE) scheme. The adversarial model is fully adaptive, it captures an

adversary who has access to the master key (but does not replace public keys) and

another who can replace public keys. We propose an efficient CL-PKE scheme and

prove that it is secure in the fully adaptive adversarial model, provided that the BDHP

is hard.
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6.1 Introduction

The work presented in this chapter focuses on CL-PKE schemes. We will present an

adversarial model for CL-PKE which formally captures the adversarial capabilities.

The model we present in this chapter is a natural generalization of the fully adaptive,

multi-user model of [32] to the CL-PKC setting, and involves two distinct types of

adversary: one who can replace public keys at will and another who has knowledge

of the master key but does not replace public keys. Recall that the derived OWE

security model for CL-PKE in Chapter 5 was weak and not fully adaptive, we will

rectify this here by giving adversaries additional adaptive access to decryption or-

acles. The stronger model of this chapter which is fully-adaptive and involves the

indistinguishibility of encryptions, is used to prove the semantic security of a con-

crete, efficient CL-PKE scheme. The semantically secure CL-PKE scheme of this

chapter is based on the owe secure CL-PKE scheme of Chapter 5.

6.2 IND-CCA Security Model for CL-PKE

Given the formal definition of a CL-PKE scheme in Section 5.2, and the subsequent

security treatment of CL-PKE, we are now in a position to define stronger adversaries

for CL-PKE than that of Chapter 5. The definition will involve the indistinguishab-

ility of encryptions against a fully-adaptive chosen ciphertext (IND-CCA) attacker.

Recall the definition of IND-CCA security for PKE in Section 3.5.3. In that defin-

ition, there are two parties, the adversary A and the challenger C. The adversary

operates in three phases after being presented with a random public key. In Phase

1, A may make decryption queries on ciphertexts of its choice. In the Challenge

Phase, A chooses two messages M0, M1 and is given a challenge ciphertext C∗ for

one of these two messages Mb by the challenger. In Phase 2, A may make fur-

ther decryption queries, but may not ask for the decryption of C∗. The attack

ends with A’s guess b′ for the bit b. The adversary’s advantage is defined to be
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Adv(A) = 2(Pr[b′ = b]− 1
2)6.1.

There are two alternative ways to think of the model which we will present in this

section. One is an extension of the IND-CCA model described above and the other is

an extension of the model described in Chapter 5. The IND-CCA model is extended

in the same way as the OWE model was extend in Chapter 5. We now briefly

examine the model of Chapter 5, which was an extension to the model in [32]. The

model allowed adversaries to extract partial private keys, or private keys, or both,

for identities of their choice. Furthermore, it allowed for adversaries to replace the

public key of any entity with a value of their choice. In this chapter we must extend

this model and consider how a challenger should respond to decryption queries for

identities whose public keys may have been changed. Moreover, the adversarial

definition which we will present is an indistinguishability-based definition, so the

nature of the challenge phase differs from that in Chapter 5.

Here then is a list of the actions that an IND-CCA adversary against a CL-PKE

scheme may carry out and a discussion of how each action should be handled by the

challenger for that adversary.

1. Extract partial private key of A: Identical to Extract partial private

key of A in Section 5.3.

2. Extract private key for A: Identical to Extract private key for A in

Section 5.3.

3. Request public key of A: Identical to Request public key of A in Section

5.3.

4. Replace public key of A: Identical to Replace public key of A in Section

5.3.
6.1In [32], an extension to the standard IND-CCA security model was presented for ID-PKE. This

extension was labelled IND-ID-CCA and handles adversaries who can extract the private keys of
arbitrary entities and who choose the identifier IDch of the entity on whose public key they are
challenged.
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5. Decryption query for ciphertext C and entity A: If A has not replaced

the public key of entity A, then C responds by running the algorithm Set-

Private-Key to obtain the private key SA, then running Decrypt on ciphertext

C and private key SA and returning the output to A. However, if A has

already replaced the public key of A, then in following this approach, C will

(in general) not decrypt using a private key matching the current public key.

So C’s reply to A’s decryption query is likely to be incorrect. Indeed C most

likely will not even know what the private key matching the current public key

is! In defining our security model for CL-PKE, we have two options: we could

simply accept that these decryptions will be incorrect, or we can insist that

C should somehow properly decrypt ciphertexts even for entities whose public

keys have been replaced. The former option could be argued for on grounds of

reasonableness: after all, how can C be expected to provide correct decryptions

when A gets to choose the public key? On the other hand, the latter option

results in a more powerful security model, because now decryption queries made

under public keys that have been changed will potentially be far more useful

to A. For this reason, we adopt the latter option for our model, even though

it substantially complicates our proofs of security. (These decryptions will be

handled using special purpose knowledge extractors in our security proofs.)

Naturally, as in [32], we prohibit A from ever making a decryption query on

the challenge ciphertext C∗ for the combination of identifier IDch and public

key Pch that was used to encrypt Mb. However A is, for example, allowed to

replace the public key for IDch with a new value and then request a decryption

of C∗, or to change another entity A’s public key to Pch (or any other value)

and then request the decryption of C∗ for entity A.

We also want to consider adversaries who are equipped with master-key, in order to

model security against an eavesdropping KGC. As discussed in Section 4.1, we do

not allow such an adversary to replace public keys: in this respect, we invest in the

KGC a similar level of trust as we do in a CA in a traditional PKI – recall Section

4.6.5. So by adapting the adversaries of Chapter 5 we will distinguish between two

adversary types:
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CL-PKE Type I IND-CCA Adversary: Such an adversary AI does not have

access to master-key. However, AI may request public keys and replace public keys

with values of its choice, extract partial private and private keys and make decryption

queries, all for identities of its choice. As discussed above, we make several natural

restrictions on such a Type I adversary:

1. Adversary AI cannot extract the private key for IDch at any point.

2. Adversary AI cannot request the private key for any identifier if the corres-

ponding public key has already been replaced.

3. Adversary AI cannot both replace the public key for the challenge identifier

IDch before the challenge phase and extract the partial private key for IDch in

some phase.

4. In Phase 2, AI cannot make a decryption query on the challenge ciphertext

C∗ for the combination of identifier IDch and public key Pch that was used to

encrypt Mb.

CL-PKE Type II IND-CCA Adversary: Such an adversary AII does have

access to master-key, but may not replace public keys of entities. Adversary AII can

compute partial private keys for itself, given master-key. It can also request public

keys, make private key extraction queries and decryption queries, both for identities

of its choice. The restrictions on this type of adversary are:

1. Adversary AII cannot replace public keys at any point.

2. Adversary AII cannot extract the private key for IDch at any point.

3. In Phase 2, AII cannot make a decryption query on the challenge ciphertext

C∗ for the combination of identifier IDch and public key Pch that was used to

encrypt Mb.
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Chosen ciphertext security for CL-PKE: We say that a CL-PKE scheme is se-

mantically secure against an adaptive chosen ciphertext attack (“IND-CCA secure”)

if no polynomially bounded adversary A of Type I or Type II has a non-negligible

advantage against the challenger in the following game:

Setup: The challenger takes a security parameter k as input and runs the Setup

algorithm. It gives A the resulting system parameters params. If A is of Type I,

then the challenger keeps master-key to itself, otherwise, it gives master-key to A.

Phase 1: Adversary A issues a sequence of requests, each request being either a

partial private key extraction, a private key extraction, a request for a public key,

a replace public key command or a decryption query for a particular entity. These

queries may be asked adaptively, but are subject to the previously defined rules on

adversary behaviour.

Challenge Phase: Once A decides that Phase 1 is over it outputs the challenge

identifier IDch and two equal length plaintexts M0,M1 ∈ M. Again, the adversarial

constraints given above apply. In particular, IDch cannot be an identifier for which

the private key has been extracted. Moreover, if A is of Type I, then IDch cannot be

an identifier for which both the public key has been replaced and the partial private

key extracted. The challenger now picks a random bit b ∈ {0, 1} and computes C∗,

the encryption of Mb under the current public key Pch for IDch. Then C∗ is delivered

to A.

Phase 2: Now A issues a second sequence of requests as in Phase 1, again subject

to the rules on adversary behaviour above. In particular, no private key extraction

on IDch is allowed, and, if A is of Type I, then the partial private key for IDch cannot

be extracted if the corresponding public key was replaced in Phase 1. Moreover, no

decryption query can be made on the challenge ciphertext C∗ for the combination

of identifier IDch and public key Pch that was used to encrypt Mb.

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. The adversary wins the game if
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b = b′. We define A’s advantage in this game to be Adv(A) := 2|Pr[b = b′]− 1
2 |.

6.3 A CL-PKE Scheme with Chosen Ciphertext Security

We showed in Section 5.4 how to combine the BF ID-PKE scheme of Section 3.2.4.1

and a variant of the ElGamal PKE Scheme of Section 3.2.3.1 to produce the OWE-

secure CL-PKE scheme BasicCL-PKE. The scheme we present here is an IND-CCA

version of BasicCL-PKE, obtained essentially by applying the Fujisaki-Okamoto hy-

bridisation technique (see Section 6.4) to BasicCL-PKE. Note that the scheme presen-

ted here differs from the one given in [6]. As with BasicCL-PKE, this scheme can also

be regarded as resulting from the optimisation of a double encryption construction

for CL-PKE – we will present such double encryption constructions for CL-PKE in

Section 7.2.

The algorithms for FullCL-PKE, our IND-CCA secure CL-PKE scheme, are as follows:

Setup: This algorithm runs as follows:

1. Run IG on input k to generate output 〈G1, G2, ê〉. Recall the definition of IG
in Section 2.4.1.

2. Choose an arbitrary generator P ∈ G1.

3. Select a random master-key s ∈ Z∗
q and set P0 = sP .

4. Choose cryptographic hash functions H1 : {0, 1}∗ → G∗
1, H2 : G2 → {0, 1}n,

H3 : {0, 1}n × {0, 1}n → Z∗
q , H4 : {0, 1}n → {0, 1}n and H5 : G1 → {0, 1}n.

Here n will be the bit-length of plaintexts.

The system parameters are params= 〈G1, G2, ê, n, P, P0,H1,H2,H3,H4,H5〉. The

master-key is s ∈ Z∗
q . The message space is M = {0, 1}n and the ciphertext space is
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C = G1 × {0, 1}2n. Notice that this is identical to Setup of BasicCL-PKE in Section

5.4, except for the additional hash functions H3 and H4.

Partial-Private-Key-Extract: This algorithm takes as input an identifier IDA ∈ {0, 1}∗,
and carries out the following steps to construct the partial private key for entity A

with identifier IDA:

1. Compute QA = H1(IDA) ∈ G∗
1.

2. Output the partial private key DA = sQA ∈ G∗
1.

The observations concerning DA from Chapter 6 also apply to here.

The algorithms Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key and Set-

Public-Key are identical to BasicCL-PKE. They are included here for completeness.

Set-Secret-Value: This algorithm takes as inputs params and an entity A’s identifier

IDA. It selects a random xA ∈ Z∗
q and outputs xA as A’s secret value.

Set-Private-Key: This algorithm takes as inputs params, entity A’s partial private

key DA and A’s secret value xA ∈ Z∗
q . The output of the algorithm is the pair

SA = 〈DA, xA〉. So the private key for A is just the pair consisting of the partial

private key and the secret value.

Set-Public-Key: This algorithm takes params and entity A’s secret value xA ∈ Z∗
q as

inputs and constructs A’s public key as PA = xAP . The test of validity for a public

key PA is that PA ∈ G∗
1. Comparing to the scheme in [6], we see that our public key

has no ‘YA’ component, and there is no structural requirement that YA = sXA. We

will discuss this further in Chapter 8.

Encrypt: To encrypt M ∈ M for entity A with identifier IDA ∈ {0, 1}∗ and a public

key PA, perform the following steps:
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1. Check that PA is in G∗
1, if not output ⊥ . This checks the validity of the public

key.

2. Compute QA = H1(IDA) ∈ G∗
1.

3. Choose a random σ ∈ {0, 1}n.

4. Set r = H3(σ,M).

5. Compute and output the ciphertext:

C = 〈rP, σ ⊕H2(ê(QA, P0)r)⊕H5(rPA),M ⊕H4(σ)〉.

Notice that H2(ê(QA, P0)r) is identical to the mask used in the BF ID-PKE scheme

in Section 3.2.4.1, while H5(rPA) is the same as the mask used in the ElGamal PKE

scheme in Section 3.2.3.1.

Decrypt: Suppose C = 〈U, V, W 〉 ∈ C. To decrypt this ciphertext using the private

key SA = 〈DA, xA〉:

1. Compute V ⊕H2(ê(DA, U))⊕H5(xAU) = σ′.

2. Compute W ⊕H4(σ′) = M ′.

3. Set r′ = H3(σ′,M ′) and test if U = r′P . If not, output ⊥ and reject the

ciphertext.

4. Output M ′ as the decryption of C.

When C is a valid encryption of M using PA and IDA, it is easy to see that decrypting

C will result in an output M ′ = M . This concludes the description of FullCL-PKE.

We note that W in FullCL-PKE can be replaced by W = Esym
H4(σ)(M), where Esym is

a symmetric encryption algorithm meeting the definition of Section 6.4.2. Also note

that our security proofs will require some modifications to handle this case.
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6.4 The Fujisaki-Okamoto Hybridisation Technique

Fujisaki and Okamoto [71] provided an elegant conversion from an OWE secure PKE

scheme to a IND-CCA secure PKE scheme in the random oracle model. To introduce

this conversion we need to define two schemes: a basic PKE scheme and a symmetric

encryption scheme.

6.4.1 A Basic PKE Scheme

In order to apply the Fujisaki-Okamoto result, we need to define a PKE scheme with

certain properties. Hence, an alternative PKE definition to that specified in Section

3.2.1.1 will be presented next.

We specify a basic PKE scheme Πbasic by four algorithms: Setup, Key-Generation,

Encrypt and Decrypt, where:

Setup: Similar to the Setup algorithm of the PKE scheme in Section 3.2.1.1. However,

the finite message space is now denoted asMbasic and a finite coin space, COIN basic,

is defined. BothMbasic and COIN basic are defined by the security parameter k.

Key-Generation (K): is identical to the Key-Generation algorithm of the PKE scheme

in Section 3.2.1.1.

Encrypt (Ebasic): is a probabilistic polynomial time algorithm, which takes as input

a x ∈ Mbasic, params, the public key Kpub and a random element r ∈ COIN basic .

It returns a ciphertext y = Ebasic
Kpub

(x; r) ∈ C.

Decrypt (Dbasic): is a deterministic polynomial time algorithm, which takes as input a

y ∈ C, params, and a private key Kpriv. It returns a message x = Dbasic
Kpriv

(y) ∈Mbasic.

As we can see, the definition of basic PKE scheme involves a random value r in
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the encryption algorithm and the decryption algorithm is a deterministic algorithm

which never outputs ⊥ .

6.4.2 A Symmetric Encryption Scheme

We specify a symmetric encryption scheme Πsym by three algorithms: Setup, Encrypt

and Decrypt, where:

Setup: is a probabilistic polynomial time algorithm, which takes as input a security

parameter k and returns system-wide parameters ‘params’. The finite message space

is Msym, the finite key space is KPSC and the finite ciphertext space is C. The

values ofMsym, KSPC and C are defined by the security parameter k.

Encrypt (Esym): is a deterministic polynomial time algorithm, which takes as input

x ∈Msym, params and a key K ∈ KPSC. It returns a ciphertext y = Esym
K (x) ∈ C.

Decrypt (Dsym): is a deterministic polynomial time algorithm, which takes as input

y ∈ C, params and a key K ∈ KPSC. It returns a message x = Dsym
K (y) ∈Msym.

This concludes the description of a symmetric encryption scheme. This description

will also called upon in Chapter 9.

We introduce the security notion called find-guess for symmetric encryption schemes.

In [71] this indistinguishability notion does not allow the adversary access to any

encryption oracle. For an alternative security treatment of symmetric encryption

schemes see [15].

Find-guess security for symmetric encryption: We say that a symmetric en-

cryption scheme is secure against a find-guess attack if no polynomially bounded

adversary A has a non-negligible advantage against the challenger in the following

game:
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Setup: The challenger takes a security parameter k as input and runs the Setup

algorithm and selects a random key K ∈ KPSC which it keeps secret. It gives A a

description of the message space Msym.

Find Phase: This is a challenge phase where adversary A outputs two equal length

plaintexts x0, x1 ∈ Msym. The challenger now picks a random bit b ∈ {0, 1} and

computes y∗ = Esym
K (xb), the encryption of Mb under the random key K ∈ KPSC.

Ciphertext y∗ is delivered to A.

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. The adversary wins the game if

b = b′. We define A’s advantage in this game to be Adv(A) := 2|Pr[b = b′]− 1
2 |.

6.4.3 The Fujisaki-Okamoto Hybrid PKE Scheme

We specify the hybrid PKE scheme Πhy, which is constructed from a basic PKE

scheme meeting the definition of Section 6.4.1 and a symmetric encryption scheme

meeting the definition of Section 6.4.2, by four algorithms: Setup, Key-Generation,

Encrypt and Decrypt. We have:

Setup: is similar to the Setup algorithm of the PKE scheme in Section 3.2.1.1. How-

ever, the finite message space is now denoted as Mhy and the finite coin space

is COINhy. Both Mhy and COINhy are defined by the security parameter k.

Additionally choose cryptographic hash functions G : Mbasic → KPSC and H :

Mbasic ×Msym → COIN basic.

Key-Generation (K): is identical to the Key-Generation algorithm of the PKE scheme

in Section 3.2.1.1.

Encrypt (Ehy): is a probabilistic polynomial time algorithm, which takes as input

M ∈ Mhy, params, the public key Kpub and a random element σ ∈ Mbasic . It

returns a ciphertext Ehy
Kpub

(M ;σ) ∈ C.
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To encrypt M ∈Mhy, perform the following steps:

1. Choose a random σ ∈Mbasic.

2. Set r1 = H(σ,M).

3. Set r2 = G(σ).

4. Compute and output the ciphertext:

Ehy
Kpub

(M ;σ) = 〈c1, c2〉
= 〈Ebasic

Kpub
(σ; r1), Esym

r2 (M)〉
= 〈Ebasic

Kpub
(σ;H(σ,M)), Esym

G(σ)(M)〉.

Decrypt (Dhy): is a deterministic polynomial time algorithm, which takes as in-

put 〈c1, c2〉 ∈ C, params and a private key Kpriv. It returns a message M =

Dhy
Kpriv

(〈c1, c2〉) ∈Mhy.

To decrypt 〈c1, c2〉 ∈ C using private key Kpriv, do the following:

1. Compute Dbasic
Kpriv

(c1) = σ′.

2. Set r′2 = G(σ′) and compute Dsym
r′2

(c2) = M ′.

3. Set r′1 = H(σ′,M ′) and test if c1 = Ebasic
Kpub

(σ′; r′1). If not, output ⊥ and reject

the ciphertext.

4. Output M ′ as the decryption of C.

This concludes the description of the hybrid PKE scheme.

Note that in the hybrid PKE scheme definition, the hybrid message space Mhy is

equal to Msym. We say that Πhy is the result of applying the Fujisaki-Okamoto

hybridisation technique to the schemes Πbasic and Πsym.
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6.4.4 Security Results

The following result concerning IND-CPA security of the scheme Πhy appears as [71,

Lemma 10].

Result 6.1 Suppose that G and H are random oracles and that there exists an

IND-CPA adversary A against Πhy with advantage ε(k) which has running time t(k)

and makes at most qg, qh queries to G, H respectively. Suppose Πbasic is OWE

secure against adversaries with running time t1(k) and advantage ε1(k) and Πsym is

Find-Guess secure against adversaries with running time t2(k) and advantage ε2(k)

where

t(k) = min(t1(k), t2(k))−O(l1 + l2) and

ε(k) = 2(qg + qh) · ε1(k) + ε2(k).

Here, l1 and l2 are the sizes ofMbasic andMsym respectively.

Before exploring any more security results, we define a property of PKE schemes

called γ-uniformity [70, 71].

Definition 6.1 Let E be the encryption algorithm of a PKE scheme meeting the

definition of Section 6.4.1. For a given x ∈M and y ∈ {0, 1}∗, define

γ(x, y) = Pr[r ← random element in COIN : y = EKpub
(x; r)].

We say that the PKE scheme is γ-uniform (in k) if for any 〈Kpub,Kpriv〉, any x ∈M
and any y ∈ {0, 1}∗, γ(x, y) ≤ γ.

The scheme Πhy was shown in [71] to be an IND-CCA secure PKE scheme. A key

reason for this is that the scheme Πhy is plaintext aware, which implies IND-CCA

security in the random oracle model [16]. Plaintext awareness is a property that

allows the adversary to output a ciphtertext only if it actually knows the corres-

ponding plaintext. Hence, the intuition is that plaintext awareness ensures that the
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adversary gains nothing from querying the decryption oracle. This idea was intro-

duced by Bellare and Rogaway [23] and further refined and formalised by Bellare,

Desai, Pointcheval and Rogaway [16]. The IND-CCA security result makes use of a

special purpose algorithm called a knowledge extractor. This algorithm handles all

decryption queries and, with a high probability, outputs the correct decryption of

ciphtertexts.

Next we consider an important special case of the Fujisaki-Okamoto construction in

Section 6.4.3, in which the symmetric encryption algorithm is replaced by a one-time

pad, that is, Esym
K (x) = K⊕x and Dsym

K (y) = K⊕y. We let Πhy? denote this hybrid

scheme. If we define Msym and KSPC to be {0, 1}l2 , then the cryptographic hash

functions are G : Mbasic → {0, 1}l2 and H : Mbasic × {0, 1}l2 → COIN basic. The

hybrid encryption of plaintext M becomes:

Ehy?
Kpub

(M) = 〈Ebasic
Kpub

(σ;H(σ,M)), G(σ)⊕M〉. (6.1)

In this setting the following lemma applies.

Lemma 6.2 Suppose that G and H are random oracles and that there exists an

IND-CPA adversary A against Πhy? with advantage ε(k) which has running time

t(k) and makes at most qg, qh queries to G, H respectively. Then there is an OWE

adversary B against Πbasic with running time t1(k) and advantage ε1(k) where

t(k) = t1(k)−O(l1 + l2) and

ε(k) = 2(qg + qh) · ε1(k).

Here, l1 and l2 are the sizes of Mbasic and Msym, the asymmetric and symmetric

(that is, one-time pad) message space respectively.

Proof. The result follows by specialising Result 6.1 to the setting of Πhy?. In Πhy?,

the symmetric encryption scheme is replaced with a one-time pad. Since the key

K for this one-time pad is chosen uniformly at random and used only once in the

find-guess game of Section 6.4.2, a find-guess adversary gains no advantage and we

have ε2(k) = 0. The lemma follows.
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�

Now we are in a position to state a result concerning the IND-CCA security of Πhy?.

The result appears as [71, Theorem 14].

Result 6.3 Suppose Πhy? is constructed from a γ-uniform PKE scheme Πbasic and

the one-time pad. Suppose that G and H are random oracles and that there exists

an IND-CCA adversary A against Πhy? with advantage ε(k) which has running time

t(k) and makes at most qd decryption queries and at most qg, qh queries to G, H

respectively. Then there is an OWE adversary B against Πbasic with running time

t1(k) and advantage ε1(k) where

t(k) = t1(k)−O((qg + qh) · (l1 + l2)) and (6.2)

ε(k) = (2(qg + qh) · ε1(k) + 1) · (1− γ − 2−l2)−qd − 1. (6.3)

Here, l1 and l2 are the sizes ofMbasic andMsym respectively.

The Πhy? hybridisation construction is used to form the hybrid schemes in Sections

6.5.1 and 6.5.2. As we shall see, Lemma 6.2 and Result 6.3 will be used to prove the

security of these schemes.

6.5 Security of the FullCL-PKE Construction

We need the following two PKE schemes, ElG-HybridPub and BF-HybridPub, as they

appear in intermediate steps of the security proof for FullCL-PKE. The IND-CCA

and IND-CPA adversaries appropriate for PKE schemes were described in Section

3.5.3.

6.5.1 ElG-HybridPub

We define a public key encryption scheme ElG-HybridPub. The scheme is obtained

by applying the hybridisation construction described in Section 6.4 to the encryption
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scheme ElG-BasicPub of Section 5.5.1.

This scheme is specified by four algorithms: Setup, Key-Generation, Encrypt and

Decrypt.

Setup:

1. Run IG on input k to generate 〈G1, G2, ê〉 with the usual properties. Choose

a generator P ∈ G1.

2. Choose cryptographic hash functions H3 : {0, 1}n×{0, 1}n → Z∗
q , H4 : {0, 1}n →

{0, 1}n and H5 : G1 → {0, 1}n.

The message and ciphertext spaces for ElG-HybridPub are M = {0, 1}n and C =

G1 × {0, 1}2n. The system parameters are params= 〈G1, G2, ê, n, P,H3,H4,H5〉.

Key-Generation:

1. Choose a random x ∈ Z∗
q and set R = xP .

2. Set the public key Kpub to be 〈G1, G2, ê, n, P,H3,H4,H5, R〉 = 〈params, R〉 and

the private key to be Kpriv = x.

Encrypt: To encrypt M ∈M, perform the following steps:

1. Choose a random σ ∈ {0, 1}n.

2. Set r = H3(σ,M).

3. Compute and output the ciphertext:

C = 〈rP, σ ⊕H5(rR),M ⊕H4(σ)〉.
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Decrypt: To decrypt C = 〈U, V,W 〉 ∈ C using private key Kpriv = x, do the following:

1. Compute V ⊕H5(xU) = σ′.

2. Compute W ⊕H4(σ′) = M ′.

3. Set r′ = H3(σ′,M ′) and test if U = r′P . If not, output ⊥ and reject the

ciphertext.

4. Output M ′ as the decryption of C.

This concludes the description of ElG-HybridPub.

6.5.2 BF-HybridPub

The scheme BF-HybridPub is denoted BasicPubhy in [32]. This scheme applies the

hybridisation technique which we described in Section 6.4 to the PKE scheme BF-

BasicPub of Section 5.5.2.

This scheme is specified by four algorithms: Setup, Key-Generation, Encrypt and

Decrypt.

Setup:

1. Run IG on input k to generate 〈G1, G2, ê〉 with the usual properties. Choose

a generator P ∈ G1.

2. Choose a random s ∈ Z∗
q and set P0 = sP .

3. Choose cryptographic hash functions H2 : G2 → {0, 1}n, H3 : {0, 1}n ×
{0, 1}n → Z∗

q and H4 : {0, 1}n → {0, 1}n.
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The message and ciphertext spaces for BF-HybridPub are M = {0, 1}n and C =

G1 × {0, 1}2n. The system parameters are params= 〈G1, G2, ê, n, P, P0,H2,H3,H4〉.

Key-Generation:

1. Choose a random Q ∈ G∗
1.

2. Set the public key to be Kpub = 〈G1, G2, ê, n, P, P0,H2,H3,H4, Q〉 = 〈params, Q〉
and the private key to be Kpriv = sQ.

Encrypt: To encrypt M ∈M, perform the following steps:

1. Choose a random σ ∈ {0, 1}n.

2. Set r = H3(σ,M).

3. Compute and output the ciphertext:

C = 〈rP, σ ⊕H2(ê(Q,P0)r),M ⊕H4(σ)〉.

Decrypt: To decrypt C = 〈U, V,W 〉 ∈ C using private key Kpriv = sQ, do the

following:

1. Compute V ⊕H2(ê(sQ, U)) = σ′.

2. Compute W ⊕H4(σ′) = M ′.

3. Set r′ = H3(σ′,M ′) and test if U = r′P . If not, output ⊥ and reject the

ciphertext.

4. Output M ′ as the decryption of C.

This concludes the description of BF-HybridPub.
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6.5.3 Security of ElG-Hybridpub

We will prove that ElG-Hybridpub is IND-CPA and IND-CCA secure in the random

oracle model.

Lemma 6.4 Suppose that H3 and H4 are random oracles and that there exists

an IND-CPA adversary A against ElG-HybridPub with advantage ε which makes at

most q3 and q4 queries to H3 and H4 respectively. Then there is an OWE adversary

against ElG-BasicPub with advantage at least ε/2(q3 + q4) and which runs in time

time(A) +O(n). Here G1 is obtained from the output 〈G1, G2, ê〉 of IG.

Proof. This is proven by applying Lemma 6.2 to the scheme ElG-HybridPub, setting

l1 = n and l2 = n.
�

The scheme ElG-HybridPub can be shown to be IND-CPA secure in the random oracle

model provided the CDHP is hard by composing the reductions in Lemma 6.4 and

Lemma 5.1.

Lemma 6.5 Suppose that H3 and H4 are random oracles and that there exists an

IND-CCA adversary A against ElG-HybridPub with advantage ε which makes at most

q3 and q4 queries to H3 and H4 respectively and at most qd decryption queries. Then

there is an OWE adversary against ElG-BasicPub with advantage at least

(ε + 1)(1− q−1 − 2−n)qd − 1
2(q3 + q4)

and which runs in time time(A) +O(n(q3 + q4)).

Proof. We apply Result 6.3 to ElG-HybridPub, setting l1 = n, l2 = n and γ = q−1. We

take γ = q−1, since q is the order of G1 which determines the number of encryption

variants for a given message.
�
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The scheme ElG-HybridPub can be shown to be IND-CCA secure in the random oracle

model provided the CDHP is hard by composing the reductions in Lemma 6.5 and

Lemma 5.1.

6.5.4 Security of BF-Hybridpub

We will prove that BF-Hybridpub is IND-CPA secure in the random oracle model.

Lemma 6.6 Suppose that H3 and H4 are random oracles and that there exists an

IND-CPA adversary A against BF-HybridPub with advantage ε which makes at most

q3 and q4 queries to H3 and H4 respectively. Then there is an OWE adversary

against BF-BasicPub with advantage at least ε/2(q3 + q4) and which runs in time

time(A) +O(n).

Proof. This is proved by applying Lemma 6.2 to the scheme BF-HybridPub, setting

l1 = n and l2 = n.
�

The scheme BF-HybridPub can be shown to be IND-CPA secure in the random oracle

model provided the BDHP is hard, by composing the reductions in Lemma 6.6 and

Result 5.2.

Result 6.3 is used in [33] to prove that BF-HybridPub is IND-CCA secure in the

random oracle model provided the BDHP is hard. This is shown in [33] by combining

Result 6.3 and Result 5.2. In [33, Theorem 4.5] the values of l1 and l2 are both equal

to n (since σ and M are of length n) and γ is correctly set to 1/q, where q is the

size of the groups G1, G2. However, in stating their result, Boneh and Franklin set

the value 2−l2 in equation 6.3 to be equal to q−1. Because of this, in the work of

[33], the message length n needs to grow at least as fast as k in order to obtain

security. This assumption is not mentioned anywhere in [33]. In proving the security

of FullCL-PKE, we do not need to use this result concerning the IND-CCA security of
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BF-HybridPub. Unlike [33], however, we did not specify n as a function of the group

size q in Lemma 6.5, concerning the IND-CCA security of ElG-HybridPub.

6.5.5 Security of FullCL-PKE

On our route to proving the main theorem concerning the security of FullCL-PKE we

need to prove three lemmas. Lemma 6.7 and Lemma 6.8 are concerned with Type

II and Type I adversaries against FullCL-PKE respectively, and Lemma 6.9 handles

the decryption queries required to simulate Lemma 6.8.

Lemma 6.7 Suppose that H1 and H2 are random oracles and that there exists

a Type II IND-CCA adversary AII against FullCL-PKE with advantage ε which

makes at most q1 queries to H1. Then there is an IND-CCA adversary against

ElG-HybridPub with advantage at least ε/q1 which runs in time O(time(AII)).

Proof. Let AII be a Type II IND-CCA adversary against FullCL-PKE. Suppose AII

has advantage ε and makes q1 queries to random oracle H1. We show how to construct

from AII an IND-CCA adversary B against the PKE scheme ElG-HybridPub.

Let C denote the challenger against our IND-CCA adversary B for ElG-HybridPub.

The challenger C begins by supplying B with a public key

Kpub = 〈G1, G2, ê, n, P,H3,H4,H5, R〉 = 〈params, R〉.

Adversary B mounts an IND-CCA attack on the key Kpub using help from AII as

follows.

First of all B chooses an index I with 1 ≤ I ≤ q1. Then B simulates the algorithm

Setup of FullCL-PKE for AII by choosing a random s ∈ Z∗
q , setting P0 = sP and

supplying AII with params = 〈G1, G2, ê, n, P, P0,H1,H2,H3,H4,H5〉 and the value

s. Here, H1 and H2 are additional random oracles.
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Adversary AII may make queries of H1 or H2 at any time. These are handled as

follows:

H1 queries: The H1 queries are simulated by B. For an IDi query, B will choose a

random Qi ∈ G∗
1 and return H1(IDi) = Qi for 1 ≤ i ≤ q1. For each i where i 6= I, B

chooses a random xi ∈ Zq and maintains a table with entries 〈Qi, xi〉.

H2 queries: Adversary B simulates these and answers H2 queries by maintaining a

list of queries and replies. We do need to assume in the course of the proof that H2

is a random oracle.

Phase 1: Now AII launches Phase 1 of its attack, by making a series of requests,

each of which is either a private key extraction, a request for a public key for a

particular entity, or a decryption query. (Recall that a Type II adversary cannot

replace public keys and can make partial private key extraction queries for himself

given s.) We assume that AII always makes the appropriate H1 query on ID before

making one of these requests for that identifier. B replies to these requests as follows:

Private Key Extraction: If the request is on IDI then B aborts. Otherwise, if the

request is on IDi with i 6= I, then B outputs 〈sQi, xi〉.

Request for Public Key: If the request is on IDI then B returns R. Otherwise, if

the request is on IDi for some i with i 6= I, then B returns xiP .

Decryption Queries: If the request is to decrypt 〈U, V,W 〉 under the private key

for IDI , then B computes ξ = ê(U, sQI) and relays the decryption query 〈U, V ⊕
H2(ξ),W 〉 to C. The FullCL-PKE decryption of 〈U, V,W 〉 under the (unknown)

private key for IDI is equal to the ElG-HybridPub decryption of 〈U, V ⊕ H2(ξ),W 〉
under the (unknown) private key corresponding to Kpub. Hence C’s response to B’s

request can be relayed to AII . On the other hand, if the request is to decrypt

〈U, V, W 〉 under the private key for IDi (i 6= I), then B can perform this decryption

himself using the private key 〈sQi, xi〉 for IDi.
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Challenge Phase: At some point, AII decides to end Phase 1 and picks IDch and

two messages M0, M1 on which it wants to be challenged. We can assume that AII

has not extracted the private key for this identifier. Algorithm B responds as follows.

If IDch 6= IDI then B aborts. Otherwise IDch = IDI and B gives C the pair M0, M1

as the messages on which it wishes to be challenged. C responds with the challenge

ciphertext C ′ = 〈U ′, V ′,W ′〉, such that C ′ is the ElG-HybridPub encryption of Mb

under Kpub for a random b ∈ {0, 1}. Then B computes ξ′ = ê(U ′, sQI) and sets

C∗ = 〈U ′, V ′ ⊕H2(ξ′),W ′〉 and delivers C∗ to AII . It is not hard to see that C∗ is

the FullCL-PKE encryption of Mb for identifier IDI (with public key R).

Phase 2: Adversary B continues to respond to requests in the same way as it did in

Phase 1. Of course, we now restrict AII to not make private key extraction requests

on IDch. If any decryption query relayed to C is equal to the challenge ciphertext C ′

then B aborts.

Guess: Eventually, AII will make a guess b′ for b. B outputs b′ as its guess for b.

Analysis: Now we analyze the behavior of B and AII in this simulation. We

claim that if algorithm B does not abort during the simulation then algorithm AII ’s

view is identical to its view in the real attack. Moreover, if B does not abort then

2|Pr[b = b′]− 1
2 | ≥ ε.

We justify this claim as follows. B’s responses to H1 and H2 queries are uniformly

and independently distributed in G∗
1 and {0, 1}n respectively, as in the real attack.

All responses to AII ’s requests are valid, provided of course that B does not abort.

Furthermore, the challenge ciphertext C∗ is a valid FullCL-PKE encryption of Mb

where b ∈ {0, 1} is random. Thus, by definition of algorithm AII we have that

2|Pr[b = b′]− 1
2 | ≥ ε.

The probability that B does not abort during the simulation remains to be calculated.

Examining the simulation, we see that B can abort for three reasons: (i) because AII

made a private key extraction on IDI at some point, (ii) because AII did not choose
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IDch = IDI , or (iii) because B relayed a decryption query on C ′ = 〈U ′, V ′,W ′〉 to C
in Phase 2.

Because of the way that B converts ciphertexts, this last event happens only if

AII queries B on the ciphertext C∗ = 〈U ′, V ′ ⊕ H2(ξ′),W ′〉 in Phase 2. However,

this is exactly AII ’s challenge ciphertext on which AII is forbidden from making a

decryption query, since

〈U ′, V ′ ⊕H2(ξ′)⊕H2(ê(U ′, sQI)),W ′〉 = 〈U ′, V ′,W ′〉.

So this event never occurs in B’s simulation. We name the remaining events that

can cause B to abort as Q1 and Q2.

Notice that the event ¬Q2 implies the event ¬Q1 (if AII chooses IDch equal to IDI ,

then no private key extraction on IDI is allowed). Hence we have

Pr[B does not abort] = Pr[¬Q1 ∧ ¬Q2]
= Pr[¬Q2]
= 1/q1

where the last equality follows from B’s random choice of I being independent of

AII ’s choice of IDch.

Thus we see that B’s advantage is at least ε/q1 and the proof is complete.
�

Lemma 6.8 Suppose that Hi (1 ≤ i ≤ 5) are random oracles and that there exists

a Type I IND-CCA adversary AI against FullCL-PKE. Suppose AI has advantage ε,

runs in time t, makes at most qi queries to Hi (1 ≤ i ≤ 5) and makes at most qd

decryption queries. Then there is an algorithm B which acts as either a BF-HybridPub

or an ElG-HybridPub IND-CPA adversary. Moreover, B either has advantage at least

ελqd/4q1 when playing as a BF-HybridPub adversary, or has advantage at least ε/4q1

when playing as an ElG-HybridPub adversary. Algorithm B runs in time t +O((q3 +

q4)qdt
′). Here t′ is the running time of the BasicCL-PKE encryption algorithm and

λ ≥ 1− (q3 + q4) · εOWE(t +O((q3 + q4)qdt
′, q2, q5))− 4q−1 − 2−n+2.
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where εOWE(T, q′, q′′) denotes the highest advantage of any OWE adversary against

BasicCL-PKE which operates in time T and makes q′ hash queries to H2 and q′′ hash

queries to H5.

Proof. Let AI be a Type I IND-CCA adversary against FullCL-PKE. Suppose AI

has advantage ε, runs in time t, makes qi queries to random oracle Hi (1 ≤ i ≤ 5)

and makes qd decryption queries. We show how to construct from AI an adversary

B that acts either as an IND-CPA adversary against the PKE scheme BF-HybridPub

or as an IND-CPA adversary against the PKE scheme ElG-HybridPub. We assume

that challengers CI and CII for both types of games are available to B.

Adversary B begins by choosing a random bit c and an index I uniformly at random

with 1 ≤ I ≤ q1. If c = 0, then B chooses to play against CI and aborts CII . Here, B
will build an IND-CPA adversary against BF-HybridPub and fail against CII . When

c = 1, B chooses to play against CII and aborts CI . Here, B will build a IND-CPA

adversary against ElG-HybridPub and fail against CI . In either case, C will denote

the challenger against which B plays for the remainder of this proof.

As in Lemma 5.4, we define three events H, F0 and F1:

• H: Adversary AI chooses IDI as the challenge identifier IDch.

• F0: Adversary AI extracts the partial private key for entity IDI .

• F1: Adversary AI replaces the public key of entity IDI at some point in its

attack.

The general strategy of the proof is similar to that of the proof of Lemma 5.4. If

(c = 0)∧F0 occurs, B will have to abort and will be unsuccessful. If ¬F0∧H occurs,

then B’s success probability will be related to that of AI . On the other hand, if

(c = 1)∧F1 occurs, B will again have to abort and will be unsuccessful. If ¬F1 ∧H
occurs, then B’s success probability will again be related to that of AI . Overall, we

will show that B’s advantage in its mixed-game strategy is non-negligible if AI ’s is.
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It is then easy to see that B has a non-negligible advantage for at least one of the

two game types.

If c = 0, then C is an IND-CPA challenger for BF-HybridPub and begins by supplying

B with a public key Kpub = 〈G1, G2, ê, n, P, P0,H2,H3,H4, Q〉. If c = 1, then C
is an IND-CPA challenger for ElG-HybridPub and so supplies B with a public key

Kpub = 〈G1, G2, ê, n, P,H3,H4,H5, R〉.

Then B simulates the algorithm Setup of FullCL-PKE for AI . When c = 0, B will

handle H5 queries, while when c = 1, B will handle H2 queries. Additionally, when

c = 1, B chooses a random s ∈ Z∗
q and sets P0 = sP . Thus, B supplies AI with

params= 〈G1, G2, ê, n, P, P0,H1,H2,H3,H4,H5〉. Here H1 is a random oracle that

will be controlled by B.

Adversary AI may make queries of the random oracles Hi, 1 ≤ i ≤ 5, at any time

during its attack. These are handled as follows:

H1 queries: Adversary B maintains a list of tuples 〈IDi, Qi, bi, xi, Pi〉 which we call

the H1 list. The list is initially empty, and when AI queries H1 on input ID ∈ {0, 1}∗,
B responds as follows:

1. If ID already appears on the H1 list in a tuple 〈IDi, Qi, bi, xi, Pi〉, then B re-

sponds with H1(ID) = Qi.

2. Suppose ID does not already appear on the list and ID is the I-th distinct

H1 query made by AI . For c = 0, B outputs H1(ID) = Q, selects a random

xI ∈ Z∗
q and adds the entry 〈ID, Q,⊥, xI , xIP 〉 to the H1 list. For c = 1, B

selects bI ∈ Z∗
q , outputs H1(ID) = bIP and adds the entry 〈ID, bIP, bI ,⊥ , R〉

to the H1 list.

3. Otherwise, when ID does not already appear on the list and ID is the i-th

distinct H1 query made by AI where i 6= I, B picks random xi, bi ∈ Z∗
q , sets

Qi = biP , outputs H1(ID) = Qi and adds 〈ID, biP, bi, xi, xiP 〉 to the H1 list.
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Notice that with this specification of H1, the FullCL-PKE partial private key for IDi

(i 6= I) is equal to biP0 while the public key for IDi (i 6= I) is Pi = xiP and the

private key for IDi (i 6= I) is 〈biP0, xi〉. These can all be computed by B. When

c = 1, B sets the public key of IDI to be R and can compute the partial private key

of IDI as sbIP . When c = 0, B knows neither the partial private key nor the private

key for IDI .

H2 queries: When c = 0 any H2 queries made by AI are passed to C to answer.

When c = 1 any H2 queries made by AI are simulated by B using the standard

approach of maintaining a list of queries and replies. We do need to assume in the

course of the proof that H2 is a random oracle.

H3 and H4 queries: Adversary B passes AI ’s H3 and H4 queries to C to answer,

but keeps lists 〈σj ,Mj ,H3,j〉 and 〈σ′
i,H4,i〉 of AI ’s distinct queries and C’s replies to

them.

H5 queries: Any H5 queries made by AI are passed to C to answer when c = 1.

When c = 0, B maintains a list of tuples 〈µi,H5,i〉 which we call the H5 list. The list

is initially empty, and when AI queries H5 on input µ ∈ G1, B responds as follows:

1. If µ already appears on the H5 list in a tuple 〈µi,H5,i〉, then B responds with

H5(µ) = H5,i.

2. Suppose µ does not already appear on the list. If the H5 query is made before

the challenge phase, then B goes to step 3 below. Otherwise, let Pch denote

the value of the public key for the challenge identifier IDch during the challenge

phase, let C∗ = 〈U∗, V ∗,W ∗〉 be the challenge ciphertext delivered to AI by B,

and let ξ be the value, to be defined below, used by B in the challenge phase.

B tests if µ satisfies ê(µ, P ) = ê(U∗, Pch). If equality holds, then B adds 〈µ, ξ〉
to the H5 list and outputs ξ = H5(µ). If the equality does not hold, then B
goes to step 3.

3. Supposing µ to be the i-th distinct H5 query made by AI , B selects a random
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H5,i ∈ {0, 1}n, outputs H5(µ) = H5,i and adds 〈µi,H5,i〉 to the H5 list.

We simulate H5 this way for the same reasons as those discussed in the proof of

Lemma 5.4.

Phase 1: After receiving params from B, AI launches Phase 1 of its attack, by

making a series of requests, each of which is either a partial private key extraction

for an entity, a private key extraction for an entity, a request for a public key for

an entity, a replacement of a public key for an entity or a decryption query for an

entity. We assume that AI always makes the appropriate H1 query on the identifier

ID for that entity before making one of these requests. B replies to these requests as

follows:

Partial Private Key Extraction: Suppose the request is on IDi. There are three

cases:

1. If i 6= I, then B replies with biP0.

2. If i = I and c = 1, then B replies with bIP0.

3. If i = I and c = 0, then B aborts.

Private Key Extraction: Suppose the request is on IDi. We can assume that the

public key for IDi has not been replaced. There are two cases:

1. If i 6= I, then B outputs 〈biP0, xi〉.

2. If i = I, then B aborts.

Request for Public Key: If the request is on IDi then B returns Pi by accessing

the H1 list.
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Replace Public Key: Suppose the request is to replace the public key for IDi with

value P ′
i . There are three cases:

1. If i = I and c = 1, then B aborts.

2. If i = I and c = 0, then B replaces the current entry in the H1 list with the

new entry P ′
I and updates the tuple to 〈IDI , Q,⊥,⊥, P ′

I〉.

3. Otherwise, B replaces the current entry in the H1 list with the new entry P ′
i

(i 6= I) and updates the tuple to 〈IDi, biP, bi,⊥, P ′
i 〉 .

Decryption Queries: Suppose the request is to decrypt ciphertext 〈U, V,W 〉 for

ID`, where the private key that should be used is the one corresponding to the current

value of the public key for IDi. Notice that even when ` = I, B cannot make use of

C to answer the query, because B is meant to be an IND-CPA adversary. Instead

B makes use of an algorithm KE to perform all the decryptions. This algorithm,

essentially a knowledge extractor in the sense of [16, 71], is not perfect, but as we

shall show below, the probability that it decrypts incorrectly is sufficiently low that

it can be used in place of a true decryption algorithm making use of private keys.

Algorithm KE is defined as follows:

Algorithm KE: The input to the algorithm is a ciphertext C = 〈U, V,W 〉, an

identifier ID` and the current value of the public key P`. We assume that KE also

has access to the H3 and H4 lists. Algorithm KE operates as follows:

1. Find all triples 〈σj ,Mj ,H3,j〉 on the H3 list such that

〈U, V 〉 = BasicCL-PKE-EncryptID`,P`
(σj ;H3,j).

Here, BasicCL-PKE-EncryptIDA,PA
(M ; r) denotes the BasicCL-PKE encryption

of message M for IDA using public key PA and random value r. Collect all

these triples in a list S1. If S1 is empty, output ⊥ and halt.
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2. For each triple 〈σj ,Mj ,H3,j〉 in S1, find all pairs 〈σ′
i,H4,i〉 in the H4 list with

σj = σ′
i. For each such match, place 〈σj ,Mj ,H3,j ,H4,i〉 on a list S2. If S2 is

empty, then output ⊥ and halt.

3. Check in S2 for an entry such that W = Mj ⊕ H4,i. If such an entry exists,

then output Mj as the decryption of 〈U, V, W 〉. Otherwise, output ⊥ .

Lemma 6.9 shows that KE correctly decrypts with high probability.

Challenge Phase: At some point, AI should decide to end Phase 1 and pick IDch

and two messages m0, m1 on which it wishes to be challenged. We can assume that

IDch has already been queried of H1 but that AI has not extracted the private key

for this identifier. Algorithm B responds as follows. If IDch 6= IDI then B aborts.

Otherwise IDch = IDI and B gives C the pair m0, m1 as the messages on which it

wishes to be challenged. There are now two cases:

• When c = 0, C responds with the challenge ciphertext C ′ = 〈U ′, V ′,W ′〉, a BF-

HybridPub encryption of mb under Kpub for a random b ∈ {0, 1}. Now B checks

each entry 〈µi,H5,i〉 in the H5 list to see if it satisfies the equality ê(µi, P ) =

ê(U ′, Pch). It is easy to see that at most one entry can do so. If B finds that

the j-th entry satisfies the equality, then B sets C∗ = 〈U ′, V ′ ⊕H5,j ,W
′〉 and

delivers C∗ to AI as the challenge ciphertext. Otherwise, if no entry satisfies

this test, B selects a random ξ ∈ {0, 1}n, sets C∗ = 〈U ′, V ′⊕ξ,W ′〉 and delivers

C∗ to AI .

• When c = 1, C responds with the challenge ciphertext C ′ = 〈U ′, V ′,W ′〉,
such that C ′ is the ElG-HybridPub encryption of mb under Kpub for a random

b ∈ {0, 1}. Then B sets C∗ = 〈U ′, V ′ ⊕ H2(ê(U ′, bIsP )),W ′〉 and delivers C∗

to AI .

It is easy to see that in both cases C∗ is the FullCL-PKE encryption of mb for identifier

IDch under public key Pch. We now let Pch denote the particular value of the public
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key for identifier IDch during the challenge phase (AI may change this value in Phase

2 of its attack).

Phase 2: Adversary B continues to respond to AI ’s requests in the same way as it

did in Phase 1. However, the same restrictions as identified in Section 6.2 on AI ’s

behaviour apply in this phase.

Guess: Eventually, AI should make a guess b′ for b. Then B outputs b′ as its guess

for b. If AI has used more than time t, or attempts to make more than qi queries

to random oracle Hi or more than qd decryption queries, then B should abort AI

and output a random guess for bit b (in this case algorithm KE has failed to perform

correctly at some point).

Analysis: Now we analyze the behavior of B and AI in this simulation. We claim

that if algorithm B does not abort during the simulation and if all of B’s uses of the

algorithm KE result in correct decryptions, then algorithm AI ’s view is identical to

its view in the real attack. Moreover, if this is the case, then 2|Pr[b = b′] − 1
2 | ≥ ε.

This is not hard to see: Adversary B’s responses to all hash queries are uniformly

and independently distributed as in the real attack. All responses to AI ’s requests

are valid, provided of course that B does not abort and that KE performs correctly.

Furthermore, the challenge ciphertext C∗ is a valid FullCL-PKE encryption of mb

under the current public key for identifier IDch, where b ∈ {0, 1} is random. Thus,

by definition of algorithm AI we have that 2|Pr[b = b′]− 1
2 | ≥ ε.

So we must examine the probability that B does not abort during the simulation

given that the algorithm KE performs correctly. Examining the simulation, we see

that B can abort for the same four reasons as in Lemma 5.4, that is:

0. Because c = 0 and the event F0 occurred during the simulation.

1. Because c = 1 and event F1 occurred during the simulation.

2. Because AI made a private key extraction on IDI at some point.
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3. Or because AI chose IDch 6= IDI .

We can use a proof identical to that of Lemma 5.4 to establish a lower bound on the

probability that B does not abort. We obtain:

Pr[B does not abort] ≥ 1
2q1

.

Now we examine the probability that algorithm KE correctly handles all of AI ’s qd

decryption queries. We will show in Lemma 6.9 below that the probability that KE
correctly replies to individual decryption queries is at least λ, where λ is bounded as

in the statement of that lemma.

It is now easy to see that B’s advantage is at least ε
2q1

λqd . It follows that either B’s

advantage as an adversary against BF-HybridPub or B’s advantage as an adversary

against ElG-HybridPub is at least ε
4q1

λqd . The running time of B is time(AI) + qd ·
time(KE) = t + O((q3 + q4)qdt

′) where t′ is the running time of the BasicCL-PKE

encryption algorithm. This completes the proof of the lemma.
�

Lemma 6.9 In the simulation in the proof of Lemma 6.8, Algorithm KE correctly

replies to individual decryption queries with probability at least λ where

λ ≥ 1− (q3 + q4) · εOWE(t +O((q3 + q4)qdt
′, q2, q5))− 4q−1 − 2−n+2.

Here t is the running time of adversary AI , t′ is the running time of the BasicCL-PKE

encryption algorithm, and εOWE(T, q′, q′′) denotes the highest advantage of any Type

I OWE adversary against BasicCL-PKE which operates in time T and makes q′ hash

queries to H2 and q′′ hash queries to H5.

Proof. We recall that queries to KE come in the form of a ciphertext C = 〈U, V, W 〉,
an identifier ID` and the current value of the public key P` for that identifier. We

also assume that KE has access to the H3 and H4 lists as they stand at the point

where the decryption query is made. We model the fact that AI obtains a challenge
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ciphertext by considering an additional list of ciphertexts Y in our proof. This

list is empty until the challenge phase and thereafter consists of just the challenge

ciphertext C∗ = 〈U∗, V ∗,W ∗〉.

We define a sequence of events:

• Inv is the event that there exists some C ′ = 〈U ′, V ′,W ′〉 ∈ Y and some

〈σj ,Mj ,H3,j〉 on the H3 list or some 〈σ′
i,H4,i〉 on the H4 list such that the

BasicCL-PKE decryption of 〈U ′, V ′〉 under the private key corresponding to Pch

and IDch is equal to σj or σ′
i. (For us, Inv has zero probability until after a

non-abortive challenge phase in AI ’s attack because Y is empty up to this

point.)

• L1 is the event that S1 is non-empty.

• L2 is the event that S2 is non-empty.

• Find is the event that there exists an entry 〈σj ,Mj ,H3,j ,H4,i〉 in S2 such that

W = Mj ⊕H4,i.

• Fail is the event that the output of algorithm KE is not the decryption of C

under the private key corresponding to identifier ID` and public key P`.

We want to bound the probability of the event Fail for a particular execution of

algorithm KE . To do so, we follow the proof of [71, Lemma 11] to obtain:

Pr[Fail] ≤ Pr[Inv] + Pr[Fail|¬Inv ∧ ¬L1]
+Pr[Fail|¬Inv ∧ L1 ∧ ¬L2]
+Pr[Fail|¬Inv ∧ L1 ∧ L2 ∧ ¬Find]
+Pr[Fail|¬Inv ∧ L1 ∧ L2 ∧ Find].

We proceed to bound each of the terms in the above inequality.

Claim: Pr[Inv] ≤ (q3 + q4) · εOWE(time(B), q2, q5).

Proof. Here εOWE(T, q′, q′′) denotes the highest advantage of any Type I OWE ad-

versary against BasicCL-PKE which operates in time T and makes q′ hash queries to
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H2 and q′′ hash queries to H5, while time(B) denotes the running time of adversary

B in the proof of Lemma 6.8.

We sketch how to construct an OWE adversary B′ against BasicCL-PKE by adapting

adversary B in the proof of Lemma 6.8. Our adversary B′ will have a chance of being

successful provided that the event Inv occurs in the course of AI ’s attack.

Adversary B′ begins by choosing a random bit c and, as with B, it selects an index

I uniformly at random with 1 ≤ I ≤ q1. Let q1, q3 and q4 denote the number of H1,

H3 and H4 queries made in AI ’s attack respectively.

The running time of the adversary will be the same as that of B. The existence of

this adversary will be used to bound the probability of the event Inv.

In fact B′ is closely related to B. B′ is given by its challenger C′ the system parameters

of BasicCL-PKE which are

〈G1, G2, ê, n, P, P0,H1,H2,H5〉

(and the value s when c = 1). B′ now passes AI ’s H1, H2, H3, H4 and H5 queries

to C′ to answer, but keeps lists of all distinct queries made by AI and C′’s replies to

them. B′ answers the following requests as follows:

• Partial private key extraction queries: If i = I and c = 0, then B′ aborts.

Otherwise, B′ passes AI ’s queries to C′ to answer.

• Private key extraction queries: If i = I then B′ aborts. Otherwise, B′ passes

AI ’s queries to C′ to answer.

• Request for public key queries: B′ passes AI ’s queries to C′ to answer.

• Replace public key queries: If i = I and c = 1, then B′ aborts. Otherwise, B′

passes AI ’s queries to C′ to answer.

• Decryption queries: B′ uses an algorithm KE to handle AI ’s decryption queries

(so these responses may be incorrect).
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When AI picks IDch and m0, m1 on which it wishes to be challenges. If IDch 6= IDI ,

then B′ aborts. Otherwise B′ forwards IDch to C ′ and responds to AI ’s request for

a challenge ciphertext with C∗ = 〈U ′, V ′,W ∗〉 where 〈U ′, V ′〉 is the BasicCL-PKE

challenge ciphertext given to B′ by C′ and W ∗ is chosen uniformly at random from

{0, 1}n.

Eventually AI outputs a bit b′. If necessary (when AI runs for too long or makes too

many hash queries), B′ stops AI . Note that B′ may also be forced to stop because it

cannot respond to a particular query from AI . After stopping for whatever reason,

B′ chooses an element uniformly at random from the set {σj : 1 ≤ j ≤ q3} ∪ {σ′
i :

1 ≤ i ≤ q4} and outputs this element as its guess for σ∗.

It can be argued that, up to the point where Inv occurs in B′’s simulation, the two

simulations B and B′ are indistinguishable toAI . This is because we ensured that B′’s

simulation aborts in the exact situations that B’s simulation aborts. Furthermore,

all the queries in B′’s simulation which are handled by C′ are indistinguishable from

those handled in B’s simulation. So the probability that Inv occurs in B′’s simulation

is exactly the same that it does in B’s. Because of the relationship between the

BasicCL-PKE and FullCL-PKE public keys, it can also be seen that if event Inv occurs,

then B′ has probability 1/(q3 +q4) of outputting the correct BasicCL-PKE decryption

of 〈U ′, V ′〉. So B′’s overall success probability is at least Pr[Inv]/(q3 + q4). But this

is not greater than the highest success probability of any Type I OWE adversary

against BasicCL-PKE that operates in the same time as B′ and that makes q2 and

q5 hash queries. Since the running time of B′ is the same as that of B, the claim

follows.
�

Claim: Pr[Fail|¬Inv ∧ ¬L1] ≤ 3/q + 3 · 2−n.

Proof. We analyse the event Fail|¬Inv ∧¬L1 as follows. Here KE outputs ⊥ because

S1 is empty, but this is an incorrect decryption. So in fact there exists a message M

such that C = 〈U, V, W 〉 encrypts M under ID`, P`. It is easy to see that, because

〈U, V 〉 is a valid BasicCL-PKE ciphertext for ID`, P`, there exist unique σ ∈ {0, 1}n
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and r ∈ Z∗
q such that:

〈U, V 〉 = BasicCL-PKE-EncryptID`,P`
(σ; r).

Since S1 is empty, we deduce that H3 has not been queried on an input containing

σ.

We consider two cases: either a valid C 6= C∗ has been produced by AI from a

message M using coins r = H3(σ,M) without σ having been queried of H3, or in

fact C = C∗ and this query occurs after the challenge phase. In the former case, it

is easy to see that C will be a valid ciphertext with probability at most 1/q, because

a valid ciphertext C = 〈U, V,W 〉 will have U = rP where r ∈ Z∗
q is the output of

random oracle H3 on a query not made by AI .

We consider the latter case, where C = C∗ is a valid ciphertext, further. Now KE
can only ever be queried on this ciphertext for a combination of identifier and public

key ID`, P` not equal to IDch, Pch because of the rules on adversary behaviour. We

also know that IDch = IDI (because to receive this query, B must not have aborted

at the challenge phase). Suppose then that

C∗ = 〈r∗P, σ∗ ⊕H2(ê(Q,P0)r∗)⊕H5(r∗Pch),mb ⊕H4(σ∗)〉

where r∗ = H3(σ∗,mb) and, as usual, Pch denotes the value of IDch’s public key at

the time when the challenge ciphertext was computed. The values σ∗, H4(σ∗) and

r∗ are unknown to B and KE (since B’s challenger produces C∗). Since C = C∗, we

have rP = U = U∗ = r∗P and so r = r∗. The probability that σ 6= σ∗ is 1/q. For

suppose that σ 6= σ∗. Then we have H3(σ,M) = r = r∗ = H3(σ∗,mb), giving equal

outputs for random oracle H3 from distinct inputs. The probability of this event is

1/q. So with probability 1−1/q, we have σ = σ∗. But then because r = r∗, we must

have

H2(ê(Q`, P0)r)⊕H5(rP`) = H2(ê(Q,P0)r∗)⊕H5(r∗Pch). (6.4)

We wish to evaluate the probability that, in fact, we have rP` = r∗Pch and ê(Q`, P0)r =

ê(Q,P0)r∗ . To do so, we bound the probability that (6.4) holds and these equalities

are not both satisfied. There are three events to consider:
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1. (rP` 6= r∗Pch) ∧ (ê(Q`, P0)r = ê(Q,P0)r∗). From (6.4) we have H5(rP`) =

H5(r∗Pch) with rP` 6= r∗Pch, so we have a collision for H5, an event of probab-

ility 2−n.

2. (rP` = r∗Pch)∧ (ê(Q`, P0)r 6= ê(Q,P0)r∗). From (6.4) we have a collision of H2

on unequal inputs, an event of probability 2−n.

3. (rP` 6= r∗Pch)∧(ê(Q`, P0)r 6= ê(Q,P0)r∗). Rewriting (6.4), we obtain: H5(r∗Pch) =

H5(rP`)⊕ [H2(ê(Q`, P0)r)⊕H2(ê(Q,P0)r∗)]. Since neither pair of oracle inputs

is equal, we again have an event of probability 2−n.

So with probability 1− (3 · 2−n) we have (r∗P` = r∗Pch)∧ (ê(Q`, P0)r∗ = ê(Q,P0)r∗ .

Since r = r∗, we obtain P` = Pch and ê(Q`, P0) = ê(Q,P0). From this we have that

P` = Pch and Q` = Q. The second equality implies that with probability 1 − 1/q,

ID` = IDch. Thus, this is in fact the challenge query which is forbidden.

To sum up, ⊥ is output incorrectly if any of these four events occur:

• C is valid when (C 6= C∗), an event of probability q−1.

• H3(σ,M) = H3(σ∗,M) when (σ 6= σ∗, C = C∗), an event of probability q−1.

• (6.4) holds with unequal inputs into H2 and/or H5 when (σ = σ∗, C = C∗), an

event of probability 3 · 2−n.

• H1(ID`) = H1(IDch) when (ID` 6= IDch, σ = σ∗, C = C∗), an event of probability

q−1.

The claim follows.
�

The probablility of the next three claims are as in [6, Lemma 9].

Claim: Pr[Fail|¬Inv ∧ L1 ∧ ¬L2] = 2−n.
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Proof. In this situation, KE outputs ⊥ because S2 is empty, but this is an incorrect

decryption. So in fact there exists a message M such that C = 〈U, V,W 〉 encrypts

M under ID`, P`. Now it is easy to see that, because 〈U, V 〉 is a valid BasicCL-PKE

ciphertext for ID`, P`, there exist unique σ ∈ {0, 1}n and r ∈ Z∗
q such that:

〈U, V 〉 = BasicCL-PKE-EncryptID`,P`
(σ; r).

But S1 is non-empty, so we also have, 〈U, V 〉 = BasicCL-PKE-EncryptID`,P`
(σj ;H3,j),

for some j. This implies that σ = σj and r = H3,j = H3(σj ,M). Since S2 is

empty, we can deduce that H4 has not been queried on input σ. Yet we must have

W = M ⊕ H4(σ) if C is a proper encryption of M . Moreover, we cannot simply

define M by M = W ⊕H4(σ), since r is already defined by r = H3(σj ,M) so M is

already fixed. The probability that W ⊕H4(σ) outputs the correct M is exactly 2−n

and this bounds the probability that KE incorrectly outputs ⊥ .
�

Claim: Pr[Fail|¬Inv ∧ L1 ∧ L2 ∧ ¬Find] = 1/q.

Proof. Here KE outputs ⊥ because a failure occurs at step 3, but this is an incorrect

decryption. Arguing as in the previous claim, we deduce that there exists a message

M such that C = 〈U, V,W 〉 encrypts M under ID`, P`, using unique σ ∈ {0, 1}n and

r ∈ Z∗
q . Moreover, there exists a j with σ = σj and r = H3,j . Now S2 is non-empty,

so there exists an entry 〈σj ,Mj ,H3,j ,H4,i〉 on the S2 list with σ′
i = σj = σ.

Now suppose that 〈σ,M〉 has been queried of H3. Then we would also have an

entry 〈σ,M,H3,j ,H4,i〉 on the S2 list. But since C is the encryption of M , we

would also have W = M ⊕ H4,i. Then KE would output M instead of ⊥ . This

contradiction shows that 〈σ,M〉 has not been queried of H3. Yet we must have

H3(σ,M) = r = H3,j if C is a proper encryption of M . The probability of this event

occurring is exactly 1/q and this bounds the probability that KE incorrectly outputs

⊥ .
�

Claim: Pr[Fail|¬Inv ∧ L1 ∧ L2 ∧ Find] = 0.
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Figure 6.1: A summary of the lemmas and results of Chapters 5 and 6.

Proof. Here, KE outputs a message Mj whose encryption under the combination

ID`, P` yields the ciphertext C with random oracles H3 and H4 as defined in B’s

simulation. Therefore the decryption of C is Mj , and KE never fails in this situation.

The claim follows.
�

Gathering together each of these claims, we finally obtain

Pr[Fail] ≤ (q3 + q4) · εOWE(time(B) +O((q3 + q4)qdt
′, q2, q5) + 4q−1 + 2−n+2.

The running time of B is time(AI) + qd · time(KE) = t + O((q3 + q4)qdt
′), where t′

is the running time of the BasicCL-PKE encryption algorithm. This completes the

proof of the lemma.
�

Figure 6.1 provides an overview of our overall approach to the proof of security for

FullCL-PKE. It can be seen that our security proofs yield reductions to either the

CDHP in G1 or BDHP in 〈G1, G2, ê〉. To conclude this section we will make a formal

statement relating the security of FullCL-PKE to the hardness of the BDHP.
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Theorem 6.10 Let hash functions Hi for 1 ≤ i ≤ 5 be random oracles. Suppose

further that there is no polynomially bounded algorithm that can solve the BDHP

with non-negligible advantage. Then FullCL-PKE is IND-CCA secure.

Proof. As before, the proof of this theorem is performed in two parts where we

relate the advantage of a Type I or Type II attacker against FullCL-PKE to that of

an algorithm to solve BDHP or CDHP. We first consider a Type I adversary.

Type I adversary: Lemma 6.8 provides a reduction relating the IND-CCA secur-

ity of FullCL-PKE to that of ElG-HybridPub or BF-HybridPub in the IND-CPA model

for standard PKE. This reduction makes use of the special-purpose knowledge ex-

traction algorithm to handle decryption queries which was studied in Lemma 6.9.

Furthermore, in order for this knowledge extractor to have a large value of λ, we

require the BasicCL-PKE scheme to be OWE secure if the BDHP is hard – the sub-

ject of Theorem 5.5. Thereafter, we reduce the security to that of ElG-BasicPub or

BF-BasicPub against OWE adversaries using Lemma 6.4 and Lemma 6.6. Lemma

5.1 and Result 5.2 relate the security of these PKE schemes to the hardness of the

CDHP or BDHP respectively. This sequence of reductions is represented in Figure

6.1.

By composing the intermediate security results we can relate the security of FullCL-

PKE against Type I adversaries directly to the hardness of the BDHP or CDHP.

Suppose hash functions Hi for 1 ≤ i ≤ 5 are random oracles. Suppose AI is a Type

I adversary against FullCL-PKE. Suppose that AI runs in time time(AI), makes at

most qi queries of Hi (1 ≤ i ≤ 5), at most qd decryption queries and has advantage ε

against FullCL-PKE. Then there is an algorithm B with running time O(time(AI) +

n(q3 + q4) + qdt
′(q3 + q4)), where t′ is the running time of BasicCL-PKE encryption

algorithm (defined in Section 5.4). Either algorithm B solves the CDHP in G1 with

advantage at least

1
q5

{
1

2(q3 + q4)

[(
ε · λqd

1

4q1
+ 1
)(

1− 1
q
− 2−n

)qd

− 1
]
− 1

2n

}
,
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where λ1 is

1− (q3 + q4) ·
1
q5

(
ε

4q1
− 1

2n

)
− 4q−1 − 2−n+2,

or algorithm B solves the BDHP in 〈G1, G2, ê〉 with advantage at least

1
q2

{
1

2(q3 + q4)

[(
ε · λqd

2

4q1
+ 1
)(

1− 1
q
− 2−n

)qd

− 1
]
− 1

2n

}
,

where λ2 is

1− (q3 + q4) ·
1
q2

(
ε

4q1
− 1

2n

)
− 4q−1 − 2−n+2.

Type II adversary: Lemma 6.7 shows that the IND-CCA security of FullCL-PKE

can be reduced to the usual IND-CCA security of a related (normal) public key en-

cryption scheme ElG-HybridPub. Lemma 6.5 reduces the security of ElG-HybridPub

to that of a second public key encryption scheme ElG-BasicPub against OWE ad-

versaries. Finally, Lemma 5.1 relates the security of ElG-BasicPub to the hardness of

the CDHP in G1. This sequence of reductions is represented in the right hand side

of Figure 6.1.

As above, we can relate security against Type II adversaries directly to the hardness

of the CDHP. Suppose hash functions Hi for 1 ≤ i ≤ 5 are random oracles. Suppose

AII is a Type II adversary against FullCL-PKE. Suppose that AII runs in time

time(AII), makes at most qi queries of Hi (1 ≤ i ≤ 5), at most qd decryption queries

and has advantage ε against FullCL-PKE. Then there is an algorithm B with running

time O(time(AII) + n(q3 + q4)) that solves the CDHP in G1 with advantage at least

1
q5

{
1

2(q3 + q4)

[(
ε

q1
+ 1
)(

1− 1
q
− 2−n

)qd

− 1
]
− 1

2n

}
.

Since the CDHP in G1 (output by IG(k)) is a harder problem than the BDHP

in 〈G1, G2, ê〉 (output by the same IG(k)), we can finally say that the security of

FullCL-PKE is related to the hardness of the BDHP.
�
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6.6 Summary

The CL-PKE scheme presented here, which is a hybridisation of the CL-PKE scheme

of Chapter 5, enjoys short public and private keys and is secure in an appropriate

and robust model assuming that the BDHP is hard. The standard IND-CCA notion

is the privacy notion most PKE designs aim to achieve. Our model extends the IND-

CCA notion to our new setting, which includes the KGC and is fully adaptive. The

scheme is fast, compact, simple, interoperable and highly practical. Furthermore, it

improves on the previously published scheme in [6].
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Chapter 7

Generic CL-PKE Schemes
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We explore how CL-PKE schemes can be constructed generically by combining stand-

ard public key encryption (PKE) and identifier-based encryption (ID-PKE) schemes.

We present an analysis of Gentry’s concept of certificate-based encryption (CBE).

We then explore how CBE schemes can be constructed using CL-PKE schemes.

7.1 Introduction

In this chapter we examine how an arbitrary ID-PKE scheme and an arbitrary PKE

scheme can be combined to construct CL-PKE schemes. These generic constructions

are important because they provide a better understanding of CL-PKE schemes.
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Note that the efficient CL-PKE schemes in Chapters 5 and 6 are derived from one

of our generic transformations through a process of optimisation for specific ID-PKE

and standard PKE schemes.

A related idea is that of the optimised double encryption scheme presented by Gentry

[76]. Gentry’s scheme has closely related properties to those of the CL-PKC(B)

encryption scheme described in Chapter 4 and developed in Chapters 5 and 6. Recall

that CL-PKC(B) schemes include a public key in the identifier and do not use time

or a certificate infrastructure as in [76]. This connection between CL-PKE and CBE

was already recognised in [6] and in Section 4.3.3. We will explore it further in this

chapter. To fully explore the relationship between CL-PKE and CBE, we describe

and analyse the CBE definition and the CBE security model. The analysis highlights

numerous weaknesses in the definitions and models of [76]. An improved definition

of CBE is provided. We then use this definition to show how to build IND-CCA

secure CBE schemes from any IND-CCA secure CL-PKE scheme.

7.2 Some Generic CL-PKE Constructions

In what follows generic methods of constructing CL-PKE schemes by combining a

general ID-PKE scheme with a standard PKE schemes will be briefly considered. We

will provide three generic CL-PKE schemes constructed in this way: CL-1, CL-2 and

CL-3. Roughly speaking, for each of the constructions, the Partial-Private-Key-Extract

algorithm is handled by the ID-PKE scheme, and the Set-Private-Key/Set-Public-Key

algorithms are handled by the standard PKE scheme.

A generic scheme of the type constructed here can be used to add cryptographic

workflow to a standard PKE scheme by composing the standard PKE scheme with

an ID-PKE scheme; the resultant scheme no longer requires certificates. Similarly,

a generic scheme can be constructed to enhance the level of trust offered by an ID-

PKE scheme by composing the ID-PKE scheme with a standard PKE scheme; the

resultant scheme will, however, no longer be identifier-based.
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Now let us consider an IND-ID-CCA secure ID-PKE scheme, ΠID, and an IND-CCA

secure standard PKE scheme, ΠPK. These will be composed in order to create our

first generic CL-PKE scheme, denoted ΠCL−1. Note that Canetti et al. [44] show how

IND-CCA secure PKE schemes can be constructed using any CPA secure ID-PKE

scheme. The result in [44] allows ΠID and ΠPK to share many algorithms.

In what follows we assume that ΠID and ΠPK are compatible in the sense that the

ciphertext space of ΠPK is equal to the message (plaintext) space of ΠID. The seven

algorithms needed to define ΠCL−1 are described next. We assume that schemes ΠPK

and ΠID take as input security parameters k1 and k2 respectively.

Setup: This algorithm runs the Setup algorithm of the scheme ΠPK and the Setup

algorithm of the scheme ΠID. The message space of ΠCL−1 will be the message space

of ΠID, denotedM, while the ciphertext space of ΠCL−1 will be the ciphertext space

of ΠID.

Partial-Private-Key-Extract: This algorithm is defined to be the Extract algorithm of

ΠID. So the partial private key DA of IDA in ΠCL−1 is set to be the private key dA

of IDA in the scheme ΠID.

Set-Secret-Value and Set-Public-Key: These algorithms are obtained from the Key-

Generation algorithm of ΠPK. Algorithm Key-Generation is run, and the output of

Set-Secret-Value algorithm, xA, is defined to be the private key Kpriv for ΠPK, while

the output of the Set-Public-Key algorithm, PA, is defined to be the public key Kpub

for ΠPK.

Set-Private-Key: This algorithm outputs SA = 〈DA, xA〉, where, as above DA is the

private key corresponding to identifier IDA in the scheme ΠID and xA is a private

key obtained from the scheme ΠPK.

Encrypt: To encrypt M ∈ M for identifier IDA and public key PA, perform the

following steps:
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1. Check that PA is a valid public key for ΠPK, if not output ⊥ .

2. Compute and output the ciphertext:

C = E ID(EPK(M,PA), IDA).

Here, E ID denotes the encryption algorithm of the scheme ΠID and EPK denotes

the encryption algorithm of the scheme ΠPK.

Decrypt: Suppose C ∈ C. To decrypt this ciphertext using the private key SA =

〈DA, xA〉, firstly compute DID(C,DA). If the result is equal to ⊥ , then output

⊥ and reject the ciphertext. Otherwise output DPK(DID(C,DA), xA). Here, DID

denotes the decryption algorithm of ΠID and DPK denotes the decryption algorithm

of ΠPK.

An alternative serial encryption scheme to ΠCL−1 is one which reverses the order

of encryption, such that C = EPK(E ID(M, IDA), PA). This scheme will be labelled

ΠCL−2. Here, of course, we require that the ciphertexts output by E ID can be used

as plaintext for the encryption algorithm of E ID.

The scheme denoted ΠCL−3 is a parallel encryption scheme. As we shall see, details in

the algorithms differ. For ΠCL−3, we need to assume that ΠPK and ΠID are compat-

ible in the sense that they both have the same plaintext space, denotedM. We also

assume thatM consists of the set of strings of some length n. The seven algorithms

needed to define ΠCL−3 are described next. As with ΠCL−1, here E ID/DID denotes

the encryption/decryption algorithm of the scheme ΠID and EPK/DPK denotes the

encryption/decryption algorithm of the scheme ΠPK.

Setup: This algorithm runs the Setup algorithm of the scheme ΠPK and the Setup

algorithm of scheme ΠID.

Partial-Private-Key-Extract: Identical to Partial-Private-Key-Extract of ΠCL−1.

Set-Secret-Value and Set-Public-Key: Identical to Set-Secret-Value and Set-Public-Key
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of ΠCL−1.

Set-Private-Key: Identical to Set-Private-Key of ΠCL−1.

Encrypt: To encrypt M ∈ M for identifier IDA and public key PA, perform the

following steps:

1. Check that PA is a valid public key for ΠPK, if not output ⊥ .

2. Choose a random MA with the same bit length as M .

3. Set MB = MA ⊕M .

4. Compute and output the ciphertext:

C = 〈E ID(MA, IDA), EPK(MB, PA)〉.

Decrypt: Suppose C = 〈cA, cB〉 ∈ C. To decrypt this ciphertext using the private

key SA = 〈DA, xA〉, firstly compute DID(cA, DA) and DPK(cB, xA). If either result

is equal to ⊥ , then output ⊥ and reject the ciphertext. Otherwise output M =

DID(cA, DA)⊕DPK(cB, xA).

This concludes the description of ΠCL−3.

Notice that if the BF ID-PKE scheme [32] and the ElGamal PKE scheme [68] are

used directly in the generic construction ΠCL−1, the resulting construction is com-

putationally rather inefficient: in ΠCL−1 both E ID and EPK are run independently

using different plaintexts, random values and redundancies. The scheme FullCL-PKE

in Chapter 6 can be regarded as an optimisation of ΠCL−1 where the components

of the scheme are FullIdent of [32] and ElG-HybridPub of Section 6.5.1. Our proof

of security for that scheme utilised a particular knowledge extractor which decrypts

ciphertexts with a high probability of success.

Given the proof techniques developed in previous chapters, the main obstacle in

proving the security of these generic constructions in the security model developed
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in Chapter 6 appears to be the construction of a general knowledge extractor that

is appropriate to the Type I adversary setting (which is very different to existing

settings). This knowledge extractor is required to decrypt ciphertexts with high

probability of success for an entity whose public key may have been replaced.

7.3 Analysis of CBE

This section will clarify the relationship between the definition and security model of

CBE [76] and those of CL-PKE. This is done because, as we pointed out, some simil-

arities do exist between CBE and CL-PKE(B) schemes. Formalising this relationship

is beneficial as it will elucidate both independently developed models and highlight

any overlaps between them. This process will allow the reader to understand how

CBE is related to our contribution.

When we started to examine the CBE definition and security model, we found them

deficient in many ways. It is not our intention to criticize CBE, even though the

results of our analysis point out some major shortcomings.

7.3.1 Gentry’s Definition for CBE

First we provide the formal definition of CBE:

Definition 7.1 ([76]) A certificate-updating certificate-based encryption scheme is

defined by six algorithms (GenIBE , GenPKE , Upd1, Upd2, E , D) such that:

1. Algorithm GenIBE is a probabilistic ID-PKE key generation algorithm that

takes a security parameter k1 and (optionally) the total number of time periods

t as input. It returns SKIBE (the certifier’s master-key) and public parameters

params that include a public key PKIBE , and the description of a string space

Λ.
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2. Algorithm GenPKE is a probabilistic PKE key generation algorithm that takes

a security parameter k2 and (optionally) the total number of time periods t as

input. It returns a private key SKPKE and public key PKPKE .

3. At the start of time period τ , the deterministic certifier update algorithm Upd1

takes as input SKIBE , params, τ , λ ∈ Λ and PKPKE . It returns Cert′τ .

4. At the start of time period τ , the deterministic update algorithm Upd2 takes

as input params, τ , Cert′τ , and (optionally) Certτ−1. It returns Certτ .

5. Algorithm E is a probabilistic encryption algorithm that takes (params, τ , λ,

PKPKE , M) as input, where M is a message. It returns a ciphertext C on

message M intended for the entity to decrypt using Certτ and SKPKE (and

possibly λ).

6. Algorithm D is a deterministic decryption algorithm that takes (params, Certτ ,

SKPKE , C) as input in time period τ . It returns either M or the special symbol

⊥ indicating failure. We require DCertτ ,SKPKE ,λ(Eτ,λ,PKIBE ,PKPKE
(M)) = M

for the given params.

The algorithm GenIBE is similar to the algorithm setup in an ID-PKE scheme. The

algorithm GenPKE is similar to the combined algorithm setup and K in a standard

PKE scheme, with input to setup and output from K.

Analysing the CBE Definition

We highlight some weaknesses in Definition 7.1:

1. Property (1) of Definition 7.1 requires PKIBE to be an identifiable element

of the ID-PKE scheme’s parameters that can be labelled as a public key (no-

tice that PKIBE is also used during encryption). In the BF ID-PKE scheme

presented in Section 3.2.4.1, PKIBE corresponds to P0. Given that not every
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ID-PKE scheme need have this property, Definition 7.1 limits the ID-PKE

schemes that can be used in generating CBE schemes.

2. As we can see from property (1) of Definition 7.1, combining an ID-PKE scheme

with a standard PKE scheme is explicitly required for building a CBE scheme.

This is another limitation in the way CBE schemes are constructed and means

that a general CL-PKE scheme does not necessarily give rise to a CBE scheme,

even though it can have all the functionality of a CBE scheme. This limitation

leads to the discrepancy explained next.

3. None of the concrete schemes in [76] fit the definition of a CBE scheme given in

[76] and reproduced here as Definition 7.1. This is because Gentry’s concrete

CBE schemes are all set up using a single generation algorithm with a single

security parameter and all the key pairs 〈SKPKE , PKPKE〉 are computed based

on system wide parameters. Thus, there is a major incompatibility in [76]

between the definition of CBE on the one hand and the concrete CBE schemes

on the other.

4. According to property (5) of Definition 7.1, only publicly available values are

required to run algorithm Upd2. Algorithm Upd2 lacks any secret or private

input such as SKIBE . Hence, any entity can run algorithm Upd2 to update all

the certificates in the system. This of course defeats the purpose of an update

algorithm.

5. In property (6) of Definition 7.1 and the description of encryption schemes

in [76], the public key used in CBE is always assumed to be valid. In no

circumstance does the encryption algorithm output fail and reject the public

key. The encryption algorithms of the concrete CBE schemes in [76, §3] do

not perform any certificate verification, and checking the public key for these

schemes is crucial. We regard this as a weakness which could lead to practical

attacks.

6. The encryption algorithm E of Definition 7.1 appears to make use of elements of

both an ID-PKE scheme and a standard PKE scheme. However, the required

relationship between the ID-PKE scheme, the standard PKE scheme and E is
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not specified. Recall that in Section 7.2 we described some examples which

explain why schemes, which are in some sense compatible, are required to

construct a single scheme.

7. All the concrete schemes in [76] and all the algorithms in Definition 7.1 depend

explicitly on time. Although it was noted [76, p.278] that the CBE scheme

need not be used for certificate updating, Gentry [76] did not investigate in

any detail the applications of such a scheme.

It is clear from this analysis that Definition 7.1 has many problems. Therefore in

Section 7.4.1 we provide the reader with an alternative definition for CBE. The

concrete schemes in [76] meet our modified definitions.

7.3.2 Gentry’s Security Model for CBE

Security for CBE is defined using two different games in [76]. The adversary chooses

which game to play. A CBE scheme is secure if no adversary can win either game.

In Game 1 the adversary models an uncertified entity and in Game 2 the adversary

models the certifier.

We now describe these IND-CCA aversarial games in more detail, following [76, §2.2].

CBE Game 1 Adversary: The challenger runs GenIBE(k1, t), and gives params

to the adversary A1. The adversary then interleaves certification and decryption

queries with a single challenge query. These queries are answered as follows:

• On certification query 〈τ, λ, PKPKE , SKPKE〉, the challenger checks that λ ∈
Λ and that SKPKE is the private key corresponding to PKPKE . If so, it runs

Upd1 and returns Cert′τ , else it returns ⊥ .

• On decryption query 〈τ, λ, PKPKE , SKPKE , C〉, the challenger checks that λ ∈
Λ and that SKPKE is the private key corresponding to PKPKE . If so, it
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generates Certτ and outputs DCertτ ,SKPKE ,λ(C), else it returns ⊥ .

• On challenge query (τch, λch, PKPKE,ch, SKPKE,ch,M0,M1), the challenger che-

cks that λch ∈ Λ and that SKPKE,ch is the private key corresponding to

PKPKE,ch. If so, it chooses random bit b and returns

C∗ = Eτch,λch,PKIBE ,PKPKE,ch
(Mb),

else it returns ⊥ .

Finally, A1 outputs a guess b′ ∈ {0, 1}. The adversary wins the game if b = b′

and 〈τch, λch, PKPKE,ch, SKPKE,ch, C
∗〉7.1 was not the subject of a decryption query

after the challenge, and 〈τch, λch, PKPKE,ch, SKPKE,ch〉 was not the subject of any

certification query. We defineA1’s advantage in this game to be Adv(A1) := 2|Pr[b =

b′]− 1
2 |.

CBE Game 2 Adversary: The challenger runs GenPKE(k2, t), and gives PKPKE

to the adversary A2. The adversary then interleaves decryption queries with a single

challenge query. These queries are answered as follows:

• On decryption query 〈τ, λ, params, SKIBE , C〉, the challenger checks that λ ∈ Λ

and that SKIBE is the master-key corresponding to params. If so, it generates

Certτ and outputs DCertτ ,SKPKE ,λ(C), else it returns ⊥ .

• On challenge query 〈τch, λch, paramsch, SKIBE,ch,M0,M1〉, the challenger checks

that λch ∈ Λ and that SKIBE,ch is the master-key corresponding to paramsch.

If so, it chooses random bit b and returns C∗ = Eτch,λch,PKIBE,ch,PKPKE
(Mb),

else it returns ⊥ .

Finally, A2 outputs a guess b′ ∈ {0, 1}. The adversary wins the game if b = b′ and

〈τch, λch, paramsch, SKIBE,ch, C
∗〉 was not the subject of a decryption query after the

challenge. We define A2’s advantage in this game to be Adv(A2) := 2|Pr[b = b′]− 1
2 |.

7.1Note that SKPKE,ch was omitted here in [76].
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Definition 7.2 ([76]) ?? A certificate-updating certificate-based encryption scheme

is secure against adaptive chosen ciphertext attack (IND-CBE-CCA) if no probabil-

istic polynomial time adversary has non-negligible advantage in either CBE Game 1

or CBE Game 2.

Analysing the CBE Security Model

In this section, we present an analysis of the CBE security model, and compare it

to the security model for CL-PKE that was developed in Chapters 5 and 6. Notice

that our CL-PKE security model assumes an adversary who can extract partial

private keys and change public keys even for the challenge identity, whereas Gentry’s

model, in which the equivalent of partial private keys are publicly available and bind

the public keys (and time periods) to identities, simulates the adversary differently.

Unfortunately, some major weaknesses exist in the CBE security model of [76]:

1. Game 1 does not capture an adversary obtaining a ‘certificate’ for an existing

public key that the adversary intends to attack. This method of attack is

natural for an uncertified client. The reason this restriction arises is because

the challenger initially controls the setting of public keys for entities in the CBE

system. We do not have such a restriction in the CL-PKE security model: our

Type I adversaries are truly adaptive in nature.

2. A Game 1 adversary must provide the private key along with the corresponding

public key. This is done by giving private keys to the challenger when making

any query involving public keys (even the challenge query). In CL-PKE, we

allow our Type I adversary to change an entity’s public key without needing to

show the private key. This gives the adversary more flexibility, for example, the

adversary can replace the public key of an entity with that of another (without

knowing the corresponding private key). We are able to handle this in our

proofs by the use of special purpose knowledge extractors.

3. A Game 2 adversary does not get to choose a public key to attack and is
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given a specific public key by the challenger. This is unlike a CL-PKE Type II

adversary.

4. A Game 2 adversary proves knowledge of the master-key corresponding to

params by giving every master-key to the challenger. This adversary can al-

ter the CBE scheme by choosing new parameters for the ID-PKE scheme in

each query. This unnecessarily complicates the way the adversary is modelled.

In CL-PKE, a Type II adversary is given the master-key to allow it to ‘break’

part of the scheme which the KGC is always able to break. Handling only

one master-key is more natural because the aim of the proof is to examine the

security of a system with a pre-specified set of parameters, that is, a system

which has been set up.

It can be argued that the unusual constraint expressed in weakness (2) above can

be removed for the proof of the first concrete scheme in [76]. However, the proof

of security for that scheme suffers from a deficiency. The decryption queries in the

proof of [76, Lemma 1], do not work as defined unless the hash queries are modified in

the simulation by setting ‘P ′
j = bjP ’ for coinj = 0. Unlike this simulation problem,

the above differences are significant enough to illustrate that the CBE definition and

security model inadequately capture the concept we explored in CL-PKE: a concept

which represents a shift in how public keys are managed and used. CBE is a very

interesting concept for an encryption scheme which is suitable for solving a particular

problem: that of efficient revocation in traditional public key infrastructures.

7.3.3 Gentry’s Concrete CBE Scheme

The scheme BasicCBE of [76] is described using the notation established in Chapter

2 as follows:

• Setup: The CA (i) runs IG on input k to generate 〈G1, G2, ê〉; (ii) chooses H1 :

{0, 1}∗ → G1 and H2 : G2 → {0, 1}n for some n; (iii) chooses P ∈ G1, random
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sC ∈ Z∗
q and sets P0 = sCP ∈ G1 and params= 〈G1, G2, ê, P, P0,H1,H2〉. The

CA’s secret is sC ∈ Z∗
q which is used to issue certificates. The message space

is M = {0, 1}n. The ciphertext space is C = G1 × {0, 1}n.

• Set-Key-Pair: Entity A selects a private and public key pair 〈sA, sAP 〉.

• Certify: (i) Entity A sends IDA‖sAP to the CA. (ii) The CA produces and

distributes certificate CertA,τ = scH1(P0‖τ‖IDA‖sAP ) ∈ G1 in time period τ .

Notice that the private key that can be computed by A in time period τ is

SA = CertA,τ + sAH1(IDA‖sAP ) ∈ G1.

• Encrypt: To encrypt M ∈M for A, entity B (i) computes H1(IDA‖sAP ) ∈ G1;

(ii) computes H1(P0‖τ‖IDA‖sAP ) ∈ G1; (iii) chooses a random value r ∈ Z∗
q ;

and (iv) computes:

C = 〈rP,M ⊕H2((ê(P0,H1(P0‖τ‖IDA‖sAP )) · ê(sAP,H1(IDA‖sAP )))r)〉.

Notice that steps (i) and (ii) require only public information.

• Decrypt: To decrypt C = 〈U, V 〉 ∈ C, entity A computes:

M = V ⊕H2(ê(U, SA)).

The semantically secure scheme FullCBE of [76] applies the hybridisation technique

described in Section 6.4 to the scheme BasicCBE above.

Notice that the public key, sAP , is simply computed according to the parameters

issued by the CA. We described in Section 7.3.1 why the concrete CBE schemes in

[76] fail to meet Definition 7.1. Also notice that the encryption algorithm of scheme

BasicCBE uses the public key sAP without first checking the validity of the public

key.

Analysis of the Concrete Scheme

Gentry’s schemes BasicCBE and FullCBE use a form of double encryption and have

some overlap in properties with CL-PKE schemes. The CBE schemes BasicCBE
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and FullCBE were designed to use H1 with two different inputs, ‘P0‖τ‖IDA‖sAP ’

and ‘IDA‖sAP ’, to ensures the separation of both the standard PKE and ID-PKE

schemes. In designing the schemes which we described in Chapters 5 and 6, we make

the separation more explicit by using two hash functions, H2 and H5. This allows

us to run the simulations required for our proofs.

Notice that the scheme BasicCBE has some mathematical similarities with BasicCL-

PKE, however, as we have seen in Sections 7.3.1 and 7.3.2 the fit between the CBE

and CL-PKE definition and security model are not as natural as one would hope.

Nevertheless, it would be beneficial to be able to translate CL-PKE schemes such as

FullCL-PKE into IND-CBE-CCA secure CBE schemes. In addition to producing an

alternative CBE scheme, the translation could reduce the computational overhead

of the CBE schemes of Gentry [76].

We will show how to translate CL-PKE schemes to a CBE schemes in the next

section.

7.4 Secure CBE from Secure CL-PKE

A very important functional distinction between CBE and CL-PKE is that CL-

PKE allows for an entity to use multiple public keys for the same partial public

key. Furthermore, the public keys in a CL-PKE scheme need not be generated

before the partial private key, whereas the CBE definition requires the public key

to be generated before certification. Nevertheless, in this section, we are able to

show how to construct a CBE scheme using a CL-PKE scheme. After providing

the construction, we prove that the resulting CBE scheme is IND-CBE-CCA secure

(according to Definition ??), provided the CL-PKE scheme is IND-CCA secure (in

the model of Chapter 6).

We begin by providing the following simplified definition of CBE. This definition is

consistent with the concrete CBE schemes of [76] and fixes most of the problems that
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we have identified above.

Definition 7.3 A certificate-based encryption scheme is defined by five algorithms

(Setup, Set-Key-Pair, Certify, ECBE, DCBE) such that:

1. Algorithm Setup is a probabilistic algorithm that takes a security parameter

k. It returns SKIBE (the certifier’s master-key) and public parameters params

that include the description of a string space Λ.

2. Algorithm Set-Key-Pair is a probabilistic algorithm that takes params as input.

It returns a private key SKPKE and public key PKPKE
7.2

3. Algorithm Certify is a deterministic certifier update algorithm that takes as

input SKIBE , params, τ , λ ∈ Λ and PKPKE . It returns Certτ .

4. Algorithm ECBE is a probabilistic encryption algorithm that takes (params, τ ,

λ, PKPKE , M) as input, where M is a message. It returns a ciphertext C on

message M intended for the entity to decrypt using Certτ and SKPKE .

5. Algorithm DCBE is a deterministic decryption algorithm that takes (params,

Certτ , SKPKE , C) as input in time period τ . It returns either M or the special

symbol⊥ indicating failure. We requireDCBE
Certτ ,SKPKE ,λ(ECBE

τ,λ,params,PKPKE
(M)) =

M .

The existing model of security described in Section 7.3.2 also applies to Definition

7.3. Although one can strengthen the existing CBE security model, an alternative

security model will not be produced. We have hinted how the CBE security model

can be strengthened in Section 7.3.2. Additionally, in the proof which we present in

Section 7.4.2, we point to how the principles of proving security for CL-PKE can be

used to provide improvements to the CBE security proofs and model.
7.2Even though labels PKE and IBE are used to identify components of the scheme, our definition

of CBE does not require the use of PKE and ID-PKE schemes.
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7.4.1 CBE Schemes from CL-PKE Schemes

In this section we sketch how to construct a CBE scheme, ΠCBE, from a CL-PKE

scheme ΠCL by defining the five algorithms (Setup, Set-Key-Pair, Certify, ECBE,

DCBE) of the CBE scheme in terms of those of the CL-PKE scheme.

1. Setup: This algorithm takes a security parameter k and returns SKIBE and

public parameters params that includes the description of a string space Λ. We

use algorithm Setup of ΠCL to define Setup of ΠCBE, setting SKIBE and params

of ΠCBE to be master-key and params of ΠCL.

2. Set-Key-Pair: This algorithm runs the Set-Secret-Value and Set-Public-Key al-

gorithm of the scheme ΠCL. It takes params as input and should output SKPKE

and PKPKE . The output SKPKE is defined to be the output xA of Set-Secret-

Value and the output PKPKE is defined to be the output PA of Set-Public-Value.

3. Certify: This algorithm takes as input SKIBE , params, τ , λ ∈ Λ and PKPKE .

It returns Certτ . We use algorithm Partial-Private-Key-Extract of ΠCL to define

Certify, setting Certτ to be the partial private key for identity

params‖τ‖λ‖PKPKE .

4. ECBE: This algorithm takes (params, τ , λ, PKPKE , M) as input, where M

is a message. It returns a ciphertext C on message M intended for the entity

to decrypt using Certτ and SKPKE . We use the Encrypt algorithm of ΠCL to

define ECBE, setting

C = ECL(M,PA, IDA),

where IDA = params‖τ‖λ‖PKPKE .

5. DCBE: This algorithm takes (params, Certτ , SKPKE , C) as input in time

period τ . It returns either M or the special symbol ⊥ indicating failure. We

use the Decrypt algorithm of ΠCL to define DCBE, setting

DCL(C, 〈xA, DA〉),

where DA is the partial private key for identity IDA = params‖τ‖λ‖PKPKE .
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7.4.2 Security of CBE schemes from CL-PKE Schemes

Next is our main theorem about the IND-CBE-CCA security of CBE schemes con-

structed using CL-PKE schemes.

Theorem 7.1 Suppose that ΠCL is an IND-CCA secure CL-PKE scheme, and sup-

pose that ΠCL is used to build a CBE scheme ΠCBE as in Section 7.4.1. Then ΠCBE

is IND-CBE-CCA secure.

Proof. We begin this proof by considering a Game 1 adversary against ΠCBE.

Let A1 be a Game 1 IND-CCA adversary against ΠCBE with advantage ε. We show

how to construct from A1 a Type I IND-CCA adversary B against ΠCL.

Let C denote the challenger against our IND-CCA adversary B for ΠCL. The chal-

lenger C begins by supplying B with the parameters of ΠCL. Adversary B mounts

an IND-CCA attack on ΠCL using help from A1 as follows.

Adversary B simulates the algorithm Setup of ΠCBE for A1. This is done by B setting

SKIBE to be master-key of ΠCL and params of ΠCBE to be params of ΠCL. Now B
forwards params to A1.

As we shall see, all A1 queries can be handled by B with help from C. In A1’s

environment string of the form params‖τ‖λ‖PKPKE are used in certification queries

and decryption queries. Adversary B can translate such strings params‖τ‖λ‖PKPKE

into identifier strings for the certificateless scheme. Notice that in this setting, each

public key PKPKE has a unique identifier string, and the same public key PKPKE

can have multiple identifier strings.

Phase 1: Now A1 launches Phase 1 of its attack. Requests made by A1 are answered

by B as follows:
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• All certification queries (which will include PKPKE) are answered by B. On

certification query 〈τi, λi, PKPKE,i, SKPKE,i〉, adversary B checks that λ ∈ Λ

and that SKPKE,i is the private key corresponding to PKPKE,i. If so B sends

IDi = params‖τi‖λi‖PKPKE,i and Pi = PKPKE,i to C in a replace public key

query. Then B forwards IDi = params‖τi‖λi‖PKPKE,i to C in a partial private

key extraction query. C responds with a partial private key Di. Adversary B
forwards Di to A1 as the certification response Certτi .

Otherwise B returns ⊥ .

• All decryption queries are answered by B. On decryption query

〈τi, λi, PKPKE,i, SKPKE,i, Ci〉,

adversary B checks that λ ∈ Λ and SKPKE,i is the private key corresponding

to PKPKE,i. If these test fail, then B returns ⊥ . Otherwise, B performs the

following steps:

1. first B sends IDi = params‖τi‖λi‖PKPKE,i and Pi = PKPKE,i to C in a

replace public key query. Then B forwards IDi = params‖τi‖λi‖PKPKE,i

to C in a partial private key extraction query. C responds with a partial

private key Di.

2. B performs this decryption himself. B sets xi of ΠCL to be SKPKE,i.

Adversary B computes and forwards the output of DCL(Ci, 〈xi, Di〉) to

A1 as the decryption response for DCBE
Certτi ,SKPKE,i,λi

(Ci).

After Phase 2, we will describe how one can remove the need of SKPKE,i in

all these queries.

Challenge: At some point, A1 should decide to end Phase 1 and picks a challenge

string of the form:

〈τch, λch, PKPKE,ch, SKPKE,ch,M0,M1〉.

B checks that λch ∈ Λ and SKPKE,ch is the private key corresponding to PKPKE,ch.

B also checks that 〈τch, λch, PKPKE,ch, SKPKE,ch〉 is not the subject of a valid certi-

fication query. If any check fails it returns ⊥ . Now B checks that the partial private
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key for IDch = params‖τch‖λch‖PKPKE,ch has not been extracted, if it has, then B
aborts. Otherwise, B sends IDch = params‖τch‖λch‖PKPKE,ch and Pch = PKPKE,ch

to C in a replace public key query. Then B forwards 〈IDch, Pch,M0,M1〉 to C in

a challenge query. The challenger C chooses a random bit b and responds with the

challenge ciphertext C ′ = ECL(Mb, Pch, IDch). Algorithm B sets C∗ = C ′ and delivers

C∗ to A1 as the challenge ciphertext. It is easy to see that C∗ is the CBE encrypion

of Mb for 〈τch, λch, PKIBE,ch, PKPKE,ch〉.

Phase 2: B continues to respond to requests in the same way as it did in Phase 1.

We now restrict A1 to not make a certification query on τch, λch and PKPKE,ch. We

also restrict A1 to not make a decryption query which relays a ciphtertext equal to

C ′ = C∗ with IDch and Pch to the challenger. B aborts if needs to relay to C either the

extract partial private key query for IDch or the decryption query for 〈C ′, IDch, Pch〉.

The value SKPKE,i can be ommited from certification queries, decryption queries

and challenge queries. When it is omitted B must (i) check whether PKPKE,i is valid

because the CBE encryption algorithm does not verify public keys and (ii) change

step (2) of decryption as follows: B forwards Ci and IDi = params‖τi‖λi‖PKPKE,i

to C in a decryption query. C responds with a message output from a decryption of

the form DCL(Ci, 〈xi, Di〉). Adversary B forwards the message output by C to A1 as

the decryption response for DCBE
Certτi ,SKPKE,i,λi

(Ci).

Guess: Eventually, AI should make a guess b′ for b. The B outputs b′ as its guess

for b.

Analysis:We now analyse the behaviour of B and A1 in this simulation. We claim

that if algorithm B does not abort during the simulation then algorithm A1’s view is

identical to its view in the real attack. Moreover, if B does not abort then 2|Pr[b =

b′]− 1
2 | ≥ ε.

We justify this claim as follows. B’s responses to decryption and certification queries

are as in the real attack. All responses to A1’s queries are valid, provided of course
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that B does not abort. Furthermore, the challenge ciphertext C∗ is a valid ΠCBE

encryption of Mb where b ∈ {0, 1} is random. Thus, by definition of algorithm A1

we have that 2|Pr[b = b′]− 1
2 | ≥ ε.

The probability that B does not abort during the simulation remains to be calculated.

Examining the simulation, we see that B can abort for two reasons: (i) because B
both replaced the public key and extracted the partial private key for entity IDch

at some point, or (ii) because B relayed a decryption query on C ′ to C for the

combination IDch and Pch in Phase 2.

The first event happens only if A1 performs a certification queries on the combination

〈τch, λch, PKPKE,ch, SKPKE,ch〉. Because only then would B replace the public key

and extract the partial private key for entity IDch = params‖τch‖λch‖PKPKE,ch. This

is exactly the certification query on which A1 is forbidden from making. So this event

never occurs in B’s simulation. Now let us examine the last event. Because of the

way that B relays ciphertexts, this last event happens only if A1 queries B on the

combination 〈τch, λch, PKPKE,ch, SKPKE,ch, C
∗〉 in Phase 2. However, this is exactly

A1’s challenge ciphertext on which A1 is forbidden from making a decryption query.

So this event never occurs in B’s simulation.

Algorithm B never relays a forbidden query to C and so never aborts during the

simulation. Algorithm B produces a perfect simulation of Game 1 for CBE and

so by definition of algorithm A1, it would output b′ = b with probability at least

ε. Thus, since the CL-PKE scheme is secure against Type I adversaries, the CBE

scheme is secure against Game 1 adversaries. This completes the proof for the Game

1 adversary.

We showed how a CBE Game 1 adversary is related to a CL-PKE Type I adversary.

We can also show how a CBE Game 2 adversary is related to a CL-PKE Type II

adversary. This can easily be achieved by modifying Game 2 by giving the adversary

the master-key, instead of allowing the adversary to pick a master-key (the motivation

for this modification is given in item (4) in p.184). We omit the routine details of
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this modification and the security proof which results.
�

This result is valuable because it shows that all IND-CCA secure CL-PKE schemes

can be modified as specified in Section 7.4.1 to create IND-CBE-CCA secure CBE

schemes. Therefore, FullCL-PKE and FullCL-PKE2 (of Chapter 8) can be altered to

create IND-CBE-CCA secure CBE schemes. The Scheme FullCL-PKE when modi-

fied to form a CBE scheme is more efficient than the scheme FullCBE of [76]. The

encryption scheme of FullCL-PKE requires only one pairing computation instead of

two and it does not require a multiplication in G2. Recall that G2 is a subgroup of

a large finite field, hence, both the pairing evaluations and computations in G2 are

expensive. The encryption scheme FullCL-PKE replaces these expensive operations

with a multiplication in G1 and an XOR operation.

7.5 Summary

Three generic transformations, which may generate IND-CCA secure CL-PKE schemes

using IND-CCA secure ID-PKE and IND-CCA secure standard PKE schemes have

been discussed. The tool required to produce a semantically secure generic CL-PKE

scheme under an IND-CCA adversary is a general knowledge extractor, whose found-

ations remain the subject of our ongoing research. Thus, proving the security of these

generic constructions remains an open problem.

We analysed CBE [76] and demonstrated several of its weaknesses. More importantly,

we provided an alternative method to construct IND-CCA secure CBE schemes. The

alternative method makes use of only IND-CCA secure CL-PKE schemes. This is

advantageous for both CBE and CL-PKE. On one hand it is beneficial for CBE be-

cause a wider range of CBE schemes can be easily constructed from existing CL-PKE

schemes. On the other hand, it is beneficial for CL-PKE because CL-PKE algorithms

are naturally interoperable with CBE algorithms and because it demonstrates how

to extend the potential use of CL-PKE to produce schemes suitable for streamlining

certificate-based environments. A major benefit of our model is that it is robust
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enough to remain applicable to other models, such as CBE [76].
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Further CL-PKC Schemes
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In this chapter other certificateless public key cryptography (CL-PKC) schemes in-

cluding a certificateless public key encryption (CL-PKE) scheme whose security rests

on the Generalised Bilinear Diffie-Hellman Problem (GBDHP) are demonstrated.

The CL-PKE scheme is developed to demonstrates how certificateless hierarchical

and proxy schemes can be supported. In addition, we show a certificateless public

key signature (CL-PKS) scheme and a certificateless authenticated key agreement

protocol. As with Chapters 5 and 6, our certificateless schemes are all built from

bilinear maps on groups.

195



8.1 Introduction

8.1 Introduction

In this chapter we present an alternative CL-PKE scheme, originally published in

[7]. The scheme is obtained by modifying the ID-PKE scheme of Boneh and Franklin

[32]. We have seen in Chapter 6 how an appropriate adversarial model with proofs

is provided to ensure that the full scheme is secure in the face of both an IND-CCA

adversary who replaces public keys, and an IND-CCA adversary who has access to the

master key but cannot replace public keys. The detailed development of this model

in Chapters 5 and 6 provides some insight into the adaptations required to existing

models that are needed to produce adversarial models for the other certificateless

primitives in this chapter. Note that the aim of this chapter is to demonstrate other

CL-PKE schemes and not to provide security proofs.

We will sketch a number of other CL-PKC primitives: a signature scheme based

on the identity-based scheme of [83]; a key exchange protocol which improves on

the security offered by the schemes of [50, 142]; a hierarchical scheme based on

[77] and proxy encryption schemes. All these schemes can be easily implemented

in conjunction with existing ID-PKC schemes. They use a structured public key

and have desirable security properies when compared with their ID-PKC scheme

counterparts.

The schemes in this chapter share structured public keys and many parameters in the

set up procedure. The structure of a public key is used to construct Diffie-Hellman

tuples. The tuples are verified using two pairing computations because the public

key comprises of two elements in a gap group, where the DDHP is easy and the

CDHP is hard. Next we will study the properties of this set up.
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8.2 A General Set Up for CL-PKC

In this chapter, all the CL-PKC schemes we describe can share many parameters in

their set up procedures. Our first scheme, BasicCL-PKE2, is a CL-PKE scheme which

is analogous to the scheme BasicIdent of [32], and is included to help understand the

setting for the remaining schemes in this chapter. The full scheme which we build

using BasicCL-PKE2, is in turn an analogue of the scheme FullIdent of [32] and is

IND-CCA secure in the model of Chapter 6, assuming the hardness of the GBDHP.

The full CL-PKE scheme, FullCL-PKE2, which corresponds to BasicCL-PKE2, is in

many ways superseeded by the scheme presented in Section 6.3. It is superseeded in

the following ways:

1. The number of pairing computations is higher in FullCL-PKE2 because we check

the structure of the public key.

2. The security of FullCL-PKE2 is based on the hardness of the GBDHP (not the

harder and more studied BDHP).

3. Public keys consist of two points on the elliptic curve (not one as is the case

with FullCL-PKE).

The public keys in the general set up that we describe below are for a specific KGC.

Therefore, the CL-PKE schemes in this chapter do not allow the encryptor to choose

which KGC will authenticate the decryptor. This allows the decryptor to mandate a

particular centralised point of control (that is, a particular KGC) for authentication.

The merits and shortcomings of this property were discussed in Section 4.6.2. This

same propery holds true for the other schemes in this chapter which share a similar

set up. The algorithms of the CL-PKE schemes BasicCL-PKE2 and FullCL-PKE2

share much in common with the ID-PKE scheme of [32] when compared to the

schemes of Chapters 5 and 6. This can be advantageous for deployment, since a

single infrastructure can be used to support both identifier based and certificateless

schemes.

197



8.3 CL-PKE Schemes

8.3 CL-PKE Schemes

In this section, we describe a pair of CL-PKE schemes BasicCL-PKE2 and FullCL-

PKE2.

8.3.1 A Basic CL-PKE Scheme

We describe the seven algorithms needed to define BasicCL-PKE2. As before, we let

k be a security parameter given to the Setup algorithm and IG be a BDH parameter

generator with input k.

Setup: This algorithm runs as follows:

1. Run IG on input k to generate output 〈G1, G2, ê〉 where G1 and G2 are groups

of some prime order q and ê : G1 ×G1 → G2 is a pairing.

2. Choose an arbitrary generator P ∈ G1.

3. Select a master-key s uniformly at random from Z∗
q and set P0 = sP .

4. Choose cryptographic hash functions H1 : {0, 1}∗ → G∗
1 and H2 : G2 → {0, 1}n.

Here n will be the bit-length of plaintexts.

The system parameters are params= 〈G1, G2, ê, n, P, P0,H1,H2〉. The master-key

is s ∈ Z∗
q . The message space is M = {0, 1}n and the ciphertext space is C =

G1 × {0, 1}n.

Partial-Private-Key-Extract: This algorithm takes as input an identifier IDA ∈ {0, 1}∗,
and carries out the following steps to construct the partial private key for entity A

with identifier IDA:

1. Compute QA = H1(IDA) ∈ G∗
1.
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2. Output the partial private key DA = sQA ∈ G∗
1.

The reader will notice that the partial private key of entity A here is identical to

that entity’s private key in the schemes of [32] and the partial private key of the

schemes BasicCL-PKE and FullCL-PKE in Sections 5.4 and 6.3. As for those schemes,

the correctness of the Partial-Private-Key-Extract algorithm output can be verified by

checking ê(DA, P ) = ê(QA, P0).

Set-Secret-Value: This algorithm takes as inputs params and an entity A’s identifier

IDA. It selects xA ∈ Z∗
q at random and outputs xA as A’s secret value.

Set-Private-Key: This algorithm takes as inputs params, an entity A’s partial private

key DA and A’s secret value xA ∈ Z∗
q . It transforms partial private key DA to private

key SA by computing SA = xADA = xAsQA ∈ G∗
1.

Set-Public-Key: This algorithm takes params and entity A’s secret value xA ∈ Z∗
q

as inputs and constructs A’s public key as PA = 〈XA, YA〉, where XA = xAP and

YA = xAP0 = xAsP .

Encrypt: To encrypt M ∈ M for entity A with identifier IDA ∈ {0, 1}∗ and public

key PA = 〈XA, YA〉, perform the following steps:

1. Check that XA, YA ∈ G∗
1 and that the equality ê(XA, P0) = ê(YA, P ) holds. If

not, output ⊥ and abort encryption.

2. Compute QA = H1(IDA) ∈ G∗
1.

3. Choose a random value r ∈ Z∗
q .

4. Compute and output the ciphertext:

C = 〈rP,M ⊕H2(ê(QA, YA)r)〉.

Notice that this encryption operation is identical to the encryption algorithm of the
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ID-PKE scheme in Section 3.2.4.1 (the scheme BasicIdent of [32]), except for the

check on the structure of the public key in step 1 and the use of YA in place of P0 in

step 4.

Decrypt: Suppose C = 〈U, V 〉 ∈ C. To decrypt this ciphertext using the private key

SA, compute and output:

V ⊕H2(ê(SA, U)).

Notice that if 〈U = rP, V 〉 is the encryption of M for entity A with public key

PA = 〈XA, YA〉, then we have:

V ⊕H2(ê(SA, U)) = V ⊕H2(ê(xAsQA, rP ))
= V ⊕H2(ê(QA, xAsP )r)
= V ⊕H2(ê(QA, YA)r)
= M.

Thus decryption is the inverse of encryption. Again, the similarity to the decryption

operation of BasicIdent should now be apparent. This completes our description of

BasicCL-PKE2.

We have presented this scheme to help the reader understand our remaining schemes,

and in particular the next scheme and teh schemes in Section 8.6 and 8.7. We do

not analyse its security in detail. It can be shown that BasicCL-PKE2 is secure in

the OWE model of Section 5.3.

8.3.2 A Full CL-PKE Scheme

Now that we have described our basic CL-PKE scheme, we add chosen ciphertext

security to it, adapting the Fujisaki-Okamoto hybridisation technique described in

Section 6.4. The reader should now be very familiar with this adaptation, as it is

similar to the adaptation which generates the scheme FullCL-PKE from BasicCL-PKE

in Chapter 6. The algorithms for FullCL-PKE2 are as follows:
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Setup: Identical to Setup for BasicCL-PKE2, except that we choose two additional

cryptographic hash functions H3 : {0, 1}n×{0, 1}n → Z∗
q and H4 : {0, 1}n → {0, 1}n.

Now the system parameters are params= 〈G1, G2, ê, n, P, P0,H1,H2,H3,H4〉. The

master-key and message space M are the same as in BasicCL-PKE2. The ciphertext

space is now C = G1 × {0, 1}2n.

Partial-Private-Key-Extract: Identical to BasicCL-PKE2.

Set-Secret-Value: Identical to BasicCL-PKE2.

Set-Private-Key: Identical to BasicCL-PKE2.

Set-Public-Key: Identical to BasicCL-PKE2.

Encrypt: To encrypt M ∈ M for entity A with identifier IDA ∈ {0, 1}∗ and public

key PA = 〈XA, YA〉, perform the following steps:

1. Check that XA, YA ∈ G∗
1 and that the equality ê(XA, P0) = ê(YA, P ) holds. If

not, output ⊥ and abort encryption.

2. Compute QA = H1(IDA) ∈ G∗
1.

3. Choose a random σ ∈ {0, 1}n.

4. Set r = H3(σ,M).

5. Compute and output the ciphertext:

C = 〈rP, σ ⊕H2(ê(QA, YA)r),M ⊕H4(σ)〉.

Decrypt: Suppose C = 〈U, V, W 〉 ∈ C. To decrypt this ciphertext using the private

key SA:

1. Compute V ⊕H2(ê(SA, U)) = σ′.
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2. Compute W ⊕H4(σ′) = M ′.

3. Set r′ = H3(σ′,M ′) and test if U = r′P . If not, output ⊥ and reject the

ciphertext.

4. Output M ′ as the decryption of C.

When C is a valid encryption of M using PA and IDA, it is easy to see that decrypting

C will result in an output M ′ = M . This concludes the description of FullCL-PKE2.

We have the following result about the security of FullCL-PKE2 from [7, Theorem 1].

Result 8.1 Let hash functions H1, H2, H3 and H4 be random oracles. Suppose

further that there is no polynomially bounded algorithm that can solve the GBDHP

in groups generated by IG with non-negligible advantage. Then FullCL-PKE2 is

IND-CCA secure.

This security result relies on the hardness of the GBDHP and assumes H1 and H2 are

random oracles. In essence, the detailed analysis shows that security against Type

II adversaries can be reduced to the difficulty of computing the value ê(QA, xAsP )r.

Given that a Type II adversary has s but not xA, this is equivalent to the BDHP

on input 〈P,QA, U, XA〉. Likewise, security against a Type I adversary who does not

know s but who might replace YA by a new value Y ′
A can be reduced to the GBDHP

on input 〈P,QA = aP, U = rP, P0 = sP 〉, with solution Y ′
A, ê(P, Y ′

A)sra. For more

details see [6, 7].

8.4 A Certificateless Signature Scheme

We will describe a certificateless public-key signature (CL-PKS) scheme that is based

on a provably secure ID-PKC signature scheme of [83]. Note that we have not

developed a security model for CL-PKS, and we do not prove our scheme to be

secure.
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In general, a CL-PKS scheme can be specified by seven algorithms:

Setup, Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key, Set-Public-Key,

Sign and Verify. These are similar to the algorithms used to define a CL-PKE scheme:

Setup and params are modified to include a description of the signature space S,

Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key and Set-Public-Key are

just as before and Sign and Verify are as follows:

Sign (ΣCL): This algorithm takes as inputs params, a message M ∈M to be signed

and a private key SA. It outputs a signature Sig ∈ S. We write Sig ← ΣCL(M,SA).

Verify (VCL): This algorithm takes as inputs params, a message M ∈M, the identi-

fier IDA and public key PA of an entity A, and Sig ∈ S as the signature to be verified.

It outputs valid, invalid or ⊥ . We write {valid, invalid,⊥} ← VCL(M,Sig, PA, IDA).

Given this general description, we now define a CL-PKS scheme using a similar basic

set up procedure as the schemes BasicCL-PKE2 and FullCL-PKE2.

Setup: This is identical to Setup for our scheme BasicCL-PKE2, except that now

we have hash function H : {0, 1}∗ × G2 → Z∗
q instead of H2, hence the params is

〈G1, G2, n, ê, P, P0,H1,H〉. The signature space is defined as S = G1 × Z∗
q .

Partial-Private-Key-Extract: Identical to BasicCL-PKE2.

Set-Secret-Value: Identical to BasicCL-PKE2.

Set-Private-Key: Identical to BasicCL-PKE2.

Set-Public-Key: Identical to BasicCL-PKE2.

Sign: To sign M ∈M using the private key SA, perform the following steps:

1. Choose a random value a ∈ Z∗
q .
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2. Compute r = ê(aP, P ) ∈ G2.

3. Set v = H(M, r) ∈ Z∗
q .

4. Compute U = vSA + aP ∈ G1.

5. Output as the signature 〈U, v〉 ∈ S.

Verify: To verify a purported signature 〈U, v〉 on a message M ∈M for identity IDA

and public key 〈XA, YA〉:

1. Check that the equality ê(XA, P0) = ê(YA, P ) holds. If not, output ⊥ and

abort verification.

2. Compute r = ê(U,P ) · ê(QA,−YA)v.

3. Check if v = H(M, r) holds. If it does, output valid, otherwise output invalid.

For a valid signature, it is easy to check that the Verify algorithm will output valid.

This completes the description of the CL-PKS scheme.

This scheme is related to the first scheme in [83, p.312], which is secure against

existential forgery in the random oracle model. Our verification operation is identical

to the verification algorithm in [83], except for the check on the structure of the public

key in step 1 and the use of YA in place of P0 in step 2. Our signature algorithm,

however, is identical to that in [83].

8.5 A Certificateless Authenticated Key Agreement Protocol

A number of identity-based two party key-agreement protocols have been described

[50, 142]. All the session keys created in Smart’s protocol [142] can trivially be

recovered by the TA. The protocol of [142] was later modified by Chen and Kudla
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[50] to eliminate this escrow capability. However, the TA in the protocol of [50] can

still perform a standard man-in-the-middle attack by replacing one short-term value

with a value of its choice, and can thus impersonate any entity in an undetectable

way.

Here we introduce a certificateless key agreement protocol which is only vulnerable

to such a man-in-the-middle attack if, in addition to replacing a short-term value,

a user-specific long-term public key is also replaced. If keys are produced using

our binding technique (that is, CL-PKC (B)), then such a man-in-the-middle attack

mounted by the KGC will leave evidence exposing the KGC’s actions. The evidence

is not the replaced public key but is the KGC’s impersonation of a communicating

entity which can only occur if a working public key (that is, an appropriate partial

private key) exists.

The initialization for our certificateless key agreement scheme is formally specified us-

ing five algorithms: Setup, Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-

Key and Set-Public-Key. These are the same as in BasicCL-PKE2. Algorithms Setup,

Set-Secret-Value and Set-Public-Key must be run by entities A and B before exchan-

ging protocol messages. Algorithms Partial-Private-Key-Extract and Set-Private-Key

can be run by entities A and B after exchanging protocol messages and are required

for computing a shared key.

Entities A and B who wish to agree a key first choose random values a, b ∈ Z∗
q re-

spectively. Given the initializations described in the previous paragraph, the protocol

is as follows:

Protocol description: After the above messages are exchanged in Figure 8.1, both

users check the validity of each other’s public keys in the usual way. So entity A

checks ê(XB, P0) = ê(YB, P ) and entity B checks ê(XA, P0) = ê(YA, P ). Then A

computes KA = ê(QB, YB)a · ê(SA, bP ) and B computes ê(QA, YA)b · ê(SB, aP ). It is

easy to see that K = KA = KB is a key shared between A and B; to ensure forward

security, A and B can instead use the shared key H(K‖abP ) where H is a suitable
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Protocol Messages

1. A→ B : aP‖〈XA, YA〉
2. B → A : bP‖〈XB, YB〉

Figure 8.1: Certificateless authenticated key agreement protocol.

hash function.

The protocol uses only two passes and is bandwidth-efficient. Bandwidth usage can

be reduced further if the same entities agree many keys: then transmission of only

fresh aP , bP is needed in each protocol run. Each side computes four pairings;

this can be reduced to one pairing each if the same entities agree many keys. The

protocol is therefore competitive with those of [50, 142]. Key confirmation can be

added with extra protocol passes. In a CL-PKC (B) setting, key confirmation creates

the evidence required to implicate a cheating KGC.

The key generation method in our protocol is based on the protocol 1′ in [50] – a

modification which adds forward secrecy to Smart’s protocol [142]. Informally, even if

the public key of entity A is replaced with 〈X ′
A, Y ′

A〉, an adverary cannot impersonate

entity A because the shared session key cannot be computed without an appropriate

partial private key, DA.

8.6 Hierarchical CL-PKE

Recall that in the survey of Section 3.6, we discussed how Gentry and Silverberg [77]

improved the work of [85] by introducing a totally collusion-resistant, hierarchical,

ID-based infrastructure for encryption and signatures. Such an infrastructure spreads

the workload of master servers and produces levels which can be used to support
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short lived keys, for example. However, the hierarchical schemes of [77] still have an

undesirable escrow property. Here, we adapt the hierarchical encryption scheme of

[77] to our certificateless setting and eliminate key escrow to a certain extent.

In general, a hierarchical CL-PKE (HCL-PKE) scheme has a root KGC and a hier-

archy of entities. Each entity other than the KGC is associated with a level t ≥ 1

in the hierarchy and with a string ID-tuple which identifies that entity’s ancestors

in the hierarchy. The ID-tuple string for an entity at level t with identity IDt is

〈ID1, ID2, . . . , IDt〉. An HCL-PKE scheme is specified by seven algorithms: Setup,

Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key, Set-Public-Key, Encrypt

and Decrypt. Rather than outline the general function of each algorithm, we present

a concrete scheme, BasicHCL-PKE, whose description should make the general op-

eration of an HCL-PKE scheme clear. The algorithms for BasicHCL-PKE are as

follows.

Setup: This algorithm is identical to Setup for BasicCL-PKE2, except that now the

ciphertext space for a level t ciphertext is Ct = Gt
1×{0, 1}n. The system parameters

are params= 〈G1, G2, ê, n, P, P0,H1,H2〉. For ease of presentation, we denote the

master-key by x0 instead of s (so we have P0 = x0P ).

Partial-Private-Key-Extract: This algorithm is usually executed by a level t− 1 entity

IDt−1 for a child entity IDt at level t. When t = 1, this algorithm is executed by the

root KGC for ID1. It takes as input the ID-tuple 〈ID1, ID2, . . . , IDt〉 and carries out

the following steps to construct the partial private key for IDt:

1. Compute Qt = H1(ID1‖ID2‖ . . . ‖IDt) ∈ G∗
1.

2. Output IDt’s partial private key Dt for t ≥ 2 where

Dt = Dt−1 + xt−1Qt =
t∑

i=1

xi−1Qi.

If t = 1, then output D1 = x0Q1. The key Dt must be transported to IDt over a

confidential and authentic channel.

207



8.6 Hierarchical CL-PKE

Set-Secret-value: This algorithm takes as inputs params and level t entity’s ID-tuple

〈ID1, ID2, . . . , IDt〉 as inputs. It selects xt ∈ Z∗
q at random and outputs xt as IDt’s

secret value.

Set-Private-Key: As for BasicCL-PKE2, except that the private key for IDt is denoted

by St. So St = xtDt.

Set-Public-Key: As for BasicCL-PKE2, except that the public key for IDt is denoted

by Pt = 〈Xt, Yt〉. So Yt = x0Xt = x0xtP .

Encryption: To encrypt M ∈M for identity IDt at level t ≥ 1 with ID-tuple

〈ID1, ID2, . . . , IDt〉, perform the following steps:

1. For each 1 ≤ i ≤ t, check that the equality ê(Xi, P0) = ê(Yi, P ) holds. If any

check fails, output ⊥ and abort encryption.

2. Compute Qi = H1(ID1‖ID2‖ . . . ‖IDi) ∈ G∗
1 for each 2 ≤ i ≤ t.

3. Choose a random r ∈ Z∗
q .

4. Compute and output the ciphertext:

C = 〈U0, U2, . . . , Ut, V 〉 = 〈rP, rQ2, rQ3, . . . , rQt,M ⊕H2(ê(Q1, Yt)r)〉 ∈ Ct.

Notice that to encrypt a message for a level t entity IDt, the values Qi and hence

identities IDi of all the ancestors of IDt are needed. Moreover, to perform the checking

in Step 1 ,all the public keys of these entities are also needed.

Decryption: Suppose C = 〈U0, U2, . . . , Ut, V 〉 ∈ Ct is a BasicHCL-PKE ciphertext for

a level t entity with ID-tuple 〈ID1, ID2, . . . IDt〉. Let the public keys of IDi’s ancestors

be Pi = 〈Xi, Yi〉 (1 ≤ i < t). Then to decrypt the ciphertext C using the private key

St, compute and output:

V ⊕H2

(
ê(St, U0)∏t

i=2 ê(xtXi−1, Ui)

)
.
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Using properties of the bilinear map ê, we have:

ê(St,U0)Qt
i=2 ê(xtXi−1,Ui)

= ê(xt
∑t

i=1 xi−1Qi, rP ) ·
∏t

i=2 ê(xtxi−1P, rQi)−1

= ê(xt
∑t

i=1 xi−1Qi, rP ) · ê(−
∑t

i=2 xtxi−1Qi, rP )
= ê(xtx0Q1, rP )
= ê(Q1, xtx0P )r

= ê(Q1, Yt)r

so that decryption is the inverse of encryption.

This completes our description of BasicHCL-PKE. Using the hybridization technique

described in Section 6.4, it is straightforward to adapt this scheme to obtain a scheme

that is based on the identifier-based hierarchical scheme which is secure against

fully-adaptive chosen ciphertext attackers [77, §3.2]. We must assume here that no

ancestor IDu of our level t entity IDt replaces the public key of IDt. Even with the

extra binding step in place, our hierarchical schemes do not offer a true equivalent of

trust level 3: although it is then possible to detect that a public key has been replaced

by an ancestor, it is not possible to pinpoint exactly which ancestor is responsible.

The attack by an ancestor at level u runs as follows:

1. An ancestor IDu where 0 ≤ u ≤ t − 1, where the root KGC has identifier

ID0, selects x′
u ∈ Z∗

q and replaces the public key Pt of IDt at level t with

P ′
t = 〈X ′

t, Y
′
t 〉 = 〈x′

uP, x′
usP 〉. Notice that the new public key satisfies the

usual structural check.

2. Encryption to entity IDt yields a ciphertext of the form:

C = 〈rP, rQ2, rQ3, . . . , rQt,M ⊕H2(ê(Q1, Y
′
t )r)〉 ∈ Ct.

3. If 2 ≤ u ≤ t− 1, then IDu can decrypt this ciphertext by computing:

V ⊕H2

(
ê(x′

uDu, U0)∏u
i=2 ê(x′

uXi−1, Ui)

)
.

If u = 0 or u = 1, then IDu can decrypt this ciphertext by computing:

V ⊕H2(ê(x′
uD1, U0)).
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Notice that this attack works even if the public key Pt = 〈xtP, xtsP 〉 is bound with

IDt in Dt, since the tuple 〈Uu+1 . . . Ut〉 is not used in this attack. Furthermore, this

attack works even if the ancestors public key Pu = 〈xuP, xusP 〉 is bound with the

IDu in Du. Therefore, we cannot allow partial private keys to be made public in

this setting as this would enable any adversary to mount a successful key attack by

replacing the public key of IDt. This attack is demonstrated next.

1. An adversary obtains IDt’s ancestor’s partial private key D1 or Du where 2 ≤
u ≤ t− 1.

2. The adversary selects x′
t ∈ Z∗

q and replaces the public key Pt for an entity at

level t with P ′
t = 〈X ′

t, Y
′
t 〉 = 〈x′

tP, x′
tsP 〉.

3. Encryption to entity IDt yields a ciphertext of the form:

C = 〈rP, rQ2, rQ3, . . . , rQt,M ⊕H2(ê(Q1, Y
′
t )r)〉 ∈ Ct.

4. The adversary decrypts this ciphertext by computing:

V ⊕H2

(
ê(x′

tDu, U0)∏u
i=2 ê(x′

tXi−1, Ui)

)
,

or

V ⊕H2(ê(x′
tD1, U0)).

As with the previous attack, this attack works even if public keys are bound with

identifiers in all the partial private keys. We note that an extension of the hybrid

PKI/ID-PKC scheme of [48] has stronger security guarantees. However, this ap-

proach still requires certification for intermediate entities, and our primary focus is

on completely certificate-free infrastructures. The attacks presented here suggests

that there is still work to be done in designing HCL-PKE schemes with stronger

security properties.
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8.7 Proxy Decryption

We demonstrate how our HCL-PKE scheme BasicHCL-PKE supports two kinds of

proxy decryption: an entity A with identifier IDt at level t ≥ 1 can efficiently delegate

decryption to either a proxy at level t− 1 (if t ≥ 2) or a proxy at level t + 1. This is

an important feature because the decryption and encryption costs in our HCL-PKE

scheme grow roughly linearly with t, so that an unacceptably high computational

burden may be placed on entities located low in the hierarchy, if the hierarchy has

many levels.

To prepare a ciphertext C = 〈U0, U2, . . . , Ut, V 〉 encrypting message M for proxy

decryption, entity A with identifier IDt located at level t transforms C by appending

some fixed keying information and a string proxy to it to obtain a new ciphertext:

Cproxy = 〈C, 〈xtX1, xtX2, . . . , xtXt−1〉, proxy〉.

Here, the value of proxy depends on whether decryption is being delegated to an

entity at level t− 1 or t + 1. So we have two cases:

Proxy at level t− 1:

1. Entity A sets proxy= 〈xtU0〉 and forwards Cproxy to level t − 1 entity B with

identifier IDt−1.

2. Entity B decrypts Cproxy using its partial private key by computing:

M ′ = V ⊕H2

(
ê(Dt−1 + xt−1Qt, xtU0)∏t

i=2 ê(xtXi−1, Ui)

)
.

Using the properties of the bilinear map ê, we can see that:

ê(Dt−1 + xt−1Qt, xtU0)∏t
i=2 ê(xtXi−1, Ui)

=
ê(St, U0)∏t

i=2 ê(xtXi−1, Ui)
.

Hence we have M ′ = M , and the proxy at level t− 1 can correctly decrypt.

Proxy at level t + 1:
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1. Entity A sets proxy= 〈xtU0, ê(xtQt+1, xtU0)〉 and forwards Cproxy to level t + 1

entity B with identifier IDt+1.

2. Entity B decrypts Cproxy using its partial private key by computing:

M ′ = V ⊕H2

(
ê(Dt+1, xtU0)

ê(xtQt+1, xtU0) ·
∏t

i=2 ê(xtXi−1, Ui)

)
.

Using the properties of the bilinear map ê, we can see that:

ê(Dt+1, xtU0)
ê(xtQt+1, xtU0) ·

∏t
i=2 ê(xtXi−1, Ui)

=
ê(St, U0)∏t

i=2 ê(xtXi−1, Ui)
.

Hence we have M ′ = M , and the proxy at level t− 1 can correctly decrypt.

Notice that the proxy capability that A delegates is one-time only: in each of our

two cases, to perform decryption, B needs a component xtU0 that depends both on

the ciphertext and on A’s secret. Of course, our proxy schemes shield A’s secret xt

and private key St from all entities, including the proxy. Notice also that the proxy

ciphertext in our level t + 1 proxy scheme contains sufficient information to allow

it to be decrypted by our level t − 1 proxy. So proxy ciphertexts produced for A’s

children can also be decrypted by A’s parent. As the reader will have noticed, we

have not presented any formal security analysis for the schemes in this chapter.

8.8 Summary

In this chapter we have rounded off our treatment of CL-PKC by briefly presenting

a number of certificateless primitives: an encryption scheme, a signature scheme, a

key agreement protocol, a hierarchical encryption scheme and two proxy decryption

schemes. All of these schemes share many parameters in their set up procedures.

Also, they eliminate key escrow from the ID-PKC schemes from which they ori-

ginated. The certificateless schemes presented yield solutions applicable to many

settings.
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In future work we intend to develop security models and proofs for other certificate-

less primitives. We fully expect that certificateless versions of yet more primitives

can be devised by adapting existing identity-based schemes. The importance of

an efficient certificateless signature scheme cannot be understated, since in addi-

tion to offering the benefits of identity based signature schemes [135], it provides

true non-repudiation without the need to store certificates with every verified signa-

ture. In certificate-based schemes, the certificates must be stored if non-repudiation

is required. Therefore, a fruitful area of research may be special-purpose signature

schemes [28, 34, 150] and signcryption schemes [38, 103, 109]. Naturally, we also pur-

sue the creation hierarchical certificateless encryption schemes with better security

assurances.

It would be interesting to see if the ideas of ‘double encryption’ presented in Chapter

6 could be extended to improve on our certificateless authentic key agreement pro-

tocol and signature scheme. Another interesting avenue for research is designing

efficient CL-PKC schemes that are secure in the standard model. We are optim-

istic in this front; recently an efficient selective-ID8.1 secure ID-PKE scheme and a

pairing-based secure signature scheme were presented by Boneh and Boyen in [29]

and [30] respectively, both schemes did not require the use of random oracles.

8.1In the selective-ID model, the adversary must commit in advance to the identifier that it intends
to attack.
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9.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

This chapter develops certificate-based authenticated tripartite protocols. It begins

by describing relevant public key protocols and goes on to propose and examine one

round authenticated protocols which do not rely on digital signatures. Finally, signa-

ture based tripartite authenticated key agreement protocols with key confirmation are

presented in a non-broadcast setting.

9.1 Introduction

To recapitulate Section 3.3, asymmetric key agreement protocols are multi-party

protocols in which entities exchange public information allowing them to create a

common secret key that is known only to these entities and which cannot be de-

termined by any other party. This secret key, commonly called a session key, can

then be used to create a confidential or integrity-protected communications channel

amongst the entities. Beginning with the famous Diffie-Hellman protocol [58], a huge

number of authenticated two-party key agreement protocols have been proposed (see

[27] and [114, Chapter 12.6] for surveys). This reflects the fundamental nature of

key agreement as a cryptographic primitive.

A situation in which three or more parties share a secret key is called conference

keying. The three-party (or tripartite) case is of most practical importance not only

because it is the most common size for electronic conferences, but because it can be

used to provide a range of services for two communicating parties. For example, a

third party can be added to chair or referee a conversation for the purpose of ad hoc

auditing, data recovery or escrow purposes.

One of the most exciting developments in recent years in the area of key agreement

is Joux’s tripartite key agreement protocol using elliptic curve pairings [90]. See

Section 3.3.3 for a description of Joux’s protocol and Section 2.3 for an overview of
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pairings on elliptic curves. Joux’s protocol (just like the raw Diffie-Hellman protocol),

however, is unauthenticated and suffers from man-in-the-middle attacks as described

in Section 3.3.1.

9.1.1 Contributions

In this chapter it is shown how Joux’s protocol [90] can be transformed into a secure

tripartite protocol that still requires only a single broadcast per entity. In fact,

we present four different one round, tripartite authenticated key agreement (TAK)

protocols in Section 9.2. All these protocols have the same protocol messages, but

different methods for calculating session keys from those messages. Our protocols are

specifically designed to avoid the use of potentially expensive signature computations.

It is clear how Joux’s protocol can be augmented with signatures on the short-term

keys so as to prevent man-in-the-middle attacks.

The reader should not assume that four different session keys (TAK-1 to TAK-4)

are generated from one protocol run. There exist much better ways of deriving

multiple session keys than this; the protocol is not four times as efficient! Rather we

present four protocols and analyze their different security properties. Our one round

protocols build on Joux’s protocol and draw on ideas from the Unified Model [10],

the Matsumoto, Takashima and Imai (MTI) protocols [110], and Menezes, Qu and

Vanstone (MQV) protocols [99].

In Section 9.3, we consider proofs of security for our protocols. Our proofs use

an adaptation of the Bellare-Rogaway model [22] to the public key setting. Our

model is similar to that given by Blake-Wilson, Johnson and Menezes [26] (though

our model extends to the three-party situation, and our extension is different to

that presented in the symmetric-key setting in [24]). Our proofs show that the

first of the TAK protocols is secure and has perfect forward secrecy provided that

the BDHP is hard – see Section 2.4 for more details on the BDHP. Our security

model has the benefits of being relatively simple to understand and allowing the
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construction of straightforward proofs of security. However, just like earlier models

[22, 26], it assumes perfect public key registration processes and it makes use of

random oracles. Moreover, our proof places a relatively strong technical restriction

on the capabilities of an adversary, namely, that he is not allowed to make any Reveal

queries – see Section 9.3 for a more detailed discussion. Despite these limitations, we

believe our proof to be a useful indicator of the strength of the TAK-1 protocol. We

also note that the authors of earlier work [26] made the same technical restriction,

and were forced to conjecture the security of their other authenticated key agreement

protocol, a protocol similar to our third TAK protocol. Finally, we do not provide

a proof of security for our other protocols. But we note that the MQV protocol, on

which our fourth TAK protocol is modelled, has never been proven secure in any

model, though it has been widely adopted for standardisation [8, 9, 87, 89]. While

we believe security proofs and models to be useful, they are not our sole focus here,

rather we are also interested in providing practical and secure protocols.

In view of the incomplete analysis currently available through provable approaches,

we choose to supplement our proofs of security with ad hoc analysis in Section 9.5.

This allows us to consider attacks on our protocols not included in the security model.

In Section 9.6 we complete the treatment of one round tripartite authenticated key

agreement protocols with three parties online by presenting Shim’s tripartite protocol

[138]. Furthermore, we show that Shim’s protocol does not make mathematical sense.

In Section 9.7 the scenario in which one of three parties is off-line is examined. The

protocol we give for this situation can be applied to key escrow with an off-line escrow

agent.

This chapter’s penultimate section, Section 9.8, examines pairing-based authentic-

ated key agreement with key confirmation in a non-broadcast setting. The main

point we make in that section is that a properly authenticated and key confirmed

protocol based on pairings can be no more efficient (in terms of protocol passes) than

the obvious extension of the station-to-station protocol [59] to three parties. Thus,

the apparent efficiency of Joux’s protocol is lost when it is made secure and when an

appropriate measure of efficiency is used.
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The final section, Section 9.9, contains conclusions and some ideas for future work.

9.1.2 Related Work

9.1.2.1 Two Party Authenticated Key Agreement Protocols

As we have already noted, our work in this chapter builds on that of Joux [90], and

our one round protocols draw upon some key agreement protocols from the Diffie-

Hellman family, namely, the Unified Model [10], MTI [110] and MQV [99] protocols.

Here we provide a brief introduction to these earlier protocols.

In what follows, CertA and CertB denote the certificates issued by the CA for entities

A and B. Long-term public keys Kpub,A and Kpub,B corresponding to the long-term

private keys x and y are in CertA and CertB respectively.

In the protocols in Figure 9.1, short-term private keys a and b are selected uniformly

at random by A and B, respectively. In the MQV protocol the value of a and b

are selected uniformly at random from Z∗
q , whilst in the other protocols the random

values are 1 ≤ a, b ≤ p−2, where p and q are large primes. In the MQV protocol the

generator point P ∈ E(Ft) has order q. In the other protocols, let g be the generater

of Z∗
p, i.e. 2 ≤ g ≤ p− 2. Both P and g are fixed and known to all the entities.

Protocol descriptions: In each of the protocols in Figure 9.1 an entity, A, com-

municating to entity B, sends a fresh short-term public value along with a certific-

ate, CertA, containing A’s long-term public key. The fresh short-term public value

is ga mod p for the MTI/A0 and Unified Model protocols, (Kpub,B)a mod p (where

Kpub,B = gy mod p) for the MTI/B0 and MTI/C0 protocols, and aP for the MQV

protocol. Corresponding values and certificates are sent by entity B to A. Each party

verifies the authenticity of the certificate received: if any check fails, the protocol

should be aborted; if no check fails, the session keys described next, corresponding

to the protocol in Figure 9.1, should be computed.
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Unified Model and MTI/A0 Protocol Messages

1. A→ B : ga mod p‖CertA

2. B → A : gb mod p‖CertB

MTI/B0 and MTI/C0 Protocol Messages

1. A→ B : (gy)a mod p‖CertA

2. B → A : (gx)b mod p‖CertB

MQV Protocol Messages

1. A→ B : aP‖CertA

2. B → A : bP‖CertB

Figure 9.1: Two party authenticated key agreement protocols for the Unified Model,
MQV and selected MTI key agreement protocols.

Two Party Authenticated Key Generation: We now explain how session keys

are generated in each protocol.

1. Unified Model:

The keys computed by the entities are:

KA = H((gy)x mod p‖(gb)a mod p),

KB = H((gx)y mod p‖(ga)b mod p).

Both parties now share the session key KAB = H(gxy mod p‖gab mod p). Here,

H : G×G→ {0, 1}l is a cryptographic hash function whose function is to derive

a suitable length, l, session key.

2. MTI/A0:

The keys computed by the entities are:
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KA = (gy)a · (gb)x mod p,

KB = (gx)b · (ga)y mod p.

Both parties now share the session key KAB = gay+bx mod p.

3. MTI/B0:

The keys computed by the entities are:

KA = ((gx)b)x−1 · ga mod p,

KB = ((gy)a)y−1 · gb mod p.

Both parties now share the session key KAB = ga+b mod p.

4. MTI/C0:

The keys computed by the entities are:

KA = ((gx)b)x−1a mod p,

KB = ((gy)a)y−1b mod p.

Both parties now share the session key KAB = gab mod p.

5. MQV:

The keys computed by the entities are:

KA = h((a + xaP ) mod n) · (bP + yP · bP ),

KB = h((b + ybP ) mod n) · (aP + xP · aP ).

The notation is described below. Both parties now share the session key KAB =

h(a + xaP )(b + ybP )P . The notations h and Q are described below.

The Unified Model protocol is a standardised protocol [8, 9, 87] that bears some

similarity with the MTI protocols but utilises a hash function, H, with concaten-

ation instead of a multiplication to combine various components. The MTI suite

of protocols consists of three infinite sequences of protocols: A[κ], B[κ] and C[κ],

where κ ∈ Z. Each scheme in the sequence can ‘smartly’ update the key KAB to

the next direct scheme in the sequence using shared keying information. For ex-

ample, a shared MTI/A0 key, KAB = gay+bx mod p, updates into an MTI/A1 key,

KAB = gayx+bxy mod p, if A uses κ = 1 in the following MTI/A sequence proced-

ure: (i) A computes La,κ = xκa; (ii) A sends to B: gLa,κ mod p; (iii) A computes

KA = (gy)La,κ · (gLb,κ)x mod p. Of course B also has to perform a procedure similar
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to A’s and the shared MTI/A[κ] key becomes KAB = gayxκ+bxyκ
mod p. The MTI/C

sequence has the lowest computational complexity for updating the shared key.

If Q is an elliptic curve point, then Q is a mapping from group elements to an integer

range. More specifically in [99], Q is defined to be the integer (x mod 2df/2e)+2df/2e,

where f = blog2 qc + 1 is the bitlength of q and x is the binary representation of

the x-coordinate of Q. Notice that Q mod q 6= 0. The cofactor h is an integer such

that h = b(
√

t + 1)2/qc that is used to protect against small subgroup attacks and is

typically small so q is as large as possible.

The MQV protocol was initially proposed by Menezes, Qu and Vanstone [113] and

later improved by eliminating the use of hash functions (to enhance its efficiency)

with Law and Solinas [99]. The improved protocol, which is presented here, is the

most prominent and some versions of it are standardised [8, 9, 87, 89]. A main design

goal of this protocol was to avoid the use of hash functions, however, this goal lead

to a vulnerability which was exposed by Kaliski [93].

9.1.2.2 The Station-to-Station Protocol

The non-broadcast protocols, which will be presented in Section 9.8, build on the

station-to-station (STS) [59] protocol. The STS protocol shown in Figure 9.2 em-

ploys an encryption algorithm Esym from a symmetric encryption scheme and a PKS

scheme’s signing algorithm Σ.

In this chapter we will break our notational convention to simplify the notation. Here,

we let ΣA(σ) denote A’s signature on the string σ (i.e. ΣA(σ) = Σ(σ,Kpriv,A)) and

as with Section 6.4.2, Esym
K (σ) denotes the encryption of string σ using a symmetric

algorithm and key K. The message flows of the STS key agreement protocol are

given in Figure 9.2.

Protocol description: In Figure 9.2 entity A initiates the protocol execution by
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Sequence of Protocol Messages

1. A→ B : ga mod p‖CertA

2. B → A : gb mod p‖CertB‖Esym
KAB

(ΣB(gb mod p‖ga mod p)

3. A→ B : Esym
KAB

(ΣA(ga mod p‖gb mod p))

Figure 9.2: The station-to-station (STS) key agreement protocol.

sending message (1 ). After receiving message (1 ), entity B is able to calculate the

session key KAB = gab mod p. The same session key is calculated by A after receiving

message (2 ). Messages (2 ) and (3 ) contain signatures on the short-term values to

provide key authenticity. Entities A and B verify each other’s signatures. Only

upon successful signature verification does the protocol continue and is the session

key KAB accepted. These signatures are transmitted in encrypted form using the

session key KAB which provides key confirmation. The inclusion of the intended

recipient’s identifier in the signature is an option, see [59, §6] for more details.

9.1.2.3 The Security Models

Our security model is inspired by Blake-Wilson, Johnson and Menezes’ extension [26]

of the Bellare-Rogaway model [22]. More recent work on models for secure protocols

(in particular key agreement protocols) can be found in [20, 39, 45, 46, 140].

9.1.2.4 TAK Protocol History

This chapter includes the major improvements and changes to our original work [4]

presented in [5]. In particular, one of the protocols of [4], namely TAK-1 is proved

to have perfect forward secrecy and another, TAK-2, is no longer explored in any
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detail because of a fatal man-in-the-middle attack that was discoverd by Shim [136].

Details of this attack and what can be learned from it can be found in Section 9.5.1.

9.2 One Round Tripartite Authenticated Key Agreement Protocols

The advantage of Joux’s tripartite protocol over any previous tripartite key agree-

ment protocol is that a session key can be established in just one round. The dis-

advantage is that this key is not authenticated, and this allows a man-in-the-middle

attack.

In this section we develop protocols which also need just one round, but which

provide a key which is implicitly authenticated to all entities. Our AK protocols are

generalisations of the standardised [8, 9, 87] Unified Model protocol [10], the MTI

family of protocols [110] and the MQV protocol [99] to the setting of pairings. In

fact, we present a single protocol with four different methods of deriving a session

key. The numbering sequence for these different methods is unrelated to that of the

MTI protocols. Our tripartite protocols use pairings; hence we use the notation G1,

G2, ê and P as established in Chapter 2 and utilised in Joux’s protocol in Section

3.3.3.

In order to provide session key authentication, some form of authenticated long-term

private/public key pairs are needed. As with the other certificate-based protocols

(see Section 3.2.3), a certification authority (CA) is used in the initial set-up stage

to provide certificates, which bind users’ identities to long-term keys. Entity A’s

long-term public key is Kpub,A = xP , where x ∈ Z∗
q is the long-term private key of A.

Element P is a public value which can be included in certificate in order to specify

which element is used to construct Kpub and the short-term public values. Similarly,

CertB and CertC are the certificates for entities B and C, with Kpub,B = yP and

Kpub,C = zP as their long-term public keys.

As usual, in the protocol message flows given in Figure 9.3, short-term private keys
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a, b, c ∈ Z∗
q are selected uniformly at random by A, B and C respectively.

Protocol Messages

1. A→ B,C : aP‖CertA

2. B → A,C : bP‖CertB

3. C → A,B : cP‖CertC

Figure 9.3: Tripartite authenticated key agreement (TAK) protocol.

Protocol description: In Figure 9.3, an entity A broadcasting to B and C, sends

his fresh short-term public value aP along with a certificate CertA containing his

long-term public key. Corresponding values and certificates are broadcast by B and

C to A,C and A,B respectively. Notice that the protocol messages are just the same

as in Joux’s protocol (Figure 3.4, Page 53), except for the addition of certificates.

Each party verifies the authenticity of the two certificates he receives. If any check

fails, the protocol should be aborted. When no check fails, one of four possible session

keys described next should be computed.

9.2.1 TAK Key Generation

1. Type 1 (TAK-1):

The keys computed by the entities are:

KA = H(ê(bP, cP )a‖ê(yP, zP )x),

KB = H(ê(aP, cP )b‖ê(xP, zP )y),

KC = H(ê(aP, bP )c‖ê(xP, yP )z).

By bilinearity, all parties now share the session key

KABC = H(ê(P, P )abc‖ê(P, P )xyz). Here, H : G2 × G2 → {0, 1}l is a crypto-

graphic hash function.

2. Type 2 (TAK-2):
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The keys computed by the entities are:

KA = ê(bP, zP )a · ê(yP, cP )a · ê(bP, cP )x = ê(yP, cP )a · ê(bP, a · zP + x · cP ),

KB = ê(aP, zP )b · ê(xP, cP )b · ê(aP, cP )y = ê(xP, cP )b · ê(aP, b · zP + y · cP ),

KC = ê(aP, yP )c · ê(xP, bP )c · ê(aP, bP )z = ê(xP, bP )c · ê(aP, c · yP + z · bP ).

The session key is KABC = ê(P, P )(ab)z+(ac)y+(bc)x.

3. Type 3 (TAK-3):

The keys computed by the entities are:

KA = ê(yP, cP )x · ê(bP, zP )x · ê(yP, zP )a = ê(bP, zP )x · ê(yP, x · cP + a · zP ),

KB = ê(aP, zP )y · ê(xP, cP )y · ê(xP, zP )b = ê(aP, zP )y · ê(xP, y · cP + b · zP ),

KC = ê(aP, yP )z · ê(xP, bP )z · ê(xP, yP )c = ê(aP, yP )z · ê(xP, z · bP + c · yP ).

The session key is KABC = ê(P, P )(xy)c+(xz)b+(yz)a.

4. Type 4 (TAK-4):

The keys computed by the entities are:

KA = ê(bP + H(bP‖yP )yP, cP + H(cP‖zP )zP )a+H(aP‖xP )x,

KB = ê(aP + H(aP‖xP )xP, cP + H(cP‖zP )zP )b+H(bP‖yP )y,

KC = ê(aP + H(aP‖xP )xP, bP + H(bP‖yP )yP )c+H(cP‖zP )z.

The session key is

KABC = ê(P, P )(a+H(aP‖xP )x)(b+H(bP‖yP )y)(c+H(cP‖zP )z). Here, H : G1 ×G1 →
Z∗

q is a cryptographic hash function.

9.2.2 TAK Key Generation Notes

• Joux’s protocol [90] and our protocols are all vulnerable to ‘small subgroup’

attacks and variants of them as observed by Lim and Lee [104]. To protect

against this, a verification algorithm should be applied by each entity to ensure

that their received elements are actually in G1. This is fairly cheap to do when

G1 is an elliptic curve group.

• In all four cases, key generation is role symmetric and each entity uses know-

ledge of both short-term and long-term keys to produce a unique shared secret

key. No party has control over the resulting session key KABC and if any one
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of a, b, c is chosen uniformly at random, then KABC is a random element of

G2. Of course delays in receipt of messages from the last entity should not be

tolerated by the other entities. This is because after the last entity sees all the

other participants’ messages, he is capable of fixing a small number of bits in

the final shared secret key. See [115] for more details.

• Since all four keys are created after transmitting the same protocol messages,

the communication overhead of each protocol version is identical. However,

TAK-2 and TAK-3 key generation require slightly more computation compared

to TAK-1, even when the number of pairing computations is reduced to two

from three as described in the key generation equations. Better still, TAK-4

requires only a single pairing computation per entity, but in addition requires

three hash function computations by each entity. All the protocols can exploit

pre-computation if entities know in advance with whom they will be sharing a

key. In TAK-1, for example, all entities can pre-compute the term ê(P, P )xyz.

In TAK-2, for example, entity A can pre-compute a · yP and a · zP , with

similar pre-computations for B and C. However, these terms cannot be re-

used because fresh a, b and c should be used in each new protocol session. We

present a detailed account of the efficiency of the four protocols in Table 9.1.

Joux TAK-1 TAK-2 TAK-3 TAK-4
Comp. Overhead

〈ê,×G2,×G1,+G1,H〉 1,0,2,0,0 2,0,3,0,1 2,1,4,1,0 2,1,4,1,0 1,0,4,2,3
Overhead w/ Precomp.
〈ê,×G2,×G1,+G1,H〉 1,0,1,0,0 1,0,1,0,1 2,1,2,1,0 2,1,2,1,0 1,0,3,2,2

Comm. Overhead
〈G2, G1,Misc.〉 0,3,0 . . . 0,3,3 Certificates . . .

〈Pass,Broadcast,Round〉 6,3,1 . . . 6,3,1 . . .

Table 9.1: Efficiency comparison for one round tripartite key agreement protocols.

• Table 9.1: The computational overhead is expressed as a five-tuple which rep-

resents the number of bilinear-pairings; multiplications in G2; multiplications

in G1; additions in G1; and hash function evaluations in that order. The com-

putational overhead with precomputation expresses the same five-tuple. The

227



9.2 One Round Tripartite Authenticated Key Agreement Protocols

precomputation assumes that entities know in advance who they are commu-

nicating with. Additions in Zq are omitted because they are cheap compared to

the other operations. The total broadcast communication overhead expressed

as triples represents total message sizes, which can be measured using the num-

ber of G2 elements, G1 elements and miscellaneous elements, in that order. The

final triple represents the total number of passes, broadcasts and rounds, re-

spectively. Furthermore, in Table 9.1, some of the multiplications in G1 can

be expressed as exponentiations in G2. However, we choose to do point multi-

plication in G1 followed by the pairing map, since this is more efficient than a

pairing evaluation followed by an exponentiation in G2. This is because G2 is

a subgroup of a large finite field (recall Section 2.3) whereas G1 is a subgroup

of a fairly small curve.

9.2.3 Rationale for the TAK Keys’ Algebraic Forms

• Protocol TAK-1 is analogous to the Unified Model protocol, whilst protocols

TAK-2 and TAK-3 have their roots in the MTI/A0 protocol. The MTI-like vari-

ant of TAK-1, in which the agreed key is KABC = ê(P, P )abc+xyz, suffers from a

severe form of key-compromise impersonation attack. This attack does not re-

quire the adversary to learn a long-term private key. Rather, the adversary only

needs to obtain a session key and one of the short-term secret values used in a

protocol run to mount the attack. To illustrate this, suppose E has obtained a,

A’s short-term private key and the session key KABC = ê(P, P )abc+xyz. Then

E can calculate ê(P, P )xyz using a and KABC by computing KABC/ê(bP, cP )a.

Knowledge of this value now allows E to impersonate any entity engaging in

a protocol run with A. It would be prudent to derive session (and MAC keys

for key confirmation if desired) by applying a hash function to each KABC .

This would prevent problems arising from the possible existence of relatively

easy bits in the BDHP. Using a hash function in TAK-1 has the additional

benefit that it allows a security proof to be given (assuming H is modelled by

a random oracle) – see Section 9.3.
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• Protocol TAK-4 is modelled on the MQV protocol but avoids that protocol’s

unknown key-share weakness [93] by using a hash function H to combine both

the short-term and long-term private keys. Here H’s output is assumed to be

onto Z∗
q . Note that the protocol resulting from omission of this hash function

produces the key KABC = ê(P, P )(a+x)(b+y)(c+z). However, this version of the

protocol (which avoids the use of hash functions for efficiency) suffers from an

unknown key-share weakness similar to that presented for the MQV protocol

in [93], wherein the attacker does know the private key corresponding to his

registered public key. As a consequence, this attack cannot be prevented by

requiring the adversary to provide a PoP for her private key as part of the

registration process (we cannot just assume the PoP occurred). See Section

9.5.5 for further discussion of unknown key-share attacks.

• Other MTI-like protocols can be produced if entities A, B and C broadcast the

ordered pairs ayP‖azP , bxP‖bzP and cxP‖cyP respectively (along with the

appropriate certificates). This protocol can be used to produce the MTI/C0-

like shared secret key KABC = ê(P, P )abc, which for example A calculates

by KABC = ê(bxP, cxP )ax−2
. It can also be used to produce the MTI/B0-

like shared secret key KABC = ê(P, P )ab+bc+ca, which A can calculate by

KABC = ê(bxP, cxP )x−2 · ê(P, bxP )ax−1 · ê(P, cxP )ax−1
. Although these pro-

tocols produce a key with forward secrecy, we do not consider them further

here because they require significantly higher bandwidth and do not offer a se-

curity advantage over our other protocols. For example, both protocols suffer

from key compromise impersonation attacks and the MTI/C0 analogue is also

vulnerable to known session key attacks.

Our TAK protocols include long-term private keys in the computation of each KABC

in order to prevent man-in-the-middle attacks. Shim [136], however, has shown

that simply involving the long-term keys is not sufficient to prevent a man-in-the-

middle attack on TAK-2. Due to this severe vulnerability in the TAK-2 protocol,

the discussion of its security will be limited to Section 9.5.1. The TAK-2 protocol

should be avoided and merely remains in this thesis for completeness and to provide

a contrast with our other protocols. For the remaining protocols, other forms of
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active attack can still occur. We consider such attacks on a case-by-case basis in

Section 9.5 after considering proofs of security for TAK-1.

9.3 Security Model

In this section, our security model for TAK protocols is introduced. The security

of protocol TAK-1 in this model is considered in detail. Furthermore, the ways in

which it differs from previous work are highlighted.

Our model is similar to those introduced by Bellare and Rogaway [22] and Blake-

Wilson, Johnson and Meneze [26] with some simplifications that are possible because

of the one round nature of our TAK protocols. In particular, we avoid the use of

matching conversations (and session IDs introduced in later work [20]).

We let k be a security parameter, the protocol consisting of probabilistic polynomial

time algorithms which take k as input. We assume a set of protocol participants,

the polynomial bound in k on the number of participants is T1(k). Multiple users

are required because we are modelling an open network. Letters A,B, C, . . . will be

used to label protocol participants, while E is reserved for our adversary (who is not

a participant). Each participant A is modelled by an oracle Πs
A, which the adversary

E can query at will. Here, s is a session number, that determines which random tape

Πs
A will use. In previous work, oracles were of the form Πs

i,j and modelled messages

sent from participant i to participant j in session s. We remove this dependence on

receiving parties; in all our protocols, all messages are broadcast through E to model

active attacks. We omit the dependence on receiving parties since all the messages

are intended to be broadcast. The adversary E is also capable of not delivering any

messages.

Oracles exist in one of several possible states Accept, Reject, or *. In our protocols,

an oracle accepts only after receipt of two properly formulated messages (containing

different certificates to its own) and the transmission of two messages, not necessarily
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in that order (and with the received messages possibly originating from the adversary

and not the oracles identified in the certificates in those messages). When an oracle

accepts, we assume it accepts holding a session key K that is k bits in length. We also

assume there is a key generation process G which produces a description of groups G1

and G2 and the map ê, assigns random tapes and oracles as necessary, distributes

long-term private keys to participants, and prepares certificated long-term public

keys. Thus our model assumes a perfect certification process and does not capture

attacks based on registration weaknesses like those described in Section 9.5.5. As

usual, the benign adversary is defined to be one that simply passes messages to

and fro between participants. An oracle can reject computing a session key if a

received message is not correctly formulated, that is, not as defined in the protocol

specification. When the oracle’s state is ‘*’, it has not yet made a decision to accept

or reject.

Adversary E is assumed to have complete control over the network, and we allow E

to make three kinds of query to an oracle Πs
A: Send, Reveal and Corrupt. These have

the usual meanings, as per [26]: Send allows the adversary E to send a message of

her choice to Πs
A and to record the response, or to induce Πs

A to initiate a protocol

run with participants of E’s choosing; Reveal reveals the session key (if any) held

by Πs
A; while Corrupt produces the long-term private key of an uncorrupted oracle.

Notice that when making a Send query, E does not need to specify the intended

recipients of the oracle’s reply. This is because, in our protocols, the oracle’s replies

are independent of these recipients. In fact, E can relay these messages to any party

of her choosing.

In our TAK protocols, each party sends the same message to two other participants

and receives two messages from those participants. In our model three oracles Πs
A,

Πt
B and Πu

C can be said to have participated in a matched session if they have received

messages exclusively generated by each other (via the adversary). In other words,

the two messages Πs
A receives are those generated by Πt

B and Πu
C ; Πt

B receives two

messages generated by Πs
A and Πu

C ; and Πu
C receives two messages generated by Πs

A

and Πt
B.
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In addition to the above queries, we allow E to make one further Test query of one

of the oracles Πs
A at any point during her attack. This oracle must be fresh, i.e. , the

oracle must:

1. Be in an Accept state.

2. Not have been subject to a Reveal query. An oracle subjected to a Reveal query

is called an ‘opened’ oracle.

3. Not have been subject to a Corrupt query. That is, the oracle should be uncor-

rupted.

4. Not have participated in a matched session with any opened oracle.

5. Not have received messages containing the certificate of a corrupted oracle.

The reply to this Test query is either the session key K held by the oracle, or a random

k-bit string, the choice depending on a fair coin toss. The adversary’s advantage,

denoted advantageE(k), is the probability that E can distinguish K from the random

string. Notice that we remove the unnatural restriction in earlier models [22, 26] that

this Test query be the adversary’s last interaction with the model.

We say that a protocol is a secure TAK protocol if:

1. In the presence of the benign adversary, and when oracles participate in a

matched session, all the oracles always accept holding the same session key,

which is distributed randomly and uniformly on {0, 1}k.

2. Whenever uncorrupted oracles Πs
A, Πt

B and Πu
C participate in a matched ses-

sion, then all three oracles accept and hold the same session key, which is again

uniformly distributed on {0, 1}k.

3. advantageE(k) is negligible.
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The first condition ensures that a secure TAK protocol does indeed distribute a key

of the correct form. The second condition ensures that this remains true even if all

other oracles are corrupted. The last condition says that no adversary can obtain

any information about the session key held by a fresh oracle.

We can also formally model the forward secrecy properties of TAK protocols. The

model is largely as before, but now the interaction with E is slightly different. In

addition to the usual Send, Reveal and Corrupt queries, we allow E to make one

Test query of an oracle of her choice, say Πs
A. We assume that Πs

A has accepted and

has participated in a matched session with uncorrupted oracles Πt
B and Πu

C . Thus

Πs
A will have calculated a session key in common with Πt

B, Πu
C . We further assume

that none of these three oracles has been the subject of a Reveal query. However,

any or all of the oracles ΠA,ΠB,ΠC may be corrupted at any point in E’s attack.

In response to E’s query, E is given the long-term private keys for Πs
A,Πt

B and Πu
C

(these oracles are now effectively corrupted). Adversary E is also given either the

session key K held by Πs
A or a random k-bit string, the choice depending on a fair

coin toss. The adversary’s advantage, denoted advantageE,fs(k), is the probability

that E can distinguish K from the random string. Again, the Test query need not

be the adversary’s last interaction with the model.

If in the above game, advantageE,fs(k) is negligible, it is said that the TAK protocol

has perfect forward secrecy.

9.4 Security Proofs for TAK-1

With the description of our security model in hand, we now state our first theorem:

Theorem 9.1 Protocol TAK-1 is a secure TAK protocol, assuming that the ad-

versary makes no Reveal queries, that the BDHP in 〈G1, G2, ê〉 is hard and provided

that H is a random oracle.
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Proof. Conditions 1 and 2: Given the assumption that H is a random oracle,

these conditions follow directly from the protocol description.

Condition 3: Suppose that advantageE(k) = n(k) is non-negligible. We show how

to construct from E an algorithm F which solves the BDHP with non-negligible

probability. We describe F ’s operation. F ’s input is a description of the groups

G1, G2 and the map ê, a non-identity element P ∈ G1, and a triple of elements

xAP, xBP, xCP ∈ G1 with xA, xB, xC chosen randomly from Z∗
q . F ’s task is to

compute and output the value gxAxBxC where g = ê(P, P ).

F operates as follows. F chooses a triple A,B, C ∈ ID uniformly at random. F

simulates the running of the key generation algorithm G, choosing all participants’

long-term private keys randomly itself, and computing the corresponding long-term

public keys and certificates, but with the exception of ΠA, ΠB and ΠC ’s keys. As

public values for ΠA, ΠB and ΠC , F chooses the values xAP , xBP , xCP respectively.

Then F starts adversary E.

In E’s attack, F will simulate all the oracles Πi, i ∈ ID. So F must answer all the

oracle queries that E makes. F answers E’s queries as follows. F simply answers

E’s distinct H queries at random, maintaining a table of queries and responses as

he proceeds. Note that we do not allow our adversary to make Reveal queries, so F

does not need to answer any queries of this type. F answers any Corrupt queries by

revealing the long-term private key and replacing the public/private key pair, except

for Corrupt queries on ΠA, ΠB or ΠC . In the event of such queries, F aborts. F replies

to Send queries in the usual way, with correctly formulated responses ai,sP‖CertΠi

for all oracles Πs
i , where ai,s ∈R Z∗

q .

Finally, we consider how F responds to the Test query on oracle Πi. F generates a

random bit b ∈ {0, 1}. If b = 0, F should respond with the key held by Πi, while if

b = 1, F should respond with a random k-bit value. Now F is capable of answering

the Test query correctly except when b = 0 and the tested oracle is an instance of ΠA,

ΠB or ΠC . In this last case, F ’s response should be of the form H(Q‖gxAxBxC ) where
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Q ∈ G2, involving the invocation of the random oracle. This use of H should be

consistent with previous and future uses, but of course F does not know gxAxBxC , so

cannot properly simulate the oracle in this case. Instead, F responds with a random

k-bit value. This potentially introduces an imperfection into F ’s simulation, but we

will argue below that this has no effect on success probabilities.

The final stage is as follows. Let T2(k) denote a polynomial bound on the number

of H queries answered by F in the course of E’s attack. F picks a value ` uniformly

at random from {1, . . . , T2(k)}. Now F parses the `-th H query into the form Q‖W
where Q,W ∈ G2. If this is not possible, F aborts. If it is, then F outputs W as its

guess for the value gxAxBxC and stops.

Now we must evaluate the probability that F ’s output is correct. Notice that E’s

view of F ’s simulation of the oracles is indistinguishable from E’s view in a real attack

provided that F is not forced to abort when asked a Corrupt query and that E does

not detect that F ’s simulation of the random oracle was deficient when responding

to the Test query – further details of these situations are given below. Now E picks

some accepted oracle Πs
i1

for its Test query in a real attack. Suppose that Πs
i1

has

received two messages containing certificates of oracles Πi2 and Πi3 . The session

key held by oracle Πs
i1

will be of the form H(Q‖gxi1
xi2

xi3 ) where Q ∈ G2 and xij

is the long-term private key of Πij , 1 ≤ j ≤ 3. Since by definition, the oracles

Πij are uncorrupted, and E does not ask any Reveal queries, if E is to succeed in

distinguishing this session key from a random string with non-negligible probability

n(k), then E must have queried H on an input of the form Q‖gxi1
xi2

xi3 at some point

in its attack with some non-negligible probability n′(k). The probability that this

event occurs in F ’s simulation of the oracles is therefore also n′(k). Since F outputs

a random query from the list of T2(k) queries, has randomly distributed public keys

xAP , xBP , xCP amongst the T1(k) participants, and is only deemed successful if he

does not abort and his output is of the form gxAxBxC , we see that F is successful

with probability at least:
n′(k)

T1(k)3T2(k)
.

However, this is still non-negligible in k.
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We claim that our argument is not affected by the imperfection introduced into F ’s

simulation when E asks a Corrupt query that F cannot answer: to be successful,

E must ask a Test query of an uncorrupted but accepted oracle which has received

messages containing certificates of two further uncorrupted oracles. This means that

for E to be successful, at least three distinct, uncorrupted oracles must remain. So

F , having made a random choice of where to place public keys xAP, xBP, xCP , has

at least a 1
T1(k)3

chance of not facing an unanswerable Corrupt query whenever E is

successful. This factor is already taken into account in our analysis.

One problem remains: what effect on E’s behaviour does F ’s deviation have in giving

a random response to the “difficult” Test query? In particular, what effect does it

have on success probabilities? E’s behaviour can only differ from that in a true

attack run if E detects any inconsistency in F ’s simulation of the random oracle. In

turn, this can only happen if at some point in the attack, E queries H on an input

of the form Q‖gxAxBxC . For otherwise, no inconsistency arises. At this point, E’s

behaviour becomes undefined. (In this situation, E might guess that F ’s response to

the Test query is a random key (b = 1) rather than the “correct” key (b = 0). But

we must also consider the possibility that E simply might not terminate.) So we

assume that F simply aborts his simulation whenever E’s attack lasts longer than

some polynomial bound T3(k) on the length of a normal attack. Notice that H has

been queried on an input of the form Q‖gxAxBxC at some point in F ’s simulation,

and that up until this point, E’s view is indistinguishable from that in a real attack.

Thus, the number of H queries made by E will still be bounded by T2(k) up to

this point, and an input of the required type will occur amongst these. So F ’s

usual guessing strategy will be successful with probability 1/T2(k) even when E’s

behaviour is affected by F ’s inability to correctly respond to the Test query. Since

this is the same success probability for guessing in the situation where everything

proceeds normally, it is now easy to see that F ’s overall success probability is still at

least:
n′(k)

T1(k)3T2(k)
.

�
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Next is our theorem about the security of protocol TAK-1 in our forward security

model.

Theorem 9.2 Protocol TAK-1 has perfect forward secrecy, assuming that the ad-

versary makes no Reveal queries, that the BDHP in 〈G1, G2, ê〉 is hard and provided

that H is a random oracle.

Proof. Suppose that advantageE,fs(k) = n(k) is non-negligible. We show how

to construct from E an algorithm F which solves the BDHP with non-negligible

probability. We describe F ’s operation. F ’s input is a description of the groups

G1, G2 and the map ê, a non-identity element P ∈ G1, and a triple of elements

xAP, xBP, xCP ∈ G1 with xA, xB, xC chosen randomly from Z∗
q . F ’s task is to

compute and output the value gxAxBxC where g = ê(P, P ).

F operates as follows. F simulates the running of the key generation algorithm G,
choosing all participants’ long-term private keys randomly itself, and computing the

corresponding long-term public keys and certificates.

F also chooses a triple A,B, C ∈ ID uniformly at random, and three positive integers

s, t, u that are all bounded above by the number T3(k) of different sessions that E

enters into across all the oracles. Then F starts adversary E.

F must answer all the oracle queries that E makes. F answers E’s queries as follows.

F simply answers E’s distinct H queries at random, maintaining a table of queries

and responses as he proceeds. Note that we do not allow our adversary to make

Reveal queries, so F does not need to answer any queries of this type. F answers

any Corrupt queries by revealing the long-term private key that it holds. F replies to

Send queries in the usual way, with correctly formulated responses ai,rP‖CertΠi for

all oracles Πr
i , where ai,r ∈R Z∗

q , except when queried for responses for oracles Πs
A,

Πt
B and Πu

C . In these special cases, F responds with xAP‖CertΠA
, xBP‖CertΠB

and xCP‖CertΠC
, respectively.
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Finally, we consider how F responds to the Test query on oracle Πi. F generates

a random bit b ∈ {0, 1}. If b = 0, F should respond with the key held by Πi,

while if b = 1, F should respond with a random k-bit value. Now F is capable of

answering the Test query correctly except in one special case: this is when b = 0,

when the tested oracle is Πs
A, Πt

B or Πu
C and when the tested oracle has participated

in a matched session which comprises exactly these three oracles. In this last case,

F ’s response should be of the form H(gxAxBxC‖W ) where W ∈ G2, but F cannot

properly simulate the oracle in this case. Instead, F responds with a random k-bit

value. This potentially introduces an imperfection into F ’s simulation, but this has

no effect on success probabilities; this can be argued just as in the proof of Theorem

9.1.

Let T2(k) denote a polynomial bound on the number of H queries answered by F in

the course of E’s attack. F picks a value ` uniformly at random from {1, . . . , T2(k)}.
Now F parses the `-th H query into the form Q‖W where Q,W ∈ G2. If this is not

possible, F aborts. If it is, then F outputs Q as its guess for the value gxAxBxC and

stops. Notice that E’s view of F ’s simulation of the oracles is indistinguishable from

E’s view in a real attack, provided that E does not detect that F ’s simulation of the

random oracle was deficient when responding to the Test query. Now E picks some

accepted oracle Πr
i1

for its Test query in a real attack. Suppose that Πr
i1

has received

two messages containing the short-term values of oracles Πi2 and Πi3 . The session

key held by oracle Πr
i1

will be of the form H(gxi1
xi2

xi3‖W ) where W ∈ G2 and xij

is the short-term private key of Πij , 1 ≤ j ≤ 3. Since E does not ask any Reveal

queries, if E is to succeed in distinguishing this session key from a random string

with non-negligible probability n(k), then E must have queried H on an input of the

form gxi1
xi2

xi3‖W at some point in its attack with some non-negligible probability

n′(k). The probability that this event occurs in F ’s simulation is therefore also n′(k).

Recall that F outputs a random query from the list of T2(k) queries, has randomly

distributed values xAP , xBP , xCP as short-term keys amongst the T3(k) sessions,

and is only deemed successful if his output is of the form gxAxBxC . Recall too that

E only attacks oracles that have participated in matched sessions. Combining these
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facts, we see that F is successful with probability better than:

n′(k)
T3(k)3T2(k)

.

However, this is still non-negligible in k.
�

We comment on the significance of Theorems 9.1 and 9.2. We emphasise that our

proofs of security do not allow the adversary to make Reveal queries of oracles. This

means that our proofs do not capture known session-key attacks. In fact, protocol

TAK-1 is vulnerable to a simple attack of this type. In Section 9.5.2 we describe the

attack in full. The attack only works on TAK-1 because of the symmetry of the short-

term components, and attacks of this type do not appear to apply to TAK-2, TAK-3

or TAK-4. The attack is analogous to known session key attacks well-understood for

other protocols (see the comments following [26, Theorem 11] for an example).

In Section 9.8.1 we consider a confirmed version of Joux’s protocol. This protocol is

obtained in the usual way by adding three confirmation messages (which are piggy-

backed on other messages in a non-broadcast environment), one for each protocol

participant. The confirmation messages use encryptions and signatures which could

be replaced with MACs using keys derived from the short term values exchanged

during the protocol run. We expect that the techniques used to prove the security

of Protocol 2 of [26] can be adapted to prove that the described confirmed version

of TAK-1 is indeed a secure AKC protocol. The analysis presented in Section 9.8.3

explains why we did not further the research into pairing based AKC protocols.

Finally, the techniques used to prove Theorems 9.1 and 9.2 do not appear to extend to

our other protocols. Nor has any security proof yet appeared for the MQV protocol

(on which TAK-4 is based), although the MQV protocol is widely believed to be

secure and has been standardised [8, 9, 87, 89]. In any case, as we shall see in the

next section, current security models do not handle all the reasonable attack types

and so need to be augmented by ad hoc analysis.

We extended the model in [26] to include forward security and proved that TAK-1

is forward secure. Other models [20, 140] also capture forward security.
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Furthermore, key-compromise attacks like those described in Section 9.5.4 are not

captured by our model. Finally, our proof assumes that H is a random oracle:

again recent work [39] shows that security proofs for key agreement protocols can be

obtained in the standard model (at some computational cost).

The apparent difficulty in obtaining security proofs for our protocols and the limita-

tions of our security model motivates the additional ad hoc security analysis presented

in the next section.

9.5 Heuristic Security Analysis of TAK Protocols

We present a variety of attacks on the three TAK protocols that are not captured

by the security models of the previous section. These are mostly inspired by earlier

attacks on the two-party MTI protocols. Following this analysis, we summarise

the security attributes of our TAK protocols in Table 9.2. In this section, we use

EA to indicate that the adversary E is impersonating A in sending or receiving

messages intended for or originating from A. Similarly, EB,C denotes an adversary

impersonating both B and C. To begin with, we will examine Shim’s attack on

TAK-2 [136].

9.5.1 Shim’s Man-in-the-Middle Attack on TAK-2

In the attack demonstrated by Shim [136], adversary E creates short-term private

keys a′, b′, c′ ∈ Z∗
q and replaces short-term public keys of A, B and C with µ′

A = a′P ,

µ′
B = b′P and µ′

C = c′P respectively. As in Section 3.3.1, EA indicates that E is

impersonating A in sending or receiving messages intended for or originating from

A. Then, entities A, B and C compute the following keys:

KAEBEC
= ê(P, zP )a · ê(yP, µ′

C)a · ê(µ′
B, PC)x = ê(P, P )ab′z+ac′y+b′c′x,

KBEAEC
= ê(P, zP )b · ê(xP, µ′

C)b · ê(µ′
A, PB)y = ê(P, P )a′bz+bc′x+a′c′y,
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KCEAEB
= ê(P, yP )c · ê(xP, µ′

B)c · ê(µ′
A, PB)z = ê(P, P )a′cy+b′cy+a′b′z.

Now E with the knowledge of the triple 〈a′, b′, c′〉 is able to compute three different

session keys using the available long-term public keys xP , yP and zP as follows:

KEB,CA = ê(aP, zP )b′ · ê(yP, aP )c′ · ê(xP, P )b′c′ = ê(P, P )ab′z+ac′y+b′c′x,

KEA,CB = ê(bP, zP )a′ · ê(xP, bP )c′ · ê(yP, P )a′c′ = ê(P, P )a′bz+bc′x+a′c′y,

KEA,BC = ê(cP, yP )a′ · ê(xP, cP )b′ · ê(zP, P )a′b′ = ê(P, P )a′cy+b′cy+a′b′z.

Since KAEBEC
= KEB,CA, KBEAEC

= KEA,CB and KCEAEB
= KEA,BC , the attack

renders TAK-2 insecure against a man-in-the-middle attack. The attack is present

because every pairing computation required to produce the key can be computed

using two short-term values which are injected by the adversary. We did not find

this attack because a two party heuristic analysis of the man-in-the-middle attack

was naively used and not extended to the group setting.

9.5.2 Known Session Key Attack on TAK-1

We present a known session key attack on TAK-1 that makes use of session interleav-

ing and message reflection. In the attack, E interleaves three sessions and reflects

messages originating from A back to A in the different protocol runs. The result is

that the session keys agreed in the three runs are identical, so E, upon revealing one

of them, gets keys for two subsequent sessions as well. In what follows, EB,C denotes

an adversary impersonating both B and C.

A is convinced to initiate three sessions with E:

Session α : A→ EB,C : aP‖CertA (1 α)

Session β : A→ EB,C : a′P‖CertA (1 β)

Session γ : A→ EB,C : a′′P‖CertA (1 γ)
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E reflects and replays pretending to be B and C, to complete session α:

EB → A : a′P‖CertB (2 α)

EC → A : a′′P‖CertC (3 α)

Similarly, the second session is completed by EB,C sending a′′P‖CertB (2 β) and

aP‖CertC (3 β) to A. In the third parallel session she sends aP‖CertB (2 γ) and

a′P‖CertC (3 γ) to A.

If E is now able to obtain the first session key H(ê(P, P )aa′a′′‖ê(P, P )xyz), she then

knows the keys for the next two sessions, as these are identical to this first session

key.

9.5.3 Forward Secrecy Weakness in TAK-3

As shown in the proof of Theorem 9.2, TAK-1 has perfect forward secrecy. Protocol

TAK-4 also appears to have this property because the key KABC agreed also includes

the component ê(P, P )abc. However, it is straightforward to see that if an adversary

obtains two long-term private keys in TAK-3, then she has the ability to obtain old

session keys (assuming she keeps a record of the public values aP, bP, cP ). Thus

TAK-3 does not enjoy forward secrecy. The protocol can made into one which

enjoys perfect forward secrecy, at extra computational cost, by using the key KABC ·
ê(P, P )abc in place of the key KABC .

9.5.4 Key-Compromise Impersonation Attack on TAK-1

We present a key-compromise impersonation attack on TAK-1 that occurs when E

can obtain the long-term private key of one of the entities. Suppose E has obtained

x, A’s long-term private key. Then E can calculate ê(P, P )xyz using x and public

data in B and C’s certificates. Knowledge of this value now allows E to impersonate

any entity engaging in a TAK-1 protocol run with A (and not just A). For example
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to impersonate C to both A and B, EC with possession of x simply broadcasts

c′P‖CertC and obtains the protocol messages, aP‖CertA and bP‖CertB from A and

B respectively. The adversary EC can now compute the session key KABEC
=

H(ê(P, P )abc′‖ê(P, P )xyz).

Due to the combinations of long-term and short-term key components used in com-

puting KABC , these kinds of attacks do not appear to apply to TAK-3 nor to TAK-4.

However, Shim [136] presented ‘partial key compromise impersonation attacks’ on

TAK-3 and TAK-4. These attacks use A’s long-term key to impersonate C to B.

However, A does not compute the same session key as B and C do, and the adversary

does not learn A’s session key. So this attack is only meaningful in the scenario where

A does not use its session key to communicate with B or C, but B and C use their

version of the key to communicate with one another. In the attack, the adversary has

A’s long-term key and replaces A’s short-term key in the protocol run. It therefore

is not surprising that B will compute a key that the adversary can also compute.

Indeed this attack is tantamount to a simple impersonation attack on A by the ad-

versary. This is because E (who has possesion of x) is really just impersonating A

to B (and not C to B) by replacing the short-term public key of A with a′P .

In fact, no implicitly authenticated conference key agreement protocol, which broad-

casts only certificates and short-term values, can prevent an adversary from mount-

ing a ‘partial key compromise impersonation attack’ of the type described by Shim

[136]. The adversary with A’s long-term private key and A’s (replaced) short-term

private key can of course impersonate any entity in the group (by replacing that

entity’s short-term public key) to any other entity except A. Hence preventing such

an adversary is equivalent to preventing an adversary from impersonating an entity

with knowledge of that entity’s long-term and short-term keys. This is of course

impossible. Given that not all the entities compute a common shared key in a par-

tial key compromise attack, key confirmation (using MACs and the shared key, for

example) is sufficient to prevent this form of attack.
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9.5.5 Unknown Key-Share Attacks

A basic source substitution attack is applicable to many protocols and applies to all

our TAK protocols. Unknown key-share attacks were first discussed in Diffie et al.

[59] and utilise a potential registration weakness for public keys to create fraudulent

certificates [113]. Since we assumed that the certification process in the model of

Section 9.3 is perfect, the security model does not capture these attacks. Unknown

key share attacks are also known as source substitution attacks because the adversary

forces an entity into believing that a message is from a different source to the actual

source.

In a generic form of this attack, adversary E registers A’s public key Kpub,A as her

own, creating CertE which is equal to (IDE‖Kpub,A‖Σ(IDE‖Kpub,A),Kpriv,CA). Then,

she intercepts A’s message aP‖CertA and replaces CertA with her own certificate

CertE . Note that E registered A’s long-term public key xP as her own without

knowing the value of x. Therefore she cannot learn the key KABC . However, B

and C are fooled into thinking they have agreed a key with E, when in fact they

have agreed a key with A. They will interpret any subsequent encrypted messages

emanating from A as coming from E. This basic attack could be eliminated if the

CA does not allow two entities to register the same long-term public key. However,

this solution may not scale well to large or distributed systems. A better solution is

discussed after highlighting another type of source substitution attack.

A second, less trivial source substitution attack can be found against TAK-3. In this

attack E certifies a related public key without knowing the corresponding private key.

Thus, even if the CA does the previous check, the adversary can still obtain a CertE

from the CA, which contains a component Kpub,E which is a multiple of Kpub,A. The

adversary can then alter the short-term keys in subsequent protocol messages by

appropriate multiples. As with the last attack, the adversary does not create the

shared key. Rather, the attack gives her the ability to fool two participants, B and

C, into believing the messages came from her rather then from the third (honest)

participant, A. This attack is presented next.
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9.5.5.1 Source Substitution Attack on TAK-3

We present in detail the second source substitution attack on TAK-3.

1. A sends aP‖CertA to EB,C .

2. E computes Kpub,E = δxP and obtains a certificate CertE on Kpub,E .

3. E initiates a run of protocol TAK-3 by sending aP‖CertE to B, C.

4. B sends bP‖CertB to E,C; C sends cP‖CertC to E,B.

5. B and C (following the protocol) compute

KEBC = KAEB,C
= ê(P, P )(δxy)c+(δxz)b+(yz)a.

6. EB sends δbP‖CertB to A.

7. EC sends δcP‖CertC to A.

8. A (following the protocol) computes a key

KAEB,C
= KAEB,C

= ê(P, P )(δxy)c+(δxz)b+(yz)a = KEBC .

9. Now E forwards A’s messages encrypted under key KEBC = KAEB,C
to B and

C, and fools them into believing that A’s messages come from her.

This attack does not seem to apply to TAK-1 or TAK-4 because of the way in which

long-term private key components are separated from the short-term components in

KABC in TAK-1 and due to the use of a hash function in TAK-4.

The adversary in our attacks does not know her long term private key. Unlike the

more severe attack by Kaliski [93] on the MQV protocol, all these source substitution

attacks are easily prevented if the CA insists that each registering party provides a

PoP of his private key when registering a public key. This can be achieved using a

variety of methods. For example, one might use zero-knowledge techniques or regard

the pair 〈x, xP 〉 as an ECDSA signature key pair and have the registering party sign

a message of the CA’s choice using this key pair. As an alternative, to prevent all

forms of unknown key share attacks whilst maintaining a single round protocol, the

protocol could be modified using one of the two methods:
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1. Identities could be included in the key derivation function such that K ′
ABC =

KDF(KABC‖IDA‖IDB‖IDC). This ensures that the parties will create different

keys when under attack.

2. Entity A could identify B and C within the exchanged message, for example by

signing the identities IDB and IDC . Entities B and C should verify A’s signature

and identify entities A, C and A, B respectively within their messages. This

ensures that the misrepresented parties will be detected when under attack.

This solution is unattractive due to the computational complexity it could

incur. Hence, our one round protocols avoid the use of signatures.

Method (2) is used within the key confirmation protocols presented in Section 9.8,

making them resistant to unknown key-share attacks.

9.5.6 Insider and Other Attacks

Certain new kinds of insider attacks must be considered when dealing with tripartite

protocols. For example, an insider A might be able to fool B into believing that

they have participated in a protocol run with C, when in fact C has not been active.

An active A can do this easily in our TAK protocols, by choosing C’s value cP and

injecting it into the network along with C’s certificate and stopping B’s message

from reaching C. This kind of attack can have serious consequences for tripartite

protocols: if C acts as an on-line escrow agent, then B believes a shared key has

been properly escrowed with C when in fact it has not. On the other hand, when

C acts as an off-line escrow agent, as in the protocol we describe in Section 9.7, this

insider attack is only significant if C is providing an auditing function. This lack of

auditability is actually beneficial if protocol participants want to have a deniability

property, as in protocols like IKE, IKEv2 and JFK [84].

Attacks of this type can be prevented in a number of ways. Adding a confirmation

phase, as we do in Section 9.8, prevents them. An alternative requires a complete

protocol re-design, but maintains a one round broadcast protocol: the long-term keys
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are simply used to sign short-term values (rather than combining them with short-

term keys as in our TAK protocols) and agree the key ê(P, P )abc. This approach

requires each participant to maintain a log of all short-term values used, or to use

synchronized clocks and time-stamps, to prevent an attacker simply replaying an old

message. This requirement along with the need to create and verify signatures for

each protocol run makes this solution somewhat unwieldy.

We note that Shim [136] has also found a rather theoretical ‘known-key conspiracy

attack’ on TAK-2. This appears to be what we have called a known session key

attack, but it requires two adversaries to conspire and to reveal three session keys.

A similar attack can also be found on TAK-3, but is easily prevented if TAK-3 is

augmented with a key derivation function.

In addition to the above attacks, we note that TAK-3 is vulnerable to a triangle

attack of the type introduced by Burmester [41]. This atack is described next. It is

somewhat theoretical in nature and thus presented only for completeness.

9.5.6.1 Triangle Attack on TAK-3

The triangle attack on TAK-3 allows an adversary E (who has a certificate CertE

containing Kpub,E = ∆P ) to compute a session key KABC previously shared by the

honest parties A, B and C.

1. E eavesdrops to obtain aP , bP and cP from the session in which the session

key KABC = ê(P, P )(xy)c+(xz)b+(yz)a is agreed between A,B, C.

2. E now initiates three protocol runs. The first one is:

E → B,C: aP‖CertE (1 α)

B → E,C: b′P‖CertB (2 α)

C → E,B: c′P‖CertC (3 α)

The session key agreed is KEBC = ê(P, P )(∆y)c′+(∆z)b′+(yz)a.
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3. The second run is:

E → A,C: bP‖CertE (1 β)

A→ E,C: a′′P‖CertA (2 β)

C → A,E: c′′P‖CertC (3 β)

The session key agreed is KAEC = ê(P, P )(x∆)c′′+(xz)b+(∆z)a′′ .

4. And lastly:

E → A,B: cP‖CertE (1 γ)

A→ B,E: a′′′P‖CertA (2 γ)

B → A,E: b′′′P‖CertB (3 γ)

The agreed session key is KABE = ê(P, P )(xy)c+(x∆)b′′′+(y∆)a′′′ .

5. E now obtains three session keys KEBC , KAEC and KABE from B or C, A or

C and A or C respectively. For this reason, this attack is regarded as somewhat

theoretical.

6. Finally, session key

KABC = KEBC · ê(P, P )−(∆y)c′−(∆z)b′

·KAEC · ê(P, P )−z∆c′′′−∆za′′′

·KABE · ê(P, P )−x∆b′′′−y∆a′′′

can now be computed by E.

This triangle attack is possible because of the algebraic relationship between the long

and short term key components in KABC . It can be thwarted using appropriate key

derivation. This attack does not work on TAK-1 because we cannot isolate individual

short term key components (e.g. in step 2 we cannot isolate a from fresh components

b′ and c′). This type of attack is also eliminated in TAK-4 because of the binding of

each entity’s short and long-term key using a hash function.
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Joux TAK-1 TAK-2 TAK-3 TAK-4
Implicit key authentication No Yes No Yes Yes
Known session key secure No No No Yes(i) Yes
Perfect forward secrecy n/a Yes No No(iii) Yes

Key-compromise impersonation sec. n/a No No Yes(iv) Yes(iv)

Unknown key-share secure No Yes(v) No Yes(vi) Yes(v)

Table 9.2: Comparison of security goals and attributes for one round tripartite key
agreement protocols.

(i) Only when a key derivation function is used; see Section 9.5.6.

(iii) No forward secrecy when two long-term private keys are compromised, but still has
forward secrecy if only one is compromised.

(iv) Note, however, Section 9.5.4 describes the inevitable ‘partial key compromise imper-
sonation attack’ on this scheme.

(v) If the CA checks that public keys are only registered once, and if inconvenient use (vi).

(vi) If the CA verifies that each user is in possession of the long-term private key corres-
ponding to his public key.

9.5.7 Security Summary

Table 9.2 compares the security attributes that we believe our protocols TAK-1,

TAK-2, TAK-3 and TAK-4 to possess. We have also included a comparison with the

‘raw’ Joux protocol.

Based on this table and the analysis in Section 9.3, we recommend the use of protocol

TAK-4 or protocol TAK-3 along with pre-computation (in the event that the use of a

hash function is not desirable). If perfect forward secrecy is also required, then TAK-

3 can be modified as described in Section 9.5.3. Protocol TAK-4 has the additional

benefit of being the most computationally efficient of all our protocols. Of course,

robust certification is needed for all of our TAK protocols in order to avoid unknown

key-share attacks.
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9.6 Shim’s Tripartite Key Agreement Protocol

Here we will look at the shortcomings of Shim’s [138] one round tripartite authentic-

ated key agreement protocol based on pairings. We show that the protocol of [138]

does not make mathematical sense.

9.6.1 Shim’s Protocol

Shim’s protocol [138] addresses the lack of authentication in Joux’s protocol [90]

by utilising certified long-term public keys. In the notation we use in this thesis,

Shim’s protocol can be described as follows. The certificates CertA, CertB, CertC

as usual contain entity A, B and C’s public keys Kpub,A = xP , Kpub,B = yP and

Kpub,C = cP respectively. In Shim’s protocol, which we reproduce below, short-term

keys are a, b, c ∈ Z (actually, these should be chosen uniformly at random from Z∗
q)

which are selected by entities A, B and C respectively. The message flows of Shim’s

protocol are given in Figure 9.4.

Protocol Messages

1. A→ B,C : a · xP‖CertA

2. B → A,C : b · yP‖CertB

3. C → A,B : c · zP‖CertC

Figure 9.4: Shim’s tripartite protocol.

Protocol description: An entity A computes TA = a · Kpub,A and broadcasts

it to B and C along with a certificate CertA containing his long-term public key

Kpub,A. Corresponding values (TB = bKpub,B and TC = cKpub,C) and certificates are

broadcast by B and C to A,C and A,B respectively. According to [138], the shared
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key computed by the three parties is

KABC = KDF(ê(P, P )xyzabc·ê(P,P )xyz‖IDA‖IDB‖IDC),

where KDF is a key derivation fuction. Entity A computes this KABC by first

of all computing the elliptic curve component ê(P, P )xyzabc·e(P,P )xyz
by calculating

KA = ê(TB, TC)ax·ê(Kpub,B ,Kpub,C)x
. Entities B and C are meant to perform similar

calculations.

9.6.2 The Problem

The problem with the protocol of [138] is that the definition of the shared key KABC

does not make mathematical sense. This is because calculation of the key KABC

requires raising a finite field element ê(P, P )xyzabc (i.e. ê(TB, TC)xa for entity A) to

the power of another finite field element ê(P, P )xyz. No such operation involving

field elements is possible. It is only possible to raise a finite field element to an

integer power. The finite field element ê(P, P )xyz cannot be used for this purpose.

So the protocol of [138] is mathematically nonsensical. Even though it makes no

mathematical sense, this protocol has been cryptanalysed by Sun and Hsieh in [144].

Of course, a number of alternative approaches to securing Joux’s protocol [90] are

presented previously in this chapter.

9.7 Tripartite Protocols with One Off-line Party

As we mentioned in the introduction, there is an application of tripartite key ex-

change protocols to the two-party case where one of the parties acts as an escrow

agent. It may be more convenient that this agent be off-line, meaning that he re-

ceives messages but is not required to send any messages. In this section, we adapt

our earlier protocols to this situation. The protocol below is a modified version of

TAK-4. We assume that C is the off-line party and that C’s certificate CertC is
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pre-distributed or is readily available to A and B. The message flows of this protocol

are given in Figure 9.5.

Protocol Messages

1. A→ B,C : aP‖CertA

2. B → A,C : bP‖CertB

Figure 9.5: Off-line TAK protocol.

Protocol description: The protocol in Figure 9.5 is as in TAK-4, but without the

participation of C. Entities A and B use C’s long-term public key zP in place of his

short-term public value cP when calculating the session key. Thus, the session key

is

KABC = ê(P, P )(a+H(aP‖xP )x)(b+H(bP‖yP )y)(z+H(zP‖zP )z).

Let θ be the output of H(zP‖zP ), which is publicly computable and always the

same value. Therefore, in the above key (z + H(zP‖zP )z) can be set to (1 + θ)z.

Alternatively, the value (z + H(zP‖zP )z) in the session key can be optimised to z

without affecting the security. Thus, the session key becomes

KABC = ê(P, P )(a+H(aP‖xP )x)(b+H(bP‖yP )y)(z).

Note that C can compute the key when required.

This protocol (whether optimised or not) appears to be resistant to all the previous

attacks except the simple source substitution attack which is easily prevented via

robust registration procedures. It also has forward secrecy, obviously except when

the private key z is compromised. Here z can be viewed as an independent master

key, which can be regularly updated along with the corresponding certificate.

Interestingly, the two party Diffie-Hellman based protocols presented in Figure 9.1

can be transformed into tripartite protocols with one off-line party. This is done by:
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1. Changing the protocol setting to one appropriate for elliptic curve pairings

protocols.

2. Both A and B additionally including entity C as a recipient of the protocol

messages.

3. Including entity C’s public key in the pairing map. This is done by A replacing

elliptic curve Diffie-Hellman computations of the form Kpriv,A · Kpub,B with

computations of the form ê(Kpub,C ,Kpub,B)Kpriv,A where Kpriv ∈ Z∗
q and Kpub ∈

G∗
1.

This evidently can be veiwed as a method of providing escrow to many two party

Diffie-Hellman based protocols. For example, it is easy to see that the key computed

by participants in an ‘escrowable’ MTI/A0 protocol is KABC = ê(P, P )(ay+bx)(z),

which is computable by A, B and C.

9.8 Non-Broadcast – Tripartite AKC Protocols

Up to this point we have considered protocols that are efficient in the broadcast

setting: they have all required the transmission of one broadcast message per parti-

cipant. As we mentioned when discussing communication complexity in Section 3.1,

the number of broadcasts is not always the most relevant measure of a protocol’s use

of communications bandwidth. A good example is the basic broadcast Joux protocol,

which offers neither authentication nor confirmation of keys and requires six passes

in a non-broadcast network. In this section, we introduce a pairing based tripartite

key agreement protocol that also requires six passes, but that offers both key con-

firmation and key authentication, thus, the protocol is an AKC protocol. We show

that any such protocol requires at least six passes. We then compare our protocol to

a tripartite version of the station-to-station protocol [59].
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9.8.1 A Six Pass Pairing-Based AKC Protocol

Our notation in describing our pairing-based tripartite authenticated key agreement

with key confirmation (TAKC) protocol is largely as before. Additionally, to simplify

the notation ΣA(σ) denotes A’s signature on the string σ (i.e. ΣA(σ) = Σ(σ,Kpriv,A)).

We assume now that the CA’s certificate CertA contains A’s signature verification

key. Also Esym
K (σ) denotes encryption of string σ using a symmetric algorithm and

key K, and χ denotes the string aP‖bP‖cP . The message flows of this protocol are

given in Figure 9.6.

Sequence of Protocol Messages

1. A→ B : aP‖CertA

2. B → C : aP‖CertA‖bP‖CertB

3. C → A : bP‖CertB‖cP‖CertC‖Esym
KABC

(ΣC(IDA‖IDB‖χ))
4. A→ B : cP‖CertC‖Esym

KABC
(ΣC(IDA‖IDB‖χ))‖Esym

KABC
(ΣA(IDB‖IDC‖χ))

5. B → C : Esym
KABC

(ΣA(IDB‖IDC‖χ))‖Esym
KABC

(ΣB(IDA‖IDC‖χ))
6. B → A : Esym

KABC
(ΣB(IDA‖IDC‖χ))

Figure 9.6: TAKC protocol from pairings.

Protocol description: In Figure 9.6, entity A initiates the protocol execution with

message (1). After receiving message (2), entity C is able to calculate the session key

KABC = ê(P, P )abc. The same session key is calculated after receiving messages (3)

and (4), by A and B respectively. Messages (3) and onwards contain signatures on

the short-term values and identities in the particular protocol run. This provides key

authenticity. These signatures are transmitted in encrypted form using the session

key KABC and this provides key confirmation. The confirmations from C to B, A to

C and B to A are piggy-backed and forwarded by the intermediate party in messages

(3 ), (4 ) and (5 ) respectively. More properly, encryptions should use a key derived

from KABC rather than KABC itself. The symmetric encryptions can be replaced by
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appending MACs to the signatures with the usual safeguards.

If the expected recipients’ identities were not included in the signatures, this protocol

would be vulnerable to an extension of an attack due to Lowe [107]. This attack

exploits an authentication error and allows a limited form of unknown key-share

attack. To perform it, we assume adversary E has control of the network. The

attack is as follows.

1. EC intercepts message (2 ), then E forwards (2 ) replacing CertB with CertE

to C as if it originated from E. Thus, C assumes he is sharing a key with A

and E.

2. EA intercepts message (3 ) en route to A. Now EC forwards this message

replacing CertE with CertB to A.

3. Entity A receives (3 ) and continues with the protocol, sending message (4 ).

4. E blocks messages (5 ) and (6 ), so C and A assume an incomplete protocol run

has occurred and terminate the protocol. However, on receipt of message (4),

entity B already thinks he has completed a successful protocol run with A and

C, whilst C might not even know B exists.

As usual in an unknown key-share attack, E cannot compute the shared key. The

attack is limited because A and C end up with an aborted protocol run (rather than

believing they have shared a key with B). The attack is defeated in our protocol

because the inclusion of identities in signatures causes the protocol to terminate after

message (3 ), when A realises that an illegal run has occurred.

We claim that no tripartite AKC protocol can use fewer than six passes, that is, no

fewer than six messages exchanged in the protocol. Thus our protocol in Figure 9.6

is pass optimal. Our reasoning is as follows:

1. Each of the three entities must receive two short-term keys to construct KABC ,

so a total of six short-term values must be received.
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2. The first pass can contain only one short-term key (the one known by the

sender in that pass), while subsequent passes can contain two.

3. From 1 and 2, it can be seen that a minimum of four passes are needed to

distribute all the short-term values to all of the parties. Therefore, only after

at least four passes is the last party (entity B in our protocol) capable of

creating the key.

4. This last party needs another two passes to provide key confirmation to the

other two entities.

5. From 3 and 4, we see that at least six passes are needed in total.

Note that this argument holds whether the network supports broadcasts or not.

9.8.2 A Six Pass Diffie-Hellman based AKC Protocol

The STS protocol presented in Section 9.1.2.2 is a three pass, two-party AKC protocol

designed by Diffie, van Oorschot and Wiener [59] to defeat man-in-the-middle attacks.

Here we extend the protocol to three parties and six passes, a pass-optimal protocol

according to the argument above.

An appropriate prime p and generator g mod p are selected. In Protocol 4 below,

a, b, c ∈ Z∗
p are randomly generated short-term values and χ denotes the concatena-

tion ga‖gb‖gc. As before, we use the notation: Esym
KABC

(·) and ΣA(·). Again, we assume

that authentic versions of signature keys are available to the three participants. In

Figure 9.7, modulo p operations are omitted for simplicity of presentation.

Protocol description: The protocol in Figure 9.7 is similar in operation to the

protocol presented in Figure 9.6, with additional computations performed before

steps (2 ), (3 ) and (4 ) to compute gab, gbc, and gac respectively. The shared session

key is KABC = gabc mod p.
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Sequence of Protocol Messages

1. A→ B : ga‖CertA

2. B → C : ga‖CertA‖gb‖CertB‖gab

3. C → A : gb‖CertB‖gc‖CertC‖gbc‖Esym
KABC

(ΣC(IDA‖IDB‖χ))
4. A→ B : gc‖CertC‖gac‖Esym

KABC
(ΣC(IDA‖IDB‖χ))‖Esym

KABC
(ΣA(IDB‖IDC‖χ))

5. B → C : Esym
KABC

(ΣA(IDB‖IDC‖χ))‖Esym
KABC

(ΣB(IDA‖IDC‖χ))
6. B → A : Esym

KABC
(ΣB(IDA‖IDC‖χ))

Figure 9.7: Diffie-Hellman based TAKC protocol.

9.8.3 Analysis of AKC Protocols

Two immediate conclusions can be drawn from our work in Sections 9.8.1 and 9.8.2.

Firstly, we have given a pairing-based, tripartite AKC protocol using just the same

number of passes as are needed in Joux’s protocol (but with the penalty of introducing

message dependencies). Secondly, this AKC version of Joux’s protocol is no more

efficient in terms of passes than a 3-party version of the STS protocol! Thus, when

one considers confirmed protocols in a non-broadcast environment, the apparent

advantage that Joux’s protocol enjoys disappears. Of course, there is a two round

broadcast version of the TAKC protocol (requiring 6 broadcasts and 12 passes).

Both of our six pass AKC protocols can be performed in 5 rounds in a broadcast

environment.

9.9 Summary

We have taken Joux’s one round tripartite key agreement protocol and used it to

construct one round TAK protocols. We have considered security proofs and heuristic
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security analysis of our protocols, as well as an off-line version of our protocols.

We have preserved the innate communications efficiency of Joux’s protocol while

enhancing its security functionality. We described why Shim’s protocol which was

intended to enhance the security functionality of Joux’s protocol does not work. We

have also considered tripartite variants of the STS protocol, suited to non-broadcast

networks, showing that in the non-broadcast case, pairing-based protocols can offer

no communication advantage over more traditional Diffie-Hellman style protocols.

This investigation provides the reader with some intuition into the advantages of

Joux’s protocol and the security difficulties which accompany it due to its three

party nature.

Future work should consider the security of our protocols in more robust models,

capturing a larger set of realistic attacks. Constructing multi-party key agreement

protocols using our TAK protocols as a primitive might result in bandwidth-efficient

protocols. Finally, it would be interesting to see if the methods of [39] could be

emulated in the setting of pairings to produce TAK protocols secure in the standard

model.
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