78 research outputs found

    Cooperative awareness using roadside unit networks in mixed traffic

    Get PDF
    International audienceVehicle-to-vehicle (V2V) messaging is an indispensable component of connected autonomous vehicle systems. Although V2V standards have been specified by the European Union, United States, and Japan, the deployment phase represents mixed traffic in which connected and legacy vehicles co-exist. To enhance cooperative awareness in this mixed traffic, we assessed the special roadside unit that we developed in our previous work that generates required V2V messages on behalf of sensed target vehicles. In this paper, we extend our earlier work to propose a system called Grid Proxy Cooperative Awareness Message to broaden the cooperative awareness message dissemination area by connecting infrastructure using high-speed roadside networks. To minimize delay in message delivery, we designed the proposed system to use edge computing. The proposed scheme delivers cooperative messages to a wider area with a low delay and a high packet delivery ratio by prioritizing packets by their respective safety contributions. Our simulation results indicate that the proposed scheme efficiently delivers messages in heavy road traffic conditions modeled on real maps of Tokyo and Paris

    A survey on pseudonym changing strategies for Vehicular Ad-Hoc Networks

    Full text link
    The initial phase of the deployment of Vehicular Ad-Hoc Networks (VANETs) has begun and many research challenges still need to be addressed. Location privacy continues to be in the top of these challenges. Indeed, both of academia and industry agreed to apply the pseudonym changing approach as a solution to protect the location privacy of VANETs'users. However, due to the pseudonyms linking attack, a simple changing of pseudonym shown to be inefficient to provide the required protection. For this reason, many pseudonym changing strategies have been suggested to provide an effective pseudonym changing. Unfortunately, the development of an effective pseudonym changing strategy for VANETs is still an open issue. In this paper, we present a comprehensive survey and classification of pseudonym changing strategies. We then discuss and compare them with respect to some relevant criteria. Finally, we highlight some current researches, and open issues and give some future directions

    An adaptive system based on roadmap profiling to enhance warning message dissemination in VANETS

    Full text link
    [EN] In recent years, new applications, architectures, and technologies have been proposed for vehicular ad hoc networks (VANETs). Regarding traffic safety applications for VANETs, warning messages have to be quickly and smartly disseminated in order to reduce the required dissemination time and to increase the number of vehicles receiving the traffic warning information. In the past, several approaches have been proposed to improve the alert dissemination process in multihop wireless networks, but none of them were tested in real urban scenarios, adapting its behavior to the propagation features of the scenario. In this paper, we present the Profile-driven Adaptive Warning Dissemination Scheme (PAWDS) designed to improve the warning message dissemination process. With respect to previous proposals, our proposed scheme uses a mapping technique based on adapting the dissemination strategy according to both the characteristics of the street area where the vehicles are moving and the density of vehicles in the target scenario. Our algorithm reported a noticeable improvement in the performance of alert dissemination processes in scenarios based on real city maps.This work was supported in part by the Ministerio de Educacion y Ciencia, Spain, under Grant TIN2011-27543-C03-01 and the Diputacion General de Aragon under Grant "subvenciones destinadas a la formacion y contratacion de personal investigador."Fogué Cortés, M.; Garrido Picazo, MP.; Martínez Domínguez, FJ.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2013). An adaptive system based on roadmap profiling to enhance warning message dissemination in VANETS. IEEE/ACM Transactions on Networking. 21(3):883-895. doi:10.1109/TNET.2012.2212206S88389521

    A Qos Adaptive Routing Scheme (IGLAR) For Highly Dynamic Vehicular Networks with Support to Service and Priority

    Get PDF
    This paper proposes an improved geolocation based QoS aware routing algorithm (IGLAR), which focuses on identifying optimal paths for effective routing in highly dynamic mobile ad hoc network such as VANET based on vehicular traffic at cross roads over a static high way lane. The process of selection and utilizing the optimal QoS route gets updated on transmission. IGLAR works on route identification, route binding, update and deletion process based on the validation of adaptive QoS metrics, before the optimal route selection process between source and destination. This research work discusses on the survey and analysis the performance of GPSR [9], AODV [8], DYMO [12] and proposed scheme based on simulation test beds and scenario mapping using VanetMobiSim with NS-3 simulator. The proposed routing scheme IGLAR has been designed and implemented as per the DSRC specifications [13] and IEEE 802.11p MAC. Keywords: VANET, GPSR, AODV, DYMO, VanetMobisi

    Characterizing the role of vehicular cloud computing in road traffic management

    Get PDF
    Vehicular cloud computing is envisioned to deliver services that provide traffic safety and efficiency to vehicles. Vehicular cloud computing has great potential to change the contemporary vehicular communication paradigm. Explicitly, the underutilized resources of vehicles can be shared with other vehicles to manage traffic during congestion. These resources include but are not limited to storage, computing power, and Internet connectivity. This study reviews current traffic management systems to analyze the role and significance of vehicular cloud computing in road traffic management. First, an abstraction of the vehicular cloud infrastructure in an urban scenario is presented to explore the vehicular cloud computing process. A taxonomy of vehicular clouds that defines the cloud formation, integration types, and services is presented. A taxonomy of vehicular cloud services is also provided to explore the object types involved and their positions within the vehicular cloud. A comparison of the current state-of-the-art traffic management systems is performed in terms of parameters, such as vehicular ad hoc network infrastructure, Internet dependency, cloud management, scalability, traffic flow control, and emerging services. Potential future challenges and emerging technologies, such as the Internet of vehicles and its incorporation in traffic congestion control, are also discussed. Vehicular cloud computing is envisioned to have a substantial role in the development of smart traffic management solutions and in emerging Internet of vehicles. © The Author(s) 2017

    Performance Assessment of Fragmentation Mechanisms for Vehicular Delay-Tolerant Networks

    Get PDF
    [EN] Vehicular Delay-Tolerant Networks (VDTNs) are a new approach for vehicular communications where vehicles cooperate with each other, acting as the communication infrastructure, to provide low-cost asynchronous opportunistic communications. These communication technologies assume variable delays and bandwidth constraints characterized by a non-transmission control protocol/internet protocol architecture but interacting with it at the edge of the network. VDTNs are based on the principle of asynchronous communications, bundle-oriented communication from the DTN architecture, employing a store-carry-and-forward routing paradigm. In this sense, VDTNs should use the tight network resources optimizing each opportunistic contact among nodes. Given the limited contact times among nodes, fragmentation appears as a possible solution to improve the overall network performance, increasing the bundle delivery probability. This article proposes the use of several fragmentation approaches (proactive, source, reactive, and toilet paper) for VDTNs. They are discussed and evaluated through a laboratory testbed. Reactive and toilet paper approaches present the best results. It was also shown that only the source fragmentation approach presents worst results when compared with non-fragmentation approaches.This study was partially supported by the Instituto de Telecomunicacoes, Next Generation Networks and Applications Group (NetGNA), Portugal, by the Euro-NF Network of Excellence of the Seventh Framework Programme of EU, in the framework of the Specific Joint Research Project VDTN, and by the INESC-ID multiannual funding through the PIDDAC program funds and National Funding from the FCT - Fundacao para a Ciencia e a Tecnologia through the PEst-OE/EEI/LA0008/2011 and PTDC/EEA-TEL/099074/2008 (MPSat) Projects.Dias, JAFF.; Rodrigues, JJPC.; Isento, JN.; Pereira, PRBA.; Lloret, J. (2011). Performance Assessment of Fragmentation Mechanisms for Vehicular Delay-Tolerant Networks. EURASIP Journal on Wireless Communications and Networking. 2011(195):1-14. https://doi.org/10.1186/1687-1499-2011-195S1142011195Tatchikou R, Biswas S, Dion F: Cooperative vehicle collision avoidance using inter-vehicle packet forwarding. In Presented at the IEEE Global Telecommunications Conference (IEEE GLOBECOM 2005). St. Louis, MO, USA; 2005.Park JS, Lee U, Oh SY, Gerla M, Lun DS: Emergency related video streaming in VANET using network coding. In The Third ACM International Workshop on Vehicular Ad Hoc Networks. (VANET 2006), Los Angeles, CA, USA; 2006:102-103.Buchenscheit A, Schaub F, Kargl F, Weber M: A VANET-based emergency vehicle warning system. Presented at the First IEEE Vehicular Networking Conference (IEEE VNC 2009), Tokyo, Japan 2009.Nekovee M: Sensor networks on the road: the promises and challenges of vehicular ad hoc networks and vehicular grids. In Proceedings of the Workshop on Ubiquitous Computing and e-Research. Edinburgh, UK; 2005.Blum J, Eskandarian A, Hoffmman L: Challenges of intervehicle ad hoc networks. IEEE Trans. Intell. Transport. Syst 2004, 5(4):347-351. 10.1109/TITS.2004.838218Yousefi S, Mousavi MS, Fathy M: Vehicular ad hoc networks (VANETs): challenges and perspectives. 6th International Conference on ITS Telecommunications (ITST 2006) 2006, 761-766.Füßler H, Torrent-Moreno M, Transier M, Festag A, Hartenstein H: Thoughts on a protocol architecture for vehicular ad-hoc networks. In Presented at the 2nd International Workshop on Intelligent Transportation (WIT 2005). Hamburg, Germany; 2005.Cerf V, Burleigh S, Hooke A, Torgerson L, Durst R, Scott K, Fall K, Weiss H: Delay-tolerant networking architecture. RFC 4838 2007. [Online] [ http://www.rfc-editor.org/rfc/rfc4838.txt ]Soares VNGJ, Farahmand F, Rodrigues JJPC: A layered architecture for vehicular delay-tolerant networks. In The Fourteenth IEEE Symposium on Computers and Communications (ISCC 2009). Sousse, Tunisia; 2009:122-127.Rodrigues JJPC, Soares VNGJ, Farahmand F: Stationary relay nodes deployment on vehicular opportunistic networks. In Mobile Opportunistic Networks: Architectures, Protocols and Applications. Edited by: Denko M. CRC Press, Taylor & Francis Group (hardcover); 2011:227-243.Postel J: Internet Protocol. RFC 791 1981. [Online] [ http://www.ietf.org/rfc/rfc791.txt ]Kent CA, Moguk JC: Fragmentation considered harmful. SIGCOMM Comput Commun Rev 1995, 25(1):75-87. 10.1145/205447.205456Kim B-S, Fang Y, Wong TF, Kwon Y: Throughput enhancement through dynamic fragmentation in wireless LANs. IEEE Trans Veh Technol 2005, 54(4):1415-1425. 10.1109/TVT.2005.851361Ginzboorg P, Niemi V, Ott J: Message Fragmentation in Disruptive Networks. Nokia Research Center, Technical Report; 2009.Legner M: Map-Based Geographic Forwarding in Vehicular Networks. Department of Informatic, University of Stuttgart; 2002.Li Q, Rus D: Sending messages to mobile users in disconnected ad-hoc wireless networks. 6th Annual International Conference on Mobile Computing and Networking, New York, USA 2000, 44-55.Vahdat A, Becker B: Epidemic Routing for Partially-Connected Ad-Hoc Networks. Duke University, Technical Report; 2000.Briesemeister L, Hommel G: Overcoming fragmentation in mobile ad-hoc networks. J Commun Netw 2000, 2(3):182-187.Liu H, Sheng H, Lv Z, Li L, Ma C: A cross layer design of fragmentation and priority scheduling in vehicular ad hoc networks. 7th World Congress on Intelligent Control and Automation (WCICA 2008) 2008, 6157-6160.Joshi HP: Distributed robust geocast: a multicast protocol for inter-vehicle communication. Master Thesis, North Carolina State University; 2006.Bachir A, Benslimane A: A multicast protocol in ad hoc networks: Inter-vehicles geocast. Proceedings of the 57th IEEE Vehicular Technology Conference, Korea 2003, 2456-2460.Mikko P, Ari K, Ott J: Message fragmentation in opportunistic DTNs. In 9th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WOWMOM 2008). Newport Beach, CA, USA; 2008.Farrell S, Symington S, Weiss H: Delay-tolerant networking security overview. Internet Draft 2009. [Online] [ http://tools.ietf.org/html/draft-irtf-dtnrg-sec-overview-06 ]Magaia N, Pereira PR, Casaca A, Rodrigues J, Dias JA, Isento JN, Cervelló-Pastor C, Gallego J: Bundles fragmentation in vehicular delay-tolerant networks. 7th Euro-nf conference on next generation internet, Kaiserslautern, Germany 2011.Soares V, Rodrigues J, Farahmand F, Denko M: Exploiting node localization for performance improvement of vehicular delay-tolerant networks. In IEEE International Conference on Communications (ICC 2010). Cape Town, South Africa; 2010.Rubinstein MG, Abdesselm FB, Cavalcanti SR, Campista MEM, Alves RSA, Costa LHMK, Amorim MD, Duarte OCMB: Measuring the capacity of in-car to in-car vehicular networks. IEEE Commun Mag 2009, 47(11):128-136.Spyropoulos T, Psounis K, Raghavendra C S: Spray and wait: an efficient routing scheme for intermittently connected mobile networks. In ACM SIGCOMM 2005--Workshop on Delay Tolerant Networking and Related Networks (WDTN-05). Philadelphia, PA, USA; 2005:252-259.Lindgren A, Doria A, Davies E, Grasic S: Probabilistic routing protocol for intermittently connected networks (2010). Internet Draft 2010. [Online] [ http://tools.ietf.org/html/draft-irtf-dtnrg-prophet-06 ]Teshima S, Ohta T, Kohno E, Kakuda Y: A data transfer scheme using autonomous clustering in VANETs environment. In 10th International Symposium on Autonomous Decentralized Systems (ISADS 2011). Tokyo, Japan; 2011:477-482.Psounis K: Efficient Routing for Safety Applications in Vehicular Networks. METRANS Project DTRS98-G0019, Electrical Engineering. University of Southern California, Los Angeles, USA; 2009.Li X, Shu W, Li M, Huang H, Min-You Wu: DTN routing in vehicular sensor networks. In IEEE Global Telecommunications Conference (IEEE GLOBECOM 2008). New Orleans, USA; 2008:1-5

    The performance of the vehicular communication-clustering process

    Get PDF
    For the new wireless systems and beyond, the intelligent transportation system is considered as one of the main features that could be covered in the new research topics. Furthermore, both high-speed data transmission and data processing play a crucial role for these generations. Our work covers two main propositions in order to attain an improvement in such intelligent systems performance. A clustering algorithm is proposed and presented for grouping mobile nodes based on their speeds with some modified head assignments processes. This will be combined with a parallel-processing technique that enhances the QoS. Mainly, this work concerns enhancing the V2V data transmission and the processing speed. Thus, a wavelet processing stage has been imposed to optimize the transmitted power phenomenon. In order to check the validity of such proposition, five main efficiency factors have been investigated; namely complementary cumulative distributions, bit rates, energy efficiency, the lifetime of cluster head and the ordinary nodes reattaching-head average times.

    WHISPER: A Location Privacy-Preserving Scheme Using Transmission Range Changing for Internet of Vehicles

    Get PDF
    Internet of Vehicles (IoV) has the potential to enhance road-safety with environment sensing features provided by embedded devices and sensors. This benignant feature also raises privacy issues as vehicles announce their fine-grained whereabouts mainly for safety requirements, adversaries can leverage this to track and identify users. Various privacy-preserving schemes have been designed and evaluated, for example, mix-zone, encryption, group forming, and silent-period-based techniques. However, they all suffer inherent limitations. In this paper, we review these limitations and propose WHISPER, a safety-aware location privacy-preserving scheme that adjusts the transmission range of vehicles in order to prevent continuous location monitoring. We detail the set of protocols used by WHISPER, then we compare it against other privacy-preserving schemes. The results show that WHISPER outperformed the other schemes by providing better location privacy levels while still fulfilling road-safety requirements

    Privacy in the Smart City - Applications, Technologies, Challenges and Solutions

    Get PDF
    Many modern cities strive to integrate information technology into every aspect of city life to create so-called smart cities. Smart cities rely on a large number of application areas and technologies to realize complex interactions between citizens, third parties, and city departments. This overwhelming complexity is one reason why holistic privacy protection only rarely enters the picture. A lack of privacy can result in discrimination and social sorting, creating a fundamentally unequal society. To prevent this, we believe that a better understanding of smart cities and their privacy implications is needed. We therefore systematize the application areas, enabling technologies, privacy types, attackers and data sources for the attacks, giving structure to the fuzzy term “smart city”. Based on our taxonomies, we describe existing privacy-enhancing technologies, review the state of the art in real cities around the world, and discuss promising future research directions. Our survey can serve as a reference guide, contributing to the development of privacy-friendly smart cities
    corecore