
UNIVERSITÀ DEGLI STUDI DI PARMA

Dottorato di Ricerca in Tecnologie dell’Informazione

XXIII Ciclo

SECURITY IN PEER-TO-PEER

MULTIMEDIA COMMUNICATIONS

Coordinatore:

Chiar.mo Prof. Carlo Morandi

Tutor:

Chiar.mo Prof. Luca Veltri

Dottorando: Riccardo Pecori

Gennaio 2011

A tutti coloro
che mi hanno a cuore

To everyone
who cares about me

Table of Contents

Introduction 1

1 Peer-to-peer Networks 3
1.1 DHT Networks . 6

1.1.1 Chord . 6
1.1.2 Kademlia . 8

2 Security issues and countermeasures in peer-to-peer networks 11
2.1 General Malicious Activities . 13
2.2 Specific Attacks to P2P Networks 14

2.2.1 Sybil Attack . 14
2.2.1.1 Find node/ find value operations 16
2.2.1.2 Join operations 18

3 Analysis of Sybils Effects on Kademlia and Possible Countermeasures 21
3.1 Simulations conditions . 22
3.2 Effects of sybil nodes . 22
3.3 Reputation in P2P networks . 26

3.3.1 Model . 26
3.3.2 Factors . 28
3.3.3 Threat models . 29
3.3.4 Metrics . 30
3.3.5 Studied solution . 30

ii Table of Contents

4 Security issues and security protocols at application level 33
4.1 Current Security Protocols Comparison 35

4.1.1 General data exchange security protocols 35
4.1.1.1 IPSec . 36
4.1.1.2 Transport Layer Security (TLS) 37
4.1.1.3 Secure SHell (SSH) 39

4.1.2 Multimedia key exchange protocols 41
4.1.2.1 Multimedia Internet KEYing (MIKEY) 41
4.1.2.2 ZRTP . 43

4.2 Common key agreement scheme 45
4.2.1 IPSec . 46
4.2.2 TLS . 47
4.2.3 SSH . 47
4.2.4 MIKEY . 48

5 A New Key Agreement Protocol for P2P VoIP Applications 51
5.1 First Scheme: no certificates . 53
5.2 Second Scheme: with certificates and their management 59

5.2.1 Public Key Management and Verification 61
5.3 Analysis of the proposed key agreement protocol 63

5.3.1 Comparison with existing protocols 65
5.4 Third Scheme: use of a Distributed Hash Table (DHT) 66

5.4.1 Certificateless DHT . 67
5.4.2 DHT with certificates . 68
5.4.3 DHT with certificates but only one possible public key per ID 69

Conclusions 71

Bibliography 73

Acknowledgments 81

List of Figures

1.1 Overlay and underlay networks . 4

1.2 Chord ID assignement . 8

1.3 Kademlia tree structure . 9

2.1 Sybil behavior . 15

3.1 Kbucket filling function of kbucket index 23

3.2 Successful, unsuccessful and unended lookup procedures 24

3.3 Average known nodes function of number of sybils 25

3.4 Comparison between two malicious behaviors 26

3.5 Trust and reputation factors . 27

3.6 Decreasing time factor . 28

3.7 Spies in a p2p network . 30

3.8 New distance function . 31

4.1 ZRTP message exchange . 45

4.2 Common phases of authentication 46

5.1 SIP/MIKEY Session setup . 54

5.2 MIKEY offer/answer/confirm transaction 56

5.3 SIP INVITE message including MIKEY offer 58

5.4 Screenshot of the developed secure mjUA 58

5.5 Three-way key agreement protocol, version two 59

iv List of Figures

5.6 Example of trust graph . 62
5.7 Exchange of public keys and certificates 63
5.8 Temporaly Security associations 66
5.9 First possible usage of a DHT in the third implementation 67
5.10 Second possible usage of a DHT in the third implementation 68
5.11 Third possible usage of a DHT in the third implementation 69

Introduction

Peer-to-peer (P2P) architectures became very popular in the last years as a conse-
quence of the great variety of services they can provide. When they were born, they
were mainly deployed as a simple, decentralized and scalable way to exchange files,
but they have now become very popular also for a lot of different services, exploiting
the possibility of sharing bandwidth, computing power, storage capacity and other
resources between peers.

Among the possible uses such an architecture can be deployed for, an emerging
field of study is the application of P2P technologies to VoIP communication scenar-
ios in order to overcome some of the current issues centralized SIP-based platforms
suffer of.

Unfortunately, security issues in P2P networks are still an open field of investiga-
tion both because of the recent development of such a platform and for the inherent
risks of a distributed environment itself.

This thesis is meant to investigate the security issues and the possible solutions
in order to setup a secure P2P communication. The research was conducted into two
directions:

• Security issues at routing level;

• Security issues at application level.

They represent the two steps of a possible communication scenario: first of all,
one must find in a secure way the location of the callee (maybe stored in a peer-
to-peer network), this is a problem of secure lookup; then one must ensure that the

2 Introduction

person he is going to talk with is really who he wanted and that the communica-
tion itself is secret and cannot be tampered, these are problems of authentication and
confidentiality.

As regards the first point, we studied several possible attacks to structured and
unstructured peer-to-peer networks particularly focalizing onto the disruptive Sybil
attack [1] from which many other attacks can be derived. After an analysis of the
possible countermeasures presented over the years, we focalized onto the Kademlia
algorithm, one of the most used in the world, studying through simulations the degra-
dation of performances in presence of malicious nodes. We also studied trust and
reputation countermeasures and tried to apply them to a Kademlia-based network
operating in an environment where there is a growing number of malicious nodes.

For the second point, first of all we studied current key agreement protocols fo-
cusing on the number of messages and trying to find out possible drawbacks even in
widely accepted protocols and algorithms. In a second time we proposed a new key
agreement protocol based upon MIKEY [2] and ZRTP [3] integrating them into the
standard SIP invite procedure. An analysis of the proposed protocol is also provided.
On this basis we got further, adding also certificate-based authentication to our model
and a way to manage in a P2P way certificates and signatures. Finally we also pro-
vided an architecture where certificates are stored in a P2P network itself with the use
of a DHT.

Chapter 1

Peer-to-peer Networks

Working as peers is better
than always serving a client

– Riccardo Pecori

A P2P communication structure is made of multiple autonomous devices that
interact as equals acting both as client and server, so there is no a centralized server
or at least its usage is limited.

A P2P network is a quite complex system that represents a synthesis of several
technological components, and one of them is the overlay network, that is a subgroup
of the network composed by hosts running the same P2P client software. This virtual
network overlaps the underlying network (e.g.: the Internet) with its own logical con-
nections between nodes, maybe physically very far in the real world (see Figure 1.1).
The logical links map onto maybe several physical links of a transport network.

P2P networks can be not structured or structured. In the first case arbitrary logical
links exist among peers that can be all involved in sharing operations; in the latter
case each node in the P2P network has its own identifier and connections according
to a specific, firm algorithm that renders storage and retrieval operations simpler and
faster.

In the history at least four [4] generations of P2P networks have been developed:

4 Chapter 1. Peer-to-peer Networks

Figure 1.1: Overlay and underlay networks.

1. Centralized P2P networks like the by now dead Napster. They exploit a central
server to provide indexes of distributed resources, and then the communication
is peer-to-peer.

2. Pure P2P like Gnutella. In a pure P2P network each node implements functions
of both client and server, and either peer can initiate a communication session
at any moment. The research takes place flooding the network, and then the
communication is only end-to-end between the initiator peer and the responder
peer.

3. Hybrid P2P like JXTA or Skype. In this case there is a combination between
the previous two cases; there are superpeers acting as servers towards a reduced
part of the network. This improves bandwidth and grants signaling operations

1.0. Peer-to-peer Networks 5

saving.

4. Distributed Hash Tables (DHT) based P2P networks, which are a building
block of many nowadays peer-to-peer applications like KAD. DHT mecha-
nisms provide structured P2P networks and guaranteed data retrieval, moder-
ate lookup times, automatic load balancing and self-organizing data storage
and lookup system.

The first three are unstructured P2P networks, whereas the last one is usually de-
fined as a structured network. The research work of the thesis was focused mainly
onto structured p2p networks with particular care to DHT-based networks and their
resource look-up mechanisms. P2P platforms that adopted a DHT structure are for ex-
ample: eMule (Kademlia [5]), BitTorrent (Kademlia), CFS (Chord [6]), OceanStore
(Tapestry [7]), etc.

6 Chapter 1. Peer-to-peer Networks

1.1 DHT Networks

The general structure of DHT-based platforms provides a mapping (the hash table)
between keys and values, where values are stored in a distributed manner across the
p2p networks. The mapping is maintained in a distributed routing table in which
nodes are addressed according to particular IDs. Both IDs/keys and values are the
result of applying a hash function to some form of identification and the entire or a
piece of the actual value.

Responsibility for maintaining the mapping from names to values is distributed
among all nodes, in such a way that a change in a set of participants causes a minimal
probability of disruption. This allows DHTs to scale to extremely large numbers of
participants and to handle continual joins, leaves, and failures of nodes.

The lookup procedure, the core part of this type of networks, allows to find a
certain value position in the network and so to store or retrieve the corresponding
value that, in turn, can be a file, the Address Of Record of a SIP user, etc.

IDs distribution in the network and the lookup procedures vary a lot according to
the particular DHT algorithm chosen, e.g. Chord distributes IDs in a ring, CAN [8]
in rectangles, Kademlia in a tree-like manner, etc.

We now briefly describe two of the most used DHT, namely Chord and Kademlia,
as these will be the starting points from which our research kicked off.

1.1.1 Chord

Chord is a lookup protocol based on consistent hashing that maps keys to nodes
responsible for them in a circular virtual-ring structure. Every node and key are as-
signed a unique m-bit identifier using a hash function, e.g.: SHA-1, applied to the
node’s IP address, or the key’s value.

Chord uses consistent hashing [9] to assign keys to its nodes as it tends to balance
load, since each node receives roughly the same number of keys, and it requires
relatively little movement of keys when nodes join and leave the system.

Chord views the identifier space as a circle formed by no more than 2m nodes
(where m = 160) with identifiers/keys ranging from 0 to 2m−1 [6].

1.1. DHT Networks 7

Each node of a Chord network maintains two data structures:

• successor list;

• finger table.

The first one is necessary to keep the correct organization of the network; in fact
it contains peers immediately succeeding the node’s key in the identifier circle in a
clockwise direction.
The second one is needed to accelerate the process of lookup of a resource.

A node with the smallest ID that is greater than or equal to i represents the suc-
cessor of a key (or node identifier) i. The successor node of a key is responsible for
that key.

Figure 1.2 shows an example of a Chord ID ring. For example node 14 is successor
of node 8 and of key 10, so it is responsible for key 10; node 32 is the successor of
node 21 and keys 30 and 24 of which it is the responsible, etc.

When a node n leaves a network, all the keys it is responsible for should be
reassigned to its successor. In the case when a node n joins a network, certain keys
previously assigned to n’s successor pass to n.
Once a new node joins the network, the node occupies an appropriate position in the
identifier circle, and the predecessors of the newly joined peer update their successor
lists.

A finger table is a routing table which contains IP addresses of peers halfway
around the ID space from the node, a quarter-of-the-way, an eighth-of-the-way and
so forth. Given N nodes in the Chord network, the size of a Chord routing table is
log2N. If a node is looking for a resource with key k, it forwards the query to a node
in its finger table with the highest ID not exceeding k reaching it in at most O(log2N)
steps.

The lookup in Chord can be implemented in both iterative and recursive modes;
in the first case the control remains always to the initial requesting node who has,
at every step, to send new request messages, in the second case the control passes,

8 Chapter 1. Peer-to-peer Networks

Figure 1.2: Chord ID assignement [6].

at every step, to the node at that moment closer to the searched resource who is in
charge of sending the next requests to the next closer node.

1.1.2 Kademlia

Kademlia [5] networks are arranged basing upon a XOR metric, as the distance be-
tween two kademlia IDs is defined as: d(x,y) = x⊕y. As in Chord IDs of both nodes
and resources (keys) are usually made of 160 bits. Data are replicated in the k (the
recommended value for k is 20) closest nodes to a key where key/value pair is stored.
Kademlia, differently from Chord, has a binary tree-like data structure and nodes are
considered as leafs on this tree (see Figure 1.3). Routing processes are implemented
in prefix-matching mode.

1.1. DHT Networks 9

Figure 1.3: Kademlia tree structure [5].

Kademlia nodes store contact information to route query messages, keeping lists
of <IP address; UDP port; Node ID> triples for nodes of distance from itself be-
tween 2i and 2i+1 (in base 10) and for i ranging from 0 to 160 excluded. These lists
are known as k-buckets, where k is both the length of the lists and the abovementioned
system parameter that is usually chosen such that any given k nodes are very unlikely
to fail within an hour of each other. Given the binary structure these k-buckets contain
at least one node.

Kademlia routing is iterative, i.e., the node querying for a resource receives back,
from the queried one, a list of nodes to ask at the next step until the node responsible
for the searched resource is found; moreover, given the binary structure, a lookup
procedure usually takes at most O(log2N) steps where N is the number of nodes in
the network.

In classical Kademlia both in storing and in retrieving resources the requesting
peer runs α parallel asynchronous queries for a given key at the same time, α is
another system parameter usually set to 3. The α peers are chosen by the requesting
peer according to a certain policy among its k peers nearest to the searched resource

10 Chapter 1. Peer-to-peer Networks

that are stored in a temporary list to be updated at each iterative step. Each of the
α peers contacted responds to the querying process initiator with its own k nodes
nearest to the resource key to be find. The initiator peer can have as a response at
most α × k nodes; among these it selects for the next step only the k nearest to the
researched resource and inserts in the temporary list the peers not already present.
For the next step it iteratively selects in this temporary list, always in accordance to
a certain policy, α to query, and so on. This iterative process ends up when at step
n, among the at most α× k responses, the initiator is unable to find at least one peer
nearer to the resource than any other already present in the temporary list updated at
step n-1. As a side effect of a lookup process, both for nodes or for keys, k-buckets of
the contacted nodes are populated and updated.

Differently from Chord, Kademlia uses only iterative lookup procedures peform-
ing them in parallel mode with α as parallelism degree.

Chapter 2

Security issues and
countermeasures in peer-to-peer
networks

Peer-to-peer networks are a special type of networks as, given their unstable struc-
ture, unreliable nodes may join or leave frequently, moreover they are decentralized
so centralized solutions can be applied with difficulty [4]. P2p networks share the
following weaknesses [10]:

• peers use the same client software, so a bug in the software can easily propagate
in the whole network;

• there are many interconnections, so the possibility of getting a link with a ma-
licious node becomes higher;

• in this type of network there is usually less attention from Intrusion Detection
Systems;

• this type of networks usually exploit simple PCs that are usually more vulner-

12 Chapter 2. Security issues and countermeasures in peer-to-peer networks

able than server machines;

• users of p2p networks have less inclination to report unusual behaviors and
often do not know who they should report to.

P2P networks are subject to both attacks of any network and attacks specifically
made for p2p networks [10]; in particular DHT-based p2p networks, given their rigid
structure, are subject to potentially disruptive attacks.

2.1. General Malicious Activities 13

2.1 General Malicious Activities

General malicious attacks, that are in common with other types of networks, can be
classified as:

• Denial-of-Service (DoS) and Distributed DoS Attacks

• Poisoning Attacks

• Tracking and Man-in-the-middle (MITM) Attacks

• Malware injection and propagation

The first one (DoS) consists usually into flooding the network with bogus packets
or committing a peer into long computations, so preventing correct traffic to reach
destination. If multiple hosts are involved into the attack we then speak of Distributed
denial of service (DDoS).
A widely used technique to prevent DOS is “pricing”, that is, forcing requesters to
solve computational puzzles before requesting a service. This method is not very
effective in a DDoS scenario moreover it can be hard to implement for lightweight
legitimate devices.

The second type consists of inserting into the network false information such as
fake resource indexes, IP addresses, etc. these are not deadly attacks, whose effect
can be only momentary, however some solutions involve replication, and thresholds.

The third type of attacks involves the finding out of some type of packet informa-
tion, like IP addresses, and their manipulations. MITM attacks provide a fake entity
inserting between two communicating nodes and listening undetected or pretending
to be, from time to time, the other counterpart. This can be done wiretapping mes-
sages from both peers and acting as responder to these messages on both directions. A
proved-to-work solution to these attacks is currently the deployment of Certification
Authorities that grants authenticity of information and identities of peers, but that is
not in accordance with the p2p paradigm.

The fourth attack involves malicious code spreading into the Internet like worms
propagation. The best solution is to make users aware of the risks and to encourage
them to deploy firewalls and antiviruses.

14 Chapter 2. Security issues and countermeasures in peer-to-peer networks

2.2 Specific Attacks to P2P Networks

As regards specific attacks to p2p networks, it is possible to consider [10][11]:

1. rational attacks, caused by the selfish behavior of peers willing only to take
advantage of the network and with little cooperation with other nodes. On a
large scale this can cause a system destabilization;

2. routing attacks, involving routing lookup schemes and algorithms as well as
routing table maintenance and updating;

3. storage and retrieval attacks, with nodes denying the ownership of resources
they actually have or on the contrary pretending to have resorces they do not
really have;

4. eclipse attack, with an adversary having the control over some strategic routing
path and succeeding into splitting the network in subnets it can controls;

5. sybil attack, with an entity having multiple identities;

6. miscellaneous attacks, such as inconsistent behaviors, overload of targeted
nodes, rapid joins and leaves (churn), etc.

2.2.1 Sybil Attack

Particularly in this thesis work we focused onto the disruptive Sybil attack [1], as
from this many other attacks, also the abovementioned, can be perpetrated. A sybil
behavior exploits the concept of overlay and virtual IDs breaking the one-to-one map-
ping between overlay and underlay (see Figure 2.1).

This type of attack exploits a p2p networks usual custom, that is relying onto
the existence of multiple, independent remote entities to mitigate the threat of bogus
peers, since it is normally started by a faulty entity masquerading with multiple iden-
tities. The key idea behind the Sybil attack, or however a Sybil behavior, is in fact
to insert in the p2p network malicious nodes identities, the sybils, which are all con-
trolled by one single entity. This permits, positioning the sybils into strategic places,

2.2. Specific Attacks to P2P Networks 15

Figure 2.1: Sybil behavior.

to gain control over a part of the network or even over the whole network, to monitor
the traffic or to abuse of the eventually present DHT protocol in other ways.

At present, there is no general solution to this type of attack despite the many
approaches presented in literature. These ones can be classified, according to [12],
into five categories: trusted certification, resource testing, costs and fees and trusted
devices.
The most used anti-sybils P2P solutions are based on: the usage of diverse routing
schemes, the limitation on the number of peers that a physical node can admit to
the network, the verification of some types of requirement (computational resource,
possession of some signed data, etc.), the periodical refresh of the routing tables or
of the IDs. On the other hand the presence of a centralized authority (CA) is also
claimed to be one of the best solutions if not the only one [1].

We made a detailed analysis and classification of the current types of solutions
given to the Sybil behavior. Classification is done according to different levels: con-
sidering specific threatened DHT operations (mainly find_node/find_value and join
procedures), then the malicious activities involved and the general approach of the
solution.

16 Chapter 2. Security issues and countermeasures in peer-to-peer networks

2.2.1.1 Find node/ find value operations

The malicious activity involving this type of operations could be incorrect routing or
incorrect routing updates.
As regards the first one all the studied approaches deal with some forms of redun-
dancy. The studied possible solutions are:

• Diversity routing [13]: use of an ID lookup trust profile (histogram representing
nodes appearance frequency on the lookup path towards the ID). The advantage
is that adversary nodes introducing a lot of sybils may acquire high values in
the trust profile, so nodes behind them will not be used. Disadvantages are
the inefficiency under normal circumstances and the absence of any progress
toward the target node.

• Mixed routing [13]: a balance between classic routing and diversity routing. It
does not perform better than the diversity strategy in case there are a lot more
sybils than honest nodes.

• Zig-zag routing [13]: an alternation of diversity and classic routing. It outper-
forms classic and mixed routing when the number of malicious nodes is large
but it reduces lookup speed.

• Secure routing primitive [14]: failure test and redundant routing are employed
to ensure, with very high probability, at least one message copy arrival to each
correct replica root for a key. It solves a constrained routing problem: even a
few malicious nodes in the routing table can reduce the probability of success-
ful delivery, but several attacks have been demonstrated to weaken the failure
test.

• Random routes [15] with predefined hops number; the identity verification pro-
cess is based on two random routes number. It does not provide centralization
elements and trust and reputation policy are applicable due to the character of
nodes relationships (social network). However routing loops can reduce routes
effective length and intersections probability, a small number of attack edges

2.2. Specific Attacks to P2P Networks 17

is assumed, honest users may be compromised and the number of hops is a
critical parameter.

As regards incorrect routing updates instead the possible solutions concern redun-
dancy like:

• 2 routing tables usages [14]: one exploiting network proximity, another ex-
ploiting a further constraint on closeness. Constrained routing tables have, in
fatc, an average fraction of only few random entries that point to attacker con-
trolled nodes. Disadvantages are: routing process overhead, the possibility for
an attacker to reduce the successful delivery probability by not forwarding mes-
sages; no flexibility in neighbor selection.

• periodic reset [16] of optimized routing tables to constraint tables: this method
includes routing-tables updates rate limitation and unpredictable ID assign-
ment. The adversary is constrained to render more intensive its poisoning ac-
tivity in order to maintain its foothold. Disadvantages are: the short-term sybil-
proof effect; only Bamboo tested, the periodic reset is effective at low routing
tables poisoning level, the system adaptability and routing security trade-off
and the randomness server availability.

or resource testing like:

• Identity legitimacy control [17] by sending check messages at predefined time
intervals on channels preassigned to each neighbor node. No centralization el-
ements are involved but a node cannot communicate simultaneously on more
than one channel.

• node degree bounding [18] to a certain threshold: nodes anonymously audit
each other’s connectivity through a certificate binding ID and a public key. This
method leaves flexibility in the selection of neighbors nodes but is mainly ad-
dressed to the eclipse attack, mechanisms for maintaining auditor’s anonymity
are required and a localized eclipse attacks could still work.

or trusted certification/trusted devices like:

18 Chapter 2. Security issues and countermeasures in peer-to-peer networks

• Random assignment of key-sets [17] to each node. Sybils detection is carried
out through checking the number of coincided keys in sets of different nodes.
It is a distributed control mechanism but there is still the possibility to steal IDs
(masquerading attacks).

2.2.1.2 Join operations

The malicious activitities cocerning join operations could be summarized into the
false ID creation.
The possible solutions concern resource testing like:

• Hierarchy of cooperative admission control nodes based on the bootstrap graph
[19]. Challenging new nodes by puzzles solving to have a globally verifiable
cryptographic proof. This method provides also an upper bound on the number
of IDs. With this solution targeted attacks are more difficult, malicious node
removal and attack localization are easier. However, as simple Diffie-Helman is
used to share a secret between nodes in the hierarchy: man-in-the-middle attack
is possible. Moreover signature verification is computationally expensive and
the tree root is a single point of failure.

• Requiring the prospective (joining) node to solve crypto puzzle [14]. It is a
distributed access control but there is a costs trade-off in puzzles solving: not
too expensive for legitimate nodes but sufficient to attack preventing.

• binding nodeIDs to real-world identities [14]. Effective in “virtual private”
overlays (enterprise networks) but a Certification Authority is a single point
of failure.

• Random computational puzzles, with incorporated distributed locally generated
challenges, required to participate in the network [20]. Challenge broadcasting
from each peer toward others. Locally challenges prevent puzzles to be reused
by attackers over time, the method gives a node flexibility to choose its po-
sition. A disadvantage is the opposite effect when legitimate users are stuck

2.2. Specific Attacks to P2P Networks 19

with out-of-date hardware whereas attackers have access to high performance
computing.

or trusted certification/trusted devices like:

• Release of new identities by Certification Authorities [1]. For the moment, it is
the only way to combat definitely the sybil attack and moreover it introduces
centralization elements into the system that are a single point of failure.

• ID obtaining through double-key encryption of newcomer’s IP address by a
central agent that returns ID via SMS [21]. This method grants a significant
reduction of the sybils number; however there is a single point of failure, dif-
ferent SIMs use is possible, there are PKI elements, it requires a IP addresses
and phone numbers list, there is the need of central agents to avoid multiple
IDs issue to the same peer.

• Registration through a centralized authority [17], with a list of trusted identi-
ties. This method grants a secure bootstrap, but it also introduces a single point
of failure, centralization elements, and there is the possibility of stolen IDs.

• Central trusted certification authority assigning and signing nodeId certificates
that binds ID to a public key and to the IP address [14]. Randomly chosen
nodeIDs and ID forging are prevented, binding IDs and IP addresses renders
harder for an attacker to move ID across the nodes. There is, however, a single
point of failure and if an IP address is changed, the corresponding nodeId and
certificate become invalid.

• Periodical invalidation of node IDs by a trusted entity that broadcasts a differ-
ent initialization vector for some hash computations [14]. It is hard for an at-
tacker to accumulate many nodeIDs over time and to reuse them, but legitimate
nodes must periodically spend additional time to maintain their membership.

• New node’s ID (IP address and port hash) registration by other nodes chosen
according to IP address prefix [22]. This method provides also a maximum
number of nodes per participant bound. There is an external ID usage, and no

20 Chapter 2. Security issues and countermeasures in peer-to-peer networks

centralization elements, no need to obtain new separate IDs and it is easily
applicable for other DHT than Chord. Anyway distributed ID assignment is
Sybil-proof only for a limited time, there can be only one node behind a NAT
and in theory nodes can obtain a huge number of IPv6 addresses.

or costs and fees methods like:

• Certificates binding the ID to a public key that must be paid [14]. The cost of an
attack grows with the size of the network, moreover fees are supposed to fund
the operations of a Certification Authority. However, as already said, there is a
single point of failure.

Chapter 3

Analysis of Sybils Effects on
Kademlia and Possible
Countermeasures

In this chapter a detailed campaign of simulations is carried out to study Kadem-
lia behavior in presence of bogus nodes with various malicious behaviors. Moreover
trust and reputation techniques are studied to be applied to Kademlia in order to find
a method to decrease the negative effects of the malicious nodes on the lookup proce-
dures. For the simulations we deployed DEUS [23], a discrete event simulator, where
simulation time is sampled in virtual seconds (vs), developed in Java language by
the Distributed System Group of the Information Engineering Department of Univer-
sity of Parma. In particular we deployed its embedded implemented Kademlia model
using XML simulation scripts.

22
Chapter 3. Analysis of Sybils Effects on Kademlia and Possible

Countermeasures

3.1 Simulations conditions

We worked in conditions of steady state network, so that despite node joining and
leaving, a constant number of nodes is always present in the network, this is obtained
starting from 11000 vs (virtual seconds). Particularly the number of good nodes, that
is, nodes that behave according to the standard Kademlia algorithm, are always 100,
whereas the number of bogus nodes, named sybils, was variable from simulation
to simulation: 0, 2, 10, 50, 100, 200 and 400 nodes. Sybils may have two different
behaviors during a value lookup: they can answer back with an empty list or they can
respond with a list made of randomly chosen peers.

Nodes join the network or leave the network till 11000vs time is elapsed ac-
cording respectively to a periodic process of period 100 for good nodes and variable
period for bogus nodes. Other parameters of the Kademlia network regard α equal to
1 and k equal to 20 as suggested in [5] and the key space size is set to 2000. In the sim-
ulation model of Kademlia another parameter is present, namely discoveryMaxWait,
fixed to 1000 vs; this is needed to simulate nodes answering too slowly.

In our considerations we will only look at correctly ended value lookup proce-
dures that start only since the network is steady, that is after 11000 vs; moreover
we put log events at different times, namely at 50000 vs, 100000 vs, 150000 vs and
200000 vs in order to verify the influence of unended searches. As the results con-
firmed that the same percentage of unended searches is present at the four time of
logging and the monitored metrics are about constant in time we concentrated only
on the first logging time, that is 50000 vs, corresponding to 500 real seconds.

Finally for each simulation set of parameters an average over 100 seeds of the
considered features was made.

3.2 Effects of sybil nodes

We looked at some features in order to evaluate the effects of a growing number of
sybils into the network. They are: the percentage of filling of the k-buckets averaged
over all the nodes in the network, the average number of successful lookup up proce-

3.2. Effects of sybil nodes 23

dures and the average number of nodes known by a peer.
The results depicted in figures 3.1, 3.2 and 3.3 refer to sybils node responding with a
null list and show the dramatical decrease of performances in all the three analyzed
metrics as the number of sybils increases.

Figure 3.1: Kbucket filling function of kbucket index.

In figure 3.4 instead we studied the difference in performance degradation be-
tween two different malicious behaviors in a value look up procedure, namely the
cases in which sybils answer lookup queries with a null or a random list of nodes.
How it is possible to see from the figure the difference is very slight.

This can be explained considering the implementation of Kademlia we had. At
first the querying node has a local temporary list filled with the k nodes nearest to the
resource to find at its knowledge. At each iterative step it receives from the node it
queried (only one as we concentrated on the case α = 1) at most k responses updating
the local list with the nodes it did not have before. If the FIRST node changes the

24
Chapter 3. Analysis of Sybils Effects on Kademlia and Possible

Countermeasures

Figure 3.2: Successfull, unsuccessfull and unended lookup procedures.

initiator goes on querying other α nodes among the ones not already queried in the
local list, otherwise it proceeds to query k nodes in the same list. If also in this case
the first node does not change and no nodes answered with the searched value the
lookup fails, otherwise the procedure proceeds querying α nodes as described above.
The procedure ends successfully if a node responds with the searched resource.
In case a node answers with a null list the FIRST node of the temporary list does not
surely update (we remember that we consider the case α = 1) so this behavior forces
to go in the searching k nodes phase. From this point the procedure, as described
above, could stop or proceed with only one step more than if no malicious nodes
where found on the path.
The same happens if we consider a malicious node answering with a random list even
if in theory there could be the possibility the local list acquires anyway a first node.
This could explain why the graphs in Figure 3.4 are very similar.

3.2. Effects of sybil nodes 25

Figure 3.3: Average known nodes function of number of sybils.

After this considerations we addressed towards the research of some solutions,
or better, some ways to soothe away the effects of malicious nodes on the lookup
procedures, this can be seen as a countermeasure at routing level.
With this aim in mind we addressed to the study of the current solutions presented
in literature concerning trust and reputation, this seems a suitable technique in P2P
networks, as, like in any human community, nodes interact with each other, create
new contacts, and progressively gain their own experience and reputation about each
other. These factors can help them to evaluate trustworthiness of other nodes and to
understand what kind of behaviour can be expected from a certain node.

26
Chapter 3. Analysis of Sybils Effects on Kademlia and Possible

Countermeasures

Figure 3.4: Comparison between two malicious behaviors.

3.3 Reputation in P2P networks

We made an analysis of different recent trust and reputation techniques and schemes
[24][25][26][27][28][29][30][31] according to the four point depicted in the graph
in figure 3.5, namely the model and its factors, the threats faced and the metrics to
evaluate the model.

3.3.1 Model

As regards the model of trust and reputation, this can present various basic features:

• direct experience or recommendations;

• credibility of peers, that can be considered in peer reccomandations;

• reputation of shared resources, that may come before the evaluation of peers;

3.3. Reputation in P2P networks 27

Figure 3.5: Trust and reputation factors.

• presence of a few pre-trusted peers;

• indipendence of peer reputation from the willingness of cooperation;

• limited sources of reputation like a few most trusted peers or neighbors;

• evolution of links according to experiences.

28
Chapter 3. Analysis of Sybils Effects on Kademlia and Possible

Countermeasures

3.3.2 Factors

On the second point, trust and reputation can be computed acording to different fac-
tors like:

• the satisfaction of a transaction;

• the number and “size” of the interactions;

• the “age” of a transaction, that is a time factor weighing the trust according to
a decreasing function like in figure 3.6;

• the similarity of interests of the evaluated peers;

• a punishment factor or debit for “negative” actions;

• the slowness in trust increase for good actions and the sharp decrease for mali-
cious actions;

• the environment’s risk.

Figure 3.6: Time factor. tnow is current time whereas ti time of ith interaction.

3.3. Reputation in P2P networks 29

A trust score is also often used in order to combine in some way the previous
factors, a simpler ratio between good actions and total actions of a peer may be al-
ternatively used. The specific implementation, however, depends upon specific threat
models or proposed solutions.

3.3.3 Threat models

The opportune trust model to use depends also on the environment on which this is
deployed and the threats it has to face. There can be in fact scenarios in which:

1. malicious peers always provide inauthentic resources and give high trust values
to any other MP;

2. bogus nodes always behave badly but collude with only a limited set of collab-
orators peers;

3. bad nodes provide inauthentic resources only in a certain percentage of cases;

4. part of the malicious peers behaves like in the second case, part, the spies,
answer correctly to a certain percentage of queries but increase trust only of
standard malicious peers. This creates a division in the network as shown in
figure 3.7;

5. bad peers downgrade trust of good peers/neighbours;

6. bogus nodes leave the network after a bad behavior re-entering with a new
identity (smart churn);

7. spies assign positive trust values only to colluding malicious peers, whereas
these ones give trust also to good peers. This renders them more difficult to
discover, and it is even more dificult if malicious peers provide inauthentic
resources only in a certain percentage of cases.

30
Chapter 3. Analysis of Sybils Effects on Kademlia and Possible

Countermeasures

Figure 3.7: Spies in a p2p network.

3.3.4 Metrics

Also the metrics useful to evaluate and judge the goodness of a trust model may vary
according to the model itself and the threats it is called to cope with. They however
can be quickly summarized as:

• reputation of certain good peers VS number of peers in the network, may be
varying the percentage of malicious peers and the credibility factor;

• fraction of inauthentic provided resources VS fraction of malicious peers in the
network or number of total interactions;

• comparison among different threat models and eventually file and peer reputa-
tion;

• comparison between trust model and trust and reputation model.

3.3.5 Studied solution

Our approach consisted in taking into account the trust value when ordering the tem-
porary local list of the initiator peer. Since the use of a brute force ordering of such list
just on the basis of trust could not work (also demonstrated by our simulations), we

3.3. Reputation in P2P networks 31

tried to define a new metric for the the DHT distance function, called “new distance”
(nd), and computed, in a first approximation, according to the following equation:

nd = od ×b+(1−b)× 1
t

(3.1)

where nd is the new distance, od the old distance computed according to the
XOR operation as in standard Kademlia, b a balancing factor ranging from 0 to 1 and
t the trust factor ranging from a very small number near zero (say ε) and infinite. We
plotted the function in figure 3.8 with different values of b.
The trust increases for all nodes that led to a right resource in a lookup procedure
whereas it decreases for all nodes involved in an unsuccessful lookup. The increase
or decrease quantities can be varied according to what one want to study.
Future works may be carried out in order to better study and determine the optimum
formula for the new distance metric, and the best value of the possible b coefficient
that balances the weight of trust respect to the “old” distance value.

Figure 3.8: New distance function.

Chapter 4

Security issues and security
protocols at application level

When two peers want to establish a secure end-to-end communication channel, they
need to have previously established a so called Security Association. A Security As-
sociation (SA) is a logical connection between two or more peers that specifies all al-
gorithms, parameters, and key materials needed for providing security services (e.g.
authentication, integrity protection, confidentiality) to the traffic exchanged between
the peers. Usually a SA is defined as a simplex connection (i.e. unidirectional), and
two different SA are required for bidirectional communications.
Such a SA can be, moreover, statically setup through a manual configuration or can
be (more conveniently) dynamically established by a proper SA management proto-
col.

Usually secure communication protocols such as IPSec [32], TLS [33], SSH [34],
etc. have their own mechanism in order to establish a SA between two endpoints.
Some protocols use some complementary SA management protocols before starting
the actual secure communication, while other protocols perform SA establishment

34 Chapter 4. Security issues and security protocols at application level

during the connection setup phase at the beginning of the communication.
During the SA setup the two peers have to negotiate and agree on the security services
(authentication, confidentiality, etc.), security algorithms (encryption/decryption, mes-
sage authentication, hash functions), parameters (e.g. initialization vectors) and pub-
lic or secret keys or digital certificates. Keying material is an important component
of the SA and it is usually obtained by a one-way pseudo-random function (PRF)
applied to a master or pre-master key. In turn, the agreement on such a master key is
one of the crucial aspects of the SA establishment and requires the generation of such
a key at the two end points (e.g. through Diffie-Hellman) or its secure transmission
over an insecure channel. In both cases such a master key agreement should be au-
thenticated someway. e.g.: through a pre-shared key or signed through a private-key
and verified through a public key (or the corresponding digital certificate). However
in both cases (use of secret pre-shared key or private/public key) both parties have
to already agree on some shared keys, secret or public. Unfortunately this is a very
strong assumption when applied to a peer-to-peer scenario in which peers want to
communicate with each other without any pre-established relationship. Digital cer-
tificates, Certification Authorities (CAs), and Public Key Infrastructure (PKI) are also
often used in order to overcome the lack of a directly pre-established relationship be-
tween peers; however this approach requires a sort of trust delegation between peers
and CAs (or between peers in case of user-signed certificates like in PGP [35]).

In our research work we firstly analyzed the current key agreement protocol both
standardized and presented in literature and the we proposed a method for overcom-
ing the problem of lack of a prior shared secret or a PKI for SA establishment for
P2P multimedia communications.

4.1. Current Security Protocols Comparison 35

4.1 Current Security Protocols Comparison

The main used approaches in the scientific literature for key-agreement on a master
key are:

1. pre-shared key derived - the master key is derived from a pre-shared key and it
is influenced by random values and generated and exchanged by both parties in
order to avoid the reusing of previously generated keys. The main problem of
this approach is that it provides a previous relationship between the two parties;

2. secret key or public key encryption - the master key is generated by one peer
and transmitted to the other party encrypted through a shared secret key or
a public key. The main drawback is that both parties still have to previously
agree on a pre-shared secret key or on the receiver’s public key. In the latter
case the initiator need to own the responder’s public key or the responder’s
digital certificate or the certificate of the Certification Authority that signed the
responder’s certificate;

3. Diffie-Hellman - the master key is generated through the Diffie-Hellman (DH)
exponential key exchange, in which two parties jointly exponentiate a gener-
ator with random numbers. In such a way an eavesdropper cannot guess what
the key is. The main disadvantage of this approach is that it does not guarantee
protection against a MITM attack, that is a third party tries to trick both par-
ties forcing them to agree to two different keys shared with itself. To prevent
MITM attacks authentication is needed, but this in turn requires a pre-shared
secret or public/private key pair in order to provide and verify a MAC (message
authentication code) or a digital signature, so the problem still arises.

In the following various key agreement protocols are analyzed in order to figure
out a common authentication scheme from which to develop a new proposal.

4.1.1 General data exchange security protocols

In this category we briefly describe the key agreement features of protocols of various
layers with interesting features of authentication and key agreement.

36 Chapter 4. Security issues and security protocols at application level

4.1.1.1 IPSec

IPSec [32] grants security at network level establishing unidirectional Security Asso-
ciations (SA) between two parties.
It employs two security protocols: Authentication Header (AH) and Encapsulating
Security Payload (ESP).

The first one grants the authenticity of the packets source, their integrity and even-
tually protection against replay attacks. The latter is achieved through a Sequence
Number in the AH, whereas the first two ones are accomplished computing an In-
tegrity Check Value (ICV) with a double MD5 hash with secret pre-shared key over
the whole IP packet except for the mutable fields that are set to zero before the com-
putation.
The second one grants confidentiality through data encryption and optionally in-
tegrity, authentication and replay protection. They both support transport or tunnel
mode, the latter protecting the whole IP original packet.

For the key management and agreement IKE, Internet Key Exchange, is used, an
application level protocol using UDP as transport protocol with port 500.
IKE [36] is needed to establish a protected environment and to set up a Security As-
sociation (SA) between two parties, that is, in turn, made of protection mechanisms,
protocols, keys and encryption algorithms and a shared session secret with Diffie
Hellman. A SA is made of a Security Parameter Index (SPI), IP destination address
and security protocol (AH or ESP) and it is unidirectional.
It is based upon three protocols: ISAKMP (Internet Security Association Key Man-
agement Protocol), the Oakley algorithm (actually an improvement of Diffie Hell-
mann) and SKEME. There are two pahses:

1. bidirectional IKE security association set up: needed to generate a shared secret
from wich other keys will be computed. It is usually executed in MAIN MODE
(4 messages in total, 2 for security parameters negotiation and 2 for identity
proof).

2. unidirectional IPSec security association set up: every IPSec SA is a child SA
of the IKE SA of phase one. The aim is to create new keys from the shared

4.1. Current Security Protocols Comparison 37

secret in QUICK MODE.

There are 5 main ISAKMP [37] exchanges:

• Basic exchange: no identity protection because ID info are exchanged at the
same time of the shared secret. The initiator sends SA payload and the Respon-
der makes a choice, then there are other two messages with the Key Exchange
(KE) payload and the AUTHentication (AUTH) payload.

• Identity protection exchange: two more messages compared to basic exchange,
separating the KE and the authentication that so can be encrypted.

• Authentication only exchange: three messages, no encryption if it is not used
in the second phase.

• Aggressive exchange: SA, KE, Auth payloads, sent altogether, no choices on a
proposal.

• Informational exchange: only one notify or delete message.

4.1.1.2 Transport Layer Security (TLS)

TLS is a client-server oriented protocol laying between the transport and the appli-
cation level using the 443 port (HTTPS). It supports server identification through
the usage of certificates and optionally clients identification. It grants confidentiality
through a secret key defined in an initial handshake (symmetric encryption like DES,
RC4), authentication through asymmetric cryptography (RSA, DSS, X.509 certifi-
cates) and integrity through a transport level Message Authentication Code (MAC)
check using hash functions (SHA, MD5). It is further subdivided into two sublayers:
at the lower layer there is the TLS Record Protocol used for encapsulating the various
higher level protocols among which its three application layer protocols (TLS Hand-
shake, TLS Change Cipher Spec and TLS Alerts) besides obviously other application
level protocols such as HTTP, SMTP, etc.

38 Chapter 4. Security issues and security protocols at application level

TLS Record Protocol grants compression, confidentiality through symmetric encryp-
tion and message integrity through a MAC with shared secret key added to the mes-
sage before encryption. The keys for encryption, HMAC and the eventual Initializing
Vector (IV) are exchanged with the Handshake protocol.

Among its three specific application protocols the most important is surely TLS
Handshake that permits:

• server and optionally client identification;

• encryption and MAC algorithms negotiation;

• crypto keys negotiation.

All these operations are made before an application protocol transmits or receives
its first data. TLS Handshake provides usually 4 phases:

1. establishing security capacities through a ClientHello message conveying a list
of supported cipher suites (key exchange algorithm, symmetric and MAC algo-
rithm) and a ServerHello response with the choice made by the server picked
from the client’s list.

2. the server sends its certificate signed by CA and sends its KeyExchange mes-
sage part, eventually requiring a client’s certificate. The exact meaning of the
key exchange depends on the server previous choice about the cipher suite:
for RSA the server sends its public key, for DH modulus p generator g and
x = gamod p are sent. Necessary if no public key is sent in the Certificate mes-
sage.

3. the client eventually sends its certificate to prove its identity and its KeyEx-
change message, variable always according to the server previous choice.

4. change in the cipher suite message, that indicates that since now the commu-
nication is encrypted and handshake finish message. These messages have the
same meaning both coming from the client and from the server.

4.1. Current Security Protocols Comparison 39

At this point a pre-master key (PMK) is owned by both parties, the full-blown master
key (MK) is derived from the PMK according to the always same pseudorandom
function (PRF). The MK is used to generate key material such as client and server
MAC secret, client and server write key, etc.

4.1.1.3 Secure SHell (SSH)

SSH [34] is a client/server application protocol that can be used like telnet to log
into a remote machine running the ssh server process. It is a very secure protocol
unlike telnet because it uses algorithms to encrypt the data stream, ensure data stream
integrity and even perform authentication in a safe way.
The authentication takes place usually in two forms: the standard password based one
and the public key one.

• The default standard password authentication: when a user logs in to a cer-
tain machine, the user is required to prompt its username and password for
its account on that machine. This exchange takes place through an encrypted
channel.

• Public key authentication. The user generates a key pair, the public key is
copied in the server, the private key is held by the user and protected through a
passphrase. The client prove the server to have the private key decrypting some
data previously encrypted by the server with the user public key and sending
back the plain data to the server. In this way the user is not requested every
time to give its own password at each connection. In a similar but reciprocal
way also the server can be authenticated by the client before sending the user
credentials.

The required symmetric cipher is 3des-CBC, the required MAC algorithms hmac-
sha1, the required key exchange are DH group1 (using Oakley group 2) and DH
group14 (using Oakley group 14), whereas required public key algorithm is only ssh-
dss.

40 Chapter 4. Security issues and security protocols at application level

Each side has a preferred algorithm in each category, and it is assumed that most
implementations, at any given time, will use the same preferred algorithm. Each side
may guess which algorithm the other side is using, and may send an initial key ex-
change packet according to the algorithm, if appropriate for the preferred method.
After this the true key exchange begins by each side sending a packet with a list of
key exchange algorithms, server host keys algorithms, encryption algorithms client
to server and viceversa, MAC algorithms client to server and viceversa, compression
algorithms client to server and viceversa, etc. The first algorithm in each list must be
the preferred one.
If both sides make the same guess, that algorithm havs to be used, otherwise the
chosen algorithm is the first one satisfying the following conditions:

• the server also supports the algorithm;

• there is an encryption capable algorithm on the server host key algorithms also
supported by the client if needed;

• there is a signature capable algorithm on the server host key algorithms also
supported by the client if needed.

Otherwise the connection fails.

The server lists the algorithms for which it has host keys, the client lists the algo-
rithms that it is willing to accept. There may be multiple host keys for a host, possibly
with different algorithms.
The chosen to each direction encryption algorithm, MAC algorithm and compression
algorithm MUST be the first algorithm on the client’s name-list that is also on the
server’s name-list. If there is no such algorithm, both sides MUST disconnect.

After receiving the SSH_MSG_KEXINIT packet from the other side, each party
will know whether their guess was right. If the other party’s guess was wrong, and the
first_kex_packet_follows is true, the next packet is silently ignored, and both sides act
then as determined by the negotiated key exchange method. If the guess was right, key
exchange continues using the guessed packet. After this exchange is performed, the
key exchange algorithm is run. It may involve several packet exchanges, as specified

4.1. Current Security Protocols Comparison 41

by the key exchange method. The only following messages could be transport layer
generic messages, algorithm negotiation messages, specific key exchange messages.

The key exchange produces a shared secret K and an exchange hash H from
which encryption and authentication keys will be derived. Each key exchange method
specifies a hash function used in the key exchange and that is used in key derivation
for encryption key client to server and viceversa, integrity key from client to server
and viceversa.
The key exchange ends by each side sending an SSH_MSG_NEWKEYS message.
All messages sent after this message must use the new keys and algorithms.

4.1.2 Multimedia key exchange protocols

In this section we briefly summarize the main features of protocols more specifically
used for key agreements in VoIP (Voice over IP) or Multimedia applications. From
this protocol we will borrow most of our ideas for creating a novel solution.

4.1.2.1 Multimedia Internet KEYing (MIKEY)

MIKEY [2] is a key management protocol to support SRTP in real-time applications
both for peer-to-peer and for group communications. The objectives of MiKEY are
end-to-end security, simplicity, efficiency, possibility of tunneling into session estab-
lishment protocol like SDP and independency from security specific functionalities
accounted by the lower transport layer protocols. MIKEY allows to produce a Data
Security Association (SA) for the security protocol, e.g. SRTP, including a key to en-
crypt the traffic called TEK (Traffic Encryption Key) used as input for SRTP. In point
of fact, with MIKEY it is possible to establish keys and parameters for more than a
security protocol at the same time, that is, it is possible to create a Crypto Session
Bundle (CSB), a collection of one or more Crypto Sessions sharing a key generator
called, Traffic Generation Key (TGK) and a set of security parameters allowing to
derive different TEKs. The following are the step to generate a TEK:

1. the two parties agree on a set of security parameters and onto a key generator
TGK, useful to the CSB;

42 Chapter 4. Security issues and security protocols at application level

2. TGK is used to derive a TEK for each Crypto Session;

3. TEK and security protocol parameters determine a SA, that is finally delivered
to the security protocol.

MiKEY can moreover be used to update TEKs and CS or other specific parameters of
the cryptographic context. There are three different methods to get a TGK: pre-shared
key, public key cryptography and Diffie-Hellman exchange.

In the first method the pre-shared secret key, is used to derive key material for
both the encryption and the integrity protection of the MIKEY messages. The main
objective of the Initiator’s message (I_MESSAGE) is to transport one or more TGKs
(carried into KEMAC) and a set of security parameters (SPs) to the Responder in a
secure manner. The KEMAC payload contains a set of encrypted sub-payloads and
a MAC. The main objective of the verification message from the Responder is to
obtain mutual authentication. This is the most efficient way to handle a common
secret transport, since only symmetric encryption is used and only a small amount
of data has to be exchanged. However an individual key has to be shared with every
single peer, so some scalability problems may arise.

In the second method the objective of the Initiator’s message is always to trans-
port one or more TGKs and a set of security parameters to the Responder in a secure
manner. This is done using an envelope approach where the TGKs are encrypted (and
integrity protected) with keys derived from a randomly/pseudo-randomly chosen “en-
velope key”. The envelope key is sent to the Responder encrypted with the public key
of the Responder in the PKE field. If the Responder has several public keys, the Ini-
tiator can indicate the key used in the CHASH payload. The KEMAC contains a set
of encrypted TGK and a MAC, the encryption and MAC keys are derived from the
envelope key. There will be one encrypted IDi and possibly also one unencrypted
IDi in the initiator’s message. The encrypted one is used together with the MAC as a
countermeasure for certain man-in-the-middle attacks, while the unencrypted one is
always useful for the Responder to immediately identify the Initiator.
It is possible to cache the envelope key, so that it can be used as a pre-shared key;
then, the pre-shared key can be used, instead of the public keys. The disadvantage

4.1. Current Security Protocols Comparison 43

of this method is that it is required a Public Key Infrastructure to handle the secure
distribution of public keys.

The DH exchange is based upon a two messages communication as in the pre-
vious two cases (I_MSG from the communication Initiator and R_MSG from the
Responder) but the responder’s answer is now necessary and not optional.
Supposing that g is a predetermined generator, known both to the Initiator and the
Responder through the reception of the SP payload from the Initiator; I_MSG con-
tains a part called DHi, that is the Initiator’s value for the DH-exchange, namely gxi ,
with xi randomly chosen. In the I_MESSAGE there is also a SIGNi, that is a signature
covering the whole I_MSG. The Responder’s message contains instead a DHr, that is
gxr , with xr always randomly chosen. Both parties then compute with the exchanged
values the TGK, that is gxixr . The Initiator doesn’t need the Responder’s certificate
before the setup, whereas it is sufficient that the Responder sends its own with the
response.

Currently there are also two further methods that are improvements of the previ-
ous ones: DH-HMAC, that is a light-weight version of DH using HMAC to authen-
ticate the two parts instead of certificates and RSA signatures; RSA-R where TGK
is exchanged with public key cryptography without requiring any PKI: the Initiator
sends the Responder its public key and the Responder chooses the TGK and sends it
back encrypted with the public key just received.

4.1.2.2 ZRTP

ZRTP [3] is a cryptographic key-agreement protocol specifically designed to nego-
tiate an encryption key for securing VoIP or multimedia sessions using SRTP, for
providing confidentiality and authentication and protect against MITM attacks with-
out centralization elements.
It performs a DH key exchange during call setup in-band in the Real-time Transport
Protocol (RTP) media stream which has been established using some other signaling
protocol such as Session Initiation Protocol (SIP). One of ZRTP’s characteristics is
so that it does not rely on SIP or other signaling protocols for the key management.
ZRTP does not require prior shared secrets or rely on a PKI or on CAs, since the

44 Chapter 4. Security issues and security protocols at application level

ephemeral DH keys are authenticated by means of the use of a Short Authentication
String (SAS), which is essentially a cryptographic hash of the two DH values, to be
read aloud by the two users. More precisely the two end users verbally compare the
shared SAS value displayed at both ends, if both values do match, it means with high
probability that the DH succeeded and no MITM attack has been performed, other-
wise it indicates the presence of a MITM wiretapper. This has however to be present
since the first communication and must be active for all the subsequent ones to suc-
cessfully continuing its attack.
The key agreement takes place according to a message exchange that in turn can be
divided into four steps [38]:

1. discovery,

2. hash commitment,

3. Diffie-Hellman exchange,

4. switch to SRTP and confirmation.

These are shown in figure 4.1. The first phase consists of the capability exchange of
algorithms, parameters, etc. and is made of the first four messages.
In the second phase one of the two counterparts sends the COMMIT message con-
taining its choice of algorithms, keys, parameters, etc. It also generates its part of the
DH secret.
The third phase consists of the true DH exchange and the master key computation.
Finally, the last phase immediately exploits the just established master key and gives
confirmation both parties arrived to the same key and everything works properly.

4.2. Common key agreement scheme 45

Figure 4.1: ZRTP message exchange [38].

4.2 Common key agreement scheme

Summarizing the instauration of a security association takes roughly the following
form depicted also in Figure 4.2:

1. an initial exchange or Initiator imposition of encryption, MAC, signature algo-
rithms;

2. an exchange of the master key through symmetric, asymmetric or DH proce-
dures, according to what established in the previous phase;

3. an eventual verification of the two parties identities and SA establishment ter-
mination.

We now show the correspondence of these three phases into the analyzed proto-
cols.

46 Chapter 4. Security issues and security protocols at application level

Figure 4.2: Common phases of authentication.

4.2.1 IPSec

The three-phase negotiation takes place through the second phase of an ISAKMP
exchange, application level protocol using port UDP 500. There are five exchanges
types in ISAKMP [37] according to the DOI (Domain of Interpretation) in which the
three basic phases of a negotiation described above can be in various way compressed
till reducing to one single message exchange.

Phase 1 can be performed with the sending of one Security Association payload
followed by one or more ISAKMP Proposal payload(s) and one or more Transform
payload(s). In the proposal payload there is the ID of the security protocol(s) pro-
posed (e.g.: AH, ESP, ecc.) whereas in the Transform Payload(s) there are the Initita-
tor’s supported or Responder’s chosen list of hash algorithms (SHA, MD5), encryp-
tion algorithms (DES, 3DES, IDEA, etc.) or key exchange algorithms (Oakley, etc.)

4.2. Common key agreement scheme 47

The second phase takes place with the exchange of Key Exchange payloads. The
content of the Key Exchange Data field depends upon the DOI (Domain of Interpre-
tation) transported in the SA payload. The key exchange can be performed through
the Oakley, DH or RSA-based algorithms.
The authentication phase can be performed using the ID payload and the Hash or
the Authentication Payloads. The first one (ID) according to the specific DOI may
contain IP address, IP subnet, etc. whereas the last two ones contain respectively the
hash of a message’s part or data from the signature function.

4.2.2 TLS

The three phases are performed using the TLS Handshake Protocol at application
level.
The first one can be seen through the ClientHello and ServerHello message exchange,
where the client is the initiator and the server the responder.
The second phase can be seen through the ServerKeyExchange and ClientKeyEx-
change message exchange.
The third phase through the Certificate messages from the Server and potentially from
the Client, and through the ChangeCipherSpec and Finished messages.

4.2.3 SSH

The first phase, the negotiation, begins by each side sending a packet with a list of
key exchange algorithms, server host keys algorithms, encryption algorithms client
to server and viceversa, MAC algorithms client to server and viceversa, compression
algorithms client to server and viceversa, etc.
The second phase, the key exchange, takes place according to the previously negoti-
ated key exchange algorithm, usually DH.
The third phase, authentication, is performed with the help of a hash H over which
the pre-negotiated signature algorithm is applied.

48 Chapter 4. Security issues and security protocols at application level

4.2.4 MIKEY

Here the three phases are described according to the three different methods.

• In the pre-shared key method there are only two messages exchanged, one from
the initiator and one from the responder. There is not an agreement but the
initiator imposes with its own message the TGK encrypted with an encryption
key derived by a pre-shared secret (KEMAC payload). There is not so a phase
1 negotiation but only a one way phase 2 of key exchange or better imposition.
The third phase (authentication) is performed attaching to the two messages
a MAC computed using an authentication key derived always from the pre-
shared secret (KEMAC payload for the Initiator or V field for the Responder).

• In the public key method the TGK is transmitted (KEMAC payload) by the
initiator to the responder encrypted through an envelope key that is also con-
temporary transmitted to the responder encrypted with the responder’s public
key (PKE payload). In reality the TGK is encrypted through an encryption key
derived from the envelope key as in the previous pre-shared case. From the
envelope key an authentication key is also derived, it is used for the MAC pay-
loads.
The first negotiation phase is so avoided as in the pre-shared method, the ex-
change phase is the imposition by the initiator of the TGK(s), whereas the
authentication phase can be seen on the initiator’s side in the SIGNi (a signa-
ture covering the entire MIKEY message) and CERTIFICATE payloads, on the
responder’s side in the V payload, computed as in the pre-shared method.

• DH method: also here the first negotiation phase is avoided, whereas the ex-
change starts with the initiator’s message sending its part in the DH exchange.
This and the responder’s answer represent the second negotiation phase. More-
over the third phase, the authentication, is performed always with this only
aforementioned exchange; it is preformed using the SIGN and CERTIFICATE
payloads from both parties.

4.2. Common key agreement scheme 49

All the aforementioned cases avoid the first negotiation phase supposing the respon-
der always support the initiator’s intentions, this is because MIKEY is not intended
to have a broad variety of options, as it is assumed that a denied offer should rarely
occur. In case this does happen the responder can together with an error message
(indicating that it does not support the parameters), send back its own capabilities
(negotiation phase) to let the Initiator choose a common set of parameters. This is
done by including one or more security policy payloads in the error message sent in
response.

Chapter 5

A New Key Agreement Protocol
for P2P VoIP Applications

Of the previously described protocols, we mainly focalized upon MIKEY and ZRTP,
as the most suitable for peer-to-peer multimedia communications. Even if they are
both by now widely adopted, they however have some disadvantages:

• In ZRTP, it is possible for an attacker to force participants to use SAS au-
thentication also in case they have shared secrets, by convincing the peers that
they have lost such secrets [39]. In fact, according to the protocol specifica-
tion, if the set of shared secrets does not match or is empty, the procedure may
proceed with SAS. This may be more risky if SAS authentication cannot be
performed for lack of display-equipped devices or if the two parties do not
know each other voices. SAS authentication is also vulnerable to some types
of voice forgery attacks [3], such as Bill- Clinton attack, six-month attack, etc.
that require a lot of computational resources but that in theory are still possible.

• An obvious disadvantage of MIKEY is that it requires either prior shared se-
crets, or a separate PKI, for authentication, with all attendant problems such

52 Chapter 5. A New Key Agreement Protocol for P2P VoIP Applications

as certificate dispersal, revocation, and so on. Moreover it does not grant key
secrecy at all, as this would require that the key is undistinguishable from a ran-
dom bit-string, whereas the DH result is directly used as session key. A simple
application of a deterministic hash function to the joint Diffie- Hellman value
does not provably produce an output which is indistinguishable from random.
By contrast, in protocols like TLS and IKE, the key is derived by hashing the
Diffie-Hellman value together with some (authenticated) random values gen-
erated by one or both participants.

In the following we propose a new key agreement protocol, inspiring to MIKEY
and ZRTP but alternative to the ones described in the previous chapter. During our
research work we developed three schemes of this protocol, the first one with no
certificates, the second one with certificates and certificates management, the third
one making use also of a Distributed Hash Table (DHT).

5.1. First Scheme: no certificates 53

5.1 First Scheme: no certificates

The objective of the proposed protocol, in its first implementation [40][41] is to se-
curely establish a master key between two multimedia SIP UAs that may or may not
have already communicated with each other.
The proposed protocol, in this first scheme, has been designed in such a way that it
does not rely on any PKI, user certificates or public keys, or pre-shared secret keys.

At the beginning of a new multimedia session, two UAs have to setup a new
master key. This is done through DH exchange. In order to protect such a key against
MITM attacks the DH exchange is authenticated by means of the vocal reading of a
Short Authentication String (SAS), hash-generated from the master key, like in ZRTP.
Actually the SAS authentication is used only the first time the two UAs try to initiate
a session, as successive attempts (actually the corresponding master keys) will be
authenticated with the previously established master keys in a security-chain way.

The proposed approach is similar to the one used by the ZRTP protocol, however
the two methods differ in some aspects and in particular:

1. in the information exchanged during the key setup,

2. in the way that such information is effectively encapsulated and exchanged.

Particularly, ZRTP establishes a new master key directly at media level, by using the
RTP protocol as transport support for the key negotiation. Instead, our solution uses
MIKEY as negotiation protocol, opportunely encapsulated within SIP messages used
for session setup.
In order to support a full authenticated DH exchange, the MIKEY protocol has been
extended to consider a MIKEY 3-way handshake (MIKEY originally supported DH
in a 2-way request/response transaction). The standard MIKEY message format was
not modified, whereas the available payloads have been extended in order to support
new fields and value types.

The new offer/answer/confirm handshake between the initiator (the caller) and
the responder (the callee) is depicted in figure 5.1.

The initiator starts the procedure by sending a MIKEY offer message including:

54 Chapter 5. A New Key Agreement Protocol for P2P VoIP Applications

Figure 5.1: SIP/MIKEY Session setup.

1. a MIKEY header (HDR),

2. identities of both the initiator (IDi) and responder (IDr),

3. a random value (RANDi),

5.1. First Scheme: no certificates 55

4. the list of offered encryption and hash algorithms (SAi),

5. the DH part of the initiator (DHi),

6. a list of HMAC of the last five retained secrets (i.e. the last previously estab-
lished master keys) (RS = rs1,rs2,rs3,rs4,rs5).

The retained secrets are computed as follows:

rs j = HMAC(MK j,
′′RetainedSecret ′′) (5.1)

If no previous sessions have been already setup between the two UAs, such list is
empty and SAS verification is requested in order to authenticate the DH exchange.

Once the responder receives the MIKEY offer message, it controls that the re-
tained secrets match the list stored at its own side: in case it succeeds, such a list is
further used to authenticate the DH exchange, otherwise the SAS authentication will
be used.
The responder calculates the new master key MK0 as the hash function of the result
of the DH algorithm (DHres) concatenated with other values as follows:

MK0 = hash(DHres||IDi||IDr||RANDi||RANDr||MK1||..||MK5) (5.2)

and replies with a MIKEY answer message similar to the offer, in which the RS list is
replaced by a HMACr calculated on the MIKEY answer message without the HMACr

field:

HMACr = HMAC(MK0, MIKEYanswer) (5.3)

In case the SAS is required, it is calculated as the 32 most significant bits of:

sas_hash = HMAC(MK0,
′′SAS′′) (5.4)

Once the initiator receives the MIKEY answer message, it checks the correctness
of the HMACr and, if it succeeds, it sends a MIKEY confirm message including a

56 Chapter 5. A New Key Agreement Protocol for P2P VoIP Applications

HMACi field for authenticating the original offer and confirming the correctness of
the new master key.

HMACi = HMAC(MK0, MIKEYo f f er) (5.5)

The complete offer/answer/confirm transaction between initiator (caller) and re-
sponder (callee) is depicted in figure 5.2.

Figure 5.2: MIKEY offer/answer/confirm transaction.

If the SAS authentication is ever necessary, both users are invited to read the
SAS aloud. If the SAS, showed at both UA sides, matches and each one recognizes
the counterpart voice, the new master key is considered secure and is saved in order
to be used for authenticating successive key agreements between the same pair of
UAs.

5.1. First Scheme: no certificates 57

This protocol has been further integrated into the SIP [42] INVITE procedure: when
two UAs want to securely establish new media sessions, e.g.: a VoIP call, they starts a
new SIP INVITE transaction comprising the MIKEY offer/answer/confirm exchange
for key agreement.
In order to provide key agreement functionality we extended the SIP protocol by
simply adding a new header field and mapping the MIKEY offer/answer/confirm
exchange onto the standard SIP INVITE 3-way handshake. The main motivations for
integrating the key management with SIP session setup were:

• the possibility to negotiate at the beginning of a session the security creden-
tial for any desired media flows, accordingly to what is done for other media
parameters (media types, codecs, transport ports, etc.);

• the possibility to reuse the same established master key for any successive me-
dia flows (no re-key negotiation is needed).

The MIKEY messages are exchanged inside SIP messages through a newly de-
fined header fiel we named “Security-Association”, in a similar way to that defined in
[43]. Our new header field is embedded into the SIP INVITE (carrying the MIKEY
offer), 200 OK (MIKEY answer) and ACK (MIKEY confirm) messages, in order to
implement the complete key management protocol.
The content of the new header field varies according to the SIP message: in the IN-
VITE message it includes the value mikey offer= followed by the base64 encoding
of the MIKEY offer message. The same happens in the 200 OK and ACK messages
with the respective only difference of the initial parameters answer= and confirm=.
In figure 5.3 an INVITE message with embedded MIKEY offer is shown, whereas a
screenshot of the implemented User Agent is depicted in figure 5.4. The protocol has
been completely developed in Java and mapped onto the SIP signaling according to
the specifications provided in the previous lines. The implementation is based on the
open source MjSip stack [44] that is a complete Java-based implementation of the
layered SIP stack architecture as defined by RFC 3261 [42].

58 Chapter 5. A New Key Agreement Protocol for P2P VoIP Applications

Figure 5.3: SIP INVITE message including MIKEY offer.

Figure 5.4: Screenshot of the developed secure mjUA.

5.2. Second Scheme: with certificates and their management 59

Figure 5.5: Three-way key agreement protocol, version two.

5.2 Second Scheme: with certificates and their management

In its second implementation our proposal still bases upon MIKEY and ZRTP authen-
tication both integrated into SIP, but it provides also other mechanisms for the master
key authentication that include the use of: previously established session master keys
(as in the first implementation), a pre-shared static secret, private-public keys and
digital certificates. In case certificates are used our protocol does not rely upon a cen-
tralized scheme like a PKI, but on an architecture of “web of trust” where certificate
signatures and public keys are exchanged between trusted peers.

The new three-way handshake is depicted in figure 5.5.
The AUT Ho f f er is particularized depending on the selected authentication method.

In case master keys from previously established sessions are used for authentication,
the AUT Ho f f er is formed by two values RS1 and RS2 (retained secrets) respectively
obtained directly by the last two previously established master keys MK1 and MK2,
in the same way as in equation 5.1:

RS j = HMAC(MK j,
′′RetainedSecret ′′) (5.6)

Such RS js are used when computing the actual authentication field in the AN-
SWER and CONFIRM messages.
The reason of sending two retained secrets is to face the case when in a previous set
up, one of the two parties succeeded into computing the correct master key and the

60 Chapter 5. A New Key Agreement Protocol for P2P VoIP Applications

other one does not (e.g. caused by a fatal interruption during the session set up). We
also thought that for this aim two secrets are enough instead of the five secrets of the
first implementation.

In case private-public keys are used for authentication, the AUT Ho f f er simply
contains the certificate of the initiator (CERTi) with the signatures of all peers that
decided to trust the initiator (by signing its name and public key through their own
private keys).

In case a pre-shared key (PSK) or passphrase are used, or in case of SAS-based
authentication, the AUT Ho f f er field contains no data, and it is left void. SAS or
certificate-based authentication methods are used only if no previous secrets have
been established and saved.

In the same way the list of master keys of equation 5.2 is in this version replaced
by MK j that is the previous master key corresponding to the more recent RS j that
matches one of the local stored retained secrets; if both given retained secrets do not
match the locally stored ones, or no RS has been given at all, MK j is left null.

The AUT Hanswer, appended to the ANSWER message, depends on the type of
authentication that is performed as well:

• if AUT Ho f f er contained retained secrets, the AUT Hanswer includes the match-
ing RS j and a HMACr computed according to equation 5.3;

• if AUT Ho f f er contained a certificate that can be verified with some of local
stored public keys (corresponding to other peers that may have signed the
initiator’s certificate), the responder composes an AUT Hanswer formed by the
HMACr signed by his private key;

• if AUT Ho f f er was empty and if a pre-shared key PSK is available, the respon-
der composes an AUT Hanswer formed by the HMACr encrypted with the PSK;

• otherwise AUT Hanswer is simply formed by the HMACr, and SAS authentica-
tion is performed successively.

Finally the Initiator last message is a MIKEY CONFIRM message including a
AUT Hcon f irm built with the same rules used by the responder. The AUT Hcon f irm in

5.2. Second Scheme: with certificates and their management 61

turn includes a HMACi that authenticate the original MIKEY OFFER with the new
master key, calculated as in equation 5.5.

5.2.1 Public Key Management and Verification

In case no previously retained secrets are available, peer’s certificates are used for
authenticating the DH exchange. Such authentication in turn is based on the capacity
of each peer to verify the digital signature of the MIKEY message sent by the other
peer, computed by such a peer by encrypting the HMAC of the message with his own
private key.
In order to correctly verify such a signature, each peer should have (and trust) the
public key of the other peer. Such a public key is also obtained during the key agree-
ment procedure within the OFFER and ANSWER messages. However in order to
properly use such a certificate-embedded public key the peer must verify at least one
of the signatures, attached to the certificate, performed by all entities that decided to
trust the given peer and sign his certificate.
This mechanism corresponds to the well-known Web of Trust approach used in other
public key distributed architectures (e.g. PGP [35]). In order to fully benefit of the
advantages of such an approach, a mechanism through which a peer can:

• obtain the public key (actually the certificate) of another peer (with all available
signatures);

• ask another peer to sign (and trust) its certificate,

is needed.

We chose to follow a very simple and secure approach through which each peer
may obtain public keys and signatures only from peers with whom it has already es-
tablished a SA.
This approach has the following limitation that we will try to overcome in the third
implementation: a node cannot setup a trusted connection with another node at dis-
tance longer than two steps apart from it. This is because for verifying a node’s cer-
tificate, an entity needs the public key of one of the nodes that are one hop far from

62 Chapter 5. A New Key Agreement Protocol for P2P VoIP Applications

the target node. For example, referring to Figure 5.6 node I may establish a SA with
D (by verifying D’s certificate with the public key of C), but it cannot establish a SA
with K.

Figure 5.6: Example of trust graph.

In order to perform the previous two tasks (obtain a public key and a signature),
we defined a mechanism still based on the SIP signaling, that applies to peers that
have already established a master key, and use that key to S/MIME [45] protect pay-
loads of SIP messages.
Such a mechanism expects that one peer that wants a public key and/or a signa-
ture from another peer sharing a SA, sends a SIP SUBSCRIBE message containing a
certificate signature request (simply his certificate with eventually other peers’ signa-
tures). The target peer, if agrees, responds with a 200 OK and sends back a NOTIFY
message containing the signed certificate and its public key. The described message
exchange is depicted in Figure 5.7 where CERTi is the certificate of the Initiator, signr

and K+
r are respectively the signature and the public key of the responder. Note that

such a mechanism is unidirectional: the peer initiator asks to the peer responder for
its public key and signature, so two runs are required in case of mutual public keys
and signatures exchange.

5.3. Analysis of the proposed key agreement protocol 63

Figure 5.7: Exchange of public keys and certificates.

5.3 Analysis of the proposed key agreement protocol

In this section a general analysis of the protocol in its second implementation and
some comparisons with other protocols are given.

As regards the analysis, we made some considerations about desirable features a
key agreement protocol should have:

• Freshness: the new master key is computed through a DH exchange and even-
tually through previously established master secrets. The ephemeral DH pro-
cedure provides freshness, as it depends upon random chosen inputs.

• Unknown key share attack: it happens when an adversary C makes one party,
say A, believe it is communicating with B while in fact it is communicating
with C itself. It is prevented providing the identities of both parties, both in
plain text and ciphered through the MAC in the second and third messages.
(This is a further explanation of the presence of a Confirm message).

• Replay attack: it is prevented with the presence of RAND fields.

• Key confirmation: through the second and third messages.

64 Chapter 5. A New Key Agreement Protocol for P2P VoIP Applications

• Computational costs: the same as basic ephemeral DH plus signatures (two
HMAC).

• Entity Authentication: achieved through certificates, voice recognition or pre-
shared secrets, assuming the private keys or pre-shared secrets are not compro-
mised and/or the voice has not been forged.

• Liveness: as long as the responder answers the initiator.

• Key authentication: the new master key is known only to the initiator and the
responder. This is verified because only if entity authentication is granted the
procedure goes on, otherwise it is stopped and the new just established key
withdrawn. The second and third messages grant this property.

• Forward secrecy: perfect forward secrecy as the new master key could depend
upon long term secrets (the previous master keys), but it surely depends upon
a fresh ephemeral DH result.

• Key control: neither party can have full control over the master key as it de-
pends upon ephemeral DH result.

• Small subgroup attack: mitigated with the implicit consideration that the group
G of the DH algorithm is of prime order.

• Key compromise impersonification attack: it is an attack where an adversary
stolen the private key of a party can impersonate another party. It is avoided as
private keys are never transmitted.

• Disclosure of identities: possible because there are ID fields transmitted in a
not encrypted way.

• Key integrity: this is granted if the new master key is given only by the input of
both parties. This property holds recursively considering the previous master
secrets.

5.3. Analysis of the proposed key agreement protocol 65

• Key consistency: it holds for the ephemeral DH algorithm used. Both parties
arrive to the same key as also the eventually previous master secrets are built
in the same way.

5.3.1 Comparison with existing protocols

Compared to [46], our proposal has the advantage of not relying in any way on cen-
tralized servers.
If we see [47], it permits key agreement through a differentiated routing but it is not
suitable for real time applications, it is attackable by the link corruption attack under
certain conditions and moreover it needs a DHT structure; our proposal instead does
not need such a superstructure but employs a self-maintained public-key distribution
system. Differently from [48] our approach is integrated into SIP, and as stated above
it is resilient to some attack that [49] proves [50] is subject to. [51] is the most sim-
ilar work to ours in literature but it anyway bases upon the trustworthiness of third
parties, namely SIP Proxies, and on an architecture for certificate distributions.

66 Chapter 5. A New Key Agreement Protocol for P2P VoIP Applications

5.4 Third Scheme: use of a Distributed Hash Table (DHT)

The second implementation presents a temporal problem, that is, it is expected that all
necessary connections (for connections we intend a bidirectional security association
between peers) are already setup. Referring to Figure 5.8 all the connections are
already setup in the communication path represented by the arrow. So node A could
communicate with Z node with the second implementation of our protocol: in fact Z
could ask D to sign its certificate and D could ask in turn to C to sign Z’s certificate
and so on. So, finally, Z could communicate with A sending to A its certificate signed
by B.

Figure 5.8: Security associations between peers.

However these issues are still open :

• there is a temporal problem, that is, all the nodes connecting Z with A must be
online when Z needs to communicate with A and moreover must already have
setup the SAs with all the other nodes in the path.

• there is a great number of bytes and data to be exchanged.

For this reasons we studied further towards a further improvement concerning the
usage of a Distributed Hash Table (DHT).

5.4. Third Scheme: use of a Distributed Hash Table (DHT) 67

We devised three different but similar solutions for this third implementation and we
are still evaluating which one could be the best one.

5.4.1 Certificateless DHT

In this case a DHT is used to store for each peer a composed data formed by various
peer information and his/her public key, as depicted in the table of Figure 5.9.

Figure 5.9: First possible usage of a DHT in the third implementation.

For each peer only one public key is maintained within the DHT, and its revoca-
tion and modification are possible only by the owner after proving that he/she has the
corresponding private key. When revoking a possible compromised public key, the
owner has also the possibility to (and should) republish a new valid key.
Although through the DHT it is possible to obtain a public key associated to a peer,
the proposed key agreement protocol is still required in order to:

• be sure one is speaking with the person one wants

• verify in a more robust way the public key in the DHT (more precisely the
DHT get operation).

68 Chapter 5. A New Key Agreement Protocol for P2P VoIP Applications

There is still an open question on who is going to publish the public key in the DHT,
probably the owner itself.

5.4.2 DHT with certificates

During our key agreement protocol direct exchange, the peers exchange their public
key. Then if a SA is established they sign their counterpart public key and they publish
it in the DHT that has the form of figure 5.10. The key is the hash of ID/URI, the value
an array of public keys signed by various peers.

Figure 5.10: Second possible usage of a DHT in the third implementation.

5.4. Third Scheme: use of a Distributed Hash Table (DHT) 69

This solution provides that:

• more than one public key are possible for the same ID;

• it is up to the retriever to trust or not one or more signatures and in case to
retrieve other public keys to verify the signatures.

Our key agreement protocol is needed to obtain the public key of the counterpart
peer but not for robustness of the DHT get that depends on other things such as
trust on the signatures. Maybe there can be a threshold or a quorum on the trusted
signatures to decide whether to trust or not a certain public key.

5.4.3 DHT with certificates but only one possible public key per ID

This solution puts together ideas from the previous two subsections. In the DHT
there can be only one public key per ID accompanied by all its signatures. The idea
is depicted in figure 5.11.

Figure 5.11: Third possible usage of a DHT in the third implementation.

Only one having the corresponding private key can edit the public key in the DHT
but also signatures count: trusting one or more signature is up to the trust policy.
Our key agreement protocol is still needed to solve the problem of homonymous
names like in subsection 5.4.1.

Conclusions

In this thesis work we prsented some possible study solutions to some security prob-
lems both at application and at routing level of likely multimedia peer-to-peer com-
munications.

As regards the application level, following a study of current state-of-the-art key
agreement protocols, both for multimedia communications and not, we provided a
new one for establishing a security association between two peers willing to set up
a SIP multimedia session. We based our research mainly upon MIKEY, ZRTP and
SIP integrating the best features of each one into a new key agreement protocol that
grants authentication according to various possibilities:

• pre-shared secret;

• certificates;

• Short Authentication String.

We also added to our key agreement protocol, which has been analyzed according
to some desired features, two possible mechanisms to exchange in a p2p manner
certificates and public keys: one based upon the subscribe and notify SIP methods,
the other one exploiting a DHT structure and in case also trust or threshold concepts.

Trust was also the possible countermeasure we studied to cope with the sybil
attack and all its possible negative consequences in a DHT environment at routing

72 Conclusions

level. Particularly we mixed trust and standard mechanism in the Kademlia DHT to
find out a method to alleviate the negative effects of an increasing number of sybil in
the p2p network onto the resource lookup procedure.

Both the studied solutions need improvements, in the first case to verify accu-
rately the performances of the protocol against various type of attacks and imple-
menting in Java language also scheme two and three; moreover a choice of the better
solution for the DHT usage in the third scheme is still an open issue. In the second
case, finding out an appropriate balancing between trust and standard kademlia pro-
cedure and the optimum formula to both soothe away the effects of sybil and maintain
quite high the performances is still an open question that could be the objective of
possible future works.

Bibliography

[1] John R. Douceur. The sybil attack. In Revised Papers from the First Interna-
tional Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 251–260, London,
UK, 2002. Springer-Verlag. Available from: http://portal.acm.org/
citation.cfm?id=646334.687813.

[2] J. Arkko, E. Carrara, F. Lindholm, M. Naslund, and K. Norrman. MIKEY:
Multimedia Internet KEYing. RFC 3830 (Proposed Standard), August 2004.
Updated by RFC 4738. Available from: http://www.ietf.org/rfc/
rfc3830.txt.

[3] P. Zimmermann, A. Johnston, and J. Callas. ZRTP: Media Path Key
Agreement for Unicast Secure RTP. Obsolete Internet-Draft draft-
zimmermann-avt-zrtp-22, Internet Engineering Task Force, June 2010.
Work in progress. Available from: http://www.ietf.org/id/

draft-zimmermann-avt-zrtp-22.txt.

[4] Lin Wang. Attacks Against Peer-to-peer Networks and Countermeasures. Tech-
nical report, Helsinki University of Technology, December 2006.

[5] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer informa-
tion system based on the xor metric. In Revised Papers from the First Inter-
national Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 53–65, London,
UK, 2002. Springer-Verlag. Available from: http://portal.acm.org/
citation.cfm?id=646334.687801.

http://portal.acm.org/citation.cfm?id=646334.687813
http://portal.acm.org/citation.cfm?id=646334.687813
http://www.ietf.org/rfc/rfc3830.txt
http://www.ietf.org/rfc/rfc3830.txt
http://www.ietf.org/id/draft-zimmermann-avt-zrtp-22.txt
http://www.ietf.org/id/draft-zimmermann-avt-zrtp-22.txt
http://portal.acm.org/citation.cfm?id=646334.687801
http://portal.acm.org/citation.cfm?id=646334.687801

74 Bibliography

[6] Ion Stoica, Robert Morris, David R. Karger, M. Frans Kaashoek, and Hari Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for internet applica-
tions. In SIGCOMM, pages 149–160, 2001.

[7] B.Y. Zhao, Ling Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D. Ku-
biatowicz. Tapestry: a resilient global-scale overlay for service deployment.
Selected Areas in Communications, IEEE Journal on, 22(1):41 – 53, 2004.
doi:10.1109/JSAC.2003.818784.

[8] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content-addressable network. In Proceedings of the
2001 conference on Applications, technologies, architectures, and protocols for
computer communications, SIGCOMM ’01, pages 161–172, New York, NY,
USA, 2001. ACM. Available from: http://doi.acm.org/10.1145/
383059.383072, doi:http://doi.acm.org/10.1145/383059.

383072.

[9] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine,
and Daniel Lewin. Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web. In Proceed-
ings of the twenty-ninth annual ACM symposium on Theory of computing,
STOC ’97, pages 654–663, New York, NY, USA, 1997. ACM. Avail-
able from: http://doi.acm.org/10.1145/258533.258660, doi:
http://doi.acm.org/10.1145/258533.258660.

[10] Baptiste Pretre. Attacks on Peer-to-peer Networks. PhD thesis, Dept. of Com-
puter Science, Swiss Federal Institute of Technology (ETH) Zurich, 2005.

[11] Emil Sit and Robert Morris. Security considerations for peer-to-peer distributed
hash tables. In Proceedings of the 1st International Workshop on Peer-to-Peer
Systems (IPTPS), Cambridge, MA, March 2002.

[12] Brian Neil, Levine Clay Shields, and N. Boris Margolin. A survey of solutions
to the sybil attack.

http://dx.doi.org/10.1109/JSAC.2003.818784
http://doi.acm.org/10.1145/383059.383072
http://doi.acm.org/10.1145/383059.383072
http://dx.doi.org/http://doi.acm.org/10.1145/383059.383072
http://dx.doi.org/http://doi.acm.org/10.1145/383059.383072
http://doi.acm.org/10.1145/258533.258660
http://dx.doi.org/http://doi.acm.org/10.1145/258533.258660
http://dx.doi.org/http://doi.acm.org/10.1145/258533.258660

Bibliography 75

[13] George Danezis, Chris Lesniewski-laas, M. Frans Kaashoek, and Ross Ander-
son. Sybil-resistant dht routing. In ESORICS, pages 305–318. Springer, 2005.

[14] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and
Dan S. Wallach. Secure routing for structured peer-to-peer over-
lay networks, 2002. Available from: http://doi.acm.org/10.

1145/1060289.1060317, doi:http://doi.acm.org/10.1145/

1060289.1060317.

[15] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and Abraham Flaxman.
Sybilguard: defending against sybil attacks via social networks. In Proceed-
ings of the 2006 conference on Applications, technologies, architectures, and
protocols for computer communications, SIGCOMM ’06, pages 267–278, New
York, NY, USA, 2006. ACM. Available from: http://doi.acm.org/10.
1145/1159913.1159945, doi:http://doi.acm.org/10.1145/

1159913.1159945.

[16] Tyson Condie, Varun Kacholia, Sriram Sankararaman, Joseph M. Hellerstein,
and Petros Maniatis. Induced churn as shelter from routing-table poisoning.
In In Proc. 13th Annual Network and Distributed System Security Symposium
(NDSS, 2006.

[17] Newso James, Elaine Shi, Dawn Song, and Adrian Perrig. The sybil at-
tack in sensor networks: analysis & defenses. In Proceedings of the
3rd international symposium on Information processing in sensor networks,
IPSN ’04, pages 259–268, New York, NY, USA, 2004. ACM. Avail-
able from: http://doi.acm.org/10.1145/984622.984660, doi:
http://doi.acm.org/10.1145/984622.984660.

[18] Atul Singh, Tsuen wan Ngan, Peter Druschel, and Dan S. Wallach. Eclipse
attacks on overlay networks: Threats and defenses. In IEEE INFOCOM, 2006.

[19] H. Rowaihy, W. Enck, P. McDaniel, and T. La Porta. Limiting sybil attacks in
structured p2p networks. In INFOCOM 2007. 26th IEEE International Con-

http://doi.acm.org/10.1145/1060289.1060317
http://doi.acm.org/10.1145/1060289.1060317
http://dx.doi.org/http://doi.acm.org/10.1145/1060289.1060317
http://dx.doi.org/http://doi.acm.org/10.1145/1060289.1060317
http://doi.acm.org/10.1145/1159913.1159945
http://doi.acm.org/10.1145/1159913.1159945
http://dx.doi.org/http://doi.acm.org/10.1145/1159913.1159945
http://dx.doi.org/http://doi.acm.org/10.1145/1159913.1159945
http://doi.acm.org/10.1145/984622.984660
http://dx.doi.org/http://doi.acm.org/10.1145/984622.984660
http://dx.doi.org/http://doi.acm.org/10.1145/984622.984660

76 Bibliography

ference on Computer Communications. IEEE, pages 2596 –2600, May 2007.
doi:10.1109/INFCOM.2007.328.

[20] Nikita Borisov. Computational puzzles as sybil defenses. In Proceed-
ings of the Sixth IEEE International Conference on Peer-to-Peer Comput-
ing, pages 171–176, Washington, DC, USA, 2006. IEEE Computer Soci-
ety. Available from: http://portal.acm.org/citation.cfm?id=
1157740.1158254, doi:10.1109/P2P.2006.10.

[21] Moritz Steiner, Taoufik En-najjary, and Ernst W. Biersack. Exploiting kad: Pos-
sible uses and misuses. ACM SIGCOMM CCR, 37:2007.

[22] Jochen Dinger and Hannes Hartenstein. Defending the sybil attack in p2p net-
works: Taxonomy, challenges, and a proposal for self-registration. In ARES
’06: PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON
AVAILABILITY, RELIABILITY AND SECURITY (ARES’06), pages 756–763,
2006.

[23] M. Agosti M. Amoretti. deus-project hosting on google code [online]. 2010.
Available from: http://code.google.com/p/deus/.

[24] R. V. V. S. V. Prasad, Vegi Srinivas, V. Valli Kumari, and K. V. S. V. N. Raju. An
effective calculation of reputation in p2p networks. JNW, 4(5):332–342, 2009.

[25] Xu Wu, Jingsha He, and Fei Xu. An enhanced trust model based on reputation
for p2p networks. In Sensor Networks, Ubiquitous and Trustworthy Computing,
2008. SUTC ’08. IEEE International Conference on, pages 67 –73, 2008. doi:
10.1109/SUTC.2008.28.

[26] Debora Donato, Mario Paniccia, Maddalena Selis, Carlos Castillo, Giovanni
Cortese, and Stefano Leonardi. New metrics for reputation management in
p2p networks. In Proceedings of the 3rd international workshop on Ad-
versarial information retrieval on the web, AIRWeb ’07, pages 65–72, New
York, NY, USA, 2007. ACM. Available from: http://doi.acm.org/10.

http://dx.doi.org/10.1109/INFCOM.2007.328
http://portal.acm.org/citation.cfm?id=1157740.1158254
http://portal.acm.org/citation.cfm?id=1157740.1158254
http://dx.doi.org/10.1109/P2P.2006.10
http://code.google.com/p/deus/
http://dx.doi.org/10.1109/SUTC.2008.28
http://dx.doi.org/10.1109/SUTC.2008.28
http://doi.acm.org/10.1145/1244408.1244421
http://doi.acm.org/10.1145/1244408.1244421

Bibliography 77

1145/1244408.1244421, doi:http://doi.acm.org/10.1145/

1244408.1244421.

[27] So Young Lee, O-Hoon Kwon, Jong Kim, and Sung Je Hong. A reputation man-
agement system in structured peer-to-peer networks. In Enabling Technologies:
Infrastructure for Collaborative Enterprise, 2005. 14th IEEE International
Workshops on, pages 362 – 367, 2005. doi:10.1109/WETICE.2005.9.

[28] A. A. Selcuk, E. Uzun, and M. R. Pariente. A reputation-based trust manage-
ment system for p2p networks. In Proceedings of the 2004 IEEE International
Symposium on Cluster Computing and the Grid, CCGRID ’04, pages 251–258,
Washington, DC, USA, 2004. IEEE Computer Society. Available from: http:
//portal.acm.org/citation.cfm?id=1111683.1111799.

[29] Paul-Alexandru Chirita, Paul Alex, Ru Chirita, Wolfgang Nejdl, Mario
Schlosser, and Oana Scurtu. Personalized reputation management in p2p net-
works, 2004.

[30] Minaxi Gupta, Paul Judge, and Mostafa Ammar. A reputation system for peer-
to-peer networks, 2003.

[31] Yao Wang and Julita Vassileva. Trust and reputation model in peer-to-peer net-
works. In Proceedings of the 3rd International Conference on Peer-to-Peer
Computing, P2P ’03, pages 150–, Washington, DC, USA, 2003. IEEE Com-
puter Society. Available from: http://portal.acm.org/citation.
cfm?id=942805.943810.

[32] S. Kent and R. Atkinson. Security Architecture for the Internet Protocol. RFC
2401 (Proposed Standard), November 1998. Obsoleted by RFC 4301, updated
by RFC 3168. Available from: http://www.ietf.org/rfc/rfc2401.
txt.

[33] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard), August 2008. Updated by RFCs 5746,
5878. Available from: http://www.ietf.org/rfc/rfc5246.txt.

http://doi.acm.org/10.1145/1244408.1244421
http://doi.acm.org/10.1145/1244408.1244421
http://dx.doi.org/http://doi.acm.org/10.1145/1244408.1244421
http://dx.doi.org/http://doi.acm.org/10.1145/1244408.1244421
http://dx.doi.org/10.1109/WETICE.2005.9
http://portal.acm.org/citation.cfm?id=1111683.1111799
http://portal.acm.org/citation.cfm?id=1111683.1111799
http://portal.acm.org/citation.cfm?id=942805.943810
http://portal.acm.org/citation.cfm?id=942805.943810
http://www.ietf.org/rfc/rfc2401.txt
http://www.ietf.org/rfc/rfc2401.txt
http://www.ietf.org/rfc/rfc5246.txt

78 Bibliography

[34] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Transport Layer Proto-
col. RFC 4253 (Proposed Standard), January 2006. Available from: http:
//www.ietf.org/rfc/rfc4253.txt.

[35] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. OpenPGP
Message Format. RFC 4880 (Proposed Standard), November 2007. Updated
by RFC 5581. Available from: http://www.ietf.org/rfc/rfc4880.
txt.

[36] H. Afifi D. Seret H. Soussi, M. Hussain. Ikev1 and ikev2: A quantitative analy-
ses, 2005.

[37] D. Maughan, M. Schertler, M. Schneider, and J. Turner. Internet Security
Association and Key Management Protocol (ISAKMP). RFC 2408 (Pro-
posed Standard), November 1998. Obsoleted by RFC 4306. Available from:
http://www.ietf.org/rfc/rfc2408.txt.

[38] Riccardo Bresciani. The ZRTP Protocol Security Considerations. Technical
report, École Normale and Supérieure Cachan, may 2007.

[39] P. Gupta and V. Shmatikov. Security analysis of voice-over-ip protocols. In
Computer Security Foundations Symposium, 2007. CSF ’07. 20th IEEE, pages
49 –63, 2007. doi:10.1109/CSF.2007.31.

[40] R. Pecori and L. Veltri. A key agreement protocol for p2p voip applications. In
Software, Telecommunications Computer Networks, 2009. SoftCOM 2009. 17th
International Conference on, pages 276 –280, 2009.

[41] S. Cirani, R. Pecori, and L. Veltri. A peer-to-peer secure voip architecture.
In Proceedings of ITWDC 2010. 21st International Tyrrhenian Workshop on
Digital Communications: Trustworthy Internet, sept. 2010.

[42] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. RFC 3261
(Proposed Standard), June 2002. Updated by RFCs 3265, 3853, 4320, 4916,

http://www.ietf.org/rfc/rfc4253.txt
http://www.ietf.org/rfc/rfc4253.txt
http://www.ietf.org/rfc/rfc4880.txt
http://www.ietf.org/rfc/rfc4880.txt
http://www.ietf.org/rfc/rfc2408.txt
http://dx.doi.org/10.1109/CSF.2007.31

Bibliography 79

5393, 5621, 5626, 5630, 5922, 5954, 6026. Available from: http://www.
ietf.org/rfc/rfc3261.txt.

[43] J. Arkko, V. Torvinen, G. Camarillo, A. Niemi, and T. Haukka. Security Mecha-
nism Agreement for the Session Initiation Protocol (SIP). RFC 3329 (Proposed
Standard), January 2003. Available from: http://www.ietf.org/rfc/
rfc3329.txt.

[44] L. Veltri. Mjsip project [online]. 2006. Available from: http://www.
mjsip.org/.

[45] B. Ramsdell. Secure/Multipurpose Internet Mail Extensions (S/MIME) Ver-
sion 3.1 Message Specification. RFC 3851 (Proposed Standard), July 2004.
Obsoleted by RFC 5751. Available from: http://www.ietf.org/rfc/
rfc3851.txt.

[46] Jen-Chiun Lin, Kuo-Hsuan Huang, Feipei Lai, and Hung-Chang Lee.
Secure and efficient group key management with shared key derivation.
Computer Standards & Interfaces, 31(1):192 – 208, 2009. Available
from: http://www.sciencedirect.com/science/article/

B6TYV-4R8H1TR-6/2/fb531f2c68f8b92beebf1608a5a82746,
doi:DOI:10.1016/j.csi.2007.11.005.

[47] Yuuki Takano, Naoki Isozaki, and Yoichi Shinoda. Multipath key exchange
on p2p networks. In Proceedings of the First International Conference
on Availability, Reliability and Security, pages 748–755, Washington, DC,
USA, 2006. IEEE Computer Society. Available from: http://portal.
acm.org/citation.cfm?id=1130897.1130998, doi:10.1109/

ARES.2006.87.

[48] Mengbo Hou and Qiuliang Xu. A secure two-party key agreement protocol
with key escrow and perfect forward secrecy. In Proceedings of the 3rd in-
ternational conference on Anti-Counterfeiting, security, and identification in
communication, ASID’09, pages 501–504, Piscataway, NJ, USA, 2009. IEEE

http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3329.txt
http://www.ietf.org/rfc/rfc3329.txt
http://www.mjsip.org/
http://www.mjsip.org/
http://www.ietf.org/rfc/rfc3851.txt
http://www.ietf.org/rfc/rfc3851.txt
http://www.sciencedirect.com/science/article/B6TYV-4R8H1TR-6/2/fb531f2c68f8b92beebf1608a5a82746
http://www.sciencedirect.com/science/article/B6TYV-4R8H1TR-6/2/fb531f2c68f8b92beebf1608a5a82746
http://dx.doi.org/DOI: 10.1016/j.csi.2007.11.005
http://portal.acm.org/citation.cfm?id=1130897.1130998
http://portal.acm.org/citation.cfm?id=1130897.1130998
http://dx.doi.org/10.1109/ARES.2006.87
http://dx.doi.org/10.1109/ARES.2006.87

80 Bibliography

Press. Available from: http://portal.acm.org/citation.cfm?
id=1719110.1719229.

[49] Mengbo Hou and Qiuliang Xu. On the security of certificateless authen-
ticated key agreement protocol (cl-ak) for grid computing. In Proceedings
of the 2009 Fourth ChinaGrid Annual Conference, CHINAGRID ’09, pages
128–133, Washington, DC, USA, 2009. IEEE Computer Society. Available
from: http://dx.doi.org/10.1109/ChinaGrid.2009.13, doi:
http://dx.doi.org/10.1109/ChinaGrid.2009.13.

[50] Shengbao Wang, Zhenfu Cao, and Haiyong Bao. Efficient certificateless au-
thentication and key agreement (cl-ak) for grid computing, 2006.

[51] O. Jung, M. Petraschek, T. Hoeher, and I. Gojmerac. Using sip identity to
prevent man-in-the-middle attacks on zrtp. In Wireless Days, 2008. WD ’08. 1st
IFIP, pages 1 –5, 2008. doi:10.1109/WD.2008.4812920.

http://portal.acm.org/citation.cfm?id=1719110.1719229
http://portal.acm.org/citation.cfm?id=1719110.1719229
http://dx.doi.org/10.1109/ChinaGrid.2009.13
http://dx.doi.org/http://dx.doi.org/10.1109/ChinaGrid.2009.13
http://dx.doi.org/http://dx.doi.org/10.1109/ChinaGrid.2009.13
http://dx.doi.org/10.1109/WD.2008.4812920

Acknowledgments

These are not simply acknowledgements but sincere thank yous to some people I met
during these years in Parma.

Annamaria and Stefano: thank you, mainly for the period I worked together with
them, I felt myself very comfortable with them, learnt a lot and more important, they
gave me the chance to write my first paper and to attend my first conference (Fotonica
2009). I hope they are a bit proud and happy for the work we made together, even if
it was a small work.

Federica: thank you, mainly for the period I worked with her, she has been the
perfect work-mate, I will never forget...thank you for letting me enrich her postcards
wall,for having withstood me in the work together...I wish her all the best for her
career.

Gianluigi: thank you for his company in Oahu when I was alone, in that dream
trip to Hawaii. Thanks for his few but right words of advice in our trips for eCampus
. They all have been very beautiful moments.

Armando: a special person, he is THE “teacher”. I will always envy his proper
parlance and his security when speaking. He was very supportive with me.

Giulio: a great person, one of the best people I have ever known, but with the
courage to say things in front of others. I wish him all the best for him and his family.

Anila: thank you for her sweet and sensitive company, and for the English I learnt
from her.

Simone: I would have liked to work well like he did, and I hope he will be luckier
than me. A friend with whom I hope to keep in touch and make many things together

82 Acknowledgments

that we did not make in these three years. I will always remember the trip to Hawaii,
unforgettable. Thank you also for the words of advice on life in general.

Nicolò: thank you for the smiles and the light moments spent together, I hope he
will be a great Ph.D. student.

Tommaso: one of the people I value more. A perfect researcher, temporary but
perfect.

Luca: last but not least. I think I learnt a lot from him not only in work. Thank
you to him is not enough to express the esteem and the admiration. He will be always
welcome in my home, and my enduring support will be with him as long as he wants.
Thank you for his infinite patience with me, I hope he is a bit proud of me.

Thanky you also to my family for its constant support.
Thank you also to Erica, who besides Luca has been my support every week,

thank you to Alfonso, Pasquale, MariaTeresa, Salvatore,
thank you to the guys and girls of Voladora Ultimate frisbee team,
thank you to my tennis girls like Giulia, Irene and Stefania
tank you to the guys and girls of the latin dancing course....
thank you to all the colleagues met at the conferences: Elisa, Alice, Mauricio, Amedeo,
Rajiv who let me go to Miami, thank you...
thank you to past colleagues like Dario, Lorenzo, Aldo, Alan, Berto...
thank you to present colleagues like Amina, Andrea Modenini, Davide, Busa...
Special thanks also to AMC, Emanuela and Stella!

	Introduction
	Peer-to-peer Networks
	DHT Networks
	Chord
	Kademlia

	Security issues and countermeasures in peer-to-peer networks
	General Malicious Activities
	Specific Attacks to P2P Networks
	Sybil Attack
	Find node/ find value operations
	Join operations

	Analysis of Sybils Effects on Kademlia and Possible Countermeasures
	Simulations conditions
	Effects of sybil nodes
	Reputation in P2P networks
	Model
	Factors
	Threat models
	Metrics
	Studied solution

	Security issues and security protocols at application level
	Current Security Protocols Comparison
	General data exchange security protocols
	IPSec
	Transport Layer Security (TLS)
	Secure SHell (SSH)

	Multimedia key exchange protocols
	Multimedia Internet KEYing (MIKEY)
	ZRTP

	Common key agreement scheme
	IPSec
	TLS
	SSH
	MIKEY

	A New Key Agreement Protocol for P2P VoIP Applications
	First Scheme: no certificates
	Second Scheme: with certificates and their management
	Public Key Management and Verification

	Analysis of the proposed key agreement protocol
	Comparison with existing protocols

	Third Scheme: use of a Distributed Hash Table (DHT)
	Certificateless DHT
	DHT with certificates
	DHT with certificates but only one possible public key per ID

	Conclusions
	Bibliography
	Acknowledgments

