486 research outputs found

    Anomaly Detection in Hyperspectral Imagery: Comparison of Methods Using Diurnal and Seasonal Data

    Get PDF
    The use of hyperspectral imaging is a fast growing field with many applications in the civilian, commercial and military sectors. Hyperspectral images are typically composed of many spectral bands in the visible and infrared regions of the electromagnetic spectrum and have the potential to deliver a great deal of information about a remotely sensed scene. One area of interest regarding hyperspectral images is anomaly detection, or the ability to find spectral outliers within a complex background in a scene with no a priori information about the scene or its specific contents. Anomaly detectors typically operate by creating a statistical background model of a hyperspectral image and measuring anomalies as image pixels that do not conform properly to that given model. In this study we compare the performance over diurnal and seasonal changes for several different anomaly detection methods found in the literature and a new anomaly detector that we refer to as the fuzzy cluster-based anomaly detector. Here we also compare the performance of several anomaly-based change detection algorithms. Our results indicate that all anomaly detectors tested in this experimentation exhibit strong performance under optimum illumination and environmental conditions. However, our results point toward a significant performance advantage for cluster-based anomaly detectors in the presence of adverse environmental conditions

    Detection And Classification Of Buried Radioactive Materials

    Get PDF
    This dissertation develops new approaches for detection and classification of buried radioactive materials. Different spectral transformation methods are proposed to effectively suppress noise and to better distinguish signal features in the transformed space. The contributions of this dissertation are detailed as follows. 1) Propose an unsupervised method for buried radioactive material detection. In the experiments, the original Reed-Xiaoli (RX) algorithm performs similarly as the gross count (GC) method; however, the constrained energy minimization (CEM) method performs better if using feature vectors selected from the RX output. Thus, an unsupervised method is developed by combining the RX and CEM methods, which can efficiently suppress the background noise when applied to the dimensionality-reduced data from principle component analysis (PCA). 2) Propose an approach for buried target detection and classification, which applies spectral transformation followed by noisejusted PCA (NAPCA). To meet the requirement of practical survey mapping, we focus on the circumstance when sensor dwell time is very short. The results show that spectral transformation can alleviate the effects from spectral noisy variation and background clutters, while NAPCA, a better choice than PCA, can extract key features for the following detection and classification. 3) Propose a particle swarm optimization (PSO)-based system to automatically determine the optimal partition for spectral transformation. Two PSOs are incorporated in the system with the outer one being responsible for selecting the optimal number of bins and the inner one for optimal bin-widths. The experimental results demonstrate that using variable bin-widths is better than a fixed bin-width, and PSO can provide better results than the traditional Powell’s method. 4) Develop parallel implementation schemes for the PSO-based spectral partition algorithm. Both cluster and graphics processing units (GPU) implementation are designed. The computational burden of serial version has been greatly reduced. The experimental results also show that GPU algorithm has similar speedup as cluster-based algorithm

    Hyperspectral Imagery Target Detection Using Improved Anomaly Detection and Signature Matching Methods

    Get PDF
    This research extends the field of hyperspectral target detection by developing autonomous anomaly detection and signature matching methodologies that reduce false alarms relative to existing benchmark detectors, and are practical for use in an operational environment. The proposed anomaly detection methodology adapts multivariate outlier detection algorithms for use with hyperspectral datasets containing tens of thousands of non-homogeneous, high-dimensional spectral signatures. In so doing, the limitations of existing, non-robust, anomaly detectors are identified, an autonomous clustering methodology is developed to divide an image into homogeneous background materials, and competing multivariate outlier detection methods are evaluated for their ability to uncover hyperspectral anomalies. To arrive at a final detection algorithm, robust parameter design methods are employed to determine parameter settings that achieve good detection performance over a range of hyperspectral images and targets, thereby removing the burden of these decisions from the user. The final anomaly detection algorithm is tested against existing local and global anomaly detectors, and is shown to achieve superior detection accuracy when applied to a diverse set of hyperspectral images. The proposed signature matching methodology employs image-based atmospheric correction techniques in an automated process to transform a target reflectance signature library into a set of image signatures. This set of signatures is combined with an existing linear filter to form a target detector that is shown to perform as well or better relative to detectors that rely on complicated, information-intensive, atmospheric correction schemes. The performance of the proposed methodology is assessed using a range of target materials in both woodland and desert hyperspectral scenes

    A manifold learning approach to target detection in high-resolution hyperspectral imagery

    Get PDF
    Imagery collected from airborne platforms and satellites provide an important medium for remotely analyzing the content in a scene. In particular, the ability to detect a specific material within a scene is of high importance to both civilian and defense applications. This may include identifying targets such as vehicles, buildings, or boats. Sensors that process hyperspectral images provide the high-dimensional spectral information necessary to perform such analyses. However, for a d-dimensional hyperspectral image, it is typical for the data to inherently occupy an m-dimensional space, with m \u3c\u3c d. In the remote sensing community, this has led to a recent increase in the use of manifold learning, which aims to characterize the embedded lower-dimensional, non-linear manifold upon which the hyperspectral data inherently lie. Classic hyperspectral data models include statistical, linear subspace, and linear mixture models, but these can place restrictive assumptions on the distribution of the data; this is particularly true when implementing traditional target detection approaches, and the limitations of these models are well-documented. With manifold learning based approaches, the only assumption is that the data reside on an underlying manifold that can be discretely modeled by a graph. The research presented here focuses on the use of graph theory and manifold learning in hyperspectral imagery. Early work explored various graph-building techniques with application to the background model of the Topological Anomaly Detection (TAD) algorithm, which is a graph theory based approach to anomaly detection. This led towards a focus on target detection, and in the development of a specific graph-based model of the data and subsequent dimensionality reduction using manifold learning. An adaptive graph is built on the data, and then used to implement an adaptive version of locally linear embedding (LLE). We artificially induce a target manifold and incorporate it into the adaptive LLE transformation; the artificial target manifold helps to guide the separation of the target data from the background data in the new, lower-dimensional manifold coordinates. Then, target detection is performed in the manifold space

    Physics-constrained Hyperspectral Data Exploitation Across Diverse Atmospheric Scenarios

    Get PDF
    Hyperspectral target detection promises new operational advantages, with increasing instrument spectral resolution and robust material discrimination. Resolving surface materials requires a fast and accurate accounting of atmospheric effects to increase detection accuracy while minimizing false alarms. This dissertation investigates deep learning methods constrained by the processes governing radiative transfer to efficiently perform atmospheric compensation on data collected by long-wave infrared (LWIR) hyperspectral sensors. These compensation methods depend on generative modeling techniques and permutation invariant neural network architectures to predict LWIR spectral radiometric quantities. The compensation algorithms developed in this work were examined from the perspective of target detection performance using collected data. These deep learning-based compensation algorithms resulted in comparable detection performance to established methods while accelerating the image processing chain by 8X

    Reconstruction Error and Principal Component Based Anomaly Detection in Hyperspectral imagery

    Get PDF
    The rapid expansion of remote sensing and information collection capabilities demands methods to highlight interesting or anomalous patterns within an overabundance of data. This research addresses this issue for hyperspectral imagery (HSI). Two new reconstruction based HSI anomaly detectors are outlined: one using principal component analysis (PCA), and the other a form of non-linear PCA called logistic principal component analysis. Two very effective, yet relatively simple, modifications to the autonomous global anomaly detector are also presented, improving algorithm performance and enabling receiver operating characteristic analysis. A novel technique for HSI anomaly detection dubbed multiple PCA is introduced and found to perform as well or better than existing detectors on HYDICE data while using only linear deterministic methods. Finally, a response surface based optimization is performed on algorithm parameters such as to affect consistent desired algorithm performance

    Sparse representation based hyperspectral image compression and classification

    Get PDF
    Abstract This thesis presents a research work on applying sparse representation to lossy hyperspectral image compression and hyperspectral image classification. The proposed lossy hyperspectral image compression framework introduces two types of dictionaries distinguished by the terms sparse representation spectral dictionary (SRSD) and multi-scale spectral dictionary (MSSD), respectively. The former is learnt in the spectral domain to exploit the spectral correlations, and the latter in wavelet multi-scale spectral domain to exploit both spatial and spectral correlations in hyperspectral images. To alleviate the computational demand of dictionary learning, either a base dictionary trained offline or an update of the base dictionary is employed in the compression framework. The proposed compression method is evaluated in terms of different objective metrics, and compared to selected state-of-the-art hyperspectral image compression schemes, including JPEG 2000. The numerical results demonstrate the effectiveness and competitiveness of both SRSD and MSSD approaches. For the proposed hyperspectral image classification method, we utilize the sparse coefficients for training support vector machine (SVM) and k-nearest neighbour (kNN) classifiers. In particular, the discriminative character of the sparse coefficients is enhanced by incorporating contextual information using local mean filters. The classification performance is evaluated and compared to a number of similar or representative methods. The results show that our approach could outperform other approaches based on SVM or sparse representation. This thesis makes the following contributions. It provides a relatively thorough investigation of applying sparse representation to lossy hyperspectral image compression. Specifically, it reveals the effectiveness of sparse representation for the exploitation of spectral correlations in hyperspectral images. In addition, we have shown that the discriminative character of sparse coefficients can lead to superior performance in hyperspectral image classification.EM201

    Linear models, signal detection, and the Grassmann manifold

    Get PDF
    2014 Fall.Standard approaches to linear signal detection, reconstruction, and model identification problems, such as matched subspace detectors (MF, MDD, MSD, and ACE) and anomaly detectors (RX) are derived in the ambient measurement space using statistical methods (GLRT, regression). While the motivating arguments are statistical in nature, geometric interpretations of the test statistics are sometimes developed after the fact. Given a standard linear model, many of these statistics are invariant under orthogonal transformations, have a constant false alarm rate (CFAR), and some are uniformly most powerful invariant (UMPI). These properties combined with the simplicity of the tests have led to their widespread use. In this dissertation, we present a framework for applying real-valued functions on the Grassmann manifold in the context of these same signal processing problems. Specifically, we consider linear subspace models which, given assumptions on the broadband noise, correspond to Schubert varieties on the Grassmann manifold. Beginning with increasing (decreasing) or Schur-convex (-concave) functions of principal angles between pairs of points, of which the geodesic and chordal distances (or probability distribution functions) are examples, we derive the associated point-to-Schubert variety functions and present signal detection and reconstruction algorithms based upon this framework. As a demonstration of the framework in action, we implement an end-to-end system utilizing our framework and algorithms. We present results of this system processing real hyperspectral images

    Models and Methods for Automated Background Density Estimation in Hyperspectral Anomaly Detection

    Get PDF
    Detecting targets with unknown spectral signatures in hyperspectral imagery has been proven to be a topic of great interest in several applications. Because no knowledge about the targets of interest is assumed, this task is performed by searching the image for anomalous pixels, i.e. those pixels deviating from a statistical model of the background. According to the hyperspectral literature, there are two main approaches to Anomaly Detection (AD) thus leading to the definition of different ways for background modeling: global and local. Global AD algorithms are designed to locate small rare objects that are anomalous with respect to the global background, identified by a large portion of the image. On the other hand, in local AD strategies, pixels with significantly different spectral features from a local neighborhood just surrounding the observed pixel are detected as anomalies. In this thesis work, a new scheme is proposed for detecting both global and local anomalies. Specifically, a simplified Likelihood Ratio Test (LRT) decision strategy is derived that involves thresholding the background log-likelihood and, thus, only needs the specification of the background Probability Density Function (PDF). Within this framework, the use of parametric, semi-parametric (in particular finite mixtures), and non-parametric models is investigated for the background PDF estimation. Although such approaches are well known and have been widely employed in multivariate data analysis, they have been seldom applied to estimate the hyperspectral background PDF, mostly due to the difficulty of reliably learning the model parameters without the need of operator intervention, which is highly desirable in practical AD tasks. In fact, this work represents the first attempt to jointly examine such methods in order to asses and discuss the most critical issues related to their employment for PDF estimation of hyperspectral background with specific reference to the detection of anomalous objects in a scene. Specifically, semi- and non-parametric estimators have been successfully employed to estimate the image background PDF with the aim of detecting global anomalies in a scene by means of the use of ad hoc learning procedures. In particular, strategies developed within a Bayesian framework have been considered for automatically estimating the parameters of mixture models and one of the most well-known non-parametric techniques, i.e. the fixed kernel density estimator (FKDE). In this latter, the performance and the modeling ability depend on scale parameters, called bandwidths. It has been shown that the use of bandwidths that are fixed across the entire feature space, as done in the FKDE, is not effective when the sample data exhibit different local peculiarities across the entire data domain, which generally occurs in practical applications. Therefore, some possibilities are investigated to improve the image background PDF estimation of FKDE by allowing the bandwidths to vary over the estimation domain, thus adapting the amount of smoothing to the local density of the data so as to more reliably and accurately follow the background data structure of hyperspectral images of a scene. The use of such variable bandwidth kernel density estimators (VKDE) is also proposed for estimating the background PDF within the considered AD scheme for detecting local anomalies. Such a choice is done with the aim to cope with the problem of non-Gaussian background for improving classical local AD algorithms involving parametric and non-parametric background models. The locally data-adaptive non-parametric model has been chosen since it encompasses the potential, typical of non-parametric PDF estimators, in modeling data regardless of specific distributional assumption together with the benefits deriving from the employment of bandwidths that vary across the data domain. The ability of the proposed AD scheme resulting from the application of different background PDF models and learning methods is experimentally evaluated by employing real hyperspectral images containing objects that are anomalous with respect to the background
    • …
    corecore