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Anomaly detection in hyperspectral imagery:  
comparison of methods using diurnal and seasonal 

data 

Patrick C. Hytla,a Russell C. Hardie,a Michael T. Eismann,b  
and Joseph Meolab 

 a University of Dayton, 300 College Park Drive, Dayton OH 45469 
b Air Force Research Laboratory, 2241 Avionics Circle, 

Wright-Patterson AFB, OH 45433 

Abstract.  The use of hyperspectral imaging is a fast growing field with many applications in 
the civilian, commercial and military sectors.  Hyperspectral images are typically composed 
of many spectral bands in the visible and infrared regions of the electromagnetic spectrum and 
have the potential to deliver a great deal of information about a remotely sensed scene.  One 
area of interest regarding hyperspectral images is anomaly detection, or the ability to find 
spectral outliers within a complex background in a scene with no a priori information about 
the scene or its specific contents.  Anomaly detectors typically operate by creating a statistical 
background model of a hyperspectral image and measuring anomalies as image pixels that do 
not conform properly to that given model.  In this study we compare the performance over 
diurnal and seasonal changes for several different anomaly detection methods found in the 
literature and a new anomaly detector that we refer to as the fuzzy cluster-based anomaly 
detector.  Here we also compare the performance of several anomaly-based change detection 
algorithms.  Our results indicate that all anomaly detectors tested in this experimentation 
exhibit strong performance under optimum illumination and environmental conditions. 
However, our results point toward a significant performance advantage for cluster-based 
anomaly detectors in the presence of adverse environmental conditions.    

Keywords: anomaly detection; hyperspectral imagery; change detection. 

1 INTRODUCTION 

Hyperspectral imaging (HSI) is a field of growing interest with civilian, commercial and 
military applications.  Applications of HSI include surveillance, search and rescue operations, 
geological feature classification, and military target and threat detection [1-6].  Unlike 
conventional imaging systems that gather broadband radiance from the scene, hyperspectral 
imaging employs an imaging spectrometer to detect and extract information in many spectral 
bands.  The spectral information generally includes the visible and infrared regions of the 
electromagnetic spectrum.  

The wealth of data captured from hyperspectral remote sensing instruments allows for in-
depth spectral analysis of images not possible with conventional panchromatic or even 
multispectral images.    However, in most real world applications, the analysis of the collected 
data is hampered because little information about the target scene is known prior to 
processing.  One image processing technique capable of exploiting spectral information 
without a priori knowledge of the scene is anomaly detection.  One variant of this technique 
creates a statistical background model for an image and detects spectral outliers (anomalies) 
that do not fit that background model.  Many methods have been developed to calculate the 
background model’s probability density function (pdf) in order to reduce false alarms and 
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improve overall anomaly detection performance.  These are covered thoroughly in existing 
literature [5,7,8].  In this study, several different types of anomaly detection methods are 
applied to a test scene with diurnal and seasonal changes in order to measure overall detection 
performance.  In addition to comparing several detectors found in existing literature, a novel 
method referred to here as fuzzy cluster-based anomaly detection (FCBAD) is introduced. 
We believe this method may offer more flexibility and versatility than existing methods. 
Anomaly detectors can also be used to detect anomalous change between two images of the 
same scene captured some time interval apart.    The main components in the change detection 
process are a predictor and an anomaly detector.  In this study we investigate the performance 
of several prediction-anomaly detection combinations.   

The remainder of this paper is organized as follows:  The anomaly detectors are described 
in detail in Section 2.  Change detection is discussed in Section 3.  Section 4 explains the test 
scene setup, the data collection process and the calibration procedures utilized to generate 
accurate hyperspectral images for analysis.  The results and conclusions drawn from the study 
are described in Sections 5 and 6, respectively.   

2 ANOMALY DETECTION ALGORITHMS 

This section defines the anomaly detection algorithms compared in this study.  To begin, a 
hyperpixel is defined as a vector corresponding to all the spectral measurements for a single 
pixel and is denoted here as   

  [ ]T
Nzzz ,...,, 21=z ,      (1) 

where N is the number of hyperspectral bands present in the image.  Anomaly detectors are 
generally based on a distance metric to a known background class, some of which are derived 
from a likelihood ratio test (LRT) [6] given by  

( )
( ) T

p
pL >=

z
zz

0

1)( ,       (2) 

where p0(z) is the hyperpixel probability density function (pdf) under the assumption that only 
background and no target is present.  The pdf p1(z) is the pdf for the where a target is present, 
and T is some detection threshold.  The discriminant function, or decision statistic, for the 
LRT is given by 

 ( ) ( ) ( ))(log)(log 01 zzz ppd −= .      (3) 

Many anomaly detectors can be cast into this framework by setting the pdf p1(z) to be a 
constant to reflect a lack of knowledge about a target class (making it a uniform pdf).   Under 
these conditions, the decision statistic in (3) effectively simplifies to  

 ( ) ( ))(log 0 zz pd −= .     (4) 

The background models generally used in (4) can be categorized into three basic types: 
global, locally adaptive, and cluster-based.  Global models use one pdf across the entire 
image.  A Gaussian pdf is a common choice for such methods.  An extension of this simple 
global model assumes the background consists of a superposition of several Gaussians. 
Locally adaptive methods calculate scene statistics utilizing a sliding window.  Cluster-based 
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models attempt to break the image pixels into clusters, or classes, based on similarities 
between pixels and compute background statistics for each cluster. 

In this experimentation, targets are man-made objects while the background consists of 
all other non man-made objects.  Statistics used in background modeling are computed 
directly from experimental data.  For part of the study, the known targets are excluded from 
the statistical calculations and modeling of the background.  This represents the ideal case of 
background modeling.  In more realistic scenarios, however, targets will be present and thus 
incorporated into the background statistics.  In order to test algorithm performance under 
more realistic circumstances, target pixels are allowed to contaminate the background model 
in a separate part of the study. 

The background statistics for the cluster-based methods are computed from either a k-
means clustering algorithm [9] or a stochastic expectation maximization algorithm (SEM) 
[10,11].  The k-means algorithm is an iterative process that is initialized by picking evenly 
spaced vectors of image hyperpixels to create initial class statistics.  Each hyperpixel is then 
assigned to a class based on a linear Euclidean distance classification.  After the first 
assignment, the statistics are recomputed and new class assignments are made.  This process 
is repeated until convergence.  The SEM algorithm is also an iterative process.  In this study, 
the classes are initialized using the global sample statistics for all classes.  After initialization, 
each hyperpixel is assigned to a class through the use of a stochastic quadratic classifier.  New 
class statistics are then computed based on the new class assignments and the process 
continues in an iterative fashion until convergence. 

The goal of each anomaly detector is to identify the man-made objects in a natural 
background under varying seasonal and diurnal conditions.  Each anomaly detector employed 
in this study is listed in Table 1 and further explained in this section. 

Table 1: Anomaly Detector Identification. 
Algorithm Name Acronym Features 
Mahalanobis Distance M-dist single background class for entire image 

Gaussian Mixture Model GMM 
superposition of K-Gaussians, soft class 
boundaries, SEM clustering 

Reed-Xiaoli  RX locally adaptive method 

Gaussian Mixture RX GMRX 
similar to GMM, requires posteriori 
probability, SEM clustering 

Cluster-Based Anomaly 
Detection CBAD 

does not assume Gaussian, hard class 
boundaries, k-means clustering  

Fuzzy Cluster Based 
Anomaly Detection FCBAD 

does not assume Gaussian, can use several 
membership functions, k-means clustering 

2.1 Mahalanobis Distance Anomaly Detection 

The Mahalanobis distance (M-dist) anomaly detector [6] assumes the background of the entire 
hyperspectral image can be well represented by a single Gaussian pdf.  The likelihood 
function for the background is given by the following [6] 

( )
( )

( ) ( ) ,
2
1exp

2

1 1

20
⎭
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⎫

⎩
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⎧ −−−= −

zzz

z
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z Tp
π
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where mz is the global mean vector and Cz is the global covariance matrix.  In practice, mz 
and Cz are sample estimates computed from background training data in which no target is 
present.  If the targets are sufficiently small, the statistics can be estimated from the full scene 
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with some loss in performance due to target contamination.  The decision statistic for the M-
dist anomaly detector comes directly from (4) when (5) is used as p0, and is given by  

 ( ) ( ).)( 1
zzz mzCmzz −−= −T

Md    (6) 

In (6), the pixels with the largest M-distance represent the most anomalous pixels.  Figure 1 
shows the decision statistic for a two band, simulated Gaussian distribution of image pixels. 
The pixels are represented by the blue dots and are assumed to have a mean vector mz, which 
is located at the center of the pixel distribution.  The isocontour shown on the plot represents 
the decision statistic found in (6).  Pixels near the mean in the blue regions of the isocontour 
are considered to be part of the Gaussian background model.  Pixels located further from the 
mean in the red regions of the isocontour would be considered increasingly anomalous.   

Fig. 1.  Scatter plot for a single global Gaussian background model.  The dots represent pixels in a 
simulated two band Gaussian distribution.  The surface height is the global detection statistic for an 
observation at z=[z1,z2].  The height is shown by the color coded isocontour.  Pixels located close to the
global mean (blue region) are classified as background pixels, while pixels falling far from the global 
mean (yellow, orange, red regions) are classified as anomalous. 

2.2 Gaussian Mixture Model Anomaly Detection 

The Gaussian mixture model (GMM) anomaly detector [6] is an extension of the M-dist 
anomaly detector.  The GMM model uses a superposition of K Gaussians, each with its own 
mean and covariance, as the background likelihood function.  In remote sensing applications, 
it is often appropriate to use such a model since the scene is likely to contain more than one 
type of background.  The GMM background likelihood function is given by [6]    
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where mz(k), Cz(k), and Pz(k) are the mean vector, covariance matrix and prior probability, 
respectively, of each of the k=1,2,…,K Gaussians.  Here, these model parameters are 
estimated from the data using the stochastic expectation maximization algorithm (SEM) 
[9,10].  The decision statistic for the GMM anomaly detector is given by [6] 
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This decision statistic is shown in Fig. 2 for a similar scenario as shown in Fig. 1, except that 
the background pixels are distributed among two Gaussian clusters.  The method produces a 
smooth increasing decision statistic moving away from the center of the Gaussian clusters.   

Fig. 2.  Scatter plot for a two class GMM.  The surface height is the GMM detection statistic for an 
observation at z=[z1,z2].  Notice how the detection statistic rises as z moves away from the clusters.

2.3 Reed-Xiaoli Anomaly Detection 

The Reed-Xiaoli (RX) anomaly detector [12] is a locally adaptive method.  The decision 
statistic is similar to the one given in (5), however mz and Cz are estimated locally.  These 
localized statistics are governed by two user controlled windows, the guard window and the 
background window.  The guard window should be specified to be at least as big as the 
targets found in the scene.  The size of the background window is somewhat subjective based 
on the scene in question, but should be larger than the guard window.  A background window 
that is too small could cause problems in computing Cz, while a window that is too large 
essentially eliminates the locally adaptive nature of the detector.  Here the guard window is a 
square window of 81x81 pixels and the background window is a square window of 141x141 
pixels.  The statistics are computed from the pixels falling in between the guard and 
background windows.  This area is shown in red in Fig. 3.  The relatively large nature of the 
targets in the scene used in this study makes the RX detector very computationally 
demanding.   
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Fig. 3.  Illustration of RX algorithm background statistic calculation. 

2.4 Gaussian Mixture RX Anomaly Detection 

The Gaussian mixture RX (GMRX) anomaly detector [6] also assumes that the background 
hyperpixels follow a Gaussian mixture model.  The method requires the class posteriori 
probability, represented by [6] 

∑ =

= M

k
kPkp

kPkp
kP

1 0

0

)()|(
)()|(

)|(
z

z

z
z

z .     (9) 

The decision statistic for the GMRX detector is given by 

   ( ) ( ),))(())(())(()( 1 zmzzCzmzz zzz MAPMAP
T

MAPGMRX qqqd −−= −  (10) 

where ( ))(zmz MAPq and ( ))(zCz MAPq are once again estimated for each Gaussian 

component using the SEM algorithm.  The function )(zMAPq is a maximum a posteriori 
(MAP) classifier of the form  

)|(
maxarg

)( zz kP
k

qMAP = ,   (11) 

where P(k | z) is the posterior probability of class k given z. The decision statistic for the 
GMRX detector is shown in Fig. 4.  The thick blue line superimposed represents the MAP 
classifier decision boundary.     
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Fig. 4.  Scatter plot for a two class GMRX.  The surface height is the GMRX detection statistic for an 
observation at z=[z1,z2].  The thick blue line represents the MAP classifier decision boundary.  Notice 
the smooth decision statistics, similar to the GMM method. 
 
2.5 Cluster-Based Anomaly Detection 
 
The cluster-based anomaly detector (CBAD) [13] is very similar to the GMRX detector.  The 
difference is that CBAD uses a k-means clustering algorithm [9] to estimate the component 
mean and covariance matrices and to segment the image.  Unlike the previous methods, 
CBAD does not explicitly assume that the background model is Gaussian in nature.  The 
decision statistic is a class based M-distance given by [13]    
 
    ( ) ( ),))(())(())(()( 1 zmzzCzmzz zzz EE

T
ECBAD qqqd −−= −                      (12) 

 
where ( ))(zm z Eq  represents a class mean and ( ))(zCz Eq a class covariance.  Instead of 
using a MAP classifier, CBAD determines a hyperpixel’s class membership based on the 
minimum Euclidean distance measurement where    
   
                                              },...,2,1{:)( KRq P

E →z                                                     (13) 
 
is the partition function given by 
 

                                              .)(
minarg

)( 2zmzz kE k
q −=                                             (14) 

 
Fig. 5 shows the decision statistic for a two class CBAD anomaly detector.  Similar to 
previous methods discussed, the further a pixel is located from the nearest class the more 
anomalous it is.  However, due to the Euclidean distance based clustering in (14), there is a 
very strong discontinuity in the decision statistic between the clusters.  This is denoted by the 
very sharp edge between the two classes in Fig. 5.   
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Fig. 5.  Scatter plot for a two class CBAD.  The surface height is the CBAD detection statistic for an 
observation at z=[z1,z2].  Notice how the detection statistic has a discontinuity at the cluster boundary, 
denoted by the very sharp edge between clusters. 
 
2.6 Fuzzy Cluster-Based Anomaly Detection 
 
The fuzzy cluster-based anomaly detector (FCBAD) is a novel extension of the CBAD and 
GMRX algorithms in that it can include several possible membership functions.  Like the 
CBAD method, FCBAD is not specifically linked to the assumption of a Gaussian 
background.  The particular membership function used in this study is given as   
 

                   ( ) 1))()(())((
1)(

1 +−−
=

− PTTk
kkk

q
zzz mzCmz

z  ,                               (15) 

 
where P is a tuning parameter and mz(k) and Cz(k) are class mean and class covariance, 
respectively.  The tuning parameter, P, governs the sharpness between class transitions for the 
FCBAD algorithm [14].  Through analysis of experimental results it has been determined that 
the algorithm is not highly sensitive to this parameter.  For the data used in this study, P=2 
was found to yield good results.  Additionally, it should be noted that, among others, (11) or 
(14) can be substituted for (15), yielding the GMRX and CBAD detectors, respectively.  The 
membership function is then used to compute the decision statistic   
 

                   ))(()())()(()(
1

1 kkkqd
K

k

T
kFCBAD zzz mzCmzzz −−=∑

=

− .                      (16)  

 
As with the CBAD detector, the model parameters of the FCBAD detector are estimates using 
k-means clustering [9].  Fuzzy clustering can also be applied to estimate model parameters, 
but doing so here did not yield improved performance.  FCBAD does not have a hard decision 
statistic like the CBAD or GMRX detectors, giving it more flexibility.  Additionally, this 
method may have performance benefits for non-Gaussian data in which the background has 
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heavy tails.  Figure 6 shows the decision statistic for the two class FCBAD method.  The blue 
lines represent the isocontours of the membership function given in (15) as it relates to the red 
cluster of pixels.     

 
 
Fig. 6.  Scatter plots for a two class FCBAD.  The surface height is the FCBAD detection statistic for an 
observation at z=[z1,z2]. Note the smooth decision statistic isocontour and the membership function 
(blue lines) related to the red class of pixels. 

 
3 CHANGE DETECTION 

 
Change detection uses two images captured some time apart and seeks to identify relevant 
change between the two.  The basic approach we apply is similar to that in Eismann, et al. 
[15] and it uses a predictor, temporal subtraction, and anomaly detection as shown in Fig. 7.  
The two data sets used in change detection analysis are referred to as the reference image 
(time 1), x, and the test image (time 2), y.  If the two scenes are captured with some sizeable 
time interval apart, natural changes in the background of the scene will also be introduced.  
These natural changes may include illumination changes, shadowing and seasonal changes.  It 
is desirable to eliminate or suppress these natural changes through a prediction process, which 
generates a transformation from the reference and test data sets.  The transform is applied to 
create a predicted test image, which is then subtracted from the actual test image creating a 
residual error image.  Ideally, the prediction and subtraction process removes the natural 
changes from the residual error image.  The residual error image is then fed into an anomaly 
detector allowing for the extraction of relevant changes.   
 

 
 
Fig. 7.  Change Detection Process.  The main components of interest are a predictor and an anomaly 
detector. 
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The Chronochrome (CC) algorithm [16] is one such change detector and it employs a 
linear predictor and an M-distance anomaly detector.   Another approach to prediction is a 
segmented or cluster-based predictor.  This method uses a clustering algorithm, such as k-
means or SEM, to create a clustered prediction of the test data.  This method is well covered 
in [15].   In our study here, we employ novel combinations of predictors and anomaly 
detectors and compare these to the CC and the other methods presented in [15].  In particular, 
we compare change detectors using selected detectors outlined in Section 2.  We pair these 
anomaly detectors with linear and cluster-based predictors in hopes of identifying the most 
effective combination. 

 
4 HYPERSPECTRAL IMAGE ACQUISITION 

 
The hyperspectral data sets referenced in this study are collected from August 2005 through 
May 2006, at Wright-Patterson Air Force Base, OH.  These collections occur at specified 
times and solar positions to maintain continuity and provide a wide range of vegetation and 
illumination conditions.  In all, over 100 data collections were performed and used in various 
studies; twelve diurnal collections and thirty six seasonal collections are used in this study.  
The single scene layout features a naturally vegetative environment with four painted 
aluminum panels set up to act as man-made anomalies.   The scene layout is observed in Fig. 
8.  The panels are black, green, beige and silver in color, respectively.  The test scene is 
deliberately artificial in nature in order to reduce the number of variables in the study.  Due to 
its simplistic and artificial nature, the scene may not be typical of many remote sensing 
applications.  However, the artificial nature allows for a more focused study of seasonal and 
diurnal environmental effects on anomaly and change detection algorithms.   

The scene is captured by a Hyperspec VS-25 Imaging Spectrograph produced by 
Headwall Photonics that is placed 18 meters above the target level and across from the scene, 
as observed in Fig. 9.  While the test scene is proximal in nature, it is believed that the results 
of the anomaly and change detection studies conducted also apply to non-proximal remote 
sensing applications.  The imaging spectrometer is paired with a Dalsa Pantera TF 1M60 
monochrome area scan CCD possessing a square focal plane containing an array of 1024 x 
1024 pixels and a Navitar 50 mm lens.  The system, which is mounted on a pan and tilt 
platform, possesses a spectral range in the visible to near infrared from 460 nm to 900 nm 
contained in 124 spectral bands.       
 

 
 

Fig. 8.  Color image of scene on May 8, 2006 at 1400 hrs.   
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Fig. 9.  Overhead Panel and Camera Locations. 
 
 

A spectral calibration is performed using a laser and gas lamps to determine the mapping 
coefficients.  Additionally, a noise characterization of the system is performed to determine 
signal to noise levels for each pixel on the focal plane array [17].  An absolute radiometric 
calibration is performed to correct for the non-uniformity of pixel response.  Finally, each 
data set is spectrally filtered to increase signal to noise ratio (SNR) using a low-pass filter.   

After all the calibration procedures are complete, the data is reduced in dimensionality 
through a principal component transform in which the ten leading principal components are 
reserved for further analysis. The reason for using only the leading principal components is 
twofold.  First, the hyperspectral data sets in their entirety are very large and are quite 
computationally intensive to process.  Thus, reducing the size and computational intensity of 
the data was imperative to the success of a study such as this that analyzes a large number of 
data sets over diurnal and seasonal periods.  Secondly, the vegetative background of the scene 
is well represented in this reduced principal component space [18].  Additionally, the targets 
in the test scene are relatively large in comparison to the overall scene.  Their size ensures that 
they are represented in the reduced principal component space. Care is taken to ensure that the 
vast majority of the trailing principal component subspace is sensor noise [18].  However, due 
to the nature of the principal component transform some target features may reside in the 
trailing principal component space and are lost when it is discarded.   

Figure 10 shows the spectra of the portion of the background containing trees and the 
green target for May 8 at 1400 hrs and Oct 18.  The blue line represents the full 124 band 
spectra.  The red line represents the spectra produced by the reverse principal component 
transform.  In doing this comparison, the ten leading principal components are used and the 
trailing 114 principal component bands are replaced by the mean of each band.  The 
covariance matrix used in the principal component transform is the same for each scene; the 
Aug 25 covariance matrix is used throughout.  This was done as the data was originally 
intended for use in a several change detection studies.  However, as shown in Fig. 10, the use 
of a single covariance matrix and only the leading principal components is deemed acceptable 
for this study as the losses are relatively minor.  Additionally, the study only intends to reveal 
relative performance trends in anomaly and change detection.  Future research into 
incorporating portions of the trailing subspace or the entire hyperspectral data product into 
anomaly and change detection algorithms, as well as using separate covariance matrices in the 
principal component transform could yield improved detection performance. 
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Fig 10.  Spectral comparison between full and reduced dimensionality data:  (a) May 8 trees (b) May 8 
green target (c) Oct 18 trees, and (d) Oct 18 green target.  The x-axis represents spectral radiance and the 
y-axis represents wavelength in nanometers.  The blue line indicates the full 124 band spectra and the 
red line indicates the reverse transformed principal component spectra from the ten leading principal 
components. 

  
 

5 EXPERIMENTAL RESULTS 
 
5.1 Diurnal Data 
 
Twelve hyperspectral data sets collected at Wright-Patterson Air Force Base over the period 
of 0800-1900 hrs (8 AM to 7 PM) on May 8, 2006 are selected for this diurnal data set.  The 
overall diurnal data set allows for an examination of the effects of a wide range of solar 
positions and solar illuminations on the target scene.  As a solar position reference, the solar 
azimuth is 81 degrees at 0800 hrs, 180 degrees at 1330 hrs and 278 degrees at 1900 hrs.  
Three separate experiments are used to evaluate the performance of each of the six anomaly 
detection methods.  These experiments are explained in the next three sections and 
experimental results are presented in each.  An example of the scene during the diurnal period 
at 1400 hours is shown in Fig. 8.  
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5.1.1 Performance vs. Time of Day 
         
The first experiment measures and compares the area under the curve (AUC) calculated from 
the receiver operating characteristic (ROC) curves for each hyperspectral data set as a metric 
for detection performance [19,20].  The ROC curve is computed by counting correct 
detections and false alarms as the threshold level is increased from zero to the maximum 
detection statistic value.  Example ROC curves can be seen in Figs. 15 and 19.  As the 
detection threshold is raised in these figures, more pixels are classified as anomalies.  Thus, a 
higher threshold leads to a higher probability that a true anomalous pixel will be detected and 
classified as an anomaly.  However, as the threshold is raised the probability that non-
anomalous pixels will mistakenly be classified as anomalies also goes up.  Plotting the 
detection vs. false alarm results at each threshold creates a curve that characterizes the 
tradeoff between high detection probability and a high rate of false alarms.  Figure 11 shows a 
portion of a ROC curve for three anomaly detection methods with three specific detection 
thresholds marked.  This figure gives the user a general idea of the detection sensitivity of 
each method to the threshold level, and is useful for selecting an operating point for each 
anomaly detector.  The AUC measures the area under the ROC curve to give a generalized 
anomaly detection performance evaluation.  This is useful when large numbers of ROC 
curves become cumbersome to present.   
 

 
 

Fig. 11.  ROC curve for Oct 18 with specific thresholds marked. 
 
 
Figure 12 displays the anomaly detection images for each of the methods for May 8, 2006 

at 1400 hours.  The solar azimuth position at this time is 197 degrees.  In these images 
brightness represents the decision statistic (i.e., bright pixels are more anomalous).  All six 
methods are successfully able to detect and classify the four target panels as anomalies while 
raising few false alarms in the background.  Figure 13 shows a portion of the ROC curves for 
each of the methods at 1400 hours.  While CBAD has the best overall performance at this 
time, the overall difference between all six detection methods is minimal.  Note the very small 
scaling on the x-axis of Fig. 13. 
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Fig. 12.  Anomaly Detection Images May 8, 2006 at 1400 hrs – (a) M-distance, (b) CBAD, (c) GMM, 
(d) RX, (e) GMRX, (f) FCBAD. 
 
 
 

 
 
Fig. 13.  ROC curves for May 8, 2006 at 1400 hrs.  Note the very small probability of false alarms (x-
axis) and the very high probability of detection (y-axis). 
 
 

The AUC for all ROC curves during the diurnal period is now computed.  Figure 14 
shows the AUC of all six anomaly detection methods.  Two classes are used where applicable.  
All detectors perform well from 0800-1700 hrs and have similar AUC values, as can be seen 
in Fig. 14.     
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Fig. 14.  Performance vs. Time of Day (0800-1900 hrs) with two classes used where applicable. 
 
 

It is also noteworthy that all detectors have reduced performance between 1800-1900 hrs.  
This is due to illumination changes related to the solar angle with respect to the target panels.  
Between 1800-1900 hrs the sun slowly begins to set in the west, which is behind the northeast 
facing target panels.  This causes a reduction in overall illumination on the panels and the 
scene in general, making anomaly detection more difficult.  This illumination change is 
depicted in Fig. 15.  An anomaly detection image at 1900 hrs is shown in Fig. 16 and a ROC 
curve for each method at 1900 hrs is provided in Fig. 17.  Figure 16 clearly shows that the 
anomaly detectors have trouble detecting the two left most panels, black and green, 
respectively, at 1900 hrs.  Note the much larger probability of false alarms (x-axis) in Fig. 17 
as compared to the 1400 hrs case in Fig. 13.   

 
 

 
 

Fig. 15.  Color image of scene on May 8, 2006 at 1900 hrs.  
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Fig. 16.  Anomaly Detection Images May 8, 2006 at 1900 hrs – (a) M-distance, (b) CBAD, (c) GMM, 
(d) RX, (e) GMRX, (f) FCBAD. 
 

 
 

Fig. 17.  ROC curves for May 8, 2006 at 1900 hrs. 
 

Since the first principal component typically represents overall scene brightness, it is 
removed and the AUC is recomputed using principal components two through ten only.  This 
experiment is shown to provide a 1-5% gain in detection performance for all methods during 
the 1800-1900 hr time period.  However, removing the leading principal component was also 
found to modestly decrease the detection performance of all methods except the GMRX 
detector in the 0800-0900 hr time period.    
 
5.1.2 Performance vs. Number of Classes 
 
We now consider performance as a function of the number of classes used in the cluster-based 
methods (and superimposed K Gaussian methods GMM and GMRX, referenced as cluster-
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based methods for simplicity from here on) varied between two and ten.  The AUC values for 
the twelve diurnal data sets are averaged for each method and number of classes used.  This 
provides a way to analyze the general performance tendencies among the six different 
anomaly detection methods as well as allowing an analysis of the effect of the number of 
classes in the cluster-based methods.  No changes are made to the M-distance and RX 
detectors.  Their performance is given for comparison and represented as flat lines.  Results 
for all anomaly detection methods are shown in Fig. 18. 
 

 
 

Fig. 18.  Performance vs. Number of Classes. 
 

Figure 18 shows that the addition of more classes generally increases the overall 
performance of the cluster-based methods.  The FCBAD detector has the best performance, 
exhibiting a small advantage over the CBAD detector.  Both increase steadily in performance 
with the addition of more classes, up until a point of diminishing returns around seven classes, 
likely due to the relative simplicity of the target scene used in the data collection process.  A 
more complicated and populated scene would have a more diverse set of pixel values and 
therefore would likely support more classes.  The GMM and GMRX methods also show some 
performance improvement with additional classes, but the gains are neither as large nor as 
consistent as with the CBAD and FCBAD methods.  It is worth noting that the top performing 
methods, CBAD and FCBAD, use a relatively simple k-means clustering algorithm. 

As was the case in section 5.1.1, the first principal component is once again removed to 
judge the detectors’ overall sensitivity to scene brightness.  Contrary to findings in section 
5.1.1 for the two class case, the removal of principal component one is found to have less 
positive impact on detection performance as the number of classes increase.  In fact, at four 
classes there is nearly zero performance gain in the 1800-1900 hr time period.  At six classes 
and beyond the removal of the leading principal component moderately decreases detection 
performance for most methods over the same time period. 
 
5.1.3 Performance with Target Contamination 
 
In the previous two experiments, the statistics of the scene background are computed with the 
target panels completely masked out.  This corresponds to a scenario where representative 
background training data are available and known to be free of targets.  However, in many 
situations these types of training data are not available.  In these situations it is sometimes 
necessary to use data where targets may be present, but relatively small compared to the 
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overall scene.  In this experiment, the statistics of the background are degraded, or 
contaminated, by allowing a percentage of target panel pixels into the calculation.  Target 
pixels are allowed to contaminate the scene at increments of ten percent.  When 100% of the 
target pixels are included they account for roughly 0.3% of the total image pixels.  This 
represents a more realistic, real world analysis of each detection algorithm’s performance.  
Here, as in the second performance experiment, the AUC is averaged over all twelve data 
points.  The results are shown in Fig. 19.  The RX anomaly detector is not shown in this 
performance experiment since it does not use target masks and is not susceptible to target 
contamination.  
 

 
 

Fig. 19.  Performance with Target Contamination with two classes used in the clustering methods. 
 

Figure 19 shows the performance of the anomaly detection methods with respect to the 
percentage of target contamination present.  All of the clustering methods are shown for the 
simple two class case.  As seen in Fig. 19, the performance of all the methods is degraded as 
more target pixels are included.  The performance of the M-distance, CBAD and FCBAD 
detectors fall at a fairly constant, linear rate throughout.  The GMM and GMRX detectors 
exhibit less uniform behavior and some resistance to small amounts of target contamination; 
however, they are generally negatively affected by target contamination as well.  
 
5.2 Seasonal Data 
 
The seasonal data set consists of thirty six hyperspectral data sets collected at Wright-
Patterson Air Force Base between August 24, 2005 and April 18, 2006.  These data 
collections represent a wide range of seasonal conditions, including full illumination, distinct 
shadowing and light snow cover.  All sets have a constant solar position in which the solar 
azimuth is fixed at 180 degrees.  The same three performance experiments used to analyze the 
diurnal data are also applied to the seasonal data.   
 
5.2.1 Performance vs. Season 
 
The AUC is computed for the thirty six seasonal data sets.  The results are shown in Fig. 20 
and two classes are used in the clustering methods throughout section 5.2.1.    
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Fig. 20.  Performance vs. Season with two classes used where applicable. 
 

Clearly visible in Fig. 20 are three distinct regions of performance.  Two regions in which all 
the detection methods exhibit excellent performance are seen from the beginning of the 
collection (August 24, 2005) through mid-October 2005 and from March 2006 through the 
end of the collection on April 18, 2006.  Scene illumination and environmental conditions 
during these periods is comparable to the conditions shown in Fig 8.  Anomaly detection 
performance during these periods is similar to the performance shown in Figs. 12 and 13.  In 
the third region between mid-October 2005 and early March 2006, the performance of all 
detectors is highly degraded.  This results from distinct shadowing features that enter the 
scene and engulf all four target panels.  In addition, the scene background in the December 
collection data is covered in a light layer of snow (the target panels are not covered).  
Examples of the shadowing effects and snow cover are shown as color images in Figs. 21 and 
22.  These figures represent October 18, 2005 at 1330 hrs and December 20, 2005 at 1230 hrs, 
respectively.  October 18 and December 20 date lines are also marked in Fig. 20 to more 
easily identify AUC performance.  The anomaly detection images are shown in Figs. 23 and 
24 and the ROC curves of all six methods can be seen in Figs. 25 and 26. 
 

 
 

Fig. 21.  Color image of scene on Oct  18, 2005. 

Journal of Applied Remote Sensing, Vol. 3, 033546 (2009)                                                                                                                                    Page 19



 

 
 

 

 
 

Fig. 22.  Color image of scene on Dec 20, 2005. 
 
 
 
 
 
 

 
 
Fig. 23.  Anomaly Detection Images for October 18, 2005 – (a) M-distance, (b) CBAD, (c) GMM, (d) 
RX, (e) GMRX, (f) FCBAD. 
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Fig. 24.  Anomaly Detection Images December 20, 2005 – (a) M-distance, (b) CBAD, (c) GMM, (d) 
RX, (e) GMRX, (f) FCBAD. 
 
 
 
 
 
 

 
 

Fig. 25.  ROC curves for Oct 18, 2005. 
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Fig. 26.  ROC curves for Dec 20,  2005. 
 
 

As can be seen in Figs. 23-26, the detection performance of all six methods is negatively 
impacted by the shadowing effects and snow cover in the scene.  During the shadowed period, 
Fig. 23 shows that the two left most targets, black and green respectively are the most difficult 
for the detectors to properly classify as anomalies.  There are also a very significant number 
of false alarms raised in the background.  This decreased performance is also seen in the ROC 
curve in Fig. 25.  As is shown in Figs. 24 and 26, the performance of the methods degrades 
further in the presence of snow cover.  In general, the methods fail to classify the target panels 
as anomalous.  The exceptions here are the GMM and GMRX methods.  The GMM method 
shows some ability to successfully operate under adverse conditions and is able to detect three 
target panels as seen in Fig. 24 (c).  The GMRX method exhibits good detection performance 
despite the shadowing and snow cover.  Figure 24 (e) shows that the GMRX method is able to 
classify all four target panels as anomalies, despite the adverse conditions.  This performance 
advantage is also seen in the ROC curve in Fig. 26.  It is worth noting that both the GMM and 
GMRX methods use stochastic expectation maximization as their clustering algorithms.  

The anomaly detection performance degradation is due to illumination changes in the 
scene.  Figure 27 illustrates the fundamental changes in the scene during periods of 
shadowing and snow cover in the form of a scatter plot of principal component 1 vs. principal 
component 2.  Figure 27 (a) represents May 8, 2006 at 1400 hrs, which is a well illuminated 
data set with a solar azimuth position near 180 degrees.  Figure 27 (b) represents December 
20, 2005, a data set in which shadowing and a light layer of snow are present.  In the figure, 
the lower portion of the background consisting of grass is represented by red diamonds and 
the upper portion consisting of trees is represented by blue diamonds.  The black, green, beige 
and silver targets are represented by cyan, green, magenta and yellow X’s, respectively.  It is 
clear from Fig. 27 (a) that under near optimum illumination conditions, the targets generally 
separate from the background, allowing them to be easily detected as anomalies by all 
detectors.  In Fig. 27 (b), however, the target pixels tend to intermix with the background 
pixels.  This intermixing makes it especially difficult for linear and locally adaptive methods 
to detect the man-made panels as anomalous from the background.  The cluster-based 
anomaly detectors are able to more accurately model the background represented in Fig. 27 
(b), and thus have more success identifying anomalies. 
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                                               (a)                                                                                       (b) 

 
Fig. 27.  Scatter plots of PC 1 vs. PC 2 – (a) May 8, 2006, (b) Dec 20, 2005. 

 
Figure 28 illustrates the target-to-background separability of anomaly detection methods.  

In this case the CBAD method is shown in conjunction with data from May 8 at 1400 hrs.  
The decision statistic assigned to a pixel by the CBAD method is shown along the x-axis, 
while the number of pixels assigned to that particular decision statistic is shown on the y-axis.  
Figure 28 clearly shows that the majority of the background pixels are assigned decision 
statistics near or below 100.  Targets are generally assigned higher decision statistics.   
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Fig. 28.  Target-to-background separability.  Data from May 8 @ 1400 hrs using the CBAD method 
with 4 classes.  

   
To remain consistent with the experimentation in section 5.1.1, the first principal 

component is now removed and the AUC is recomputed for the seasonal period using the 
remaining principal components.  Generally, this removal is found to decrease the 
performance of all anomaly detectors over the seasonal period. 
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5.2.2 Performance vs. Number of Classes 
 
A similar performance experiment is used in this section as in the earlier section analyzing 
performance as a function of the number of clustering classes used.  In that previous section, 
the general behavior of the detection methods as a function of the number of classes used is 
discovered for highly illuminated, non-shadowed data sets.  Instead of repeating that analysis 
in this section, only the data points that feature a highly shadowed scene are used.  This 
allows a more thorough breakdown of the ability of the six methods to classify anomalies in 
the presence of the adverse conditions of shadowing and snow cover.  The results are shown 
in Fig. 29.   
 

 
 
Fig. 29.  Performance vs. Number of Classes using only the seventeen shadowed data sets from mid 
October 2005 – early March 2006. 

 
 

As seen in Fig. 29, with the exception of the GMRX method which has near peak 
performance in the two class case, the overall performance of the cluster-based methods 
increases with the addition of more clustering classes up until a point of diminishing returns.  
This is similar to the behavior observed for the diurnal data sets in Fig. 18.  In Fig. 29, 
however, the difference between the minimum and maximum achieved performance is much 
greater.  As before, the performance of the CBAD and FCBAD detectors is closely related.  
These methods have the best overall performance during the shadowed seasonal period, with 
a diminishing returns behavior beginning at six clustering classes.  The GMM detector’s 
performance also benefits from the addition of classes, although the performance gains are not 
as strong as with CBAD and FCBAD.  The GMRX method also exhibits similar behavior to 
that seen in Fig. 18.  The GMRX method features very good performance with only two 
classes, but does not benefit appreciably from the addition of more classes.  In the shadowed 
seasonal period, the cluster-based methods significantly outperform the global and locally 
adaptive anomaly detection methods.    

Once again, the first principal component is removed and the AUC is recomputed for the 
seasonal data with a varying number of classes.  The removal is found to seriously decrease 
the detection performance of all methods over the seasonal period.    
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5.2.3 Performance with Target Contamination 
 
The performance experiment used in this section is similar to the third performance 
experiment used in the diurnal case.  Here, similar to the previous section, only the shadowed 
data sets are used.  The results are shown in Fig. 30.   
 

 
 
Fig. 30.  Performance with Target Contamination using only the seventeen shadowed data sets from mid 
October 2005 – early March 2006. 

 
The performance in Fig. 30 is as expected, with all detectors having reduced performance 

as target pixel contamination increases.  Unlike the somewhat varying nature seen for the 
GMM and GMRX detectors in the diurnal data in Fig. 19, the relationship between 
performance and target contamination is fairly linear for all detectors.  
 
5.3 Change Detection 
 
The experimentation conducted on change detection follows closely with the work of 
Eismann, et al. [15]. In that work, the idea of a segmented (cluster-based) prediction 
algorithm paired with an M-dist or RX anomaly detector is investigated.  The cluster-based 
predictor can employ either the k-means or SEM clustering methods.  In this study, that 
prediction-anomaly detection combination is compared to a change detection combination 
where the CC and cluster-based predictors are paired with cluster-based anomaly detectors.  
Six classes are used in cluster-based prediction and anomaly detection throughout this 
experiment.  The prediction-anomaly detection combinations are outlined in Table 2. 
 

Table 2: Change Detection Combinations 
Predictor Anomaly Detector 
CC (global) CBAD 
CC (global) GMRX 
Segmented (K-means) M-dist 
Segmented (SEM) M-dist 
Segmented (K-means) CBAD 
Segmented (SEM) GMRX 
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The reference and test images are chosen to be October 26, 2005 and October 14, 2005, 
respectively.  It should be pointed out that these are in reverse chronological order, as only a 
limited number of appropriate test images are available.  October 14 happens to fall just inside 
the time period where shadowing becomes a serious issue in the scene, as described in 
previous sections.  With the test image selected, it is then desired to choose an appropriately 
shadowed reference image that is collected a reasonable period of time from the test image. 
October 26 is judged to be a reasonable selection despite the reverse chronological order.  The 
reference and test images are shown in Figs. 31 and 32. 
 

 
 

Fig. 31.  Reference Image Oct 26, 2005. 
 

 
 

Fig. 32.  Test Image Oct 14, 2005. 
 

Differing from previous experimentation, the four aluminum target panels are considered 
part of the background and are not desired to be detected as anomalies.  Instead, two bundled 
green tarps (circled) are added to the test scene as shown in Fig. 32.  These are the targets we 
desire to identify through the change detection process while suppressing the natural changes 
from scene to scene.  The change detection performance of each predictor-anomaly detector 
combination is shown in Fig. 33.  Background statistics for the scene are computed from the 
reference image and applied throughout the process, where applicable.  No target masks are 
used in the statistical calculations or in the prediction process. 
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Fig. 33.  ROC curve for Change Detection Combinations. 
 

Figure 33 shows all predictor-detector combinations have relatively strong change 
detection performance.  The combination of SEM prediction and GMRX anomaly detection 
has the best overall performance.  This performance, coupled with the strong performance of 
the CC predictor and GMRX anomaly detector combination suggest the use of GMRX 
anomaly detection with statistics computed from the reference image is preferred for change 
detection.   
 
6 CONCLUSIONS 

 
For the diurnal data study, all six anomaly detection methods have very high detection 
performance.  The overall difference between the best and worst performing detectors is 
small.  All methods exhibit a degradation of detection performance in the late afternoon and 
early evening caused by the reduction of overall scene illumination due to the solar angle of 
the setting sun. 

For the seasonal data study, scenes in which the target panels are highly illuminated with 
no shadowing effects led to detector performance similar to that of the diurnal data sets.  
Under conditions with significant shadowing and snow cover, the performance of the 
detection methods is distinctly different.  Here, the cluster-based methods exhibit significantly 
improved performance compared to the global and locally adaptive methods.   In general, the 
performance of the cluster-based methods benefits from the addition of clustering classes up 
to about six.  The additional clusters provide a level of robustness to the detectors, allowing 
them to operate with improved performance in adverse conditions.  The exception is the 
GMRX detector, which displays nearly its best performance with only two clustering classes.  
FCBAD with six clustering classes features the best overall performance during shadowed 
conditions, holding a slight advantage over the CBAD detector. 

Most anomaly detection performance degradation stems from distinct shadowing or 
illumination changes in the scene.  Generally, the leading principal component is associated 
with overall scene brightness.  To measure the effect of scene brightness on anomaly 
detection performance the leading principal component is removed and the experiments 
conducted in sections 5.1.1, 5.1.2, 5.2.1 and 5.2.2 are repeated using the remaining nine 
principal components.  This removal is found to aid the anomaly detection performance of all 
methods in the diurnal two-class case for the 1800-1900 hr time interval.  In all other cases, 
removing the leading principal component does not aid performance. 
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As expected, target pixel contamination has a negative effect on the performance of all 
detection methods.  During the diurnal study, the GMM and GMRX detectors show some 
resistance to this negative performance affect.  This resistance is not present in the seasonal 
study where the detection performance varies almost linearly with the fractional target 
contamination.  The detectors experience a 1-3% percent reduction in the area under the 
Receiver Operating Characteristic curve when all of the target pixels are allowed to 
contaminate the background statistics.   

In the change detection study, the segmented SEM based predictor coupled with a 
GMRX anomaly detector yields the best overall change detection performance.  Additionally, 
the second best performing combination is a CC predictor coupled with a GMRX anomaly 
detector.  These results support the use of a GMRX anomaly detector to achieve optimum 
results during the change detection process. 
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