
Università degli Studi di Torino

Doctoral School on Sciences and Innovative

Technologies

Computer Science Department

Doctoral Thesis

The use of Graph Fourier Transform
in image processing:

A new solution to classical problems

Author:
Francesco Verdoja
Cycle XXIX

Supervisor:
Prof. Marco Grangetto

Reviewers:
Prof. Julia Schnabel
Prof. Tillo Tammam

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy



i

UNIVERSITÀ DEGLI STUDI DI TORINO

Abstract
Doctoral School on Sciences and Innovative Technologies

Computer Science Department

Doctor of Philosophy
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by Francesco Verdoja

Graph-based approaches have recently seen a spike of interest in the image
processing and computer vision communities, and many classical problems
are finding new solutions thanks to these techniques. The Graph Fourier
Transform (GFT), the equivalent of the Fourier transform for graph signals,
is used in many domains to analyze and process data modeled by a graph.

In this thesis we present some classical image processing problems that
can be solved through the use of GFT. We’ll focus our attention on two main
research area: the first is image compression, where the use of the GFT is
finding its way in recent literature; we’ll propose two novel ways to deal with
the problem of graph weight encoding. We’ll also propose approaches to
reduce overhead costs of shape-adaptive compression methods. The second
research field is image anomaly detection, GFT has never been proposed to
this date to solve this class of problems; we’ll discuss here a novel technique
and we’ll test its application on hyperspectral and medical images. We’ll
show how graph approaches can be used to generalize and improve perfor-
mance of the widely popular RX Detector, by reducing its computational
complexity while at the same time fixing the well known problem of its de-
pendency from covariance matrix estimation and inversion.

All our experiments confirm that graph-based approaches leveraging on
the GFT can be a viable option to solve tasks in multiple image processing
domains.
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Chapter 1

Introduction

My Ph.D program has been part of a funded research project devoted to
the investigation of image segmentation and advanced computer vision al-
gorithms in light of their application to future image and video compres-
sion techniques and possibly standards. The project involves as partners
University of Turin, Polytechnic University of Turin, Italy’s national public
broadcasting company (RAI) and Sisvel Technology, which is the research,
development, and technical consulting company within the Sisvel Group, one
of the world’s leaders in managing intellectual property. Sisvel Technology
funded two Ph.D scholarships on the project.

The research and development of new image and video compression stan-
dards has emerged as a recent interest in the image processing community
given that most of the standards in use today, e.g., JPEG and MPEG-4, are
at least two decades old. More recent standards trying to replace them do
exist, e.g., JPEG2000 and HEVC, but their mass adoption is slow to come.
JPEG2000, a wavelet-based format aiming at supersede the original discrete
cosine transform-based JPEG standard (created in 1992), has found as of
today very small commercial adoption: very few digital cameras implement
it, and support for viewing and editing JPEG2000 images remains limited,
mostly due to the fact that JPEG2000 is computationally more intensive
than JPEG and, although the former is consistently better in term of quality
and artifacts than the latter, results obtained by using JPEG are still good
enough not to justify the switch. HEVC is following a similar fate, where
the cost of the switch is not justified by the gain. Also, HEVC is restricted
by patents owned by many various parties. This and other issues caused
licensing fees of HEVC to be many times higher than those for its prede-
cessor MPEG-4 (AVC) [1]. Finally, both these new standards still rely on
refinements over the same approaches used by their predecessors. For this
reason, given that consumer machines are becoming computationally capa-
ble of dealing with more complex tasks, many are trying to integrate more
mid- and high-level image processing approaches into compression. In this
scenario, some of the largest tech companies (Amazon, AMD, ARM, Cisco,
Google, Intel, Microsoft, Mozilla, Netflix, Nvidia and more) have founded
in 2015 the Alliance for Open Media, a foundation which aims to deploy a
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royalty-free alternative video compression format; their first format, AV1,
should be coming out in mid 2017.

This renewed interest in compression has motivated us to research if more
advanced image processing techniques, e.g., image segmentation, could be
exploited in new image and video compression standards. We decided to
focus our investigation on graph-based approaches. Graphs proved to be
natural tools to represent data in many domains, e.g., recommendation sys-
tems, social networks or protein interaction systems [2]. Recently, they have
found wide adoption also in computer vision and image processing commu-
nities, thanks to their ability to intuitively model relations between pixels.
In particular, spectral graph theory has been recently bridged with signal
processing, where the graph is used to model local relations between signal
samples [3], [4]. In this context, graph-based signal processing is emerging as
a novel approach in the design of energy compacting image transformations
[5]–[8]. The Fourier transform can be generalized to graphs obtaining the
so called Graph Fourier Transform (GFT) [3], which has been demonstrated
to be the graph equivalent of the Karhunen-Loève Transform (KLT), the
optimal transform to decorrelate a signal [5], [9]. This has stimulated us to
explore the use of GFT in image compression. This however, sparkled in
us the curiosity to investigate whether the paradigm of the GFT might be
exploited in domains other than compression, e.g., image anomaly detection.

In this thesis we’ll present our study of the GFT and its multiple applica-
tions. After a brief overview of signal processing on graphs and the GFT in
the next chapter, we’ll start our analysis by describing two approaches we in-
vestigated to exploit the GFT in image compression in Part I. The first one is
a block based compression method employing graph weight prediction. The
second approach instead uses image segmentation to find arbitrarily shaped
homogeneous regions to be coded using an uniform graph. We’ll also discuss
in this part an approach to compress segmentation region borders as well as
the actual implementation of the image segmentation algorithm employed in
the second compression algorithm presented. I’ve also developed, together
with Prof. Akihiro Sugimoto and Dott. Diego Thomas from National Insti-
tute of Informatics (NII) of Tokyo, during a 6-month internship there, an
extension to 3D point clouds of the segmentation strategy presented in this
thesis [10]. That algorithm, however, is out of the scope of this study and
will not be presented here. We also filed two patents regarding actual imple-
mentations of the two image compression approach presented in this thesis
respectively [11], [12], as well as one regarding the chain code used to com-
press the region borders [13]. To demonstrate how the scope of application
of GFT is not limited to image compression, we present in Part II how its
theoretical similarity with the KLT can be exploited to solve another prob-
lem, namely image anomaly detection. We’ll test the proposed approach in
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both the classical hyperspectral remote sensing use case, where anomaly de-
tection algorithms are widely employed, as well as in a new application field:
motivated by the always growing necessity for automatic tools for medical
analysis, during my Ph.D we also demonstrated, in collaboration with the
Candiolo Cancer Institute (IRCCS-FPO), how anomaly detection techniques
can be successfully applied to tumor segmentation in medical images.

All presented studies demonstrate how graph-based approaches leverag-
ing on the GFT can be employed in a variety of applications with benefits
over the existing state-of-the-art.
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Chapter 2

Signal processing on graphs

Graphs are intuitively used to model data in numerous applications where the
nature of the data itself makes it prone to reside on the vertices of a graph. In
graph structures, usually each vertex represents one data sample and edges
are weighted according to some criterion describing the similarity between
the pair of vertices they connect. A graph signal refers to the collection of
all the sample values assigned to each vertex. An example of such structure
is shown in Figure 2.1.

However, when modeling audio, video or image data, the mapping of an
analog or discrete-time signals to graphs is not a trivial task. Although both
an n-vertex graph signal and a “classical” n-sample signal can be viewed
as vectors in Rn, many problems arise from the irregular data domain of
the graph. To give an example, we can intuitively downsample a discrete-
time signal by removing every other data point; however, downsampling a
graph signal has not a such obvious solution: looking at the sample graph in
Figure 2.1 one can’t intuitively decide which vertices to remove to properly
downsample the signal.

Overall, the challenges of processing signals on graph are 1. in cases where
the graph is not directly dictated by the application, deciding a weighted
graph topology able to capture the geometric structure of the underlying data
domain; 2. incorporating the chosen graph topology into localized transform
methods; 3. finding ways to borrow the invaluable intuitions developed from
years of signal processing research on Euclidean domains; and 4. developing
computationally efficient transform implementations, to extract information
from high-dimensional data on graphs.

To address these challenges, the emerging field of signal processing on
graphs bridges algebraic and spectral graph theory with computational har-
monic analysis [2], [14], [15]; however, most of the research prior to the past
decade has focused on the analysis of the underlying graphs, as opposed to
signals on graphs [4].

Recent image processing literature has seen a spike in graph-based ap-
proaches. These approaches typically employ graphs having rigid topology
(i.e., each vertex represents one pixels connected by edges to its neighbors)
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Figure 2.1: An example of undirected graph. The blue bar
represents the intensity of the signal associated with each

vertex.

and they have been proposed to this date to solve a wide variety of image pro-
cessing tasks, e.g., edge detection [16], gradient estimation [17], segmentation
[18], [19] and compression [5]–[8].

2.1 Graph Laplacian and Graph Fourier Transform

Consider an undirected, weighted graph G = (V, E) composed of a vertex
set V of size n and an edge set E specified by (i, j, wij), where i, j ∈ V, and
wij ∈ R+ is the edge weight between vertices i and j. Thus a weighted
graph can be described by its adjacency matrix W where W(i, j) = wij . A
graph signal is a mapping that assigns a value to each vertex, denoted as
s = [s1s2 . . . sn]T .

Typically, when computing the GFT a graph is constructed to capture
the inter-pixel correlation and is used to compute the optimal decorrelating
transform leveraging on spectral graph theory [4]. From the adjacency (also
called weight) matrix W, the combinatorial graph Laplacian matrix L =

D−W can be computed, where D is the degree matrix: a diagonal matrix
whose i-th diagonal element is equal to the sum of the weights of all edges
incident to node i. Formally:

D(i, j) =


∑n

k=1wik if i = j ,

0 otherwise .
(2.1)

Sometimes, it is useful to normalize weights in the Laplacian matrix; in
those cases the use of the symmetric normalized Laplacian matrix Lsym is
recommended. It is defined as

Lsym = D−
1
2 LD−

1
2 . (2.2)
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Lsym has important properties, namely its eigenvalues are always real, non-
negative and bounded into the range [0, 2]; for this reasons the spectrum of
a symmetric normalized Laplacian relates well to other graph invariants for
general graphs in a way that other definitions fail to do [2].

Any Laplacian matrix L is a symmetric positive semi-definitive matrix
with eigen decomposition:

L = UΛUT , (2.3)

where U is the matrix whose columns are the eigenvectors of L and Λ is the
diagonal matrix whose diagonal elements are the corresponding eigenvalues.
The matrix U is used to compute the GFT of a signal s as:

s̃ = UT s . (2.4)

The inverse GFT is then given by

s = Us̃ . (2.5)

When computing the GFT, the eigenvalues in Λ are usually sorted for
increasing magnitude. Zero appears as an eigenvalue with multiplicity equal
to the number of connected components in the graph [2], i.e., 0 = λ1 ≤
λ2 ≤ . . . ≤ λn. The eigenvectors in U are sorted accordingly. The graph
Laplacian eigenvalues and eigenvectors provide a notion of frequency simi-
larly to those in the “classical” Fourier transform. For connected graphs, the
eigenvector u1, associated with the eigenvalue λ1 = 0, is constant and equal
to 1/

√
n at each vertex. Also, eigenvectors associated with low frequency

eigenvalues vary slowly across the graph, while those associated with larger
eigenvalues oscillate more prominently. Two vertices connected by an high
weight edge will likely have very similar values in the first eigenvectors, and
very dissimilar ones in higher frequency domains. This representation can be
used effectively to generalize many fundamental operations such as filtering,
translation, downsampling, modulation or dilation to the graph domain. For
example, we can obtain a frequency filter as sout = Hsin, where

H = UT


h(λ1) 0

. . .

0 h(λn)

U (2.6)

and h(·) is the transfer function of the filter. For an extensive overview of
other operators on signals on graph, we suggest to refer to [4]. In this thesis,
we will use the GFT for image compression (Part I) and anomaly detection
(Part II).
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Part I

Image compression using GFT
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Chapter 3

Introduction

The history of lossy still image compression has been dominated by the trans-
form based approach, as witnessed by the long lasting success of the JPEG
coding standard. The 25 years old JPEG, based on fixed block size Discrete
Cosine Transform (DCT), is still by far the most widespread image format.
The DCT transform is known for its inefficiency when applied to blocks con-
taining arbitrarily shaped discontinuities. In these cases, the DCT is likely
to result in a non-sparse signal representation resulting in poor coding per-
formance. Many solutions have been proposed over the years to cope with
this drawback, e.g., to mention only a few, we recall shape-adaptive DCT
[20], adaptive block-size transform [21] and directional DCT [22]. Wavelet
approaches have also been introduced [23]. To avoid filtering across edges,
researchers have studied different wavelet filter-banks based on the image ge-
ometry, e.g., bandelets [24], directionlets [25] and curvelets [26]. However, all
the proposed methods produce an efficient signal representation only when
edges are straight lines, making them inefficient in presence of shaped con-
tours. Some of these tools have found their ways into standards, e.g., wavelets
in JPEG2000 and hybrid prediction and transform based approaches with
adaptive block-size in most recent video coding standards such as AVC and
HEVC. We refer to [27] for a comprehensive analysis of the performance of
current standards for still image compression.

Recently, the growing interest in graph based discrete signal processing
[28] has stimulated the study of graph-based transform approaches. In this
case, the image is mapped onto a topological graph where nodes represent the
pixels and edges model relations between them, e.g., in terms of a criterion
based on correlation or similarity. Proper weights can be associated to edges
in the graph so as to model image discontinuities precisely.

Several block based compression methods using GFT have been proposed
[29]–[31]. In [6], [32] GFT is extended to provide a multiresolution repre-
sentation. These works propose to use GFT for compression of piece-wise
smooth data, e.g., depth images. It turns out that one of the major issue
of graph-based compression techniques is represented by the cost required to
encode the graph edge weights that, for natural images rich of details, can
even exceed the potential coding gain provided by GFT.
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In this part we will propose two approaches that aim at overcoming the
overhead of encoding graph edge weights. First, in Chapter 4, we will discuss
a block based compression method which employs graph weight prediction
to reduce the cost of weight encoding. Then, in Chapter 5, we will pro-
pose a shape-adaptive approach which, coupled with an image segmentation
technique, uses an uniform graph inside piece-wise smooth arbitrary-shaped
regions; by using an uniform graph, this approach avoid the need to encode
graph weights all together, however, moving from square blocks to arbitrary
shaped coding units brings the added cost of transmitting the region bound-
aries. In Chapter 6 we will discuss in detail two ways to reduce the cost of
region boundary encoding.

The content of this part is based on four papers we presented at various
image processing-related international conferences over the past years [33]–
[36].
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Chapter 4

Graph weight prediction for
image compression

In this chapter we provide a novel idea to make graph transform adaptive to
the actual image content, avoiding the need to encode the graph weights as
side information. We show that an approach similar to spatial prediction can
be used to effectively predict graph weights in place of pixels; in particular,
we propose the design of directional graph weight prediction modes and show
the resulting coding gain. The proposed approach can be used jointly with
other graph based intra prediction methods to further enhance compression.
Our comparative experimental analysis, carried out with a fully fledged still
image coding prototype, shows that we are able to achieve significant coding
gains over standard DCT.

4.1 Introduction

In [5], [37] it is shown that graph based models represent a framework that
also helps in the design of optimal prediction and following transformation
of residuals. In particular, in [5], [37] the authors show that the graph can
be adapted to different directional modes defined in AVC. In [38] GFT is
generalized including edges to model the prediction relationships.

In this study we provide a novel idea to make graph transform adaptive
to the actual image content avoiding the need to encode the graph weights
as side information. We show that an approach similar to spatial prediction
can be used to effectively predict graph weights in place of pixels; in particu-
lar, we propose the design of directional graph weight prediction modes and
show the resulting coding gain. Moreover, we show that our approach can be
used jointly with other graph based intra prediction methods, such as [38],
allowing us to further enhance the compaction capability of the transform.
Another important contribution is that to analyze the achievable compres-
sion gain we design a fully fledged lossy image codec, taking advantage of
the statistical properties of the transformed coefficients. The encoding stage
is based on context-based arithmetic coding and provides bitplane progres-
sive description of the coefficients. This choice, as opposed to simpler energy
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compaction measures of the sole transform stage, allows us both to compare
a set of prediction and transform modes, and to provide an full compression
performance including all required overheads. Our experimental analysis is
carried out on set of heterogeneous images including both photographic and
computer rendered images and shows that the proposed approach provides
a significant compression gain with respect to standard DCT; moreover, it
allows to improve the performance also when coding spatial prediction resid-
uals.

The chapter is organized as follows: Section 4.2 presents the proposed
graph prediction method and Section 4.3 describes how the transform coef-
ficients are coded into a compressed bitstream. In Section 4.4 the results of
our experimental analysis are discussed, whereas in Section 4.5 conclusions
are drawn.

4.2 Graph weight prediction

Let us denote with I = {xi,j}, j = 1, . . . ,W , i = 1, . . . ,H a grayscale image of
resolutionW ×H. In the following, pixel intensity xi,j will also be referenced
using a single subscript as xk with k = (j−1)H+i, i.e. we assume a standard
column based raster scan matrix storage. Given any image region identified
by a set of pixel indexes B, one can define an undirected graph G = {V, E},
with vertex set V = B, and edge set specified by (i, j, wij) if pixels xi and
xj are 4-connected and i, j ∈ B. The weighted adjacency matrix W is a
symmetric |B| × |B| matrix, where W(i, j) = wi,j .

The graph model G captures the inter-pixel correlation and can be used
to derive the optimal decorrelating transform leveraging on spectral graph
theory [4]. From the adjacency matrix, the combinatorial graph Laplacian L

can be computed as described in Section 2.1. The GFT of the block B can
be computed as:

y = UTb, (4.1)

where b = xk, k ∈ B and U is the eigenvector matrix used in the eigen
decomposition of L as described in Section 2.1. The inverse graph transform
is then given by

b = Uy (4.2)

For simplicity, in the following we will consider the most common block
coding approach where the transformation is applied to non overlapping s×s
square blocks B. It is worth noticing that, as opposed to common 2D trans-
formations, the GFT approach can be extended to arbitrarily shaped regions
B without difficulties, except for the cost of signaling an irregular image seg-
mentation; we will discuss this possibility in more details in Chapter 5. It is
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wH
j,j+1row i

column j

wV
i,i+1 = 1

row r

Figure 4.1: Vertical weight prediction

well known that the use of a 4-connected graph with uniform weights wi,j = 1

on square block of pixels corresponds to the standard separable DCT [5].
Recent advances in image and video coding have shown the effectiveness

of directional intra prediction modes, where different predictors are tested
on the encoder side for each block; the best mode is signaled and the corre-
sponding prediction residuals are transformed and coded. In this study we
propose to use a similar approach to predict graph weights in place of pixels.
In this case one wishes to predict the weights in the adjacency matrix W.

To this end, we now consider an image block B and the corresponding
graph G, as depicted in Figure 4.1, where empty circles represent pixels to be
coded and the solid ones are already coded pixels of the top row r. Without
loss of generality, let us assume strong vertical correlation among the pixels
to be coded. In this case, a graph model where vertical edges connecting
rows i and i + 1 represent maximum correlation can be used. As shown in
Figure 4.1, we can define vertical weights wVi,i+1 = 1 between the i-th and
the (i + 1)-th row. In this work we set such weights to 1 but, in general,
any estimated correlation value ρV can be used and signaled to the decoder.
It also follows from the above correlation assumption that the horizontal
weights in the graph depend only on the considered column j and can be
estimated form the top row. In particular, we can define the horizontal
weights wHj,j+1 = f(|x̂r,j − x̂r,j+1|) as a function of the absolute difference
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between the pixel values x̂r,j ; here we use x̂r,j to denote a reconstructed
pixel intensity after encoding and decoding. Motivated by the experimental
analysis in [7] we use the Cauchy function to compute such weights:

f(d) =
1

1 +
(
d
α

)2 , (4.3)

where α is a parameter. The GFT computed using the predicted graph is
expected to match the block correlation structure and therefore to be closer
to the optimal decorrelation transform for the block. As opposed to other
approaches that require to encode the weights of the adjacency matrix, our
method, similarly to intra prediction approaches, requires minimum coding
overhead, i.e. simple signaling of the coding mode selected by the encoder.
We term this coding mode as Graph Weight Prediction (GWP). Clearly,
many similar directional prediction strategies can be devised, based on the
structure of the already coded surrounding blocks. In this study, to show the
effectiveness of the proposed approach, we limit our analysis to the cases of
vertical and horizontal GWP. To summarize when using GWP graph weights
are estimated as follows:

Vertical mode Horizontal mode
wHj,j+1 = f(|x̂r,j − x̂r,j+1|) wHj,j+1 = 1

wVi,i+1 = 1 wVi,i+1 = f(|x̂i,r − x̂i+1,r|)

(4.4)

The GFT computed using the obtained W is then applied to the image
block using (4.1). In the following we will identify this transformation as
GWP-GFT.

GWP can be also used to encode intra prediction residuals by leveraging
on previous results in the literature. In [39] it has been shown that, under the
assumption of a separable first-order Gauss-Markov model for image signal,
the optimal transformation for intra prediction residuals is the ADST (an
asymmetric variant of the discrete sine transform). In [38] the approach is
extended using graphs with the definition of the generalized GFT (GGFT);
this latter is based on a generalized Laplacian L′ = L + D′, where D′ is
degree diagonal matrix whose i-th diagonal element d′i is not zero if the
corresponding node in the graph is on the prediction boundary; in particular,
an extra weight is added as a function of the expected inaccuracy of intra-
prediction. Looking at the vertical prediction example in Figure 4.1, D′ is
used to take into account the vertical edges connecting the first row of pixels
(empty dots) to the prediction samples (solid dots). Using non zeros weights
d′i = 1 and a 4-connected graph with uniform weights, ADST is obtained.
GWP can be used along with GGFT by using (4.4) to set the graph weights
and the extra term D′ to take prediction edges into account. In the following
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we will refer to this approach using the acronym GWP-GGFT.

4.3 Coding of transform coefficients

The proposed GWP approach has been used to develop a simple block based
image codec. Every image block B is processed in raster scan order, trans-
formed with GFT according to (4.1) and the obtained coefficients are quan-
tized to integer values by using uniform scalar quantizer with quantization
step q. The DC coefficient of each block (corresponding to the null eigenvalue
of L) is first predicted using the DC value of the previously coded neighbor
block (if available). After subtraction of the DC prediction, s × s signed
integers coefficients are obtained and arranged in a vector yq for increasing
values of the corresponding eigenvalue.

Each block is transformed using 3 different coding modes, namely uni-
form graph, horizontal and vertical GWP defined in the Section 4.2. The
coding mode that, after quantization, produces the largest number of zeros
is selected as the best one and is sent to the following entropy coding stage.

Entropy coding is founded on context adaptive binary arithmetic coding
(CABAC) of the coefficient bitplanes in a progressive fashion. Since this
approach is quite standard and does not represents the major contribution
of this work, in the following we will provide a concise description omitting
some implementation details. Four context classes are defined for sign, most
and least significant bits, and for ancillary information, respectively. The
bit position of the most significant bit of the magnitude of DC nDC and the
largest non DC coefficient nAC are computed. These integer values are repre-
sented as unary codes and coded with CABAC in the BlockHeader context.
Then, the coefficients are scanned from the highest to the lowest bitplane
max(nDC , nAC) ≤ n ≤ 0. A coefficient is significant at bitplane n if its mag-
nitude is larger than 2n. The n-th bit of a non yet significant coefficient is
coded with CABAC using the MSB contexts that can take 8 different val-
ues depending on the significance of the 3 previous coefficients in yq; the
rationale between these 8 contexts is that the probability of finding a new
significant bit increases when previous coefficients with lower eigenvalues are
already significant. If a coefficient turns significant, the corresponding sign
is coded in the Sign context. Every bit of an already significant coefficient is
coded using the LSB context. It is worth pointing that the used progressive
bitplane scan creates a scalable bitstream for each block, that is therefore
amenable to scalable coding. In this work we do not exploit this feature since
we are primarily interested in the analysis of the compression gain obtained
by GWP.

Unary coding and CABAC are also used to encode the best selected
coding mode for each block using an additionalModeHeader context. Finally,



Chapter 4. Graph weight prediction for image compression 15

Table 4.1: Test images

Image W ×H Source

bike, cafe 1152 × 1440 ITU [40]
p26 4288 × 2848 Microsoft [40]
kodim07 768 × 512 Kodak [41]
airplane 256 × 256 SIPI Image database [42]
bunnies, teapot 835 × 512 MIT [43]

to get a complete bit budget we also include a small header with global picture
informations such as resolutions and transform block size s.

4.4 Experimental results

In this section the proposed GWP approach is compared with closely related
contributions in the field in order to asses its potential for image compression.
All the experiments are worked out on the set of standard images described
in Table 4.1, that includes both photographic and computer rendered images
with pixel resolution ranging from 256 × 256 up to 4288 × 2848. All color
images have been converted to grayscale. The coding gain achievable with
GWP has been estimated using the full image codec described in Section 4.3,
whose prototype has been implemented in C++ language leveraging on pop-
ular linear algebra libraries for GFT computation. The codec will be soon
made available to the research community for reproducibility of our results
and future works in the area.

The coding performance has been measured in terms of peak signal-to-
noise ratio (PSNR) versus coding rate in bit per pixel (bpp) by varying the
quantization step q. The block size has been fixed to s = 8 and graph
weights are computed according to (4.4) with Cauchy function parameter
α = 6.0. Comparison with other methods and codecs will be presented using
the standard Bjøntegaard Delta (BD) Rate, (∆R in percentage) and Delta
PSNR (∆P ).

Our comparative study is carried out by using the proposed codec with
different prediction modes and transformation variants. In particular, we use
standard DCT without prediction on all blocks (that coincides with GFT on
uniform 8 × 8 graph) as a benchmark. This choice is clearly motivated by
the long lasting success of the JPEG codec. Then, we add the two proposed
vertical and horizontal GWP coding modes (GWP-GFT): as described in
Section 4.3 the coding modes yielding the largest number of transform coef-
ficients quantized to zeros is selected and signaled in the bitstream block by
block. Moreover, we compare with an alternative solution based on 3 coding
modes: classic DCT, vertical and horizontal intra prediction with ADST as
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Figure 4.2: PSNR as a function of bitrate: Teapot image

proposed in [39] (this method will be referred to as IP-ADST). Finally, we
investigate if ADST and GWP can be used jointly by applying the GWP-
GGFT on intra prediction residuals: we use GGFT with unitary D′ weights
as recalled in Section 4.2 that makes it equivalent to ADST. We will refer to
this variant as IP-GWP-GGFT.

In Figure 4.2 the rate/distortion curves obtained with the experimented
methods on the Teapot image are shown. The performance yielded by the
standard Baseline JPEG codec is reported as a benchmark as well. We can
observe that the proposed bitplance codec, although quite simple, achieves
a competitive performance with respect to JPEG: when encoding the same
DCT coefficients as JPEG our codec (red curve) yields a PSNR gain of
about 2.5 dB in the bitrate range between 0.5 and 1 bpp. The most interest-
ing observations can be made when comparing the GWP-GFT (magenta),
IP-ADST (green) and IP-GWP-GGFT (blue) curves. It can be noted that
GWP-GFT significantly improve the compression performance even without
resorting to spatial intra prediction. Indeed the GWP-GFT PSNR is almost
equal or slightly better than IP-ADST that employs intra prediction and
ADST transform. Finally, it is worth pointing out that graph weight predic-
tion and pixel prediction can be exploited jointly to enhance the performance
further: in fact, the IP-GWP-GGFT curve that jointly uses intra prediction,
GWP and ADST achieves the best results with a gain larger than 1 dB with
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Figure 4.3: Visual comparison of IP-GWP-GGFT (left)
vs. DCT (right) over a cropped detail of image p26.

respect to DCT in the range between 0.5 and 1 bpp.
In Figure 4.3, we show visual comparison between IP-GWP-GGFT (left)

and DCT (right) on the p26 image. This images have been coded at 0.2
bpp where the former yields PSNR of 38.93 dB and the latter of 37.35 dB.
From the selected cropped area one can notice that IP-GWP-GGFT improves
visual quality mostly by reducing blocking artifacts; this is particular evident
over the edge and the white area of the dome and along the vertical pillars.

To better support the observations made on single images in Table 4.2
we show the BD rates and PSNR obtained on all the images in our het-
erogeneous dataset. The first 3 sections of the table show ∆R and ∆P of
IP-ADST, GWP-GFT and IP-GWP-GGFT with respect to the benchmark
obtained by our codec with standard DCT. These results confirm that GWP-
GFT is capable to significantly improve the compression performance. On
some images, the GWP-GFT offers larger bitrate reduction and PSNR gain
with respect to intra prediction (IP-ADST), whereas on average the two
approaches yield very similar results. Most importantly, the joint usage of
GWP and intra prediction (IP-GWP-GGFT) significantly improve the per-
formance with average ∆R = −6.86% and ∆P = 0.71. Finally, the last two
columns of the table show the BD gains of IP-GWP-GGFT versus JPEG
and provide an absolute reference with respect to a standard performance:
in this case we report average ∆R = −30.48% and ∆P = 3.04.

4.5 Conclusions

In this chapter we have proposed a method to make graph transform adaptive
to the actual image content, avoiding the need to encode the graph weights
as side information. Our approach uses directional prediction to estimate
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the graph weights; in particular, we have proposed and analyzed vertical
and horizontal graph weight prediction modes that can be exploited to im-
prove the compaction capacity of the GFT. Moreover, we showed that the
proposed technique works also in conjunction with common intra prediction
modes and other adaptive transforms such as ADST. As an added value,
the experimental analysis has been carried out developing a GFT-based im-
age codec, that exploits context adaptive arithmetic coding to encode the
transform samples bitplanes. The proposed image codec has been used to
compare several transform and prediction approaches with 8×8 blocks. The
experimental results showed that the proposed technique is able to improve
the compression efficiency; as an example we reported a BD rate reduction
of about 30% over JPEG. Future works will investigate the integration of the
proposed method in more advanced image and video coding tools comprising
adaptive block sizes and richer set of intra prediction modes.
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Chapter 5

Shape-adaptive image
compression

Block-based compression tends to be inefficient when blocks contain arbi-
trary shaped discontinuities. Recently, graph-based approaches have been
proposed to address this issue, but the cost of transmitting graph topology
often overcome the gain of such techniques. In this chapter we propose a
new Superpixel-driven Graph Transform (SDGT) that uses clusters of su-
perpixels, which have the ability to adhere nicely to edges in the image, as
coding blocks and computes inside these homogeneously colored regions a
graph transform which is shape-adaptive. Doing so, only the borders of the
regions and the transform coefficients need to be transmitted, in place of
all the structure of the graph. The proposed method is finally compared to
DCT and the experimental results show how it is able to outperform DCT
both visually and in term of PSNR.

5.1 Introduction

In this chapter, we propose a novel graph transform approach aiming at
reducing the cost of transmitting the graph structure while retaining the ad-
vantage of a shape-adaptive and edge-aware operator. To this end, the image
is first segmented into uniform regions that adhere well to image boundaries.
Such a goal can be achieved using the so-called superpixels, which are per-
ceptually meaningful atomic regions which aim at replacing rigid pixel grid.
Examples of algorithms used to generate these kind of regions are Turbopixel
[44], VCells [45] and the widely used and very fast SLIC algorithm [46]. Then,
we propose to apply a graph transform within each superpixel that, being ho-
mogeneous region, can be efficiently represented using an uniform graph, i.e.,
all graph edges are given the same weight. In this way, the overhead of repre-
senting the graph structure within each superpixel is avoided. Nonetheless,
we need to transmit additional information to describe region boundaries.
To limit such coding overhead, we design a clustering method that is able to
aggregate superpixels, thus reducing the number of regions that need to be
coded. The details of this clustering algorithm will be given in Section 6.1.
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The use of superpixels in compression is still an almost unexplored re-
search field and up to date only few works investigated the topic. Moreover,
the proposed approaches work in very specific cases, e.g., texture compression
[47] or user-driven compression [48]. On the contrary, the joint exploitation
of graph transforms and superpixels as a general approach to image com-
pression is completely novel and represents the key idea in this work. The
contributions of this study are the definition of superpixel-driven graph trans-
form, its rate/distortion analysis using a bitplane encoding approach and the
comparison with standard DCT transform.

The chapter is organized as follows: in Section 5.2 the proposed algo-
rithm is going to be presented in detail, while in Section 5.3 the results of
our experimental tests are going to be presented. A final discussion on the
method is going to be conducted in Section 5.4.

5.2 The proposed technique

Given an image I = {xi}Ni=1 of N pixels, the proposed SDGT performs the
following steps:

• divide I in m regions by using SLIC [46]: SLIC starts by initializing
a grid with approximatively m squares over I, then iteratively reas-
signs pixels on the edge between two regions to one of the two regions
according to a function of color similarity and spatial distance;

• cluster similar superpixels, to reduce the number of borders to be coded
to a desired number m′;

• inside each region, compute a piece-wise smooth graph transform.

Superpixels are used to get a computationally efficient segmentation of
the image into homogeneous regions, that can be modeled with simple uni-
form graph structure for the following transform stage.

5.2.1 Superpixel clustering

The preliminary segmentation step based on superpixels will be described in
detail in Section 6.1, for the moment a brief overview of the formalism used
will be given.

We start defining an m-regions segmentation of an image I as a partition
Pm = {li}mi=1 of the pixels in I; more precisely:

∀x ∈ I, ∃l ∈ Pm | x ∈ l
∀l ∈ Pm, @l′ ∈ Pm − {l} | l ∩ l′ 6= ∅

(5.1)
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Figure 5.1: An image divided into 100 regions by the pro-
posed algorithm.

Starting from an image I and a partition Pm composed of m regions,
output by some superpixel algorithm, the clustering algorithm aims at merg-
ing at each iteration the pair of labels representing the most similar regions
between the ones determined in the previous step until the desired number
of regions m′ < m is reached. The number of regions m′ to be clustered must
be chosen as a trade-off between the segmentation accuracy and the coding
overhead required to represent and compress the borders of the regions as
discussed in more detail in Section 5.3.

A segmentation example with m′ = 100 is shown Figure 5.1.

5.2.2 Intra-region graph transform

Now we move to the description of the graph transform employed within each
region that leads to the computation of the proposed SDGT.

Given a m′-regions segmentation Pm′ of the image I, in each segment l
of Pm′ we can define a graph Gl = (l, E), where the nodes are the pixels of
the segment l and E ⊂ l × l is the set of edges. The adjacency matrix A is
defined in the following way:

Aij =

1 if j ∈ Ni ∧ i, j ∈ l

0 otherwise
(5.2)

where Ni is the set of 4-connected neighbors of the pixel i.
The adjacency matrix is used to obtain the Laplacian matrix L, which is

used to compute the GFT as explained in Section 2.1.
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It is important to underline that to construct the graph we only need the
information about the coordinates of the region borders, that can be easily
summarized in a binary image. In this way, the cost for transmitting the
graph structure is considerably reduced and the GFT is used as an effective
transform for the arbitrarily shaped regions computed by the algorithm de-
scribed in Section 5.2.1. Finally, we refer to the whole set of transformed
regions as the SDGT of the entire image.

5.3 Experimental results

To evaluate the performance of the proposed SDGT, we need to take into
account its energy compaction ability and the cost for coding overhead in-
formation, i.e., the region-borders.

A popular and simple method for evaluating the transform compaction
efficiency is to study the quality of the reconstructed image, e.g., using PSNR
with respect to the original image, as a function of the percentage of retained
transformed coefficients [49]; albeit interesting, this approach would neglect
the cost required to encode the ancillary information required to compute
the inverse transform.

To overcome this, in the following we estimate the coding efficiency pro-
vided by SDGT by considering bit plane encoding of SDGT transformed co-
efficients. Each bitplane is progressively extracted, from the most significant
down to least significant one, and the bitrate of each bitplane is estimated
by its entropy. To this end, each bitplane is modeled as an independent and
memoryless binary source.

It is worth pointing out that such an estimate represents an upper bound
to the actual bitrate that would be obtained using a proper entropy coding
algorithm that is likely to exploit further the residual spatial correlation of
the transformed coefficients and the dependency between different bitplanes.
Nonetheless, the proposed bitplane approach can be replicated on any other
transform, e.g., the standard 8×8 DCT, allowing us to analyze the achievable
gain in a fair way.

Finally, to estimate the SDGT penalty due to coding of the region bor-
ders, we use the standard compression algorithm for bi-level images JBIG
[50]. The regions boundaries are represented as a binary mask that is then
compressed with JBIG, whose bitrate is considered as coding overhead; from
our experimentation we have seen that this overhead is, on average, around
0.06 bpp. The use of other more specific methods for compressing the region
borders will be discussed in Section 6.2, however that approach is not used
in this study as in its current form its ability to perform consistently better
than JBIG has not been proven.
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Figure 5.2: Three of the sample images (left), for each of
them the performance of the proposed SDGT and DCT 8×8
is presented in term of PSNR values over bitrate (right).

Therefore using bitplane coding and JBIG we get a rough estimation
of the total bitrate needed to code the image with the SDGT transform.
We compare the obtained results with the standard DCT computed on 8×8
blocks. As proved by Zhang and Florêncio in [5], if the graph is a uniform
4-connected grid the 2D DCT basis functions are eigenvectors of the graph
Laplacian, and thus the transform matrix U used in (2.3) turns to be the
2D DCT matrix. Therefore, the 8×8 DCT can be seen as a graph transform
like the SDGT, with the major difference that instead of using superpixels
as coding blocks it uses a fixed grid of 8×8 blocks.

We have tested the transforms on several images from a dataset of lossless
images widely used in compression evaluation [51]. All the images in that
dataset are either 768×512 or 512×768 in size. In Figure 5.2 three sample
images are shown along with the respective coding results (PSNR in dB vs.
bitrate measured in bpp); these results have been obtained setting m = 600,
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(a) DCT 8×8 (b) SDGT

Figure 5.3: A detail on the luminance component of one
image compressed with both DCT 8×8 and the proposed

SDGT at bitrate of 0.75 bpp.

Figure 5.4: A 2592×3888 sample image with a 512×512
cropped patch (left) and the performance of the proposed
SDGT and 8×8 DCT on the cropped region in term of PSNR

values over bitrate (right).

m′ = 100 and coding the luminance component only.
We can see that SDGT significantly outperforms the DCT, in particular

at low bitrate, where it is able to achieve a maximum gain of more than 2 dB.
Overall, the average gain obtained is approximately 1 dB. This achievement
is particularly significant if one recall that the SDGT bitrate includes the
constant penalty yielded by JBIG coding of the borders. A detail of the
significant improvement at low bitrate obtained by SDGT can be visually
appreciated in Figure 5.3.

Since standard image compression data set are historically biased by low
resolution images we conclude our analysis by considering high resolution
images that are typically acquired by current imaging devices. We have
tested our method and the 8×8 DCT on some HD images acquired using a
DSLR camera; in particular, for complexity reasons, we have applied SDGT
to non trivial 512×512 patches cropped from the original images. The rest
of the setup is the same as before. In Figure 5.4 the results obtained on a
sample image are shown; it is worth pointing out that the SDGT gain over
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DCT is larger in this case and span all the considered bitrate range, e.g., at 1
bpp, the gain for all samples in Figure 5.2 is around 1 dB, while in Figure 5.4
it is around 2 dB. This is due to the fact that regions in HD images are
usually wider and smoother and therefore the segmentation algorithm and,
consequently, the graph transform can be even more effective.

5.4 Conclusions

In this study we have explored a new graph transform for image compres-
sion applications. It is shown that the proposed algorithm achieves better
performance than DCT, especially at lower bitrates and on high-resolution
images.

The main contribution of this work is to set the foundation for a new
approach to graph-based image compression. Thanks to exploitation of su-
perpixel ability to adhere to image borders, we can subdivide the image in
uniform regions and use the graph transform inside each region as a shape
adaptive transform.

Future work on the proposed algorithm might include trying to inter-
polate the pixels inside the regions starting from the ones on the borders
and then encode only the prediction errors, reducing in a significant way the
information needed to be encoded.
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Chapter 6

Reduction of shape description
overhead

In Chapter 5 we discussed SDGT, a shape adaptive graph transform for image
compression. We explained how SDGT is able to compress an image without
the need of graph weights encoding by using an uniform graph inside arbitrary
shaped regions generated by a segmentation algorithm. The segmentation
algorithm should produce regions with smooth content for the GFT to be
able to compress it effectively. For this reason we decided to propose the
use of superpixels. However, since the region structure information has to be
encoded and transmitted, similar superpixels might be clustered to reduce
the border description overhead. In this chapter we present two techniques
to reduce this overhead: we will discuss a fast superpixel clustering technique
in Section 6.1 and then, in Section 6.2, we will present a chain code tailored
to compress segmentation borders.

6.1 Fast superpixel-based hierarchical image seg-
mentation

In this section we propose a novel superpixel-based hierarchical approach for
image segmentation that works by iteratively merging nodes of a weighted
undirected graph initialized with the superpixels regions. Proper metrics to
drive the regions merging are proposed and experimentally validated using
the standard Berkeley Dataset. Our analysis shows that the proposed algo-
rithm runs faster than state of the art techniques while providing accurate
segmentation results both in terms of visual and objective metrics.

6.1.1 Introduction

Region segmentation is a key low-level problem in image processing, as it is
at the foundation of many high-level computer vision tasks, such as scene
understanding [52] and object recognition [53]. Traditionally regions are
found by starting from single pixels and then use different approaches to
find clusters of pixels. Some examples of methods include region growing
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Figure 6.1: An image divided into approximately 600 su-
perpixels

[54], histogram analysis [55] and pyamidal approaches [56]; another very
commonly used class of algorithms treats the image as a graph. Graph-based
techniques usually consider every pixel as a node in a weighted undirected
graph and then they find regions in two possible ways: by partitioning the
graph using some criterion, or by merging the nodes that are most similar
according to a similarity measure. Methods of the first subclass are usually
based on graph-cut and its variations [57] or spectral clustering [58]. For
what concerns node merging techniques, one algorithm that has been widely
used is the one by Felzenszwalb-Huttenlocher [59]. The criterion proposed in
this latter work aims at clustering pixels such that the resulting segmentation
is neither too coarse nor too fine. The graph is initialized considering every
pixel as a node; the arcs between neighboring pixels are weighted with a
proper dissimilarity measure (e.g., minimum color difference connecting two
nodes). At every iteration the algorithm merges pair of nodes (components)
that are connected by an edge characterized by a weight that is lower than
the intra-component differences. As consequence, homogeneous components
that are not separated by boundaries are progressively represented by the
nodes of the graph.

A recent trend in segmentation, is to start the computation from su-
perpixels instead of single pixels [60]. As shown in Figure 6.1, superpixels
are perceptually meaningful atomic regions which aim to replace rigid pixel
grid. Examples of algorithms used to generate these kind of small regions
are Turbopixel [44] and the widely used and very fast SLIC algorithm [46].
Over-segmenting an image using one of said techniques, and the performing



Chapter 6. Reduction of shape description overhead 29

actual region segmentation, can be interesting both in term of reducing the
complexity of the problem (i.e., starting from superpixels instead of single
pixels) and improving the quality of the final result, thanks to the intrinsic
properties of superpixels [61].

In this study, we analyze the benefits of using a simple merging approach
over a graph whose nodes are initialized with superpixels regions. The main
contributions of this work are:

• design of a local merging approach for the selection of the pair of su-
perpixels that are likely to belong to the same image region;

• exploitation of CIELAB color space in the definition of the dissimilarity
metric so as to better match human color perception;

• analysis of the performance and complexity trade-off with respect to
the state of the art.

Our conclusions are that superpixels can efficiently boost merging based
segmentation techniques by reducing the computational cost without impact-
ing on the segmentation performance. In particular we show that such result
can be achieved even without resorting to global graph partitioning such as
graph-cut [62] or spectral clustering [61].

It’s important to note that although other superpixel-based hierarchical
approaches have been proposed in the past, the most notable among them
by Jain et al. [63], none of them have been intended as a general-use segmen-
tation technique. The work by Jain et al., for example, has been tested only
on human brain images, and its validity on standard datasets is not known.
The performance of the proposed algorithm, which is intended to work on
any type of image, are going to be instead objectively evaluated on a well
known standard dataset for image segmentation.

The section is organized as follows. In Section 6.1.2 the proposed seg-
mentation technique is presented, whereas in Section 6.1.3 and Section 6.1.4
complexity and segmentation results are discussed, respectively.

6.1.2 The proposed technique

Let’s start by defining an n regions segmentation of an image I = {xi}Ni=1

with N pixels as a partition L = {li}ni=1 of the pixels of I; more precisely,
the segmented regions must satisfy the following constraints:

∀x ∈ I, ∃l ∈ L | x ∈ l ;

∀l ∈ L, @l′ ∈ L− {l} | l ∩ l′ 6= ∅ .
(6.1)

Please note that in the rest of the chapter the terms region, label, and
segment are going to be used interchangeably to refer to one of the parts of
the segmented image, i.e., one of the set of pixels l.
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In this study we propose to initialize the segmentation algorithm with an
over-segmented partition Lm. This first segmentation can be obtained with
any superpixel algorithm. Since the quality of the starting superpixels is not
going to be checked by the proposed technique, the segmentation accuracy of
the chosen algorithm for finding superpixels is of crucial importance in this
context. In this work SLIC has been used given its known computational
efficiency and segmentation accuracy [46].

Starting from an image I and a partition Lm composed of m regions,
the proposed algorithm aims at merging at each iteration the pair of labels
representing the most similar regions between the ones determined in the
previous step. In particular at the k-th iteration the two most similar between
the k segments of Lk are merged to obtain a new set Lk−1 composed of k−1

segments. This process can be iterated for k = m,m−1, . . . , 2; when k = 2 a
binary segmentation L2 is obtained, where only foreground and background
are discriminated.

The proposed iterative merging algorithm generates a full dendrogram,
that carries information about the hierarchy of the labels in terms of regions
similarity. We can represent the merging process using a weighted graph.
When the algorithm starts, an undirected weighted graph Gm = {Lm,Wm}
is constructed over the superpixel set Lm, where

Wm =
{
wmij
}
, ∀i 6= j | lmi , lmj ∈ Lm ∧A

(
lmi , l

m
j

)
= 1 (6.2)

for some adjacency function A. Since Gm is an undirected graph we have
that wmij = wmji ; the weights represent the distance (or dissimilarity measure)

between pair of regions wmij = δ
(
lmi , l

m
j

)
. The possible functions that can

be used to compute the distance δ are going to be discussed in detail in
Section 6.1.2.

At each iteration, the algorithm picks the pair of labels lkp , lkq ∈ Lk having
wkpq = min

{
W k
}
and merges them; i.e. it generate a new partition Lk−1 =

Lk −
{
lkq
}
having all the pixels x ∈ lkp ∪ lkq assigned to the label lk−1p . Lk−1

contains now just k−1 segments. After that, edges and corresponding weights
needs to be updated as well. W k−1 is generated according to the following
rule:

wk−1ij =

δ
(
lk−1p , lk−1j

)
if i = p ∨ i = q ,

wkij otherwise .
(6.3)

Please note that wkpq is not going to be included in W k−1 since it doesn’t
exist anymore.

When k = 2, the algorithm stops and returns the full dendrogram D ={
Lm, . . . , L2

}
that can be cut at will to obtain the desired number of regions.

An example of different cuts of the dendrogram can be seen in Figure 6.2.
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Figure 6.2: A sample image and hierarchy of 3 segmenta-
tions obtained with k = 50, 15, 2 and δC metric.

Region distance metrics

The approach proposed here can be used in conjunction with several distance
metrics capable to capture the dissimilarity between a pair of segmented
regions. In the following we discuss a few alternatives that will be used in
our experiments.

The first and simplest one that we have explored is color difference be-
tween the two regions. To better match human color perception, CIELAB
color space and the standard CIEDE2000 color difference have been chosen
[64]. Given two regions l1 and l2, we compute the mean values of the L*a*b*
components M1 = (µL∗,1, µa∗,1, µb∗,1) and M2 = (µL∗,2, µa∗,2, µb∗,2), and we
define the distance between the two labels as

δC (li, lj) = ∆E00 (Mi,Mj) (6.4)

where ∆E00 is the CIEDE2000 color difference [64].
Another possibility it to exploit the Mahalanobis distance [65] given its

ability to capture statistical differences between two distributions of color
component. Given a set of n1 pixels l1 = {xi = (xL∗,i, xa∗,i, xb∗,i)}n1

i=1, we
can estimate their mean M1 = (µL∗ , µa∗ , µb∗) and covariance as

C1 =
1

n1

n1∑
i=1

(xi −M1) (xi −M1)
T . (6.5)

Then we compute the Mahalanobis distance of any other set of n2 pixels
l2 = {yi = (yL∗,i, ya∗,i, yb∗,i)}n2

i=1 from the estimated distribution of l1 as

∆M (l1, l2) =
1

n2

n2∑
i=1

(yi −M1)
T C−11 (yi −M1) . (6.6)

Since ∆M is non symmetric, i.e., ∆M (l1, l2) 6= ∆M (l2, l1), we compute the
distance between two labels as the minimum of their relative Mahalanobis
distances obtaining the following symmetric metric:

δM (li, lj) = min {∆M (li, lj) ,∆M (lj , li)} . (6.7)

Since during the iterative merging process is important to merge homo-
geneous regions, in particular without crossing object boundaries, we also
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investigate a local Mahalanobis metric that aims at detecting image segment
whose adjacent borders look very different. This border variation consists
in evaluating the Mahalanobis distance just for the pixels near the bor-
der between the two regions. More precisely, let us define bij the portion
of common border between two adjacent image segments. Then we can
define a subset of pixels whose location is across the two adjacent regions
cij = {x ∈ I | r1 < d (x, bij) < r2}, where d is the Euclidean spatial distance
and r1 and r2 are proper ranges. Now we can introduce function B (li, lj)

that returns two new set of pixels l′i = li ∩ cij and l′j = lj ∩ cij that repre-
sent the pixels of li and lj respectively that are located close to the common
border. Finally, the distance metric is defined as:

δB (li, lj) = min
{

∆M
(
l′i, l
′
j

)
,∆M

(
l′j , l
′
i

)}
(6.8)

where l′i and l
′
j are the two outputs of B (li, lj).

Finally, we investigate a fourth metric based on the color histogram dis-
tance. One possible solution to measure histogram difference is the Bhat-
tacharyya distance [66], which is the general case of the Mahalanobis dis-
tance. Given two histograms h1 and h2 composed each by B bins, the Bhat-
tacharyya distance is defined as

∆H (h1, h2) =

√√√√1− 1√
h̄1h̄2B2

B∑
i=1

√
h1 (i) · h2 (i) (6.9)

where h(i) is the number of pixels in the bin i, while h̄ = 1
B

∑B
i=1 h (i). Since

images in the L*a*b* color space have three channels, ∆H is going to be
computed on each channel independently, and then the maximum value of
the three is going to be used as dissimilarity measure; this has been cho-
sen over other possibility, like taking the mean of the three distances, as
it yields higher discriminating power in finding differences just on one of
the channels. In conclusion, the last dissimilarity measure between two re-
gions li and lj having respectively histograms Hi = {hL∗,i, ha∗,i, hb∗,i} and
Hj = {hL∗,j , ha∗,j , hb∗,j} is defined as:

δH (li, lj) = max


∆H (hL∗,i, hL∗,j) ,

∆H (ha∗,i, ha∗,j) ,

∆H (hb∗,i, hb∗,j)

 . (6.10)

6.1.3 Complexity

In this section the complexity of the proposed algorithm is going to be dis-
cussed. We will start by analyzing the complexity of the distance metrics
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presented in Section 6.1.2. To this end let us consider any two regions l1 and
l2 with a total number of pixels n = |l1 ∪ l2|. The complexity of the different
distance metrics is discussed in the following.

δC Computing the color mean of both regions requires O(n) time while com-
putation of distance between the mean values has unitary cost.

δM All the operations required to compute Mahalanobis distance (mean and
color covariance estimates) are in the order of O(n).

δB Since the computation is going to be performed on the n′ = |l′1 ∪ l′2| pixels
in the border area, the complexity is again O(n′), with n′ < n.

δH The dominant cost is assigning every pixel to a bin; then, the cost of
calculating the actual distance is negligible. Therefore the overall com-
plexity is O(n) also in this case.

To recap, computing any of the distances we proposed is linear to the number
of pixels in the considered segments. Then, according to (6.1) computing all
distances for a whole partition L of an image of N pixels will require O(N)

time.
Finally, we can discuss the overall complexity of all the algorithm steps:

1. The starting step of the algorithm is to compute the m superpixels.
For that purpose, using SLIC, O(N) time is required [46];

2. Next, the graph Gm needs to be constructed. The time required for this
task is in the order of O(N), as all the weights needs to be computed
once;

3. Then, the m merging iterations are performed. At every iteration just
a small number of the weights is going to be updated, and since all
the regions are going to be merged once, the overall complexity is once
again O(N).

In conclusion, the overall time required by the algorithm is linear to the size
of the image.

We can conclude that the proposed technique exhibits lower complexity
than both merging techniques that works on pixels, like the Felzenszwalb-
Huttenlocher algorithm which has complexity of O(N logN) [59], and other
widely used techniques that works on superpixels, like SAS [61] and `0-sparse-
coding [62], which both have complexities higher than linear.

To verify our claims, in Figure 6.3 the running times of the different
components of the algorithm are shown. It can be noted that the time needed
by both SLIC and the clustering algorithm using all the different distance
measures here proposed are growing linearly to the size of the input.
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Figure 6.3: Mean running times of SLIC and the proposed
clustering algorithm using the different distance measures;
these results are computed on three 5.3MP images scaled at

different smaller resolutions.

6.1.4 Performance evaluation

In this section the performance of the proposed algorithm is validated both
visually and using objective metrics. To this end the standard Berkeley
Dataset BSDS500 [67] has been used. This latter, although originally con-
structed for boundaries evaluation, has become a well recognized standard
for evaluation of regions segmentation in images.

The discussion on objective metrics for an effective evaluation of the
segmentation performance is still open [67]; still the usage of a standard set
of images makes our results easier to reproduce and compare with past and
future research.

In this work we have selected as benchmarks for performance evaluation
two well known superpixel-based algorithms, namely SAS [61] and `0-sparse-
coding [62]. Moreover, the Felzenszwalb-Huttenlocher algorithm [59] has
been selected as representative of a merging approach that starts from indi-
vidual pixels.

Metrics

Two common metrics have been used to evaluate the performance over the
dataset. They have been chosen because results using these metrics are
available for all the algorithms that have been cited in this work. For the
Felzenszwalb-Huttenlocher algorithm they can be found in [67], while for `0-
sparse-coding and SAS they can be found directly in the respective papers.

Probabilistic Rand Index The Probabilistic Rand Index (PRI) is a vari-
ation of the Rand Index, proposed for dealing with multiple ground-truths
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Figure 6.4: Sample images from BSDS500 (top) and their
best corresponding segmentation outputs (bottom) using δC

metric.

[68]. It is defined as:

PRI (S, {Gk}) =
1

T

∑
i<j

[cijpij + (1− cij) (1− pij)] (6.11)

where cij is the event that pixels i and j have the same label while pij is its
probability. T is the total number of pixel pairs. To average the Rand Index
over multiple ground-truths, pij is estimated from the ground-truth dataset.

Variation of Information The Variation of Information (VoI) metric al-
lows one to compare two different clusterings of the same data [69]. It mea-
sures the distance between two segmentations in terms of their conditional
entropy, given as:

V oI
(
S, S′

)
= H (S) +H

(
S′
)
− 2I

(
S, S′

)
(6.12)

where H represents the entropy and I the mutual information between two
clusterings of data, S and S′. In the case presented here, these clusterings
are the segmentations performed by the algorithms to be tested and the
ground-truths.

Results

First of all in Figure 6.2 and Figure 6.4 we show some segmentation results
obtained using the simple color metric difference δC ; every segmented region
is filled with its mean color. Figure 6.2 reports different segmentations of the
same image obtained by stopping the hierarchical clustering at progressively
lower numbers of regions showing that the proposed solution can achieve
different levels of segmentation granularity down to the separation into fore-
ground and background. The images shown Figure 6.4 are obtained selecting
the value of k that yields the best overlap with ground-truth segmentations
in the BSDS500 dataset. It can be observed that the proposed solution is
able to effectively segment images; the boundary accuracy clearly depends
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Table 6.1: Results obtained by the proposed technique
in all its variations compared to other state-of-the-art tech-

niques over the BSDS500

Algorithm PRI VoI

SAS [61] 0.83 1.68
`0-sparse-coding [62] 0.84 1.99
Felzenszwalb-Huttenlocher [59] 0.82 1.87

Ours (using δC) 0.83 1.78
Ours (using δM ) 0.83 1.71
Ours (using δB) 0.82 1.82
Ours (using δH) 0.81 1.83

on the starting superpixel technique, e.g., in our case SLIC, whereas the pro-
posed hierarchical merging criterion can group the main image regions very
effectively.

We do not show images segmented using the other similarity metrics
proposed in Section 6.1.2 since they yields similar visual results.

In Table 6.1 objective segmentation metrics computed on the BSDS500
dataset are shown. In particular, we report PRI and VoI results yielded by
our method with the four different similarity metrics proposed in Section 6.1.2
and other benchmarks in the literature. We started with 600 superpixels,
then for the calculation of boundary-based metric δB we have set r1 = 3

and r2 = 11 respectively, while for δH we have set B = 20. From the
obtained results it can be noted that all the techniques we compare exhibits
about the same value of PRI. Moreover, it can be noted that the proposed
solution yields better VoI results than the Felzenszwalb-Huttenlocher pixel
based algorithm and competing superpixel based `0-sparse-coding [62]. Only
the SAS [61] algorithm exhibits a lower value for VoI. At the same time, it is
worth recalling that the proposed technique is by far the cheapest in terms
of computational cost with respect to the other benchmarks.

We can also note that color and Mahalanobis metric provides the same
segmentation accuracy. On the other hand the histogram and boundary
based metrics are slightly less effective. This slight difference in performance
can be explained by considering that superpixel over-segmentation is able to
1. retain very homogeneous areas; 2. accurately follow image boundary. The
first feature makes the advantage of a more statistically accurate metric for
the description of intra-pixel color variation, such as Mahalanobis distance,
negligible with respect to simple color distance in L*a*b* space. Finally, the
fact that superpixels does not cut image edges makes the usage of a boundary
based criterion ineffective.

In Figure 6.5 we conclude the analysis of our results by showing the
precision/recall curves yielded by the four proposed region distance metrics.
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Figure 6.5: Precision and recall of the proposed technique,
using δC , δM , δB and δH

The curves have been obtained by comparing the segmentation generated
by our algorithm setting different values for k with ground-truth data in
BSDS500 dataset. It can be observed that δC and δM appears to be slightly
superior to both δB and δH also in terms of precision/recall trade-off.

6.1.5 Conclusions

In this study a new approach to image segmentation has been presented.
The proposed approach is based on iterative merging of nodes in a graph
initialized with an over-segmentation of an image performed by a superpixel
algorithm. The algorithm employs proper distance metrics to select regions
to be merged. We have shown that both CIEDE2000 and Mahalanobis color
distances are very effective in terms of segmentation accuracy. Our experi-
mentation worked out on the BSDS500 dataset shows that the proposed tool
yields competitive results with respect to other state of the art techniques
that segments starting both with superpixels and single pixels. Finally, one
of the most important achievements is that the overall complexity of the
proposed method is kept linear to the dimension of the image as opposed to
the other techniques we compare to.
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6.2 Efficient segmentation border encoding using
chain codes

In this section we propose a new chain code tailored to compress segmentation
contours. Based on the widely known 3OT, our algorithm is able to encode
regions avoiding borders it has already coded once and without the need of
any starting point information for each region. We tested our method against
three other state of the art chain codes over the BSDS500 dataset, and we
demonstrated that the proposed chain code achieves the highest compression
ratio, resulting on average in over 27% bit-per-pixel saving.

6.2.1 Introduction

Image segmentation is the process of partitioning an image into distinct se-
mantically meaningful regions. It serves as foundation for many high-level
computer vision tasks, such as scene understanding [52] and object recogni-
tion [53]. Moreover, if detected region contours in images are compressed ef-
ficiently as side information, they might enable advanced image/video coding
approaches based on shape-adaptive graph transform encoders [6], [34] and
motion predictors of arbitrarily shaped pixel-blocks [70]. Lastly, efficiently
coded contours can be used, at a much lower coding cost than compressed
video, in the context of distributed computer vision, to perform computation
intensive object detection or activity recognition [71].

To compress borders, chain code techniques are widely used as they pre-
serve information and bring considerable data reduction. They also allow
various shape features to be evaluated directly from this representation; edge
smoothing and shape comparison are also easily computed [72]. The ability
of chain codes to describe regions by mean of their border shape is demon-
strated to be the most efficient way to deal with this task; in [73], [74] it
is shown that algorithms using chain codes achieve higher compression rate
than JBIG [50], the ISO/IEC standard for compression of bi-level images.

The context of segmentation region borders, however, presents one char-
acteristic that standard chain codes are not tailored to: since all image pixels
must be assigned to a region, all borders are shared between two regions. It
follows that, if one chain code per border is used, all edges will be encoded
twice, resulting in an higher number of symbols. Moreover, every chain code
needs an edge coordinate, from where the code sequence is started.

In this work, we propose an algorithm able to produce chain codes to
encode efficiently borders of segmentation regions exploiting the following
properties:

1. every border is visited and encoded only once;
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Figure 6.6: A 3×3 image segmented into two regions; the
active crack-edges are outlined in blue.

2. the starting coordinate of the chain code is not needed as it is known
implicitly;

3. the distribution of the chain code symbols is likely to be highly skewed
so as to be amenable to efficient entropy coding.

This section is organized as follows: in Section 6.2.2 we will first re-
view the state of the art for standard chain codes; then, we will present our
approach in Section 6.2.3; lastly, in Section 6.2.4 we’ll compare our perfor-
mance with those of other techniques over a standard segmentation dataset,
to show that our approach is able to achieve significant gains over classical
chain codes.

6.2.2 Chain codes

Chain code algorithms encode binary regions by describing their contours
using sequences of symbols from an alphabet. The contour map of a binary
input image I is represented by the so called horizontal and vertical crack-
edges. They are the contour line segments that separate two adjacent pixels:
if the pixels belong to two different regions, the crack-edge is called active;
otherwise, if they belong to the same region, the crack-edge is called inactive.
The two ends of an active crack-edge are called vertices and are denoted as
Pk and Pk+1. Chain code algorithms encode active crack-edges by virtue of
the position of their surrounding vertices. Figure 6.6 shows an example of
a 3×3 sample image containing two regions: r1 = {x1,1, x1,2, x2,1, x2,2, x3,1}
and r2 = {x1,3, x2,3, x3,2, x3,3}. The contour map separating the two regions
is represented using a vertex vector Γ = [P1P2P3P4P5]. The chain code
algorithm translates the vector of consecutive vertices Γ into a vector of chain
code symbols Σ = [S1S2S3S4S5] by encoding a vertex Pk+2 according to the
previous two vertices Pk and Pk+1. It has to be noted that for the first two
vertices P1 and P2, some convention has to be used. The decoding process
then takes Σ and, applying an inverse translation, computes Γ. It then
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Figure 6.7: Graphical representation of different chain
codes

reconstruct the binary image I by filling the regions enclosed by the crack-
edges in Γ. Since all vertices are encoded according to their relative position
to P1, the absolute position of the the latter has usually to be provided
somehow as side information to the decoder. Σ is then further compressed
with entropy coding techniques, e.g., Huffman, adaptive arithmetic coding,
or context tree coding [75], [76].

Freeman chain codes

One of the first algorithms developed is the Freeman chain code (F4) [77]. In
a 4-connectivity context, the algorithm F4 assigns a code from a 4-symbol al-
phabet {0, 1, 2, 3} to Pk+2 based on its relative position from Pk+1, according
to the scheme presented in Figure 6.7a.

Since one of the four directions is the one where Pk is, and Pk+2 6= Pk, we
know that just three symbols should be enough to discriminate the remaining
three directions. Differential Freeman chain code (AF4) [75] uses the scheme
illustrated in Figure 6.7b, where the symbol “0” is used for “go forward”,
“1” for “turn left” and “2” for “turn right” according to the direction of the
segment connecting Pk and Pk+1.

Three OrThogonal symbol chain code

The 3OT algorithm [78] uses a 3-symbol differential approach similar to
AF4, but exploits one extra information: it keeps track of the last time that
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there has been a change in direction. Then, “0” still means “go forward”,
but now “1” means “turn accordingly to the direction you were facing before
the previous turn” while “2” means “turn the opposite way to the one you
were facing before the previous turn”. As can be seen in Figure 6.7c, when
the previous direction is facing upward, turning upward again is coded as
“1”, while turning downward is coded as “2”; viceversa, when the previous
direction is facing downward, it’s turning upward that is coded as “2”, while
turning downward is coded as “1”.

3OT has been reported as one of the better performing chain codes in
the state of the art [73], [74].

6.2.3 The proposed technique

In this section we’ll present an algorithm to encode a segmentation of an im-
age using a chain code to describe the borders of the segmented regions. The
framework proposed might be used in conjunction with any standard chain
code; in this study we work with 3OT as base chain code, given its aforemen-
tioned qualities. From now on, we’ll refer to our approach as Segmentation-
3OT (S-3OT). S-3OT uses the same alphabet of 3OT with an added symbol
(i.e., “3”), the meaning of this symbol is going to be explained in detail here.

Let’s start by defining an n regions segmentation of an image I = {xi}Ni=1

with N pixels as a partition R = {ri}ni=1 of the pixels of I; more precisely,
the segmented regions must satisfy the following constraints:

∀x ∈ I, ∃r ∈ R | x ∈ r ;

∀r ∈ R, @r′ ∈ R− {r} | r ∩ r′ 6= ∅ .
(6.13)

For each region ri ∈ R, we call Γi = [P ik]
m
k=1 the vector containing all

m vertices of the active crack-edges of ri, sorted clockwise, starting from a
vertex determined accordingly to some convention. Please note that all crack-
edges touching the image border are considered active and are included in
Γi. Also, note that since the region is closed, P im = P i1.

In Figure 6.8 a possible segmentation of a sample image is shown; given
one segmentation, the red borders represent the information we need to en-
code in a symbol sequence Σ. From the region borders, obtained by Σ, the
decoder can then assign to each closed region a different label to reconstruct
the segmentation.

One approach might be to encode the whole border grid at once; chain
codes follow a single path along a border and therefore it would be necessary
to keep track of all the crossings that in turn could require a significant
coding overhead. Another approach might be to encode the borders region
by region: to this end, one might apply a standard chain code to each region
border. By doing so, however, one would encode each crack-edge twice, as
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Figure 6.8: Image segmented into 150 regions with borders
shown in red

each border is always shared between two regions. A possible countermeasure
to the previous issue is to use some convention to decide which of the two
regions “owns” a specific crack-edge, e.g., all crack-edges are owned by the
left-most or top-most region. Then, when we are encoding one region we
would skip the crack-edges not owned by that region; also this approach
requires some coding overhead to signal the offset to jump to the next owned
coordinate of the edge. Lastly, to encode regions by chain codes we need to
specify a starting position in some way.

S-3OT uses a hybrid approach that borrows some ideas from both the
approaches we have just discussed: it proceeds region by region, but it keeps
track of the path it has already covered once, avoiding to encode it twice.
S-3OT has been developed with a few desired properties in mind:

Property 1. The decoding process should require no information other than
the sequence Σ and the sizes of the image. No offsets or starting positions
are used for each chain code.

Property 2. The decoder will go through Σ in the same order as the encoder;
for this reason, when processing a region, information on the previously en-
coded regions is available and should be exploited.

Property 3. The chain code symbols must be selected so as that their
probability distribution is likely to be highly skewed to favor the following
entropy coding.

We’ll proceed here in explaining S-3OT algorithm. S-3OT maintains a
vector Γ of vertices which have been already encoded. Γ is initialized with
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all vertices lying on the image canvas starting from the top left most vertex
of the image and going clockwise around the image border. Γ is going to
be used as “context” during the encoding to adhere to the aforementioned
Property 2. S-3OT also maintains a set R which contains the regions still to
be encoded; initially R = R. Then, until R = ∅, the algorithm selects the
region ri ∈ R containing the pixel x in the most top-left position among the
regions still in R; it then encode Γi = [P ik]

m
k=1 using the vertex in the top-left

corner of x as P i1 and then enumerating the vertices clockwise. Using this
convention, no starting point coordinates has to be transmitted (Property 1).
Also, P i1 and P i2 don’t need to be encoded, as their position is always known
by the way P i1 is selected: they will always lay on the top crack-edge of x. In
other words, we are sure that the left and top crack-edge of x have already
been coded, otherwise x wouldn’t be the selected pixel.

Let’s call π(Γ, [PkPk+1]) a function that, given a vector of vertices Γ and
two consecutive vertices Pk and Pk+1, returns the vertex Pk+2, if [PkPk+1] ∈
Γ. Also, let’s call 3OT ([PkPk+1Pk+2]) the function that returns the symbol
that 3OT returns for the vertex sequence [PkPk+1Pk+2].

Then, from Γi, the chain code Σi is constructed according to the follow-
ing rules to determine the symbol Sik+2 ∈ {0, 1, 2, 3} to be assigned to the
vertex P ik+2, given P ik and P ik+1. We’ll call P k+2 the vertex returned by
π(Γ, [P ikP

i
k+1]), i.e., the next vertex on the known border after P ik and P ik+1.

Rule 1 (Follow the border). This rule is applied when we are on a known
border, more precisely when

[P ikP
i
k+1] ∈ Γ ∧ P ik+2 = P k+2 . (6.14)

When this condition is met, Sik+2 = 0. Please note that in this context “0”
is used even if the border is changing direction.

Rule 2 (Leave the border). When leaving the known border, just two direc-
tions have to be discriminated, since out of the four possible, one is where
P ik is, and the other is where the known border would continue. Moreover,
the symbol “0” can’t be used, as it would be interpreted according to Rule 1
by the decoder. We’ll then use symbols “1” and “2” to discriminate between
the two possible directions. More precisely when

[P ikP
i
k+1] ∈ Γ ∧ P ik+2 6= P k+2 , (6.15)

S-3OT assigns a symbol according to the following:

Sik+2 =

S3OT
k+2 if S3OT

k+2 6= 0 ,

3OT ([P ikP
i
k+1P k+2]) otherwise;

(6.16)
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Figure 6.9: Graphical representation of the chain codes
assigned by S-3OT to P i

k+2 according to Rule 2; the crack-
edges marked with double red lines are lying on the known

borders.

where S3OT
k+2 = 3OT ([P ikP

i
k+1P

i
k+2]). A graphical representation of this rule

is given in Figure 6.9. It can be noticed there that when the known border is
proceeding straight (Figure 6.9a and Figure 6.9b), the symbols assigned to
the other directions are the same 3OT would have used. In all other cases,
the known border is not straight. In this cases, if P ik+2 is straight ahead of P ik
and P ik+1, we use the symbol that 3OT would have assigned to the direction
occupied by the known border; instead, the other direction maintains the
corresponding 3OT symbol. To give one example, in the case presented in
Figure 6.9c, if the direction to follow is upward the symbol “1” is used, which
is the one 3OT would have used. “Going downward” following the known
border is encoded as “0”, according to Rule 1. “Going straight” is encoded as
“2”, as it is the symbol 3OT would have assigned to the direction where the
known border is, i.e., downward. In other words, according to this rule, if the
direction of the known border is not straight, the 3OT code for its direction
and to signal to go straight are swapped.

Rule 3 (Not on the border). When P ik+2 is not on the known border, i.e.,
when [P ikP

i
k+1] /∈ Γ, S-3OT uses the classical 3OT code, then Sik+2 = S3OT

k+2 .

Rule 4 (Follow until the end). Lastly, if for any k ∈ [1,m− 3] it happens
that [P ij ]

m
j=k ∈ Γ, the symbol “3” is appended to the chain code, and the

encoding of ri ends. This symbol signals to the decoder that from P ik+2

onward it just has to follow the known borders until the starting point is
reached again.



Chapter 6. Reduction of shape description overhead 45

Algorithm 1 Proposed algorithm
1: procedure S-3OT(I, R)
2: R← R
3: Γ← GetImageBorderVertices(I)
4: Σ← {}
5: while R 6= ∅ do
6: x← GetTopLeftMostPixel(R)
7: ri ← GetRegionOf(x)
8: Γi ← GetVerticesVector(ri, x)
9: for k ← 1 to m− 2 do

10: P ik ← Γi[k]
11: P ik+1 ← Γi[k + 1]
12: P ik+2 ← Γi[k + 2]

13: P k+2 ← π(Γ, [P ikP
i
k+1])

14: S3OT
k+2 ← 3OT([P ikP

i
k+1P

i
k+2])

15: if k ≤ m− 3 and Γi[k : m] ∈ Γ then
16: Σ← Append(Σ, 3)
17: break
18: else if [P ikP

i
k+1] ∈ Γ and P ik+2 = P k+2 then

19: Σ← Append(Σ, 0)
20: else if [P ikP

i
k+1] ∈ Γ and P ik+2 6= P k+2 then

21: if S3OT
k+2 6= 0 then

22: Σ← Append(Σ, S3OT
k+2 )

23: else
24: Sk+2 ← 3OT([P ikP

i
k+1P k+2])

25: Σ← Append(Σ, Sk+2)
26: end if
27: else
28: Σ← Append(Σ, S3OT

k+2 )
29: end if
30: end for
31: R← Remove(ri, R)
32: Γ← IncludeAndUpdate(Γi,Γ)
33: end while
34: return Σ
35: end procedure

After the computation of Σi is terminated, either by going through all Γi

or by the special symbol “3”, Γ is recomputed including also all vertices in
Γi, ri is removed from R, and Σi is appended to the end of Σ. S-3OT then
proceeds selecting the next region to be encoded until R = ∅. Algorithm 1
presents the overall algorithm of S-3OT.

Figure 6.10 presents a simple example of application of S-3OT. It can be
noted that the sequence produced by S-3OT is considerably shorter than the
ones computed by standard chain codes. Looking at the code obtained for
r2, i.e., the red region, some of the rules can be easily observed:

k = 1 P 2
1 is v1,4, i.e., the vertex having coordinates (1, 4) on the vertex grid;
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Figure 6.10: A 4×4 image segmented into three regions;
the active crack-edges and the starting positions are outlined
in the color of the region. Below the image are the corre-

sponding chain codes.

v1,4 and v1,5 are not encoded as their positions are trivial, then “00” is
used to signal to follow the image border until v3,5, even if there is a
change of direction;

k = 3 until v3,3, classical 3OT is used and the code “2002” is appended;

k = 7 the conditions for application of Rule 4 is true, i.e., from now on all
vertices have already been coded previously; so “3” is appended and
the code for the red region ended.

Lastly, note how the green region is encoded by using just “3”, as all its
borders have already been coded.

The algorithm just presented produces chain codes which are strictly
shorter than those produced by classical chain codes—which use exactly one
symbol for each vertex. S-3OT does not encode P1 and P2, resulting in one
less symbol for each region, then it is also able to terminate the code with
the symbol “3”, gaining possibly many more symbols.

Note that P i1 will always be in Γ, if ri is not a completely contained
regions, i.e., a region which lies entirely inside another region without being
adjacent to any other third region. This allows S-3OT to operate without
the need of starting coordinates (Property 1). In the case of a completely
contained region, one solution might be to split the containing region into
two regions to be merged again while decoding. Also, thanks to the way P i1
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Table 6.2: Average results over the BSDS500 dataset

30 regions 150 regions 600 regions

length F4, AF4, 3OT 23020,576 32110,896 49478,628
S-3OT 16316,310 23562,800 37468,274
gain over 3OT 29,12% 26,62% 24,27%

bps F4 1,996 1,998 2,000
AF4 1,550 1,560 1,568
3OT 1,307 1,303 1,305
S-3OT 1,259 1,280 1,330
gain over 3OT 3,66% 1,73% -1,85%

n. bit F4 45952,836 64161,362 98932,200
AF4 35730,788 50104,016 77571,784
3OT 30108,094 41857,964 64574,502
S-3OT 20629,048 30223,644 49815,328
gain over 3OT 31,48% 27,79% 22,86%

bpp F4 0,298 0,416 0,641
AF4 0,231 0,325 0,502
3OT 0,195 0,271 0,418
S-3OT 0,134 0,196 0,323
gain over 3OT 31,48% 27,79% 22,86%

is selected we always know that the last turn was upward and that the first
movement will go right, this allow us to avoid encoding P i1 and P i2.

6.2.4 Experimental validation

To objectively assess the quality of chain codes produced by S-3OT, we have
performed extensive tests over the 500 images in the BSDS500 dataset [67],
which has become the standard for evaluating segmentation algorithms. All
images in the dataset have a resolution of 481×321. We have performed three
scenarios, varying the number of segmentation regions: we used the SLIC
algorithm [46] to produce first 30, then 150 and finally 600 regions for all
the 500 images in the dataset. In all scenarios completely contained regions
have been removed. Then, we produced the chain codes of the segmentation
contours using F4, AF4, 3OT and S-3OT. For our comparative analysis we
have run standard chain codes region by region, using the same convention
adopted by S-3OT to avoid the need for starting coordinates (i.e., always
select the top left most not yet encoded pixel as x); as already discussed
standard chain codes do not exploit the presence of common border between
any two segmented regions.

For performance evaluation we calculated the first order entropy of each
chain code sequence to get an estimate of the coding rate measured in bit
per symbol (bps). In Table 6.2, the average performance over the 500 images
in the dataset over the three scenarios are reported in terms of length of the
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Table 6.3: Average symbol frequencies over the BSDS500
dataset

0 1 2 3

F4 0,2553 0,2447 0,2553 0,2447
AF4 0,4182 0,2778 0,3040 -
3OT 0,4182 0,5051 0,0767 -
S-3OT 0,5806 0,3523 0,0555 0,0116

chain code sequence, bit per symbol estimate and image compression rate
expressed in bpp. In Table 6.3 the average frequencies of each symbol for
each chain code are reported as well; this table confirms that S-3OT complies
well with Property 3. In can be noted that, although the added symbol to
the 3OT alphabet weighs a little bit on the bps scores of S-3OT, the smaller
number of symbols and the higher asymmetry in the symbol frequencies
compensate for that, letting the overall number of bits (and corresponding
compression rate) be the best with respect to all other techniques with a gain
of 31%, 28% and 23%, for the cases with 30, 150 and 600 regions, respectively.
This gain is clearly explained by S-3OT capacity to efficiently encode already
known borders, either using symbol “0” or “3”.

It can be also noted that S-3OT gains are larger when the number of
regions to be coded is lower. In fact, bigger regions will have longer shared
borders; then, every time a symbol “3” is inserted, it’s going to avoid the
encoding of larger portions of the border. Also, the symbol “0” is going to
be used more often.

As a side note, among the classical chain codes, our tests also confirm
the better performance of 3OT over F4 and AF4. This results are consistent
with those reported in other studies [73], [74].

We decided not to test our approach against JBIG because the proposed
algorithm produces a chain code that needs to be encoded properly. Since
the definition of the best encoder was out of the scope of this study, any
comparison with a full fledged compression standard would have been un-
practical and meaningless. However, many studies have proved that properly
encoded chain codes are able to outperform JBIG [73], [74], [78].

6.2.5 Conclusions

We proposed a framework to encode image segmentation contours using a
chain code able to exploits the characteristics of the domain. The proposed
approach produces strictly shorter sequences than classical chain codes and,
although it requires one extra symbol, we demonstrated how it is able to
outperform the other chain codes thanks to its highly skewed symbol fre-
quencies and its shorter sequence length. We tested our approach on over
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1500 images, proving a bit per pixel gain of over 27% compared with clas-
sical 3OT. Future work might be oriented in finding a proper context-based
entropy coding to further compress S-3OT symbol sequence and to test its
competitiveness against the well established JBIG.
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Part II

Laplacian Anomaly Detector
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Chapter 7

Introduction

In this part we aim at using graphs to tackle image anomaly detection, which
is the task of spotting items that don’t conform to the expected pattern of the
data. In the case of images, anomaly detection usually refers to the problem
of spotting pixels showing a peculiar spectral signature when compared to
all other pixels in an image. Target detection is considered one of the most
interesting and crucial tasks for many high level image- and video-based ap-
plications, e.g., surveillance, environmental monitoring, and medical analysis
[79], [80]. One of the most used and widely validated techniques for anomaly
detection is known as Reed-Xiaoli Detector, RX Detector for short [81]. To
this date graph-based approaches have not been proposed for image anomaly
detection, although many techniques for anomaly detection on generic graphs
have been explored in literature [82]. Those techniques cannot be extended
to image straightforwardly since they usually exploit anomalies in the topol-
ogy of the graph to extract knowledge about the data [2]. On the other hand,
in the image case the graph topology is constrained to the pixel grid whereas
different weights are assigned to edges connecting pixels depending on their
similarity or correlation.

Our proposed approach uses an undirected weighted graph to model the
expected behavior of the data, and then computes the distance of each pixel
in the image from the model. We propose to use a graph to model spectral
or both spectral and spatial correlation. The main contribution of this study
is to generalize the widely used RX Detector, leveraging on graph signal pro-
cessing. Our novel anomaly detector estimates the statistic of the background
using a graph Laplacian matrix: this overcomes one of the well known limita-
tions of RX Detector, i.e., its need to estimate and invert a covariance matrix.
Estimation of the covariance may be very critical in presence of small sample
size; moreover, inverting such matrix is also a complex, badly conditioned
and unstable operation [83]. Also, the graph model used by our approach is
abstract and flexible enough to be tailored to any prior knowledge of the data
eventually available. Finally, the effectiveness of our methodological contri-
butions is shown in two use-cases: a typical hyperspectral anomaly detection
experiment and a novel application for tumor detection in 3D biomedical
images.
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This part is organized as follows: we will first give a brief overview of
RX Detector in Chapter 8, then we will present our technique in Chapter 9;
we will then evaluate performance of our technique and compare our results
with those yielded by RX Detector both visually and objectively in two test
scenarios in Chapter 10 and Chapter 11 respectively, and conclusions will be
drawn in Chapter 12.

The content of this part is based on three papers we presented at various
image processing-related international conferences over the past years [84]–
[86] and an article currently under review for journal publication [87].
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Chapter 8

Background

Existing techniques for target detection can be divided into two categories:
supervised and unsupervised. The former rely on prior information over the
spectral signatures of the objects of interest. Typically, techniques of this
family detect targets by selecting all the pixels with spectral characteristics
highly correlated to the referenced ones [88], [89]. However, in many real sce-
narios, either the target characteristics or accurate spectral calibrations are
difficult to determine in advance. To deal with such situations, unsupervised
target detection, i.e., anomaly detection, is preferable.

Detecting anomalies in multispectral/hyperspectral images refers to the
task of distinguishing anomalous or peculiar pixels, which shows spectral sig-
natures significantly different from their neighbor ones [90]. Distinguishing
these outliers is crucial in image analysis as they often represent unusual oc-
currences that need further investigation [91]. In general, the typical strategy
for anomaly detection involve extracting knowledge for background descrip-
tion and then employing some affinity function to measure the deviation of
the examined data from the learned knowledge.

8.1 RX Detector

Among all the works in anomaly detection literature, the best known and
more used is RX Detector (RXD) proposed by Reed and Yu [81]. RXD is still
recognized as the benchmark method for many multispectral/hyperspectral
detection applications [90], [92]–[94]. In this method, a non-stationary multi-
variate Gaussian model is assumed to characterize the conditional probability
density function of background pixels around the target. After estimating
mean and covariance on the basis of the image content, the Mahalanobis dis-
tance [65] between each pixel and the statistical model is computed and, if it
turns to be larger than a certain threshold, the pixel is assessed as anomalous.

Formally, RXD works as follows. Consider an image I = [x1x2 . . .xN ]

consisting of N pixels, where the column vector xi = [xi1xi2 . . . xim]T repre-
sents the value of the i-th pixel over the m channels (or spectral bands) of
I. The expected behavior of background pixels can be captured by the mean
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vector µ̂ and covariance matrix Ĉ which are estimated as:

µ̂ =
1

N

N∑
i=1

xi , and Ĉ =
1

N

N∑
i=1

xix
T
i . (8.1)

where xi = (xi − µ̂).
Mean vector and covariance matrix are computed under the assumption

that vectors xi are observations of the same random process; it is usually
possible to make this assumption as the anomaly is small enough to have
negligible impact on the estimate [95].

Then, the generalized likelihood of a pixel x to be anomalous with re-
spect to the model Ĉ is expressed in terms of the square of the Mahalanobis
distance [65], as:

δRXD(x) = xT Q̂ x , (8.2)

where Q̂ = Ĉ−1, i.e., the inverse of the covariance matrix, also known in
literature as the precision matrix.

Finally, a decision threshold η is usually employed to confirm or refuse
the anomaly hypothesis. A common approach is to set η adaptively as a
percentage of δRXD dynamic range as:

η = t· max
i=1,...,N

(δRXD(xi)) , (8.3)

with t ∈ [0, 1]. Then, if δRXD(x) ≥ η, the pixel x is considered anomalous.
Despite its popularity, RXD has shown high false positive rate (FPR) in

many applications [92], [94], [96]. There are two main known problems with
RXD that lead to its poor practicality. The first is that there is no guarantee
the multivariate Gaussian model will provide an adequate representation
for background in all cases, particularly when there are multiple materials
and textures [92], [95], [96]. The other problem is that (8.2) involves the
estimation and inversion of a high-dimensional covariance matrix, frequently
under a small sample size [83], [92]. These operations are highly complex,
badly conditioned and unstable. Another aspect worth noticing is that RXD
lacks spatial awareness: every pixel is evaluated individually extrapolated
from its context. Some approaches have been proposed to address these
limitations, which provide a lot of variants over the core idea of RXD, such
as selective KPCA RXD [97], subspace RXD [98], kernel RXD [99], minimum
covariance determinant RXD [100], random-selection-based anomaly detector
(RSAD) [90], and compressive RXD [91].
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8.2 RXD as an inverse of the PCA

An interesting property of RXD, is that it can be considered as the inverse
operation of the principal component analysis (PCA). PCA decorrelates a
data matrix so that different amounts of the image information can be pre-
served in separate component images, each representing a different piece of
uncorrelated information. PCA has been widely used to compress image
information into a few major principal components specified by the eigenvec-
tors of Ĉ that correspond to large eigenvalues. It is not designed to be used
for detection or classification. However, if the image data contain interesting
target pixels which occur with low probabilities in the data (i.e., the size of
target sample is small), these targets won’t show in major principal com-
ponents, but rather in components specified by the eigenvectors of Ĉ that
are associated with small eigenvalues. This phenomenon was observed and
demonstrated in [101].

More precisely, let’s assume that κ1 ≥ κ2 ≥ . . . ≥ κm are the eigenvalues
of the m × m covariance matrix Ĉ, and {v1,v2, . . . ,vm} is its set of unit
eigenvectors with vj corresponding to κj . We can then form the matrix
V = [v1v2 . . .vm] with the j-th column specified by vj . V can be used to
decorrelate the signal by diagonalizing Ĉ into the diagonal matrix K whose j-
th diagonal element is κj , such that VT ĈV = K and VT Q̂V = K−1. Then,
we can compute y = VTx, which is known as KLT. Data dimensionality
reduction via PCA usually involves computation of y using just the first
p� m columns of V. As shown in [101], (8.2) can be expressed as function
of y as

δRXD(x) = xT Q̂ x

= (Vy)T Q̂ (Vy)

= yT (VT Q̂V) y

= yTK−1y

=
∑m

j=1 κ
−1
j y2j ,

(8.4)

where yj represents the j-th element of the KLT vector y.
RXD detects anomalous targets with small energies that are represented

by small eigenvalues. This is because, according to (8.4), the smaller the
eigenvalue is, the greater its contribution to the value of δRXD is. When
seeing RXD in this formulation, it is quite evident that the last components,
which are those containing mostly noise, are actually weighted the most. To
improve the result of RXD a value p � m can be determined [102]. Then,
the eigenvalues beyond the first (greater) p will be considered to represent
components containing only noise and will be discarded. We then obtain a
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de-noised version of RXD that can be expressed as:

δpRXD(x) =

p∑
j=1

κ−1j y2j . (8.5)

Obviously, δmRXD = δRXD.
The issue of determining p was addressed in [102], [103] and is closely

related to the problem of determining the intrinsic dimensionality (ID) of
the image signal. Empirically, p is usually set such that a desired percentage
ψ ∈ [0, 1] of the original image cumulative energy content is retained. The
cumulative energy content of the first p principal components of an image
I = [x1x2 . . .xN ] can be expressed in terms of its KLT transform Y = VT I =

[y1y2 . . .yN ] where I = [x1x2 . . .xN ] as:

e(I, p) =
N∑
i=1

p∑
j=1

y2ij , (8.6)

where yij is the j-th element of the vector yi. We then choose the smallest
p ∈ [1,m], such that e(I, p)/e(I,m) ≤ ψ. Commonly for dimensionality
reduction applications ψ = 0.9, but for anomaly detection purposes that
value might be too low, given we don’t want to risk to lose the anomaly. In
this case, ψ = 0.99 is usually more appropriate.
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Chapter 9

Laplacian Anomaly Detector

In this work we exploit the analogy between KLT and GFT in the framework
of anomaly detection. In the GFT definition the role of the covariance matrix
in the KLT is taken by the graph Laplacian. It turns out that L can be
exploited also in the inverse problem of anomaly detection according to (8.4).
We here propose a novel algorithm for image anomaly detection, which we
will refer to as Laplacian Anomaly Detector (LAD). LAD overcomes some
of the known limitations of RXD exposed in Section 8.1: it can be used to
avoid problematic covariance matrix estimate and inversion, and it is able to
include spatial information as well as a priori knowledge, when available.

9.1 Construction of the graph model

Given an image I composed of N pixels and having m spectral bands or
channels, we first build an undirected graph G = (V, E) to serve as the model
for the background pixels in the image. The graph is used to model local re-
lations between pixels values and can be constructed to capture spectral and
spatial characteristics. Topology and weights of the graph have to be cho-
sen accordingly with the domain. We will discuss some general construction
strategies in Section 9.3 and Section 9.4. The chosen graph will be described
by a weight matrix W, from which a Laplacian matrix L will be computed
according to the procedure detailed in Section 2.1. The use of the symmetric
normalized Laplacian, contructed as in (2.2), in place of the unnormalized
combinatorial one is to be preferred for the reasons expressed in Section 2.1.
Also, Lsym proved to be preferable in similar domains, e.g., segmentation
and classification [104], [105].

9.2 Graph-based anomaly detection

Given a pixel x, we define a corresponding graph signal s, e.g., describing the
spectral bands of x or its spatial neighborhood, and compute the distance of
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x from the model as:

δLAD(x) = sT L s

= (Us̃)T L (Us̃)

= s̃T (UTLU) s̃

= s̃T Λ s̃

=
∑m

j=1 λj s̃
2
j ,

(9.1)

where s̃j represents the j-th element of the GFT vector s̃, and U and Λ refer
to the eigenvector and eigenvalue matrices used for the eigen decomposition
of L in (2.3). Although this formulation might look similar to the one of
RXD given in (8.4), some important differences have to be noted. First, the
model used is not the inverse of the covariance matrix Ĉ−1, but an arbitrary
Laplacian model; this is a generalization over RXD, because if the image
follows a gaussian Markov random field (GMRF) model, then a Laplacian
can be constructed to estimate the precision matrix [5], but if this is not the
case a Laplacian model can be computed according to any knowledge of the
domain. Second, the Laplacian matrix can be used to capture both spatial
and spectral characteristics as we will detail in Section 9.4. Another thing
to notice is that in (9.1) each contribution s̃j is multiplied by λj whereas in
RXD each yj was instead divided by the corresponding eigenvalue κj .

As already discussed for RXD, we can also use a de-noised version of the
GFT where only the first smaller p� m eigenvectors are kept, removing the
higher and noisier frequencies and obtaining:

δpLAD(x) =

p∑
j=1

λj s̃
2
j . (9.2)

The parameter p is determined accordingly to the percentage of retained
cumulative energy, following the approach presented in Section 8.2.

Finally, a decision threshold over δLAD is needed to determine if a pixel
is anomalous or not. An approach similar to the one described in Section 8.1
can be employed.

9.3 Spectral graph model

As already mentioned, the graph model is used to characterize the typical
behavior around the pixel being tested for anomaly. Analogously to standard
RXD, the graph can be employed to model only the spectral relations: in
this case, the vertex set V consists of m nodes, each one representing one
of the spectral bands; then, we connect each pair of nodes (bands) with an
edge, obtaining a fully-connected graph. An example of this topology for a
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(a) Spectral con-
nectivity

(b) Spatial connec-
tivity

Figure 9.1: Example of 3-band graph connectivity: the
spectral components are fully connected, while spatially pix-

els are 4-connected.

3-bands image is given in Figure 9.1a. A weight is then assigned to each
edge: if some a priori knowledge about inter-band correlation is available it
can be used to set weights accordingly; if this is not the case, a possibility
is to use the image data to estimate the weights. Also, for each pixel x, the
graph signal s will contain exactly the value of that pixel over the m bands,
after removing the mean; thus, s = x.

Under the assumption that the image follows a GMRF model, we might
use partial correlation as weight, as proposed by Zhang and Florêncio [5]. To
this end, given the precision matrix Q̂ = Ĉ−1, estimated according to (8.1),
we can set the weight of the edge connecting nodes i and j as:

wij = − Q̂(i, j)√
Q̂(i, i) Q̂(j, j)

. (9.3)

Note that wii = 0 as we don’t include self loops. However, this approach
still relies on the estimate and inversion of the covariance matrix that, as we
already discussed, might be unreliable (especially in presence of a small data
sample) as well as expansive to compute: matrix inversion requires O(m3)

time [106].
Another possibility is to use the Cauchy function [107], which is com-

monly used as graph weight in other applications [7], [108]. We propose to
set the weight of the edge connecting bands i and j, according to the mean
vector µ̂ = [µ1µ2 . . . µm]T estimated as in (8.1), as

wij =
1

1−
(
µi−µj
α

)2 , (9.4)
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where α is a scaling parameter. In this study we decided to set α =
1
m

∑m
i=1 µi, to normalize all values according to the mean range of the bands.

The advantages of this approach are two-folded: one avoids using unreliable
correlation estimates, and does not require matrix inversion thus reducing
the computational cost significantly.

Although other approaches to estimate graph weights might be devised,
in this study we will limit the analysis to these ones.

9.4 Integration of spatial information in the graph

One of the advantages of using a graph-based approach is the flexibility of
the model. For example, by augmenting the graph topology to include edges
connecting each node to nodes describing the same band for the neighboring
pixels, as shown in Figure 9.1b, one is able to include spatial information in
the model. We will refer to this spatially-aware version of LAD as LAD-S.

When considering the case of 4-spatially-connected nodes, the resulting
graph will be composed of 5m nodes; therefore, the weight matrix W, as well
as the corresponding Laplacian matrix L, will be a 5m×5m matrix. We can
construct the weight matrix as:

W(i, j) =



w′ij if nodes i, j represent different

bands of the same pixel,

w′′ij if nodes i, j belong to the same

band of 4-connected pixels,

0 otherwise,

(9.5)

where w′ij and w′′ij are some spectral and spatial correlation measures, re-
spectively.

Then, to compute the distance of a pixel x from the model, a graph
signal s is constructed concatenating the vector corresponding to x and its
4-connected neighbors; also in this case the mean value, i.e., µ̂, is subtracted.
It follows that the vector s will have length 5m.

The spectral weights w′ij can be estimated as proposed in previous section.
The weights w′′ij can be used to enforce a spatial prior: as an example in the
following experimental analysis we will set uniform spatial weights w′′ij = 1.
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Chapter 10

Hyperspectral remote sensing

To objectively evaluate LAD’s performance, we selected a couple of scenarios
in which the use of RXD has been proposed. The first one is, of course,
hyperspectral remote sensing, which is one of the most common use case for
anomaly detection where the use of RXD is widely validated [79]; the second
will be the domain of tumor detection on positron emission tomography
(PET) images, where we successfully explored the use of RXD in the past
[84]–[86]. We’ll discuss this second scenario in Chapter 11.

Whereas the human eye sees color of visible light in mostly three bands
(red, green, and blue), spectral imaging divides the spectrum into many
more bands. When this technique of dividing images into bands is extended
beyond the visible, we talk about hyperspectral imaging. For remote sensing
applications, hyperspectral sensors are typically deployed on either aircraft
or satellites. The data product from these sensors is a three-dimensional
array or “cube” of data with the width and length of the array corresponding
to spatial dimensions and the spectrum of each point as the third dimension.

10.1 The dataset

The scene [109] used in this study was collected by the 224-bands AVIRIS
sensor over Salinas Valley, California, and is characterized by high spatial
resolution (3.7-meter pixels). The area covered comprises 512 lines by 217
samples. As is common practice [95], we discarded the 20 water absorption
bands, i.e., bands (108-112, 154-167, 224). This image was available only
as at-sensor radiance data. It includes vegetables, bare soils, and vineyard
fields. A classification ground truth containing 16 classes is provided with the
scene. A sample band of the image together with the classification ground
truth is shown in Figure 10.1.

To evaluate LAD in this scenario we tested it on both real and syntetic
anomalies.

For the scene containing a real anomaly, we cropped a 200× 150 portion
of the scene and manually segmented a construction which was visible in
the cropped area: as the scene mostly contains fields of various kinds, this
human-made construction was a good anomalous candidate. This setup,
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(a) (b)

Figure 10.1: The full 512×217 Salinas scene. Band 70 (A)
is shown together with the classification ground truth (B).

which we will call “Real”, is shown in Figure 10.2a together with its ground
truth in Figure 10.2b.

To obtain a synthetic anomaly, we used the target implant method [110].
The 150 × 126 binary mask image M shown in Figure 10.3b has been con-
structed by generating six squares having sides measuring from 1 to 6 pixels
arranged in a line. The six squares have been then copied in reverse order and
arranged in another line at close distance. The two lines have finally been
rotated by an angle of approximatively π/6. The pixels inside the squares
have value of 1, while the rest of the pixels in M have value 0. Then we
cropped a region I from the scene, having the same dimension as the mask,
and we built the modified image I′ containing the implanted target as:

I′(i, j) = M(i, j) · Φ(k) + (1−M(i, j)) · I(i, j) , (10.1)

where Φ is a function that, given a parameter k ∈ [1, 16] returns a random
pixel from the region of the Salinas scene having class k according to the
classification ground truth shown in Figure 10.1b. In the following discussion,
for conciseness, we will limit the analysis to two synthetic setups with k = 14

and k = 4, respectively. The two representative values have been chosen since
RXD achieves the best performance on the former and the worst one on the
latter. We will refer to them as “Impl-14” and “Impl-4” respectively. A sample
band from the “Impl-14” setup is shown in Figure 10.3a.
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(a) Band 70 of
Salinas scene

(b) Ground truth

(c) Output of
δRXD

(d) δRXD thresh-
olded (t = 0.16)

(e) Output of
δLAD

(f) δLAD thresh-
olded (t = 0.46)

Figure 10.2: “Real” setup and algorithm outputs. LAD
results have been obtained using LC .
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(a) Band 70 of
Salinas scene

(b) Ground truth

(c) Output of
δRXD

(d) δRXD thresh-
olded (t = 0.26)

(e) Output of
δLAD

(f) δLAD thresh-
olded (t = 0.22)

Figure 10.3: “Impl-14” setup and algorithm outputs. LAD
results have been obtained using LC .
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10.2 Experiments

We are interested in evaluating the detection accuracy of LAD using the
Laplacian model built over the partial correlation weights (LQ) and the one
built using Cauchy distance (LC). Also, we want to test both the spectral
version of LAD, and its spatially-aware variant LAD-S. The results will be
compared with those yielded by classic RXD. We want also to confirm with
our experiments one of the known limitations of RXD enunciated in Sec-
tion 8.1, namely how inclusion of spatial information in RXD is detrimental
to its performance, to demonstrate how our approach overcomes this limita-
tion. To this end, we develop a version of RXD, which we will refer to as
RXD-S, which takes not a single pixel vector as input, but a vector z contain-
ing the pixel under test together with those 4-connected to it, similarly to
the input of LAD-S. Mean vector and covariance matrix are then estimated
using the z vectors, and the distance from that statistics is computed.

Figure 10.2 and Figure 10.3 show visual results by LAD (LC) approach
compared to the ones yielded by RXD on the “Real” and “Impl-14” setups
respectively. It can be clearly noticed the lower number of false positives LAD
is able to achieve against RXD (Figure 10.2d and Figure 10.3d). The raw
images shown in Figure 10.2c, Figure 10.2e, Figure 10.3c and Figure 10.3e
prove that the technique is able to enhance contrast between anomalies and
background and that the δ distance matrix is less subject to noise.

Figure 10.4 shows the Receiver Operating Characteristic (ROC) curves
for the three hyperspectral test cases. The scale of the FPR axis has been en-
hanced, as common in anomaly detection studies [111]–[113], given the great
difference in scale between the number of negative pixels and positive ones.
It can be noticed how in all the hyperspectral scenarios our approach outper-
forms RXD. It can be noticed that the inclusion of spatial information yields
limited improvements on the hyperspectral scenarios. When comparing re-
sults obtained by LAD using LQ or LC it can be noticed how performance
are often very similar. This is a remarkable result, also considering that LC

creates a model of the background without the need for matrix inversions,
so it proves to be both quicker and equally precise.

To further compare performance yielded by the different approaches, we
also use the standard Spatial Overlap Index (SOI) [114], also known as Dice
Similarity Coefficient (DSC) [115], which can be computed as

SOI =
2(A ∩B)

A+B
(10.2)

where A and B are two binary masks (i.e., the ground truth or Region of
Interest (ROI) and the output of an automatic algorithm); the intersection
operator is used to indicate the number of pixels having value 1 in both
masks, while the sum operator indicates the total number of pixels having
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Figure 10.4: ROC curves for the hyperspectral testing sce-
narios
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Table 10.1: Experimental results

“Real” “Impl-14” “Impl-4” Average

RXD 0.685 0.445 0.045 0.392
RXD-S 0.339 0.584 0.104 0.342

LAD (LQ) 0.806 0.941 0.525 0.757
LAD-S (LQ) 0.818 0.898 0.540 0.752

LAD (LC) 0.761 0.959 0.495 0.738
LAD-S (LC) 0.697 0.919 0.409 0.675

value 1 in the two masks. SOI is also equivalent to the statistical F1-score,
which is the harmonic mean of precision and sensitivity, and is usually defined
in term of Type I and Type II errors as

F1 =
2 · true positive

2 · true positive + false positive + false negative
(10.3)

The equality between (10.2) and (10.3) can be easily demonstrated consid-
ering that A ∩ B contains the true positive pixels/voxels, and that if we
consider that A = (true positive + false positive) and B = (true positive +

false negative), then also the denominator in (10.2) equals the one in (10.3).
Clearly, to compute the SOI metric one needs to select the threshold t to
identify the anomaly subset B. Many approaches [116]–[118] have been pro-
posed in the literature to deal with the problem of choosing the optimal
threshold. In this work we select the value of t yielding the highest SOI,
i.e., striking the best balance between TPR and FPR on the ROC curve in
terms of SOI. This choice allows us to compute a single objective metric to
compare the analyzed methods. As an alternative we could also use Area
Under the Curve (AUC), which measures the area under each ROC curve;
we decided to avoid such metric since it has been recently criticized for being
sensitive to noise [119] and for other significant problems it shows in model
comparison [120], [121].

Table 10.1 shows all SOI results of our tests. In the hyperspectral use case
our approach is able to outperform RXD in any of its variants. This results
are consistent with those presented by the ROC curves. The inclusion of
space information doesn’t seem to bring any improvement to the performance
in this scenario, according to SOI scores.

Finally, in Table 10.2 we show results of the de-noised version of both
LAD and RXD, which we call LADp and RXDp, respectively. In this case,
the value of p has been chosen according to the cumulative energy as de-
scribed in Section 8.1, setting ψ = 0.99. It can be noticed how RXD is able
to gain the most from dimensionality reduction. This results can be explained
considering the distribution of energy in the eigenspace decomposition. For
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Figure 10.5: Energy and eigenvalue curves for the “Impl-
14” scenario
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Table 10.2: Experimental results after dimensionality re-
duction

“Real” “Impl-14” “Impl-4” Average Gain (%)

RXDp 0.930 0.965 0.355 0.750 +62.98
RXD-Sp 0.590 0.687 0.449 0.575 +44.52

LADp (LQ) 0.806 0.941 0.521 0.756 -0.95
LAD-Sp (LQ) 0.817 0.928 0.579 0.775 +3.58

LADp (LC) 0.789 0.951 0.535 0.758 +2.15
LAD-Sp (LC) 0.706 0.945 0.423 0.691 +2.64

“Impl-14” scenario, in Figure 10.5 we show the cumulative energy distribution
in the different eigenspaces together with the corresponding eigenvalues κ−1j
and λj (that are used to weight the different contribution in (8.5) and (9.2)
respectively). It can be noticed that in the RXD case (Figure 10.5a) energy
is better compacted into few eigenspaces with respect to LAD (Figure 10.3c).
At the same time it can be observed that the distribution of κ−1j in RXD
dramatically amplifies the last eigenspaces, i.e., the noise components, ac-
cording to (8.5). On the contrary, this phenomenon does not affect LAD
since the distribution of eigenvalues λj is not peaked on the last eigenspaces.
It follows that the effect of noise in (9.2) is mitigated by construction and
the benefit of dimensionality reduction is limited. Indeed, it can be noted
that results obtained by RXD after dimensionality reduction are in line with
those obtained by LAD in its simple form. Being the eigen-decomposition
a costly operation, on a par with matrix inversion, the use of LAD (LC),
which doesn’t require any matrix inversion or eigen-decomposition, might be
preferable.

All these tests confirm that the use of our approach is preferable to RXD,
and that Laplacian estimated using Cauchy distance is able to perform as well
as the one estimated using partial correlation. Once again, this is remarkable
as the former doesn’t require any matrix inversion, while the latter does.
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Chapter 11

Tumor segmentation in PET
sequences

Proper segmentation of tumors in medical images is crucial in oncology as
treatment plans rely on information on the tumoral region. The tumor vol-
ume should be identified as precisely as possible since errors in this estimate
can lead to treatments that can be either ineffective or dangerous [122].

Manual segmentation by medical staff has been proven to be subjective,
inaccurate and time consuming [123]; for this reason, the need for automatic
methods for tumor region contouring is growing. PET images carry informa-
tion about cells metabolism and are therefore suitable for this task; however,
PET segmentation remains an open problem mainly because of limited image
resolution and presence of acquisition noise [117].

Given the task complexity, many automatic or semi-automatic algorithms
for PET segmentation have been proposed to this date. However quality vali-
dation of these techniques’ results is still to be resolved, due also to the lack of
standard guidelines by radiation oncology and nuclear medicine professional
societies [117].

In images produced by PET scans the intensity of a voxel represents
local concentration of the tracer. In particular, fluorodeoxyglucose-based
PET (FDG-PET) is used to detect tissue metabolic activity by virtue of
the glucose uptake. During normal cell replication, multiple mutations in
the DNA can lead to the birth of cancer cells. By their nature, these cells
lack the ability to stop their multiplication when reaching a certain point,
raising cell density in their region and leading to insufficient blood supply.
The resulting deficiency in oxygen (hypoxia) forces the cells to rely mostly on
their anaerobic metabolism, i.e., glycolysis [122]. For this reason, glycolysis
is an excellent marker for detecting cancer cells; FDG-PET — in which the
tracer’s concentration indicates a glucose uptake in the imaged area — turns
out to be a suitable tool for recognizing tumoral masses, cancer metastasis
and lymph nodes all at once [124].
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The most commonly used unit in FDG-PET is called Standardized Up-
take Value (SUV) which is defined as [125]:

SUV =
radioactivity concentration [Bq/kg] · body mass [kg]

injected activity [Bq]
(11.1)

It aims to be a quantitative measure of tracer uptake able to normalize the
images between different patients, but its misuse is often criticized [126].

There are two ways to acquire PET scans: statically or dynamically. The
majority of PET scans used nowadays are acquired in static mode [117]: a
single acquisition is performed which results in a single value of the tracer
uptake integrated per imaged volume (i.e., voxel). When performing dynamic
scans, instead, tracer activity is measured inside different time windows,
resulting in a time-activity curve (TAC) for each voxel [127]. The shape of
these TACs, usually found by interpolation over a number of time points,
carries information on the rate of tracer accumulation which conveys specific
tissue biochemical properties over time [128].

In static PET, the most common techniques that have been proposed for
tumor segmentation are thresholding algorithms: a threshold value on the
SUV is selected to separate the tumor from background [129]. Other types of
techniques found in literature for static PET are variational approaches based
on deformable active contours [130], learning methods with and without su-
pervision, and stochastic models mainly based on Expectation-Maximization
(EM) algorithm [131].

In dynamic PET (dyn-PET), the analysis is focused on the shape of
TACs instead of single voxel values; in this way the temporal information is
used to improve segmentation quality [132]. Clustering techniques have been
proposed in literature [123]. In this group of algorithms FCM-SW leverages
on the Fuzzy c-Means algorithm and is reported to perform well [117], [133].
Stochastic approaches can be found as well: O’Sullivan [134] proposed a
mixture model that expresses a voxel-level TAC as a combination of scaled
sub-TACs. However, methods of this kind usually do not consider spatial
relationship among voxels. Some algorithms including spatial distance have
been proposed [135], but being designed for brain images, where regions
have similar dimensions, they are rather inefficient in the case of whole body
images, where sizes are quite different [132].

11.1 RX Detector for tumor segmentation

In [84]–[86] we explored a novel approach for automatic tumor segmentation
on dyn-PET images leveraging on RXD, we are going to present the proposed
approach in this section. The technique works on two PET acquisitions; the
second scan (6 minutes long) is acquired at most one hour later than the first
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Figure 11.1: The three FDG-PET images of one of the
sample patients; (1) is the early scan (ES, 144×144×213 px),
(2) and (3) are constructed integrating the delayed scan in
3 minutes time windows (DS1 and DS2, 144×144×45 px).
Only the area containing the tumor is acquired in the de-
layed scan. These images, originally in grayscale, are here

displayed using a Fire lookup table.

one. Every scan can be reconstructed in a variable number of images, each
collecting events occurred in a given time window. For that study, the first
acquisition has been reconstructed into a single full body image (called early
scan, ES) while from the second one two images are constructed (delayed
scans, DS1 and DS2), integrating respectively events occurred in the first 3
minutes and in the last 3 minutes of the second scan. The second scan
considers imaging only the area in which the physician expects the tumor to
be situated. Figure 11.1 shows an example of input for our algorithm.

In cancer cells the glucose uptake over time is peculiar compared to the
normal tissues’ one [137]; for this reason, we proposed to employ a statistical
anomaly detection approach able to detect voxels with abnormal temporal
behavior, i.e., anomalous TACs. An example of this phenomenon can be seen
in Figure 11.2.

Although, to the best of our knowledge, algorithms of this kind have never
been proposed for PET images, methodologies based on anomaly detection
can be found in literature of other medical domains, e.g., on CT images [138]
or for segmentation in endoscopic video streams [139].

The block diagram showing the main steps of the proposed algorithm is
shown in Figure 11.3. Since PET scans acquired at different time instants
are going to be used, the first processing stage is represented by image reg-
istration. In fact, the patient has left the scanner bed between the scans,
and then he/she has obviously slightly changed his/her position between the
first and the second scan. Registration of DS1 and DS2 with respect to ES is
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Figure 11.2: In (a) six points are chosen on a PET slice:
two points within the normal tissue (1 and 2), two points
within the tumor (3 and 4), one point at the boundary of
the tumor (5) and one point within the bladder (6). In (b)
the TACs of the selected points resulting from a dyn-PET

scan are shown. Image courtesy of [136].

Figure 11.3: Flowchart of the algorithm pipeline

therefore required.

11.1.1 Registration

The registration process consists in the application of a transformation to
align a moving image over a fixed one (in this study ES). The transformation
parameters are initialized and then refined by an optimizer according to a
metric. The final transformation is then applied to the moving image using
interpolation.

Since no deformation is expected, and the image has been just translated
and rotated, affine transformation has been used. It is the most common
choice in instances of rigid-body movement [140]. Then, linear interpolation
can be employed for registration, under the assumption that intensities vary
linearly between grid positions as discussed in [140]. Finally, normalized
cross-correlation has been employed as registration metric and it is optimized
by a gradient descent approach; this combination is suggested to work well
on full body monomodal PET-PET registrations [141].

The computational cost for the registration of DS2 can be reduced noticing
that both DS1 and DS2 are reconstructed from the same scan and therefore
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they share almost the same acquisition conditions. As a consequence, the
transformations leading to registration of DS1 and DS2 are expected to be
very similar. For this reason, to limit computation, we first register DS1; then,
the final transformation obtained on DS1 is provided as an initial estimate
for DS2 registration. This solution allowed us to cut by one half the number
of iterations required to register DS2.

Let us refer to the two registered images as DS1’ and DS2’; their voxels
can be considered as co-located with those of ES and The triplet of images
{ES, DS1’, DS2’} represents the input of the core part of the proposed tool,
i.e., the anomaly detection stage.

11.1.2 Anomaly detection

To apply RXD, we build a 4D matrix I, having the three spatial dimensions
as first three dimensions, and time as fourth dimension. The resulting matrix
I will then have size 144× 144× 45× 3. Then, for a generic voxel, identified
by its spatial coordinates, we define the vector x = [x1x2x3]

T as the vector
containing that voxel’s intensities over the three images {ES, DS1’, DS2’}. In
other words, RXD can be employed in this scenario if time takes the role of
the spectral dimension.

Local RX Detector

RXD assumes that background is homogeneous and follows a normal dis-
tribution, and that the noise is independent from voxel to voxel. These
assumptions are often inaccurate for real images [142], [143], as they might
be in the case of PET images. In fact, when dealing with images of the
human body, the trouble of heterogeneous background arises while passing
from a tissue type to another one; in this case the performance of RXD may
be impaired as it strongly depends on the correct estimation of the statistical
parameters (namely, mean and covariance). Troubles may arise in particular
when the parameters are estimated globally, as the assumption for all the
different tissues in the body to have homogeneous statistics might not be
accurate. An improvement to the parameters estimation may be achieved
by locally limiting the sampling to a subset of voxels using a sliding window,
chosen small enough to make the uniform background assumption verified
[142].

For all the voxels in the image, the local approach centers two concentric
windows on the voxel under test (VUT): an inner and smaller one, named
guard window, and an external one, named outer window. The size of the
guard window should approximately be the same as that of the expected
anomaly; the size of the outer window has to be large enough to make the
covariance matrix always invertible, but small enough to justify both spatial
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Figure 11.4: A 2D and 3D representation of the guard
window (in yellow) and outer window (in green) used by the

local approaches. The VUT is indicated in red.

and spectral homogeneity [142]. These windows have the shape of boxes
described by three dimensions (namely height, width and depth); when all
three dimensions are equal the shape reduces to a cube. All voxels in the
outer window, except those in the guard window, are then used to estimate
mean and covariance needed by RXD to assess if the VUT is anomalous or
not. The area where the statistics are going to be computed will therefore
assume the aspect of a box with a “hole” corresponding to the guard window.
In the center of these concentric boxes there will be the VUT. In Figure 11.4
a graphical representation of this setup is shown.

11.2 Experiments

In this study, we used a dataset comprising 8 patients, that has been made
available by the IRCCS-FPO for research purposes. All the acquisitions have
been made using a Philips Gemini TF PET/CT. To this end, we acknowledge
the precious aid of nuclear medicine physicians who have manually segmented
the ROIs on the PET images, setting up the ground truth for evaluating the
performance yielded by the proposed tools. We will refer to this setup as
“Tumor”.

Also in this scenario, we are interested in evaluating the detection accu-
racy of LAD using both Laplacian models, LQ and LC , and compare our
results with those yielded by classic RXD, RXD-S and the local variant of
RXD presented in Section 11.1.2, which we will refer to as RXD-L.

Regarding this setup, a thing to notice is that we use 6-connectivity,
which is the extension of 2D 4-connectivity to 3D space, for both RXD-S
and LAD-S, since we are dealing with voxels and 3D volumes.
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Table 11.1: Experimental results (“Tumor” scenario)

Average (SOI)

RXD 0.570
RXD-S 0.543
RXD-L 0.572

LAD (LQ) 0.362
LAD-S (LQ) 0.592

LAD (LC) 0.427
LAD-S (LC) 0.560

To compare performance yielded by the different approaches, we use SOI
as presented in (10.2). Once again, in this study we selected the value of t
yielding the highest SOI, for the reasons expressed in Section 10.2.

Table 11.1 shows the average SOI results of our tests over the patient
dataset. The inclusion of spatial information in the graph slightly improves
the SOI metric. It can be even more clearly noticed how, on average, RXD is
not able to benefit at all from the inclusion of spatial information, obtaining
lower scores: on average, SOI score drops down from 0.57 to 0.543. On
the other hand, LAD is able to gain from the spatial model, e.g., LAD
(LC) goes from a SOI score of 0.427 to one of 0.56 when including spatial
information. The benefit of including spatial information is more noticeable
in this scenario because in this case the spectral dimension is reduced to only
3 bands, representing 3 different acquisitions in time (as opposed to the 204
spectral bands of the hyperspectral images). In this scenario we don’t present
results after dimensionality reduction because the spectral dimensions were
already very few.

Also in this scenario the use of LAD is able to obtain performance similar
when not better than RXD in all its variances. Once again has to be noted
that LAD (LC) doesn’t require any matrix inversion, and is therefore faster
and more robust than RXD.
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Chapter 12

Conclusions

In this part we presented Laplacian Anomaly Detector, a graph-based al-
gorithm aiming at detecting targets by virtue of a Laplacian model of the
image background. A couple of approaches to the graph construction are
proposed. When comparing to RX Detector, one of the main advantages of
our technique is its ability to model the image content without the need for
matrix inversions. Both visual inspection and objective results show how the
proposed approach is able to outperform RXD consistently on hyperspectral
images. Experiments conducted on PET images show that in that domain,
the proposed technique leveraging on a spatially-aware graph is able to out-
perform RXD. Future direction might be devoted to evaluate LAD ability to
detect anomalies on generic non-image graphs.
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