1,143 research outputs found

    Management of service composition based on self-controlled components

    Get PDF
    International audienceCloud computing and Future Internet promise a new ecosystem where everything is "as a service", reachable and connectable anywhere and anytime, everyone succeeding to get a service composition that meets his needs. But do we have the structure and the appropriate properties to design the service components and do we have the means to manage, at run-time, the personalised compositions corresponding to Service Level Agreement? In this article we introduce an entity of service composition called Self-Controlled Component (SCC), including, since the design step, functional and non-functional specifications. SCCs benefit both from the strong structure, explicit composition, and autonomic management of component-oriented programming, from the highly dynamic composition, and from the discovery capacities of service-oriented computing. Self-control mechanisms are then attached automatically to SCCs to enable autonomic application management during execution. The objective of this new concept is to provide strong Quality of Service (QoS) guarantees of composed applications. We illustrate the approach using an example called Springoo, to how in the context of a legacy application the contributions and benefits of our solution. For the management of the service composition we propose the concept of Virtual Private Service Network (VPSN) and Virtual Service Community (VSC) that allows us to model the personalised Service Level Agreement (SLA) where user requirements and provider offers converge on a QoS contract

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Machine-Readable Privacy Certificates for Services

    Full text link
    Privacy-aware processing of personal data on the web of services requires managing a number of issues arising both from the technical and the legal domain. Several approaches have been proposed to matching privacy requirements (on the clients side) and privacy guarantees (on the service provider side). Still, the assurance of effective data protection (when possible) relies on substantial human effort and exposes organizations to significant (non-)compliance risks. In this paper we put forward the idea that a privacy certification scheme producing and managing machine-readable artifacts in the form of privacy certificates can play an important role towards the solution of this problem. Digital privacy certificates represent the reasons why a privacy property holds for a service and describe the privacy measures supporting it. Also, privacy certificates can be used to automatically select services whose certificates match the client policies (privacy requirements). Our proposal relies on an evolution of the conceptual model developed in the Assert4Soa project and on a certificate format specifically tailored to represent privacy properties. To validate our approach, we present a worked-out instance showing how privacy property Retention-based unlinkability can be certified for a banking financial service.Comment: 20 pages, 6 figure

    Checkpointing as a Service in Heterogeneous Cloud Environments

    Get PDF
    A non-invasive, cloud-agnostic approach is demonstrated for extending existing cloud platforms to include checkpoint-restart capability. Most cloud platforms currently rely on each application to provide its own fault tolerance. A uniform mechanism within the cloud itself serves two purposes: (a) direct support for long-running jobs, which would otherwise require a custom fault-tolerant mechanism for each application; and (b) the administrative capability to manage an over-subscribed cloud by temporarily swapping out jobs when higher priority jobs arrive. An advantage of this uniform approach is that it also supports parallel and distributed computations, over both TCP and InfiniBand, thus allowing traditional HPC applications to take advantage of an existing cloud infrastructure. Additionally, an integrated health-monitoring mechanism detects when long-running jobs either fail or incur exceptionally low performance, perhaps due to resource starvation, and proactively suspends the job. The cloud-agnostic feature is demonstrated by applying the implementation to two very different cloud platforms: Snooze and OpenStack. The use of a cloud-agnostic architecture also enables, for the first time, migration of applications from one cloud platform to another.Comment: 20 pages, 11 figures, appears in CCGrid, 201

    3rd Many-core Applications Research Community (MARC) Symposium. (KIT Scientific Reports ; 7598)

    Get PDF
    This manuscript includes recent scientific work regarding the Intel Single Chip Cloud computer and describes approaches for novel approaches for programming and run-time organization

    FleXR: A System Enabling Flexibly Distributed Extended Reality

    Full text link
    Extended reality (XR) applications require computationally demanding functionalities with low end-to-end latency and high throughput. To enable XR on commodity devices, a number of distributed systems solutions enable offloading of XR workloads on remote servers. However, they make a priori decisions regarding the offloaded functionalities based on assumptions about operating factors, and their benefits are restricted to specific deployment contexts. To realize the benefits of offloading in various distributed environments, we present a distributed stream processing system, FleXR, which is specialized for real-time and interactive workloads and enables flexible distributions of XR functionalities. In building FleXR, we identified and resolved several issues of presenting XR functionalities as distributed pipelines. FleXR provides a framework for flexible distribution of XR pipelines while streamlining development and deployment phases. We evaluate FleXR with three XR use cases in four different distribution scenarios. In the results, the best-case distribution scenario shows up to 50% less end-to-end latency and 3.9x pipeline throughput compared to alternatives.Comment: 11 pages, 11 figures, conference pape
    corecore