11,840 research outputs found

    Variability of Fe II Emission Features in the Seyfert 1 Galaxy NGC 5548

    Get PDF
    We study the low-contrast Fe II emission blends in the ultraviolet (1250--2200A) and optical (4000--6000A) spectra of the Seyfert 1 galaxy NGC 5548 and show that these features vary in flux and that these variations are correlated with those of the optical continuum. The amplitude of variability of the optical Fe II emission is 50% - 75% that of Hbeta and the ultraviolet Fe II emission varies with an even larger amplitude than Hbeta. However, accurate measurement of the flux in these blends proves to be very difficult even using excellent Fe II templates to fit the spectra. We are able to constrain only weakly the optical Fe II emission-line response timescale to a value less than several weeks; this upper limit exceeds all the reliably measured emission-line lags in this source so it is not particularly meaningful. Nevertheless, the fact that the optical Fe II and continuum flux variations are correlated indicates that line fluorescence in a photoionized plasma, rather than collisional excitation, is responsible for the Fe II emission. The iron emission templates are available upon request.Comment: 34 pages including 12 figures and 2 tables. Accepted for publication by ApJ (tentatively in vol. 626 June 10, 2005

    On the lack of correlation between Mg II 2796, 2803 Angstrom and Lyman alpha emission in lensed star-forming galaxies

    Get PDF
    We examine the Mg II 2796, 2803 Angstrom, Lyman alpha, and nebular line emission in five bright star-forming galaxies at 1.66<z<1.91 that have been gravitationally lensed by foreground galaxy clusters. All five galaxies show prominent Mg II emission and absorption in a P Cygni profile. We find no correlation between the equivalent widths of Mg II and Lyman alpha emission. The Mg II emission has a broader range of velocities than do the nebular emission line profiles; the Mg II emission is redshifted with respect to systemic by 100 to 200 km/s. When present, Lyman alpha is even more redshifted. The reddest components of Mg II and Lyman alpha emission have tails to 500-600 km/s, implying a strong outflow. The lack of correlation in the Mg II and Lyman alpha equivalent widths, the differing velocity profiles, and the high ratios of Mg II to nebular line fluxes together suggest that the bulk of Mg II emission does not ultimately arise as nebular line emission, but may instead be reprocessed stellar continuum emission.Comment: The Astrophysical Journal, in press. 6 pages, 2 figure

    Detection of Iron Emission in the z = 5.74 QSO SDSSp J104433.04-012502.2

    Full text link
    We obtained near-infrared spectroscopy of the z=5.74 QSO, SDSSp J104433.04-012 502.2 with the Infrared Camera and Spectrograph of the Subaru telescope. The redshift of 5.74 corresponds to a cosmological age of 1.0 Gyr for the current Lambda-dominated cosmology. We found a similar strength of the Fe II (3000-3500 A) emission lines in SDSSp J104433.04-012502.2 as in low redshift QSOs. This is the highest redshift detection of iron. We subtracted a power-law continuum from the spectrum and fitted model Fe II emission and Balmer continuum. The rest equivalent width of Fe II (3000-3500 A) is ~30 A which is similar to those of low redshift QSOs measured by the same manner. The chemical enrichment models that assume the life time of the progenitor of SNe Ia is longer than 1 Gyr predict that weaker Fe II emission than low red shift. However, none of the observed high redshift (z > 3) QSOs show a systematic dec rease of Fe II emission compared with low redshift QSOs. This may due to a shorter lifetime of SNe Ia in QSO nuclei than in the solar neighborhood. Another reason of strong Fe II emission at z=5.74 may be longer cosmological age due to smaller Omega_M.Comment: 5 pages, 3 figure

    The Origin of Fe II Emission in AGN

    Get PDF
    We used a very large set of models of broad emission line (BEL) clouds in AGN to investigate the formation of the observed Fe II emission lines. We show that photoionized BEL clouds cannot produce both the observed shape and observed equivalent width of the 2200-2800A Fe II UV bump unless there is considerable velocity structure corresponding to a microturbulent velocity parameter v_turb > 100 km/s for the LOC models used here. This could be either microturbulence in gas that is confined by some phenomenon such as MHD waves, or a velocity shear such as in the various models of winds flowing off the surfaces of accretion disks. The alternative way that we can find to simultaneously match both the observed shape and equivalent width of the Fe II UV bump is for the Fe II emission to be the result of collisional excitation in a warm, dense gas. Such gas would emit very few lines other than Fe II. However, since the collisionally excited gas would constitute yet another component in an already complicated picture of the BELR, we prefer the model involving turbulence. In either model, the strength of Fe II emission relative to the emission lines of other ions such as Mg II depends as much on other parameters (either v_turb or the surface area of the collisionally excited gas) as it does on the iron abundance. Therefore, the measurement of the iron abundance from the FeII emission in quasars becomes a more difficult problem.Comment: 23 pages. Accepted by Ap

    A Systematic Analysis of Fe II Emission in Quasars: Evidence for Inflow to the Central Black Hole

    Full text link
    Broad Fe II emission is a prominent feature of the optical and ultraviolet spectra of quasars. We report on a systematical investigation of optical Fe II emission in a large sample of 4037 z < 0.8 quasars selected from the Sloan Digital Sky Survey. We have developed and tested a detailed line-fitting technique, taking into account the complex continuum and narrow and broad emission-line spectrum. Our primary goal is to quantify the velocity broadening and velocity shift of the Fe II spectrum in order to constrain the location of the Fe II-emitting region and its relation to the broad-line region. We find that the majority of quasars show Fe II emission that is redshifted, typically by ~ 400 km/s but up to 2000 km/s, with respect to the systemic velocity of the narrow-line region or of the conventional broad-line region as traced by the Hbeta line. Moreover, the line width of Fe II is significantly narrower than that of the broad component of Hbeta. We show that the magnitude of the Fe II redshift correlates inversely with the Eddington ratio, and that there is a tendency for sources with redshifted Fe II emission to show red asymmetry in the Hbeta line. These characteristics strongly suggest that Fe II originates from a location different from, and most likely exterior to, the region that produces most of Hbeta. The Fe II-emitting zone traces a portion of the broad-line region of intermediate velocities whose dynamics may be dominated by infall.Comment: 20 pages, 14 figures, accepted for publication in Ap

    The Nuclear Ionized Gas in the Radio Galaxy M84 (NGC 4374)

    Full text link
    We present optical images of the nucleus of the nearby radio galaxy M84 (NGC 4374 = 3C272.1) obtained with the Wide Field/Planetary Camera 2 (WFPC2) aboard the Hubble Space Telescope (HST). Our three images cover the Hα\alpha + [N II] emission lines as well as the V and I continuum bands. Analysis of these images confirms that the Hα\alpha + [N II] emission in the central 5'' (410 pc) is elongated along position angle (P.A.) \approx 72\arcdeg, which is roughly parallel to two nuclear dust lanes.Our high-resolution images reveal that the Hα\alpha + [N II] emission has three components, namely a nuclear gas disk,an `ionization cone', and outer filaments. The nuclear disk of ionized gas has diameter 1=82\approx 1'' = 82 pc and major axis P.A. \approx 58\arcdeg \pm 6\arcdeg. On an angular scale of 0\farcs5, the major axis of this nuclear gas disk is consistent with that of the dust. However, the minor axis of the gas disk (P.A. \approx 148\arcdeg) is tilted with respect to that of the filamentary Hα\alpha + [N II] emission at distances > 2'' from the nucleus; the minor axis of this larger scale gas is roughly aligned with the axis of the kpc-scale radio jets (P.A. \approx 170\arcdeg). The ionization cone (whose apex is offset by \approx 0\farcs3 south of the nucleus) extends 2'' from the nucleus along the axis of the southern radio jet. This feature is similar to the ionization cones seen in some Seyfert nuclei, which are also aligned with the radio axes.Comment: 11 pages plus 4 figure

    Star formation in high-redshift quasars: excess [O II] emission in the radio-loud population

    Get PDF
    We investigate the [O II] emission line properties of 18,508 quasars at z<1.6 drawn from the Sloan Digital Sky Survey (SDSS) quasar sample. The quasar sample has been separated into 1,692 radio-loud and 16,816 radio-quiet quasars (RLQs and RQQs hereafter) matched in both redshift and i'-band absolute magnitude. We use the [O II]\lambda3726+3729 line as an indicator of star formation. Based on these measurements we find evidence that star-formation activity is higher in the RLQ population. The mean equivalent widths (EW) for [O II] are EW([O II])_RL=7.80\pm0.30 \AA, and EW([O II])_RQ=4.77\pm0.06 \AA, for the RLQ and RQQ samples respectively. The mean [O II] luminosities are \log[L([O II])_RL/W]=34.31\pm0.01 and \log[L([O II])_RQ/W]=34.192\pm0.004 for the samples of RLQs and RQQs respectively. Finally, to overcome possible biases in the EW measurements due to the continuum emission below the [O II] line being contaminated by young stars in the host galaxy, we use the ratio of the [O II] luminosity to rest-frame i'-band luminosity, in this case, we find for the RLQs \log[L([O II])_RL/L_opt]=-3.89\pm0.01 and \log[L([O II])_RQ/L_opt]=-4.011\pm0.004 for RQQs. However the results depend upon the optical luminosity of the quasar. RLQs and RQQs with the same high optical luminosity \log(L_opt/W)>38.6, tend to have the same level of [O II] emission. On the other hand, at lower optical luminosities \log(L_opt/W)<38.6, there is a clear [O II] emission excess for the RLQs. As an additional check of our results we use the [O III] emission line as a tracer of the bolometric accretion luminosity, instead of the i'-band absolute magnitude, and we obtain similar results. Radio jets appear to be the main reason for the [O II] emission excess in the case of RLQs. In contrast, we suggest AGN feedback ensures that the two populations acquire the same [O II] emission at higher optical luminosities.Comment: 12 pages, 9 figures, accepted for publication in MNRA
    corecore