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Abstract 

 

Detecting targets with unknown spectral signatures in hyperspectral imagery has been 

proven to be a topic of great interest in several applications. Because no knowledge about 

the targets of interest is assumed, this task is performed by searching the image for 

anomalous pixels, i.e. those pixels deviating from a statistical model of the background. 

According to the hyperspectral literature, there are two main approaches to Anomaly 

Detection (AD) thus leading to the definition of different ways for background modeling: 

global and local. Global AD algorithms are designed to locate small rare objects that are 

anomalous with respect to the global background, identified by a large portion of the 

image. On the other hand, in local AD strategies, pixels with significantly different spectral 

features from a local neighborhood just surrounding the observed pixel are detected as 

anomalies.  

In this thesis work, a new scheme is proposed for detecting both global and local 

anomalies. Specifically, a simplified Likelihood Ratio Test (LRT) decision strategy is 

derived that involves thresholding the background log-likelihood and, thus, only needs the 

specification of the background Probability Density Function (PDF). Within this 

framework, the use of parametric, semi-parametric (in particular finite mixtures), and non-

parametric models is investigated for the background PDF estimation. Although such 

approaches are well known and have been widely employed in multivariate data analysis, 

they have been seldom applied to estimate the hyperspectral background PDF, mostly due 

to the difficulty of reliably learning the model parameters without the need of operator 

intervention, which is highly desirable in practical AD tasks. In fact, this work represents 

the first attempt to jointly examine such methods in order to asses and discuss the most 

critical issues related to their employment for PDF estimation of hyperspectral background 

with specific reference to the detection of anomalous objects in a scene. 

Specifically, semi- and non-parametric estimators have been successfully employed to 

estimate the image background PDF with the aim of detecting global anomalies in a scene 

by means of the use of ad hoc learning procedures. In particular, strategies developed 

within a Bayesian framework have been considered for automatically estimating the 

parameters of mixture models and one of the most well-known non-parametric techniques, 
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i.e. the fixed kernel density estimator (FKDE). In this latter, the performance and the 

modeling ability depend on scale parameters, called bandwidths. It has been shown that the 

use of bandwidths that are fixed across the entire feature space, as done in the FKDE, is 

not effective when the sample data exhibit different local peculiarities across the entire 

data domain, which generally occurs in practical applications. Therefore, some possibilities 

are investigated to improve the image background PDF estimation of FKDE by allowing 

the bandwidths to vary over the estimation domain, thus adapting the amount of smoothing 

to the local density of the data so as to more reliably and accurately follow the background 

data structure of hyperspectral images of a scene. 

The use of such variable bandwidth kernel density estimators (VKDE) is also proposed 

for estimating the background PDF within the considered AD scheme for detecting local 

anomalies. Such a choice is done with the aim to cope with the problem of non-Gaussian 

background for improving classical local AD algorithms involving parametric and non-

parametric background models. The locally data-adaptive non-parametric model has been 

chosen since it encompasses the potential, typical of non-parametric PDF estimators, in 

modeling data regardless of specific distributional assumption together with the benefits 

deriving from the employment of bandwidths that vary across the data domain.  

The ability of the proposed AD scheme resulting from the application of different 

background PDF models and learning methods is experimentally evaluated by employing 

real hyperspectral images containing objects that are anomalous with respect to the 

background. 

 

Index Terms - anomaly detection, hyperspectral images, finite mixture model, kernel 

density estimation, Bayesian learning, variable bandwidth kernel density estimation. 
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Chapter 1 

1 Introduction 

 

1.1 Motivation and problem statement 

Hyperspectral remote sensing is based on the fact that all materials show distinctive 

amount of reflected, absorbed, and emitted radiation at each wavelength that is related to 

their molecular composition. Hyperspectral sensors capture the spectra of the observed 

pixels in hundreds of contiguous and very narrow spectral bands (less than 0.010 μm 

wide). Accordingly, the resulting hyperspectral image includes both spatial features and 

very rich information content about the spectral characteristics of the observed materials 

that can be exploited to detect and identify objects in the image.  

Several studies have demonstrated the usefulness of exploiting the information 

extracted from multiple spectral bands when searching for targets and objects in remotely 

sensed images [27][36][55]. Many works in this area have focused on the detection of 

targets with known spectral properties [10][21][24][36][37][49]. Within this framework, 

laboratory or field measurements of target spectra are typically assumed to be used as 

known spectral signatures to be detected within the remotely sensed image. In principle, 

such approaches search for those image pixels whose spectrum exhibits a high degree of 

correlation with the known target spectral signature. Nevertheless, precise knowledge of 

what type of paint or camouflage the target is equipped with may not be available in most 

cases, and the target detection task needs to be addressed by searching the image for those 

objects that are anomalous with respect to the scene, i.e. Anomaly Detection (AD) 

[27][42][55].  
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Spectral Anomaly Detection (AD) is a target detection problem in which no previous 

knowledge about the spectrum of the object of interest is available. Since no prior 

knowledge for the targets is assumed, the detection is based on the spectral separation 

between the anomalous objects and the background. In general, targets of interest can be 

further divided into global and local anomalies thus leading to the definition of different 

background models [42][55]. Global AD algorithms aim at detecting small rare objects 

that are anomalous with respect to the rest of the image (i.e. the global background). In 

local AD strategies, on the other hand, the task of locating pixels with significantly 

different spectral features with respect to their surrounding background is taken into 

account. 

In the literature, several AD algorithms have been developed on the basis of different 

approaches [27][42][55][75]. In this thesis work, the focus is on AD algorithms based on 

statistical methods. In this context, strategies are usually formulated by resorting to a 

binary hypothesis-testing problem solved according to decision rules typical of the 

detection theory. Within this framework, the foundation of many important AD approaches 

is the Neyman-Pearson criterion (NP), according to which the optimum decision strategy is 

given by a Likelihood Ratio Test (LRT) dependent on the probability density functions 

(PDFs) conditioned to the two hypotheses [30]. In this work, a simplified LRT decision 

rule is derived. Specifically, the proposed AD strategy involves thresholding the 

background log-likelihood and, thus, only needs the specification of the background PDF 

to detect spectral anomalies [27][42]. This AD scheme is able to accommodate the 

different definitions of anomaly. In particular, for global AD purposes, given the target 

rarity assumption, the whole scene is used to characterize the background. On the contrary, 

if a neighboring area around the pixels being tested is used to characterize the background, 

then the anomalies found are local. In both cases, the background PDF is unknown and has 

to be estimated from the data. This is general accomplished by assuming a model for the 

PDF to estimate. Thus, different background models lead to different AD algorithms. 

The estimation of PDFs based on representative data samples drawn from the 

underlying density is a problem of fundamental importance in various fields, such as 

machine learning, pattern recognition, and computer vision [12][46][59]. Therefore, 

several different PDF models have been proposed in the literature [6][23][54]. The 

simplest approach to PDF estimation is parametric estimation, which assumes data drawn 

from a specific parametric unimodal distribution (e.g., the Gaussian one) [3]. The 
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advantage of the parametric approach is that the model is defined by a small number of 

parameters. Once those parameters are estimated from the sample data and the estimates 

are plugged in the assumed model, the whole distribution is obtained. However, while this 

assumption may reflect reality only in certain situations, it is more generally the case that 

the image background contains several different types of land-covers. Therefore, multi-

modal distributions are more appropriate to capture the complexity of the image 

background [55]. To this aim, semi-parametric approaches, such as the widely employed 

Finite Mixture Models (FMMs), may provide a more accurate background characterization 

[6][55]. They model the background PDF as a linear combination of PDFs of the same 

kind, thus accommodating the multimodality. Semi-parametric estimation procedure 

entails that the type and number of mixture components are properly chosen to do not 

compromise the estimator performance. Alternatively, a non-parametric PDF estimator 

can be considered, in which the data are not assumed to be drawn from a specific 

distribution nor has the PDF to follow a specific statistical model [23][29][50][54]. One of 

the most well-known techniques for non-parametric PDF estimation is the Fixed Kernel 

Density Estimator (FKDE), also known as Parzen estimator [23][29][54]. FKDE applies 

smooth functions (i.e., the kernel functions) at each data sample, and, then, the PDF 

estimate at a test sample is computed by averaging the values assumed by the kernel 

functions in correspondence of the given test sample. The performance and the modeling 

ability of FKDE depend on scale parameters, called bandwidths, that control the degree of 

smoothing of the resulting estimate [54]. Basically, the bandwidths are the kernel function 

widths. In the case of homogeneous data statistics, global bandwidths suffice for the 

analysis. However, the use of fixed bandwidths over the entire feature space, as done in the 

FKDE, has been shown to be not effective when the data samples exhibit different local 

peculiarities across the entire data domain [54]. In such cases, the employment of a 

variable-bandwidth KDE (VKDE) to adapt the amount of smoothing to the local density of 

data sample in the feature space, so as to more reliably and accurately follow the 

multivariate background data structure, has been suggested [29][50][54]. 

Although such PDF estimators are well-known and have been widely applied to 

different aspects of low-dimensional data analysis, their use in the hyperspectral AD 

context has been limited, mostly because of the difficulty in learning the underlying 

models and parameters in a reliable and automatic data-driven fashion. The main idea that 

inspired this thesis is to jointly investigate different PDF estimators within a common AD 



Chapter 1 

4 

 

framework. Specifically, this research work refers to the previously mentioned AD scheme 

in which the well-recognized statistical framework of the LRT decision rule is combined 

with reliable and automatic data-driven background PDF estimation. Within this detection 

strategy, several different background models are investigated for both global and local 

AD purposes. To this aim, different learning methods, each tailored to the specific 

statistical model considered, are investigated in their application to the background PDF 

estimation.  

Specifically, the analysis of global AD is focused on semi-parametric approach, in 

particular mixture models, and non-parametric approaches.  

In the semi-parametric approach, PDF estimation is carried out through a model 

learning procedure aimed at estimating the parameters required to characterize the Finite 

Mixture Model (FMM). Model parameter learning allows the PDF estimate to be fully 

specified. Typically, FMM learning has been conducted within the well-known 

Expectation Maximization (EM) framework. Nevertheless, the EM algorithm may be 

impaired by several limitations, such as incurring in singular solutions and the inability to 

automatically solve the FMM model-order selection. As regards the FKDE non-parametric 

estimator, the model is entirely learned from the data without resorting to parameter 

estimation. However, the employment of kernel functions to interpolate the data requires 

the kernel smoothing degree to be specified in advance. This means that a suitable 

bandwidth matrix has to be selected. The selection of reliable bandwidths has always been 

regarded as a major problem in the KDE literature. In this work, the parameter learning of 

FMMs and FKDE is carried out within a Bayesian framework [4][7][12]. In such a way, 

limitations inherent to EM for FMM learning are overcome as well as an automatic 

learning of the bandwidths in FKDE is made possible. In principle, the Bayesian approach 

involves prior knowledge within the model so that relevant properties of the data 

generation mechanism can be properly modeled and handled. In particular, by posing the 

model-learning problem in probabilistic terms through the Bayesian approach, the 

parameters are learnt in an automatic fashion, thus making the whole AD scheme 

applicable without the need of operator intervention. Though applied to several 

computational intelligence applications (such as image segmentation and blind source 

separation), such Bayesian methods have seldom been investigated as concern their 

capability of automatically learn the background PDF model parameters in hyperspectral 

images. In fact, this work represents the first attempt to jointly examine such methods in 
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order to investigate the issues related to Bayesian-based semi- and non-parametric PDF 

estimation of hyperspectral image background with specific reference to the detection of 

anomalous objects in a scene.  

Among the considered PDF estimators, the non-parametric approach has been shown to 

be the most attractive approach to be applied in practical AD tasks. This is mostly due to its 

independence of specific background distributional assumptions. So, the possibility for 

improving the FKDE outcomes by varying the bandwidth over the domain of estimation as 

to hyperspectral image PDF estimation is also explored. In fact, although VKDE has 

already been employed in some pattern recognition applications [11][54], its potential as 

regards the background PDF estimation for enabling detection of anomalies in 

hyperspectral images has not been investigated yet and represents a topic of great interest 

for the remote sensing and target detection communities. Within this framework, the 

nearest neighbor class of estimators has been shown to represent a valuable attempt to 

adapt the amount of smoothing to the local density of data [35][54].  

As to local AD strategies, parametric and non-parametric approaches to background 

PDF estimation are compared. The parametric methods are analyzed by employing the 

Reed-Xiaoli (RX) algorithm [48], which is considered to be the benchmark AD algorithm 

for multi/hyperspectral images. Within this framework, the data in the two hypotheses are 

assumed to arise from normal distributions with the same covariance matrix but different 

mean vectors. Such a Local Normal Model (LNM) is generally forced onto the image by 

performing a local demeaning using a sliding window. Then, according to the proposed 

simplified LRT, the decision rule for the RX algorithm can be derived. Nevertheless, most 

real-world data do not fit the LNM, especially in complex background situations. Starting 

from this, several AD strategies trying to cope with the problem of non-Gaussian 

background have been presented [32][36][42]. In this work, in order to benefit from the 

great potential that non-parametric methods embed, i.e. the ability at modeling complex 

local backgrounds without making specific distributional assumptions, a novel local AD 

strategy is proposed. Specifically, the strategy relies upon the proposed LRT decision rule 

and involves a VKDE to model the local background. 

Therefore, in this thesis work the use of different PDF estimators and model learning 

procedures is jointly explored within a common AD scheme for detecting anomalies by 

means of the background log-likelihood decision rule. Within this framework, attention 

will not be devoted only to the capability of detecting the anomalous objects in a scene. 
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Rather, the analysis of the methodologies will be focused on their ability at providing good 

AD performance coupled with a reliable estimation of the image PDF. Indeed, this latter 

encloses a rich information content that can be useful for many unsupervised image 

analysis tasks and may provide ancillary information about the scene containing the 

detected anomalies. Two real hyperspectral images encompassing different AD scenarios 

are employed to evaluate and discuss their most critical issues, such as their modeling 

ability as well as their actual utility in practical AD tasks, and to evaluate, by means of 

several different performance measures, experimental detection performance. 

 

1.2 Outline of the thesis 

The proposed approach to AD in hyperspectral imaging is dealt with in chapter 2. Brief 

insights into the physics behind hyperspectral signal acquisition and into hyperspectral 

image structure is given. Detailed mathematical derivation of the proposed AD strategy is 

then provided, followed by a rigorous description of how it is used as a detector of global 

and local anomalies.  

The problem of the background PDF estimation is dealt with in chapter 3. In particular, 

parametric, semi-parametric and non-parametric modeling approaches are reviewed.  

Although such models are effective from a theoretical perspective and are used in a 

variety of multivariate signal processing problems, the difficulty in learning the underlying 

models both reliably and automatically has made their application in the hyperspectral AD 

context very limited. Solutions to face these limitations are proposed. The aim is to make 

the background modeling and estimation procedures robust and automatic. In particular, 

chapter 4 is dealt with methodologies to cope with global background modeling. To this 

aim, the use of mixture models and non-parametric PDF estimators are considered. 

Particular emphasis is placed on parameter selection carried out within a Bayesian 

framework for mixture models and FKDE. Besides, the k-nearest neighbor rule is proven 

to be an intuitively appealing procedure to adapt the bandwidth to the local density of data 

in the feature space for AKDEs. 

In chapter 5, attention is initially focused on two representative local AD methods: RX 

and kernel RX. Then, a new approach trying to cope with the problem of non-Gaussian 

background is presented for improving classical local AD algorithms. Specifically, the use 

of a locally data-adaptive nonparametric model is proposed for estimating the background 
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PDF within an AD scheme for detecting anomalies by means of the background log-

likelihood decision rule. 

Experimental evidence of the actual advantages offered by the proposed solutions is 

obtained by employing real hyperspectral imagery in chapters 6 and 7. 

Chapter 8 concludes the thesis outlining a summary, and providing the final remarks 

and conclusions. 
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Chapter 2 

2 Hyperspectral anomaly detection methodology  

In the past few years, hyperspectral data have been the subject of increasing interest for 

their very rich information content about the spectral characteristics of the materials in a 

scene. Such a unique ability to remotely extract features related to spectral content on a 

pixel-by-pixel basis has made Anomaly Detection (AD) a challenging area of research. In 

this chapter, the proposed AD strategy is illustrated. Since no previous knowledge about 

the targets of interest is assumed, the AD process is based on the anomalous nature of the 

pixels with respect to the statistics of the background samples.  

 

2.1 The hyperspectral concept 

The basic idea for hyperspectral imaging stems from the fact that, for any given material 

(e.g. vegetation pigments, minerals, rock, artificial surfaces), the amount of 

electromagnetic radiation that is reflected, absorbed, or emitted - i.e., the radiance - varies 

with wavelength in ways characteristic to its molecular composition. Hyperspectral sensors 

collect spectral radiance received by the observed scene in hundreds of narrow and 

contiguous spectral bands. In doing so, the optical system of the imaging sensor divides the 

imaged surface in pixels. The ground pixel size, which defines the image spatial resolution, 

is a function of the sensor and the platform altitude that, in turn, depend upon the kind of 

platform (e.g., space-borne or airborne). Every pixel of hyperspectral images provides an 

integrated measured spectrum of the materials contained on the ground area covered by the 

pixel. As a result, a hyperspectral image pixel is actually a column vector with dimension 

equal to the number of spectral bands.  
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The spatially and spectrally sampled information captured by hyperspectral sensors can 

be stored in a three-dimensional structure having two dimensions that represent the spatial 

coordinates and one associated to the spectral components. Such a data structure is 

commonly referred as image cube. Thus, the hyperspectral image can be seen as a stack of 

two-dimensional spatial images, each one associated to one of the sensor narrow bands. 

Alternatively, every pixel in the image can be seen as a discrete signal in the wavelength, 

with a so dense sampling that is potentially able to reveal even very small features peculiar 

of a certain material. An exemplification of the resulting structure of a hyperspectral image 

is illustrated in Fig. 2.1.  

 

 
Fig. 2.1. Hyperspectral imaging sensors measure the spectral radiance information in a scene. This 

information is then processed to form a hyperspectral data set. The hyperspectral image data usually consist 

of over a hundred contiguous spectral bands, forming a three-dimensional (two spatial dimensions and one 

spectral dimension) image cube. Each pixel in this data set is associated with a very densely sampled 

spectrum of the imaged area, which can be exploited to identify the materials present in the pixel. 

 

As is easily understandable, there is a large amount of information included in 

hyperspectral data, which can be used to detect and identify materials in the image. Such a 

discrimination capability has made AD an important and interesting area in data analysis.  
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2.2 The anomaly detection problem in hyperspectral imagery 

The task of spectral AD algorithms is to explore the image for locating those image 

pixels whose spectral content significantly deviates from the background, without any 

previous knowledge about the targets of interest [42][55]. In principle, AD strategies 

derive a set of background characteristics and search for pixels that appear to be anomalous 

in comparison to these.  

It is worth noting that there is not an unambiguous way to define an anomaly. This is 

mostly because the background can be identified in different ways. An important 

distinction is between global and local anomalies. If the whole image is used to 

characterize the background, then anomalies found are global. In such a way, the target 

class can be assumed to be scarcely populated, whereas the non-target class is made up by 

the majority of the image pixels and it encompasses the diverse kinds of background 

classes present in the examined scene. On the contrary, if the background is identified by a 

local neighborhood surrounding the observed pixel, the anomalies are local. Of course, the 

kind of anomalies one would like to detect depends on the particular application. 

Specifically, the local spectral anomaly detector is susceptible to isolated spectral 

anomalies. For example, consider a scene containing isolated trees on a grass plain. 

Isolated trees in a locally homogeneous patch of grass may be detected as local spectral 

anomalies even if the image contains a separate region with many pixels of trees. On the 

contrary, the global spectral anomaly detection algorithms will not find an isolated target in 

the open if the signature is similar to that of previously classified background material. In 

fact, in global AD algorithms, the task of detecting small rare objects that are anomalous 

with respect to the rest of the image is taken into account.  

As a matter of fact, since ADs do not use any a priori knowledge, they cannot 

distinguish between legitimate anomalies and detections that are not of interest. Therefore, 

the detected anomalies may include man-made targets, natural objects, image artifacts, and 

other interferers. Clearly, a definitive identification of a target cannot be made through a 

search for anomalies. However, such a detection task can be extremely useful as a 

prompting device to guide the user in investigation of various kinds. 
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2.3 Anomaly detector design strategy 

Given a test pixel x, the main goal of AD strategy is to decide whether a target of 

interest is present or not in the pixel under test, based on the different spectral 

characteristics of the pixels and the background. To this aim, AD is formulated as a binary 

hypothesis-testing problem where each pixel is labeled as anomalous or non-anomalous 

pixel: 

 


 


pixeltargetais:

pixeltargetnonais:
ˆ

x

x
x

1

0

H

H
H  (2.1) 

where H0 and H1 denote the target absent (i.e., the background) and the target present 

hypothesis, respectively.  

The most common approach to the hypothesis-testing problem is the Neyman-Pearson 

criterion (NP) [30]. Within this framework the d-dimensional (where d is the number of 

sensor spectral channels) random vector X = [X1, X2, ... , Xd]
t
 (the notation (.)

t
 stands for 

vector transposed), associated to the multivariate pixel x, is modeled as: 
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where   
1,0| iHi

f xX  denote the PDFs of X conditioned on the target absent (H0) and target 

present (H1) hypothesis, respectively. The NP decision rule has been derived by 

maximizing the detection probability  11D HHP |ˆPr , with the constraint of maintaining 

a constant false alarm probability  01FA HHP |ˆPr  at a desired value. According to NP 

criterion, the decision strategy is given by the Likelihood Ratio Test (LRT), which depends 

on the conditional PDFs under the two hypotheses, compared with a suitable threshold η: 
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As is evident, in order to determine LRT(x), both the conditional PDFs have to be known. 

However, in many situations of practical interest, there is lack of sufficient information to 

specify the statistical variability of the target signal, and a detector that exclusively uses 

background information is in demand.  
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It should be noted that given the LRT decision rule in (2.3), it is possible to suppose any 

form for the conditional PDFs. Let us assume    sxx XX 
01 HH ff ||  [42]. This means 

that the following additive model for the two hypotheses is considered: 
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X

X
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where s represents the d-dimensional unknown deterministic vector associated with the 

target spectral signature, and B is the d-dimensional random vector representing the 

background (comprehensive of the noise). The maximum likelihood (ML) estimate of the 

deterministic unknown parameter s is given by 

      Ψxψxss X
ψ

X
s


00 || maxargmaxarg HH fxf


 (2.5) 

Replacing s in (2.4) with its ML estimate expressed in (2.5), we obtain 
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From (2.6), a decision rule can be derived straightforwardly by noticing that the numerator 

is independent from x: 

being η’ the appropriate detection threshold.  

The same approximation has been derived in [27] by assuming a uniform distribution of 

the conditional PDF under hypothesis H1. 

It has been shown that, under simplified assumptions for the two hypotheses, the AD 

task can be accomplished by thresholding the background log-likelihood. Within this 

framework, anomalies can be viewed as outliers because of the very different spectral 

features with respect to the background. Therefore, the corresponding pixels will 

contribute to the tail of the distribution making it heavier and allowing anomalies to be 

     ηf H 





0

1

0

H

H
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detected by searching the deviation from the PDF of the background clutter samples. Since 

the background PDF  xX 0Hf |  is not known, it has to be estimated from the available data. 

Any different PDF estimator leads to a different detector. A brief summary of approaches 

to PDF estimation is given in the next chapter. 

 

2.4 Operational application: the local and global anomaly detectors 

Anomalies are defined with reference to a model of the background. Background 

models are developed using reference data from either a local neighborhood of the test 

pixel or the entire image, leading to local or global anomaly detectors, respectively. 

 

2.4.1 Global anomaly detector 

In global AD applications, the targets of interest are small and rare objects (i.e. 

extending over a few pixels and constituting a very small fraction of image) that are 

anomalous with respect to the rest of the image. In doing so, no previous knowledge is 

assumed about the nature of anomalies other than they are very sparsely and scarcely 

represented in the image. Hence, given the target rarity assumption, global AD algorithms 

are designed to identify small image regions corresponding to anomalies with respect to 

the global background.  

In this thesis work, we refer to the decision rule specified by the equation (2.7), which 

only needs the specification of the image background PDF for global AD purposes. 

Therefore, the background PDF is obtained by estimating the image PDF on the basis of all 

image pixels available, which are indicated with {xn  
d
| n = 1, 2, ..., N}. In fact, the 

heavy population of the background class, in conjunction with the sparseness of the target 

class, allows the “unclassified” image cube to be used for characterizing the background. 

The processing chain of the global AD strategy here proposed is outlined in the 

graphical model in Fig. 2.2. Such an AD approach consists of two essential steps. First, the 

image PDF is estimated through one of the methodologies described in Chapter 3. It should 

be noted that the use of such estimators is coupled with the employment of automatic data-

driven model learning methods illustrated in Chapter 4. Once the background PDF is 

approximated, equation (2.7) is applied to detect anomalous objects within the scene. 
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Fig. 2.2. Graphical model describing the stages of the proposed global AD strategy. 

 

2.4.2 Local anomaly detector 

Locally AD approaches aim at detecting the targets with respect to their local 

background, embodied by a neighborhood of surrounding pixels. Such local AD 

algorithms capture the local background pixels by sliding a spatial window over the image. 

In fact, for each test pixel onto which the window is centered, the pixels enclosed in the 

window are properly processed in order to compare their spectral properties with those of 

the test pixel. Within this framework, define the N reference background samples to be the 

pixels in the small surrounding area to the input data sample location employed for the 

local background characterization. 

In order to prevent potential target pixels to affect the local background 

characterization, the algorithm is applied by sliding a dual concentric rectangular window 

(a small interior window centered within a larger outer one) over every pixel in the image. 

A graphical example of such a window is given in Fig. 2.3. The dual concentric windows 

divide the local area into the potential target region and the background region. The size of 

the interior window siw has to be chosen according to the maximum expected target 

dimension. This approximate size is based on previously knowledge about the Field Of 

View (FOV) of the hyperspectral sensor and the dimension of the biggest target in the 

given dataset. Instead, the size of the outer window sow is set to include sufficient data 

samples from the neighborhood of the pixels under test for the characterization of the local 

background. The resulting number of samples employed for the background PDF 

estimation is 22
iwow ssN  . 
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Fig. 2.3. Example of a dual concentric window in hyperspectral images. For 33 pixels expected target size, 

the inner window should be at least 55 pixels in order to not include target pixels in background PDF 

estimation windows. 

 

It is important to note that the choice of the size of the surrounding area around the pixel 

under test concerning the background is not trivial. In fact, if it is too small could cause 

problems in computing the PDF estimate, while if it is too large essentially eliminates the 

locally adaptive nature of the detector [42]. 
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Chapter 3 

3 Statistical modeling approaches 

This chapter focuses on methodologies for estimating a multivariate PDF. Hereinafter, 

 xXf̂  will be used to denote the estimate of the multivariate PDF fX(x) associated to the 

random vector X.  xXf̂  is estimated on the basis of the available sample data, which are 

indicated with {xn  
d
| n = 1, 2, ..., N}.  

 

3.1 Parametric PDF estimation 

The simplest approach to estimate multivariate PDF is to compute it from an assumed 

parametric model [3]. Specifically, the parametric approach to PDF estimation assumes the 

data drawn from some specific unimodal distribution (e.g., the Gaussian one) governed by 

a small number of parameters θ whose values are to be determined from the available data. 

Nevertheless, parametric models are very restricted in terms of forms of distribution that 

they can represent. For instance, if the process that generates the data is multimodal, then 

this aspect of the distribution can never be captured by a unimodal distribution. 

Most AD algorithms in the literature assume that hyperspectral data are represented by 

the multivariate Gaussian distribution, mainly because of its mathematical tractability 

[36][43][55]. Typically, such a statistical model can be reliably employed only to 

characterize background pixels in a homogeneous local neighborhood around the pixel 

under test [41][42][55][48]. In practice, these assumptions are often violated. In fact, 

hyperspectral data generally do not closely follow the Gaussian distribution [38][39][40] 

and, in general, the choice of a rigid parametric model for the PDF to estimate is, indeed, 
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not appropriate for capturing the complexity of the data, especially for the assessment of 

the global background PDF [41][48]. 

 

3.2 Semi-parametric PDF estimation: finite mixture models 

FMMs can approximate arbitrarily closely any continuous PDF provided the model has 

a sufficient number of components and appropriate model parameters [45]. Such an 

approach approximates the unknown PDF by a linear combination of J unimodal PDFs of 

the same kind, as follows:  

   



J

j

jj gπf
1

;ˆ θxx XX  (3.1) 

where g(x;θj) denotes the multivariate PDF of X given the component distribution j 

controlled by the parameters vector θj, whereas  J
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π
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in order assure the PDF estimate  xXf̂  to be a legitimate PDF (non-negative and integrate 

to one). Fig. 3.1 illustrates using mixture models for PDF estimation. Specifically, contour 

and surface plots for a mixture model having three components are shown in such a figure.  

As it clearly can be seen from the figure, mixture models provide a simple approach that 

can give rise to very complex densities.  

As is evident the estimation procedure involves the choice of the density components 

gx( ) and, then, the estimation of the unknown parameters, θj and πj for j=1,…, J, based on 

the available sample data. In the current subsection, we focus on the unimodal PDF choice, 

whereas the parameters estimation will be addressed in Chapter 4. 
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(a) (b) (c) 

Fig. 3.1. Illustration of using a mixture of three PDFs in a two-dimensional space. (a) Contour surfaces for 

each of the mixture components. The three components are denoted red, blue and green. The values of the 

mixing coefficients are indicated near each component. (b) Contours surfaces of the estimated PDF  xXf̂ . 

(c) A surface plot of the estimated distribution  xXf̂ .  

 

3.2.1 Gaussian mixture model 

From the multitude of distributions discussed in the statistics literature, the family of the 

Elliptically Contoured (EC) distributions has been shown to be suitable in mixture models 

to characterize hyperspectral data [38][39][40]. In general, the d-dimensional random 

vector X is EC distributed if its PDF can be expressed as 

 
 

 Mh
π

f dD 2/12/
2

1

C
xX   (3.4) 

where hd(.) is a positive, monotonically decreasing function of M for all d, whereas M 

corresponds to the square of the Mahalanobis distance, defined by: 

   μxCμx  1t
M  

(3.5) 

in which μ and C are the mean vector and the covariance matrix, respectively.  

EC distributions have some important statistical properties such as [1][38][39]: 

i. All EC distributions have elliptical isolevel curves. 

ii. All the marginal and the conditional distributions of an EC distribution are 

also EC distributions. 
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The class of EC distributions includes the more familiar Gaussian distribution. In fact, 

the Gaussian is a special case of the EC family given by: 

 

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The most widely employed FMM makes use of the Gaussian distribution. Such a FMM, 

which has been often adopted to model global heterogeneous backgrounds in hyperspectral 

images [9][55], is defined as Gaussian Mixture Model (GMM). Specifically, the GMM 

assumes gX(x; θj) in (3.1) as a Gaussian distribution with parameters the mean vector μj 

and the precision (inverse covariance) matrix Tj in the form:  
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3.2.2 Student’s t mixture model 

Modeling a hyperspectral image through the GMM implicitly assumes that data from 

each background class in the image follow a multivariate Gaussian distribution. However, 

in many experimental studies performed with real hyperspectral images, such a model has 

been shown not to adequately represent the statistical behavior of the various background 

classes, which, instead, generally exhibit distributions characterized by heavier tails 

[38][39][40]. Experimental studies in [40] have suggested that the choice of an EC t-

distribution, or Student‟s t PDF for gX(x; θj), should provide, through equation (3.1), a 

reliable model for many hyperspectral data sets. In such a case, equation (3.1) develops 

into the Student‟s t Mixture Model (StMM) and gX(x; θj) is defined by:  
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(3.8) 

where Γ(.) is the gamma function such that 
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whereas νj>0 is the number of degrees of freedom, μj is the mean vector, and Λj is the scale 

matrix, which is related to the covariance matrix Cj of X for νj>2 by the following 

equation:  
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j
ν

ν

ν
ΛC  (3.10) 

The integer νj is the number of degrees of freedom, which controls the shape of the 

distribution tails: the smaller νj is, the heavier the tails are. In particular, for νj=1, the 

Student‟s t PDF reduces to the multivariate Cauchy distribution which has the heaviest 

tails, whereas when νj∞ it tends to the multivariate Gaussian distribution with mean μj 

and precision matrix Λj, characterized by lightest tails, as shown in Fig. 3.2. 

 

 

Fig. 3.2. One-dimensional representation of the Student's t probability density function for different values 

of the number of degrees of freedom ν, which controls the shape of the distribution tails: the smaller ν is, the 

heavier the tails are. In particular, for ν=1, the Student‟s t PDF reduces to the multivariate Cauchy 

distribution. On the contrary, the Student‟s t PDF converges to the standard normal distribution as the 

degrees of freedom approaches infinity. 

 

3.3 Non-parametric PDF estimation 

Contrary to semi-parametric estimators, non-parametric PDF estimator does not assume 

any fixed functional form for the unknown PDF [23]. Basically, the unknown PDF is 
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entirely determined by the data through a kernel function κ(.) centered at each different 

point of the sample data [57]:  
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In equation (3.11), H(.) is referred to as the bandwidth matrix, whereas |.| indicates the 

matrix determinant. The bandwidth matrix H(.) is a dd matrix that includes the 

bandwidths, i.e. the kernel widths. 

The kernel function κ(.) defines the shape of the influence region around each data 

sample location in the feature space and decreases in intensity with the distance from that 

location depending on the bandwidth values. Many possibilities exist for the kernel 

function choice in (3.11) [23][29][54]. Popular choices of multivariate kernel functions are 

radially symmetric unimodal PDFs such as the Gaussian and the Bartlett-Epanechnikov 

ones [29][23]. In certain situations, a product of univariate kernel functions 

   



d

i

iuκκ
1

u  may be appropriate. In this latter case, popular choices of the univariate 

kernel function are the Gaussian distribution and the rectangular and triangular functions 

[29][23]. In Table 1 and Table 2 the functional forms of common kernel functions are 

reported. 

 

Table 1. Univariate kernel functions. 

Kernel function κ (u) * 

Rectangular   1
2

1
uI  

Triangle     11  uIu  

Quartic (Biweight)    11
16

15 22  uIu  

Triweight    11
32

35 32  uIu  

Cosine  1
2

cos
4









uIu

ππ
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1  
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Table 2. Multivariate kernel functions. 

Kernel function κ (u) * 

Bartlett-Epanechnikov    11
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u  

 

It has been widely recognized that the performance of non-parametric estimators does 

not depend on the kernel function choice but, rather, on the values of the bandwidths 

employed. Indeed, it has been shown that the bandwidth matrix H(.) in (3.11) influences 

the degree of smoothing for the resulting PDF approximation [54]. In general, the 

bandwidth function H(.) can be written as a function of both the estimation sample x and 

the observations from the unknown density {xn  
d
| n = 1, 2, ..., N}. This form displays 

the possibility that kernel function shape may change in a large variety of ways. The 

approaches actually investigated are special cases of this more general bandwidth function 

H(.). 

 

3.3.1 Fixed kernel density estimator 

The FKDE is one of the most representative non-parametric techniques for PDF 

estimation. According to the FKDE [23], the estimation of fX(x) is given by:  
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f
1

11ˆ xxH
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xX  (3.12) 

where the bandwidth matrix H is independent of both observations and estimation samples, 

and, therefore, it has been held constant during the PDF estimation process. An illustration 

of the PDF estimation procedure is given in Fig. 3.3, where the individual kernel functions 

are shown as well as the estimate constructed by adding them up. 
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Fig. 3.3. Illustration of using FKDE in a two-dimensional space: (a) individual kernel functions, (b) kernel 

density estimate. 

 

It is natural to ask that the estimate be a legitimate density function, i.e., that it is 

nonnegative everywhere and integrates to one:  

  0ˆ xXf  (3.13) 

  1ˆ 
d

df xxX  
(3.14) 

To this aim, any kernel function κ(u) can be chosen in (3.11) as long as the following 

conditions are met: 

  0uκ  (3.15) 

  1
d

dκ uu  (3.16) 

This is assured by imposing the kernel function κ(u) be a density function [54].  

It has been widely recognized that the performance of FKDE does not critically depend 

on the kernel function choice but, rather, on the bandwidth values employed [23][54].  

In general, there are three different forms for the bandwidth matrix. The most general 

approach is to employ H chosen from the set of all symmetric, positive definite, dd 

matrices, which allows ellipsoidal kernel functions of arbitrary orientation. However, this 

type of matrix involves d·(d+1)/2 independent parameters that must be chosen in practice 
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for the use of the FKDE, and they can be a substantial number even for small dimensions. 

However, H is often parameterized to H=diag(h1, …, hd), (where diag indicates a diagonal 

matrix). In such a way, a different bandwidth value is used for each dimension. Typically, a 

further simplification, which restricts the contours of the kernel functions to be spherically 

symmetric, is chosen. This straightforward simplification is obtained by imposing H=h·Id, 

where Id denotes the dd identity matrix. In fact, more complicated forms of H than 

H=h·Id have been recognized to provide only very little improvements if the data are pre-

scaled in order to avoid extreme differences of spread in the various spectral directions 

[54]. Moreover, a single bandwidth is easier to estimate as well as being also easier to 

interpret and simpler to control. The bandwidth selection problem will be further explored 

in the next chapter. 

 

   
(a) (b) (c) 

Fig. 3.4. Comparison of the three main bandwidth matrix parametrization classes in a two-dimensional 

space: (a) symmetric positive definite matrix, (b) diagonal matrix with positive entries on the main diagonal, 

(c) positive scalar times the identity matrix.  

 

3.3.2 Variable bandwidth kernel density estimator 

The FKDE so far described has been shown to be quite affected by the bandwidth 

values, which control the degree of smoothing of the resulting PDF approximation [54]. In 

fact, there may be several situations in which the FKDE leads to poor estimates due to an 

inappropriate bandwidth choice, which is constrained to be fixed across the estimation 

domain. In particular, in regions of high data density, choosing large values of bandwidths 

may obscure many of the structural features characterizing the PDF body, such as de-

emphasizing or wiping out significant modes that might otherwise be extracted from the 

data. However, reducing bandwidth values may lead to noisy estimates elsewhere in data 
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space where the PDF is smaller [54], as will be detailed in Chapter 4.2.3. These 

considerations suggest that the amount of smoothing, dictated by the bandwidth values, 

should be adapted to the local data structure in the feature space.  

In the literature, two main approaches can be found that have been proposed to 

overcome the main limitations of the FKDE. Within such approaches, the bandwidths are 

allowed to vary across the estimation domain, according to the data density and structure. 

Specifically, the distinction between the two approaches lies in how the bandwidth is 

varied. The first approach varies the bandwidth depending on the sample x where the PDF 

value has to be estimated and is referred to as the balloon estimator (BE), term used for the 

first time in [58] on the basis of a suggestion found in [60]. The second strategy varies the 

bandwidth for each data sample {xn  
d
| n = 1, 2, ..., N} and is referred to as the sample-

point estimator (SPE) [58]. Both BE e SPE estimators are justified by the fact that for the 

local smoothness of the PDF evaluation, only those data samples in a small neighborhood 

of the estimation sample x contribute to the PDF value in x.  

The general form of the BE is: 
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where H(x) is the bandwidth matrix, function of the estimation sample x. As is evident, the 

PDF estimate is constructed similarly to the classical FKDE in (3.12), with the difference 

that the scale parameter of the kernel function placed on each sample data xn is allowed to 

vary from one estimation sample x to another. It should be noted that, although this 

estimator appears reasonable for estimating a PDF at a point, when (3.17) is applied over 

the whole domain of definition of x, the estimate typically fails to integrate to 1 and, thus, 

it may be not an actual PDF. Nevertheless, this latter aspect is not critical from the 

detection perspective, which is the purpose of this thesis work, as long as the function in 

(3.17) follows the data structure in the feature space. 

The alternative strategy SPE uses a bandwidth matrix function of the sample point xn 

regardless of the estimation point x. The SPE, first considered in [8], is given by:  
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where H(xn) is the bandwidth matrix associated with xn. Unlike BE, the SPE returns PDF 

estimates that integrate to 1 as long as the kernel function is a PDF itself.  
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Chapter 4 

4 Model learning for global AD approaches 

In chapter 3, both semi- and non-parametric estimators have been discussed as to their 

use for image PDF estimation. 

In the semi-parametric approach, PDF estimation is carried out through a model 

learning procedure aimed at estimating the parameters required to characterize the FMM. 

In this work, we are interested in model learning procedures that are able to evaluate, 

without operator intervention, all the parameters necessary to completely specify the 

mixture.  

As regards the non-parametric estimator, the model is entirely learned from the image 

pixels without resorting to parameter estimation. Nevertheless, FKDE performance 

strongly depends on the kernel bandwidth. Again, our interest relies in reliable and data-

driven bandwidth selection methodologies. 

 

4.1 Model learning for finite mixtures 

Parameter estimation is a classical problem in statistics, and it can be approached in 

several ways. Such a learning procedure involves not only estimating the parameters of 

each mixture component but also finding the probabilities with which each data point 

belongs to the components. 

Typically, a Maximum Likelihood (ML) [30] formulation is firstly sought. Such an 

approach views the parameters as deterministic unknown quantities and estimates them by 

maximizing the likelihood function. According to this approach, the ML estimate is 

obtained as  
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 (4.1) 

where {xn| xn
d
, n=1, …, N} are N independent and identically distributed (i.i.d.) 

observations coming from a distribution fX(x;θ) governed by unknown parameters θ={θj, 

j=1, ..., J}. fX(x;θ) as a function of the parameters θ is called likelihood function. 

Specifically, it describes the probabilistic relationship between the observations and the 

parameters based on the assumed model that generated the observations. The difficulty 

here arises from the fact that the unknown parameters often enter the maximization task in 

a non-linear fashion and, therefore, iterative non-linear optimization techniques have to be 

adopted.  

The Expectation Maximization (EM) algorithm is an iterative method for finding ML 

estimates of parameters in statistical models that has attracted a great deal of interest in a 

wide range of applications [45][6]. In practice, given the number of components and an 

initial set of parameters, the EM algorithm can be applied to compute the optimal estimates 

of the parameters that maximize the likelihood function. To this aim, the EM algorithm 

alternates between Expectation (E) and Maximization (M) steps for updating the estimate 

of the unknown parameter at each iteration:  

1. Expectation step produces refined estimates of the response features given the 

current parameter estimates.  

2. Maximization step obtains new estimates of the parameters for the new response 

features. 

These steps are repeated until the improvement in value of the log-likelihood function is 

less than a tolerance value. 

Practical testing has shown that the actual effectiveness of the EM is affected by several 

limitations seriously restricting its applicability to complex problems [5][61]. First of all, 

convergence to a global maximum is not guaranteed. In fact, for likelihood functions with 

multiple maxima, EM may converge to a local maximum depending on initialization 

values. Another drawback of this approach is that it assumes the user knows the number of 

mixture components. This is not the case for many practical applications. Typically, in such 

cases, a set of candidate models is established by applying the EM algorithm for different 

possible values of the number of components J. The best model is then selected according 
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to a model-selection criterion, such as the Akaike Information Criterion (AIC), the 

Generalized Information Criterion (GIC), or the Bayesian Information Criterion (BIC) 

[56][16]. These methods have already been used for selecting the optimal number of 

components in a GMM [33][44][73]. However, it has been shown that such criteria 

typically are likely to fail in selecting the correct number of components. In practice, they 

tend to favor overly simple models. A further limitation of the EM is that it may lead to 

singular solutions, i.e. the density of one or more components gets concentrated around one 

of the data samples so that the corresponding covariance matrix becomes singular. In such 

a situation, the likelihood function is likely to become unlimited. This latter is the reason 

why EM is not suitable for estimating the number J of components, for example, by 

starting with a large number of components and deleting the ones whose weights approach 

zero.  

Appropriate solutions to the aforementioned limitations involving the EM learning 

procedure may be obtained by adopting a Bayesian framework for estimating the 

parameters of the mixture [61]. As their name suggests, the hidden variables are variables 

whose samples are not directly observed. Rather, they can be inferred from data samples. 

The role of these hidden variables is either to represent hidden causes that explain the 

observed data samples or be just mathematical artifacts that are introduced into the model 

in order to simplify it properly. Bayesian approaches usually include some model 

parameters within the set of hidden variables in order to model them as random variables 

characterized by adequate priors. Involving prior knowledge makes parameters be matched 

with physically meaningful values. In such a way, singular solutions often arising in the 

EM approach where a component becomes responsible for a single data sample are 

avoided and automated determination of the optimal number of components J is enabled as 

well. 

In this thesis work, Bayesian learning algorithms are considered to learn both GMM and 

StMM [4][12]. Nevertheless, this task can be computationally heavy and may result in 

intractable mathematical operations. To this aim, the variational Bayesian approach is 

adopted for converting the complex inferring problem into a set of simpler calculations 

[6][61]. The Variational Bayesian framework has been widely employed as an 

approximation of the Bayesian learning for models involving hidden variables.  
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4.1.1 The Bayesian model learning approaches 

The Bayesian decision theory is a fundamental statistical approach to make inferences 

about models. In principle, Bayesian strategies allow a complicated distribution over the 

observed variables to be represented in terms of a model constructed from simpler 

distributions. In doing so, they make reference to hidden variables characterized by prior 

distributions.  

Formally, introducing hidden variables within the FMM assumes that for each 

observation xn there exists a hidden variable zn denoting the component that generated xn. 

Specifically, a set of label indicator vectors Z={zn  
J
| n = 1, 2, ..., N} can be 

constructed, with each zn being a binary vector such that if the j-th component is 

responsible for x then znj=1, otherwise znj=0. Besides Z, some parameters of the FMM may 

be absorbed in the hidden variable set, i.e. they can be modeled as random variables 

characterized by adequate priors, whereas the other ones are still deterministic. In a fully 

Bayesian model all unknown parameters are handled as random variables that are 

associated with prior distributions. 

At this point, it is important to clarify the difference between the notation fX(x; φ) and 

fX(x| φ). Specifically, when we write fX(x; φ) we imply that φ are parameters. In contrast, 

when we write fX(x| φ), we imply that φ are random variables.  

Within this framework, since parameters are likely to be modeled as random variables, 

the log-likelihood function is actually a log-marginal distribution (or marginal likelihood as 

it is called somewhere [61]). Once hidden variables and their prior distributions have been 

introduced, the log-marginal distribution is obtained by integrating out the hidden variables 

of the model [6][61]: 

    yφyxx YX dfL ;,ln ,
 (4.2) 

where Y denote the set of all hidden variables and φ indicates the vector of deterministic 

parameters not absorbed into Y.  

The above expression of the log-marginal distribution can be decomposed as [6][61]: 

             XYYYXYYY φxyyyx || ||;||| fqKLqFfqKLqFL   (4.3) 
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where qY(y) (denoted for simplicity qY hereinafter) is any arbitrary PDF defined over the 

hidden variables, while the first term F(qY) consists in the free energy 
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and the second term KL(qY||fY|X) is the Kullback–Leibler (KL) divergence between qY(y) 

and the posterior PDF fY|X(y|x; φ) (simply indicated with fY|X hereinafter) 
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 (4.5) 

Based on (4.3), L(x) is a functional of the distribution qY, and a function of the 

parameter vector φ. Bayesian inference methodologies are aimed at maximizing L(x) with 

respect to qY and φ. Since KL(qY||fY|X)≥0, it holds that L(x)≥F(qY). Therefore, F(qY) is a 

lower bound for the log-marginal distribution L(x), as is clear from Fig. 4.1. Equation (4.5) 

shows that the equality occurs when KL(qY||fY|X)=0, which implies qY= fY|X. As a result, the 

lower bound F(qY) can be maximized by optimization with respect to the distribution qY, 

which is equivalent to minimizing the KL divergence. If we allow any possible choice for 

qY, then the maximum of the lower bound takes place when the KL divergence vanishes, 

which occurs when qY equals the posterior distribution fY|X. However, the model is 

typically such that working with the true posterior distribution is mathematically 

intractable. Assuming an appropriate form for qY in the decomposition of (4.3) allows the 

exact knowledge of fY|X to be bypassed. Thus, in Bayesian learning, direct estimation of the 

model parameters is replaced by the maximization of the lower bound F(qY) with respect to 

the density qY and therefore leads to approximate posterior distribution as close as possible 

to the true posterior distribution.  

 

 

Fig. 4.1. Illustration of the decomposition given by (4.3), which holds for any choice of distribution qY(y). 

Because the Kullback-Leibler divergence satisfies KL(qY||fY|X)=0, we see that the quantity F(qY) is a lower 

bound of the log-likelihood function. 
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In order to simplify the calculation, a variational approximation has been proposed 

[6][61]. The variational framework has been widely employed as an approximation of the 

Bayesian learning for models involving hidden variables. Such an approximation assumes 

a specific form for the distribution qY, with respect to which the optimization is performed. 

Specifically, we partition the elements of Y into disjoint groups that we denote by Yi where 

i = 1, …, P. We then assume that the qY distribution is factored in these groups, so that 
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
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i

ii yqq
1

yY  (4.6) 

The use of this factorized form for qY within the Bayesian optimization task corresponds to 

an approximation framework developed in physics called mean field theory [47]. It is to 

note that no further assumptions about the distribution are made. In particular, no 

restriction on the functional forms of the individual factors qi(yi) is placed. Among all 

distributions qY having the form expressed by (4.6), the distribution for which the lower 

bound F(qY) is largest is now sought. In principle, a free form (variational) optimization of 

F(qY) with respect to all of the distributions qi(yi) is desiderate to make. The general 

expression for the optimal solution qj
*
(yj) is given by 

      const;lnln *   φyx,h YX,fEq jijY j
 (4.7) 

where the notation Ei≠j(.) denotes the expectation with respect to the distributions qYj(yj) 

over all variables yi for i≠j, so that 
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(4.8) 

The set of equations given by (4.7) for j = 1,…,P represents a set of consistency conditions 

for the maximum of the lower bound subject to the factorization constraint. Nevertheless, 

the optimization task does not have closed-form analytical solutions since the factors qYi(yi) 

are coupled together in a non-linear fashion [6][61]. So, the variational analysis 

optimization is carried out by employing an iterative procedure. Specifically, a consistent 

solution can only be found by initializing all of the factors qYi(yi) and then cycling through 

the factors and replacing each in turn with the revised estimate given by the right-hand side 

of (4.7) evaluated using the current estimates for all of the other factors [6][61]. This 

optimization task requires that prior distribution of the hidden variables to be previously 
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set. Typically, prior distributions conjugate to the marginal distribution are used for their 

mathematical tractability. In fact, conjugate prior distributions choice leads to posterior 

distributions having the same functional form as the prior distributions, and, thus, to a 

greatly simplified Bayesian analysis. 

In this work, Variational Bayesian learning algorithms are considered to learn both 

GMM and StMM [12][4]. In particular, Bayesian estimation is employed to allow the 

appropriate number J of mixture components to be automatically determined while the 

mixture parameters are learnt. Within this framework, the adopted Bayesian learning 

strategy assumes parameters as random variables with given prior probability distribution. 

 

4.1.1.1 Gaussian mixture model learning 

The shape of the GMM PDF, achieved by substituting (3.7) in (3.1), is governed by π = 

{πj|j=1, 2, …, J}, μ={μj|j=1, 2, …, J}, and T={Tj|j=1, 2, …, J}.  

A fully automated method for learning the GMM by adopting a Bayesian framework 

was proposed in [6] and [61]. As previously reported, a fully Bayesian analysis treats all 

parameters as random variables with a given prior probability distribution. As a result, the 

main task in algorithms using Bayesian inference consists of defining proper distribution 

functions for modeling the parameters. Then, Bayes‟s rule provides the framework for 

combining the prior information with sample data to make inferences about the model. Due 

the assumption of GMM for the data, conjugate prior distributions from the exponential 

family are used for their mathematically tractability. That is why Dirichlet prior 

distribution is used for π, whereas an independent Gauss-Wishart prior distribution is 

assumed for both μ and T in [6] and [61]. The Dirichlet prior for π is given by:  
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where, by symmetry, the same αj is chosen for each component, i.e. αj=α0 for j=1, …, J, 

and C(α1,…, αJ) is the normalization constant for the Dirichlet distribution. The Gauss-

Wishart prior that governs the mean and the precision of each Gaussian component in 

equation (3.1) is given by:  
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Equation (4.10) is the product of a Gaussian PDF gN(.) and a Wishart PDF gW(.), which is 

defined as follows: 
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with Γ(.) denoting the gamma function defined in (3.9), tr(.) denotes the trace, and 

parameters ς and V denote the degrees of freedom and the scale matrix, respectively. 

Within this framework, α0, β, ς and V are called hyperparameters, and they have to be 

specified in advance. The corresponding graphical model
1
 of this learning procedure is 

shown in Fig. 4.2. It should be emphasized that this is a fully Bayesian GMM. So, if all the 

hyperparameters (i.e., the parameters α0, β, ς and V of the prior distributions) are specified 

in advance, then the model does not contain any parameter to be estimated, but only the 

hidden random variables Y=(Z, π, μ, T) whose posterior distribution qY given the data must 

be computed. It is obvious that such a posterior distribution cannot be computed 

analytically, thus an approximation for qY is computed by applying the variational 

approximation expressed by (4.6) to this specific Bayesian model. The solution is given by 

(4.7).  

One advantage of the fully Bayesian GMM compared to GMM without prior 

distributions is that it does not allow the singular solutions often arising in the ML approach 

where a Gaussian component becomes responsible for a single data point. In addition, this 

model learning method allows for the optimal number of components to be determined, 

without resorting to strategies such as the model-selection criterion previously mentioned. 

In principle, during the optimization procedure, as soon as one of the mixing coefficients 

converges to zero, the corresponding component is eliminated from the mixture. However, 

the effectiveness of the fully Bayesian mixture is limited, since the Dirichlet prior 

                                                 
1
 The graphical models are graphs in which nodes correspond to random variables and arrows represent 

the dependencies among such random variables. In particular, the doubly circled nodes represent observed 

random variables and nodes denoted as squares correspond to model parameters. The boxes (plates) indicate 

independent copies of the random variables they enclose, the number of which is depicted in a corner of each 

plate. 
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distribution for π does not allow the mixing weight of a component to become zero and, 

hence, the corresponding component to be eliminated from the mixture. Also, the final 

result highly depends on the hyperparameters characterizing the prior distributions. For a 

specific set of hyperparameters, it is possible to run the algorithm several times and, then, 

keep the solution corresponding to the best value of the variational lower bound. 

 

 

Fig. 4.2. Graphical model for the fully Bayesian GMM in which any unknown parameters are characterized 

by prior distributions. It is to note that the parameters of the prior distributions on π and μ, are fixed, thus 

they are not shown. 

 

In [14], another example of a Bayesian GMM model has been proposed that does not 

assume a prior distribution over the mixing weights {πj|j=1, 2, …, J}, which are thus treated 

as parameters and not as random variables. As a result, the hidden random variable are now 

Y=(Z, μ, T). The graphical model for this approach is depicted in Fig. 4.3. This approach 

assumes Gaussian and Wishart prior distributions for μ and T, respectively, i.e:  
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This Bayesian model is able to estimate the optimal number of components. Specifically, 

the method starts with a large number of components specified by the user and, as the 

number of iterations increases, the number of components gradually decreases and, finally, 

the GMM model for the data set is attained. This happens because the prior distribution on 

μ and T penalizes overlapping components. Thus, during the optimization process 

following the variational methodology, some of the mixing coefficients converge to zero 

and the corresponding components are eliminated from the mixture. In general, this 
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methodology constitutes an effective method exhibiting good performance in the case 

where the components are well separated [61]. However, its performance exhibits 

sensitivity on the specification of the scale matrix V of the Wishart prior imposed on the 

precision matrix.  

 

 

Fig. 4.3. Graphical model proposed in [14]. In this case, π is not circled to denote the special treatment of 

the mixing weights as parameters without prior distributions. The GMM learning procedure fits a mixture 

initialized with a large number of components and lets competition to eliminate the redundant ones. During 

the optimization process if some of the components fall in the same region in the data space, then there is 

strong tendency in the model to eliminate the redundant components (i.e., setting their πj equal to zero), once 

the data in this region are sufficiently explained by fewer components. Consequently, the competition 

between mixture components suggests a natural approach for addressing the model selection problem: fit a 

mixture initialized with a large number of components and let competition eliminate the redundant. 

 

A recently proposed method that simultaneously trains the mixture, adjusts the number 

of components, and reduces the sensitivity to V was proposed in [12] and [13]. This 

methodology will be denoted with Bayesian GMM Split (BGMMS) hereinafter. The 

method follows an incremental structure. Starting with J=1, it progressively adds 

components to the model. To this aim, the mixture components are partitioned in two 

groups: the “fixed” components and the “free” components. At each iteration, a splitting 

test is applied to one of the existing mixture components. The outcome of this test controls 

the procedure for component addition since it decides if the component should be properly 

split into two sub-components. If the splitting is found to give a better representation of the 

data, Variational Bayesian learning is applied to the newly added pair of sub-components 

(the “free” components), while the others remain “fixed”; otherwise, the splitting is not 

applied since it is considered redundant. Whenever the splitting test provides a positive 

outcome, the number of mixture components increases and a new round of splitting tests is 

sequentially applied to all components. The learning procedure ends when all mixture 

components have been unsuccessfully tested to be split. In order to apply this method, prior 

distributions have to be imposed on the parameters πj, μj, and Tj of each component. Again, 

due the assumption of GMM for the data, conjugate prior distributions from the 
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exponential family are used. The set of hidden variables and the corresponding conjugate 

prior distribution characterizing this approach are summarized in Table 3.  

 

Table 3. Hidden variables and corresponding prior distributions for BGMMS. 

Hidden variable set 

Y={Z,    J

jjj
J

jj 11
,


 Tμθ ,  J

jj
π

1
} 

Parameter set 

- 

Hidden variable Prior distribution 

Z Product of multinomials 

π 
-“fixed” weights Dirichlet 

-“free” weights Uniform 

μ Gaussian 

T Wishart 

 

Specifically, this approach assumes a Gaussian and Wishart prior distribution for μj and Tj, 

respectively. In practice, the Gauss-Wishart prior distribution is the product of a Gaussian 

PDF fN(.) and a Wishart PDF fW(.). It also fixes a uniform prior distribution over the set of 

“free” mixing coefficients  
j

π~~ π  and a Dirichlet prior distribution over the set of “fixed” 

mixing coefficients  
j

ππ . These choices allow weights of the “free” components to 

become zero and be eliminated from the mixture, while prevent the elimination of the 

“fixed” components from the model. The graphical model of the learning procedure is 

represented in Fig. 4.4. 

 

 

Fig. 4.4. Graphical model. The GMM learning procedure starts with one component and progressively adds 

components to the model on the basis of a splitting test. At each iteration, the splitting test decides if the two 

sub-components returned by the split provide a much better fit to the data in their influence region. In the 

case the splitting is found to give a better representation of the data, both components will survive so that the 

number of model components will be increased and a new round of splitting tests for all the existing 

components is initialized. Otherwise, the initial component will be recovered. To the learning aim, the 

mixing coefficients, the mean vectors μ, and the precision matrices T are defined as random variables 

characterized by proper prior distributions, as shown in the graph. 
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4.1.1.2 Student’s t mixture model learning 

The StMM is controlled by π={πj|j=1, 2, …,J}, μ={μj| j=1,2, …, J}, Λ={Λj|j=1, 2, …, 

J}, and ν={νj| j=1, 2, …, J}. 

A method developed within a Variational Bayesian framework, was proposed that learns 

the StMM while simultaneously adjusting the number of components in a fully automatic 

fashion [4]. This approach will be referred to as Bayesian StMM (BStMM) hereinafter. The 

model-order is selected according to the maximum of the lower bound F(qY). Within this 

framework, in order to implement the maximization with respect to qY, the mean field 

approximation is adopted. For the optimization task, the variational methodology is 

followed so that an iterative algorithm is derived. 

The BStMM method is based on the fact that the StMM can be viewed as a hidden 

variable model itself. This can be understood by noting that (3.8) can be re-written as an 

infinite mixture of scaled Gaussian distributions: 
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where uj is the scaling factor and gG(.) indicates the Gamma distribution following the 

expression: 
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where Γ(.) is the gamma function defined in (3.9). Based on (8), the scaling factor uj 

follows a Gamma distribution with parameters depending only on νj [4]. For each 

observation xn there is a corresponding posterior distribution over the hidden variable uj 

specifying the scaling of the precision matrix of the corresponding equivalent Gaussian 

from which the data sample was hypothetically generated. The scale variable unj 

(associated to the n-th data point and the j-th component), given the component label znj, is 

unobserved. The employment of the set of hidden variable U={un  
J
| n = 1, 2, ..., N} 

makes the conditional probability fY|X(y|x) easy to compute. 

The Bayesian formulation of the StMM is complete when imposing priors on π, μ, and 

Λ. Specifically, this method models the parameters of the distribution as random variables 
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assuming the Dirichlet prior distribution for π, and an independent Gauss-Wishart prior 

distribution for both μj and Λj [4]. Again, the Gauss-Wishart prior distribution corresponds 

to the product of a Gaussian and a Wishart distribution: 
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where m0, η0, γ0, and S0 are hyperparameters. The set of hidden variables and prior 

distributions of this method are summarized in Table 4. It should be noted that no prior 

distribution is imposed on the number of degrees of freedom νj of each mixture component, 

which is assumed as a parameter and not as a random variable. Then, the variational 

Bayesian learning methodology deriving from (4.7) is followed. Since no prior is imposed 

on the degrees of freedom, they are updated by maximizing the expected log-likelihood. 

The corresponding graphical model is depicted in Fig. 4.5.  

 

Table 4. Hidden variables and corresponding prior distributions for BStMM. 

Hidden variable set 

Y={Z, U,  J
jjj 1

,


Λμ ,  J

jj
π

1
} 

Parameter set 

 J

jjν 1
 

Hidden variable Prior distribution 

Z Product of multinomials 

π Dirichlet 

μ Gaussian 

T Wishart 

 

 

Fig. 4.5. Graphical model. In the StMM learning strategy, each observation xn is conditionally dependent on 

both the label indicator vector zn and the scale vector un, which are unobserved. The set of scale vectors, 

included in U, are conditionally dependent on set of label indicator variables, included in Z. It is important 

to note that the scale variables in U and the label indicator variables in Z are contained in both plates, 

meaning that there is one such variable for each component and each data point. Moreover, according to the 

Gauss-Wishart prior distribution employed within the Bayesian analysis procedure, the mean vector of each 

component depends on the precision matrix of the component itself. As regards the numbers of degrees of 

freedom, they are considered as parameters with no prior distribution and their values are assessed by the 

maximum likelihood criterion. 
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It is important to note that, while estimating the background PDF of a hyperspectral 

image, this method may not be directly applied by combining equations (3.1) and (3.8). 

Since hyperspectral data distribution is generally characterized by heavy tails [40], the 

number of degrees of freedom (on which no prior distribution is imposed) of one or more 

mixture components is very likely to assume values smaller than 2. With a choice like that, 

the corresponding covariance matrix Cj is not defined (i.e. when νj≤2) and, then, the scale 

matrix Λj cannot be evaluated from the data. Here, such a situation is avoided by assuring 

that νj never becomes lower than 2. 

 

4.2 Bandwidth selection for Non-Parametric PDF Estimation 

Non-parametric density estimator performance has been widely recognized to be 

significantly affected by the bandwidths employed, since they control the kernel function 

smoothing [54]. In fact, as the bandwidths become smaller, the shape of the kernel function 

becomes narrower and more peaked, so that the influences of each individual kernel 

function is more localized in the feature space around its mean value. On the other hand, 

the larger the values are, the broader the kernel function shape becomes and a smoother 

estimate is obtained. Therefore, the bandwidths should be neither too large nor too small in 

order to obtain good results. Furthermore, this task becomes even more complicated within 

the AD framework, since detection should be carried out in a data-driven fully automatic 

fashion, that is, without operator intervention. 

 

4.2.1 Choosing the bandwidth in the Fixed Kernel Density Estimator (FKDE) 

It has been widely recognized that the performance of FKDE suffers very little from the 

kernel function choice but is significantly affected by the bandwidths employed. If they are 

too large, the resulting PDF approximation is affected by over-smoothing, which is likely 

to mask the multimodal nature of the distribution. On the contrary, if the bandwidths are 

too small, the PDF estimate is likely to result under-smoothed, by exhibiting spurious 

structures, especially in the distribution tails [54].  

In the literature, methods discussing the bandwidth selection problem for multivariate 

data are very limited. The most frequently used methods of bandwidth selection are the 
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plug-in methods, in particular rule-of-thumb bandwidths, and the cross-validation 

[23][51][73].  

In general, bandwidth selection strategies approximate the bandwidth by minimizing an 

error measurement under specified conditions. There are many possible error criteria from 

which to choose. A common global error criterion is the Mean Integrated Squared Error 

(MISE) [23], which is defined as follows:  
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with E{.} denoting the expectation operator. The ideal MISE-optimal bandwidth selector 

is: 

MISE
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where F is the space of symmetric and positive definite d×d matrices. Since MISE does not 

have a tractable closed form in general [72], HMISE is extremely difficult to find.  

The plug-in bandwidth selection gives a formula for the bandwidth deriving from the 

minimization of the Approximated Mean Integrated Squared Error (MISE), an 

approximation of the MISE [23]. For the multivariate FKDE the AMISE formula was 

derived in [72] as: 
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with 
2

2
κ denoting the d-dimensional squared L2-norm of the kernel function and HH(x) 

being the Hessian matrix of the second partial derivatives of the function f(x) [23]. In order 

to make progress under this criterion a reference PDF, the kernel function, and a particular 

form of H must be set. Multivariate data-driven full bandwidth selectors based on these 

plug-in ideas were firstly proposed by [20], focusing on the very simplified bivariate case. 

Diagonal plug-in bandwidth matrix selectors for bivariate density estimation, for which it 

is impossible to obtain explicit expressions for the asymptotically optimal bandwidth 

matrix for general multivariate kernel density estimators, were studied in [73]. Typically, 

observed data arising from the multivariate normal PDF are assumed so that rule-of-thumb 
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formulae can be easily derived. In Table 5 are reported rule of thumb formulae for diagonal 

H matrices and normal reference distribution when a multivariate Gaussian kernel function 

is employed in the FKDE. Such methods are often used in practice despite the fact that 

most data are typically strongly non-Gaussian. This is especially true as to data from 

hyperspectral imagery [40][55]. Rule-of-thumb formulae for different distributional 

assumptions can be found in [72]. 

 

Table 5. Rules of thumb formulae. 

Kernel function κ (u) 1 

Silverman‟s rule  )( jhdiagH  with 
 

 

j

d

j σ
Nd

h

4/1

2

4












 , j=1, …, d 

Scott‟s rule )( jhdiagH  with

 

j

d

j σ
N

h

4/1
1











 , j=1, …, d 

Generalization of 

Scott‟s rule 

 
2/1

4/1
1

ΣH













d

N
 

 

1  is the dd covariance matrix of data whereas {j, j=1,…,d} indicates the set of standard deviations (one 

standard deviation for each of each  spectral component). 

 

The cross-validation method [23][51] aims at deriving bandwidths that minimize the 

Integrated Squared Error (ISE) [23]:  
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Cross-validation matrix selectors for an arbitrary number of dimensions were studied in 

[18] and [19]. Diagonal cross-validation-type matrix selectors were instead considered in 

[51]. However, when the data dimension grows there is an increased difficulty in 

numerically deriving optimal bandwidths. Also, such a procedure generally leads to large 

variability in the estimated bandwidths, depending on the selection of specific data samples 

[34]. 

Recently, an unsupervised method for estimating the kernel bandwidths, based on a 

Bayesian approach, has been proposed in [7]. This strategy will be referred to as BN 

approach from the initials of the two authors of the work [7]. The BN approach does not 

require any specific assumption for both the data distribution and the kernel function. The 

foundation of the method is that the degree of smoothing to adopt should be tailored to the 
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local data spread in the feature space, which is statistically characterized by the data 

variance. Hence, the bandwidth selection problem is cast in terms of assessing the 

distribution of the random variable S associated to the data variance. To this aim, a set of 

realizations si of the variance random variable S needs to be extracted from the data. Since 

the ultimate interest is to estimate the PDF with the proper spectrally local smoothness, the 

realizations of variance are evaluated from data spectral subsets. For this purpose, a certain 

number of nearest neighbors to randomly selected centroids xi’ are used to evaluate the 

variance realizations. The nearest neighbors to a specific centroid are evaluated according 

to their Euclidean distance from the centroid itself. Let us consider k, i.e., the number of 

nearest neighbors to a specific data sample xi. All the other data samples are ordered 

according to their Euclidean distance to xi as 

iNiikiiiii xxxxxxxx  1,,2,1, ......  (4.21) 

where xi,j is the j-th ordered data sample according to the Euclidean distance from xi and 

xi,j xi for j=1,…,N-1. For each centroid, the number of nearest neighbors to retain is 

defined by sampling a uniform distribution limited in the interval [Kl, Ku], which must be 

chosen by the user. The bounds Kl and Ku for such an interval are usually given as a 

fraction of the number N of data. Furthermore, in order to make the strategy robust, a 

number of neighborhoods of various sizes, {Kj| j=1, …, n}, are considered for each 

selected sample xi’. Thus, the samples si are calculated as: 

 

1

1

2

',










j

K

k

iki

i
K

s

j

xx

 
(4.22) 

where {xi,(k), k=1, …, Kj} are the nearest neighbors to the sampled data xi’. Then, within a 

Bayesian analysis procedure, a prior Gamma distribution is assumed for the random 

variable S. The Gamma distribution is given by the following expression 
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where the parameters a and b are subject to the constraints a > 0 and b > 0 in order to 

ensure that the distribution is a legitimate PDF (i.e. non-negative and integrate to one), and 
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Γ(.) is the gamma function defined in (3.9). In fact, Gamma distribution is suitable for 

modeling the distribution of the variance when that of the underlying data is unknown. 

Once the Gamma distribution parameters are inferred from the variance realizations 

through the maximum likelihood criterion [30], they are used to compute an equal 

bandwidth h in all dimensions, corresponding to H=hI, where I denotes the identity matrix. 

In Fig. 4.6, the graphical model for such an approach is shown.  

 

 
Fig. 4.6. Graphical model. After sampling the uniform distribution limited to the range [Kl,Ku], whose limits 

are given as a fraction of the number N of data, in order to obtain K, a set of centroids is randomly sampled 

from the data. A data subset involving the K-nearest neighbors from each centroid (obtained according to 

their Euclidean distance) is taken into account to assess the realizations of S. A number of neighborhoods of 

various sizes are considered. The Gamma prior is employed to model S. Specifically, the parameters α and β 

of the Gamma distribution are inferred from the variance realizations according to the maximum likelihood 

criterion. The bandwidth h is estimated as the mean of the highlighted Gamma function. 

 

It should be noted that adopting H=hI means employing spherically symmetric kernels. 

By pre-scaling the data in order to avoid extreme difference of spread in the various 

spectral directions, more complicate forms of the bandwidth matrix (i.e. a diagonal, or a 

full symmetric semi-positive definite matrix) are not necessary to adopt since they have 

been recognized to provide very little improvements [54]. 

 

4.2.2 Choosing the bandwidth in the Variable-bandwidth Kernel Density 

Estimator (VKDE) 

The FKDE capability of estimating PDFs is strongly influenced by the choice of the 

bandwidth matrix, which controls the degree of smoothing of the resulting approximation. 

If the bandwidths are small, each training sample has a significant effect in a small region 

and no effect on distant points, whereas when the bandwidths are large, there is more 

overlap of the kernels and a smoother estimate is obtained. Therefore, the use of fixed 

bandwidths is not effective when the sample data exhibit different local peculiarities across 

the entire data domain [35]. In fact, regions of high density in the feature space (i.e., highly 



Model learning for global AD approaches 

47 

 

populated regions) require small bandwidths so as not to wipe out important details 

characterizing the PDF body during the estimation process, whereas larger bandwidths are 

more appropriate in low-density areas where the few sample data available are likely to 

generate spurious structures. These reasons suggest the employment of a VKDE to adapt 

the amount of smoothing to the local density of data samples in the feature space, so as to 

more reliably and accurately follow the multivariate background data structure of 

multispectral images of a scene [58]. 

In this thesis work, both the BE and SPE are introduced to improve the performance of 

FKDEs in estimating the background PDF in hyperspectral images. Similarly to FKDE, in 

order to apply BE and SPE the kernel function and the bandwidth function H(.) should be 

imposed. The k-nearest neighbor method (k-NN) [54] represents an attempt to choose both 

H(x) and H(xn) in order to adapt the amount of smoothing to the local density of the data. 

Specifically, the k-NN relies upon an integer k, chosen to be considerably smaller than the 

sample size N, to control the degree of smoothing of the PDF estimation. Within this 

framework, the BE formulation is equivalent to take H(x)=rk(x)Id in (3.17), where rk(x) is 

the Euclidean distance of x to the k
th

 nearest sample in the set {xn  
d
| n = 1, 2, ..., N, xn  

x}. In this way, the width of the kernel placed on each point xn is equal to rk(x), so that data 

sample lying in regions where the data are sparse will have flatter kernel functions 

associated with them, whereas in more populated regions narrower kernel functions will be 

used. The resulting PDF estimator is called the generalized k
th 

nearest neighbor estimator 

(GkNNE) and can be written as [54]: 
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Within this framework, the choice of the kernel function affects the precise integrability of 

the PDF estimation [54]. However, it has been shown [54] that the GkNN may have more 

reasonable tail behavior if the kernel function is smooth and radially symmetric [54]. This 

specific kind of PDF estimator was introduced in [35], where a uniform density on the unit 

sphere in 
d
 was suggested to be used as kernel function. This choice leads to the k

th
 

nearest neighbor estimator (kNNE): 
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where (.) denotes the Gamma function. The major drawback of this estimator is that when 

(4.25) is used to estimate a PDF over the extension of the entire domain of x, the resulting 

estimate does not integrate to 1.  

Similarly, the use of the k-NN method within the SPE approach results in: 
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where rk(xn) is the distance of xn to the k-nearest data sample within {xj  
d
| j = 1, 2, ..., N 

, j  n}. This is equivalent to choose h(xi)  f(xi)
−1/d

 and, in practice, to use a pilot estimate 

of the PDF to calibrate the bandwidth matrix [54]. Moreover, the choice of a kernel 

function as a PDF assures that  xXf̂  is an actual PDF [54]. 

 

4.2.3 Fixed vs. variable bandwidths: evaluation of the kernel PDF estimates on 

a “toy example” 

As mentioned, although the FKDE is undoubtedly the most widely adopted non-

parametric technique for modeling data, the variable-bandwidth kernel density estimators 

have been suggested to improve the PDF estimation reliability. In this section, results on a 

simple “toy example” are presented in order to investigate the ability of the proposed 

variable-bandwidth kernel density estimators with respect to the FKDE in assessing the 

image background PDF [63].  

Comparing PDF estimators is a difficult task, especially in the multivariate setting. 

Moreover, in a spectral dimension higher than d=2, only part of the features of a PDF may 

be graphically displayed. Therefore, for the experiments, we constructed an image of size 

500 × 500 pixels consisting in only 2 spectral dimensions thus simplifying results 

interpretation by enabling graphical representation of the estimation outcome. To this aim, 

the data were generated following a mixture of two bivariate (d=2) Gaussian distributions 

with parameters related to the Moffett Field data set, which was collected by the AVIRIS 

sensor and is available online [25], thus making the simulation more realistic. Specifically, 
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a portion consisting of 571 by 187 pixels of the entire flight line and including the 

information contained in the green and red bands was considered. In order to select 

homogenous pixels to build the two mixture components, mixture parameter learning was 

conducted through the well-known Expectation Maximization (EM) approach [45]. In the 

EM strategy, the number of mixture components is a user-specified parameter. In this case 

of study, the number of components was set according to a visual inspection of the spectral 

diversity of the scene. Next, the parameters of the two more compact and well separated 

components were selected to be used in the mixture model. Finally, since the approaches to 

be tested assume kernel functions that are spherically symmetric (i.e., an equal bandwidth 

across the two spectral dimensions) the data were normalized in order to equally spread the 

data in all spectral directions. To this aim, the data were linearly transformed to have zero 

mean and unit covariance matrix, as typically suggested in the literature [26][54] and 

proposed in [22]. The resulting PDF, which is graphically displayed in Fig. 4.7, resulted in 

the following form:  

     2211 ,;5.0,;5.0 CμxCμxxX NN ggf   (4.27) 

where {gN(x;μi,Ci)}i=1,2 denote the Gaussian PDFs characterized by mean vector μi and 

covariance matrix Ci. Specifically, the model parameters in (4.27) were μ1=[-0.08; 0.98], 

μ2=[0.08; 0.97], C1=[1.35 -0.20; -0.20 0.06], C2=[0.63 0.04; 0.04 0.03].  

 

 
Fig. 4.7. The true PDF of the Gaussian mixture model employed in the “toy-example”. 

 

The simulated image background data thus constructed were processed by the PDF 

estimation techniques described in chapter 3. Since evaluating of the ability to estimate 

PDFs is not a trivial task, the experimental study involved both qualitative analysis by 

visual inspection of the estimated PDFs and comparisons based on quantitative error 

measures. Specifically, three measures of error, usually employed in the statistical 

literature, were taken into account to evaluate the behavior of the PDF estimators [8]:  
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 Mean percentage error (MPE) 
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 Mean absolute percentage error (MAPE) 
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 Mean square percentage error (MSPE)  
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Basically, all these three measures quantify how close the estimates are to the actual 

values of the PDF being estimated. The smaller the measures are, the better the estimation 

performance is. Whereas both MAPE and MSPE measure the general behavior of the 

estimator across the whole estimation domain, the MPE is more sensitive to estimation 

behavior in the distribution tails. In fact, in eq. (4.28) the reciprocals of the true PDF values 

provide the weights for the different absolute errors resulted from the set of estimates. In 

such a way, samples in the distribution tails are associated with weights greater than those 

of the body of the distribution. Thus, if the estimate has heavy MPE values, the distribution 

tails are not suitably characterized. 

The experimental comparative analysis first involved the VKDEs expressed by 

equations (4.24) - (4.26), and denoted with GkNNE, kNNE, and SPE, respectively. In this 

work, as commonly done in the literature [23][54], for both GkNNE and SPE κ(.) is taken 

to be a multivariate Gaussian PDF. The ability of the VKDE to provide reliable PDF 

estimates was investigated with respect to different choices of the integer k, in order to 

evaluate the impact of the only user-specified parameter over the estimation performance. 

To this aim, k was varied from 5 up to 1000. 
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In Fig. 4.8 the plots of the error measures previously mentioned (i.e. MPE, MAPE, and 

MSPE) associated to the use of GkNNE, kNNE, and SPE are reported for the different 

configurations of k explored.  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 4.8. Graph of MPE (a), MAPE (b), and MSPE (c) measures resulted from the application of GkNNE, 

kNNE, and SPE over the “toy-example” data set as k varies from 5 to 1000. 
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As is evident, results obtained appear quite insensitive to the choice of k, since the use of 

values of k spanning over almost the entire examined range has given comparable error 

measurements in most cases. Nevertheless, as k varies, the error curves behave slightly 

differently. As k increases, both MAPE and MSPE curves decrease for small values of k 

and, then, slowly increase as to GkNNE and SPE. Specifically, the minimum MAPE and 

MSPE measures were achieved by setting k=300 (for GkNNE) and k=550 (for SPE) and 

the region approximately identified by k>250 includes MSPE and MAPE values lower than 

approximately 4% and 1%, respectively. Such outcomes mean that, choosing k in a 

considerably wide region of the examined interval of variation weakly affects the ultimate 

estimation outcome, which is similarly very good across the different k configurations. On 

the other hand, for kNNE, MSPE and MAPE values are still decreasing at k=1000, and we 

would probably have obtained slightly better results than 0.50% (MSPE@ k=1000) and 

3.31% (MAPE@ k=1000), respectively, by going on to larger values of k. With regard to 

the MPE measurements, it is observed that kNNE and SPE exhibit similar curve trends, 

with values generally lower and in some cases a bit higher than about 10% for most k 

values. In contrast, the employment of the GKNNE provides a slightly poorer MPE values 

than those obtained by employing both the kNNE and the SPE. This means that, in this 

case, the GKNNE is not able to model the distribution tails as accurately as the other 

VKDEs. It is also important to note that, although kNNE does not return actual PDFs, in 

low-density areas its fit capability is only slightly different with respect to the one offered 

by the GkNNE and the SPE. In general, it should be noted that quite high error 

measurements are reported only for k=5, which represents a very small fraction (2·10
-5

) of 

the sample size, showing that very small values for k are not appropriate. 

The outcomes of such investigation, where result variability with respect to k was 

explored, suggest the possibility of identifying a common recommendation for the choice 

of k applicable to various different scenarios. Specifically, the use of k equal to N
1/2

 (i.e., 

500 in this case of study), as proposed in [54], has proven to yield sufficiently low error 

measures in most cases. Actually, for k=500, SPE, which has been shown to perform better 

on this simulated scenario, provided values of 6.28%, 3.04%, and 0.46% for MPE, MAPE, 

and MSPE, respectively. 

Besides error measures, the resulting PDF estimates are also graphically illustrated as 

concerns the suggested k = N
1/2

 = 500. Specifically, Fig. 4.9 (a) and (b) show the marginal 

distributions of  xXf̂  when the estimation procedures were performed for estimating 
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samples enclosed in a monotonic grid. The corresponding (one-variable) PDFs are denoted 

by )(xf 1X1
 and )(xf 2X2

 and were obtained by numerical integration of the joint density 

 xXf̂  over the two variables x2 and x1, respectively. As we could expect from the study of 

measurement errors, each variable-bandwidth estimator has returned a PDF estimate in 

good agreement with the true PDF represented in Fig. 4.9 in dashed black. In particular, 

the kNNE returned a function accurately following the PDF structure, SPE performed 

similarly to kNNE, and GkNN a bit worse, though providing an estimate still capable of 

accommodating both body and tails of the true PDF. Notice that the better kNNE behavior 

occurs despite the fact that, in contrast with GkNNE and SPE, the kNNE returns PDF 

estimates that do not integrate to one.  

 

  
(a) (b) 

Fig. 4.9. Marginal PDFs obtained through GkNNE, kNNE, SPE. The true marginal PDFs are superimposed 

in dashed black. 

 

In order to highlight the advantages coming from the employment of data-adaptive 

variable bandwidths, results obtained are compared to those achieved with the FKDE in 

(3.12). Again, the kernel function κ(.) is taken to be a multivariate Gaussian PDF. Similarly 

to what done with VKDE, an equal bandwidth h in all dimensions is considered for FKDE. 

As regard the fixed bandwidth h, several configurations for this parameter were tested. 

Specifically, the choice of h within the FKDE was done with the aim of exploring values 

of h spanning the whole range of variable bandwidths tested with VKDE. Thus, h was 

chosen uniformly sampling 10 values between the lowest (i.e. 9.2·10
-4

) and the highest (i.e. 

2.17) rk values obtained when k was set equal to 5 and 1000 (which are the extremes of the 

previously analyzed k range), respectively. The effect of varying h is illustrated in Fig. 4.10 

(a), in which plots of the three error measures employed above (MPE, MAPE, and MSPE) 
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as a function of the parameter h in FKDE are shown. As is evident, the FKDE returned in 

most cases very poor PDF estimates, being characterized by MAPE and MPE 

measurements around 100% and MSPE values greater than 150 %. Moreover, the VKDE 

significantly outperformed FKDE even for FKDE results concerning the use of the h value 

yielding the best performance (i.e., hbest=0.24) among the examined ones. In fact, FKDE 

exhibits about as twice as much MAPE and MSPE (whose values for hbest are exactly 35.58 

and 53.88, respectively), and about 35% more MPE (which is 51.23) than the values 

obtained, on average, with the VKDEs. Also, none of the error measurements led to any 

general recommendation as to how the fixed bandwidth h should be selected to give the 

“best” estimate of the unknown PDF.  

 

 
Fig. 4.10. Graph of the three error measures (MPE, MAPE, and MSPE) as a function of the parameter h for 

the FKDE.  

 

In Fig. 4.11 (b) and (c) the marginal distributions of  xXf̂  for the different values of h 

are plotted. It is clear from the figure that h variation has a major impact over FKDE 

outcome. Moreover, for most values of h, FKDE does not respond appropriately to the 

variations in the magnitude of the PDF being estimated. If h is chosen too small, then 

spurious fine structures become visible since the corresponding estimate exhibits peaks at 

some data sample locations. On the contrary, if h is too large then the bimodal nature of the 

PDF is obscured due to over-smoothing, mainly occurring in regions where the sample 

data are more densely packed together. In general, the FKDE outcome reflects an attempt 

to find some sort of middle ground between what is optimal both for high-density and low-

density regions given that the estimation procedure is not data-responsive. 
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(a) (b) 

Fig. 4.11. Marginal PDFs (a) fX1(x1) and (b) fX2(x2) obtained by numerically integrating the joint PDF  xXf̂  

according to the FKDE at h varying (the arrow indicates the direction of increasing h values). The true 

marginal PDFs are superimposed in dashed red. 

 

In summary, this “toy example”, though concerning a simple bivariate case, has clearly 

shown the great advantages provided by the VKDEs employment. First, the specific k 

choice has shown to have a less significant impact over estimation performance: almost all 

k values of the explored range have proven to provide sufficiently low error measures and, 

thus, a good capability of following the true PDF. On the contrary, the selection of the 

fixed bandwidth h in the FKDE has shown to have a major impact over the estimation 

performance, with error measures greatly varying within the explored h values and, thus, 

resulting in estimates ranging from under-smoothing conditions up to a heavy over-

smoothing of the PDF. In fact, as expected, the parameter h plays the role of a smoothing 

parameter, and we see that there should be a trade-off between sensitivity to noise 

occurring for small h and over-smoothing behavior at large h.  
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Chapter 5 

5 Model learning for local AD approaches 

Local AD strategies are devoted to locating objects, extending over a few pixels, whose 

spectral features deviate significantly from those of their surrounding neighbors. To this 

aim, only a neighboring area of the pixel being tested is used for characterizing its local 

background. 

Within this framework, the conventional AD approach is the popular Reed-Xiaoli (RX) 

detector. However, such an approach may lead to poor detection performance due to the 

assumption that the local background is Gaussian and homogeneous. In practice, these 

assumptions are often violated, especially when the neighborhood of a pixel contains 

several materials, thus compromising the performance of the algorithm. In the literature, 

several AD strategies have been presented, most of them trying to cope with the problem of 

non-Gaussian background. In this thesis work, the use of a locally data-adaptive 

nonparametric model for estimating the background PDF is proposed within the AD 

scheme for detecting anomalies by means of the background log-likelihood decision rule. 

In this chapter, the new solution has been presented along with the description of 

existing techniques, thus providing a joint analysis of the different limitations typically met. 

 

5.1 The Reed Xiaoli (RX) algorithm: when data are modeled as a 

Gaussian non-stationary multivariate random process 

In [48], the commonly referred RX algorithm for detecting anomalous objects was 

established. It is considered the benchmark AD approach for multi-hyperspectral imagery. 

Basically, parametric models for the data PDFs under the two hypotheses are adopted. 
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Specifically, the data in the null hypothesis are assumed to arise from a normal 

distribution. Such a Local Normal Model (LNM) is generally more easily met after 

application of a local mean-removal procedure using a sliding window. This demeaning 

window is shown in Fig. 5.1. The demeaning process removes the gross background 

structures, thus resulting in the following binary hypothesis test: 

 
 CssBX

C0BX
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,|
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
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 (5.1) 

where s is the target spectral signature, B is the residual background plus noise spectral 

vector, and C is the unknown background covariance matrix, assumed to be the same in 

the two hypotheses.  

 

  

Fig. 5.1. Spatial windows used in the RX implementation: outer demeaning window (red), outer covariance 

estimation window (green), guard window (blue). The outer window dimension for the demeaning is usually 

taken to be smaller than the outer window dimension for covariance estimation, since the mean vector is 

supposed to vary spatially faster than the covariance matrix. 

 

According to the strategy in (2.3), the decision rule for the RX algorithm is the 

following: 
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1ˆ xxC , typically referred to as sample covariance matrix, is the ML 

estimate of C, made from the data in a small neighborhood of the pixel under test. This is 

represented by the dashed green window in Fig. 5.1. It is to be noted that equation (5.2) is 

simply the square of the Mahalanobis distance between the pixel under test and the local 

background class is compared to a threshold to detect anomalies. This decision rule can be 

also derived following the strategy (2.3). 

Nevertheless, while the assumption of a multivariate Gaussian distribution is 

mathematically convenient, LNM has been shown to provide an inadequate representation 

of the underlying distributions in many environments, leading to poor detection 

performance [42][55]. This is especially true when the local background contains several 

materials. 

 

5.2 Kernel - RX: Gaussian model in a high-dimensional feature space 

In order to cope with complex local backgrounds, in [32] a nonlinear version of the RX 

strategy, called kernel RX (and denoted with K-RX hereinafter), was proposed, benefiting 

from the employment of kernel methods [52]. Specifically, K-RX extends the RX 

algorithm to a higher-dimensional feature space associated with the original input space via 

a non-linear mapping function Φ. Within this framework, a LNM is adopted in the higher-

dimensional space, which is expected to model a more complex decision boundary in the 

original input space. The two hypotheses in the feature space are now:  
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In order to maintain the same notation as in [32], the spatial demeaning is not considering. 

This is obviously taken into account when deriving the decision rule, which introduces the 

background mean vector μΦ in the kernel-squared Mahalanobis distance computation. The 

corresponding RX-algorithm in the feature space is now represented as: 

        
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where μ̂  and Ĉ
 
are the estimated covariance matrix and the mean vector of the 

background pixel in the feature space, respectively. Nevertheless, the direct 

implementation of the RX algorithm in the feature space is not feasible, due to the high 

dimensionality. However, the K-RX decision rule is derived relying upon the kernel 

theory. In fact, thanks to the “kernel-trick” [52], the K-RX approach implicitly computes 

the required dot products in the higher-dimensional space by means of kernel functions 

defined on pairs of input data, without the need of identifying the non-linear mapping. The 

resulting test statistic is quite complicated, and hence it is not reported, referring to [32] for 

details. It is worth mentioning that test statistic computation involves the calculation and 

inversion of large Gram matrices [32][52], which entails a high computational burden. 

K-RX has been shown to be equivalent (up to normalizations) to use a FKDE for 

modeling the background distribution in the original input space [42][32][15]. In FKDE 

(and, in turn, in K-RX), the smoothness of the approximation and the modeling ability are 

controlled by scale parameters, which are called bandwidths. Basically, the bandwidths are 

the kernel function widths. It is well-known that FKDE suffers from the drawback that the 

bandwidths are assumed constant across the entire feature space [50]. Choosing small 

bandwidths may lead to PDF estimates exhibiting spurious discontinuities in the tails or in 

any scarcely populated data region. This effect can be mitigated by increasing the 

bandwidth values, but at the expense of obscuring structural features characterizing the 

body of the distribution due to over-smoothing [50]. Moreover, the FKDE outcome has 

been shown to be very sensitive to even very small variations in the selection of the 

bandwidth value [54]. These considerations lead to think that similar problems may also 

affect Kernel-RX behavior, in which the kernel function width parameter plays the role of 

the FKDE bandwidth. 

 

5.3 A locally adaptive background density estimator: an evolution for 

RX-based anomaly detectors 

Local AD is a topic of great interest in the target detection domain. Within this 

framework, the conventional AD approach is the popular Reed-Xiaoli (RX) detector. 

However, such an approach may lead to poor detection performance due to the assumption 

that the local background is Gaussian and homogeneous. In practice, these assumptions are 

often violated, especially when the neighborhood of a pixel contains multiple types of 
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materials, thus compromising the performance of the algorithm. In the literature, several 

AD strategies have been presented, most of them trying to cope with the problem of non-

Gaussian background. 

In order to benefit from the great potential that K-RX embeds, such as its ability at 

modeling complex local backgrounds without making specific distributional assumptions, 

and – at the same time – trying to overcome problems that are intrinsic to its nature, a 

novel local AD strategy is here proposed [62]. Specifically, the strategy relies upon the 

decision rule (2.7) and involves a variable bandwidth kernel density estimator to model the 

local background. In particular, the GkNNE of equation (4.24) is adopted to better capture 

the local behavior of the underlying background PDF by allowing the bandwidths to vary 

over the estimation domain. Such a PDF estimator has proven to adapt the amount of 

smoothing to the local density of data samples in the feature space, so as to more reliably 

and accurately follow the multivariate data structure with respect to FKDE [50].  

This proposed locally adaptive GKNNE-based AD approach will be denoted with A-

RX, hereinafter. The A-RX test statistic is the following: 
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It is important to note that adopting an equal bandwidth across the spectral dimensions 

means employing spherically symmetric kernel functions. Nevertheless, by pre-scaling the 

data in order to avoid extreme difference of spread in the various spectral directions, more 

complicate forms of the kernel functions are not necessary to be adopted since they have 

been recognized to provide very little improvements [50][54]. To this aim, each input pixel 

and its surrounding neighboring pixels are linearly transformed to yield data with zero 

mean and identity covariance matrix prior A-RX application [22][54]. 
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Chapter 6 

6 Experimental results: global model learning capabilities  

In this chapter, the experiments carried out by applying the proposed global AD 

strategy are presented and discussed. Two real hyperspectral images characterized by 

different sizes and background complexity were employed to evaluate the effectiveness of 

the proposed AD processing chain, applied with the different PDF estimators and learning 

methods investigated.  

It should be noted that the conducted experiments cannot answer the question as to 

which is the estimator and model-learning combination that better approximates the true 

image PDFs of the examined data sets, which, of course, are unknown. Rather, the aim of 

the experimental analysis is to provide further insights into the modeling capabilities of the 

different methods as well as to evaluate their effectiveness and actual utility in the AD 

context [63]-[71].  

Specifically, this experimental chapter aims at examining three important aspects: 

1. Evaluating and experimentally  comparing the ability of both GMM and StMM to 

represent the statistical behavior of the examined empirical hyperspectral data. 

2. Evaluating and experimentally comparing the detection performance of the proposed 

AD strategy when GMM, StMM, and non-parametric estimators, combined with the 

corresponding learning procedures, are used to estimate the image PDF. 

3. Evaluating the impact of the user-specified parameters involved in the proposed 

bandwidth selection strategy on the detection performance when non-parametric 

density estimators are employed within the proposed AD scheme. 
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6.1 Data sets description 

Two hyperspectral images, denoted with Scene A and Scene B, were analyzed in this 

research. Both images were collected by the SIM-GA (Sistema Iperspettrale Modulare – 

Galileo Avionica) hyperspectral sensor, designed and manufactured by Selex-Galileo. The 

sensor is a push-broom imaging spectrometer operating in the Visible to Near-InfraRed 

(VNIR) spectral range. The instrument was installed on a micro light aircraft, which has 

served as experimental remote sensing platform. The main technical characteristics of the 

sensor are summarized in Table 6. For AD purposes, panels characterized by different 

sizes and materials were placed within the scenes during the measurement campaigns as 

targets of interest. Both hyperspectral data were subject to a spectral binning as well as to 

water-vapor absorption and noisy bands removal. Then, in order to speed-up the 

computation, a feature reduction method aimed at preserving rare vectors (i.e. anomalies) 

was used to reduce the dimensionality of the data [2]. Finally, the first principal component 

was removed in both the data, as it usually addresses the overall scene brightness [27]. The 

resulting images were processed by the AD scheme discussed above. It should be noted 

that the feature reduction step also assures more accurate estimates of the mixture 

parameters and not to incur in dimensionality issues (such as the empty-space phenomenon 

[54]) during non-parametric estimation. 

 

Table 6. Main technical characteristics of the SIM-GA hyperspectral sensor. 

VNIR channel 

Spectral range 400-1000 nm 

Spectral sampling 1.2 nm 

# spectral sampling 500 

Focal length 17 nm 

Nominal IFOV per pixel 0.7 mrad 

Spatial resolution @ 1000 m 0.7 m 

FOV 19° 

F# 2.0 

Quantization bits 12 bits 

Detector Camera CCD 

Maximum frame rate 57 fps 

Weight 25 Kg 
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The first image was collected at a flight height of about 850 m, resulting in an 

approximated Ground Instantaneous Field of View (GIFOV) of 0.6 m. For the 

experiments, only a portion of size 365 by 430 pixels of the entire flight line including the 

targets was considered to be processed by the AD procedure discussed above and will be 

hereinafter denoted as Scene A. The resulting scene mostly includes natural vegetation, 

soil, and two roads running through almost the entire length of the scene. The scenario also 

includes panels with different sizes and materials as targets of interest. The deployed 

objects have sizes ranging from 1 m
2
 up to 25 m

2
. Such targets take up no more than 

0.0471% of the image, a percentage that makes them significantly rare in quantity. 

Moreover, the target pixels show spectra very similar to several background classes from 

which they have to be distinguished. Such experimental conditions make the detection of 

these objects not trivial. A true-color image of Scene A is shown in Fig. 6.1(a), with 

highlighted the target locations. 

The second image was acquired by the sensor mounted on board an airplane flying at a 

height of about 1700 m. The resulting GIFOV was of about 1.2 nm. The image processed, 

indicated hereinafter as Scene B, consists of 255 by 605 pixels around the targets of 

interest. The scene is characterized by a more complex background structure with respect to 

Scene A. In fact, the scene is largely made up of different kinds of natural vegetation, such 

as trees and grass, soil, but it also includes several lanes and roads and a small group of 

houses. Scene B includes panels having sizes ranging from 1 m
2
 up to 16 m

2
 that both are 

rare in quantity (they occupies 0.0136% of the image) and have spectra very similar to 

those of background pixels. These conditions, together with the more complex background 

structure, make the detection of the deployed targets challenging. Scene B, together with 

the locations of the targets in the scene, is shown in Fig. 6.1(b). 

 

  
(a) (b) 

Fig. 6.1. True-color representation of the scenes and location of the targets: (a) Scene A, (b) Scene B. 
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In this experimental chapter, Scene A is employed as the primary dataset, that is it is 

adopted to thoroughly discuss the conducted experiments. Next, Scene B is used as a 

benchmarking data onto which validate the results obtained. 

 

6.2 On the statistics of hyperspectral imaging data: GMM and StMM 

modeling capabilities  

As mentioned, although the GMM is undoubtedly one of the most widely adopted 

models for modeling hyperspectral data, the StMM has been suggested to better describe 

the distribution tails of background classes [64][65]. One of the purposes of this 

experimental analysis is to investigate and compare the ability of GMM and StMM, learnt 

with the Bayesian strategies described above and denoted with BGMMS and BStMM, 

respectively, to represent the statistical behavior of real hyperspectral data. It is expected 

that StMM provides better modeling capabilities thanks to its mixture components that 

accommodate longer tails than the Gaussian ones. Other studies have investigated the 

difference model ability of GMM and StMM for hyperspectral data [1][38][39][40]. 

However, whereas in those studies the number of mixture components were specified in 

advance (probably by visual inspection of the spectral diversity of the scene), here the 

Bayesian model learning has been conducted automatically and without operator 

intervention. 

In order to investigate the GMM and StMM modeling capabilities, the examined image 

was first segmented into clusters according to such models. In practice, modeling the PDF 

of the data with FMMs means to assume that each pixel originates from one component of 

the mixture according to some probability. Therefore, cluster maps were constructed 

assigning each pixel to the component that has most likely generated it. Once the data were 

segmented into clusters, the empirical distributions of the pixels within each cluster were 

analyzed. Such analysis was conducted by computing, for each cluster, the probability of 

exceedance of the Mahalanobis distances between each pixel of the cluster and the cluster 

itself. Specifically, such a probability of exceedance represents the probability of the 

Mahalanobis distance exceeding a given threshold. 

In general, the Mahalanobis distance Mg of multivariate Gaussian data characterized by 

mean vector μ and precision matrix T is defined as 
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   μxTμx 
t

gM  (6.1) 

and follows the Chi-square distribution χ
2
 with d degrees of freedom [40]. On the other 

hand, the Mahalanobis distance Mt of multivariate Student‟s t distributed data with mean 

vector μ, scale matrix Λ, and ν degrees of freedom, as already mentioned in [38], is defined 

as 

   
νd

M
t

t

μxΛμx 
  (6.2) 

and follows the F distribution Fν,d with ν and d degrees of freedom [40]. 

On the basis of equations (6.1) and (6.2), the empirical Cumulative Distribution 

Functions (CDFs) of Mg (for GMM) and Mt (for StMM) were computed for each cluster by 

employing the pixels belonging to the corresponding mixture component as well as the 

model parameters estimated for that component (i.e. mean vector and precision matrix for 

the GMM, and mean vector, scale matrix, and number of degrees of freedom for the 

StMM). Given the high number of sample data used for estimation, the errors in the 

estimates of model parameters are assumed to be negligible. By computing the 

complementary empirical CDFs of Mg and Mt for each cluster, the probabilities of 

exceedance were obtained. Next, exceedance plots were constructed by comparing the 

empirically evaluated complementary CDFs to the ones that should be obtained 

theoretically. In this way, such exceedance plots for the Mahalanobis distance statistics 

show how well each assumed model fits the empirical data distribution.  

The Bayesian GMM learning approach, employed on Scene A, provided 2 GMM 

components, and hence a cluster map with 2 clusters, which is shown in Fig. 6.2 (a). Fig. 

6.2 (b) depicts the corresponding exceedance plots computed over each cluster of the 

GMM cluster map. As is evident, results indicate that the empirical distribution of the 

pixels within each cluster has longer tails than the theoretically expected ones. This means 

that the data, at least as regards the distribution tails, are not accurately modeled by the 

multivariate GMM PDF estimated through the learning procedure. In such a case, in order 

to obtain a more accurate fit, the operator intervention would be necessary to detect the 

mis-modeling and guide possible subsequent further and more-refined learning procedures. 

For the sake of comparison, the GMM exceedance plots in Fig. 6.2 (b) also report the 

theoretical complementary CDFs of the F distributions Fν,d obtained with the values of the 
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ν that best fit the empirical curves obtained. Such theoretical curves, obtained with ν={4, 

10}, show that the empirical exceedance plots significantly resemble those of Student‟s t 

distributed data and suggest that the StMM is expected to provide a better fit. 

 

 
(a) 

 

 

 

 

Cluster 1 

Cluster 2 

 

(b) 

Fig. 6.2. (a) Cluster map and (b) exceedance plots of the Mahalanobis distances for the spectral classes 

produced by GMM learning strategy. Specifically, the empirical distributions are plotted in red (solid 

curves), whereas the black and blue (dashed) curves represent the χ
2
 and the F distributions considered for 

comparison to the empirical distributions, respectively. This latter refers to the F distributions Fν,d obtained 

with the values of the ν that best fit the empirical curves obtained. 

 

The Bayesian StMM learning strategy applied to the same scenario provided 4 StMM 

components and hence a cluster map with 4 clusters, which is shown in Fig. 6.3 (a). The 

corresponding exceedance plots are depicted in Fig. 6.3 (b). In the same plots, the Fν,d 

distributions characterized by the numbers of degrees of freedom returned by the Bayesian 

learning algorithm are reported for comparison. Not only the empirical StMM exceedance 

plots exhibit indeed heavy tails, but – on the contrary to the GMM case - they are also in 

good agreement with the corresponding theoretical F distributions. 
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Cluster 1 

Cluster 2 

Cluster 3 

Cluster 4 

(b) 
Fig. 6.3. (a) Cluster map and (b) exceedance plots of the Mahalanobis distances for the spectral classes 

obtained by the StMM learning strategy. Specifically, the empirical distributions are plotted in red (solid 

curves), whereas the blue (dashed) curves represent the F distributions considered for comparison to the 

empirical distributions, respectively. This latter refers to the F distributions Fν,d characterized by the numbers 

of degrees of freedom returned by the learning algorithm. 

 

6.3 FKDE strategy automation 

In the experiments of non-parametric background PDF estimation through the FKDE 

approach, the classical Gaussian kernel function was used, as commonly done in the 

literature [3][54]. As previously observed, assessing reliable bandwidths in the FKDE 

estimator is very important, particularly in the proposed AD scheme where we need to 
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estimate the PDF with extreme precision. The crucial choice of suitable values for the 

bandwidths was approached by resorting to the BN Bayesian methodology described in 

section 4.2.1 [7]. As anticipated, since such an approach assumes an equal bandwidth h for 

each component (by restricting the contours of the kernel functions to be spherically 

symmetric), the data were normalized so that each spectral component had the same 

variance.  

The goal of FKDE experimental analysis was to evaluate the impact of the choice of Kl 

and Ku onto the bandwidth selection process and, in turn, on the detection performance 

[68][69]. A minimal effect of such a choice on the detection performance would suggest 

that an automatic application of the strategy is not impaired. Specifically, experiments 

were carried out with respect to different choices for the bounds Kl and Ku and the 

corresponding effect onto both the background log-likelihood and the detection 

performance was assessed. To this aim, as in [7], Kl and Ku were expressed as fractions of 

the number of the available data samples N. In particular, Ku was evaluated as Kl+Δ, and a 

(N/Kl, Δ) space was generated to investigate the effect of the parameter choice. 

Specifically, N/Kl was varied between 490.5 and 15695, corresponding to Kl ranging in [10, 

320], whereas Δ was varied between 0 and 150.  

In order to perform a quantitative analysis, two performance measures were considered. 

The former is aimed at quantifying how much the target pixels emerge from the image 

background ones in the test statistic (i.e. the background log-likelihood Λ(x)). Specifically, 

the Signal to Noise Ratio of target pixels over background pixels was computed over the 

test statistic. Such evaluation measure is denoted with SNRΛ and defined as:  

     
  0

01

H|std

H|EH|E

x

xx




SNR  (6.3) 

where std{.} indicates the standard deviation. The higher SNRΛ value is, the better the 

targets emerge from the background and are more easily detectable. The second 

performance measure employed is the False Alarm Rate (FAR) corresponding to the 

maximum threshold value in the detection test statistic at which all target pixels are 

detected (hereinafter denoted with Global FAR@100% detection). Of course, the lower 

Global FAR@100% detection is, the better the detection performance, since less false 

alarms are required to detect all target pixels. 
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The SNRΛ values computed over the Scene A on the basis of the available ground truth 

target map are shown in Fig. 6.4 (a) As is evident, a region can be identified that includes 

SNRΛ values not lower than approximately 3dB with respect to its maximum value. This 

means that all [Kl, Ku] configurations chosen in such a region provide similar enhancement 

of target pixels in the test statistic. Specifically, on the examined scenario, this region is 

approximately identified by N/Kl<600, that means that choosing a number Kl of nearest 

neighbors not lower than 2 orders of magnitude with respect to the total number N of pixels 

is sufficient to exhibit a very good background suppression ability.  

Fig. 6.4 (b) displays the Global FAR@100% detection values obtained. As is evident, 

all configurations manage to detect all target pixels with very low, and in most cases equal 

to 0, FARs. In particular, the region identified above for SNRΛ mostly corresponds to the 

[Kl, Ku] configurations yielding the best Global FAR@100% detection, i.e. a perfect 

detection of all target pixels with no false alarms. 

 

  
Fig. 6.4. (a) SNRΛ and (b) Global FAR@100% detection measures for different configurations of the 

interval [Kl, Ku=Kl+Δ]. The red arrow depicts the region including SNRΛ values not lower than 

approximately 3dB with respect to its maximum value. 

 

Such outcomes mean that, for the examined scenario, choosing [Kl, Ku] in a 

considerably wide region of the (N/Kl, Δ) space examined weakly affects the ultimate 

detection performance, which is similarly very good across the different configurations. 

Such a weak effect of the [Kl, Ku] choice can be confirmed by examining Fig. 6.5, which 

shows the range of bandwidths h obtained. In particular, the attained h values in the 

highlighted region range in [3.56, 4.33], with an average value of 3.80 and a standard 
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deviation of 0.17. Such values show a very limited variation of h with respect to significant 

variations of the [Kl, Ku] in the (N/Kl, Δ) space. 

 

 
Fig. 6.5. Estimated bandwidths for different configurations of the interval [Kl, Ku=Kl+Δ]. The red arrow 

depicts the region including SNRΛ values not lower than approximately 3dB with respect to its maximum 

value. 

 

The outcomes of such investigation suggest the possibility of identifying a common 

recommendation for the choice of [Kl, Ku] applicable to various different scenarios. This is 

appealing since it will allow for operation without “man-in-the-loop”, while assuring 

sufficiently good performance. Further investigations have been being performed by 

examining the Scene B. Outcomes from Scene B analysis are reported in the validation 

section 6.6 

 

6.4 Anomaly detection performance: the Bayesian learning for global 

background modeling in hyperspectral images 

Anomaly detection performance of the proposed global AD strategy with respect to the 

different image PDF estimation methodologies is here analyzed for Scene A on the basis of 

the ground truth target map. Specifically, the proposed global AD scheme based on 

equation (2.7) is combined with reliable and automatic data-driven background PDF 

estimation. Actually, the use of such estimators is coupled only with the employment of the 

automatic model learning methods developed within a Bayesian framework. Specifically, 

the BGMMS, BStMM, and BN approaches described in chapter 4 were considered in this 
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analysis [64][66]-[69][71]. Moreover, the Gaussian kernel function is employed in the 

FKDE. 

It is important to note that the experiments here discussed are not aimed at 

quantitatively evaluating the ability of the examined PDF estimators to approximate the 

image background true PDF. As a matter of fact, the true image PDF is unknown and the 

various error measures employed in section 4.2.3 cannot be computed. 

Overall detection performance is evaluated by means of the Receiver Operating 

Characteristics (ROC) curves [42]. ROC curves plot the Fraction of Detected Target pixels 

(FoDT) versus the FAR, computed by increasing the threshold level from zero to the 

maximum detection statistic value over the operating scenario analyzed. Specifically, 

pixel-based ROC curves are reported, i.e., FoDT is computed as the ratio of the number of 

target pixels properly detected to the total number of target pixels. As the detection 

threshold is raised, fewer and fewer pixels are classified as anomalies. Thus, a higher 

threshold leads to a lower FoDT. Nonetheless, decreasing the threshold means that more 

and more non-anomalous pixels are mistakenly classified as anomalies and, thus, the FAR 

increase. As a result, plotting FoDT vs FAR at each threshold value builds a curve that 

summarizes the trade-off for obtaining a high FoDT with a reasonably low FAR. 

Then, since evaluation of anomaly detection performance is not a trivial task, several 

object-wise performance measures are taken into account so as to evaluate algorithm 

behavior with respect to the different targets deployed in the scene [42]: 

 FAR@1
st
 detection. The FAR at the first detection provides the FAR for just 

detecting the presence of the desired target, which is associated with its pixel 

exhibiting the highest test statistic value.  

 FAR@100% detection. It is an object-wise version of the Global 

FAR@100% detection measure previously described. This measure assesses the 

FAR arising from the detection of all pixels of a given target object. 

 TSNRΛ. In order to provide a measure assessing how much, in the AD test 

statistic Λ(x), each target object emerges with respect to the background pixels, a 

SNRΛ for each target object can be computed as follows:  
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(6.4) 

The higher this measure is, the better the performance. The assumption for using 

(6.4) is that it is expected that, after detection, Λ(x)|H0 (background) values are 

tightly concentrated around their mean value whereas Λ(x)|H1 (target) exhibits 

much higher values. 

As to the experiments of non-parametric background PDF estimation through the 

FKDE, since such an approach assumes an equal bandwidth h for each component, the data 

were previously normalized so that each spectral component had the same variance, as 

done in the previous section.  

Fig. 6.6 shows the ROC curves obtained by thresholding the detection test statistics. 

Such curves show that, on these data, the best overall detection performance is achieved by 

both the StMM-based and the FKDE-based AD strategy, which provided ROC curves 

characterized by FoDT=1 and FAR=0 for any value of the detection threshold (and, thus, 

do not appear in the plot). Specifically, all FKDE configurations within the region 

including SNRΛ values not lower than approximately 3dB with respect to its maximum 

value yielded equal ROC curves. As regards the GMM-based AD approach, it provided a 

ROC curve with lower FoDTs for similar values of FAR. Still, 80% of target pixels are 

detected with FAR= 3.2·10
-5

, 90% of them with FAR=5.7·10
-5

, and detection of all target 

pixels in the scene corresponds to FAR=2.5·10
-4

. 

 
 

    
Fig. 6.6. ROC curves for Scene A. The curves associated to the StMM- and the FKDE - based strategies do 

not appear in the plot because they are characterized by FoDT=1 and FAR=0 for any value of the detection 

threshold. 



Experimental results: global model learning capabilities 

75 

 

As to algorithm behavior over each target object, Table 7 and Table 8 report measures of 

the FAR@1
st
 detection and the FAR@100% detection, respectively, for the proposed AD 

strategy employing the GMM, StMM and FKDE PDF estimators. Again, measures related 

to the use of FKDE as background PDF estimator refer to the [Kl, Ku] configurations 

falling in the region highlighted previously. These measures confirm the best results 

obtained by the StMM- and the FKDE -based AD schemes. In fact, both yielded a perfect 

localization of each target (no false alarms), as is evident from the FAR@1
st
 detection 

measurements. Furthermore, they both succeeded in detecting, with no false alarms, all the 

pixels within each target object (i.e. FAR@100% detection=0 for all objects). As regards 

the GMM-based AD scheme, very good, though not perfect, object-wise detection is 

achieved, with all FAR@1
st
 detection=0 with the exception of Obj. 3, whose detection 

makes one false alarm arise. Nevertheless, when detection of all target pixels of each 

object is concerned, GMM performance exhibits non-null FAR@100% detection for three 

out of seven objects (Obj. 3, 5, and 6), being Obj. 3 the one causing the highest 

FAR@100% detection value (i.e. 2.5·10
-4

). 

 

Table 7. Measures of FAR@1
st
 detection (Scene A) 

Learning 

strategy 
Obj. 1 Obj. 2 Obj. 3 Obj. 4 Obj. 5 Obj. 6 Obj. 7 

GMM 0 0 6.39·10
-6

 0  0 0 0 

StMM 0 0 0  0  0 0 0 

FKDE 0 0 0  0  0 0 0 

 

Table 8. Measures of FAR@100% detection (Scene A) 

Learning 

strategy 
Obj. 1 Obj. 2 Obj. 3 Obj. 4 Obj. 5 Obj. 6 Obj. 7 

GMM 0 0 2.5·10
-4

 0 1.9·10
-5

 1.9·10
-5

 0 

StMM 0 0 0 0 0 0 0 

FKDE 0 0 0-6.4 10
-6

 0 0 0 0 

 

Table 9. Measures of TSNRΛ (Scene A) 

Learning 

strategy 
Obj. 1 Obj. 2 Obj. 3 Obj. 4 Obj. 5 Obj. 6 Obj. 7 

GMM 26.82 14.23 12.32 30.16 14.64 16.16 20.89 

StMM 5.76 5.22 5.98 6.54 5.87 5.99 6.27 

FKDE 22.78 

– 32.00 

19.41 

– 24.24 

16.30 – 

23.05 

22.46 

– 31.78 

17.78 

– 25.12 

18.20 

– 25.92 

19.57 

– 27.65 
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As regards the background suppression ability, the TSNRΛ values computed for each 

target and with respect to the employment of the different AD schemes are included in 

Table 9, where, again, the FKDE results reported are the maximum and the minimum 

values obtained in the region including SNRΛ values not lower than approximately 3dB 

with respect to its maximum value. As is evident by comparing Table 9 with Table 7 and 

Table 8, TSNRΛ values for StMM apparently seem to be in contrast with the null FAR 

values. In fact, whereas the StMM-based approach has been shown to perfectly detect all 

objects and all pixels within each object, the target pixels in its detection test statistic seem 

not to emerge well with respect to background pixels. TSNRΛ values for StMM are actually 

much lower than those yielded by both GMM and FKDE schemes. More insights into this 

seemingly unusual behavior can be obtained by examining the AD detection test statistics 

corresponding to the examined schemes, shown in Fig. 6.7 (a-d). By visual inspection of 

such detection test statistics, it is clear that the image background structures emerge much 

more in the StMM case with respect to both the GMM and the FKDE ones.  

 

  
(a) (b) 

  
(c) (d) 

Fig. 6.7. Normalized detection test statistics obtained by using (a) GMM-, (b) StMM- and (c) (d) FKDE - 

based AD strategy. In the FKDE case, the configuration yielding (c) the highest SNRΛ and (d) the SNRΛ 

lower than approximately 3dB with respect to the maximum value are taken into account. The statistics have 

been normalized so that their values range in [0,1]. 
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Such a phenomenon is much more evident by examining Fig. 6.8, where the histograms 

of the detection statistics associated to target pixels (in red) and background pixels (in 

blue) are reported for each AD scheme.  

 

 

  

  
(a) (b) 

  

  
(c) (d) 

Fig. 6.8. Histograms of the detection test statistics associated to target pixels (in red) and background pixels 

(in blue) obtained by applying the proposed AD strategy employing (a) GMM, (b) StMM, and (c) (d) FKDE  

corresponding to the configurations yielding (c) the highest SNRΛ and (d) the SNRΛ lower than approximately 

3dB with respect to the maximum value are taken into account. Below each histogram, the interval of 

variation of target and background test statistic values is represented by means of horizontal bars. 
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Below each histogram, horizontal bars show the ranges of variation of target and 

background test statistic values, highlighting the separation of target and background pixels 

after each AD scheme is applied. As is evident, the histograms computed over the GMM- 

and the FKDE-based test statistic show Λ(x)|H0 values (associated to background pixels) to 

be almost very concentrated around their mean value (which takes value equal to 2.81·10
-2

, 

3.92·10
-2

 and 4.34·10
-2

 for the three analyzed schemes). In fact, their standard deviations 

range from 3.04·10
-2

 to 3.17·10
-2

 and 4.22·10
-2

. Despite this narrow concentration of 

Λ(x)|H0 values around the mean, the horizontal bars of the GMM-based test statistic 

clearly show that a given number of target pixels (Λ(x)|H1) assumes values comparable to 

and lower than those of some background pixels, these latter being hence associated to 

false alarms. This does not occur for the FKDE-based test statistic. As regards the StMM-

based histogram, background pixels do not exhibit a similar concentration around their 

mean value in the test statistic. Rather, Λ(x)|H0 values are much more dispersed (with a 

standard deviation equal to 1.04·10
-1

) around their mean value, which is also higher 

(3.20·10
-1

) than the one taken in the Λ(x)|H0 case. This widespread character is mainly due 

to the background structures (mostly the roads) already observed emerging in Fig. 6.7, 

which are responsible for the higher E{Λ(x)|H0} and std{Λ(x)|H0} that lead to lower 

TSNRΛ values. Such a behavior makes it clear that TSNRΛ cannot be used as a direct 

measure of the detection performance and should be coupled with an analysis of 

background pixels distribution in the test statistic. In fact, horizontal bars for the StMM 

case clearly show a good separation between target and background pixels in the test 

statistic, with no overlap of the bars, which means no false alarms. Indeed, by looking at 

Fig. 6.7, the StMM-based detection test statistic clearly reveals the whole shapes of the 

objects emerging from the background, here much more evidently than with the other AD 

schemes. Although in the GMM and FKDE cases most of background structures have been 

annihilated, the whole target shapes are not as well evident as in the StMM case, especially 

for the GMM test statistic. 

Finally, it is worth noting that the lowest TSNRΛ obtained in the GMM case is that of 

Obj. 3, which is also the object causing higher FAR@1
st
 detection and FAR@100% 

detection values. Obj. 5 and 6, which also yield non-null FAR@100% detection, are 

characterized by low TSNRΛ values as well. 
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6.5 Exploring the use of variable and fixed bandwidth kernel density 

estimators for AD purposes 

The AD processing chain described in chapter 2.4.1 has been proposed to efficiently 

explore hyperspectral images for the detection of anomalous objects with the help of 

reliable image PDF estimation. The goal of the experiments conducted in this section was 

to provide insights about the background modeling ability of VKDEs, as well as their 

effectiveness and actual usefulness in the AD context with respect to the FKDE [63][70]. 

As highlighted before, the use of data adaptive non-parametric background PDF estimators 

arises from the difficulty of FKDE in following the local structural peculiarities of PDFs in 

the feature space, mainly due to the inability of a fixed bandwidth to adequately handle 

both PDF body and tails. With this in mind, design of experiments in this section was 

performed with the goal of showing the effectiveness of the proposed AD strategy in 

detecting the anomalous objects in the real hyperspectral image described above while 

assuring a good capability of following the actual structure of data in the feature space, so 

that no under-smoothing or over-smoothing phenomena occur.  

In order to evaluate the impact of the only VKDE user-specified parameter k on the 

detection performance, the experiments were conducted with respect to different choices of 

k. Specifically, k was varied between 5 and 1000, corresponding to k/N ranging in [3.2·10
-5

 

6.4·10
-3

]. For each selected k value, the image background PDF was estimated by using the 

adaptive techniques of equations (4.24), (4.25), and (4.26). In this analysis, the classical 

Gaussian kernel was used in both GkNNE and SPE, as done in the previous sections and in 

the “toy-example”. Then, the detection of anomalous objects within the image was 

conducted according to the criterion in (2.7). Special attention was devoted to the behavior 

of the proposed AD scheme for k values both corresponding to the two extremes of the 

analyzed interval (i.e., k {5, 1000}) and equal to the suggested one (i.e., k=N
1/2

=397). The 

choice of this latter k value was suggested in [54], but its validity seems to be confirmed by 

the analysis conducted in the “toy-example”.  

Such results were compared to those obtained by using FKDE for non-parametric PDF 

estimation within the AD strategy in equation (3.12). Again, a Gaussian kernel was 

employed in the FKDE and an equal bandwidth h in all dimensions was considered, i.e. 

H=hId, as commonly performed in the literature and similarly to what done with VKDEs. 

In order to provide a fair comparison, several possibilities for the parameter h were 
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explored. Specifically, the choice of h within the FKDE was done uniformly sampling the 

range between the lowest rk value obtained with the minimum k=5 and the highest rk value 

attained for the maximum k=1000, thus exploring h values spanning the whole range of the 

variable bandwidths being tested.  

Since the approaches to be tested assume spherically symmetric kernel functions, the 

data were normalized in order to avoid extreme difference of spread in the spectral 

directions so that each spectral component has the same variance. 

Performance evaluation over the real image was carried out by analyzing both the 

estimator capability of following the structure of the given data and as concerns the 

detection of the small anomalous objects in the scene. To this aim, results are examined by 

using the available ground truth target map and by means of: 

 Quantitative statistical analysis of the VKDE variable bandwidths obtained 

with the k-NN approach in correspondence of both target  and background 

pixels for the different values of k. It should be noted that the k-NN variable 

bandwidths are hereinafter indicated simply as rk (rather than specifying either 

rk(x) or rk(xn), as in equations (4.24), (4.25), and (4.26)) since the background 

PDF value in each tested pixel x is estimated by employing, as data samples, 

all the remaining image pixels {xn  
d
| n = 1, 2, ..., N, xn  x}. Hence, each 

image pixel is used, in turn, both as estimation pixel x (where rk(x) is computed 

for equations (4.24) and (4.25)) and as observed sample pixel xn (where rk(xn) 

is computed for equation (4.26)), and the corresponding rk(x) and rk(xn) values 

actually coincide for a same k. 

 Quantitative analysis of the range of test statistic values assumed in 

correspondence of both target (Λ(x)|H1 i.e., mainly on the tails) and 

background (Λ(x)|H0 i.e., over the main body) pixels, performed for different 

values of k, in conjunction with a visual inspection of detection test statistic 

(minus logarithm of the estimated PDF) for the three k values mentioned 

above. 

 Evaluation of the distance between the minimum value of the test statistic for 

the target pixels and the maximum value of the test statistic for the background 

ones: 
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     01 |max|min HHδ xx   (6.5) 

Such a measure quantifies the separation between target and background test 

statistic values. If there is not a perfect separation between target and 

background test statistics,  takes negative values. 

 Evaluation of Global FAR@100% detection measure, which represent the 

False Alarm Rate (FAR) corresponding to the maximum value of the threshold 

in the test statistics that allows all target pixels to be detected (100% of 

detection rate), as already previously described.  

The values of k employed led to a wide range of variability for the rk values obtained for 

all image pixels, ranging from a minimum value of rk,min= 0.61 (obtained for k=5) and a 

maximum value of rk,max= 26.36 (resulting from k=1000). These two specific values 

represented also the minimum and maximum values for the range of h to be employed 

within the FKDE approach. 

To better analyze how rk variability translates into an effective ability to adjust the 

different smoothing requirements of the different structure of the PDF, Fig. 6.9 shows the 

mean rk value, computed over both target and background pixels, as a function of the 

parameter k, with confidence intervals given by its standard deviation. As we expected, 

target and background rk mean values are broadly separated for all k configurations and, 

more importantly, rk values are typically much higher for the target pixels than the 

background ones. Such behavior reflects what mentioned, since flatter kernel functions are 

associated with the target pixels, which we expect to lie in the tails of the PDF, whereas 

narrower kernel functions are used to model the main body of the PDF. It is important to 

note that, as k increases, the separation between target and background adaptive bandwidth 

values becomes wider. Specifically, the rk mean values associated to the target locations 

(which, after an increasing behavior for small k values, saturate around a value of 18.0 for 

k>250) are one order of magnitude lower than the background ones (varying around 2.04). 

In addition to this large separation, although target rk values are shown to be much widely 

dispersed around their mean value with respect to the background ones, the confidence 

intervals do not overlap for any k configuration.  
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Fig. 6.9. Mean values, with confidence intervals, for target and background adaptive bandwidths (rk) as a 

function of the parameter k. The confidence intervals are evaluated as the standard deviation of the 

corresponding rk values, so that each bar is symmetric and two times the standard deviation long. 

 

In order to show what the different values of the data-adaptive bandwidths attained in 

correspondence of target and background pixels mean in terms of adaptability to the data 

structure, Fig. 6.10 (a-d) show the amplitude (plotted as a vertical bar spanning from the 

minimum to the maximum test statistic value) of the ranges of variation of the detection 

test statistic values for the three VKDE strategies employed (a-c) and for the FKDE (d), 

with respect to the different configurations of k and h, respectively.  

The limitations of using the same bandwidth across the whole image appear evident by 

examining Fig. 6.10 (d). In fact, the larger the bandwidth h, the lower the detection test 

statistic variability and, in turn, the resulting PDF estimates reliability. Specifically, the 

range of variation of the detection test statistics obtained with FKDE assumes an initial 

amplitude of 6.55 for the minimum h employed and gets narrower and narrower as h 

increases, up to a very small amplitude of 0.60 for the maximum h adopted. This means 

that the test statistics are likely to take almost the same value across the entire image at 

higher bandwidths, which indicates a severe over-smoothing. It should also be noted that 

not only the amplitude of the range of variation of the test statistics gets narrower and 

narrower, but also the minimum and maximum values assumed (i.e. the vertical bar 

extremes) move towards higher values as h increases. Since higher values of the detection 

test statistic mean (according to equation (2.7)) lower PDF values, such behavior clearly 

shows that, as h increases, most of the range of PDF values were spent to address the 

lower-density data regions, such as the distribution tails. As regards VKDE, Fig. 6.10 (a-c) 

show that the variability of the detection test statistic values appears almost constant with 

respect to variations of k, for all the three VKDE techniques considered. In fact, only slight 
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fluctuations in both the amplitude range and the specific values taken may be observed for 

each of the three methods. In particular, such amplitude ranges vary in [11.29, 55.09] for 

GkNNE, [4.07, 48.83] for kNNE, and [13.19, 50.80] for SPE, with corresponding 

amplitude mean values of 35.03, 27.40, and 34.36, and small values of standard deviations 

equal to 1.62, 0.90, and 0.99. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6.10. Intervals of variation of the detection test statistics obtained by applying the proposed AD 

strategy employing (a) GkNNE, (b) kNNE, and (c) SPE for different choices of k, and (d) FKDE for 

different h values. Specifically, the vertical bars range from the minimum to the maximum of detection test 

statistic values. 
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The behavior in the detection test statistic variability is reflected in the discrimination 

capability between target and background pixels, which is the task of AD approaches. To 

this aim, the  measurements are plotted in Fig. 6.11 (a) and (b). As is evident from Fig. 

6.11 (a) concerning FKDE, after an initial increasing trend for low h values,  starts 

decreasing with h, assuming lower and lower values as h increases, though never becoming 

negative again as to the examined image. So, as expected from the positive sign of  for 

FKDE in most h configurations, Global FAR@100%detection is equal to zero except for 

an initial value of 9.49 10
-2

 (corresponding to the minimum h employed). Therefore, in the 

specific image examined, such a slight separation between target and background in the 

test detection statistic does not prevent the detection of the targets in the FKDE-based AD 

approach with high h. Nevertheless, as clearly shown in the “toy-example”, such an over-

smoothing behavior is not desirable since it severely undermines the reliability of the PDF 

estimate and, in general, may mask the presence of potential targets and further anomalies. 

In this context, VKDEs show in Fig. 6.11 (b) a clearer and much wider separation between 

target and background as compared to that shown by FKDE. In fact, after a slight 

increasing trend for k values lower than 250 - where  assumes also negative values for 

kNNE and GkNNE - VKDEs exhibit  measurements that stabilize around the value of 3 

for the three VKDEs tested. Such positive  values, obtained for almost the entire range of 

k tested, give evidence of the good detection ability of the proposed VKDE-based AD 

strategy, especially for k>100 employing kNNE and GkNNE and for k>5 in SPE. In fact, 

such configurations correspond to successfully detect, with no false alarms, all pixels 

within each target object (i.e. Global FAR@100%detection =0). As a result, choosing 

k100, in all configurations, weakly affects the ultimate detection performance, which is 

similarly very good across the different k configurations for all the proposed VKDEs-based 

AD strategies. Application of such a recommendation assures good detection performance 

to be obtained, while reliably estimating the background PDF without incurring in either 

under-smoothing or over-smoothing issues, as opposed to what happens with FKDE. Such 

results are in accordance to those obtained in the “toy-example”, where small k values have 

been shown not to provide a good PDF approximation but similarly very good 

performance have been obtained for higher k values. It should also be noted that the 

suggested k=N
1/2

= 397 according to [54] is included in the range of k values providing 

good performance for all the three VKDEs tested. 
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(a) (b) 

Fig. 6.11. Measures of  corresponding to the employment of (a) FKDE and (b) the VKDEs within the 

proposed AD strategy. 

 

Detection maps obtained by the proposed strategy corresponding to the VKDEs under 

consideration are shown in Fig. 6.12 (a-i) for three different k values. Such maps are 

specifically pertinent to the configurations employing the minimum (k = 5, Fig. 6.12 (a-c)), 

the suggested (k = N
1/2

= 397, Fig. 6.12 (d-f)), and the maximum (k = 1000, Fig. 6.12 (g-i) 

values of the selected k.  
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Fig. 6.12. Detection test statistics obtained by using the (a)-(c) minimum, (d)-(f) the suggested and (g)-(i) the 

maximum k values in the interval of interest when (a) (d) (g) GkNNE, (b) (e) (h) kNNE and (c) (f) (i) SPE 

are employed within the proposed AD scheme. 
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These representations give visual evidence of the detection ability with respect to all 

anomalous objects, especially, as expected, for both the suggested and the maximum k 

values, which allowed all the target pixels to clearly emerge from the image background in 

the detection maps.  

This effect is much more evident by examining Fig. 6.13 (a-i), where the histograms of 

the detection test statistics associated to target (Λ(x)|H1) and background (Λ(x)|H0) pixels 

are reported for each AD scheme for the same three k values as above. Below each 

histogram plot in Fig. 6.13, horizontal bars show the ranges of variation of target and 

background test statistic values, highlighting the separation of target and background pixels 

after each PDF estimator is applied within the proposed AD scheme. As is evident, all 

approaches split up the values of the PDF estimate with a good trade-off between the main 

body and the tails of the distribution for the three configurations of k values under 

consideration. In particular, the histograms computed over GkNNE- and kNNE-based test 

statistics show similar behaviors, as we may expect since the two techniques differ only in 

the employed kernel function whose choice has been recognized not to seriously affect the 

PDF estimation outcome [23][53]. Those histograms show that the image background test 

statistic values have been embodied into two bumps: an evident one related to the natural 

vegetation, and a less pronounced one associated to the roads running through the scene 

and being responsible for a large number of image pixels. The road pixels, given their 

number, are associated to quite high test statistic values and, therefore, are characterized by 

lower PDF values. It is important to note that this did not impair the detection of the 

anomalous objects in the scene, which exhibits a clear separation from the background in 

the test detection statistic, as shown by the bars below the histogram plots. Rather, this 

plays the important role of increasing the modeling accuracy of the image background 

classes, thus enabling a very high material discriminability. The employment of the SPE 

within the proposed AD strategy provides slight different histogram plots with respect the 

previous ones. Specifically, the separation between target and background pixels is still 

clear, but the image background appears to suffer of slight over-smoothing issues. This 

may be linked to the phenomenon referred to as “non-locality” [58], i.e. the SPE outcomes 

at a certain estimation data sample x may be influenced by observations very far away 

from the estimation sample itself and not just by the nearby data. 
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Fig. 6.13. Histogram plots of the detection test statistics associated to target pixels (in red) and background 

pixels (in yellow) obtained by applying the proposed AD strategy employing the (a)-(c) minimum, (d)-(f) the 

suggested and (g)-(i) the maximum k values in the interval of interest in (a) (d) (g) GkNNE, (b) (e) (h) kNNE 

and (c) (f) (i) SPE. Below each histogram, the interval of variation of target and background test statistic values 

is represented by means of horizontal bars. 

 

For the sake of comparison, the detection test statistics resulted by employing FKDE 

with both the lowest and the highest selected h values are depicted in Fig. 6.14 (a) and (b).  
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(a) (b) 

 

 

 

 

  
(c) (d) 

Fig. 6.14. Detection test statistics obtained by using the FKDE with (a) the minimum (i.e. 2.10) and (b) the 

maximum (i.e. 33.06) h values in the interval of interest. Below each map, histograms and horizontal bars 

showing the intervals of variation of the detection test statistics associated to target and background pixels. 

 

As is evident, the use of a small bandwidth yielded a detection test statistic that exhibits the 

presence of a quite large number of background structures (mostly but not limited the 

roads) noticeably high, i.e. characterized by lower PDF values than those of the main body. 

This is due to the bandwidth employed, which is too small to properly capture enough 

sample data in the lower-density data regions. Such a phenomenon is much more evident 

by examining Fig. 6.14 (c), where the histograms of the detection statistics associated to 

target and background pixels are reported. The background test statistic values appear 

widely dispersed with respect to the target ones, which is mainly due to the background 

structures already observed emerging in Fig. 6.14 (a). Moreover, all target pixels have 

assumed values comparable to and lower than those of some background ones, as shown 

by the horizontal bars below the histogram plot in Fig. 6.14 (c). Clearly, this 

superimposition of target and background test statistic values prevents the targets from 

being detected, as already proven by the negative sign of  for this h configuration in 

FKDE (Fig. 6.14 (a)). Also, it is worth noting that the entire range of estimated PDF values 
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was spent to address the background, whereas only a small range of PDF values was 

devoted to the tails. Fig. 6.14 (b) highlights that the high bandwidth value, on the contrary, 

resulted in an over-smoothing of the main PDF body, which has been completely 

suppressed. In fact, most of the range of PDF values was spent to address the distribution 

tails, whereas a much smaller range is pertinent to the main PDF body, as shown in Fig. 

6.14 (d). 

Of course, the employment of a bandwidth whose value is intermediate between the 

lowest and the highest selected may exhibit a more reliable PDF estimate. This is 

confirmed by the positive, though very low, values of  in Fig. 6.11 (a) obtained for FKDE 

on this specific image for most of the examined h values. Nonetheless, despite such a good 

AD performance, the corresponding estimated image PDFs are significantly affected by the 

bandwidth value employed. By visual inspection of all results obtained for the different h 

values, results attained for the second lowest value of h employed (i.e. h= 3.47) can be said 

to provide the best performance within the FKDE approach. Such a configuration yields 

the highest  value as well as a test statistic, which is shown in Fig. 6.15 (a), that is neither 

too much over-smoothed nor characterized by those background structures emerging in 

Fig. 6.14 (a-b). It should be noted that this h choice falls almost in the range of bandwidths 

obtained by employing the BN selection procedure.  

 

  
(a) (b) 

Fig. 6.15. Detection test statistics obtained by using the FKDE with h=3.47 and h= 3.47. 

 

However, the immediately higher h value leads to the sever over-smoothing effect already 

observed in Fig. 6.14 (d) for most of h values, which all exhibit test statistics (Fig. 6.15 (b)) 

similar to that observed in Fig. 6.14 (b). Hence, an automatic data-driven choice of h is not 

trivial, since very small variations in the selection of h returned very different FKDE 

outcomes. This is mostly due to the lack of adaptivity derived by the use of a fixed 

bandwidth across the whole estimation domain. Conversely, the high flexibility achieved 

by letting the bandwidth vary according to the local data-density in the feature space has 
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shown to provide results that not only are very weakly affected by k but also combine good 

detection performance and PDF estimation reliability. 

 

6.6 Experimental results validation over the benchmarking data set 

This section gives an overview of the results obtained on Scene B with the aim of 

validating, on the benchmarking data set, the results so far discussed.  

As regards FMMs, results obtained on Scene B confirm the ability of the StMM to 

capture the heavy-tail behavior of the examined data and, in turn, to more properly model 

their structure with respect to the GMM case. This clearly emerge by examining Fig. 6.16 

(b), where the exceedance plots computed over the StMM cluster map, which is shown in 

Fig. 6.16 (a), are reported.  

 

 
(a) 

 

 

 

 

Cluster 1 

Cluster 2 

 

(b) 

Fig. 6.16. (a) Cluster map and (b) exceedance plots of the Mahalanobis distances for the spectral classes 

obtained by employing the StMM learning strategy on Scene B. Specifically, the empirical distributions are 

plotted in red (solid curves), whereas the blue (dashed) curves represent the F distributions considered for 

comparison to the empirical distributions, respectively. This latter refers to the F distributions Fν,d 

characterized by the numbers of degrees of freedom returned by the learning algorithm. 

 

Specifically, results indicate that the Gaussian model does not accurately describe the 

statistical behavior of the majority of background classes. In particular, whereas the χ
2 
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distribution does a good job in modeling the main body of the Mahalanobis distance 

distribution, it does not accurately models the tails. In fact, on average, the complementary 

empirical CDF of the Mahalanobis Distance of each GMM component is better fit by a 

theoretical F-distributed curve rather than a χ
2
 one. As regards the StMM, similarly to what 

shown for Scene A, such a model does a better job than GMM in matching both the main 

body and the longer distribution tails. Specifically, the empirical distribution of each 

background cluster resulting from employing the StMM Bayesian learning approach is in 

good agreement with the theoretical model as to both the distribution body and the tails for 

most StMM components. 

As to the experiments of non-parametric background PDF estimation through the FKDE 

approach, since such an approach assumes an equal bandwidth h for each component, the 

data were previously normalized so that each spectral component had the same variance. 

According to the BN methodology for selecting the bandwidth, the number of nearest 

neighbors is defined by the interval [Kl, Ku], which is the only user-specified parameters. 

Consistently with the analysis performed over Scene A, in order to evaluate the impact of 

the user-specified parameters on the detection performance, both SNRΛ and Global 

FAR@100% detection measures obtained for different values of Kl and Ku were 

considered. For this purpose, a (N/Kl, Δ) space was also generated by varying [Kl, Ku] 

within all configurations tested for Scene A. The SNRΛ values computed over the Scene B 

on the basis of the available ground truth target map are shown in Fig. 6.17 (a). As is 

evident, the region including SNRΛ values not lower than approximately 3dB with respect 

to its maximum value is approximately identified by N/Kl<2200. Therefore, the region 

depicted by N/Kl<600, identified for Scene A, places itself within such a plateau, especially 

in the part characterized by the highest SNRΛ values. In particular, if the recommendation 

(N/Kl<600) obtained from Scene A analysis is followed, the SNRΛ values obtained on Scene 

B range within [21.48 24.04], with an average value of 23.14 and standard deviation of 

0.38. This means that choosing a number Kl of nearest neighbors not lower than 2 orders of 

magnitude with respect to the total number N of pixels is sufficient to exhibit a very good 

background suppression ability. Fig. 6.17 (b) displays the Global FAR@100% detection 

values obtained. Choosing [Kl, Ku] within N/Kl<600 correspond to a Global FAR@100% 

detection never higher than 5.20·10
-2

 and ranging in [5.18·10
-2

, 5.20·10
-2

]. Besides, the 

best value obtained in the whole (N/Kl, Δ) space is 5.00·10
-2

, just slightly lower than the 

5.20·10
-2

 achievable within the N/Kl<600 region. Therefore, results obtained in terms of 
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both SNRΛ and Global FAR@100% detection confirm the presence of a plateau in the 

(N/Kl, Δ) space onto which detection performance is similarly good. As regards the 

corresponding bandwidth values, h ranges in [3.40, 4.18], with an average value of 3.79 

and a standard deviation of 0.12. Once again, such values show a very limited variation 

with respect to significant variations of the [Kl, Ku] in the (N/Kl, Δ) space.  

 

  
(a) (b) 

Fig. 6.17. (a) SNRΛ and (b) Global FAR@100% detection measures for different configurations of the 

interval [Kl, Ku=Kl+Δ]. The red arrow depicts the region including SNRΛ values not lower than 

approximately 3dB with respect to its maximum value. 

 

AD performance benchmarking on Scene B was carried out evaluating the same 

performance measures as for Scene A.  

Fig. 6.18 shows ROC curves for the GMM-, StMM-, and FKDE -based AD schemes. 

Here, the employment of the Bayesian algorithms BGMMS, BStMM, ans BN are 

considered for learning the models, similarly to what done for Scene A. For the sake of 

comparison, both FKDE configurations corresponding to the best and the worst SNRΛ 

within the recommended region N/Kl<600 were retained for evaluation. Furthermore, the 

ROC curve associated to the best Global PFA@100% detection value obtained in the 

whole (N/Kl, Δ) space (5.00·10
-2

) is also shown.  

As in Scene A, StMM yields the best overall detection performance, providing a ROC 

curve with higher detection probabilities for similar values of FAR with respect to the 

other curves and assuring a FoDT=0.8 with no false alarms.. In addition, GMM is found to 

perform worse than StMM, similarly to what found in Scene A. However, on Scene B, 
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FKDE is found to perform not as good as in Scene A, but rather more similarly to GMM. 

Specifically, the two ROC curves reported for the recommended region are very similar to 

each other, showing again that the overall detection performance does not vary 

significantly when [Kl Ku] is chosen in the recommended region. They are also similar to 

the GMM curve, though yielding better FAR values for FoDT around 0.70. As regards the 

ROC curve obtained when the minimum Global FAR@100% detection is sought in the 

whole (N/Kl, Δ) space, such a curve does not exhibit a considerable improvement of 

overall detection performance with respect to the other two curves. In fact, though showing 

lower FAR values for 0.81<FoDT<0.90, it provides equivalent FARs for FoDT>0.90 and 

even worse FARs for FoDT<0.81. Such outcomes confirm the robustness of the 

recommendation assessed on Scene A, which has allowed good detection performance to 

be obtained on Scene B. In practice, one might have just picked up a [Kl Ku] configuration 

following the highlighted recommendation and obtained similarly good detection 

performance. 

 

 

 

Fig. 6.18. ROC curves for Scene B. 

 

It should also be noted that, in general, all approaches have shown a decrease of overall 

detection performance over Scene B, which is very likely to be linked to the more 

challenging scenario encompassed with respect to Scene A. 
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Object-wise performance measures were also evaluated. Table 10 and Table 11 report 

FAR@1
st
 detection and FAR@100% detection measurements, respectively. Here, very few 

perfect detections are obtained and higher FAR values with respect to Scene A can be seen. 

Again, these are linked to the increased difficulty of the detection task. Perfect detection of 

Obj. 1 and 2 location is obtained (FAR@1
st
 detection=0) by the proposed AD schemes. 

These two objects are indeed the largest ones, and, hence, their location is more easily 

detected since some of their pixels in the image are more likely not to be contaminated by 

background pixels (i.e. full-pixels). Conversely, their lower FAR@100% detection is likely to 

be due to their wider extent as well, since more boundary mixed-pixels have to be properly 

target-labeled so as to achieve a 100% detection. On the contrary, Obj. 3, 4 and 5 show equal 

FAR@1
st
 detection and FAR@100% detection measures, since they consist of only one 

pixel in the ground truth map. 

 

Table 10. Measures of FAR@1
st
 detection (Scene B) 

Learning 

strategy 
Obj. 1 Obj. 2 Obj. 3 Obj. 4 Obj. 5 

GMM 0 0 4.1·10
-4

 3.4·10
-3

 2.2·10
-2

 

StMM 0 0 6.9·10
-6

 1.4·10
-4

 2.4·10
-2

 

FKDE 0 

–6.9·10
-6

 
0 3.5·10

-4
–

4.1·10
-4

 

9.9·10
-3

–

1.0·10
-2

 

5.18·10
-2

-

5.20·10
-2

 

 

Table 11. Measures of FAR@100% detection (Scene B) 

Learning 

strategy 
Obj. 1 Obj. 2 Obj. 3 Obj. 4 Obj. 5 

GMM 8.2 10
-4

 6.9 10
-5

 4.1 10
-4

 3.4 10
-3

 2.2 10
-2

 

StMM 2.1 10
-5

 0 6.9 10
-6

 1.4 10
-4

 2.4 10
-2

 

FKDE 5.1·10
-4

-

5.7·10
-4

 

6.9·10
-5

-

1.2·10
-4

 

3.5·10
-5

-

4.1·10
-4

 

9.9·10
-3

 - 

1.0·10
-2

 

5.18·10
-2

- 

5.20·10
-2

 

 

Table 12. Measures of TSNRΛ (Scene B) 

Learning 

strategy 
Obj. 1 Obj. 2 Obj. 3 Obj. 4 Obj. 5 

GMM 16.50 25.05 4.66 3.39 2.34 

StMM 9.96 10.74 6.56 4.82 2.16 

FKDE 29.88 – 37.69 31.74 – 43.03 11.77 – 11.91 3.68 – 3.75 1.57 – 1.59 

 

TSNRΛ values included in Table 12 bring into view what already observed for Scene A. 

Despite the better detection performance, the ability of the StMM-based approach to 

suppress all image background has been exceeded by both GMM-based and FKDE -based 

approaches. Also, it is worth noting the objects that are the largest in size (i.e. Obj. 1 and 2) 
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are those characterized by higher TSNRΛ, whereas the others, and more specifically the 

smallest Obj. 5, exhibit much lower TSNRΛ. Such a behavior is common to all approaches. 

Scene B was also employed to compare the use of the AKDEs, provided by equations 

(4.24), (4.25), and (4.26), with the ability of the FKDE in (3.12) within the proposed AD 

strategy. Since knowledge of the true background PDF is not available, the analysis was 

carried out mainly on the basis of comparing the PDF estimates and the detection 

performance. According to the methodology for selecting the bandwidths in the AKDEs, 

the only element to be set by the user is k. As for Scene A, the ability of the proposed AD 

scheme to detect anomalous objects was investigated with respect to different choices for 

k. To this aim, k was varied between 5 and 1000. 

As mentioned earlier, the adaptive kernel approaches follow the sparseness of the data 

by using broader kernel functions over observations located in regions of low density, 

where we expect that the targets are located. In particular, the AKDEs are able to adjust the 

different smoothing requirements in the main body of the PDF (i.e. the image background) 

and in the target locations that we expect to lie in the tails of the PDF. The values of k 

employed led rk to takes values ranging from 1.32 to 22.05, where the values at the target 

pixel locations are again much higher than the ones used for the rest of the pixels. 

Consistently with the analysis performed over Scene A, results obtained by employing 

the FKDE with different choice for h are also examined. For this purpose, as in the 

experiments involving Scene A, a Gaussian kernel was employed. Moreover, in this 

analysis, the choice of h within the FKDE was done selecting 10 values between the lowest 

(i.e. 1.32) and the highest (i.e. 22.05) rk values, which should provide a better 

approximation of the PDF body and tails, respectively.  

The limitations of the fixed bandwidth kernel estimation have been confirmed by 

examining the detection test statistics corresponding to the examined AD schemes. In fact, 

the use of small bandwidths have yielded PDF estimates that exhibit spiky behaviors, so 

that a quite high number of regions (characterized by a lower density with respect to the 

main body) resulted not well represented in the final estimate. On the contrary, high 

bandwidth values have resulted in an over-smoothing of the main PDF body. 

Consequently, the detection test statistic has taken almost the same value over the entire 

image. Also, most of the range of PDF values was spent to address the distribution tails, 

whereas a much smaller range is pertinent to the main PDF body. This is evident just 



Chapter 6 

96 

 

examining Fig. 6.19 (d), where vertical bar spanning from the minimum to the maximum 

test statistic value show the amplitude of the ranges of variation of the detection test 

statistic values for the FKDE.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6.19. Intervals of variation of the detection test statistics obtained by applying the proposed AD 

strategy employing (a) GkNNE, (b) kNNE, and (c) SPE for different choices of k, and (d) FKDE for 

different h values. Specifically, the vertical bars range from the minimum to the maximum of detection test 

statistic values. 
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In particular, it is noted that, again, as h increase, the amplitude of the range of variation of 

the test statistics gets narrower and narrower, as well as moves towards higher and higher 

values. Nevertheless, such a not desirable over-smoothing behavior undermines the 

reliability of the PDF estimate and leads to mask the presence of potential targets. As a 

result, after a slight increasing trend, Global FAR@100% detection measurements stabilize 

around the value of 5.0·10
-2

. 

The employment of a bandwidth whose value is tailored to the local data structure 

assures a more reliable PDF estimation process, which does not incur in either under-

smoothing or over-smoothing issues, and which should provide more robust detection 

outcomes. In particular, the variability of the detection test statistic values appears almost 

constant with respect to variations of k, as illustrated in Fig. 6.19 (a-c). Within this 

framework, Global FAR@100% detection values is around 6.0·10
-2

 for SPE. Nevertheless, 

GkNNE and kNNE does not a good job as SPE. Specifically, both GkNNE and kNNE 

returned Global FAR@100% detection measurements lower than 3.0·10
-2

 for all k 

configuration tested. Once again, these detection behaviors are related to the increased 

difficulty of the detection task in this operational scenario. 

 

6.7 Final remarks and conclusions 

In this thesis work, a global AD strategy is proposed based on the LRT decision rule, in 

which reliable estimation of the background PDF is addressed. In this chapter, the ability 

of semi- and non-parametric approaches have been analyzed with the aim of modeling the 

statistical variability of hyperspectral data in order to detect spectral anomalies within the 

proposed AD scheme. Specifically, the employment of StMM, GMM, FKDE and AKDEs 

has been thoroughly investigated. Although such semi- and non-parametric PDF estimators 

are used in a variety of multivariate signal processing problems, the difficulty in learning 

the underlying models both reliably and automatically has made their application in the 

hyperspectral AD context very limited.  

Methodologies developed within a Bayesian framework have been considered for the 

parameter selection of StMM, GMM, and FKDE. The conducted experimental analysis has 

focused on three aspects: 

 Evaluating the ability of the considered mixtures based distributions, learnt with the 

Bayesian approach, to represent the statistical behavior of real hyperspectral data 
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and, specifically, to asses both GMM and StMM behavior as regards the 

distribution tails. 

 Assessing how much the change in the configuration [Kl, Ku] affects the detection 

performance of the proposed AD scheme applied with FKDE. 

 Evaluating and comparing algorithm behavior and detection performance of the 

proposed AD strategy when GMM, StMM and FKDE are used. 

For these purposes, the experimental analysis involved two real hyperspectral images and 

the evaluation of several different performance measures. 

As regards the semi-parametric approaches to PDF estimation, experimental results 

have indicated that the GMM has difficulty in properly modeling the empirical distribution 

of background classes in real hyperspectral data, due to the need of addressing longer tails 

than the Gaussian ones. On the contrary, StMM has been shown to yield a powerful model 

for the statistical characterization of hyperspectral data, since it benefits from the better fit 

the EC PDFs provide to the distribution tails. On the other hand, on these data, the use of 

the StMM learning within the proposed AD scheme has been shown not to properly 

suppress the predominant background structures in the detection test statistic map, as 

confirmed by the lower TSNRΛ values obtained with respect to the other methods. 

Nevertheless, such lower background suppression ability has not resulted in a similarly 

lower detection capability. Rather, as indicated by the ROC curves as well as by the 

FAR@1
st
 detection and FAR@100% detection measures, the StMM has been proven 

particularly effective at detecting the anomalous targets placed in both the scenes 

examined.  

As to the FKDE approach, though it is supposed to learn the PDF entirely from the data, 

the bandwidth selection process examined requires the choice of the bounds Kl and Ku to 

be specified by the user. The problem of making the choice of the bandwidth automatic, 

which is highly desirable in practical AD tasks, was investigated. Specifically, a common 

recommendation for the region where [Kl, Ku] should be selected, capable of assuring 

similarly good performance and applicable to different scenarios, was sought. The 

identification of such a recommendation will minimize the importance of the operator 

intervention thus making the strategy automatic. On the first examined data, all the 

configurations characterized by Kl>N/600 have been shown to assure similarly good 

performance, in that Global FAR@100% detection and SNRΛ values exhibit – in that 
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region - the presence of a “plateau” in the (N/Kl,Δ) space. The automatic application of 

such a recommendation to the secondary data set has allowed good performance to be 

obtained. Additionally, further analysis has confirmed the presence of the “plateau” in the 

(N/Kl,Δ) space, which has been shown to include the recommended Kl>N/600 

configurations. 

As regards comparative AD performance analysis, all three different AD schemes 

examined that makes use of a Bayesian approach have been proven to be effective at 

detecting the anomalous objects present in the two scenarios. In particular, on the 

examined images, the StMM-based scheme has provided the best detection performance in 

both scenarios, being capable of detecting all anomalous targets with the fewest false 

alarms.  

Though the FKDE-based AD algorithm has provided, on these data, performance not so 

good when compared to those obtained by using the StMM-based semi-parametric estimator, 

such a non-parametric approach has been shown to be the most attractive approach to be 

applied in practical AD tasks. This is mostly due to FKDE independence of specific 

background distributional assumptions. However, the single smoothing parameter h used in 

the FKDE can be ineffective for modeling complex PDFs. In this work, some of the 

possibilities for reliability improvement of non-parametric PDF estimation by varying the 

bandwidth over the domain of estimation have been investigated. Specifically, the BE and 

the SPE methodologies, in which the bandwidth varies with the sample of estimation and 

with the sample observation, respectively, were employed in the proposed AD scheme. 

Within this framework, the k-nearest neighbor rule has proven to be an intuitively 

appealing procedure to adapt the bandwidth to the local density of data. However, 

application of such a method is inhibited by lack of knowledge about the manner in which 

it is influenced by the value of k, and by the absence of techniques for empirical choice of 

k. Therefore, the ability of the variable bandwidth kernel density estimators within the log-

likelihood based AD scheme was investigated with respect to the FKDE. The experiments 

were conducted with respect to different choices for the bandwidths k and h, the only user 

specified parameters of VKDE and FKDE, respectively. 

Experimental results obtained have confirmed the great potential of the VKDEs for non-

parametric PDF estimation when attention is focused on small rare objects. In fact, 

although FKDE application has still allowed, in most cases, the anomalous objects in the 

scene to be detected, the use of a fixed bandwidth over the entire feature space has been 
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shown to provide very diverse detection test statistics with respect to the choice of h. 

Specifically, whereas for the lowest fixed bandwidth employed the entire range of PDF 

values has been spent to address the main image structures and background, with the 

highest h most PDF values have served the anomalous objects with a major over-

smoothing phenomenon as to the PDF body. On the contrary, the VKDEs have been shown 

to provide detection test static values yielding a good trade-off in allocating PDF values for 

both the main PDF body and the tails. This has been achieved thanks to the variable 

bandwidths rk obtained by the employment of the k-NN approach, which well adapted to 

the different local peculiarities of data in the feature space.  

Also, the low dependence of VKDE on k shown in the “toy example” has been 

confirmed by the real multispectral data analysis: except for the smallest values of k, most 

results have provided very low diversity in the range of values of the detection test statistic, 

all assuring a wider separability between anomalous objects and background with respect 

to FKDE. The recommendation of choosing k=N
1/2

 has proven to be effective also with the 

real data tested, providing very good detection performance while preserving the desired 

adaptability of the estimated PDF to the image data. 

Although in this paper the variable-bandwidth PDF estimators are applied only for 

enhancing the separation of anomalous objects with respect to the image background, their 

high flexibility and adaptability suggest to employ variable bandwidths to other tasks of 

multi-hyperspectral image analysis requiring reliable PDF estimates, such as spectral 

signature based target detection, image clustering, and many others. 

Finally, it should be noted that the variable bandwidth PDF estimators can be 

computationally expensive in practical circumstances and, in order to fully exploit their 

great potential, attempts to increase the computational efficiency are needed and will be 

dealt with in future works. 
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Chapter 7 

7 Experimental results: local AD performance 

In this chapter, an experimental analysis is provided in order to investigate into the 

effectiveness of the presented solution to the poor detection performance due to the LNM 

assumption of the conventional RX approach. Thus, experiment design is intended to 

analyze the detection capability of A-RX with respect to classical AD algorithms in an 

operational scenario. 

 

7.1 Data set description 

The proposed AD strategy is validated using the same portion of real data. Again, the 

actual image used for testing refers, for simplicity, i.e. both to speed-up the computation 

and not to incur any kind of curse of dimensionality issues [54], to a spatial and spectral 

subsets of the original hyperspectral cube. The subset used for testing refers to the portion 

of size 365 by 430 pixels of the whole flight line denoted with Scene A in chapter 6, but 

otherwise processed. Here, in contrast to what done before, besides water-vapor absorption 

and noisy bands removal, the spectral subset was obtained resorting to a spectral binning 

and down-sampling procedures, thus obtaining 23 spectral data samples. 

The analyzed data portion is interesting since it includes numerous panels of different 

sizes and materials embedded in different kinds of local background as targets of interest 

for AD purposes. A true color image of the scene reporting target locations is shown in 

Fig. 6.1 (a).  
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7.2 Design of the experiments 

The goal of the conducted experiments was to provide insights about the GkNNE 

effectiveness and actual usefulness in the local AD context with respect to classical local 

AD algorithms [62]. Specifically, the comparison was performed between the proposed 

AD strategy, described in detail in section 5.3, and both the RX and the K-RX detectors 

(see sections 5.1 and 5.2, respectively).  

As commonly performed in local AD (and already mentioned in section 2.4.2), in order 

to prevent potential target pixels to affect local background characterization, the tested 

algorithms were applied by sliding a dual concentric window over every pixel in the 

image. The size of the interior window was assumed to be the largest expected target size 

in the scene. The size of the outer window was set so as to include at least 10·d samples 

from the neighborhood of the pixels under test for local background characterization (i.e., 

N10·d=264). Thus, the sizes of the inner and outer windows used for the dual window 

technique were 19×19 and 25×25, respectively. Also, the local mean-removal procedure in 

the RX approach was performed by using a sliding window of outer size 21×21.  

As to the kernel functions, κ(.) in A-RX was taken to be a multivariate Gaussian PDF, 

as commonly done in the literature, whereas the Gaussian RBF (GRBF) kernel was used to 

implement the K-RX algorithm, as in [32].  

According to the proposed A-RX methodology, the number of nearest neighbors in the 

GKNNE is defined by k, which has to be set by the user. Therefore, the experiments were 

conducted with respect to different choices of k, so as to evaluate the impact of k over the 

detection performance. To this aim, k was varied from 5 up to 260 (N). Similarly, K-RX 

was applied with respect to several configurations for the bandwidth h (i.e., the GRBF 

kernel function width). Specifically, h was chosen uniformly sampling 36 values between 1 

and 70.  

Detection performance of the examined algorithms is evaluated on the basis of the 

available ground truth target map. Since evaluation of anomaly detection performance is 

not a trivial task, several performance measures are adopted. To this aim, the FAR 

corresponding to the maximum threshold value in the detection test statistic at which all 

target pixels are detected (already denoted with Global FAR@100% detection) is retained 

as summary measure of the overall AD performance [42]. In this analysis, Global 

FAR@100% detection measures are evaluated for the different values of both k and h in A-
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RX and K-RX, respectively. Then, A-RX and K-RX configurations yielding both the 

minimum and maximum Global FAR@100% detection measurements are retained for 

further and more in-depth investigation. Within this framework, pixel-wise ROC curves 

are evaluated [42]. Besides ROC curves, in order to analyze algorithm behavior over 

specific targets, two kinds of object-wise performance measures are also adopted. The first 

measure provides the FAR at the first detection (denoted with FAR@1
st
 detection), i.e. the 

FAR for just locating the desired target, being associated with its pixel with highest test 

statistic value. The second performance measure employed is the FAR at full detection 

(denoted with FAR@100% detection), an object-wise version of the Global FAR@100% 

detection, aimed at assessing the FAR arising from the detection of all pixels within each 

target object. 

 

7.3 Result discussion 

In this section, the multispectral image described in section 7.2 is used in order to 

evaluate the detection performance of the proposed A-RX strategy as compared to both RX 

and K-RX detectors. 

First, the impact over detection performance of the user-specified k parameter in A-RX 

is evaluated and compared to that of h in K-RX. To this aim, the Global FAR@100% 

detection measurements obtained for different values of k and h are plotted in Fig. 7.1 (a) 

and (b), respectively. As is evident from Fig. 7.1 (a) concerning the A-RX approach, 

Global FAR@100% detection values are approximately constant for the whole range of k 

tested. In fact, for detecting all target pixels the A-RX strategy takes FAR varying between 

2.11·10
-3

 and 2.28·10
-3

 with a corresponding mean value of 2.22·10
-3

 and a very small 

value of standard deviation equal to 4.35·10
-5

. Therefore, only slight fluctuations may be 

observed as k varies within A-RX. Furthermore, it is important to note that all these Global 

FAR@100% detection values are one order of magnitude lower than that yielded by the 

RX algorithm, which provides Global FAR@100% detection=2.23·10
-2

. Conversely, K-

RX exhibits Global FAR@100% detection values that strongly vary with h, as shown in 

Fig. 7.1 (b). Specifically, on the examined scenario, Global FAR@100% detection for K-

RX assumes an initial (for the minimum h employed) value of 2.02·10
-2

, which is 

comparable to that yielded by RX, ad starts decreasing down to 1.83·10
-3

 as h increases. In 

this case the mean value is 3.78·10
-3

 whereas the standard deviation is equal to 3.76·10
-3

.  
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(a) 

 
(b) 

Fig. 7.1. (a-b) Global FAR@100%detection measurements for different configuration of (a) k and (b) h in 

A-RX and K-RX, respectively. The red dashed line refers to the Global FAR@100%detection value 

obtained with RX. 

 

As anticipated, the A-RX and K-RX configurations corresponding to the minimum and 

the maximum Global FAR@100% detection measures were retained for further evaluation. 

In this scenario, such configurations are specifically pertinent to k={10, 80} and h={64, 1}. 

The corresponding ROC curves are shown in Fig. 7.2 together with that of RX. As is 

evident, despite the large difference between the two k values retained, the ROC curves 

reported for A-RX are very similar, showing that overall detection performance is similarly 

very good for all the examined k values. Such curves are also similar to the K-RX curve 

exhibiting the minimum Global FAR@100% detection. This latter yielded a slightly lower 

FAR value for FoDT=1 with respect to A-RX approach but also provided quite lower 
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FoDT values than A-RX as to the lowest FAR region. On the other hand, the K-RX ROC 

curve obtained for the maximum Global FAR@100% detection exhibits a considerable 

degradation of overall detection performance with respect to the other K-RX ROC curve 

shown. In particular, it is very similar to the one yielded by the RX algorithm. Of course, 

all K-RX configurations tested yield ROC curves lying between the two K-RX ROC 

curves shown. This confirms the high sensitivity of K-RX with respect to h, which 

manifests itself not only at the Global FAR@100% detection level but also throughout the 

entire ROC curve.  

 

 

 

Fig. 7.2. ROC curves.  

 

As to algorithm behavior over each target object, tables 13 and 14 report measures of 

FAR@1
st
 detection and FAR@100% detection, respectively, as regards A-RX, K-RX and 

RX strategies. Specifically, A-RX and K-RX measures are those of the corresponding 

configurations yielding the minimum Global FAR@100% detection (i.e. k=10 and h=64). 

As the ROC curves have revealed, very slight differences are expected between A-RX and 

K-RX measures. In particular, A-RX manages to locate each target object with no false 

alarms, as is evident from the null FAR@1
st
 detection measurements in Table 13. 

Similarly, K-RX exhibits all FAR@1
st
 detection=0 except for Obj. 7, whose detection 

makes ten false alarms arise. Conversely, RX exhibits only three out of seven null 
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FAR@1
st
 detection measures, showing a higher difficulty in locating the different target 

objects. Table 14 show that both A-RX and K-RX succeed in detecting, with no false 

alarms, all pixels within most of the target objects (i.e. FAR@100% detection=0 for five 

out of seven objects). As could be expected by analysis of ROC curves, K-RX does a 

(slightly) better job in detecting the most difficult Obj. 3 target, with a FAR@100% 

detection measure slightly lower than that of A-RX, whereas A-RX exhibits better 

performance in the lowest FAR region, with a FAR@100% detection for Obj. 7 one order 

of magnitude lower than that yielded by K-RX. Nonetheless, both A-RX and K-RX 

outperform RX, which exhibits non-null FAR@100% detection for six out of seven 

objects. This major difference between RX and both A-RX and K-RX may be linked to the 

non-homogeneous nature of the local backgrounds surrounding the targets. In this context, 

natural vegetation, variability in the field, and the two roads make the background 

surrounding the targets highly cluttered and non-homogeneous. Such conditions clearly 

violate the LNM assumption of RX, thus resulting in decreased performance. On the 

contrary, both A-RX and K-RX strategies seem to better model the non-Gaussian and 

possibly multimodal support of the background pixels, and, thus, provide better detection 

performance. 

 

Table 13. Measures of FAR@1
st
 detection 

Method Obj. 1 Obj. 2 Obj. 3 Obj. 4 Obj. 5 Obj. 6 Obj. 7 

A-RX 0 0 0 0 0 0 0 

K-RX 0 0 0 0 0 0 4.05·10
-5

 

RX 0 1.62·10
-5

 1.86·10
-4

 1.62·10
-5

 0 0 1.62·10
-5

 

 

Table 14. Measures of FAR@100% detection 

Method Obj. 1 Obj. 2 Obj. 3 Obj. 4 Obj. 5 Obj. 6 Obj. 7 

A-RX 0 0 2.11·10
-3

 0 0 0 1.62·10
-5

 

K-RX 0 0 1.83·10
-3

 0 0 0 3.24·10
-4

 

RX 0 1.62·10
-5

 2.23·10
-2

 1.70·10
-4

 1.62·10
-5

 1.62·10
-5

 8.10·10
-5

 

 

7.4 Final remarks and conclusions 

In this chapter, experimental results related to a new AD approach for detecting small 

local anomalies in unknown background have been presented. The AD strategy relies upon 

the background log-likelihood, which is evaluated by making use of the GkNNE. The 
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employment of the GkNNE allows PDF estimates to follow the local data peculiarities 

across the data domain. 

Experimental results on real multispectral data clearly highlight the benefits deriving 

from the employment of the proposed locally adaptive GKNNE-based AD approach. First, 

its non-parametric nature allowed A-RX to obtain, over the examined scenario, 

performance comparable to and slightly better than that obtained, at its best, by one of the 

most established non-parametric AD algorithms, namely K-RX. Both non-parametric A-

RX and K-RX have shown to provide much better both overall and object-wise detection 

performance than the parametric RX algorithm, whose outcome is constrained by the 

validity of the LNM assumption. Secondly, the proposed A-RX has been shown to suffer 

very little from the variation of k, exhibiting similarly good detection performance across 

the whole range of k tested. On the contrary, although K-RX has still allowed, in most 

cases, the anomalous objects in the scene to be detected (at least comparably to RX), the 

use of a fixed bandwidth over the entire feature space has been shown to lead to a great 

sensitivity with respect to the choice of h. 

Although in this chapter the variable-bandwidth PDF estimators are applied for 

detecting the anomalous objects in multispectral de facto data, the proposed AD strategy 

are supposed to have great potential for hyperspectral data analysis. In general, the 

employment of such PDF estimation methodologies for analyzing hyperspectral data 

require a spectral dimensionality reduction as a pre-processing step in order to prevent 

curse of dimensionality issues to occur during PDF estimation. Nevertheless, this latter 

aspect is not critical, since the hyperspectral signal usually exhibits a high degree of 

spectral correlation that can be exploited to represent the acquired signal in a more 

compact and efficient way. In fact, robust algorithms have been proposed in the literature 

[2][28][31] to represent the hyperspectral signal in a lower dimensional space without 

losing the information content related to the useful signal component (e.g. preserving both 

abundant and rare signal components [28][31]).  
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Chapter 8 

8 Summary and conclusion 

 

In this thesis work, an AD strategy is proposed based on the LRT decision rule, in 

which reliable estimation of the background PDF is essential to a successful detection 

outcome. Thus, different PDF estimators and model learning procedures have been jointly 

investigated within the proposed AD framework with the aim of modeling the statistical 

variability of hyperspectral data. According to the hyperspectral literature, there are two 

main approaches to background modeling and anomaly detection. In this work, both global 

and local methodologies have been investigated. The former aims at locating small rare 

objects that are anomalous with respect to the global background, which is identified by 

the whole image pixels. In the latter, pixels with significantly different spectral features 

from their surrounding background are detected as anomalies. 

In summary, the proposed AD scheme, applicable with different PDF models and 

learning methods, has been dealt with in chapter 2. The analysis has been carried out 

focusing on the operational applicability offered for global and local AD purposes. 

Statistical modeling approaches for background characterization have been addressed in 

chapter 3. In particular, advantages and main limitations of three well-known background 

models, i.e. the parametric, the semi-parametric and non-parametric, have been 

investigated. 

In chapter 4, how to learn semi-parametric and non-parametric models for global AD 

purposes has been described. The analysis has been focused on GMM and StMM as 

mixture models, and FKDE, SPE and BE as non-parametric approaches. Specifically, 

methodologies developed within a Bayesian framework for automatically conducting 
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parameter selection of GMM, StMM, and FKDE have been considered in the first section 

of chapter 4. Then, the use of the k-NN has been explored in VKDEs in order to adapt the 

amount of smoothing to the local density of the data for non-parametric estimation of the 

multivariate PDF. In the final section of chapter 4, the improvement brought by the 

employment of data-adaptive VKDE with respect to the conventional FKDE has been 

investigated through a “toy-example”.  

A new local AD approach, denoted as A-RX, has been presented in chapter 5 for 

improving the RX and K-RX algorithms, whose outcomes are constrained by the validity 

of the LNM in the original input space and in a high-dimensional feature space, 

respectively. Specifically, the AD process is accomplished by thresholding the background 

log-likelihood, which is evaluated by making use of a VKDE. This latter has been chosen 

since it encompasses the potential, typical of non-parametric PDF estimators, in modeling 

data regardless of specific distributional assumptions together with the benefits deriving 

from the employment of bandwidths that vary across the data domain. Specifically, the 

employment of GkNNE has allowed the PDF estimate to be smoothed according to the 

local density of data samples in the feature space. 

Experimental results in chapters 6 and 7 have been obtained by applying the proposed 

AD scheme to real hyperspectral images encompassing different AD scenarios. The aim 

was to evaluate and discuss the most critical issues of the different background models 

tested, such as their modeling ability as well as their actual utility in practical AD tasks, 

and to evaluate by means of several different performance measures, experimental 

detection performance. 

The present work has shown that the proposed AD scheme is extremely valuable to 

automatically and adequately solve the task of detecting global anomalous objects in a 

given scenario. More specifically, it has been shown that different semi- and non-

parametric PDF models for the image PDF coupled with specific Bayesian learning 

methods are effective at properly and automatically capturing the underlying structure of 

hyperspectral data so that the resulting PDF estimate can be successfully employed to 

detect spectral anomalies by means of the background log-likelihood decision rule. As 

regards semi-parametric models (i.e. finite mixtures), experimental results have indicated 

that the GMM has difficulty in properly modeling the empirical distribution of background 

classes in real hyperspectral data, due to the need of addressing longer tails than the 

Gaussian ones. On the contrary, StMM has been shown to yield a powerful model for 
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statistically characterizing hyperspectral data. As to the non-parametric approach, the BN 

bandwidth selection method examined was further investigated with regard to the impact 

of the user-specified parameters [Kl, Ku] on the detection outcome. Experimental results 

have shown the presence of a region in the (N/Kl,Δ) space where the [Kl, Ku] configurations 

assure similarly good detection performance. Specifically, this region was approximately 

identified with Kl values not lower than 2 orders of magnitude with respect to the total 

number N of pixels. The identification of such a recommendation confirms the robustness 

of the examined methodology based on selecting the bandwidth according to the 

distribution of the sample data variance. As regards comparative AD performance analysis, 

all three different AD schemes examined have been proven to be effective at detecting the 

anomalous objects present in the two different scenarios examined. In particular, on these 

data, the StMM-based scheme has provided the best detection performance in both 

scenarios, being capable of detecting all anomalous targets with the fewest false alarms.  

Though not performing, on these data, as good as the StMM-based semi-parametric 

estimator, the non-parametric FKDE approach has been shown to be the most attractive 

approach to be applied in practical AD tasks. This is mostly because the FKDE does not rely 

on specific distributional assumptions. For this reason, further research work has been 

performed in order to improve its background estimation ability. In particular, the use of 

VKDEs has been proposed in order to more reliably and accurately follows the 

multivariate data structure with respect to the use of a fixed bandwidth. Specifically, the 

BE and the SPE methodologies, in which the bandwidth varies with the sample of 

estimation and with the sample observation, respectively, were employed in the proposed 

AD scheme. These methods are attractive since they allow smoothing requirements to be 

changed by employing small bandwidths to gain insight into highly data-structured regions 

and larger bandwidths for data lying in low distribution areas. Therefore, such strategies 

are quite sensitive to local structure peculiarities in the data, such as data clumping in 

certain regions and data-sparseness in others, such as in the tails. Results over real data 

have shown the better background PDF estimation ability of the VKDEs with respect to the 

FKDE, evaluated in the framework of detecting spectral anomalies in hyperspectral 

images. In particular, experimental analysis has shown that the variable-bandwidth PDF 

estimators outperform the FKDE in most cases, as to PDF approximation accuracy. 

Furthermore, results indicate that, whereas FKDE performance is greatly affected by the h 

choice, the analyzed variable bandwidth PDF estimators suffer very little from the 
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variation of k. This lower sensitivity in setting this user specified parameter has suggested 

that an automatic application of the strategy is not impaired, since the application of the 

proposed recommendation (k=N
1/2

) to the examined data set has yielded good detection 

performance. 

Concerning the local AD strategies, experimental results on real data are strongly in 

favor of the proposed locally adaptive GKNNE-based AD approach. This outcome is 

substantiated by performance comparable to and significantly better than that obtained by 

the classical local AD algorithms tested. Moreover, the proposed A-RX has been shown to 

suffer very little from the variation of k, the only user specified parameter. 

It is worth noting that, although in this work the variable-bandwidth PDF estimators are 

applied only for enhancing the separation of anomalous objects with respect to the 

background, their high flexibility and adaptability suggest to employ variable bandwidths 

in other tasks of remote-sensing image analysis requiring reliable PDF estimates, such as 

spectral signature based target detection, image clustering, and many others. Nevertheless, 

it should be noted that the non-parametric PDF estimators can be computationally 

expensive in practical circumstances and, in order to fully exploit their great potential, 

attempts to increase the computational efficiency are needed.  

In the light of the results achieved, this thesis work has shown that the proposed AD 

architecture is an extremely effective strategy in detecting the rare anomalous objects 

present in the scene. From a general point of view, the research carried out in this thesis 

resulted in the definition of novel methodological and technical contributions in relation to 

some of the more critical problems present in unsupervised AD literature. Moreover, it 

resulted in the implementation of processing tools suitable to be adopted in real 

applications. 
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