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Abstract 

This research extends the field of hyperspectral target detection by developing autonomous 

anomaly detection and signature matching methodologies that reduce false alarms relative to existing 

benchmark detectors, and are practical for use in an operational environment.  The proposed anomaly 

detection methodology adapts multivariate outlier detection algorithms for use with hyperspectral datasets 

containing tens of thousands of non-homogeneous, high-dimensional spectral signatures.  In so doing, the 

limitations of existing, non-robust, anomaly detectors are identified, an autonomous clustering 

methodology is developed to divide an image into homogeneous background materials, and competing 

multivariate outlier detection methods are evaluated for their ability to uncover hyperspectral anomalies.  

To arrive at a final detection algorithm, robust parameter design methods are employed to determine 

parameter settings that achieve good detection performance over a range of hyperspectral images and 

targets, thereby removing the burden of these decisions from the user.  The final anomaly detection 

algorithm is tested against existing local and global anomaly detectors, and is shown to achieve superior 

detection accuracy when applied to a diverse set of hyperspectral images. 

The proposed signature matching methodology employs image-based atmospheric correction 

techniques in an automated process to transform a target reflectance signature library into a set of image 

signatures.  This set of signatures is combined with an existing linear filter to form a target detector that is 

shown to perform as well or better relative to detectors that rely on complicated, information-intensive, 

atmospheric correction schemes.  The performance of the proposed methodology is assessed using a range 

of target materials in both woodland and desert hyperspectral scenes.   



v 

AFIT/DS/ENS/07-07 

Acknowledgments 

First and foremost, I thank my Heavenly Father for blessing me with the strength 

and energy to complete this research.  Without His divine grace, I am quite certain I 

would not have made it this far.  Second, I thank my wife and children for making just as 

many sacrifices as I did, if not more, in achieving this goal.  Pursuing a doctorate degree 

is no trivial matter in and of itself.  Doing so with a family of seven children makes for a 

tremendously difficult challenge that can only be overcome through teamwork, 

understanding, and patience—thank you for all of your support. 

Next, I would like to express my gratitude to my advisor, Ken Bauer, who gave 

me the freedom to pursue my research interests as I saw fit—research is much more 

enjoyable when you don’t feel pressured to adhere to someone else’s agenda or personal 

interests.  Similarly, I thank my research committee, J.O. Miller, Mark Oxley, Robert 

Brigantic, and David Jacques, for their time and efforts in helping this dissertation come 

to fruition.  I am also indebted to Mike Eismann of the Air Force Research Laboratory for 

his insights and ideas that were invaluable in completing the signature matching portion 

of this research—our conversations were few, but very worthwhile. 

Finally, my thanks goes out to my former supervisors, colleagues, and friends that 

encouraged me to pursue a doctorate degree.  Without their confidence in my abilities, I 

probably would not have embarked on this journey. 



vi 

Table of Contents 

 

Abstract .............................................................................................................................. iv 
 
Acknowledgments............................................................................................................... v 
 
Table of Contents............................................................................................................... vi 
 
List of Figures .................................................................................................................. viii 
 
List of Tables ................................................................................................................... xiii 
 
I.  Introduction .................................................................................................................... 1 

 
Problem Definition.......................................................................................................... 2 
Research Objectives........................................................................................................ 4 
Dissertation Outline ........................................................................................................ 6 

 
II.  Hyperspectral Data Concepts ...................................................................................... 10 
 
III.  Overview of Existing Anomaly Detection Methods.................................................. 24 

 
The Anomaly Detection Problem ................................................................................. 24 
Literature Review.......................................................................................................... 29 
Local Anomaly Detectors ............................................................................................. 30 
Global Anomaly Detectors ........................................................................................... 44 

 
IV. Overview of Invariant Target Detection Methods...................................................... 53 

 
Introduction................................................................................................................... 53 
The Original Method and Extensions ........................................................................... 55 
Summary ....................................................................................................................... 68 

 
V.  Improved Anomaly Detection Using Multivariate Outlier Methods .......................... 69 

 
Key Outlier Detection Concepts ................................................................................... 70 
Multivariate Outlier Detection Literature ..................................................................... 78 
Outlier Impact Experiments........................................................................................ 118 
Evaluation of Multivariate Outlier Detection Methods .............................................. 143 
Image Clustering......................................................................................................... 160 
The AutoDet Anomaly Detector................................................................................. 203 
Comparison Tests........................................................................................................ 217 
Limitations of AutoDet ............................................................................................... 228 



vii 

Summary of Conclusions and Areas for Further Research......................................... 240 
 
VI.  Signature Matching using In-Scene Calibration...................................................... 247 

 
Proposed Signature Matching Process........................................................................ 249 
Summary of the AutoMatch Target Detector ............................................................. 266 
Detector Comparisons................................................................................................. 268 
AutoMatch Limitations............................................................................................... 285 
Summary of Conclusions and Areas for Further Research......................................... 289 

 
VII. Summary of Contributions ...................................................................................... 293 

 
Anomaly Detection Contributions .............................................................................. 293 
Image Clustering Contributions.................................................................................. 295 
Signature Matching Contributions.............................................................................. 296 
Areas for Further Research ......................................................................................... 298 

 
Appendix A:  Signatures of Dispersed Outliers Used in k-Means Robustness Tests..... 300 
 
Appendix B:  Image Chips Used for k-Selection Tests .................................................. 303 
 
Appendix C:  Image Scenes............................................................................................ 307 
 
Appendix D:  Taguchi Experimental Designs ................................................................ 324 
 
Appendix E:  Taguchi Main Effects and Interaction Plots ............................................. 333 
 
Appendix F:  Anomaly Detector Comparison Test Output Images................................ 340 
 
Appendix G:  Generator Reflectance Signature Libraries .............................................. 356 
 
Bibliography ................................................................................................................... 360 

 

 



viii 

List of Figures 

Figure 1.  Proposed Target Detection Framework.............................................................. 7 
 
Figure 2.  The Electromagnetic Spectrum (Lillesand and Kiefer, 2000).......................... 11 
 
Figure 3.  Energy Sources (Lillesand and Kiefer,2000) ................................................... 12 
 
Figure 4.  Sources of Sensor Detected Energy (Healey and Slater, 1999) ....................... 13 
 
Figure 5.  Geometry of a Hyperspectral Image................................................................. 15 
 
Figure 6.  True-Color Image of Fort A.P. Hill Region ..................................................... 17 
 
Figure 7.  Bands 11, 76, and 204 of A.P. Hill Image........................................................ 18 
 
Figure 8.  Example of Different Material Spectra ............................................................ 19 
 
Figure 9.  Example of Material Spectra Variation............................................................ 20 
 
Figure 10.  Correlation Matrix Example........................................................................... 21 
 
Figure 11.  Subset Image of Fort A.P. Hill ....................................................................... 22 
 
Figure 12.  Mean Vectors of Spectra from Fort A.P. Hill Image ................................... 121 
 
Figure 13.  Mean Vectors of Spectra from D.C. Mall Image ......................................... 123 
 
Figure 14.  Outliers Detected for Fort A.P. Hill Background-Outlier Combinations..... 125 
 
Figure 15.  Outliers Detected for D.C. Mall Background-Outlier Combinations........... 128 
 
Figure 16.  Covariance Ellipse Distortion for High Variance Background Material ..... 130 
 
Figure 17.  Covariance Ellipse Distortion for Low-Variance Background Material...... 131 
 
Figure 18.  Number of Outliers Detected for Multivariate-t Data Tests......................... 140 
 
Figure 19.  Number of False-Alarms for Multivariate-t Data Tests ............................... 141 
 
Figure 20.  Mean Spectra for Purdue University Image Materials ................................. 165 
 
Figure 21.  Example of Steps in CDF Caused by Anomalies......................................... 209 
 
Figure 22.  SNR Values for AutoDet-BACON Taguchi Experiment............................. 215 



ix 

Figure 23.  SNR Values for AutoDet-FASTMCD Taguchi Experiment........................ 217 
 
Figure 25.  Operating Characteristic Curves for Detector Comparisons (Scene 6)........ 223 
 
Figure 26.  Operating Characteristic Curves for Detector Comparisons (Scene 7)........ 225 
 
Figure 27.  Operating Characteristic Curves for Detector Comparisons (Scene 12)...... 225 
 
Figure 28.  Operating Characteristic Curves for Detector Comparisons (Scene 13)...... 227 
 
Figure 29.  Operating Characteristic Curves for Detector Comparisons (Scene 17)...... 227 
 
Figure 30.  Operating Characteristic Curves for Detector Comparisons (Scene 19)...... 228 
 
Figure 31.  Effect of k-Estimate on Scene 5 Detection................................................... 235 
 
Figure 32.  Effect of k-Estimate on Scene 6 Detection................................................... 235 
 
Figure 33.  Effect of k-Estimate on Scene 7 Detection................................................... 236 
 
Figure 34.  Effect of k-Estimate on Scene 12 Detection................................................. 236 
 
Figure 35.  Effect of k-Selection on Scene 13 Detection................................................ 237 
 
Figure 36.  Effect of k-Selection on Scene 17 Detection................................................ 237 
 
Figure 37.  Effect of k-Selection on Scene 19 Detection................................................ 238 
 
Figure 38.  Possible Effect of Different k-Values on Outlier Detection......................... 240 
 
Figure 39.  Image Scene and Target Mask for Signature Matching Example................ 250 
 
Figure 40.  Reflectance Signatures for the Target and Generator Libraries ................... 250 
 
Figure 41.  Band Minimum Signature, t0, for Signature Matching Example ................. 254 
 
Figure 42.  Gray-scale Image of Pixel NDVI Values ..................................................... 257 
 
Figure 43.  Gray-scale Image of Pixel BI Values ........................................................... 257 
 
Figure 44.  Generator Signatures Obtained using NDVI Values.................................... 259 
 
Figure 45.  Image Showing Pixel Location for Generator Signatures............................ 260 
 
Figure 46.  Generated and Actual Target Image Signatures for F2 Target..................... 262 
 



x 

Figure 47.  TCIMF and Target Image for Target Detection Example............................ 265 
 
Figure 48.  OC Curve for Target Detection Example..................................................... 266 
 
Figure 49.  Signature Mean Vectors for Dispersed Fort A.P. Hill Outliers.................... 300 
 
Figure 50.  Signature Mean Vectors for Dispersed D.C. Mall Outliers.......................... 301 
 
Figure 51.  Signature Mean Vectors for Dispersed Purdue Outliers .............................. 302 
 
Figure 52.  Image Chip 1 (Taken from Forest Radiance I Dataset)................................ 303 
 
Figure 53.  Image Chip 2 (Taken from Desert Radiance II Dataset) .............................. 304 
 
Figure 54.  Image Chip 3 (Taken from Forest Radiance I Dataset)................................ 304 
 
Figure 55.  Image Chip 4 (Taken from D.C. Mall AVIRIS Image) ............................... 305 
 
Figure 56.  Image Chip 5 (Taken from Purdue HYMAP Image) ................................... 305 
 
Figure 57.  Image Chip 6 (Taken from Purdue HYMAP Image) ................................... 306 
 
Figure 58.  Fort A.P. Hill Image ..................................................................................... 308 
 
Figure 59.  D.C. Mall Image ........................................................................................... 309 
 
Figure 60.  Purdue University Image.............................................................................. 310 
 
Figure 61.  Scene 1 (Taken from Forest Radiance I Dataset)......................................... 311 
 
Figure 62.  Scene 2 (Taken from Forest Radiance I Dataset)......................................... 312 
 
Figure 63.  Scene 3 (Taken from Fort A.P. Hill Image) ................................................. 313 
 
Figure 64.  Scene 4 (Taken from Forest Radiance I Dataset)......................................... 314 
 
Figure 65.  Scene 5 (Taken from Desert Radiance II Dataset) ....................................... 315 
 
Figure 66.  Scene 6 (Taken from Desert Radiance II Dataset) ....................................... 316 
 
Figure 67.  Scene 7 (Taken from Desert Radiance II Dataset) ....................................... 317 
 
Figure 68.  Scene 8 (Taken from Desert Radiance II Dataset) ....................................... 318 
 
Figure 69.  Scene 9 (Taken from Desert Radiance II  Dataset) ...................................... 319 
 



xi 

Figure 70.  Scene 12 (Taken from Forest Radiance I Dataset) ....................................... 320 
 
Figure 71.  Scene 13 (Taken from Forest Radiance I Dataset) ....................................... 321 
 
Figure 72.  Scene 17 (Taken from Forest Radiance I Dataset) ....................................... 322 
 
Figure 73.  Scene 19 (Taken from the MAD 98 Site 19 Data Fusion Dataset) .............. 323 
 
Figure 74.  Main Effect Plot for AutoDet-BACON Experiment .................................... 333 
 
Figure 75.  Interaction Plots for Main Factors (AutoDet-BACON) ............................... 334 
 
Figure 76.  Normalization-Noise Interaction Plots (AutoDet-BACON) ........................ 334 
 
Figure 77.  Standardization-Noise Interaction Plots (AutoDet-BACON) ...................... 335 
 
Figure 78.  Threshold-Noise Interaction Plots (AutoDet-BACON) ............................... 335 
 
Figure 79.  Features-Noise Interaction Plots (AutoDet-BACON).................................. 336 
 
Figure 80.  Main Effects Plot for AutoDet-FASTMCD Experiment) ............................ 337 
 
Figure 81.  Interaction Plots for Main Effects (AutoDet-FASTMCD)........................... 337 
 
Figure 82.  Normalization-Noise Interaction Plots (AutoDet-FASTMCD) ................... 338 
 
Figure 83.  Standardization-Noise Interaction Plots (AutoDet-FASTMCD) ................. 338 
 
Figure 84.  Features-Noise Interaction Plots (AutoDet-FASTMCD)............................. 339 
 
Figure 85.  Target Images for Anomaly Detector Comparisons (Scene 5) .................... 342 
 
Figure 86.  MSD Images for Anomaly Detector Comparisons (Scene 5) ...................... 343 
 
Figure 87.  Target Images for Anomaly Detector Comparisons (Scene 6) .................... 344 
 
Figure 88.  MSD Images for Anomaly Detector Comparisons (Scene 6) ...................... 345 
 
Figure 89.  Target Images for Anomaly Detector Comparisons (Scene 7) .................... 346 
 
Figure 90.  MSD Images for Anomaly Detector Comparisons (Scene 7) ...................... 347 
 
Figure 91.  Target Images for Anomaly Detector Comparisons (Scene 12) .................. 348 
 
Figure 92.  MSD Images for Anomaly Detector Comparisons (Scene 12) .................... 349 
 



xii 

Figure 93.  Target Images for Anomaly Detector Comparisons (Scene 13) .................. 350 
 
Figure 94.  MSD Images for Anomaly Detector Comparisons (Scene 13) .................... 351 
 
Figure 95.  Target Images for Anomaly Detector Comparisons (Scene 17) .................. 352 
 
Figure 96.  MSD Images for Anomaly Detector Comparisons (Scene 17) .................... 353 
 
Figure 97.  Target Images for Anomaly Detector Comparisons (Scene 19) .................. 354 
 
Figure 98.  MSD Images for Anomaly Detector Comparisons (Scene 19) .................... 355 
 
Figure 99.  Forest Radiance Tree Library Reflectance Signatures ................................. 356 
 
Figure 100.  Generic Tree Library Reflectance Signatures ............................................ 357 
 
Figure 101.  Forest Radiance Soil Reflectance Library Reflectance Signatures ............ 357 
 
Figure 102.  Generic Soil Library Reflectance Signatures ............................................. 358 
 
Figure 103.  Desert Radiance Soil Library Reflectance Signatures................................ 358 
 
Figure 104.  Generic Brush Library Reflectance Signatures .......................................... 359 

 



xiii 

List of Tables 

Table 1.  Background-Outlier Material Combinations for Multivariate Gaussian 
Experiments ........................................................................................................... 122 

 
Table 2.  Sample Sizes of Spectra Collected from Fort A.P. Hill and D.C. Mall Images

................................................................................................................................ 124 
 
Table 3.  Number of False-Alarms for Multivariate Gaussian Experiments using Fort A.P. 

Hill Data................................................................................................................. 126 
 
Table 4.  Number of False Alarms for Multivariate Gaussian Experiments using D.C. 

Mall Data ............................................................................................................... 129 
 
Table 5.  Principal Component Axis Distortion Results for Fort A.P. Hill Data............ 135 
 
Table 6.  Principal Component Axis Distortion Results for D.C. Mall Data ................. 136 
 
Table 7.  Background-Outlier Material Combinations used for Multivariate Outlier 

Detector Comparisons............................................................................................ 153 
 
Table 8.  True Positives for Outlier Detection Method Comparison Tests (Multivariate 

Gaussian Data) ....................................................................................................... 154 
 
Table 9.  True Positives for Outlier Detection Method Comparison Tests (Multivariate-t 

Data)....................................................................................................................... 155 
 
Table 10.  False Positives for Multivariate Outlier Detector Comparisons (Multivariate 

Gaussian Data) ....................................................................................................... 157 
 
Table 13.  k-Means Robustness Test Results (Gaussian Data)....................................... 168 
 
Table 16.  Materials used in Simulated Data k-Selection Tests...................................... 187 
 
Table 17.  Results of k-Selection Test using Simulated Fort A.P. Hill Data (Multivariate 

Gaussian)................................................................................................................ 188 
 
Table 18.  Results of k-Selection Test using Simulated Fort A.P. Hill Data (Multivariate-

t) ............................................................................................................................. 189 
 
Table 19.  Results of k-Selection Tests using Simulated D.C. Mall Data (Multivariate 

Gaussian)................................................................................................................ 190 
 
Table 20.  Results of k-Selection Tests using Simulated D.C. Mall Data (Multivariate-t)

................................................................................................................................ 191 



xiv 

Table 21.  Results of k-Selection Test using Simulated Purdue Data (Multivariate 
Gaussian)................................................................................................................ 192 

 
Table 22.  Results of k-Selection Test using Simulated Purdue Data (Multivariate-t)... 193 
 
Table 23.  Description of Images Used in k-Selection Test............................................ 196 
 
Table 24.  Factor Definition for k-Selection Test ........................................................... 196 
 
Table 25.  Actual Image k-Selection Test Results (Calinski-Harabasz Method) ........... 198 
 
Table 26.  Actual Image k-Selection Test Results (Silhouette Method)......................... 199 
 
Table 27.  Actual Image k-Selection Test Results (Color Method)................................ 200 
 
Table 28.  Factors and Levels for Taguchi Experiments ................................................ 211 
 
Table 29.  Manual and Color Method k-Estimates for Comparison Test Scenes ........... 234 
 
Table 30.  List of Targets Contained in Detector Comparison Scenes........................... 275 
 
Table 31.  Summary of Generator Reflectance Signature Libraries............................... 275 
 
Table 32.  Signature Matching Comparison Results for Scene 2 ................................... 277 
 
Table 33.  Signature Matching Comparison Results for Scene 4 ................................... 277 
 
Table 34.  Signature Matching Comparison Results for Scene 5 ................................... 278 
 
Table 35.  Signature Matching Comparison Results for Scene 6 ................................... 278 
 
Table 36.  Signature Matching Comparison Results for Scene 7 ................................... 280 
 
Table 37.  Signature Matching Comparison Results for Scene 8 ................................... 280 
 
Table 38.  Signature Matching Comparison Results for Scene 9 ................................... 281 
 
Table 39.  List of Targets that are Difficult to Detect..................................................... 283 
 
Table 40.  Experimental Design for AutoDet-BACON Robust Parameter Design........ 325 
 
Table 41.  Experimental Design for AutoDet-FASTMCD Robust Parameter Design ... 330 

 

 



1 

Hyperspectral Imagery Target Detection 
 

Using Improved Anomaly Detection And Signature Matching Methods 
 

I.  Introduction 

Locating a small number of unique objects scattered across a relatively large 

geographic area is a common problem faced by many different professions.  From an 

environmental perspective, these objects may be harmful vegetation species that need to 

be eradicated from croplands or unique minerals that indicate favorable mining locations.  

For those entrusted with search-and-rescue missions, the object of interest may be a 

downed-aircraft or adventurers lost in the wilderness.  In the field of law-enforcement, it 

may be necessary to detect illegal border-crossings or the cultivation of illegal crops 

associated with the drug trade.  Finally, the problem faced by the Department of Defense 

may be detection of tanks, aircraft, surface-to-air missile launchers, command bunkers, 

and other objects of military significance scattered across a battlefield.   

For all of these target detection endeavors, hyperspectral imagery collected from 

remote sensing platforms provides a powerful means for detecting the targets of interest.  

Specifically, the unique spectral signatures of objects recorded in hyperspectral imagery 

can be used to discriminate the target from background materials.  Many target detection 

algorithms have been proposed in the literature that use this spectral information in one of 

two ways: either the signatures are screened for anomalous spectra that may indicate the 

presence of the desired target; or, the signatures from the image are compared to known 

target signatures to determine if there is a match.  It is the purpose of this research to 
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expand upon both of these target detection strategies with the goal of increasing detection 

accuracy, and thereby increasing the practicality of hyperspectral sensors. 

Problem Definition 

 A common element of current hyperspectral anomaly detection methods is the 

use of classical mean vector and covariance matrix estimates for groups of signatures in 

the hyperspectral image.  Often, these estimates are used to compute the Mahalanobis 

Squared Distance (MSD) for a signature, x, given as 

 ( ) ( ) ( )1ˆ ˆT TMSD −= − −x x μ S x μ  (1.1) 

where 

ˆ the mean vector estimate, and
the covariance matrix estimate.

=
=

μ
S

 

A threshold is then applied to the MSDs of all the image signatures, with those lying 

above the threshold then being associated with anomalous signatures.  A serious problem 

with this approach to anomaly detection is that the inclusion of anomalous signatures in 

the mean vector and covariance estimates can significantly distort the estimates.  These 

distortions can then lead to inaccurate MSD calculations and the potential for missed 

targets and increased false alarms.  Though this problem is real, it is often ignored in 

practice. 

In regards to signature matching methods, the primary obstacle to successful 

target detection is the requirement to transform the signatures measured by the sensor 

into the same type of signatures contained in reference target libraries.  Specifically, an 

object’s signature collected by the hyperspectral sensor typically measures the energy 

radiance—measured in units of watts/meter2/steradian—originating from the direction of 
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the object and reaching the sensor.  The reference target signature, on the other hand, 

typically reports the percentage of incident energy that the target material reflects back 

into the atmosphere.  These signatures are referred to as reflectance signatures and are 

unitless.  Based on these differences, it is evident that we cannot directly compare 

signatures from the hyperspectral sensor to the reflectance signatures for the target.  In 

some cases, the sensor may not be calibrated to measure radiance, but rather records 

measurements that are only proportional to the actual radiance, further complicating the 

problem.   

The standard procedure for reconciling sensor signatures with reflectance 

signatures is referred to as atmospheric calibration.  In this process, knowledge of sensor 

location, object location, Sun location, airborne particle concentrations, water vapor 

concentrations, and atmospheric temperature and density profiles is used to determine the 

reflectance signature of the object in view of the sensor based on the amount of energy 

that reached the sensor.  This calibration process is by no means precise, and is further 

complicated by the fact that only a portion, if any, of the aforementioned information 

may be available for the image being analyzed.  In practice, this conversion between 

radiance and reflectance signatures is a formidable barrier to widespread use of 

hyperspectral data and remains an open area of research. 

Looking beyond inaccurate statistical estimates and atmospheric calibration 

issues, an additional limitation that is common to both anomaly detection and signature 

matching is the high level of technical expertise required to employ these types of 

algorithms.  In general, these methods employ sophisticated statistical or mathematical 

techniques that are well-beyond the education level of the users that can most benefit 
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from their use.  As a result, hyperspectral sensors remain an exotic technology that only 

benefits those with the educational background to understand the intricacies of how the 

sensor and its associated algorithms work.  This problem is summarized best by Dr. 

David Landgrebe, one of the pioneers of remote sensing, in his view of the future of 

hyperspectral algorithms: 

…what is needed is an analysis process that is robust in the sense that it 
would work effectively for data of a wide variety of scenes  and 
conditions, and can be used effectively by users rather than only by 
producers of the technology.  The algorithms do not need to be simple, but 
they must be simple to apply and robust against the variety of user 
problems. (Landgrebe, 2005) 

In other words, progress needs to be made in the development of algorithms that are not 

only accurate, but also accessible to a range of operational users that may wish to employ 

them. 

Research Objectives 

In light of the problems just defined, the focus of this research is to achieve the 

following objectives: 

1) Adapt multivariate outlier detection methods for use as hyperspectral 

anomaly detectors.  Multivariate outlier detection has been an active area of 

research for over three decades, yet the algorithms developed in this field have 

not been used for hyperspectral anomaly detection, a clear exercise in finding 

outliers in multivariate data.  By pursuing this objective, we show that using 

multivariate outlier detection to find anomalies results in more accurate mean 

vector and covariance estimates for use in computing MSDs, and thereby 
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improves detection performance relative to existing benchmark anomaly 

detectors. 

2) Automate the anomaly detectors developed through Objective 1 so that they 

can be applied to a range of images with minimal user input or intervention.  

To achieve this objective we identify methods for automatically clustering 

hyperspectral datasets as a preprocessing step to outlier detection, and use 

Taguchi robust parameter design methods to configure our anomaly detection 

methods to achieve consistent performance for a variety of detection 

scenarios.  

3) Develop a signature matching methodology that can effectively detect a range 

of target materials when little or no information is available to perform an 

atmospheric calibration on the image.  To satisfy this objective, we build 

upon the invariant signature matching method originally proposed by Healey 

and Slater (1999) that eliminates the need for traditional atmospheric 

calibration.  Rather than use the MODTRAN4 atmospheric model to generate 

target signature subspaces, however, we develop a method that uses only in-

scene information to estimate possible target image signatures based on the 

target’s reflectance signature.  We then use these estimated target signatures in 

the Target-Constrained Interference-Minimized Filter (TCIMF) of Ren and 

Chang (2000) to detect targets of interest. 

4) Automate the signature matching method developed through Objective 3 to 

minimize required input parameters and user intervention.  To meet this 

research goal, we designed the proposed signature matching algorithm so the 
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user only needs to specify the target reflectance signatures as well as generic 

background reflectance signatures that are likely to exist in the image scene.  

We show through experimental tests that these inputs are sufficient for a range 

of targets, but that detection accuracy can be improved if the user is able to 

obtain more accurate knowledge of the materials in the scene. 

By fulfilling these research objectives, we make strides towards a larger objective 

illustrated by the target detection framework shown in Figure 1.  In this framework, we 

ultimately hope to fuse the output from our proposed anomaly detection and signature 

matching algorithms to achieve a better detection accuracy than either of the two 

detectors used individually.  Moreover, this framework is intended to operate on an 

arbitrary hyperspectral image regardless of the measurement units of the sensor, and to 

minimize the technical expertise and intervention necessary to employ the framework.  

Future research efforts beyond those conducted in this dissertation are required to 

complete the fusion component of the detection framework and achieve the final end-

state. 

Dissertation Outline 

In Chapter 2 of this dissertation, we provide a more detailed overview of 

hyperspectral concepts and attempt to define the basic terminology that pertains to this 

research.  Though we strive to address the key ideas behind hyperspectral image analysis, 

we omit many details for the sake of brevity.  For a more comprehensive explanation of 

hyperspectral sensors and analytic methods, we suggest texts by Schott (1997), 

Landgrebe (2003), Richards and Jia (1999), and Chang (2003), as well as the overview 

given in Landgrebe (2002). 
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In Chapter 3, we discuss the hyperspectral anomaly detection problem in more 

detail and provide a comprehensive literature review of the anomaly detection methods 

that have been proposed over the last two decades.  Based on this review, it becomes 

evident that the field of anomaly detection has largely ignored multivariate outlier 

detection concepts, thus providing motivation for our line of research. 

Following the anomaly detection review, Chapter 4 summarizes the body of 

research concerned with invariant target-subspace detection.  The review begins with an 

overview of Healey and Slater’s (1999) seminal paper in this area, and proceeds with a 

description of the various methods that stem from this original work.  This review 

provides the necessary background to understand the context and objectives of our 

proposed signature matching algorithm presented in Chapter 6. 

The proposed anomaly detection method, which we refer to as the AutoDet 

methodology, is developed in Chapter 5.  This chapter begins with a detailed literature 

review of existing multivariate outlier detection methods and some of the key concepts 

fundamental to this research area.  We then demonstrate the potential problems presented 

 
 
 

Figure 1.  Proposed Target Detection Framework 
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by outliers in hyperspectral datasets, followed by an experimental evaluation of candidate 

multivariate outlier methods that are capable of handling large, high-dimensional 

datasets.  The chapter moves on to address the suitability of the k-means clustering 

algorithm as a preprocessor for multivariate outlier detectors, a critical component in the 

adaptation of outlier detectors to hyperspectral anomaly detection.  This discussion is 

followed by experimental testing of the methods to automatically select the value of k for 

use in the k-means algorithm, thereby removing this burden from the user.  Finally, the 

chapter concludes with a Taguchi robust parameter design experiment to optimize the 

settings of the AutoDet detector, followed by a comparison test demonstrating the 

superiority of AutoDet to benchmark anomaly detection methods. 

Chapter 6 follows the development of AutoDet in Chapter 5 with the construction 

and evaluation of our proposed signature matching algorithm, which we name 

AutoMatch.  In this chapter we develop the AutoMatch detection methodology through 

an actual target detection example, and then demonstrate through experimental tests that 

the method performs as well or better than a benchmark method using more sophisticated 

atmospheric calibration methods.  We conclude Chapter 6 with a discussion of the 

limitations of AutoMatch and suggestions for further research. 

In the final chapter of this dissertation, we summarize the major contributions of 

our research effort as well as the areas for future research discussed in Chapters 5 and 6.  

For those readers not interested in reading this dissertation in its entirety, we offer several 

suggestions.  For those knowledgeable of hyperspectral concepts, Chapter 2 can be 

omitted.  For those only interested in the AutoDet anomaly detection methodology, 
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Chapters 4 and 6 are not necessary.  Likewise, those seeking information on AutoMatch 

may bypass Chapters 3 and 5 with minimal impact. 
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II.  Hyperspectral Data Concepts 

In simplest of terms, electromagnetic energy, consisting of Gamma-rays, X-rays, 

visible light, microwaves, radio waves, etc., can be viewed as energy waves passing 

through space.  These energy waves can be characterized by either their wavelength or 

their frequency, where the wavelength is the distance between wave peaks, and frequency 

is the number of waves that pass a fixed point in space per unit time.  In remote sensing, 

wavelength, usually measured in micrometers (μm), is the most common method for 

characterizing electromagnetic (EM) energy.  Figure 2 shows the types of EM energy as 

they are oriented across the EM spectrum.    Notice that the region of the EM spectrum 

associated with visible light—the energy we can detect with our eyes—comprises a 

relatively small portion of the overall spectrum.  This fact is the foundation upon which 

hyperspectral imagery is built.  We will return to this concept momentarily. 

If a sensor capable of detecting EM energy is pointed at an object, the energy 

detected by the sensor results from two primary mechanisms:  either the energy is emitted 

from the object itself, or it is energy emitted from some other object and reflected by the 

object at which the sensor is pointed.  If an airborne or space HSI sensor is pointed at the 

Earth’s surface, the energy it detects is primarily due to reflected solar energy with a 

minor contribution from energy emitted from the Earth itself.  Figure 3 depicts the 

relative intensity of these energy sources as a function of wavelength.  Again, notice that 

the region of visible light, 0.4 to 0.7 μm, is only a small portion of the spectrum of energy 

emitted from the Sun and Earth.  Thus, returning to the basic premise of hyperspectral 

imagery discussed earlier, there is more information about the energy reflected or emitted 

from an object than can be gained simply from studying visible light.   
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To further motivate the study of non-visible light reflected and emitted from an 

object, different materials reflect and emit non-visible EM energy in unique ways, just as 

visible light is reflected to produce an object’s color.  In other words, if we measured the 

EM energy from an object across different wavelengths, the resulting signature will be 

unique to the object’s composition.  Thus, rocks will have different signatures than trees, 

trees will have different signatures than grass, grass will have different signatures from 

metal surfaces, and so on.  The purpose, then, of a hyperspectral sensor is to collect the 

EM signatures from the Earth’s surface so that they can be used to identify materials of 

interest, whether they be tanks, downed aircraft, land-cover types, or minerals and ores. 

 
 
 

Figure 2.  The Electromagnetic Spectrum (Lillesand and Kiefer, 2000) 
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Before moving-on to discuss the representation of hyperspectral data, it is 

important to understand the nature of the energy an airborne or satellite hyperspectral 

sensor actually receives.  As shown in Figure 4, solar energy collected by the sensor 

arrives via three primary paths.  The first path is traveled by energy actually reflected 

from the Earth’s surface.  This reflected energy comprises the spectral signature of the 

material that reflected it, and is the energy the sensor is designed to collect.  The second 

path is taken by energy referred to as path radiance, which is actually solar energy that is 

reflected by the atmosphere and hence possesses its own unique signature that is 

characteristic of prevailing atmospheric conditions.  This second source of energy is 

undesirable and acts to distort the energy signatures from the Earth’s surface.  The third 

energy path is taken by energy known as skylight.  This energy bounces off atmospheric 

molecules before being reflected by the Earth’s surface.  The primary impact of skylight 

is to increase the total illumination of a surface material relative to illumination from 

solar energy alone.  A complicating factor with skylight is that it is typically not uniform 

throughout an image scene.  The total combined energy received by the sensor is called 

radiance energy, and the intensity of this radiance is what the sensor is measuring.  If 

atmospheric correction is performed on the radiance data, the effects of path radiance, 

 
 
 

Figure 3.  Energy Sources (Lillesand and Kiefer,2000) 



13 

skylight and other distorting factors can be removed.  The signatures resulting from 

atmospheric correction are referred to as reflectance signatures, and represent the relative 

amount of energy hitting the Earth’s surface that is actually reflected.  In other words, 

reflectance measurements relate the relative fraction of incident energy reflected by a 

material in the different wavelength bands recorded by the sensor.   

In most instances, signature libraries provide material signatures in terms of 

reflectance.  Since an actual sensor measures radiance, a direct comparison cannot be 

made between library signatures and raw HSI radiance data.  As mentioned previously, 

either radiance must be converted to reflectance, or vice versa.  To convert a laboratory 

reflectance signature into a radiance signature, an atmospheric model must be assumed.  

A basic model, as discussed by Healey and Slater (1999), is as follows.  First, assume the 

viewing geometry of a hyperspectral scene as shown in Figure 5.  The normal vector to a 

 
 

Figure 4.  Sources of Sensor Detected Energy (Healey and Slater, 1999) 
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pixel located at coordinate (x, y) on the Earth’s surface is given by n and the elevation of 

the pixel is zg.  Using a polar coordinate system with polar angle θ and azimuthal angle φ, 

the airborne sensor is located at elevation zv and direction (θv, φv).  The sun is located at 

direction (θ0, φ0).  With these variables defined, the spectral radiance at wavelength λ 

collected by the sensor pointed at a pixel at (x, y) is given by: 
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From (2.1) it is evident that if the reflectance signature for a material is known, as well as 

the atmospheric and viewing geometry parameters, then the radiance signature for the 

material can be determined.  Typically, atmospheric models such as MODTRAN 4 are 

used to estimate the values of Tu, Td, E0, Es and P for the conditions present at the time an 

image was obtained.  As discussed by Richards and Jia (1999), less rigorous correction 

methods can also be used such as signature normalization and dark subtraction which are 

only dependent on the statistics of the image.  For these methods to produce useful 

results, however, atmospheric effects should be uniform over the entire image, an 

assumption that is image and sensor dependent. 
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Because atmospheric conditions are either not known at all or with limited 

accuracy, and because atmospheric modeling itself is only an approximation of true 

atmospheric effects, conversion of reflectance to radiance will result in approximate 

radiance signatures.  The resulting approximation error is the primary motivation for 

developing anomaly detection algorithms that do not require atmospheric correction.  

This error also motivates target detection methods, such as Healey and Slater’s invariant 

subspace detector, that are less dependent on explicit atmospheric correction for which 

the precise atmospheric conditions and viewing geometry of an image must be known.  

The actual physics and hardware used to collect hyperspectral imagery are beyond 

the scope of this dissertation; however, the hyperspectral image itself is relatively straight 

forward to conceptualize.  To begin with, the geographic area being imaged is divided 

 
 

Figure 5.  Geometry of a Hyperspectral Image 
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into a raster grid, with each grid cell, or pixel, corresponding to a small, rectangular sub-

region of the main image.  The dimension of a pixel’s edge specifies the spatial resolution 

of the image, which, for HSI sensors, ranges from fractions to tens of meters.  For each 

pixel, the sensor collects the amount of energy radiated from the pixel’s geographic 

location.  As mentioned previously, this energy consists not only of reflected and emitted 

energy from the pixel region itself, but also from energy scattered by the atmosphere and 

other nearby regions.   

To form the pixel’s energy signature, the portion of the EM spectrum for which 

the sensor is designed is divided into contiguous bands of wavelengths.  For 

hyperspectral sensors, the number of bands ranges from tens to hundreds of bands, as 

compared to only three to approximately 20 bands for multispectral sensors.  There is no 

generally accepted number of bands that distinguishes multispectral from hyperspectral 

images.  The number of bands and the wavelength interval they encompass define the 

sensor’s spectral resolution. 

For each pixel and for each band, the sensor records the aggregate amount of 

energy received across all wavelengths in the band.  Conceptually, the energy 

information is stored in a three-dimensional array with the first two dimensions 

identifying a pixel’s row and column location in the raster grid, and the third dimension 

specifying the spectral band.  Thus, element (i, j, n) of the data array—also referred to as 

the data cube—contains the amount of energy detected in wavelength band n for the pixel 

located in row i, column j of the raster grid.  If the image contains N bands, the pixel 

signature is simply the Nx1 column vector with the nth element corresponding to the 

energy detected in band n. 
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To demonstrate the preceding hyperspectral terminology, Figure 6 shows a 

hyperspectral image of a region of Fort A.P. Hill taken by the COMPASS sensor on 21 

July, 2004, at an altitude of approximately 6700 ft.  The image contains 255 bands 

ranging from 0.416 μm to 2.402 μm, which encompasses the visible to mid-IR portion of 

the EM spectrum.  The range of wavelengths for each band is approximately 0.008 μm.  

The image shown in Figure 6 is a true color image formed by assigning bands 30, 18, and 

6 to the red, green, and blue display color guns, respectively.  These bands lie within the 

portion of the EM spectrum associated with red, green, and blue light.   

As mentioned previously, the purpose of hyperspectral imagery is to collect 

information on how materials reflect energy, not only in the visible spectrum, but in other 

 
 

Figure 6.  True-Color Image of Fort A.P. Hill Region 
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portions of the EM spectrum, as well.  To illustrate this point, Figure 7 shows grayscale 

images of bands 11, 76, and 204, which correspond to visible, near IR, and mid-IR  

portions of the spectrum, respectively.  In these images, the brighter a pixel the higher the 

intensity of energy collected over the band’s corresponding range of wavelengths.  By 

comparing the intensity of the road pixels, for example, in the three images, it is clear that 

the road surface reflects energy differently as a function of the energy’s wavelength.  

Notice that other materials in the image—trees, grass, the man-made objects in the 

image—also exhibit different intensities across the three image bands. 

 
 

Figure 7.  Bands 11, 76, and 204 of A.P. Hill Image 



19 

To better capture the variation of a pixel’s intensity across the hyperspectral 

bands, the pixel vector is formed, as described earlier.  Plotting the elements of the pixel 

vector as a function of image band gives a visual depiction of the pixel signature.  Figure 

8 plots the signatures of four pixels containing four different materials—trees, grass, dirt, 

and road.  It is evident from these plots that considerable differences exist in the 

signatures of different materials.  It is these differences that make hyperspectral imagery 

useful in identifying and differentiating materials from one another.  Notice, however, 

that though each material signature is unique somewhere along the spectrum, there are 

some portions of the spectrum in which the signatures of different materials are quite 

similar.  For example, notice that the signature of the tree pixel coincides closely with the 

 
Figure 8.  Example of Different Material Spectra 
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grass signature in several portions of the spectrum.  This condition demonstrates the 

value in obtaining a wide range of spectral bands in order to adequately separate material 

classes. 

The benefit of obtaining a large number of bands is further illustrated by Figure 9 

in which the variation in spectral signature for a specific material—in this case, grass—is 

plotted.  To generate this plot, a group of pixels containing grass were identified, and for 

each band, the mean, maximum, minimum, and standard deviation across all pixels were 

computed.  As shown in this plot, the spectral signature for a material is by no means 

deterministic.  Rather, the signature can be expected to vary across pixels that contain the 

same material.  The variability can result from variations in atmospheric conditions, the 

presence of other materials that are not visible at the spatial resolution of the image, 

sensor noise, and other factors.  A result of this variability is that samples of two different 

 
 

Figure 9.  Example of Material Spectra Variation 
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materials can conceivably have near-identical signatures, at least over portions of the EM 

spectrum, as seen in the grass and tree pixels in Figure 8. 

Inspection of Figure 9 indicates that the variability of the radiance data within 

each band is not likely to be constant across bands.  This condition would suggest a 

complex covariance or correlation structure across spectral bands in hyperspectral data.  

To show the truth in this assertion, Figure 10 provides a visual representation of the 

correlation matrix of a subset of the Fort A.P. Hill image, as shown in Figure 11.  Figure 

10 is a 255x255 pixel image with each pixel corresponding to an element of the 

correlation matrix.  The color of each pixel indicates the approximate value of the 

respective correlation coefficient. 

 
Figure 10.  Correlation Matrix Example 
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From Figure 10, several conclusion can be made concerning the correlation 

structure of hyperspectral data.  First, the red squares along the diagonal of the figure 

indicate strong positive correlation between bands that lie close together in the EM 

spectrum.  This correlation suggests the use of data reduction techniques—such as 

principal component analysis (PCA), discriminant analysis, and the projection pursuit 

method proposed by Jimenez and Landgrebe (1999)—to reduce the dimensionality of the 

data.  These methods are, in fact, commonly used in hyperspectral analysis when limited 

sample sizes are available in order to improve covariance and correlation estimates, and 

hence, classification accuracy.   

A second implication of the correlation structure is that the entire matrix should 

be estimated rather than using simplifying assumptions such as band independence or 

constant variance across bands.  Because the entire matrix must be estimated, 

 
 

Figure 11.  Subset Image of Fort A.P. Hill 
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classification methods that rely on a covariance or correlation estimate, such as MLE 

classification, some types of cluster analysis, and Mahalanobis’ Distance-based methods, 

can become computationally expensive.     

A third conclusion that is evident in Figure 10, is that not all image bands provide 

useful information.  In particular, the striations of near-zero correlation running through 

the matrix correspond to atmospheric absorption bands in which the energy at these 

wavelengths is almost entirely absorbed by the atmosphere.  Consequently, the sensor 

detects primarily random noise at these wavelengths.  This phenomenon is confirmed by 

the spectral plots in Figures 8 and 9 where it is seen that the energy intensity is near zero 

from bands 122 to 132, and from 179 to 199.  These bands correspond to the strongest 

absorption wavelengths of 1.36 to 1.44 μm and 1.8 to 1.96 μm, respectively.  Because 

these bands provide little information, they can be removed from the data set with little 

effect (though in some instances, these bands may provide a means of estimating noise 

covariance.) 

The preceding discussion has provided a basic overview of hyperspectral imagery 

concepts so as to introduce the necessary terminology for subsequent chapters.  For a 

more in-depth treatment of remote sensing, the reader is referred to Richards and Jia 

(1999).  Landgrebe (2002) provides a more thorough description of hyperspectral 

imagery and associated classification issues.  Jimenez and Landgrebe (1998) discuss the 

implications of high-dimensional hyperspectral data on MLE classification.  Finally, for 

examples of covariance estimation methods for high-dimensional data with limited 

samples, see Hoffbeck and Landgrebe (1996), Tadjudin and Landgrebe (1999), and 

Jackson and Landgrebe (2002).  
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III.  Overview of Existing Anomaly Detection Methods 

One of the key components of the proposed target detection framework discussed 

in Chapter One is the anomaly detector.  In this chapter, the general hyperspectral 

anomaly detection problem is discussed followed by a review of the related literature.  

The chapter concludes with a discussion of potential extensions that may improve the 

performance of anomaly detection methods. 

The Anomaly Detection Problem 

Hyperspectral anomaly detection is essentially a pattern classification problem in 

which each pixel vector is classified as either being anomalous to the image scene or as 

being a member of the scene’s predominant materials—often referred to as the image 

background.  As a point of departure for defining this classification problem, we first 

present the constant risk Bayes classifier as it pertains to hyperspectral data.  For this 

classifier, we assume that a pixel vector, x, is composed of one of C background 

materials, ωi, i = 1,…,C, and that P(ωi) is the prior probability that an arbitrary pixel in 

the scene contains background material ωi.  From Bayes’ formula, the discriminant 

function for this classifier is 
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The decision rule for this classifier is to conclude that a pixel vector, x, is composed of 

material i if gi(x) > gj(x) for all j ≠ i. 

In the context of anomaly detection, it is implied that there is a set, A, that 

contains the indices of materials considered anomalous.  Theoretically, there is also a set, 

B, that contains the indices of background materials.  Thus, to classify a pixel as an 

anomaly, it must be true that 

 .min ( ) max ( )i ji A j B
g g

∈ ∈
>x x  (3.2) 

Unfortunately, in the case of anomaly detection, the set A is not known, which obviously 

implies that the priors and densities are not known for the anomalous materials.  

Therefore, Bayes classification cannot be used directly.  Depending on what is known of 

set B, however, the discriminant functions of (3.2) may still be of use in detecting 

anomalies.  For instance, if gj(x) is sufficiently small for all j in B, we may conclude that 

the pixel does not fit well in any background classes, and therefore is anomalous.  This 

idea of using background material classes to detect anomalies can be used to define three 

general types of anomaly detection problems: detection when background classes are 

known; detection when the background classes are unknown, but can be estimated; and 

detection when the background is unknown but is assumed to contain one class.  These 

problem types are further defined in the following paragraphs. 

Problem Type I: Background Classes Known 

In this type of anomaly detection problem, it is assumed that the materials that 

comprise the majority of the image scene are known and can be defined in terms of class 

probability density functions and prior probabilities.  Detecting anomalies in this case is a 

matter of computing the discriminant functions of (3.2) for a given pixel and declaring it 
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an anomaly if all gj(x) for the background classes is sufficiently small relative to the 

distributions of the background classes.  Though this problem type is most appealing 

from a theoretical view, it is practically the least common problem since the background 

materials are rarely known with any confidence.  However, if anomaly detection is to be 

performed on an image with a relatively uniform, simple background—a desert scene, for 

example—formulating the problem in this manner may be realistic and present good 

detection results. 

Problem Type II: Background Classes Estimated 

Though knowledge of the exact background classes may not be available, it may 

be possible to estimate the number of classes and their respective densities using the 

image scene.  For example, cluster analysis can be used to segment the image pixels into 

similar groups.  The densities can then be estimated and the detection problem solved as a 

Type I problem.  An example of this approach is given by Carlotto (2005).  A limitation 

of the Type II formulation is the number of background materials must be assumed either 

explicitly or implicitly via a threshold criterion.  This assumption will directly impact the 

false alarms that occur during anomaly detection. 

Problem Type III: Single Background Class Assumed 

This problem type is similar to Type II in that there is no prior knowledge of the 

number or characteristics of the background classes.  However, in this formulation it is 

assumed that all the background classes can be treated as one class, ωb, with detection 

then proceeding as in the Type I problem.  That is to say, a pixel is considered an 

anomaly if gb(x) is sufficiently small.  To make this one-class assumption valid, the 

background density function to which a pixel is compared is estimated from a relatively 
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small window of pixels surrounding the pixel of interest.  It is assumed that this window 

will contain a relatively homogenous set of pixels that can adequately represent a 

background class.  The benchmark RX anomaly detection method proposed by Reed and 

Yu (1990) relies on this premise.  Another approach for strengthening the one-class 

assumption is to use the entire image, or perhaps a larger window, to estimate a single, 

often multi-mode, density function for the background class.  This approach has the 

advantage of providing more pixels for covariance estimation, but requires more 

sophisticated density estimation methods.   

General Remarks and Challenges 

Before reviewing the various anomaly detection methods found in the literature, 

several remarks should be made concerning the field of anomaly detection.  First, the 

three types of anomaly detection problems defined in the preceding paragraphs are by no 

means exhaustive, but they do summarize the primary views of anomaly detection found 

in the literature.  Second, problem Type II and III are the predominant formulations, 

especially in a military context, since ground truth data that conclusively identifies 

background materials is seldom available.  Third, all of the problem types are essentially 

outlier detection problems in multi-dimensional space.  From this viewpoint, several 

challenges to anomaly detection are evident.   

First, to ensure the accuracy of an anomaly detector based on parametric 

classification, the background classes must be accurately identified and modeled, 

especially in the tails of any assumed density functions.  For problem types II and III, this 

challenge can be formidable since, by definition, little is known about the background 

materials.  A second challenge arises from noise and artifacts commonly found in 
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hyperspectral imagery.  Specifically, a malfunctioning sensor or random noise can 

generate pixel signatures that are indeed anomalies, but are uninteresting and contribute 

to the false alarm rate.  To complicate matters, image smoothing methods that are 

commonly used to remove noise and artifacts can also remove true anomalies, thereby 

confounding attempts at detection.  A third challenge, associated primarily with window-

based methods, is selection of a window size.  If the window is too large, it may contain a 

large enough number of target pixels such that they no longer appear as anomalies.  If the 

window is too small, there may be insufficient pixels to estimate the covariance matrix 

inverse that is common to many anomaly detection methods.   

A final challenge of anomaly detection is determining a meaningful method for 

comparing the performance of different detectors.  The root of the problem is anomalies, 

by definition, occur with a very low probability in an image scene.  Therefore, simply 

computing the overall classification accuracy of a detector can be misleading since 

classifying every image pixel as background will result in a very high overall accuracy.  

For example, if 100 of the 28800 pixels in the scene of Figure 9 were true anomalies, 

classifying all the scene pixels as background gives an overall accuracy of 99.7%.  This 

challenge is further complicated by a limited number of hyperspectral data sets that 

contain true anomalies verified by ground truth.  Current methods used to evaluate 

anomaly detectors either produce a version of an operating characteristic curve that plots 

true positive fractions against the number of false alarms per square kilometer, or simply 

visually compare output images showing the location of anomalies found by candidate 

detectors. 
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Summary 

In this section, basic concepts of hyperspectral imagery were introduced in order 

to provide an understanding of what the data actually represents, as well as insights to its 

basic characteristics.  Also, the anomaly detection problem was more formally defined 

and subdivided into three basic problem types that are differentiated by the level of 

knowledge of the background materials in the hyperspectral scene.  Finally, some of the 

more significant challenges of hyperspectral anomaly detection were discussed.  In the 

following section, an outline of recent anomaly detection methods found in the literature 

is presented. 

Literature Review 

A review of the technical literature for anomaly detection methods indicates that 

research in this field can be divided into two general categories:  local anomaly detection 

and global anomaly detection.  Local detectors are characterized by the use of a 

processing window centered on a pixel of interest.  The pixels in the window are used to 

estimate background material statistics.  The pixel of interest is compared to this 

background model and a determination is made whether or not the pixel is an anomaly.  

The window is then centered around another image pixel and the process repeated.  

Global detectors, on the other hand, attempt to compare each pixel to a statistical model 

representative of the entire image, rather than just the neighborhood of pixels in the 

immediate vicinity of the pixel of interest.  The following sections outline different local 

and global anomaly detectors proposed for hyperspectral imagery. 
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Local Anomaly Detectors 

The RX Detector 

The benchmark local anomaly detector to which other detection methods are 

compared is the Reed-Xiaoli (RX) detector proposed by Reed and Yu (1990).  This 

detector was originally developed for multispectral imagery, but has proven effective for 

hyperspectral imagery, as well.  As summarized by Stein, Beaven, Hoff, Winter, Schaum, 

and Stocker (2002), the RX detector is derived using a generalized likelihood ratio test 

(GLRT).  To form the likelihood ratio, it is first assumed that a processing window 

contains a set of N background pixels, vj, j = 1,2,…,N, with probability density function 

p0(·,θh), where θh, h=0,1, are unknown parameters that must be estimated for the null 

(h=0) and alternative (h=1) hypotheses.  It is also assumed that there is a set of M pixels, 

xt, t = 1,2,…,M, to be tested, where p1(·,θh) is the pdf of the test pixels.  When the test set 

contains a single pixel, the likelihood ratio becomes 
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If G(x) is less than some specified threshold, then the null hypothesis that the pixel, x, 

comes from a different distribution than the background pixels is supported.  Under the 

assumption that the window pixel vectors have a normal distribution with mean μ and 

covariance Σ, Reed and Yu show that the GLRT of (3.3) reduced to the following: 
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the estimate of the window covariance matrix.C

μ =
=
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As the number of window pixels, N, gets large, (3.4) converges to the following: 

 ( ) ( )1ˆ ˆ( )L
T

CRX μ μ−= − −x x x  (3.5) 

which is simply the Mahalanobis squared distance between the pixel vector, x, and the 

mean of the processing window pixels.  Equation (3.5) is the most commonly used form 

of the RX detector.  Reed and Yu go on to show that the RX statistic under the null 

hypothesis has a Chi-Square distribution with L degrees of freedom, where L is the 

dimensionality of x.  Because the distribution of the statistic under the null hypothesis is 

independent of the estimated parameters, the statistic has the constant false alarm rate 

(CFAR) property. 

To apply the RX detector, a processing window—typically a square window—is 

centered on an image pixel and either (3.4) or (3.5) is computed.  Using the resulting 

value, either the null hypothesis can be formally tested using the Chi-Square distribution 

and a desired confidence level, or it can be used to create a grey-scale image that visually 

depicts the pixels that produced a high RX value.  A combination of the two methods can 

also be used to produce an image showing all pixels for which the null hypothesis is not 

rejected. 

The primary limitation of the RX detector is the subjectivity associated with 

choosing the processing window size.  In order to estimate the inverse covariance matrix, 

the window must contain at least as many pixels as the number of dimensions of the 

image, otherwise, the covariance matrix will be singular and the inverse undefined.  

Depending on the amount of clutter in the image, however, ensuring the window exceeds 

the dimensionality may result in a window that is too large to detect anomalies of interest, 

rather than isolated natural materials such as trees, rocks, etc.  In cases where smaller 
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window sizes are desired, band selection or data reduction can be performed on the 

original data to reduce the dimensionality and allow a smaller processing window.  

Beyond ensuring that the window contains sufficient pixels for accurate covariance 

estimation, little guidance exists as to the best choice of window size. 

In addition to window size specification, the RX detector also suffers from 

difficulties in detecting relatively large anomalies.  In fact, this problem is related to the 

window size problem in that to detect large anomalies, a large window needs to be used 

to ensure the anomaly pixels do not dominate the statistics.  If the window is too large, 

however, it may contain sufficient clutter to inhibit anomaly detection.  This dilemma is a 

fundamental problem for all local detection methods that employ a  single processing 

window.   

RX-Related Methods 

The basic RX detector has been extended in a number of different ways to 

account for its limitations.  Chang and Chiang (2002) present variations of the RX 

detector that are useful for real-time anomaly detection in which each pixel is classified 

as its data is received by the sensor.  Chang and Chiang also present an automatic 

threshold method for determining the value of the output statistic beyond which a pixel 

should be classified as an anomaly.  Chang and Chiang’s versions of the RX detector are 

derived from the insight that the RX detector in (3.5) is essentially a matched filter 

operating on the pixel of interest, x.  That is, (3.5) is of the form 

 ( ) ( )TM κ= −d x d x μ  (3.6) 

where 

the matched signal, and
 a scaling constant.κ

=
=

d  
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For the RX detector of (3.5), dT = (x – μ)TC-1 and κ = 1.  By viewing the RX detector as a 

matched filter, Chang and Chiang present the following three RX-like detectors: 

 Normalized RX Detector: 

 1( )
T

NRX −
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− −=
− −

x μ x μx C
x μ x μ

 (3.7) 

 Modified RX Detector: 
 

 ( )1( )
T

MRX −
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

−= −
−

x μx C x μ
x μ

 (3.8) 

RX Detector with Background Subtraction: 

 ( ) ( )1( ) TBRX −= − −x x 1 C x μ  (3.9) 

Chang and Chiang assert that the detectors of (3.7)-(3.9) are only useful for 

detecting anomalies whose spectral signature are well-characterized by second-order 

statistics alone, and that materials whose signatures are characterized only by first-order 

statistics may go undetected.  To counter this problem, the correlation matrix is used in 

the three detectors rather than the covariance estimate.  This substitution gives the 

following three detectors: 

Correlation-Based Normalized RX Detector: 

 1( )
T

CNRX −
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= x xx R
x x

 (3.10) 

 Correlation-Based Modified RX Detector: 
 

 ( ) 1 1( ) TCMRX
− −= x xx R  (3.11) 

Correlation-Based RX Detector with Background Subtraction: 

 ( ) 1( ) TCBRX −= − xx x 1 R  (3.12) 
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Experiments conducted by Chang and Chiang using (3.10)-(1.12) show, based on 

visual inspection, improvement over (3.7)-(3.9) in detecting anomalies in HYDICE and 

AVIRIS hyperspectral sensor data sets.  However, the true benefit in using the 

correlation-based detectors is their ability to be used in a real-time processing 

environment.  Chang and Chiang contend that (3.7)-(3.9) cannot be executed as each 

pixel is acquired because the entire image is needed to compute the covariance estimate.  

However, by using methods presented by Chang and Chiang (2001) to compute the 

sample correlation matrix, (3.10)-(3.12) can be processed in real-time as pixels are 

acquired; this processing can even be conducted using a parallel architecture.  An 

extension to (3.10)-(3.12) is given by Hsueh and Chang (2004) in which strong anomalies 

already detected during the real-time processing are removed from data to prevent the 

anomaly pixels from dominating and confounding future computations. 

The automatic threshold method proposed by Chang and Chiang to identify 

anomalies using the detector output is relatively straightforward.  First the desired metric 

from (3.7)-(3.9) is computed for every image pixel.  A histogram is then constructed for 

these metric values.  Using the histogram as an empirical distribution, any pixels with 

values exceeding a specified confidence level are considered anomalies.  Though this 

method is more objective than visual inspection, the selection of the confidence level is 

still somewhat subjective. 

According to Riley, Newsom, and Andrews (2004), the success of the basic RX 

detector is dependent on a high signal-to-noise ratio for the hyperspectral data.  If several 

of the bands are particularly noisy, outliers in these bands can trigger false alarms with 

the RX detector.  To overcome this problem, Riley et al propose modifying the RX 
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detector by using an estimate of the noise covariance matrix in place of the window 

covariance matrix in (3.5).  This detector, referred to as the Weighted Euclidean Distance 

detector, has the property of computing the distance between the pixel of interest and the 

window’s mean vector while giving more weight to the vector components corresponding 

to bands with low noise.   

To estimate the noise covariance matrix, Riley et al. assume that a typical pixel 

signature within the processing window should be a relatively smooth function of 

wavelength.  That is to say, a pixel vector such as the ones shown in Figure 8 should not 

have any sharp spikes.  Thus, for each pixel vector in the window, the vector is first 

divided by the norm of the window mean vector to remove any gross fluctuations due to 

atmospheric attenuation or illumination.  Then, the difference is computed between each 

vector component and an interpolation of the component before and after it in the vector.  

These differences are assumed to be caused by noise, and the variance of the differences 

is therefore assumed to provide an estimate of the noise variance.  As an alternative to 

using the noise covariance matrix in (3.5), Riley et al. also propose adding a multiple of 

the noise covariance matrix to the window covariance matrix. 

Dealing with Non-Gaussian Data  

A key assumption for the success of the RX detector is that the distribution of the 

window pixels is a single Gaussian.  This assumption permits mathematically tractable 

analysis of the generalized likelihood ratio given by (3.3), and hence, derivation of the 

RX detector.  Hyperspectral data, however, is typically not Gaussian which means that 

the RX detector may produce high false alarm rates when non-linear distributions exist.  

Kwon and Nasrabadi (2005) propose a variant of the RX method that first uses radial-
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basis kernel functions to implicitly transform the original data into a higher dimensional 

feature space where Kwon and Nasrabadi contend the Gaussian assumption is valid.  The 

use of kernel functions allows the RX metric to be computed in the transformed space 

without explicitly transforming the data or having to compute the higher-dimensional 

covariance matrix.  The kernel-based RX detector is compared to the RX detector using 

three different data sets.  Operating curves for these tests indicate that the kernel-based 

RX method is significantly better at detecting anomalies, particularly at low false alarm 

rates. 

Adapting RX for Detecting Large Anomalies 

An RX-based method that attempts to overcome the RX detector’s limited ability 

to detect large anomalies that span multiple pixels is given by Gaucel, Guillaume, and 

Bourennane (2005).  The method is called whitening spatial correlation filtering (WSCF), 

and first entails applying a whitening transformation to the pixels in the processing 

window to produce data with zero mean vector and unit covariance.  After the 

transformation, the RX detector becomes 

 ( )I =x x%  (3.13) 

where 

the whitened version of the pixel of interest, .=x x%  

Now, if an anomaly is considerably larger than a single pixel, (3.13) will still fail to 

detect the anomaly because the anomaly pixels may dominate the statistics of the 

processing window.  To counter this affect, Gaucel et al. incorporate a second term to 

(3.13) to inflate the detector output if the pixel’s eight neighbors have the same 

magnitude and direction.  The WSCF detector then becomes 
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 ( )
( )

j jWSCF
j v i

I α ρ
∈

= + ∑x x x% %  (3.14) 

where 

( ) the set of eight pixel vectors corresponding to
  the neighbors of ,
the whitened version of the th neighbor of ,
the correlation coefficient between  and ,  and
a scaling parameter.

j

j j

v i

j
ρ
α

=

=

=

=

x
x x

x x
%

% %

 

Gaucel et al show that (3.14), with an appropriate value of the scaling parameter, 

performs better than the RX detector on a simulated data set.  In their experiments, the 

authors adjust the scaling parameter until a maximum probability of detection is achieved 

for known anomalies.  Unfortunately, little guidance is provided for selecting the 

parameter when nothing is known of the size or signature of the anomalies—a more 

likely scenario in actual applications. 

Other Local Detector Methods 

To overcome the RX detector’s limited ability to detect large anomalies, Kwon, 

Der and Nasrabadi (2003) propose a dual-window detector that places a smaller 

processing window inside a larger window.  The mean and sample covariance matrices 

are then computed for each window.  The difference matrix between the two covariance 

matrices is also found and its corresponding eigenvalues computed.  These eigenvalues 

are divided into two groups—one corresponding to negative values and the other to 

positive values.  Kwon et al. assert that a small number of the positive eigenvalues can be 

used to extract spectrally distinct materials contained in the inner window.  In other 

words, if the materials in the inner window are considerably different from those in the 

outer window, the difference between the two covariance matrices should have 

significant structure reflected by the positive eigenvalues and corresponding 
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eigenvectors.  By projecting the difference between the outer and inner window mean 

vectors onto the space of the eigenvectors of the large, positive eigenvalues, the resulting 

scalar should have a large absolute value if the materials in the two windows are 

significantly different.  This projection leads to what Kwon et al refer to as the dual-

window eigen separation transform (DWEST) detector: 

 ( )( )
i

T
i diffD = ∑

v
x v m x  (3.15) 

where 

( )

the ith eigenvector corresponding to the ith eigenvalue
  from the set of large, positive eigenvalues
 the difference between the mean vectors of the 

   outer and inner windows

i

diff

=

=

v

m x
 

Where the DWEST detector is designed to locate anomalies larger than a single 

pixel by using two nested windows, Liu and Chang (2004) extend this approach to find 

both large and small anomalies.  To accomplish this task, Liu and Chang propose a three-

window nested detector in which a small window corresponding to small anomalies is 

nested within a larger middle window corresponding to large anomalies.  These two 

windows are nested within an even larger outer window which is used to model the 

image background.  To determine if an anomaly exists in either the inner or middle 

window, Liu and Chang compute what Chang (2003) refers to as the orthogonal 

projection divergence (OPD) between the inner and outer window means, and between 

the middle and outer window means.  The OPD between two vectors, si and sj, is given 

by 

 ( )
1

2( , )
j ii j i i j jOPD P P⊥ ⊥= +s ss s s s s s  (3.16) 
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where 

( ) 1

k
T T

k k k kP
−⊥ = −s I s s s s  

Each term in the OPD metric is the residual of one of the vectors projected into the 

orthogonal subspace of the other vector.  Hence, a large value for the OPD metric 

indicates that the two vectors point in different directions from one another.  By 

computing the OPD for the inner and outer window and the OPD for the middle and outer 

window, a detector can be constructed that outputs the maximum of these two scores.  If 

the detector outputs a significantly large number, the pixel of interest is considered an 

anomaly.  Liu and Chang refer to this method of anomaly detection as nested spatial 

window-based target detection (NSWTD). 

The NSWTD method and the DWEST detector are attempts to take into account 

the size of the anomaly when classifying a pixel.  In other words, these methods utilize 

spatial information as well as spectral information to find anomalies.  A more 

sophisticated method for using spatial information is given by Schweizer and Moura 

(2000) and Schweizer and Moura (2001).  In this method, a three-dimensional Markov 

random field (MRFs) is used to capture the spatial correlation between pixels.  Schweizer 

and Moura use inner and outer processing windows that are both further divided into 

smaller Markov windows.  An approximate maximum likelihood method is used to 

estimate the MRF parameters.  The GLRT is used to determine both a single hypothesis 

version of the anomaly detector and a binary hypothesis version.  Execution of the 

detectors consists of moving the processing windows over each pixel, estimating the 

MRF parameters, computing an output statistic, and testing the appropriate hypothesis 

that the inner window is composed of background material only, or background material 
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and an unknown target material.  The most significant contribution of Schweizer and 

Moura’s method is that the number of computations grows linearly with the number of 

spectral bands.  In comparison, the number of computations for the RX detector grows as 

the square of the number of bands.  Schweizer and Moura contend that this characteristic 

allows more, potentially useful, information to be used for anomaly detection.  

Improvements in actual detection performance with the GMRF method, as tested by 

Schweizer and Moura, are only moderate compared to the RX detector. 

Hazel (2000) presents a different approach to using GMRFs for anomaly 

detection in which GMRFs are first used to automatically segment the hyperspectral 

image into a specified number of classes.  This segmentation information is then used in a 

GMRF anomaly detector to locate anomalies.  

Goovaerts, Jacquez, Warner, Crabtree, and Marcus (2004) propose a method for 

using spatial information in anomaly detection that begins by performing a principal 

components analysis on the original image data.  The results of the PCA are then used to 

produce k principal component (PC) images using the largest 75% of the PCs.  For each 

of the k PC images, a filter window containing n pixels is passed over the entire image.  

The filter used for this task is: 

 ( ) ( )
1

n

ik ik k
i

m zλ
=

=∑u u  (3.17) 
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The weights must sum to unity and are derived using a method developed by Goovaerts 

(1992) referred to as factorial kriging.  This method determines the weights by taking into 

account the spatial correlation of the pixels in the processing window. 

Once the filter is passed over each image, the residual for each pixel is computed 

between the original pixel intensity and the filter value.  The end result of these 

computation is k images showing these residual values.  Each of the residual images are 

then scanned for anomalies.  The scanning is performed by defining an inner and outer 

processing window and computing what is referred to as the local indicator of spatial 

autocorrelation (LISA) statistic: 

 ( ) ( ) ( )
1

1 J

ik k
i

LISA r r
J =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

= ∑u u u  (3.18) 

where 
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the average residual value in the inner
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the residual value of the th pixel located
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For anomaly pixels, the LISA statistic will produce large negative values since anomalies 

are expected to produce inner and outer window residual means of opposite sign.  After 

performing this scan, k new images are obtained showing the LISA value for each pixel. 

To determine which LISA scores indicate anomalies, Goovaerts, et al, use a 

Monte Carlo simulation to estimate the LISA distribution for each of the k images.  The 

simulation entails randomly sampling J pixels to form the outer window and then re-

computing the LISA scores.  This process is repeated many times to form a sufficiently 

large sample of scores.  The resulting sample is used as the empirical distribution of the 
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LISA statistic.  With this distribution, a p-value is estimated for each pixel.  The process 

is repeated for each of the k LISA images resulting in k new images showing the p-values 

of each pixel. 

For the final step of the process, Goovaerts et al propose either computing the 

average p-value for each pixel across the k images (S1 metric), or computing the average 

absolute deviation of the p-value from 0.5 for each pixel across the k images (S2 metric).  

A threshold for these final statistics must be specified in order to determine which pixels 

are anomalies.  No guidance is provided for determining this threshold. 

Goovaerts et al test their proposed method using two hyperspectral data sets that 

image regions of Yellowstone National Park.  Experiments study the effects of: the 

number of PC images used; the final output metric employed; the signal-to-noise ratio of 

the images; and the internal window size.  In general, the ROC curve analysis from these 

experiments show that the method performs best using more PCs and the S2 metric.  The 

method performs well when detecting anomalies in a relatively uniform background, but 

produces considerable false alarms in more complex images.  The authors claim the 

method is robust to variations in signal-to-noise ratio; however, this conclusion appears 

somewhat subjective based on the presented results. 

The poor performance of the Goovaerts et al method given a highly cluttered 

image is characteristic of most local detectors.  Rosario (2004) attributes this problem to 

the fact that local detectors tend to reduce the complex background to a set of statistics 

that misrepresent the background.  To overcome this problem, Rosario uses a three-

window, logistic regression-based anomaly detector.  All three windows are centered on 

the pixel to be tested.  The inner window is hypothesized to contain anomalous material, 
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the middle window represents background material, and the third outer window also 

contains background material but is used to achieve a better estimate of the background 

variability.  Using these windows, two sets of metrics are computed.  The first set 

contains the spectral angle between each pixel vector in the outer window and the middle 

window mean pixel value.  The second set contains the spectral angle between each pixel 

vector in the outer window and the inner mean pixel value.  The two sets of metrics are 

assumed to have probability density functions (pdf) denoted by g0(x) and g1(x), 

respectively.  If the inner window indeed contains anomalous pixels, it is assumed that 

g1(x) is an exponential distortion of g0(x): 

 ( )1

0

( ) exp
( )

g
g

α β= +x x
x

 (3.19) 

where α and β are parameters to be estimated. 

If, under the null hypothesis, the pixel vector being tested is not an anomaly, then 

the estimate for β in (3.19) should be equal to zero.  Rosario outlines a procedure for 

estimating β, as well as the variance of the background pixels using an estimate of g0(x).  

A test statistic for the null hypothesis is also given that Rosario asserts is Chi-Square 

distributed.  Hence, anomaly detection consists of computing the test statistic for each 

pixel vector and comparing it to a critical value from the Chi-Square distribution.  

Experimental tests of this detector on a single hyperspectral data set show drastically 

better ROC curve performance relative to the RX, DWEST, and two other common 

anomaly detectors. 
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Global Anomaly Detectors 

The common element of the local anomaly detection methods is some form of 

moving processing window that is used to characterize the background materials in the 

immediate vicinity of the test pixel.  Global detectors take a different approach by 

attempting to characterize the different background materials contained in the entire 

image and then determining if any pixels are not well-defined by these materials.  In 

general, global methods can be divided into two groups: mixture model-based methods 

and distribution-based methods.  These two types of detectors are discussed in the 

following sections. 

Mixture Model Methods 

A common view of hyperspectral imagery is that the image scene contains M 

distinct background materials, or endmembers, each of which has a characteristic spectral 

signature given by the vector sm.  Each pixel vector in the image is then assumed to be a 

linear mixture of these pure signatures as well as additive noise.  This linear mixture 

model is given by 

 
1

M

m m
m

α
=

= +∑x s n  (3.20) 

where 

the mixing, or abundance, fractions, and
additive noise.

mα =
=n

 

With this model in mind, it is reasonable to assume that if the predominant endmembers 

in the image can be identified and then used to fit (3.20) to each pixel in the image, any 

pixels with a poor model fit are likely to be anomalies.  This premise is the point of 

departure for mixture-based methods, with the primary differences between methods 
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being the manner in which endmembers are identified and the manner in which the 

abundance fractions are used. 

Grossman, Bowles, Haas, Antoniades, Grunes, Palmadesso, Gillis, Tsang, 

Baumback, Daniel, Fisher, and Triandaf (1998) present a mixture detector system called 

the Optical Real-time Adaptive Spectral Identification System (ORASIS).  The ORASIS 

searches the image for pixels, or exemplars, that span the feature space to within a user-

specified tolerance—details are not provided as to how this search is accomplished.  A 

PCA is then performed on the exemplars to determine the fundamental subspace of the 

image.  The dominant PCs are then used to transform the exemplars into the reduced 

subspace.  These transformed exemplars become the endmembers.  For each endmember, 

a filter is constructed to detect the respective material, and these filters are each passed 

over the image to produce an abundance map for each endmember.  A histogram-based 

method is then used to screen the abundance maps for those that best represent target 

materials—again, no details are provided on how this screening is accomplished.  A final 

image is then produced that shows which pixels contained significant amounts of any of 

the target materials.  A spatial filter corresponding to the hypothesized target shape is 

then passed over the image to further eliminate false alarms.  The ORASIS detector is 

tested against a single hyperspectral data set.  Grossman et al. conclude, based on visual 

inspection, that the ORASIS detector is effective in detecting anomalies, though no 

comparisons are made to other detection algorithms. 

A method similar to ORASIS is the NFINDR algorithm with stochastic target 

detector (STD) discussed by Stein, et al.  NFINDR, first presented by Winter (1999), is a 

method for extracting endmembers from a hyperspectral image.  The premise behind 
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NFINDR is that for an image with N pure endmembers, the simplex formed with the 

endmembers as vertices will produce the largest volume in N-1 space.  Further, every 

other pixel vector in the image will be a linear combination of the simplex endmembers.  

Thus, given a user-specified value for N, NFINDR looks for N pixels in the image that 

produce the largest volume in (N-1)-space.  This task is accomplished by starting the 

search with a set of N random pixel vectors selected from the scene.  Starting with the 

first pixel in the image, each pixel is substituted for one of the N pixels in the set and the 

volume of the simplex re-computed.  If the volume increases, the substituted pixel is left 

in the set, the vector it replaced is discarded, and the next pixel in the image is evaluated.  

The process is repeated until the simplex volume fails to increase beyond a specified 

threshold.  The final set of pixels represent the pure endmembers for the image.  The 

endmembers are then used to perform a least squares fit for every pixel in the image 

using (3.20), and N abundance maps are then produced corresponding to the N 

endmembers.  The abundance maps are simply images whose pixel values indicate the 

relative amount of the respective material contained in the pixel. 

As outlined by Stein et al., the STD portion of the method consists of using the 

abundance maps to identify target-like endmembers.  It is hypothesized that target 

materials will be relatively rare, producing abundance maps with relatively few intense 

pixels.  It is also assumed that actual targets will have an abundance value near 1.0 in the 

target endmember abundance maps.  Using these assumptions, histogram analysis is used 

to screen the abundance maps for those that represent target endmembers, and pixels with 

abundance values close to unity in these maps are marked as anomalies.  Winter (2004) 

applies the NFINDR/STD method to finding surface mines.  Results of this experiment 
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show that the method performs exceptionally well when targets are larger than the spatial 

resolution of the image, but tends to produce an increased number of false alarms when a 

pixel is spatially larger than the targets. 

An alternative method to finding image endmembers is the Greedy Monte Carlo 

(GMC) linear unmixing method proposed by Clare, Bernhardt, Oxford, Murphy, 

Godfree, and Wilkenson (2003).  In the GMC method, a sample of pixel vectors is 

randomly chosen from the image.  Individually, each pixel vector in the sample is used to 

fit (3.20) to all the image pixels.  The sample vector that produces the minimum sum of 

absolute residuals over the entire image is selected as the first basis vector.  A second 

sample is then selected, and the best vector—combined with the first basis vector—that 

provides the best fit to the image pixel is selected for the second basis vector.  This 

process continues until the sum of absolute residuals fails to decrease.  Since the first few 

basis vectors selected may not fit the data very well, Clare et al. propose, once 

convergence has been achieved, removing the first basis vector and finding a new vector 

to take its place.  The same procedure is conducted for the second basis vector, and so on, 

until convergence is again achieved.  Once a basis is selected, the corresponding vectors 

are used to fit (3.20) to every pixel in the image.  The pixels with the largest residuals are 

considered anomalies.  Tests conducted with a single data set indicate that the GMC 

detector has better ROC curve performance than the RX detector for extremely low to 

mid-range false alarm rates. 

A similar approach to the GMC detector is the iterative error analysis (IEA) 

approach proposed by Neville, Staenz, Szeredi, Lefebvre, and Hauff (1999) which also 

iteratively finds basis vectors to minimize the overall error of the unmixed image.  
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Details of how the basis selection is performed for IEA were not available at the time of 

this writing.   

Distribution-Based Methods 

Where global mixture-based anomaly detectors attempt to unmix each pixel 

vector according to (3.20) and identify those pixels containing high concentrations of 

target-like endmembers, distribution-based methods are concerned with finding 

probability distributions that globally model the data, and then identifying anomalous 

pixels that are outliers for these distributions.  Stein, Beaven, Hoff, Winter, Schaum, and 

Stocker (2002) propose that the global distribution is a mixture of Gaussian distributions 

defined by the following pdf: 
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Anomaly detection, according to Stein et al., becomes a matter of estimating the 

parameters for each class, segmenting the image using a maximum a posteriori (MAP) 

classifier, and designating as anomalies those pixels that do not fit well in their assigned 

class.  Stein et al. propose using a stochastic expectation maximization (SEM) method 

proposed by Moon (1993) for parameter estimation, though no guidance is given for 

determining the number of classes contained in the image.  A related anomaly detection 

method that also tests pixel fit relative to mixtures of the C classes is the stochastic 

mixing model described by Schaum and Stocker (1997). 
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An alternative approach for determining the image classes is given by Catterall 

(2004) who proposes using a version of k-means clustering to group the image pixels into 

k classes, where k is presumably specified by the user.  Caterall goes on to model each 

class with a Multivariate Normal Inverse Gaussian (MNIG) distribution.  This 

distribution is recommended because it is better able to fit unimodal, heavy-tailed 

distributions that are characteristic of hyperspectral data.  An expectation-maximization 

method introduced by Øigård and Hanssen (2002) is used to estimate the MNIG 

parameters.  Once a distribution is fit to each image class, the negative log-likelihood of 

each pixel belonging to its respective class distribution is computed.  High-values of the 

negative log-likelihood function indicate a pixel is an anomaly.  The threshold value of 

the function at which anomalies are declared is user-specified.  A simple comparison of 

the MNIG detector to the RX detector using a single hyperspectral image visually 

indicate better detection capability with the MNIG detector. 

Carlotto (2005) proposes a cluster-based anomaly detector (CBAD) that is similar 

to the MNIG detector.  The primary difference between the two methods is that Carlotto 

simply computes the Mahalanobis distance between each pixel and its assigned cluster.  

In other words, Carlotto assumes a Gaussian distribution of the clusters rather than a 

heavy-tailed distribution, as suggested by Stein et al.  By making this assumption, the 

CBAD method is computationally less demanding than the MNIG detector, though the 

accuracy may not be as good.   

A limitation of the methods suggested by Carlotto and Caterall is that the number 

of clusters to use is subjective.  To get around this problem, Chang (2003) discusses a 

projection-base method originally proposed by Chiang, Chang, and Ginsberg (2001) that 
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looks for global outliers without explicitly modeling each material class.  The method 

begins by whitening the hyperspectral data so that the projection procedure is translation 

invariant.  A variant of projection pursuit—originally introduced by Friedman and Tukey 

(1974)—is then used to find a projection vector, a, that projects the image data into a 

single dimension in which a projection index (PI) is maximized.  Proposed PI’s are 

skewness or kurtosis of the projected data since these metrics are generally indicators that 

outliers are present in otherwise Gaussian data.  A genetic algorithm is used to search for 

the best value of a that maximizes the PI.  In theory, the resulting projected image data 

should have high skewness or kurtosis which is assumed to be caused by anomalous 

materials.  To find the threshold value of the projected data that represents an anomaly, a 

histogram is constructed.  It is then assumed that a zero value in the histogram represents 

a separation between background pixels and anomaly pixels.  Hence, the first zero value 

found in the histogram is used as the threshold value above which a pixel is considered an 

anomaly. 

Under the assumption that other projections may also reveal anomalies, a zero 

vector—the mean of the whitened data—is placed in the columns of the whitened data 

matrix corresponding to the anomaly pixels identified with the first projection.  A second 

projection is then determined and anomalies identified in the same manner as with the 

first projection.  This process continues until the PI converges to zero, indicating that no 

additional outliers exist.  The anomalies found from each stage of the method are 

combined to form a final binary image indicating the location of the anomalies.  Chang 

shows tests of the method on an image containing known anomaly targets.  The method 
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locates all the anomalies after three projections with few false alarms.  There is no 

guidance as to how many projections to use for an arbitrary image. 

Achard, Landrevie, and Fort (2004) further investigate the method of Chiang et al. 

by using a modified method for finding the projection vectors.  Rather than initiate the 

genetic algorithm search with an arbitrary set of projection vectors, the eigenvectors from 

a PCA and minimum noise fraction (MNF) analysis are first used to project the original 

image data.  The eigenvectors producing the largest PI are then included in the initial 

generation of the genetic algorithm search.  Achard et al. test their method against two 

hyperspectral data sets containing known anomalies and compare it to projecting with the 

PCA eigenvectors only and to projecting with each of the original pixels in the image.  

For each type of projection, the first six projections are used for anomaly detection with 

skewness and kurtosis used for the PI.  Results of the tests showed that using the PCA 

eigenvectors to initialize the genetic algorithm search with kurtosis as the PI is more 

successful than the other tested methods at locating anomalies with few false alarms.  

However, Acard et al. also fail to provide any objective method for the number of 

projections to use in finding anomalies.  This limitation can be problematic since at some 

point in the detection procedure projections will contain more and more false alarms. 

Literature Review Summary 

In the preceding pages, the significant anomaly detection methods found in the 

literature were presented.  These methods are classified as either local detectors that 

locate anomalies relative to the pixels in a local neighborhood, or as global detectors that 

attempt to characterize the global distribution of the image pixel vectors and find outliers 

relative to this distribution.  The local detectors are further categorized as being similar to 
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the benchmark RX detector or as employing a significantly different approach.  The 

global detectors are further described as those based on the linear-mixture model of 

(3.20) or as distribution-based methods.  As mentioned earlier, all of these methods 

follow the underlying theme of finding outliers relative to some assumed statistical 

model.  Additionally, it is evident that none of these methods use multivariate outlier 

detection methods to accurately estimate detector statistics.  It will become evident in 

Chapter 5 that this is a serious omission that may degrade the detection accuracy of the 

methods outlined in this chapter. 

 



53 

IV. Overview of Invariant Target Detection Methods 

Introduction 

A significant challenge of hyperspectral data classification is accurate comparison 

of pixel signatures to known material signatures collected in laboratory conditions.  The 

primary cause of this challenge is the pixel vector elements that comprise the pixel 

signature typically report the energy radiance detected by the sensor at the respective 

band wavelengths, whereas library signatures for a material typically report the percent of 

incident energy reflected by the material at different wavelengths.  Therefore, a 

conversion must be made from either radiance signatures to reflectance signatures, or 

vice versa.  Conversion from radiance to reflectance entails removing the effects of 

skylight, viewing geometry, path radiance, and atmospheric conditions from sensor 

radiance measurements to obtain an estimate of the reflectance that would be obtained in 

the laboratory.   Conversion from reflectance to radiance entails combining these effects 

with the laboratory reflectance signature to obtain an estimate of the sensor radiance 

reading.  In either case, atmospheric and viewing geometry parameters must be known or 

estimated for a hyperspectral image for the conversion to be made.  These parameters 

may not be available to the scientist attempting to classify a hyperspectral image, and if 

they are, the atmospheric and illumination models required for the conversion may not 

provide sufficient accuracy to enable an accurate and usable conversion. 

As outlined in Richards and Jia (1999), a common method for circumventing the 

conversion problem is to identify training pixels for each class within the image itself and 

use these pixels to define the probability distributions for maximum likelihood 

classification.  This method eliminates the need for any conversion, but it shifts the 
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burden to identifying a sufficient number of training pixels to adequately define the class 

probability distributions.  This task is further complicated by the requirement for ground 

truth data to verify the class membership of training pixels.  These problems can 

generally be overcome for land-cover classification studies of geographic areas in which 

ground truth data is attainable, but in the case of target detection studies, these problems 

present a more formidable challenge. 

A significant difference between target detection and land-cover classification 

studies is the target material of interest often does not appear in the image with very high 

frequency; therefore, manually defining a sufficient number of target material training 

pixels may not be possible.  Also, military target detection may further be complicated by 

an inability to gather ground truth data for the hyperspectral scene.  These factors 

severely limit the practicality of defining training sets, and argue for some form of 

signature matching detection that does not require atmospheric correction of the 

hyperspectral data. 

In the following sections, a signature matching method proposed by Healey and 

Slater (1999) that is invariant to the atmospheric conditions and viewing geometry 

associated with a hyperspectral image is discussed.  This method is referred to as 

invariant subspace target detection.  Existing extensions to Healey and Slater’s method 

are also presented.   An understanding of these invariant subspace target detection 

methods provides the context for the target detection methodology given in Chapter 6. 
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The Original Method and Extensions 

The invariant subspace target detection method, originally proposed by Healey 

and Slater (1999) for the purpose of detecting pure-pixel targets, attempts to define the 

subspace of radiance signatures that a target material’s reflectance signature is mapped 

into as a function of atmospheric conditions and viewing geometry.  With this subspace 

defined, any pixel vector from an arbitrary hyperspectral radiance image that lies within 

the subspace is designated a target.  To define the target material’s radiance subspace, 

Healey and Slater begin with the radiance model for a pixel located at coordinate (x,y) 

given in Equation 2.1 and restated here: 
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If the laboratory reflectance signature for a target material is known, then it is 

theoretically possible to use (4.1) to determine the radiance of the material detected by 

the sensor for a given set of viewing geometry and atmospheric parameters.  By 

systematically using different combinations of these parameters, (4.1) can be used to 

generate a sample set of the possible radiance spectra that can be produced from the 

reflectance signature.  To use (4.1) for this purpose, explicit functions for Tu, Td, E0, Es, 

and P must be known; however, closed forms for these functions may be difficult to 

obtain.  As a surrogate for (4.1), Healey and Slater use the MODTRAN 3.5 atmospheric 

modeling program to generate a set of radiance spectra for different combinations of solar 

zenith angle, atmospheric gas profiles, aerosol profiles, and sensor altitudes. 

Once the sample set of radiance spectra are obtained for the target material’s 

reflectance spectra, the subspace in which they lie can be estimated.  To accomplish this 

task, Healey and Slater recommend using spectral value decomposition (SVD) to find an 

orthonormal set of basis vectors—the eigenvectors of the sample radiance spectra—that 

can be used to define the radiance subspace.  To determine the dimensionality of the 

subspace, and hence the number of basis vectors to use, it is assumed that each of the 

sample radiance vectors can be approximated by a linear combination of the basis 

vectors.  That is to say, 
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the th radiance spectrum from the sample set,
the total number of sample radiance spectra generated,
the assumed dimensionality of the radiance subspace,
the weighting coefficient for the th
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In this model, it is assumed that the N basis vectors used to define the subspace are the N  

eigenvectors from the SVD corresponding to the N largest eigenvalues. 

If all the eigenvectors are used for the model of (4.2), then there will be no 

residual error between the Li and their respective linear combination of the basis vectors, 

where the error for the ith radiance spectra is given by: 
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However, using all the eigenvectors may produce a relatively large subspace that may 

overlap the radiance subspaces of other materials.  Thus, finding the appropriate number 

of basis vectors to use to define the radiance subspace reduces to finding the minimum 

value of N that produces a sufficiently low total squared error given by: 
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By minimizing the number of basis vectors, it is hoped that sufficient separability will 

result between the target material subspace and other material subspaces.  Experimental 

tests conducted by Healey and Slater using 498 material spectra from the USGS spectral 

library indicate that using N=9 basis vectors produces a sufficiently low error to 

adequately model an arbitrary material’s radiance subspace.  Thus, selecting the nine 

largest eigenvectors from the SVD of the sample set of radiance spectra is expected to 



58 

provide a good estimate of the radiance subspace for a target material’s reflectance 

spectra. 

Once the subspace basis vectors are determined, they can be used to detect the 

presence of the target material in a hyperspectral radiance image.  To perform this 

detection, the pixel vectors in the image are first normalized since the size of the 

approximation error given by (4.3) depends on scalings of the spectral vector.  For an 

arbitrary pixel vector, L, the normalized vector is simply, 

 ˆ LL
L

=  (4.5) 

It is then assumed that the normalized vector is a linear combination of the subspace basis 

vectors.  In other words, 
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where n is an error term.  Under the assumption that the error terms are independent with 

constant variance, the maximum likelihood estimates for the αj terms are given by: 
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where the columns of M are the basis vectors.  Also due to the independent and 

identically distributed (iid) error assumption, the estimates of (4.7) minimize the errors, 

which are given by 
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These error terms can be thresholded in order to determine if a pixel is comprised of the 

target material.  Thus, invariant subspace target detection consists of cycling through all 

the image pixels and using (4.7) to estimate the bases multipliers for each pixel.  The 
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error terms for each pixel are then computed using (4.8), and any errors that have a 

sufficiently low probability of belonging to a Gaussian distribution with zero mean and 

unit variance are designated as targets.  It is important to note that once the basis vectors 

have been determined for a target material, they can be used to detect targets in any 

number of arbitrary hyperspectral radiance images.  Thus, the potentially time consuming 

task of generating a representative sample of radiance spectra using the MODTRAN 3.5 

model needs to be performed only once in order to identify the subspace basis vectors.  

This feature makes invariant subspace target detection an attractive option for the target 

detector component of the proposed target detection framework. 

Extension to Sub-pixel Targets 

Healey and Slater’s original invariant subspace target detector was designed for 

detecting pure-pixel targets.  Thai and Healey (1999) adapt the original methodology for 

use in detecting sub-pixel targets.  This extension is made by first assuming that an 

arbitrary pixel in a hyperspectral radiance image can be modeled in the following 

manner: 
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The basis vectors that comprise T are found using the same procedure used for the 

original invariant subspace target detector.  In order to find the basis vectors that 



60 

comprise B, the hyperspectral image is arranged as the matrix, Y, in which each row 

corresponds to a pixel vector from the image.  To ensure the background subspace 

defined by B has as little overlap with T as possible, any pixel vectors that are fit well by 

T are removed from Y.  A singular value decomposition is then performed on Y to 

produce an orthonormal set of vectors that can be used to define the subspace of the 

image background. 

The question then arises as to how many basis vectors to include in B so as to 

adequately define the background subspace.  Thai and Healey assert that enough vectors 

should be include to account for a minimum amount of the total variance, but not so 

many vectors that the background and target subspaces overlap significantly.  Also, any 

background basis vectors that are used should not project well into the target subspace, 

again to prevent overlap of the two subspaces.  Basis selection thus proceeds by adding 

eigenvectors to B until the variance accounted for by the vectors is between a specified 

upper and lower threshold.  Also, the magnitude, δj, of the projection onto T of the jth 

vector added to B must be below a specified threshold.  That is to say, 

 T
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The threshold value used in (4.10) should be arbitrarily close to zero since a vector that is 

orthogonal to T will have a δj-value of zero. 

Under the assumption that the n-terms from (4.9) are i.i.d. with a Gaussian 

distribution, then the multipliers in (4.9) can be estimated as 
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where 

.the pseudo-inverse of + =A A  

The i.i.d. assumption of the error terms further leads to the formation of a generalized 

likelihood ratio that can be used to test if the target material is present in the pixel, y.  

This ratio is given by 
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Implementation of Thai and Healey’s sub-pixel target detector consists of first 

determining the basis, T, for the desired target material.  As mentioned previously, this 

basis only needs to be determined once for a given material and can then be used for any 

number of arbitrary hyperspectral radiance images.  Once T is defined, the hyperspectral 

image is divided into sub-regions and the background subspace basis, B, is then 

determined for each sub-region.  For each pixel in the image, the ratio of (4.12) is 

computed using the appropriate B-matrix for the pixel’s sub-region.  Any pixels with a 

sufficiently high ratio are initially designated as containing the target material.  However, 

as indicated by Thai and Healey, it is possible that a pixel with a high ratio contains a 

target spectrum component, Tθ, of (4.9) that contains negative elements.  Thus, the initial 

set of designated target pixels are screened using the following validity check: 

 .ˆˆ = ≥t Tθ 0  (4.13) 
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Any designated pixels that satisfy (4.13) are designated as actual target pixels. 

In order to better determine the dimensionality of the background subspace basis, 

B, Thai and Healey (2002) provide a modification to the sub-pixel detection method.  In 

particular, the method for selecting the number of basis vectors for the columns of the B-

matrix is reduced to finding a value of i that maximizes the following ratio: 
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The motivation for using this method to select the number of vectors in B can be 

understood by considering an image pixel that contains both target and background 

material.  Such a pixel can be modeled by (4.9).  If we also assume that the target and 

background subspaces will overlap if too many basis vectors are used for B, then it can 

be shown that (4.14) will increase as basis vectors are added to B.  However, as the 

overlap between subspaces increases, then the ratio will begin to decrease.  This decrease 

occurs because the subspace defined by B will eventually contain enough of the target 

subspace to allow a target vector to be written as a linear combination of the vectors in B.  

This condition will result in low values of the likelihood ratio, even if the target material 
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is present, since the vectors in T are no longer required to model the pixel.  Finding the 

value of i that maximizes (4.14) helps prevent this phenomenon from occurring, thus 

ensuring high values of the ratio in (4.12) when the target material is present in the pixel. 

Another modification of the invariant sub-pixel target detector is presented by 

Zhang and Gu (2004) who assert that using singular value decomposition or PCA to 

derive the target and background subspace bases is imprecise if the subspaces contain 

nonlinearities.  As an alternative method for defining the subspaces, Zhang and Gu use 

kernel PCA with a radial basis kernel to specify the subspace as a linear combination of 

the kernel matrix elements.  In this new method, the T and B matrices in Thai and 

Healey’s formulation of (4.9)-(4.12) are replaced by kernel subspace matrices Tk and Bk.  

After making this substitution, Zhang and Gu’s method proceeds in the same manner as 

the original invariant sub-pixel target detection method. 

Zhang and Gu’s assertion that SVD is not necessarily the best method for 

selecting the basis vectors is verified by research conducted by Bajorski, Ientilucci, and 

Schott (2004) and Bajorski and Ientilucci (2004).  In the former study, Bojorski et al. test 

three different basis selection methods for determining the background matrix, B.  The 

first method is the SVD approach used by Thai and Healey.  The second method is the 

Pixel Purity Index (PPI) method described by Boardman, Kruse, and Green (1995) that 

projects all the image pixel vectors in thousands of different random directions in the 

spectral space.  Pixels that repeatedly receive very low or very high projection 

magnitudes are identified as endmember materials that can be used as basis vectors.  The 

final selection method is referred to as the Maximum Distance (MaxD) method and was 

originally proposed by Lee (2003).  MaxD forms the basis by searching for pixel vectors 
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that form the corners of a simplex in the spectral space.  Details of this method are 

provided in Bajorski et al.  The comparison tests of the three methods indicate that the 

MaxD method produces the best detection results for an AVIRIS image of a complex 

urban scene, while the SVD method is best for a less complex HYDICE image.  No 

rationale is given for this results, but it is evident that the scene complexity may influence 

the performance of invariant sub-pixel target detection. 

In all the versions of the sub-pixel detection method discussed up to this point, 

designation of a pixel vector as a target is based on the generalized likelihood ratio 

(GLR) given in (4.12).  However, derivation of (4.12) assumes that the residuals in the 

model given by (4.9) are i.i.d. Gaussian random variables.  According to Bajorski, 

Ientilucci, and Schott (2004) and Manolakis, Siracusa, and Shaw (2001), this assumption 

is usually not valid for hyperspectral data.  To account for this problem, Liu and Healey 

(2004) propose that the class conditional density functions used in the GLR be estimated 

using non-parametric methods.  Specifically, Liu and Healey calculate the magnitudes of 

the residuals for all the image pixels under the null hypothesis that no target material is 

contained in the pixel, as well as the magnitudes of the residuals for all the image pixels 

under the alternative hypothesis that the pixels contain both target and background 

materials.  For each of these sets of magnitudes, a histogram is constructed to serve as the 

empirical density functions required for the GLR of (4.12).   

Other Extensions to the Original Method 

In the derivation of the original invariant subspace target detection method, 

Healey and Slater assume that the surface normal of an irradiated pixel emanates from the 

center of the Earth.  That is to say, it is assumed that the pixel is flat.  To account for 



65 

pixels that may actually have an aspect component—that lie on a hill, or slope—Slater 

and Healey (1999) develop a function that generates new radiance spectra given a 

radiance spectra for a flat pixel.  With this function, the output radiance spectra from 

MOTDRAN 3.5 using a combination of atmospheric and viewing geometry parameters 

can be used to generate additional radiance spectra corresponding to different surface 

orientations. 

Just as the original invariant subspace target detector did not consider surface 

orientation of the pixel, it also did not consider the zenith angle of the sensor.  That is to 

say, the original method only considered the viewing geometry parameters of solar zenith 

angle and sensor altitude, but assumed that the sensor was located at the nadir of the 

pixel.  Suen, Healey, and Slater (2001) extend the original method by incorporating the 

sensor zenith angle—θv in Figure 5—as a parameter to be varied in generating the sample 

set of radiance vectors.  This modification to the original methodology increases the total 

number of sample vectors that must be generated with MODTRAN, but leaves the 

remainder of the detection process intact. 

In some target detection studies, the target material signature may be derived from 

the image itself rather than from laboratory measurements.  This scenario may unfold 

when anomaly detection is used to identify potential targets in an image and it is desired 

to find these same targets types in other parts of the image or in different images all-

together.  Slater and Healey (2001) adapt their original invariant subspace methodology 

to operate in these scenarios.  The significant component of this new methodology is a 

functional relationship that relates the radiance signature of the target identified in the 

original image to potential variants of the signature that may occur under different 
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atmospheric conditions in another image.  This functional relationship can be used in 

conjunction with MODTRAN 4 to generate a sample set of radiance spectra for the 

target.  With this sample set, the original invariant subspace detection method can be 

applied in the usual way.  Again, the primary use for this extension is to identify and 

track interesting target materials found in one image across other images taken at 

different times under different atmospheric and viewing geometry conditions. 

Another variant of target detection arises when the target material of interest is 

actually a mixture of materials.  This scenario may arise in a military context when the 

target of interest is painted in a multi-color camouflage scheme and the color pattern has 

a smaller dimension than an image pixel.  Suen and Healey (2001) present an invariant 

detection method for detecting these types of targets.  The method begins by assuming 

that under a set of atmospheric and viewing geometry conditions specified by index j, a 

pixel signature, pj,β, for a pixel containing the target mixture is a linear mixture of the N 

different materials: 
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With this assumption, Suen and Healey use MODTRAN 4 to generate a set of L radiance 

signatures for each mixture material, where each of the signatures corresponds to a 

different combination, j, of atmospheric and viewing geometry parameters.  Starting with 
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an arbitrary pixel in the image, the βk coefficients in (4.15) are estimated to minimize the 

error between the actual pixel signature and the fitted value from the mixture model.  

These coefficients are estimated using quadratic programming for each of the L 

conditions.   

After the coefficients have been estimated for the pixel, the resulting L sets of 

coefficients are searched to find the set, j, that produced the smallest residual error.  

Because the residuals are assumed to be Gaussian noise with zero mean and constant 

variance, the magnitude of the residual for condition set j can be thresholded to determine 

if the pixel contains a mixture of the N target materials.  This process is repeated for each 

pixel in the image, though the L radiance spectra for each of the target materials do not 

need to be regenerated. 

The invariant subspace target detection methods discussed up to this point have 

been concerned with detecting spectral signatures that are similar to a target spectra.  As 

the spatial resolution of hyperspectral imagery improves, however, it is also possible to 

detect target materials by matching the texture of a target material to the texture of a 

pixel’s surrounding region.  Shi and Healey (2005) exploit this idea by using the concept 

of multiband correlation functions and invariant subspace methods to detect targets based 

on the target’s texture.  Element (m, n) of the multiband correlation matrix between bands 

Li and Lj for the pixel located at coordinate (x, y) is given by: 

 ( ) ( ) ( ){ }, , ,ij i i j jC m n E L x y L L x m y n L⎡ ⎤ ⎡ ⎤
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Computing these matrices for a subset, W, of all band pair combinations in the 

hyperspectral image provides a means for discriminating different target textures.  

However, the mutliband correlation matrices for a specific texture are sensitive to 

atmospheric and viewing geometry parameters.  To account for this problem, Shi and 

Healey use the  DIRSIG synthetic image generation model of Schott, Brown, Raqueno, 

Gross, and Robinson (2002) to generate a set of images corresponding to different 

environmental conditions.  From this set of images, a representative set of multiband 

correlation matrices can be computed for each target texture.  Shi and Healey then 

present a method for determining the subspace defined by these matrices.  Target texture 

detection is then performed by computing the distance between the vector representation 

of a pixel’s W multiband correlation matrices and the subspace of the target texture 

vector.  Sufficiently small values of this distance indicate that the pixel texture matches 

the target texture.  A statistical test for significance of the distance metric does not exist.   

Summary 

The preceding discussion provided an overview of invariant subspace target 

detection methods that rely on the MODTRAN4 radiative transfer model to generate sets 

of target radiance signatures that are representative of a target in an image scene.  These 

methods serve as a background to the target methodology proposed in Chapter 6 that 

replaces the MODTRAN4-based signatures with a set of target signatures derived from 

in-scene information, thereby making this target detection approach more accessible to a 

wide range of image analysts. 
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V.  Improved Anomaly Detection Using Multivariate Outlier Methods 

Detecting anomalies in hyperspectral imagery is essentially a multivariate outlier 

detection problem in which it assumed that the background materials in the image 

constitute a set of homogeneous populations that are potentially contaminated by 

anomalous pixel vectors.  When anomaly detection is viewed in this light, it would seem 

natural that the numerous outlier detection methods and principles proposed in the 

statistical literature are applicable to finding hyperspectral anomalies.  However, as 

indicated by the literature review in Chapter III, classical outlier detection methods have 

yet to find their way into the field of hyperspectral analysis.  Moreover, the negative 

effects that outliers impose on classical statistical methods are seldom addressed by 

current anomaly detection methods, if they are even acknowledged at all.  This omission 

is particularly troublesome since many of the anomaly detection methods rely on the 

Mahalanobis distance and other covariance matrix-based metrics which are extremely 

sensitive to the presence of even a small number of outlying observations.  It is the 

subject of this chapter to investigate this problem further and to propose a methodology 

for using outlier detection methods to find anomalies in hyperspectral data.  It is shown 

that such a method is capable of finding anomalies at low false alarm rates relative to the 

benchmark RX detector and a cluster-based anomaly detector.  Particular emphasis is 

placed on developing an anomaly detector that can be applied with minimal input from 

the user. 

The remainder of the chapter proceeds by first discussing the basic problems 

imposed by outliers and surveying the existing technical literature on multivariate outlier 

detection methods.  With this background in-hand, the significance of outliers in the 
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hyperspectral context is demonstrated using simulated hyperspectral data.  Experimental 

tests are then presented that indicate the BACON algorithm of Billor, Hadi, and 

Velleman (2000) and the FAST-MCD algorithm of Rousseeuw and van Driessen (1999) 

are amenable to hyperspectral anomaly detection.  To use the BACON and FAST-MCD 

algorithms in an autonomous fashion it is necessary to apply them to homogenous data.  

To this end, we demonstrate that the k-means clustering algorithm is a reasonable method 

for clustering hyperspectral image data into homogeneous groups, and we also evaluate 

different methods for automatically determining the value for k.  We then combine the 

BACON and FAST-MCD methods with the k-means algorithm to produce an 

autonomous anomaly detector, and use Taguchi robust parameter design methods to 

produce a final algorithm that consistently produces high detection accuracy across a 

range of hyperspectral images.  Finally, it is shown that the robustly configured 

algorithm, referred to as AutoDet, is superior to two benchmark anomaly detectors when 

applied to a range of actual hyperspectral images. 

Key Outlier Detection Concepts 

The challenge of dealing with outliers in statistical data has persisted for 

centuries.  As described by Barnett and Lewis (1994), Daniel Bernoulli wrote the 

following statement in 1777 concerning his analysis of astronomical observations: 

I see no way of drawing a dividing line between those that are to 
be utterly rejected and those that are to be wholly retained; it may 
even happen that the rejected observation is the one that would 
have supplied the best correction to the others. (Bernoulli and 
Allen, 1961). 
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In 1852, seventy-five years after Bernoulli’s apparent frustration with the handling of 

outlying observations, the first journal article pertaining to outliers was written by 

Benjamin Pierce.  In his article, Pierce draws the following conclusion: 

In almost every true series of observations, some are found, which 
differ so much from the others as to indicate some abnormal source 
of error not contemplated in the theoretical discussions, and the 
introduction of which into the investigations can only serve…to 
perplex and mislead the inquirer. (from Barnett and Lewis, 1994). 

From these comments by Bernoulli and Pierce, it is evident that the presence of 

outliers and their ability to mislead a well-intentioned scientist have been recognized 

since the outset of formal scientific analysis.  Over the years, much theoretical work has 

been conducted to formalize the outlier problem and to offer statistical methods that are 

either robust to their presence or can be used to ascertain their existence.  For a thorough 

discussion of these developments, the reader is directed to the text by Barnett and Lewis 

(1994) or the journal article by Beckman and Cook (1983).  From the material presented 

by these authors, we can distill several key concepts that point to the relevance of outlier 

methods to the problem of finding anomalies in hyperspectral data.  Specifically, the 

concepts of breakdown point, masking, and swamping are discussed in the following 

paragraphs in order to set the stage for using multivariate outlier detection methods for 

anomaly detection. 

Estimator Breakdown Point 

Barnett and Lewis attribute the concept of a breakdown point to Hodges (1967) 

and Hampel (1968) (1971) who used it to describe the resistance of robust estimation 

methods to the presence the outliers.  In simple terms, the breakdown point of an 

estimator is the fraction of arbitrary contaminating observations that can be present in a 

sample before the value of the estimator can become arbitrarily large.  In other words, the 
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breakdown point specifies the fraction of outliers in a sample that can theoretically cause 

the estimator to produce values that are meaningless since they cannot be bounded in any 

way.   

For location and covariance estimators—the two estimators that are most germane 

to outlier detection—Lopuhaa and Rousseeuw (1991) give more formal definitions of the 

breakdown point.  For a location estimator, tn, at a collection of observations, X, the 

breakdown point, ε*(tn, X), is defined as: 
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From (5.1), it can be seen that the breakdown point for a location estimator is the smallest 

fraction of a sample that can be corrupted by outliers before the distance between the true 

sample mean and the corrupted sample mean can become arbitrarily large. 

The formal definition of the breakdown point for the covariance estimator, Cn, is 

given by Lopuhaa and Rousseeuw to be: 
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In words, (5.2) states that the breakdown point for a covariance estimator is the smallest 

fraction of a sample that can be corrupted by outliers before the difference between the 

largest eigenvalues of the true covariance estimate and that of the corrupted covariance 

estimate becomes arbitrarily large, or the difference between the smallest eigenvalues of 

the two estimates is arbitrarily close to zero. 

In the context of estimating the mean vector and covariance matrix for a sample 

of data, it is advantageous to use estimators with as high a breakdown point as possible, 

with the theoretical limit being 50%, as explained by Rousseeuw and Leroy (1987).  

Unfortunately, the breakdown points for the classical mean and covariance estimators are 

only 1/N, where N is the sample size (Donoho and Huber, 1983).  In other words, the 

classical mean and covariance estimators can potentially produce unbounded estimates, 

in the sense of (5.1) and (5.2), with as little as one contaminating observation present in 

the sample.  Extending this idea further, any metric that uses the classical mean and 

covariance estimate is also prone to breakdown with only a single outlier.  Since the 

Mahalanobis distance is such a metric, any method that relies on this distance should not 

be trusted if outliers are suspected to be in the sample.  All known variants of the RX 

anomaly detector fall in this category of suspicion.  In the multivariate analysis world, the 

generally accepted remedy for this problem is to obtain robust estimates of the mean and 

covariance.  These estimates can then be used in Mahalanobis distance-based methods to 

detect the presence of outliers.  Methods that follow this prescription are outlined later in 

this chapter. 
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The Masking Effect 

In addition to estimator breakdown, the phenomenon of outlier masking also 

argues for the use of outlier detection methods for detecting hyperspectral anomalies.  

Masking refers to the condition of very strong outliers distorting non-robust mean and 

covariance estimates to such a degree that weaker outliers appear ordinary in terms of 

their Mahalanobis distances.  The degree of masking is measured in terms of an increase 

in Type II error, or false negatives, since observations that are truly outlying are classified 

as part of the uncontaminated population of data. 

To formalize the concept of masking, Becker and Gather (1999) developed the 

outlier detector masking breakdown point that specifies the smallest fraction of outliers in 

a sample that can induce the masking affect.  Becker and Gather prove that the masking 

breakdown point for an outlier detector that uses a mean and covariance estimator is 

bounded by the breakdown points of these two estimators.  Further, if the two estimators 

have the same breakdown point, then the masking breakdown point of the detector is 

equal to the estimator breakdown point.  An immediate conclusion that can be drawn 

from these findings is that non-robust Mahalanobis distance-based outlier detectors can 

be affected by masking in the presence of a single outlying observation.  Since 

hyperspectral anomaly detectors are essentially multivariate outlier detectors, this 

conclusion is also relevant to finding hyperspectral anomalies. Therefore, multivariate 

outlier detection methods that are resistant to masking should also be considered for 

finding hyperspectral anomalies. 
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The Swamping Effect 

A further reason for employing multivariate outlier detection methods for 

anomaly detection is to combat the swamping effect.  Where masking refers to the 

increase of Type II error due to the presence of outliers, swamping refers to the increase 

in Type I error caused by outliers.  As explained by Hadi (1992) in the context of 

Mahalanobis distance-based outlier detection methods: 

…not all observations with large [Mahalanobis distance] values are 
necessarily outliers.  For example, a small cluster of outliers will 
attract [the mean vector] and will inflate [the covariance estimate] 
in its direction and away from some other observations which 
belong to the pattern suggested by the majority of observations, 
thus yielding large [Mahalanobis distance] values for these 
observations. 

In other words, swamping occurs when outliers sufficiently distort the mean vector and 

covariance estimate so that good observations are incorrectly classified as outlying.   

With the concept of swamping in mind, it can be argued that relatively poor 

receiver operating characteristic curve performance of Mahalanobis distance-based 

anomaly detectors is due in-part to swamping of the detector.  In particular, if large 

anomalies are present in the processing window of a RX-type detector, the anomalous 

pixels may distort the mean vector and covariance matrix to the extent that false alarms 

occur.  To ensure against this source of false alarms, multivariate outliers detection 

methods should be employed that use robust estimation methods for the mean vector and 

covariance matrix.  Following this strategy helps ensure that the false alarm rate for an 

anomaly detector is inline with the accepted alpha-level for the detector. 

Desirable Detector Properties 

Based on the foregoing discussion, multivariate outlier detection methods with 

high breakdown point and resistance to the masking and swamping effects are generally 
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desirable for actual applications.  In deciding if a detector’s breakdown point is sufficient 

for a given detection scenario, the number of anticipated outliers should be considered.  

For a problem with N observations in p dimensions, if less than N/(p+1) outliers are 

expected in the dataset, detectors with a breakdown point of 1/(p+1) may work perfectly 

well, alleviating the need to use higher-breakdown methods that may be more 

computationally complex.  If it is impractical or impossible to judge the fraction of 

outliers contained in a sample, high breakdown methods provide a more conservative and 

reliable option for detecting the outliers. 

To determine if a detector is resistant to the masking affect, the result of Becker 

and Gather (1999) can be applied.  Specifically, if a detector has constituent estimators 

with known breakdown points, then the masking breakdown point will be no less than the 

smallest of the estimator breakdown points.  Hence, the breakdown point of the detector 

can be used as a guide for assessing its resistance to masking.  There is no similar result 

that formally explains a detector’s resistance to swamping.  For Mahalanobis distance-

based detectors, however, it would seem intuitive that a detector’s resistance to swamping 

is linked to its ability to accurately estimate the mean vector and covariance matrix for 

the good observations.  If the mean vector and covariance matrix are accurately 

estimated, then it is less likely that the swamping effect will cause good observations to 

be labeled as outliers.  Therefore, the breakdown point of the detector should also provide 

an indicator for the detector’s resistance to swamping—high-breakdown detectors should 

not experience swamping unless the fraction of outliers exceeds the detector’s breakdown 

point. 
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 Another desirable property of an outlier detection method is affine equivariance.  

A detector is affine equivariant if the results it produces do not depend on translations, 

rotations, or changes of scale of the original data.  A detector possesses the affine 

equivariance property if the estimators used in the detector are themselves affine 

equivariant.  For Mahalanobis distance-based detectors, the detector is affine equivariant 

if the location and covariance estimators used to compute the distance are affine 

equivariant.  Referencing Rousseeuw and Leroy (1987), a location estimator, T, is affine 

equivariant if and only if 

 ( ) ( )T T+ = +AX b A X b  (5.3) 
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A covariance estimator is affine equivariant if and only if 

 ( ) ( ) .TC C+ =AX b A X A  (5.4) 

Again, the primary benefit of using affine equivarient methods to find outliers is the data 

can be translated, rotated or scaled without affecting the detection results.  In the context 

of hyperspectral imagery, this property is particularly important since data transformation 

techniques such as principal component analysis are often applied to the data to reduce 

the dimensionality.  Additionally, hyperspectral data is often scaled to reduce the effects 

of uncalibrated data, the atmosphere, and varying dynamic ranges between bands. 

Examples of affine equivariant detection methods identified by Rousseeuw and 

Leroy are convex peeling (Barnett, 1976, Bebbington, 1978), ellipsoidal peeling 

(Helbling, 1983, Titterington, 1978), classical Mahalanobis distance methods, iterative 
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deletion, iterative trimming (Gnanadesikan and Kettenring, 1972), and depth trimming.  

Some of these methods, as well as additional outlier detection techniques, are discussed 

further in the following section. 

Multivariate Outlier Detection Literature 

 The preceding section introduced the concepts of breakdown point, masking, and 

swamping to explain the impact outliers can have in foiling efforts to reveal them.  With 

these ideas in mind, we now discuss the various methods that have been proposed over 

the years to detect outliers.  These methods can be divided into two general groups: 

robust Mahalanobis distance-based methods, and non-traditional methods.  The robust 

distance methods use some form of robust estimation to obtain mean vector and 

covariance estimates for the data.  The Mahalanobis distance is then computed for each 

observation using these robust estimates, and observations whose distances exceed a 

critical value—generally from the Chi-square distribution if the data is multivariate 

normal—are labeled as outliers.  For the non-traditional methods, the Mahalanobis 

distance is either not used for detection, or it is not used in a robust form.  Rather, some 

alternative statistic is exploited that is presumably better at revealing outliers or that is 

computationally easier to compute than distances based on robust mean and covariance 

estimates.  These groups will be discussed individually in the following sections. 

Robust Distance Methods 

Of all the multivariate outlier detection methods found in the literature, robust 

distance-based methods are the most numerous.  In order to better explain how these 

methods have evolved over the last two decades, they are presented in roughly 

chronological order in the following paragraphs.  Also, in an effort to keep the focus of 
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this discussion on existing outlier detection methods, much of the theoretical work in the 

related area of robust estimation is not addressed here.  For the reader who is interested in 

the theory underpinning some of these robust distance methods, articles by Maronna 

(1976), Tyler (1988), Lopuhaa (1989), Lopuhaa and Rousseeuw (1991), Lopuhaa (1992), 

Butler, Davis and Jhun (1993), Rocke (1996), and Becker and Gather (1999) are 

suggested.  

M-Estimation Method 

One of the earliest robust distance methods was proposed by Campbell (1980) 

who suggested using M-estimators to obtain robust mean vector and covariance matrix 

estimates.  M-estimators were originally proposed by Maronna (1976) as an affine 

equivariant method for obtaining robust mean vector and covariance matrices for possible 

use in linear discrimination, principal component analysis, and outlier detection.  The M-

estimates of a location vector, t, and a scatter matrix, V, are defined as the solution to the 

following system of equations: 
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where the functions u1 and u2 are functions of the Mahalanobis distance that must satisfy 

certain assumptions.  In general, these functions serve as weighting functions that 

minimize the impact outlying observations have on the mean and covariance estimates.  

Different forms of the weighting functions have been proposed in the literature. 

To find a solution for (5.5), iterative methods are typically employed; however, 

there is no guarantee that the global optimum can be found.  As determined by Maronna, 
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a weakness of these estimators is a breakdown point of only 1/(p+1), which can be 

problematic if operating in high-dimensional space. 

MVE and MCD Methods 

As a high-breakdown point alternative to the M-estimation method, Rousseeuw 

(1983) proposes the minimum volume ellipsoid (MVE) and minimum covariance 

determinant (MCD) as methods for estimating the location and scatter of the data.  The 

MVE method searches for the minimal volume ellipsoid that encompasses at least h of 

the observations, with h taken as [n/2]+1.  The mean vector estimate is the center of the 

ellipsoid, and the covariance is the ellipsoid itself multiplied by a correction factor to 

achieve consistency with a multivariate normal distribution.  In a similar manner, the 

MCD looks for the sub-sample of h observations whose covariance matrix has the 

smallest determinant.  The mean vector is then taken as the mean of the h observations, 

and the covariance estimate is the covariance of the h observations multiplied by a 

consistency factor.  Upon obtaining the MVE or MCD estimates, they are then used to 

compute the Mahalanobis distance of all the observations to detect outliers.  The 

advantage of the MVE and MCD is their high breakdown point of 50%, which makes 

them very useful for highly contaminated data.  A disadvantage of these estimators is the 

combinatorial optimization problem that must be solved to find their exact solutions.  In 

practice, search heuristics are employed to find approximate solutions. 

A practical means for searching for an approximate MVE solution is proposed by 

Rousseeuw and Leroy (1987) and again by Rousseeuw and van Zomeren (1990).  This 

method—referred to as the resampling method—entails drawing m sub-samples of size 

p+1 from the original data, where m is chosen to ensure a high probability that at least 
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one sub-sample will be free of outliers.   For each sub-sample, the covariance matrix is 

computed and either inflated or deflated to include h of the observations from the original 

sample.  The volumes of each of the m resulting ellipsoids are then approximated, and the 

one with the minimum volume is used to form the MVE estimate.  To improve the 

efficiency of the MVE estimate, Rousseeuw and Leroy go on to recommend a 

reweighting step in which the mean vector and covariance matrix are recomputed using 

only the observations whose Mahalanobis squared distance relative to the MVE mean 

vector and covariance matrix fall below a suitable quantile of a Chi-Square distribution 

with p degrees of freedom.  This reweighting step is also recommended by Rousseeuw 

and van Zomeran (1990), while Lopuhaa and Rousseeuw (1991) show that it preserves 

the breakdown point of the MVE. 

Stahel-Donoho Estimator Method 

In addition to suggesting the MVE and MCD estimators for use in robust distance 

outlier detectors, Rousseeuw and Leroy (1987) also allude to using Stahel-Donoho 

estimators in the robust distance computation.  These estimators, proposed independently 

by Stahel (1981) and Donoho (1982), compute the mean vector and covariance matrix by 

assigning decreasing weight to observations that are outlying relative to some projection 

of the data to univariate space.  Specifically, outlyingness of an observation xi is defined 

to be: 
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Upon determining the ui for all observations, the mean vector and covariance matrix are 

estimated as: 
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where w(ui) is a positive, decreasing weighting function.   

The Stahel-Donoho estimator is an attractive robust estimator because it has a 

high breakdown point which asymptotically approaches 50%, as shown by Donoho 

(1982).  However, as explained by Rousseeuw and Leroy, the primary difficulty with 

these estimators is the computation of the outlyingness values.  Apparently, no 

satisfactory method has been proposed to find these values, thereby preventing these 

estimators from experiencing any practical use for outlier detection.  However, Gasko 

and Donoho (1982) propose a method that uses these estimators to identify leverage 

points in multiple regression data. 

Hadi’s Forward Search Method 

Returning to the MVE-based outlier detection method proposed by Rousseeuw 

and Leroy (1987) and Rousseeuw and van Zomeren (1990), Hadi (1992) identifies 

several limitations with the approach.  First, the user must decide upon the number of 

sub-samples to use in the resampling scheme.  This choice is not obvious since it depends 

on the presumably unknown fraction of outliers that exist in the data.  A second limitation 
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is that the covariance matrices for the sub-samples are estimated using only p+1 

observations which could lead to singularities or highly inaccurate estimates.  The final 

problem highlighted by Hadi is that several of the sub-samples may have covariance 

determinants close to zero, leaving the user with the task of choosing which sub-sample 

to use to form the MVE estimate.  Since these sub-samples may have considerably 

different covariance structures, their resulting MVE estimates will likely be different.  

Thus, choosing the correct sub-sample is not obvious. 

To correct for the limitations of the original MVE resampling method, Hadi 

proposes an MVE-based, non-affine equivariant outlier detector that begins by computing 

the vector of coordinate-wise medians for the original data.  The median vector is then 

used to estimate the covariance matrix for the data.  These location and covariance 

estimates are then used to compute robust Mahalanobis distances for the observations.  

The [(n+p+1)/2] observations with the smallest distances are identified and used to form 

classical mean vector and covariance estimates and a new set of distances for all the 

observations.  From this latest set of distances, the p+1 observations with the smallest 

distances are selected to form what is referred to as the basic subset.  This basic subset is 

analogous to a sub-sample in the MVE resampling method with two notable differences.  

First, the basic subset is composed of observations closest to the centroid of the sample as 

determined by the robust, coordinate-wise median Mahalanobis distances.  Second, there 

is only one basic subset in Hadi’s method as opposed to potentially hundreds of sub-

samples in the resampling MVE method.  This considerable reduction in the number of 

subsets makes Hadi’s method less computationally complex and faster to execute. 
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Once the basic subset is formed, it is then used to estimate a new mean vector, 

covariance matrix, and Mahalanobis distances.  The distances are sorted and used to 

create a new basic subset that is one additional observation larger in size then the 

previous subset.  This process continues until the basic subset contains h=[(n+p+1)/2] 

observations—this value of h is chosen in order to be consistent with the method of 

Rousseeuw and Zomeren (1990).  When the final basic subset is obtained, its mean vector 

and covariance matrix are estimated.  A small-scale correction factor is then applied to 

the covariance matrix and Mahalanobis distances are computed for all observations.  

Since the distribution of the resulting distances are not known without knowing the 

distribution of the original data, Hadi suggests graphically inspecting the distances for 

outlying observations.  If the original data can be assumed Gaussian, then the squared 

distances can be compared to a suitable quantile of the Chi-Square distribution with p 

degrees of freedom.  Minor modifications to the stopping criteria, covariance correction 

factor, and initial basic subset formation for Hadi’s method are given by Hadi (1994). 

Atkinson’s Forward Search Method 

Sharing the same concerns with the MVE resampling method as Hadi, Atkinson 

(1993) proposed an affine equivariant forward search algorithm similar in nature to 

Hadi’s method.  Atkinson’s forward search method begins by randomly selecting a subset 

of m=p+1 observations and using this subset to estimate a mean vector and covariance 

matrix.  The covariance matrix is inflated or deflated to include h of the original 

observations, and the volume of the resulting matrix is recorded.  The adjusted 

covariance matrix is then used to compute the Mahalanobis squared distances for all 

observations and the m+1 observations with the smallest distances are used to repeat the 
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process, while any observations whose squared distances exceed a critical Chi-Square 

threshold are identified as potential outliers.  When m=n, the entire process is repeated 

with a new random subset of m=p+1 observations.  After executing the algorithm through 

the desired number of random starting subsets, the adjusted covariance matrix that gave 

the smallest volume over all trials can be used for the final robust mean and covariance 

estimates and subsequent outlier detection.  However, Atkinson does not recommend 

identifying outliers in this manner.  Rather, he uses a graphical method known as 

stalactite plots to analyze which observations consistently emerged as outliers in each 

stage of the algorithm.  Examples of Atkinson’s method are given by Atkinson (1994). 

Hawkins’ Feasible Solution Algorithm 

Motivated by the need to use efficient starting solutions for M-estimation and 

other iterative robust estimators, Hawkins (1994) proposed the Feasible Solution 

Algorithm (FSA) for obtaining approximations to Rousseeuw’s MCD estimator.  

Hawkins also suggests that the MCD estimate resulting from the FSA can be used to 

detect outliers using the usual robust distance scheme.  The FSA begins by first assuming 

that there are at most h outliers in the data.  A random sample of (n-h) observations is 

then selected from the original sample of n observations, with the remaining h 

observations trimmed from the data.  The randomly selected observations are used to 

form an initial mean vector and covariance estimate along with the respective covariance 

determinant.  Next, for each possible pair of observations with one observation coming 

from the randomly selected subset and the other from the trimmed subset, an updating 

formula provided by Hawkins is used to determine the reduction in covariance 

determinant if the pair of observations is interchanged between subsets.  The pair of 
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observations that produces the greatest reduction in the covariance determinant are then 

swapped and the process repeated until no swaps can be identified that reduce the 

determinant value.  The subset of n-h observations that results after no further 

improvements can be made is referred to as a feasible solution.  The entire process is then 

repeated to find additional feasible solutions.  The final MCD estimate is obtained from 

the feasible solution that produced the smallest covariance determinant. 

Hawkins claims that the MCD estimate resulting from the FSA satisfies necessary 

conditions for global optimality, but not the sufficient conditions.  In other words, a 

global solution will also be an FSA solution, but FSA solutions are not always global 

solutions.  To improve the chances of finding the global solution with the FSA, Hawkins 

suggests increasing the number of random starts of the algorithm.  For very small 

problems with n<50 and p<=6, simulation studies conducted by Hawkins indicate that 

100 random starts ensure a 0.99 probability that the final FSA solution is the global 

MCD.  No guidance is provided for data sets of larger magnitude.   

Because the FSA requires evaluation of all pairs of observations from the two 

subsets at each iteration, the algorithm does not scale to large data sets very well.  To 

account for this problem, Hawkins and Olive (1999) modify the original FSA to 

significantly reduce the number of pairs that must be evaluated at each iteration, thus 

making the algorithm more conducive to large data sets. 

Compound Estimation Method 

The robust distance outlier detection methods discussed to this point follow one of 

three strategies: 1) use of what Rocke and Woodruff (1996) refer to as smooth estimators, 

such as M-estimators or Stahel-Donoho estimators; 2) use of combinatorial estimators 
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such as the MVE or MCD; and 3) use of forward search methods as proposed by Hadi 

and Atkinson.  In an effort to unify these strategies under one outlier detection method, 

Rocke and Woodruff propose a compound estimation outlier detection method that 

culminates the research of Rocke and Woodruff (1993), Woodruff and Rocke (1993), 

Woodruff and Rocke (1994), and Rocke (1996).  The high-breakdown point, affine 

equivariant detector is composed of two phases.  The objective of Phase I is to obtain a 

robust estimate of the data set’s location and shape.  This estimate is achieved by first 

using Hawkins’ FSA to obtain an approximate MCD estimate of the location and shape.  

The MCD estimate is then used for the starting point of Atkinson’s forward search 

method as opposed to the mean vector and covariance matrix of a random subset of p+1 

points originally suggested by Atkinson.  The non-outlying points identified by 

Atkinson’s method are used to compute the starting mean vector and covariance matrix 

estimates for a modified, high-breakdown point M-estimation method proposed by Rocke 

(1996).  The rationale for obtaining the final estimates in this manner is that the forward 

search method achieves better results given a good starting point, while M-estimation is 

also more likely to find the globally optimal solution if the initial estimate is close to this 

solution. 

An additional feature of the Phase I process is a partitioning scheme designed to 

counter the fact that MCD computations grow exponentially with the sample size.  Rather 

than attempt to apply the compound MCD, forward selection, and M-estimation method 

to the entire data set, the original data is randomly partitioned into a user-specified 

number of subsets.  Robust estimates are then obtained for each subset and the covariance 

estimate with minimum determinant is used for Phase II.  By partitioning the problem in 
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this manner, computations will grow linearly with the sample size, and also allow the 

methodology to be implemented using parallel processing. 

Phase II of the compound estimation method involves computing the Mahalanobis 

squared distances for all the observations using the robust estimates from Phase I, scaling 

these squared distances so that they are consistent with distances obtained from 

multivariate normal data, and comparing the scaled distances to a suitable threshold from 

a Chi-squared distribution with p-degrees of freedom.   The scaling method proposed by 

Rocke and Woodruff is somewhat unique and demands further explanation since it 

addresses a problem common to robust estimation methods.  To begin, the shape estimate 

produced by methods such as the MCD or M-estimation gives an unbiased estimate 

whose expectation, according to Grubel and Rocke (1990), is some multiple of the true 

covariance matrix for elliptically symmetric distributions.  Thus, Mahalanobis distances 

derived from the these shape estimates are some multiple of the true distances.  If these 

distances are not scaled to be consistent with the underlying distribution of the data, 

unacceptable Type I or Type II errors may result.  To account for this problem, Woodruff 

and Rocke suggest standardizing the squared distances to the h/n quantile of a Chi-

squared distribution with p degrees of freedom, where h=[(n+p+1)/2].    

Because the Mahalanobis distances are only asymptotically Chi-square 

distributed, Woodruff and Rocke suggest further modification to the distances beyond the 

standardization just mentioned.  Specifically, they suggest conducting a simulation study 

to determine the 1-α1 quantile of distances obtained from normal samples of size n in 

dimension p and computed with mean vectors and covariance matrices from the Phase I 

procedure.  Any observations whose Mahalanobis distance falls under this quantile is 
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then used to compute a new mean vector and covariance estimate, thus producing a 

covariance estimate for the 1-α1 fraction of the original sample.  According to Rocke and 

Woodruff, under the assumption of multivariate normality, this covariance estimate is a 

multiple of the true covariance matrix with the multiple given to be: 
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The covariance matrix of the 1-α1 fraction is multiplied by k(p, α1) and the resulting 

covariance matrix used to recomputed Mahalanobis squared distances for all the 

observations.  These final squared distances can then be compared to the desired quantile 

of a Chi-squared distribution with p degree of freedom in order to detect outliers. 

Smallest Half-Volume Method 

Rocke and Woodruff’s compound estimation method represents a combination of 

two somewhat theoretical approaches to detecting outliers.  The main drawback to MCD 

and M-estimation strategy for robust distance detection is their large computational 

burden that limits their utility relative to large-scale problems.  As a less-formal, intuitive 

alternative for outlier detection on large datasets, Egan and Morgan (1998) propose the 

smallest half-volume (SHV) method.  The basic premise behind the SHV method is that 

good observations in a dataset will tend to cluster closely together in Euclidean space.  To 

identify a cluster of good data, the method begins by mean-centering and standardizing 

each column of the data matrix using the respective column mean and standard deviation.  

This process is referred to as auto-scaling.  Using the auto-scaled data, an nxn distance 

matrix is formed in which element dij is the Euclidean distance from observation i to 

observation j.  Thus, each column of the distance matrix records how close observation j 
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is to all other observations.  With this idea in mind, each column of the distance matrix is 

sorted in ascending order.  For each sorted column, the sum of the first n/2 distances is 

computed.  The column with the smallest sum is identified, and the n/2 observations used 

in computing this column’s sum are labeled as good data.  The good data are then used to 

form a robust mean vector and covariance matrix, and to re-perform the auto-scaling 

procedure.  To detect outliers, the mean vector and covariance estimates are used as 

robust inputs to the classic Mahalanobis distance detector. 

A primary advantage of the SHV method is it does not require any matrix 

inversions, thus reducing the computational complexity relative to other robust distance 

methods.  The SHV also obtains its solution in one pass of the method, as opposed to 

searching from many starting points in the manner of the MVE resampling method.  The 

weaknesses of the SHV method are concerned primarily with evaluating the final 

Mahalanobis distances for indications of outliers.  Because the final covariance matrix is 

estimated from the n/2 observations closest to the centroid, it will likely be a multiple of 

the true covariance estimate, as suggested by Rocke and Woodruff (1996).  Therefore, the 

Mahalanobis distances should be scaled before conducting an formal significance tests.  

Unfortunately, Egan and Morgan provide no guidance in this area nor do they suggest an 

alternative method for analyzing the distances, though their simulation tests indicate the 

SHV method is effective at uncovering outlying observations. 

Resampling by Half-Means Method 

In the same article in which the SHV method is proposed, Egan and Morgan 

(1998) also develop the Resampling by Half-Means (RHM) method for detecting outliers.  

This method makes use of the auto-scaling concept to create samples of robust distances 
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for the observations.  The RHM method begins by randomly selecting n/2 observations 

from the dataset without replacement.  Each of the selected observations is used to form a 

row of the matrix X(i), where i denotes the iteration of the method.  The mean and 

standard deviation are computed for each column of X(i).  These estimates are then used 

to auto-scale the original data matrix.  The magnitude of each row of the auto-scaled 

matrix is computed, which is equivalent to computing the distance of each auto-scaled 

observation to the centroid of the data.  The distances for the n observations are saved in 

the vector l(i) which, in turn, constitutes the ith column of a matrix L.  This process is 

repeated for iteration i+1 until the desired number of iterations is achieved. 

After the last iteration is complete, each column of L is sorted in ascending order.  

For each of the sorted columns, the observations corresponding to the largest 5% of the 

distances are identified.  Outliers are identified as those observations whose distances 

appear in the upper 5% of distances an unusually large number of times.  Unfortunately, 

no guidance is provided as to what how many appearances is indicative of an outlier; 

thus, this method ultimately relies on subjective judgment by the analyst to label 

observations as outlying. 

Bivariate Boxplot Method 

An informal method for detecting outliers in univariate data is to construct a 

boxplot that visually depicts the location, spread, and skewness of the data.  Zani, Riani, 

and Corbellini (1998) develop a method for building a bivariate boxplot and suggest how 

it may be used to mind multivariate outliers.  To build the bivariate boxplot for a pair of 

variables, the inner region for the plot—analogous to the univariate boxplot’s 

interquartile region—is determined through the use of convex hull peeling originally 
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proposed by Bebbington (1978).  Convex hull peeling entails identifying the observations 

on the convex hull of the bivariate data cloud, trimming these observations from the 

dataset, and repeating the process until only a desired percentage of the original 

observations remain.  For the purpose of the bivariate boxplot, Zani et al. suggest 

trimming the data until 50% of the observations remain.  These observations define the 

inner region for the boxplot.  To ensure a smooth ellipse that visually depicts this inner 

region, Zani et al. use the method of B-splines (Ammeraal, 1992) to fit a curve to the 

convex hull of the inner region.  The centroid for the boxplot is computed as the 

arithmetic mean of the observations contained in the inner region.  

For a univariate boxplot, the outer region for the plot is defined by the interval 

[x0.25-1.5IR, x0.75+1.5IR], where x0.25 and x0.75 are the 0.25 and 0.75 quantiles of the data, 

respectively, and IR=x0.75-x0.25.  For normally distributed data, such a region is expected 

to include 99.3% of the observations.  To construct an analogous region for the bivariate 

boxplot, Zani et al. suggest multiplying the inner region ellipsoid by the factor l=1.58, 

which, for normally distributed data, omits approximately 1% of the data. 

To detect multivariate oultiers, Zani et al. recommend constructing a bivariate 

boxplot for every pair of variables.  Any observation that is outside the 90% convex hull 

in any of the plots is removed from the data set.  The remaining observations are then 

used as the starting point for the forward search method of Hadi (Hadi, 1992, Hadi, 1994) 

or Atkinson (1993).  The authors claim that using bivariate boxplots in this manner make 

the forward search more computationally efficient, presumably because the initial basic 

subset for the search should contain considerably more than p+1 points. 
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Partitioning Method 

Upon experimental testing of their compound estimator method, Rocke and 

Woodruff (1996) concluded that the method has difficulty detecting outliers in highly-

contaminated datasets in which the outlier fraction was above 35%.  In addition to this 

limitation, Kosinski (1999) also gives an example dataset in which the MCD-derived 

half-sample is not necessarily outlier-free.  Claiming these weaknesses as a reason for 

caution when using MCD-based detection methods, Kosinski (1999) proposes an 

alternative detection method that searches for the partition of data that separates good 

observations from bad observations.  Kosinski’s partitioning method is essentially a 

repeated application of the forward search method of Hadi or Atkinson against multiple 

random starting subsets of size p+1.  The number of starting subsets is selected to ensure 

a minimum probability that at least one of the subsets will be free of outliers; derivation 

of this number is provided by the author. 

Once the forward search is applied to all the starting subsets, it is hoped that at 

least one α-partition of the data has been obtained, where an α-partition is defined by the 

following four characteristics: 

1) The “good” part of the partition contains the majority of the data, 

where the majority is defined to be the quantity h=[(n+p+1)/2]. 

2) All the Mahalanobis squared distances for the bad observations are 

significant at the specified α-level of a Chi-Squared distribution with p 

degrees of freedom. 

3) All the Mahalanobis distances for the bad observations are larger than 

those for the good observations. 
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4) The Mahalanobis squared distances for the good observations are not 

significant at the α-level of a Chi-Squared distribution with p degrees 

of freedom. 

If only one α-partition results from the forward search process, then outlying 

observations are those contained in the bad partition.  If multiple α-partitions result, 

Kosinski offers a procedure to ultimately arrive at only one partition by iteratively 

identifying and removing the strongest outliers.   

Simulation tests conducted by Kosinski indicate that the partitioning method is 

less susceptible to masking and swamping effects than Rocke and Woodruff’s compound 

estimation method, particularly when the outlier fraction is above 25%.  These tests were 

run at different proximities of the outliers to the good data, and for p=2 and p=5.  

Whether or not these results are scalable to larger problems, or if the partitioning method 

is computationally feasible for larger problems is not clear.   

FAST-MCD Method 

When the MVE and MCD estimation methods were originally proposed by 

Rousseeuw (1983), the MVE received initial attention for outlier detection because it was 

computationally less expensive to find an approximate MVE solution.  However, Butler, 

Davies, and Jhun (1993) showed that the MCD has better statistical efficiency than the 

MVE since the MCD is asymptotically normal.  Additionally, Davies (1992) showed that 

the MVE has a lower convergence rate than the MCD.  According to Rousseeuw and van 

Driessen (1999), these theoretical findings, combined with the need for accurate 

estimators for use in outlier detection schemes, the MCD began to gain favor over the 

MVE as the preferred robust estimator for outlier detection.  The main drawback to using 
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the MCD, however, was the high computational complexity involved with searching the 

space of half-samples of a dataset to find the one whose covariance matrix had the 

minimum determinant.  To address this problem, Rousseeuw and van Driessen proposed 

the FAST-MCD outlier detection method that uses a key theoretical finding in 

conjunction with a partitioning method to rapidly search for an approximate MCD 

solution.  The primary theorem proved by Rousseeuw and van Driessen states that if one 

starts with a half-sample of data, orders the entire data set based on Mahalanobis 

distances derived from the half-sample’s mean vector and covariance matrix, and selects 

a new half-sample from the observations with smallest distances, the covariance 

determinant of the new half-sample will be less than or equal to the old half-sample 

covariance determinant with equality occurring only when the mean vector and 

covariance matrices for the old and new half-samples are equal.  By repeatedly applying 

this theorem to a dataset—a process referred to as a C-step—it is possible to converge to 

at least a local optimal MCD solution.  A further finding based on experimental results 

indicates that if the starting half-sample is capable of converging to a good solution, the 

covariance determinant will begin to rapidly converge after only two C-steps. 

To effectively use this tendency of rapid convergence, Rousseeuw and van 

Driessen develop a partitioning, or nesting, scheme in which the original data set is 

randomly partitioned into smaller subsets.  A small number of C-steps are then performed 

on each subset.  The covariance matrices are then taken from the subsets whose C-steps 

gave the smallest covariance determinants, and these covariance matrices are then used as 

starting points for C-steps on the entire data set.  For each covariance matrix, C-steps are 

performed until convergence of the covariance determinant.  The covariance matrix 
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corresponding to the smallest determinant is used for the final MCD estimate.  For very 

large data sets, this nesting scheme is altered to first operate on random samples from the 

original dataset.  As the method progresses, the entire data set is gradually introduced into 

the C-step scheme. 

To obtain consistency of the MCD covariance estimate when the data is 

multivariate normal, the final covariance matrix is multiplied by the following scaling 

factor: 
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After scaling the covariance matrix using (5.10), the authors also recommend computing 

a one-step reweighted estimate in the same manner as Rousseeuw and van Zomeren’s 

method discussed earlier.  The final mean vector and covariance matrix obtained from the 

one-step reweighted estimate are then use in the classical Mahalanobis distance outlier 

detection scheme to identify outliers.  Testing performed by Rousseeuw and van Driessen 

indicate the FAST-MCD method is capable of handling problems with 50000 

observations in 30 dimensions.  This algorithm was implemented in S-Plus 4.5 and 

SAS/IML 7 as a robust estimation option. 
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The BACON Method 

The desire to find an outlier detection method that is applicable to very large 

datasets is echoed by Billor, Hadi, and Velleman (2000).  However, where the FAST-

MCD method attempts to use nesting and C-steps to search for an optimal solution, Billor 

et al. make two observations concerning robust distance computation as a guide to 

developing the Blocked Adaptive Computationally Efficient Outlier Nominator 

(BACON).  The first observation is that the added computational complexity of trying to 

find optimal robust estimators may not be justified by significantly better outlier 

detection.  The second observation is that insisting upon a completely affine equivariant 

method may add substantial computational complexity to an algorithm without a 

proportional improvement in the detection of outliers.  Using these two observations, 

Billor et al. develop BACON as a method that “abandons” optimality conditions in favor 

of a very fast outlier detection strategy that can be run in a non-robust, affine equivariant 

mode with breakdown point of 20%, or in a robust, near-affine equivariant mode with a 

breakdown point of 40%. 

The BACON method is derived from the forward search method of Hadi (1992) 

and Hadi (1994), and begins its search for outliers in much the same manner by selecting 

an initial basic subset of good observations.  The manner in which the initial basic subset 

is chosen depends on whether the user wishes to have a lower breakdown point method 

that is affine equivariant, or a high-breakdown point method that is not completely affine 

equivariant.  In the former case, the initial basic subset contains the p+1 observations 

with the smallest Mahalanobis distances relative to the mean vector and covariance 

matrix for the entire dataset.  In the latter case, the basic subset is formed from the p+1 
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observations with smallest distances relative to the component-wise median of the 

observations and the covariance matrix derived from this median vector.  Using the 

component-wise median makes the BACON method more robust to outliers at the 

expense of affine equivariance since the median estimator is not affine equivariant.  

Once the initial basic subset is selected, its mean vector and covariance matrix are 

estimated and used to compute Mahalanobis distances for all observations.  Once these 

distances are obtained, they can be compared to the square root of an appropriate quantile 

from the Chi-Squared distribution with p degrees of freedom.  However, since the 

covariance matrix used to compute the distances is estimated from a small sample of 

points, the threshold value must first be multiplied by a correction factor given by: 
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The cnp term in (5.11) is the same as the correction factor introduced by Hadi (1994).  

This factor was apparently derived using simulation studies, though no further details are 

available on how this study was conducted. 

Upon comparing the Mahalanobis distances to the corrected threshold value, any 

observations that fall below the threshold are added to the basic subset.  A new mean 

vector and covariance matrix are computed for the basic subset, new Mahalanobis 

distances are obtained, and any observations falling under the threshold value are added 
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to the basic subset.  This process continues until the basic subset does not change 

between iterations.  Once the iterations stop, any observations not contained in the basic 

subset are considered outliers.  This iteration process is significantly different than Hadi’s 

forward search method in that multiple observations can be added to the basic subset at 

each iteration whereas the original method only allowed the basic subset to grow by one 

observation per iteration.  This modification employed by BACON makes the algorithm 

much faster than the original method by sacrificing any attempt to find an approximate 

MVE solution which required the basic subset to grow at a much slower rate. 

Experimental tests with the BACON method show that it is less computationally 

expensive than Hadi’s forward search and that the number of iterations required by the 

method remains relatively constant as the sample size increases.  Test also indicate that 

BACON has a good null-behavior and that the breakdown points for the non-robust start 

and robust start are approximately 20% and 40%, respectively. 

The MCD-EHD Method 

A common method for detecting multiple outliers in univariate data is to identify 

the most outlying observation, delete it from the data, find the second-most outlying 

observation, delete it, and so on, until no other observations can be considered outlying.  

These methods are referred to iterative deletion method.  A multivariate, robust distance 

version of iterative deletion is given by Viljoen and Venter (2002) who refer to the 

method as Minimum Covariance Determinant-Extreme Hotelling Deviate (MCD-EHD).  

The MCD-EHD method is based on Wilks’ (1963) test for a single multivariate outlier, 

and Caroni and Prescott’s (1992) sequential application of Wilks’ test to find multiple 
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outliers.  These two precursor methods will be summarized first before discussing the 

MCD-EHD method further. 

Wilks (1963) proposed a relatively straight-forward process for detecting a single 

outlier in a multivariate data set assuming a mean-shifted normal model for the data and 

the outlier.  The mean-shifted model simply means that the main population is normally 

distributed and that the population of the outlier is also normally distributed with the 

same covariance as the good data but with mean vector shifted by some constant.  Wilks’ 

method begins by computing the following ratio for the jth observation in the dataset, 

j=1,…,n: 
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With these Wj computed, the smallest of these values, D1, is tested against a critical value 

from the distribution of the Wj (Wilks provides tables of critical values for the Wj 

distribution obtained from simulation studies.)  If D1 exceeds the critical value, the 

corresponding observation is labeled an outlier.  In essence, Wilks’ method is attempting 

to find the observation that has the largest impact on the size of the covariance matrix—

as determined by the covariance determinant—and then determine if this observation is 

indeed outlying. 

To extend Wilks’ method to find multiple outliers, Caroni and Prescott (1992) 

suggest iterative applications of the original procedure.  This iterative approach proceeds 
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by computing the non-robust Mahalanobis distances for each of the observations in the 

data set and identifying the observation with the largest distance.  This observation is 

deleted from the dataset, new distances are computed, and the observation with the new 

largest distance is removed.  The process continues until the number of observations 

removed reaches a user-specified upper bound on the number of outliers present in the 

data.  At each iteration of the method, the maximum Mahalanobis distance is recorded.  

When the deletion phase of method is complete, the recorded distances form a set {Tr}, 

r=l+1,…,n, where r is the number of observations used in a given iteration, and l is the 

user-specified lower bound on the number of good observations in the original dataset. 

To determine the number of outliers, the Tr values are tested against a 

corresponding sequence of critical values {cr}, beginning with Tl+1.  For the first Tr that 

exceeds its critical value, the number of good observations is determined to be r-1 and the 

number of outliers is determined to be n-r.  The outlying observations correspond to 

those removed during the first n-r iterations of the deletion process. 

Viljoen and Venter demonstrate that the primary limitation of Caroni and 

Prescott’s method is its susceptibility to masking and swamping due to the non-robust 

Mahalanobis distances used in the deletion phase of the method.  Viljoen and Venter 

offer the MCD-EHD as a solution to this problem.  Rather than use the non-robust 

Mahalonobis distances in the deletion phase of the Caroni-Prescott method, the authors 

recommend using robust distances computed from FAST-MCD estimates of the mean 

vector and covariance matrix.  Since this strategy can be computationally expensive due 

to computing FAST-MCD estimates at each iteration, the Viljoen and Venter offer the 

alternative of computing the FAST-MCD estimate only once assuming that the dataset 
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has a lower bound of l good observations.  Using this simplification, the Tr values 

become the n-l largest orders statistics of the Mahanalobis distances computed using the 

single FAST-MCD estimate. 

In addition to using robust distances, the MCD-EHD method further modifies the 

Caroni-Prescott method by using a different derivation for the sequence of critical values 

{cr}.  For further details on these critical values, refer the original article by Viljoen and 

Venter (2002). 

Closest Distance to Center Method 

With the exception of the FAST-MCD and BACON algorithms, the robust 

distance outlier detection methods discussed so far are somewhat theoretical in nature and 

may not necessarily scale to large problems of practical interest.  To address such 

problems, several methods can be found in the technical literature that are somewhat less 

formal in nature, but can handle large data sets in relatively high dimension.  One such 

robust distance-based method is the Closest Distance to Center (CDC) method proposed 

by Chiang, Pell, and Seasholtz (2003).  The CDC method proceeds by scaling the data so 

that each of the p attributes has zero mean and unit variance using the auto-scaling 

procedure discussed earlier.  A mean vector is then computed for the scaled data.  For 

each auto-scaled observation, the distance is computed from the observation to the mean 

vector.  This distance is computed in one of two ways: the Euclidean distance can be used 

(CDC2); or, the maximum norm distance can be computed as the maximum component-

wise distance from the mean vector (CDCm).  Regardless if the CDC2 or the CDCm 

method is used, the next step of the method is to identify the n/2 observations with the 

smallest distances.  The mean vector and covariance matrix are then computed for these 
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observations and used as a starting point for the Ellipsoidal Multivariate Trimming 

(MVT) method of Walczak and Massart (1995).  The MVT method continues by 

computing the Mahalanobis distances for the entire dataset using the CDC2 or CDCm 

mean vector and covariance matrix.  The n/2 observations with the smallest Mahalanobis 

distances are identified and used to estimate a new mean vector and covariance matrix.  

This process repeats until the covariance estimate stabilizes.  The final mean vector and 

covariance matrix can be used to compute robust Mahalanobis distances.  The authors 

seem to recommend graphical analysis of the Mahalanobis distances to identify outliers. 

A limitation of the CDC method is the use of auto-scaling in the first step of the 

method.  For a data matrix arranged with each observation as a row in the matrix, auto-

scaling the matrix entails subtracting the respective column mean, mj, from each element 

of the matrix, and then dividing the differences by the respective column standard 

deviation, sj.  Because the component means and standard deviations are not robust to 

outliers, the auto-scaling method may confuse the outlier search.  As alternatives to auto-

scaling, Chiang et al. offer several alternatives.  The robust alternative was originally 

suggested by Huber (1989) and requires mj be replaced by the column-wise median in the 

auto-scaling method, and that sj be replaced sMAD given by: 
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The modified version of auto-scaling proposed by Chiang et al. involves replacing 

the column mean and standard deviation by the mean and standard deviation of the n/2 
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column elements closest to the column median.  A final alternative based on the Sn and 

Qn estimators of Rousseeuw and Croux (1993) is suggested for data that may be have an 

asymmetrical distribution. 

Experimental tests of the CDC method and the different scaling alternatives 

indicates that using CDC or the scaling alternatives improves outlier detection, while 

employing the scaling alternative as a preprocessing step for CDC provides the best 

detection performance of the detectors under evaluation. 

Robust Clustering Detector 

A common element of all the robust-distance methods discussed so far, as well as 

most multivariate outlier detection methods, in general, is the assumption that the 

majority of observations come from a single, good population.  In many applications, 

however, a dataset may be comprised of observations from several good populations.  For 

hyperspectral imagery, this latter condition is usually the case with the scene’s 

background materials—grass, road, trees, water, dirt, etc.—each forming a good 

population sample in which we want to find outliers.  Applying single-population outlier 

detection methods to these types of multi-population datasets will undoubtedly produce 

misleading results. 

To address this complication, Hardin and Rocke (2004) propose an outlier 

detection method that performs a robust cluster analysis on the dataset to divide the 

observations into similar clusters, and then applies an MCD-based robust distance outlier 

detector to each cluster to find outlying observations.  More specifically, Hardin and 

Rocke’s method begins with the user specifying the number of clusters, k, to use in the 

analysis.  A robust clustering method developed by Woodruff and Reiners (2004) is then 
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used to perform the cluster analysis in order to avoid the negative effects outliers can 

have on classical clustering algorithms.  The clustering method formulates the cluster 

analysis problem as a zero-one non-linear integer program that attempts to optimally 

assign each observation to one of the k clusters in order to minimize the sum of the 

cluster covariance determinant matrices.  To account for the presence of outliers, the 

integer program formulation includes an additional cluster that is used to contain any 

observations that do not fit well in the any of the k clusters.  An approximate integer 

program solution is found heuristically using simulated annealing. 

Once the cluster analysis is complete, a mean vector and covariance matrix are 

computed for each cluster, the Mahalanobis squared distances are computed from every 

observation to each cluster center, and each observation is assigned to the cluster to 

which it is closest.  For the first cluster, h1=[(n1+p+1)/2] of the observations with the 

smallest Mahalanobis distances are selected, where n1 is the total number of observations 

assigned to cluster one.  This half-sample of observations is used to estimate a new mean 

vector, covariance matrix, and Mahalanobis distances for the cluster.  These operations 

are repeated on the cluster one data until the covariance matrix stabilizes.  The final half-

sample of observations is used to form the cluster’s MCD estimate.  This process is then 

repeated for the remaining clusters. 

When the MCD half-samples, mean vectors, and covariance matrices have been 

determined for each cluster, the Mahalanobis squared distances are again computed from 

each observation to each cluster center.  To determine if any of the distances indicate 

outliers, Hardin and Rocke suggest a significance test based on the distribution of 

Mahalanobis squared distances when the distance are computed from MCD mean vector 
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and covariance estimates.  This distance distribution was originally derived by Hardin 

and Rocke (2005) and is given as: 
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The correction factor, mj, was originally derived by Croux and Haesbroeck (1999), and 

has both an asymptotic and small-sample form.  The small-sample approximation for mj 

is given by: 

 ( )( )0.725 0.00663 0.078lnp n
pred asym m e − −=  (5.15) 

where 

the asymptotic value of the factor.asym =  

The computations required for masy can be found in Hardin and Rocke (2004).  Tests 

performed by Hardin and Rocke indicate that using this distributional fit for the 
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Mahalanobis squared distances as opposed to a Chi-Squared distribution results in 

significantly smaller Type I and Type II errors. 

Non-Traditional Methods 

A common limitation with all robust distance-based outlier detection methods is 

the requirement to find a subset of outlier-free data from which robust estimates of the 

mean vector and covariance matrix can be obtained.  Unfortunately, there is no existing 

method that can find an outlier-free subset with 100% certainty.  In other words, there is 

always a chance that the “outlier-free” sample contains some outliers.  Should this 

condition exist, the ability of the respective detection method to find outliers may be 

impaired.  Though, empirical tests indicate that all of the robust-distance methods 

discussed in the previous section seem to have some level of resistance to this problem, 

researchers have proposed alternative methods that attempt to avoid robust Mahalanobis 

distances altogether.  Because these methods comprise a small minority of existing 

multivariate outlier detectors, we shall refer to them as non-traditional methods.  In the 

following paragraphs, the significant non-traditional outlier detection methods found in 

the technical literature are outlined.  As in the previous section, these methods are 

discussed in chronological order to illustrate how these methods have evolved over time. 

Principal Component Methods 

One of the earliest distance-free methods for detecting multiple outliers in 

multivariate data is described by Gnanadesikan and Kettenring (1972) and is originally 

attributed to Rao (1964). This method makes the assumption that the dataset falls in the 

linear subspace defined by the first p-q principal components of the sample covariance 

matrix.  Under this assumption, it is argued that outliers will have a large deviation from 
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this sub-space as measured by the sum of the magnitudes of their projections onto the last 

q eigenvectors.  More specifically, outliers in a pxn dataset, Y, are observations, yj, with 

large values of: 
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Gnanadesikan and Kettenring suggest analyzing the dj
2 values through the use of a 

gamma probability plot where the shape parameter is estimated using a method proposed 

by Wilk and Gnanadesikan (1964). 

In addition to Rao’s method, Gnanadesikan and Kettenring suggest other informal 

uses of the principal component scores for detecting outliers: 

i) Construct scatter plots of bivariate and trivariate sets of component 

scores corresponding to the smallest eigenvalues to detect unusual 

groupings of the data. 

ii) Construct normal probability plots for each of the last few sets of 

principal component scores.  Because the principal component 

transformation is linear, the resulting scores may be more normally 

distributed.  Hence, outliers may be easier to detect in these probability 

plots. 

iii) Construct plots of the component scores associated with each of 

smallest eigenvalues against distances computed using the scores for 
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the largest eigenvalues.  An example of this procedure would entail 

plotting, for each observation, the last component score against the 

magnitude of the vector formed by the first three component scores.  

Such a plot may reveal abnormalities in the data in the same manner 

that residual abnormalities are identified using residual plots of linear 

regression data. 

iv) To determine which observation, yj, has the biggest impact on the 

orientation and scale of the sample covariance matrix, compute the 

following metric for each observation: 

 ( ) ( ) ( )22 TT
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 Observations with large values of tj
2 can be considered outliers. 

Unfortunately, a limitation of these methods is they are devoid of any formal tests 

of significance, relying upon the analyst to subjectively determine how an outlier should 

manifest itself. 

Mahalanobis Distance Decomposition Method 

As an alternative to computing robust Mahalanobis distances to detect outliers, 

Kim (2000) derives two decompositions of the Mahalanobis distance and uses scatter 

plots of the component terms to uncover outlying observations.  Thus, rather than use the 

Mahalanobis distances themselves to find outliers, Kim suggests analyzing the 
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constituent parts of the Mahalanobis distances for an observation to determine how the 

distance was achieved.  Kim provides no guidance on the distribution of the components 

of the Mahalanobis distance, thus requiring subjective analysis of the suggested scatter 

plots to identify outliers. 

Projection Pursuit Detection 

In order to avoid the masking and swamping effects associated with the classical 

Mahalanobis distance detector as well as the computational complexities of robust-

distance detectors, Pan, Fung, and Fang (2000) propose a detector that uses univariate 

projections of the original data and univariate outlier detection to identify multivariate 

outliers.  The method begins by projecting the original data onto a vector located on the 

p-dimensional unit hypersphere.  For each projected observation, the following metric is 

computed: 

 ( ) ( ) ( )( ), , , , ,n nJ n V F V F= −x a x a x a  (5.18) 
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The Hampel identifier was described in Hampel, Ronchetti, Rousseeuw, and Stahei 

(1986), and is defined as: 

 
( )( )
( )( )

( , , )
T

T

med F
V F

med med F

−
=

−

a

a

x

a x
x a

a x
 (5.19) 

where 



111 
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The process of projecting the data onto different vectors is repeated s times to 

form a sequence Js(x)=(J(x,a1), J(x,a2),…, J(x,as)) for each observation.  As shown by 

Cui and Ting (1994), the sequence (J(x,a): a is on the unit hypersphere) is a stochastic 

process that converges weakly to a Guassian process with continuous sample path.  The 

sample paths have zero mean and a covariance function Rx(a,b) that is derived by Pan et 

al., where a and b are two vectors on the unit hypersphere.  That is to say, 

 ( ) ( ) ( ) ( )( ) ( )( )1 2, , , ,..., , , ,
T

s s sJ J J N=J x x a x a x a 0 R x  (5.20) 

where Rs(x) is generated using the covariance function Rx(a,b). 

After Js(x) is generated for each observation in the original dataset, the 

Mahalanobis squared distances can be computed in the s-dimensional space for each 

observation using the observation’s respective covariance matrix, Rs(x).  These squared 

distances can be compared to a quantile of the Chi-Square distribution with s degrees of 

freedom to identify outliers, as proved by Pan et al. 

To implement this projection pursuit method, several obstacles need to be 

overcome: 1) the projection vectors need to be determined; 2) the distribution of the 

projected observations must be known in order to compute the Hampel identifier values; 

and 3), a sample estimate for Rs(x) must be computed.  To address the first problem, Pan 

et al. recommend using the quasi-Monte Carlo method TFWW—originally proposed by 

Tang (1977) and Fang, Wang, and Wong (1992)—to generate a set of vectors uniformly 

scattered over the p-dimensional unit hypersphere.  To overcome the second obstacle, 

Pan et al. recommend using bootstrap methods to estimate the distribution functions 
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required by the Hampel identifier.  Finally, to estimate the covariance matrix for an 

observation, Pan et al. provide estimation formulas as well as a regularization method for 

use when s, the number of projection vectors, is very large. 

Based on tests with relatively small datasets, Pan et al. demonstrate that their 

method is effective at detecting outliers while achieving relatively low false alarm rates.  

No evidence is provided to suggest this method is scaleable to larger problems.  In fact, 

using this method for high-dimensional datasets can be problematic since the number of 

projection vectors generated by the TFWW method to achieve uniform coverage of the p-

dimensional unit hypersphere grows non-linearly with p.  Further discussion of this 

problem is provided by Fang and Wang (1994). 

Juan-Prieto Method 

Empirical tests conducted by Juan and Prieto (2001) indicate that the robust 

distance methods of Rocke and Woodruff (1996), Hawkins (1994), Rousseeuw and van 

Driessen (1999), and Maronna and Yohai (1995), have difficulty detecting clusters of 

concentrated outliers, particularly when the clusters are relatively close to the good data.  

To overcome this perceived weakness of robust distance methods, Juan and Prieto 

suggest a distance free method based on angles.  Specifically, the authors state that the 

projections of observations on the p-dimensional unit hypersphere are uniformly 

distributed when the observations have an ellipsoidal distribution, as shown by Eaton 

(1983).  Based on this characteristic, Juan and Prieto claim that the angles between the 

projected observation vectors and an arbitrary reference direction, u0, have a Beta 

distribution.  The form of the Beta distribution is provided by the authors. 
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To detect outliers, the original observations are projected onto the unit 

hypersphere.  A reference direction, u0, is then selected using a method suggested by 

Juan and Prieto.  The angles between the projected observations and u0 are then 

computed.  The authors then suggest using a quantile-quantile plot of the angles to 

determine if they follow the beta distribution.  Alternatively, the distributional fit of the 

angles can be assessed by analyzing the spacings between the ordered values of F(wi), the 

theoretical distribution function of the angles evaluated at each angle, wi.  If the angles 

actually follow the prescribed distribution, the spacings should be uniformly distributed.  

To test this hypothesis, Juan and Prieto suggest using the distribution of the largest 

spacing in a uniform sample introduced by David (1981).  This distribution function is 

given by: 
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where 

( ) the largest spacing between  ordered,

  uniformly distributed points.
nD n=

 

From this distribution function, a critical value for the largest spacing can be computed 

and all the largest spacing tested for significance.  If the test fails, any corresponding 

observations preceding the largest spacing are considered outliers.  To detect multiple 

outlier clusters, this entire process is repeated until the spacings indicate uniformity of the 

angles. 

Though Juan and Prieto present empirical tests that indicate their angle detector is 

effective at finding outliers, there is one significant limitation with the method.  

Specifically, finding the critical value for the largest spacing test using (5.21) can be 
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computationally challenging and time-consuming when n is large.  Complicating the 

matter further, Juan and Prieto empirically show that the critical value is also dependent 

on the dimensionality of the original data.  To help alleviate these problems, the authors 

provide an approximation that can be used for higher dimensions based on the critical 

values for the univariate case.  Even with this approximation, however, computation of 

the critical value can still be challenging in practice. 

Chiang-Pell-Seasholtz PCA Method 

Where Gnanadesikan and Kettenring (1972) proposed somewhat informal 

methods for using PCA to find multivariate outliers, Chiang, Pell, and Seasholtz (2003) 

give a PCA method that includes significance tests for outliers.  The method begins by 

performing a PCA on the original data to arrive at the p a×  matrix, P, containing the 

eigenvectors corresponding to the a largest eigenvalues.  For each observation, xi, the T2-

statistic is computed as: 

 2 2T T
i a iT −= Σx P P x  (5.22) 

where 
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The threshold value for T2 is given by MacGregor and Kourti (1995) to be: 
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In addition to testing if an observation is an outlier using the components for the a 

largest eigenvalues, Chiang et al also suggest testing the observation using the p-a 

components for the remaining eigenvalues.  To perform this test, the authors recommend 

using the Q-statistic of Jackson and Mudholkar (1979) defined as: 

 TQ = e e  (5.24) 
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The threshold value for the Q-statistic is provided by Chiang et al. 

If either the T2- or Q-statistics for an observation exceed their respective critical 

value, the observation is labeled an outlier and removed from the data set.  Once all 

observations are tested, the entire process is repeated using only the non-outlying 

observations.  The algorithm terminates when no additional observations are labeled 

outliers between iterations, or when the total number of outliers detected reaches n/2.  

Because the initial PCA is performed on a potentially contaminated dataset, 

Chiang et al. caution that their detection method may fail since the starting covariance 

matrix may be significantly distorted by outliers.  To guard against this condition, the 

authors propose using robust PCA algorithms such as those developed by Helge, Liang, 

and Kvalheim (1995), Li and Chen (1985), Croux and Ruiz-Gazen (1996), and Hubert, 

Rousseeuw, and Verboven (2002).  No guidance is provided on how such an 

implementation would proceed. 
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Max-Eigen Difference (MED) Method 

Adding to the arsenal of principal component-based outlier detection methods, 

Gao, Li, and Wang (2005) propose the Max-Eigen Difference (MED) method.  The 

method proceeds by computing the eigenvalues and eigenvectors of the sample 

covariance matrix of the entire dataset.  For each observation, xi, the eigenvalues and 

eigenvectors are then computed for the covariance matrix obtained when xi is removed 

from the dataset.  Using these eigenvalues and eigenvectors, the following values are 

computed for each observation: 
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After computing the di values, the MED statistic for each observation is computed as: 
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Upon decomposing the MED statistic, Gao et al. are able to show that large MED 

values indicate outlier observations.  Specifically, the decomposition illustrates that an 



117 

observation with a large MED may indicate: 1) the observation has a first principal 

component score that is much larger than the other observations; 2) the observation may 

have relatively large scores on the other component axes; and 3) the observation is not 

close to the centroid of the data.  An observation with large MED may posses any 

combination of these characteristics. 

Based on the properties of the MED, Gao et al. recommend detecting outliers by 

plotting the MED values against the observation indices.  Any observations that appear to 

have a large MED relative to the other observations are labeled as outliers.  This labeling 

is a subjective decision made by the analyst.  The authors provide no formal significance 

test for the MED statistic.  Empirical tests of the MED detector indicate that it is superior 

to the classical Mahalanobis distance detector, and provides similar results to an MVE-

based robust distance detector.  In one test, the MED detector identified outliers that were 

overlooked by the robust distance method. 

Summary 

The preceding paragraphs provide a survey of the significant multivariate outlier 

detection methods developed over the last three decades.  As presented, these methods 

can be divided into two basic families: robust distance methods that attempt to apply 

robust estimation to the classical Mahalanobis distance detector, and non-traditional 

methods that by-pass robust estimation in favor of some other characteristic of outliers 

that can be exploited to reveal their presence.  In the following sections, the foundation 

laid by this literature review is used to investigate further the relevance of outlier 

detection methods to hyperspectral anomaly detection and to develop procedures to apply 

multivariate outlier detectors to uncover anomalies. 
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Outlier Impact Experiments 

As stated previously, Donoho and Huber (1983) show that the breakdown points 

for the classical mean and covariance estimate are only 1/N.  Thus, it is theoretically 

possible for a single, well-placed outlier to distort these estimates to the extent that 

Mahalanobis distances produced by these estimates are no longer useful in detecting 

outliers.  Though this single-observation breakdown can occur in theory, it is natural to 

wonder if this phenomenon is of any practical concern to hyperspectral anomaly 

detection.  Relatively limited results found in West et al. (2005) and Farrell and 

Mersereau (2005) demonstrate that using contaminated covariance matrix estimates can 

degrade target detector performance.  To more comprehensively address this issue, we 

conduct several experiments to assess the magnitude of masking and swamping when the 

classical Mahalanobis distance outlier detector is applied to simulated data possessing 

similar mean vectors, covariance structure, dimensionality, and number of observations 

as actual hyperspectral data.  These tests are discussed in the following sections. 

Simulated Gaussian Data Experiments 

This first experimental test performed measures the degree of masking and 

swamping that can occur in controlled multivariate Gaussian data as a function of the 

number of outliers contained in the data.  Multivariate Gaussian data is chosen for these 

tests because it is relatively straight-forward to generate random variates from this 

distribution, as well as the fact that many hyperspectral analysis techniques make the 

Gaussian assumption.  The experiment was executed as follows: 
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1) A sample of Nb= 2000 p-dimensional observations was generated from a 

multivariate Gaussian distribution with a specified mean vector and 

covariance matrix.  Refer to these observations as the “background” data. 

2) A specified number, No, of outlier observations were randomly selected with 

replacement from a set of observations with a different mean vector and 

covariance matrix from the background data.  These outliers were added to the 

background data to form the contaminated dataset of size N= Nb+ No. 

3) The mean vector and covariance matrix were estimated for the contaminated 

dataset and used to compute the Mahalanobis Squared Distances (MSDs) for 

all observations in the contaminated dataset. 

4) The 0.95 quantile for a Chi-Square distribution with p-degrees of freedom was 

determined and used to threshold the MSDs from Step 3.  Observations whose 

MSDs exceeded the threshold were considered detected outliers.   

5) The number of true positives was computed and recorded to be the number of 

outlier observations classified as detected outliers.  If the number of true 

positives is less than the number outliers introduced into the sample at Step 2, 

masking is occurring.  

6) The number of false alarms was computed as the number of background 

observations classified as detected outliers.  If the number of false alarms is 

greater than αN, where α=0.05, swamping is occurring. 

7) Steps 1 through 6 were repeated 50 times using the same background mean 

vector and covariance matrix in Step 1 and set of outlier observations in Step 

2.  The mean number of true positives and false alarms was computed for 
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these 50 iterations, as well as the 95%-confidence intervals for these mean 

estimates. 

8) Steps 1 through 7 were repeated using a different value for No.  The values of 

No used for the experiment ranged from 0 to 500 in increments of ten. 

9) Steps 1 through 8 were repeated using a different mean vector and covariance 

matrix in Step 1 and a different set of outlier observations in Step 2. 

Before presenting the results of this experiment, several comments need to be 

made.  First, the mean vectors, covariance matrices, and outlier observations used in 

Steps 1 and 2 were determined from sets of pixel vectors obtained from two actual 

hyperspectral images.  The first hyperspectral image is a COMPASS sensor image of Fort 

A.P. Hill, Virginia.  From this image, pixel vectors corresponding to grass, road, dead 

grass, trees, and shadow were manually selected.  The mean vectors for each of these sets 

of pixel vectors are shown in Figure 12.  The error bars in the chart denote one-standard 

deviation above and below the mean for each band.  These five materials were used to 

form the different background-outlier combinations listed in Table 1.  The second image 

used for this experiment is an AVIRIS image of the National Mall in Washington, D.C.  

From this image, pixel vectors corresponding to grass, asphalt, gravel, roofing, and water 

were manually selected.  The mean vectors for these materials are shown in Figure 13, 

and the respective background-outlier combinations are listed in Table 1.  It should be 

noted that the sets of pixel vectors were not mixed between the two images when forming 

the background-outlier pairs.  Additionally, Table 2 lists the number of pixel vectors 

collected for each material and the number of bands, p, for each image. 
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Figure 12.  Mean Vectors of Spectra from Fort A.P. Hill Image 
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A second comment concerning this experiment is the number, Nb, of observations 

used to form the background dataset.  A value of 2000 observations was used to ensure a 

reasonably accurate estimate of the mean vector and covariance matrix in Step 3 of the 

experiment based on the suggested sample size of at least 10p given in Jimenez and 

Landgrebe (1998).  Viewed in another light, 2000 observations is larger than the 1600 

observations contained in a somewhat large 40x40 pixel processing window for a local 

hyperspectral anomaly detector such as the RX detector.  Thus, 2000 observations is a 

realistic sample size that may be encountered in practice. 

As a final comment on the experimentation method, it should be noted that in all 

cases tested, MSDs were also computed using the mean vector and covariance matrix  

Table 1.  Background-Outlier Material Combinations for Multivariate Gaussian 
Experiments 
 

Fort A.P. Hill Combinations D.C. Mall Combinations 
Background Outlier Background Outlier 

Grass Road Grass Asphalt 
Grass Dead Grass Grass Gravel 
Grass Trees Grass Water 
Grass Shadow Grass Roof 
Dead Grass Road Asphalt Grass 
Dead Grass Grass Asphalt Water 
Dead Grass Trees Asphalt Gravel 
Dead Grass Shadow Asphalt Roof 
Road Grass Gravel Asphalt 
Road Dead Grass Gravel Grass 
Road Trees Gravel Water 
Road Shadow Gravel Roof 
  Water Asphalt 
  Water Grass 
  Water Gravel 
  Water Roof 
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estimated from the background data only.  These MSDs were also compared to the Chi-

Squared threshold to determine the expected number of true positives and false alarms 

given uncontaminated mean and covariance estimates.  These numbers serve as a 

benchmark for the detection accuracy that can be achieved if the mean and covariance are 

robustly estimated, presumably using multivariate outlier detection methods. 

The results of the multivariate Gaussian data experiments using the Fort A.P. Hill 

signatures are summarized in Figure 14 and Table 3.  Figure 14 depicts the mean number 

of true positives identified by the non-robust Mahalanobis Squared Distance detector for 

each level of outliers tested. For reference, the line representing perfect detection 

performance is included in the graphs.  If the masking effect is present for a given  

 
Figure 13.  Mean Vectors of Spectra from D.C. Mall Image 
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background/outlier combination, the respective curve should deviate from this reference 

line.  Additionally, error bars are used in the graphs to depict the 95% confidence 

intervals for the mean number of true positives.  Table 3 reports the sensitivity of the 

false alarm rate to the number of outliers present.  If our detection efforts are actually 

affected by swamping, we would expect to see the number of false alarms increase as the 

number of outliers in the dataset increases.  For reference, the last row of Table 3 gives 

the expected number of false alarms for the dataset (consisting of 2000 observations plus 

the number of outliers present) using the non-robust MSD detector and a significance 

level of α=0.05. 

From the information reported in Figure 14, two significant conclusions are 

evident.  First, the masking effect does occur in these simulated datasets.  Clear examples 

of masking are seen in the Grass/Road background/outlier combination and in all cases 

where shadow spectra are used for the outliers.  For the Grass/Road case, the fraction of 

true positives detected falls below 0.75 with only 1.96% of the dataset contaminated by 

 

Table 2.  Sample Sizes of Spectra Collected from Fort A.P. Hill and D.C. Mall Images 
This table lists the number of signatures collected from the Fort A.P. Hill and D.C. Mall 
images for the respective materials.  These signatures are used to compute mean vectors and 
covariance matrices which are then used to generate new samples of multivariate Gaussian 
data. 
Fort A.P. Hill Image Spectra (p=198) D.C. Mall Image Spectra (p=191) 
Material Number Collected Material Number Collected 
Grass 2300 Grass 1219 
Road 1626 Asphalt 1207 
Dead Grass 600 Gravel 1227 
Trees 1006 Roof 980 
Shadow 805 Water 2100 
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Figure 14.  Outliers Detected for Fort A.P. Hill Background-Outlier Combinations 
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outliers.  When the contamination climbs to 20% (2000 good observations and 500 

outliers), the true positive fraction is only 0.10.  The second conclusion is that some of 

the background/outlier combinations seem much more resistant to the masking effect 

than others, even when reversing the roles of the two materials induces significant  

masking.  For example, using road as the background and grass as the outlier results in an 

average of approximately 411 true positives when 500 outliers are in the sample as 

opposed to only 46 when the roles of the materials are reversed. The reason for this 

curious result warrants further explanation which we will return to momentarily. 

The primary conclusion drawn from Table 3 is that the swamping effect does not 

appear to manifest itself as strongly as theoretically predicted.  Only in the case of the 

grass/shadow combination do we see the number of false alarms exceed the number 

expected by the choice of significance level.  In fact, for virtually all cases, we see the 

Table 3.  Number of False-Alarms for Multivariate Gaussian Experiments using Fort A.P. 
Hill Data 
 

95% Confidence Intervals for Mean Number of False Alarms as a Function of 
the Number of Outliers Present (Percent Contamination Given in 
Parentheses) 

Background/Outlier 

50 
(2.4%) 

100 
(4.8%) 

300 
(13.0%) 

500 
(20.0%) 

Grass/Road (67.9, 72.0) (66.2, 71.0) (72.3, 76.8) (95.2, 100.2) 
Grass/Dead Grass (57.2, 61.1) (46.9, 50.6) (38.1, 41.7) (41.8, 45.4) 
Grass/Trees (48.7, 52.6) (35.8, 39.4) (25.9, 28.9) (26.8, 30.1) 
Grass/Shadow (72.7, 76.6) (77.4, 81.4) (115.2, 120.7) (184.6, 190.8) 
Dead Grass/Road (56.7, 60.4) (48.6, 51.6) (34.8, 38.6) (37.4, 40.7) 
Dead Grass/Grass (46.1, 49.7) (32.6, 35.4) (13.5, 15.7) (10.0, 11.9) 
Dead Grass/Trees (34.8, 37.7) (23.6, 26.1) (9.6, 11.1) (6.6, 8.1) 
Dead Grass/Shadow (58.9, 63.3) (55.3, 58.7) (60.6, 64.1) (85.8, 90.8) 
Road/Grass (37.0, 40.0) (23.8, 25.9) (7.6, 9.0) (5.1, 5.9) 
Road/Dead Grass (35.8, 39.3) (23.4, 26.4) (10.1, 11.7) (7.0, 8.8) 
Road/Trees (33.2, 36.0) (21.5, 23.9) (7.1, 8.6) (5.7, 7.1) 
Road/Shadow (56.7, 60.9) (54.6, 58.5) (59.4, 63.3) (82.3, 86.6) 
Expected False 
Alarms for 
α=0.05 

102.5 105 115.0 125.0 
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number of false alarms actually decrease with the contamination level until higher 

contamination levels are reached.  This result is somewhat peculiar and will be further 

explained at the same time we discuss the counter-intuitive result revealed in Figure 14. 

We now turn our attention to the test results produced from the D.C. Mall data. 

These results are shown in Figure 15 and Table 4, and reveal similar conclusions to those 

found using the A.P. Hill data.  The masking effect is again quite significant for a number 

of the material combinations, but we also see that reversing the role of the materials 

changes the degree of masking considerably.  In particular, we note that water induces a 

strong masking effect whenever it is used as the outlier; however, in all cases where 

water is the background, masking is relatively insignificant for all levels of contamination 

tested.  In Table 4, we see the same decrease in false alarms as before, though in the cases 

with water acting as the outlier, the onset of swamping occurs with fewer outliers than 

with any of the A.P. Hill cases. 

Based on these experimental results with the two different data sets, it is 

reasonable to conclude that masking, and to a lesser degree, swamping, can occur in 

simulated multivariate Gaussian data that is similar to hyperspectral data in terms of 

mean vectors, covariance matrices, and dimensionality.  As stated previously, we 

confirmed this conclusion by also using the uncontaminated mean vector and covariance 

matrix estimate in the MSD detector for all 71400 samples tested.  Upon using these 

estimates in the Mahalanobis distance classifier, 100% of the outliers were correctly 

identified.  In other words, in the instances where the non-robust detector failed to find 

the known outliers, the failure was solely due to inaccurate mean and covariance 

estimates obtained from the contaminated samples.  Thus, it would seem obvious that 
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using multivariate outlier detection methods that attempt to avoid these inaccurate 

estimates can be useful for detecting hyperspectral anomalies. 

The results of the multivariate Gaussian experiments indicated two counter-

intuitive results: 1) severe masking that occurs for a background/outlier combination does 

 

 
 

Figure 15.  Outliers Detected for D.C. Mall Background-Outlier Combinations 
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not necessarily occur when the roles of the materials are reversed; and 2) the number of 

false positives may actually decrease with the contamination level, a contradiction to the 

theoretical swamping effect.  To explain these phenomenon, we focus on the Grass/Water 

combination derived from the D.C. Mall image.  To help visualize how outlier 

contamination is affecting the non-robust MSD detector, we use only band 40 and band 

60 for these two materials to compute representative mean vectors and covariance 

matrices.  Next, 2000 multivariate normal random variates are generated using the grass 

reference estimates.  We then successively add 1, 10, 50, 100, 300, and 500 randomly 

generated multivariate Gaussian water signatures to the grass signatures to create six 

Table 4.  Number of False Alarms for Multivariate Gaussian Experiments using D.C. 
Mall Data 
 

95% Confidence Intervals for Mean Number of False Alarms as a Function of 
the Number of Outliers Present (Percent Contamination Given in 
Parentheses) 

Background/Outlier 

50 
(2.4%) 

100 
(4.8%) 

300 
(13.0%) 

500 
(20.0%) 

Grass/Asphalt (59.3, 63.8) (57.6, 61.1) (78.4, 83.3) (128.7, 135.7) 
Grass/Gravel (35.5, 38.8) (24.0, 27.1) (14.4, 16.7) (16.9, 19.8) 
Grass/Water (87.3, 91.4) (103.8, 108.4) (205.0, 209.9) (371.4, 378.7) 
Grass/Roof (26.8, 29.3) (16.3, 18.3) (13.8, 15.5) (19.6, 22.0) 
Asphalt/Grass (9.2, 11.0) (2.7, 3.7) (0.1, 0.4) (0.0, 0.2) 
Asphalt/Water (72.9, 77.7) (79.0, 83.6) (108.4, 113.4) (169.0, 174.5) 
Asphalt/Gravel (10.7, 12.5) (3.6, 4.7) (0.3, 0.7) (0.1, 0.4) 
Asphalt/Roof (15.3, 17.6) (6.5, 7.9) (1.4, 2.3) (1.5, 2.1) 
Gravel/Asphalt (54.2, 58.3) (50.4, 54.2) (57.4, 62.3) (89.1, 94.3) 
Gravel/Grass (29.2, 32.7) (18.2, 20.4) (7.4, 8.9) (6.5, 7.8) 
Gravel/Water (85.0, 89.0) (99.9, 104.6) (192.7, 197.8) (335.9, 343.4) 
Gravel/Roof (23.0, 25.8) (13.0, 15.6) (10.4, 12.5) (13.6, 16.1) 
Water/Asphalt (19.3, 21.7) (9.1, 10.6) (1.1, 1.9) (0.5, 1.0) 
Water/Grass (3.0, 4.1) (0.3, 0.7) (0.0, 0.0) (0.0, 0.0) 
Water/Gravel (3.2, 4.4) (0.6, 1.1) (0.0, 0.1) (0.0, 0.0) 
Water/Roof (7.2, 8.7) (1.4, 2.1) (0.0, 0.1) (0.0, 0.1) 
Expected False 
Alarms for 
α=0.05 

102.5 105 115.0 125.0 
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contaminated datasets.  For each dataset, the 95% threshold ellipse is computed to 

visually depicted how the MSD detector will identify outliers.  The datasets and ellipses 

are plotted in Figure 16. For reference, the ellipse generated using the covariance matrix 

of the clean data only is plotted in blue in each graph.  We repeat this process to produce 

Figure 17 after first reversing the roles of the grass and water signatures.    

 
Figure 16.  Covariance Ellipse Distortion for High Variance Background Material 
This figure shows the impact of outlying observations on the 95% threshold ellipse for 
the non-robust MSD detector.  The green dots represent grass observations and the 
black dots represent water observations acting as outliers.  The blue ellipse shows the 
95% threshold derived from the uncontaminated data.  The black circle shows the 
location of the contaminated mean vector. 
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Inspection of Figures 16 and 17 reveal interesting results.  First, and most 

importantly, the contamination level required to significantly distort the covariance  

ellipse is not very high.  For the case when water is the background material, a single 

outlier (a contamination level of only 0.05%) is enough to significantly rotate the 

covariance axes.  With ten outliers (a contamination level of 0.5%), the length of the 

 
Figure 17.  Covariance Ellipse Distortion for Low-Variance Background Material 
This figure shows the impact of outlying observations on the 95% threshold ellipse for 
the non-robust MSD detector.  The green dots represent water observations and the 
black dots represent grass observations acting as outliers.  The blue ellipse shows the 
95% threshold derived from the uncontaminated data.  The black circle shows the 
location of the contaminated mean vector. 
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primary covariance axis is significantly distorted.  Thus, it is obvious that relatively few 

outliers can significantly change the covariance structure of a dataset.   

So why is the non-robust MSD detector still able to detect outliers for the 

Water/Grass case?  The answer to this question is given by our second result.  

Specifically, background materials with relatively low variance compared to the variance 

of the outlier material may still detect outliers under high contamination levels because 

the distorted ellipse is too narrow to envelope all the outlying observations.  Conversely, 

when the background material has relatively large variance compared to the outlier 

material variance, the distorted ellipse is still relatively fat and will eventually encompass 

the concentrated outliers.  This phenomenon is clearly evident in Figures 16 and 17.  This 

result would appear to explain the first peculiarity noted earlier. 

Addressing the second peculiarity of the decreasing false alarms rates, we return 

to Figures 16 and 17 for our third result noticing that, in both background/outlier 

combinations, the 95% threshold ellipse initially inflates in such a manner that more of 

the good observations are included in the ellipse.  For the case of the concentrated water 

background, virtually all the water observations are enveloped after only ten outliers are 

introduced to the dataset.  The envelopment is not as severe when grass is the 

background; however, in this case we note that increasing the number of outliers 

eventually causes the ellipse to narrow, leading to some observations initially declared 

good to be classified as anomalies.  This results helps explain why the number of false 

alarms initially decrease with the number of outliers for some background/outlier 

combinations, and then rise as the contamination level continues to increase. 
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Principal Axis Rotation Tests 

In the preceding section it was demonstrated that, in the bivariate case, outliers 

can distort covariance ellipses used by the MSD detector to find outliers.  However, it 

would be satisfying to have further evidence that these distortions are also occurring with 

full-dimensional hyperspectral data.  To achieve this goal, an experiment similar to the 

preceding Gaussian data experiment was conducted as follows: 

1) A sample of Nb= 2000 p-dimensional background observations was generated 

from a multivariate Gaussian distribution with a specified mean vector and 

covariance matrix.   

2) A Principal Components Analysis (PCA) was performed on the original 

hyperspectral data used to generate the background dataset, and the first 

normalized component axis identified.  Denote this axis as the reference axis, 

eref. 

3) A specified number, No, of outlier observations was randomly selected with 

replacement from a set of observations with a different mean vector and 

covariance matrix from the background data.  These outliers were added to the 

background data to form the contaminated dataset of size N= Nb+ No. 

4) A PCA was performed on the contaminated dataset and the first component 

axis identified.  Denote this axis as the distorted axis, edist. 

5) The angle between the two vectors eref and edist was computed as 

( )1180 cos T
cont ref distθ

π
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
e e  (5.27) 

6) The angle, θclean was also computed using the first principal component axis of 

the uncontaminated data rather than edist. This angle indicates if any axis 
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deflection can be expected if robust methods are used to estimate the mean 

vector and covariance matrix. 

7) Steps 1 through 6 were repeated 50 times to obtain mean estimates for the 

angles, θcont and θclean.  The 95%-confidence intervals were also computed for 

these mean estimates. 

8) Steps 1 through 7 were repeated for different values of No ranging from 0 to 

100 in increments of 10.  

9) Steps 1 through 8 were repeated for different background/outlier 

combinations.  The same combinations used in the Gaussian Data Experiment 

were used for this experiment. 

To assess the significance of the angles computed in Steps 5 and 6, a threshold 

angle, θ0, was computed for each background material using a Monte Carlo simulation.  

For each material, this simulation entailed generating 800 samples of 2000 multivariate 

Gaussian observations using the material’s mean vector and covariance matrix.  For each 

sample, a PCA was performed and the first principal component axis identified.  The 

angles were then computed between these axes and the first principal component axis of 

the original hyperspectral data whose mean vector and covariance matrix were used to 

generate the samples.  For a given material, the end-result of this procedure was 800 

angles.  The 0.95-quantile of these angles served as the desired threshold angle, θ0, for 

the material.  These angles represent the expected deflection of the first principal 

component axis of a background material due solely to random sampling from the 

material’s underlying multivariate Gaussian distribution. 
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The results of this test are summarized in Tables 5 and 6 for the Fort A.P. Hill- 

and D.C. Mall-derived data, respectively.  The contents of these tables offer several  

pieces of information.  First, the Monte Carlo thresholds for each background material 

are listed in the θ0-column of the tables.  Next, the 95% confidence intervals for the mean 

value of θcont for each test case are listed for representative levels of contamination.  

 

Table 5.  Principal Component Axis Distortion Results for Fort A.P. Hill Data 
 

Number of Outliers Background/ 
Outlier 

θ0 

0 10 20 30 50 100 
Grass/Road       
       θcont (0.7, 0.9) (13.6, 13.7) (15.5, 15.5) (16.2, 16.3) (16.9, 16.9) (17.4, 17.4) 
       θclean 

1.9 

(0.7, 0.9) (0.8, 1.1) (0.8, 1.1) (0.8, 1.0) (0.8, 1.0) (0.8, 1.2) 
Grass/D. Grass       
       θcont (0.8, 1.1) (3.9, 4.3) (5.7, 6.2) (7.1, 7.4) (8.5, 8.8) (10.2, 10.4) 
       θclean 

1.9 

(0.9, 1.1) (0.8, 1.0) (0.8, 1.1) (0.9, 1.2) (0.8, 1.1) (0.8, 1.0) 
Grass/Tree       
       θcont (0.6, 0.8) (4.1, 4.6) (6.4, 6.9) (7.7, 8.1) (8.8, 9.3) (10.0, 10.4) 
       θclean 

1.9 

(0.6, 0.8) (0.8, 1.1) (0.8, 1.0) (0.8, 1.0) (0.7, 1.0) (0.8, 1.0) 
Grass/Shadow       
       θcont (0.8, 1.0) (20.1, 20.2) (21.9, 22.1) (22.6, 22.7) (23.2, 23.3) (23.6, 23.7) 
       θclean 

1.9 

(0.8, 1.0) (0.8, 1.1) (0.8, 1.0) (0.8, 1.1) (0.8, 1.1) (0.9, 1.2) 
D. Grass/Road       
       θcont (0.5, 0.6) (7.0, 7.1) (11.2, 11.3) (13.6, 13.7) (16.6, 16.7) (19.6, 19.6) 
       θclean 

1.08 

(0.5, 0.6) (0.5, 0.6) (0.5, 0.7) (0.4, 0.5) (0.5, 0.6) (0.5, 0.7) 
D. Grass/Grass       
       θcont (0.5, 0.6) (1.5, 1.8) (3.0, 3.3) (4.1, 4.4) (5.9, 6.1) (8.9, 9.1) 
       θclean 

1.08 

(0.5, 0.6) (0.5, 0.7) (0.4, 0.6) (0.5, 0.7) (0.4, 0.6) (0.5, 0.6) 
D. Grass/Tree       
       θcont (0.4, 0.6) (5.6, 5.8) (8.5, 8.8) (10.2, 10.6) (12.3, 12.6) (14.3, 14.6) 
       θclean 

1.08 

(0.4, 0.6) (0.5, 0.6) (0.4, 0.5) (0.5, 0.6) (0.4, 0.6) (0.4, 0.6) 
D. Grass/Shadow       
       θcont (0.4, 0.6) (13.5, 13.8) (19.9, 20.1) (23.4, 23.6) (26.9, 27.1) (29.8, 30.0) 
       θclean 

1.08 

(0.4, 0.6) (0.4, 0.6) (0.4, 0.5) (0.5, 0.6) (0.4, 0.5) (0.5, 0.6) 
Road/Grass       
       θcont (0.6, 0.9) (39.2, 39.5) (45.3, 45.5) (47.5. 47.6) (49.0, 49.1) (50.3, 50.3) 
       θclean 

1.4 

(0.6, 0.9) (0.5, 0.8) (0.5, 0.8) (0.6, 0.8) (0.5, 0.8) (0.6, 0.8) 
Road/D. Grass       
       θcont (0.5, 0.8) (27.6, 28.2) (37.2, 37.6) (41.0, 41.2) (44.3, 44.5) (46.7, 46.8) 
       θclean 

1.4 

(0.5, 0.8) (0.5, 0.7) (0.5, 0.8) (0.5, 0.7) (0.6, 0.9) (0.5, 0.8) 
Road/Tree       
       θcont (0.6, 0.8) (47.0, 47.2) (50.6, 50.8) (51.6, 51.9) (52.4, 52.7) (53.2, 53.4) 
       θclean 

1.4 

(0.6, 0.8) (0.5, 0.7) (0.6, 0.8) (0.4, 0.6) (0.5, 0.7) (0.6, 0.8) 
Road/Shadow       
       θcont (0.5, 0.7) (8.9, 9.3) (15.0, 15.6) (19.0, 19.6) (23.9, 24.5) (28.7, 29.2) 
       θclean 

1.4 

(0.5, 0.7) (0.5, 0.7) (0.6, 0.8) (0.4, 0.6) (0.6, 0.8) (0.6, 0.8) 
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Table 6.  Principal Component Axis Distortion Results for D.C. Mall Data 
 

Number of Outliers Background/ 
Outlier 

θ0 
0 10 20 30 50 100 

Grass/Asphalt       
       θcont (0.5, 0.7) (3.7, 3.9) (5.6, 5.8) (6.6, 6.8) (7.7, 7.8) (8.9, 9.0,) 
       θclean 

1.13 

(0.5, 0.7) (0.5, 0.7) (0.4, 0.6) (0.5, 0.6) (0.5, 0.7) (0.6, 0.7) 
Grass/Gravel       
       θcont (0.4, 0.6) (11.8, 12.3) (21.0, 21.5) (27.2, 27.6) (34.2, 34.6) (40.6, 40.7) 
       θclean 

1.13 

(0.4, 0.6) (0.5, 0.7) (0.5, 0.7) (0.5, 0.6) (0.5, 0.7) (0.5, 0.6) 
Grass/Water       
       θcont (0.5, 0.6) (3.1, 3.3) (4.4, 4.5) (5.0, 5.1) (5.7, 5.8) (6.3, 6.4) 
       θclean 

1.13 

(0.5, 0.6) (0.5, 0.6) (0.5, 0.7) (0.5, 0.6) (0.5, 0.6) (0.5, 0.6) 
Grass/Roof       
       θcont (0.5, 0.6) (8.6, 9.4) (29.3, 31.5) (50.2, 52.4) (65.1, 66.1) (71.5, 72.0) 
       θclean 

1.13 

(0.5, 0.6) (0.5, 0.7) (0.5, 0.7) (0.5, 0.6) (0.5, 0.6) (0.5, 0.6) 
Asphalt/Grass       
       θcont (0.3, 0.4) (17.5, 17.8) (21.0, 21.2) (22.5, 22.6) (23.7, 23.8) (24.6, 24.8) 
       θclean 

0.7 

(0.3, 0.4) (0.3, 0.4) (0.4, 0.5) (0.3, 0.4) (0.4, 0.5) (0.3, 0.4) 
Asphalt/Water       
       θcont (0.3, 0.4) (1.9, 2.0) (3.5, 3.6) (4.9, 5.0) (7.0, 7.1) (10.3, 10.4) 
       θclean 

0.7 

(0.3, 0.4) (0.3, 0.4) (0.3, 0.4) (0.3, 0.4) (0.3, 0.4) (0.3, 0.4) 
Asphalt/Gravel       
       θcont (0.4, 04) (3.6, 3.7) (4.0, 4.0) (4.0, 4.1) (4.1, 4.2) (4.2, 4.3) 
       θclean 

0.7 

(0.4, 0.4) (0.4, 0.5) (0.4, 0.5) (0.3, 0.4) (0.4, 0.4) (0.3, 0.4) 
Asphalt/Roof       
       θcont (0.3, 0.4) (20.8, 21.9) (24.6, 25.8) (26.2, 27.0) (28.1, 28.8) (29.2, 29.6) 
       θclean 

0.7 

(0.3, 0.4) (0.3, 0.4) (0.3, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.4) 
Gravel/Asphalt       
       θcont (0.7, 1.0) (12.1, 12.3) (14.2, 14.3) (15.0, 15.1) (15.7, 15.8) (16.3, 16.4) 
       θclean 

1.7 

(0.7, 1.0) (0.7, 0.9) (0.8, 1.0) (0.8, 1.0) (0.7, 1.0) (0.7, 1.0) 
Gravel/Grass       
       θcont (0.7, 1.0) (5.6, 6.0) (8.0, 8.3) (9.3, 9.7) (11.0, 11.3) (12.5, 12.7,) 
       θclean 

1.7 

(0.7, 1.0) (0.7, 0.9) (0.8, 1.0) (0.8, 1.0) (0.7, 1.0) (0.7, 1.0) 
Gravel/Water       
       θcont (0.7, 0.9) (13.2, 13.4) (15.0, 15.1) (15.7, 15.7) (16.3, 16.3) (16.7, 16.8) 
       θclean 

1.7 

(0.7, 0.9) (0.7, 1.0) (0.8, 1.0) (0.6, 0.9) (0.7, 0.9) (0.7, 0.9) 
Gravel/Roof       
       θcont (0.7, 0.9) (18.6, 19.8) (29.7, 30.9) (35.56, 36.5) (40.5, 41.2) (44.7, 45.2) 
       θclean 

1.7 

(0.7, 0.9) (0.7, 1.0) (0.7, 1.1) (0.7, 0.9) (0.7, 0.9) (0.7, 1.0) 
Water/Asphalt       
       θcont (1.2, 1.3) (38.1, 38.6) (39.9, 40.2) (40.3, 40.6) (40.7, 40.9) (41.1, 41.3) 
       θclean 

1.6 

(1.2, 1.3) (1.1, 1.2) (1.1, 1.2) (1.2, 1.3) (1.1, 1.2) (1.1, 1.2) 
Water/Grass       
       θcont (1.1, 1.2) (59.6, 59.9) (59.5, 59.7) (59.6, 59.8) (59.7, 59.8) (59.8, 59.9) 
       θclean 

1.6 

(1.1, 1.2) (1.1, 1.2) (1.1, 1.2) (1.1, 1.2) (1.1, 1.3) (1.1, 1.3) 
Water/Gravel       
       θcont (1.1, 1.3) (39.4, 39.7) (39.5, 39.7) (39.5, 39.6) (39.5, 39.6) (39.5, 39.6) 
       θclean 

1.6 

(1.1, 1.3) (1.2, 1.3) (1.1, 1.2) (1.2, 1.3) (1.1, 1.2) (1.2, 1.3) 
Water/Roof       
       θcont (1.1, 1.2) (23.4, 23.8) (23.4, 23.7) (23.4, 23.7) (23.5, 23.6) (23.4, 23.6) 
       θclean 

1.6 

(1.1, 1.2) (1.2, 1.3) (1.2, 1.3) (1.1, 1.2) (1.2, 1.3) (1.1, 1.2) 
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Finally, 95% confidence intervals are also provided for the mean value of θclean  for each 

background/outlier combination.   

From these tables we clearly see that the orientation of the covariance ellipsoid in 

the full-dimensional hyperspectral space is indeed changing significantly for all tested 

background/outlier combinations when only ten outliers are added to the 2000-

observation samples of good data.  For the Water/Grass case in Table 6, the axis 

deflection is approximately 60 degrees compared to the respective 95% threshold of 1.6 

degrees.  We also note that the deflection angles appear to converge to a limiting value as 

the contamination level increases.  This result is reasonable given that the increasing 

number of outliers are added to the same general location in p-dimensional space relative 

to the good observations. 

A final observation that we take from this test is the nature of the deflection 

angles when the outliers are removed from the sample dataset.  In all cases tested, these 

deflections fail to be significant relative to the Monte Carlo-derived threshold.  This 

result is another clear indication that the distortions evident in the contaminated 

covariance matrices  are due solely to the presence of outliers.  Thus, we can again 

conclude that multivariate outlier detection methods that attempt to account for the 

affects of outliers in their detection computations are promising alternatives for 

hyperspectral anomaly detection. 

Multivariate-t Data Experiments 

In all of the experiments discussed to this point, we have used multivariate normal 

random generators to create our simulated datasets.  However, whether or not 

hyperspectral data is actually Gaussian in nature is an on-going debate in the 
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hyperspectral research community.  An alternative to the Gaussian model for 

hyperspectral data is to use heavy-tailed, elliptically contoured distributions, as discussed 

by Kerekes and Manolakis (2004), Manolakes et al. (2005), and Caterall (2004).  Given 

that many multivariate outlier detection methods assume Gaussian data, particularly 

when statistical testing is used to detect outliers, we ask the following: can we expect 

reasonable performance from a detector that assumes Gaussian data when the actual data 

has a more heavy-tailed distribution?   

To resolve this issue, we conducted an experiment using the representative mean 

vector and covariance matrices from the Fort A.P. Hill grass and road spectra.  Using the 

grass mean vector and covariance estimates, 2000 simulated signatures were randomly 

generated using a multivariate t-distribution.  This sample of good data was then 

augmented with a specified number of outliers generated from a multivariate t-

distribution using the road mean vector and covariance matrix.  Contaminated samples 

were formed in this manner for contamination levels ranging from 0 to 250 outliers and 

the degrees of freedom for the multivariate t-distribution ranging from 4 to 32 in 

increments of 4.  For each combination of contamination level and degrees of freedom, 

100 contaminated samples were generated and the mean number of true positives and 

false positives averaged over these 100 samples.   

For each of the 100 samples at a specific test case, three detection methods were 

used to find the outliers.  Method 1 uses the mean vector and covariance matrix computed 

from the good sample data to obtain Mahalanobis squared distances for all the 

observations in the sample.  Because these squared distances, δ, come from multivariate 

t-distributed data, they are distributed as 



139 

 
( ) ,2 pF

p ν

δν
ν −

 (5.28) 

 where p is the dimensionality of the data, ν is the degrees of freedom, and Fa,b is the F-

distribution with a and b degrees of freedom (Manolakis et al, 2005).  Using this fact, any 

observations whose scaled squared distances exceed the 0.95-quantile from the F-

distribution with p and ν degrees of freedom are identified as outliers.  Detecting outliers 

in this manner simulates how well the MSD detector is expected to perform if the correct 

mean vector, covariance matrix, and degrees of freedom can be accurately estimated from 

the data. 

Method 2 is similar to the first with one significant difference: the mean vector 

and covariance matrix are estimated from the contaminated sample.  Thus, we still 

assume that the degrees of freedom for the underlying t-distributed data can be 

determined for the sample.   

In Method 3, we assume that the data is Gaussian and use the BACON outlier 

detection method  discussed in Billor, Hadi, and Velleman (2000) to identify outliers.  By 

using these three different detection methods on each of the simulated samples, we can 

assess the implications of using robust Gaussian outlier detection methods to detect 

outliers as opposed to using detection methods that attempt to more accurately model the 

underlying distribution of data but use non-robust mean vector and covariance matrix 

estimation methods. 

The results of this experiment are reported in Figures 18 and 19.  Each graph in 

Figure 18 corresponds to a different value of ν used to generate the simulated data.  The 

lines in the graphs indicate the mean number of true positives detected by a particular 
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detector as the contamination level increases. The F-Clean line refers to Method 1, F-Bad 

refers to the Method 2, and Bacon line refers to Method 3.  To reduce clutter, confidence  

intervals are not provided on the graphs; however, the maximum standard error 

encountered over all test cases does not exceed 3.6.  Figure 19 is similar to Figure 18, but 

reports the mean false positives obtained for the experiment. 

Inspection of Figure 18 reveals several notable results.  First, we see that even if 

we can determine the proper F-distribution for the Mahalanobis distances with perfect 

 
Figure 18.  Number of Outliers Detected for Multivariate-t Data Tests 
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clarity, using contaminated data to estimate the mean vector and covariance  matrix may 

still result in significant masking, as indicated by the “F-Bad” lines.  Second, using  

accurate mean vector and covariance estimates, along with the correct distribution of the 

Mahalanobis squared distances, perfect detection is achieved for all cases tested.  This 

result, combined with the first, again underscores the importance of robustly estimating 

the sample’s mean vector and covariance matrix.  Finally, we see that if we inaccurately 

assume a Gaussian model for the data, but use a robust-distance method to find the 

outliers, perfect detection is also obtained.  Further, this result holds even for data with 

 
Figure 19.  Number of False-Alarms for Multivariate-t Data Tests 
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very heavy tails.  The implication of this result is that using multivariate outlier detectors 

to find hyperspectral anomalies—even when using an inaccurate Gaussian assumption—

may be a practical alternative to the difficult task of assuming a non-Gaussian model and 

attempting to estimate the proper distribution of the Mahalanobis distances. 

A further justification for using multivariate outlier detection methods is provided 

in Figure 19.  In these graphs it is seen that the BACON detector produces fewer false 

alarms over the test cases than the other detectors.  In fact, as the degrees of freedom used 

to generate the multivariate t-data increase and the data becomes more Gaussian, the 

number of false alarms for the BACON detector are close to zero.  The primary reason 

for the BACON detector’s low false alarm rates is the use of a Bonferroni significance 

test to threshold the Mahalanobis distances.  This significance test uses a significance 

level of α/n as opposed to α, as used by the other two detectors.  Using the same 

procedure for the other detectors would likely reduce their false alarm rates in a similar 

manner, though further testing is required to confirm this assertion. 

In the multivariate Gaussian, principal axis rotation, and multivariate-t data tests 

presented in the previous paragraphs we demonstrated the validity of the masking and 

swamping problems in the context of hyperspectral data, and showed the potential benefit 

of using multivariate outlier detection methods to avoid these problems.  The outcome of 

these tests clearly demonstrate that masking is a realistic concern for simulated Gaussian 

and multivariate-t data with mean vectors, covariance structures, and dimensionality 

similar to actual hyperspectral data.  It was also shown that fairly high contamination 

levels must exist in a dataset for swamping to become a significant factor.  However, it 

was also revealed that the apparent absence of masking and swamping does not mean that 
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the underlying structure of the data is not distorted  by outliers.  On the contrary, 

distortions can be expected with contamination levels as low as 0.05%.   

Finally, and perhaps most significantly, it was demonstrated that using mean 

vector and covariance estimates with the influence of outliers removed—the ultimate 

goal of robust-distance outlier detectors—achieved perfect detection results for the cases 

tested, even if heavy-tailed distributions are used.  In the following section, we will 

evaluate different multivariate outlier detection methods to identify those methods that 

are well-suited for detecting anomalies in hyperspectral data. 

Evaluation of Multivariate Outlier Detection Methods 

As stated previously, the experiments conducted thus far were conducted using 

both contaminated and uncontaminated datasets to determine the ideal benefit of using 

robust mean vector and covariance matrix estimates.  In the Multivariate Gaussian and 

Multivariate-t data tests, it was found that using robust estimates resulted in perfect 

outlier detection for all the cases tested.  Further, it was demonstrated in the Multivariate-

t Data experiment that the BACON multivariate outlier detector was effective in finding 

outliers in simulated hyperspectral datasets, even when the data deviates from BACON’s 

Gaussian assumption.  We now build upon these findings by evaluating the ability of 

several different multivariate outlier detection methods to detect outliers in simulated 

multivariate Gaussian and multivariate-t datasets.  The methods that we consider for this 

evaluation are the BACON detector, the FAST-MCD detector of Rousseeuw and van 

Dreissen (1999), a modification of the Stahel-Donoho Estimator (SDE) detector 

originally proposed by Stahel (1981) and Donoho (1982), and the angle-based detector 

proposed by Juan and Prieto (2001).  These methods were chosen for this study because 
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they represent a range of robust MSD and non-traditional detectors and are 

computationally conducive to handling large, high-dimensional datasets. 

In the following paragraphs, we first summarize the four algorithms used in the 

evaluation, and then we compare their ability to detect outliers in simulated datasets.  It 

should be noted that complete details of each algorithm are not provided in this 

dissertation.  For a more complete explanation of the algorithms, the reader should 

consult the original technical articles. 

The FAST-MCD Detector 

The primary objective of the FAST-MCD detector is to rapidly search for a 

solution to the following non-linear optimization problem: 
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where xi is an observation vector, n is the total number of observations in the dataset, 

det(•) is the determinant operator, and (•)T is the transpose operator.  The search is 

conducted by first selecting a user-specified number of random subsets of size h from the 

original dataset.  For each subset, a C-step procedure is performed consisting of the 

following: 1) the Mahalanobis squared distances are computed for all observations in the 

dataset using the mean vector and covariance matrix of the subset data; 2) the distances 
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are sorted; and 3) the h observations from the original dataset with smallest squared 

distances are used to form a new subset.  Rousseeuw and van Driessen (1999) prove that 

repeated applications of the C-step procedure to a dataset will produce a new subset of 

size h that has a covariance determinant less than or equal to that of the preceding 

estimate.   

After applying the C-step procedure to each random subset until convergence of 

the respective covariance determinant, the subset that produced the smallest covariance 

determinant is identified.  The mean vector of this subset is used for the robust mean 

estimate of the original dataset, and the covariance matrix of the subset is used as the 

robust estimate of the data’s shape matrix.  This shape matrix is then scaled to be 

consistent with Gaussian data in the sense that the median of the Mahalanobis squared 

distances obtained using the scaled covariance matrix is equal to the 0.5-quantile of a 

Chi-Squared distribution with p degrees of freedom.  The resulting scaled matrix 

becomes the robust covariance estimate.  These robust estimates are used to compute 

robust Mahalanobis squared distances for each observation in the dataset.  Any 

observation whose squared distance exceeds an appropriate quantile of the Chi-squared 

distribution with p degrees of freedom is considered an outlier. 

To allow the FAST-MCD method to handle very large datasets, Rousseeuw and 

van Driessen also propose a nesting scheme that initiates the search by selecting a 

random sample of the original data and forming the initial subsets from this random 

sample.  As the search proceeds, more and more of the original data is included in the 

search until the final solution is obtained.  The FAST-MCD method is implemented in S-

Plus 4.5 as the cov.mcd function and in SAS/IML 7 as the MCD function. 



146 

The BACON Detector 

The BACON detector proposed by Billor et al. (2000) is a robust distance detector 

designed to rapidly identify outliers in very large datasets.  The algorithm is relatively 

simple to implement with the added advantage that it is very fast relative to the other 

detectors we consider, even for extremely large datasets.   

BACON attempts to find outlying observations by first identifying a basic subset 

of clean observations close to the centroid of the data.  The user has the option of using 

either a robust, non-affine equivariant or a non-robust, affine equivariant method to find 

this subset.  Once determined, the basic subset is used to estimate a mean vector and 

shape matrix for the dataset.  The shape matrix is multiplied by a small-sample correction 

factor derived by Billor et al. from a Monte Carlo simulation study.  Using the mean 

vector and scaled shape matrix, Mahalanobis squared distances are computed for all 

observations in the dataset.  Any observations whose squared distances are less than an 

appropriate quantile of the Chi-Squared distribution with p degrees of freedom are then 

used to form a new basic subset.  This process is repeated until the basic subset fails to 

increase in size between iterations.  Any observations not in the basic subset when the 

algorithm terminates are considered outliers. 

The Juan-Prieto Detector 

The outlier detector proposed by Juan and Prieto (2001)—hereafter referred to as 

the Juan-Prieto detector—is a non-traditional outlier detection method that avoids the 

computation of Mahalanobis distances altogether.  Thus, the method offers a good 

contrast to the other methods we consider.  The Juan-Prieto detector is also designed to 
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locate concentrated outliers, which, intuitively, would seem to match well with the 

problem of finding targets in a hyperspectral scene. 

The underlying statistical theory exploited by the Juan-Prieto detector is that p-

dimensional Gaussian data projected onto the p-dimensional unit hypersphere has a 

Uniform distribution.  Further, the angles between each normalized vector and a 

reference direction will have a Beta distribution.  These properties are also reasonably 

robust to departures from normality if the data is elliptically symmetrical. With this 

theory in-mind, the Juan-Prieto detector begins by normalizing all the observation vectors 

so that they have a magnitude of one, and thus lie on the p-dimensional unit hypersphere.  

A reference direction is then chosen using a non-linear optimization method suggested by 

Juan and Prieto, and the angles between the reference direction and each normalized 

vector are computed.  To determine if these angles have the prescribed Beta distribution, 

they are entered as arguments to the inverse of the appropriate Beta distribution function.  

If the angles indeed have the proper distribution, the outputs to the inverse distribution 

function should, in turn, have a Uniform distribution. This hypothesis is tested by 

analyzing the maximum spacing between the ordered inverse function outputs.  If the 

maximum spacing is not consistent with a Uniform distribution, all corresponding 

observations beyond the maximum spacing in the ordered inverse function outputs are 

considered outliers. 

The Modified Stahel-Donoho Estimator (SDE) Detector 

The original SDE detector proposed by Maronna and Yohai (1995) is a robust 

distance method that arrives at mean vector and covariance matrix estimates using a 
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robust estimation method originally proposed by Stahel (1981) and Donoho (1982).  The 

SDE mean vector, T, and covariance matrix, S, are given by: 
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where the wi are weights whose magnitudes depend on the degree to which the 

corresponding observation is outlying.  Though different weight functions can be 

employed, Maronna and Yohai demonstrate empirically that the following function 

provides good statistical efficiency of the estimator: 
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( ) the indicator function, and
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The parameters c and q in (5.32) are constants that can be derived using Monte 

Carlo simulation to achieve an acceptable level of bias for the estimator.  The ri metric in 

(5.32) for an observation vector, xi, is defined as: 
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The interpretation of (5.33) is we are looking for some projection vector, a, on the p-

dimensional unit hypersphere that maximizes the standardized distance between the 

projection of xi onto a and the centroid of the projected dataset onto a.  To ensure a 

robust estimate of ri, the median of the projected data is used to estimate the centroid, and 

the median absolute deviation (MAD) is used to estimate the standard deviation.  The 

rationale for using (5.33) to measure outlyingness is that for elliptically symmetric data, 

an outlier in p-dimensional space will be an outlier in some univariate projection of the 

data.   

Once the robust estimates of (5.30) and (5.31) are obtained, they can be used to 

compute robust Mahalanobis distances for all the observations in the dataset.  Maronna 

and Yohai suggest that these distances are F-distributed, and provide a suitable critical 

value for screening them for outliers.  Hence, implementing the SDE outlier detector 

entails: 1) computation of the ri for each observation; 2) using these values to compute 

(5.30) and (5.31); 3) using the robust estimates to compute Mahalanobis squared 

distances for the observations; and  4) using the appropriate critical value to screen the 

distances for outliers.  The practical challenge in using this detector, however, is solving 

the non-linear optimization problem given by (5.33).  Due to the non-differentiable 

objective function, derivative-free optimization methods must be used to search for a 

local solution. 



150 

Rather than using penalty or barrier function methods to solve (5.33), Maronna 

and Yohai suggest generating random points on the unit hypersphere that have a Uniform 

distribution.  Each point, or vector, is then substituted into (5.33) to find an approximate 

solution to the maximization problem.  As an alternative to random vector generation, we 

propose using number theoretic methods (NTM) to generate points that are uniformly 

scattered—as opposed to uniformly distributed—on the unit hypersphere.  We favor this 

method because NTM point generation requires fewer points to evenly cover the unit 

hypersphere than random point generation, as explained in Fang and Wang (1994).  Thus, 

given the same number of points generated by the two methods, we can be more 

confident of an even search of the feasible region with NTM generation than with random 

generation.   

By modifying Maronna and Yohai’s SDE detector using NTM point generation, 

we define the SDE-NTM generator as follows: 

1) Generate a set of uniformly scattered points, or vectors, an the p-dimensional 

unit hypersphere using the TFWW method outlined in Fang and Wang (1994). 

2) Use the vectors from Step 1 to find an approximate solution to (5.33) for each 

observation. 

3) Use the ri’s from Step 2 to compute the mean vector and covariance estimates 

given by (5.30) and (5.31), respectively. 

4) Compute the Mahalanobis squared distance for each observation relative to 

the robust mean and covariance estimates computed in Step 3. 

5) Scale the squared distances from Step 4 by the median of the squared 

distances, and declare as outliers any observation whose scaled squared 



151 

distance, d*, exceeds F(α/n; p, n-2p)/F(0.5; p, n-2p), where α is a specified 

significance level and F(•; a, b) is the F-distribution function with a and b 

degrees of freedom.  

The critical value given in Step 5 is based on empirical simulation studies 

conducted by Maronna and Yohai that indicate the following: 
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Though the SDE-NTM detector offers a more efficient procedure for finding 

approximate solutions to (5.33) relative to the original SDE detector, the method is still 

computationally expensive, particularly in high-dimensions.  To reduce the number of 

unnecessary computations, we suggest computing and storing uniformly scattered sets of 

points for different combinations of dimensionality and numbers of points. 

The preceding paragraphs outlined the four multivariate outlier detection methods 

used in the comparison tests described in the following sections.  Again, these methods 

were selected based on their perceived ability to handle very large datasets, as well as the 

different detection strategies they employ.  By comparing the relative performance of this 

diverse set of detectors, it is hoped that useful insights may be obtained as to how best 

multivariate outlier detection may be used to find hyperspectral anomalies. 
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Algorithm Comparisons 

To compare the BACON, FAST-MCD, Juan-Prieto, and SDE-NTM outlier 

detection methods, we used a test similar to the Multivariate Gaussian Data experiment.  

Specifically, the test proceeded as follows: 

1) Generate 2000 p-dimensional observations from a multivariate variate 

Gaussian distribution with mean vector and covariance matrix derived from 

the same Fort A.P. Hill or D.C. Mall datasets used in the previous 

experiments. 

2) Generate a specified number of outlier observations from a multivariate 

Gaussian distribution with mean vector and covariance matrix derived from 

one of the Fort A.P. Hill or D.C. Mall datasets, and combine these outliers 

with the background dataset created in Step 1. 

3) Apply each of the four outlier detection methods to the contaminated dataset 

and record the number of true positives and false alarms detected by each 

method.  As a benchmark, apply the classical MSD detector to the dataset as 

well to determine the detection accuracy if non-robust methods are used. 

4) Repeat Steps 1 through 3 30 times and estimate the mean true positives and 

false alarms detected by each method.  Also compute the standard error for 

each mean estimate. 

5) Repeat Steps 1 through 4 for a higher level of contamination.  The 

contamination ranged from 0 to 500 outliers in increments of 50 outliers. 

6) Repeat Steps 1 through 5 for a different background-outlier combination.  The 

combinations used in this experiment correspond to those most affected by 
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masking in the previous experiments.  These combinations are listed in Table 

7 for the Fort A.P Hill and D.C. Mall images. 

7) Repeat Steps 1 through 6 using a multivariate-t distribution with twelve 

degrees of freedom to generate the background and outlier observations in 

Steps 1 and 2, respectively.  This distribution was chosen based on 

conclusions presented by Manolakis and Mardin (2002), Kerekes and 

Manolakis (2004), and Manolakis et al (2005). 

The outcome of our tests are summarized in Tables 8 through 11.  Tables 8 and 9 

show the mean true-positives obtained by each detector for the Gaussian and multivariate 

t-distributed data, respectively.  Similarly, Tables 10 and 11 show the mean number of 

false-positives for the two distributions.  For each mean value, the standard error is also 

reported as a measure of detector performance variability.  To keep these tables as 

concise as possible, we have only included results from a subset of the contamination 

levels tested; however, we feel they are sufficient to show the relative performance of the 

detectors. 

From Tables 8 and 9, several conclusions can be made.  First, it is clear that the 

classical, non-robust Mahalanobis distance detector suffers significantly from masking, 

as indicated by the low number of true positives across all the material combinations,  

Table 7.  Background-Outlier Material Combinations used for Multivariate Outlier 
Detector Comparisons 
 

Fort A.P. Hill Combinations D.C. Mall Combinations 
Background Outlier Background Outlier 

Grass Road Grass Asphalt 
Grass Shadow Grass Water 
Dead Grass Shadow Asphalt Water 
Roac Shadow Gravel Asphalt 
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Table 8.  True Positives for Outlier Detection Method Comparison Tests (Multivariate 
Gaussian Data) 
 

True Positives by Method 
Classical BACON F.MCD Juan-Prieto SDE-NTM 

Background/ 
Outlier 

Number 
Of 

Outliers Mean S.E. Mean S.E. Mean S.E. Mean S.E. Mean S.E. 
50 46.3 2.1 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0 
100 12.1 2.8 100.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 
300 2.9 1.5 300.0 0.0 300.0 0.0 286.4 6.8 300.0 0.0 

Grass/ 
Road 
(A.P. Hill) 

500 1.5 1.1 500.0 0.0 500.0 0.0 481.0 13.9 500.0 0.0 
 

50 45.0 2.3 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0 
100 14.2 3.0 100.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 
300 4.4 1.8 300.0 0.0 300.0 0.0 283.9 10.5 300.0 0.0 

Grass/ 
Shadow 
(A.P. Hill) 

500 2.2 1.1 500.0 0.0 500.0 0.0 468.6 17.1 500.0 0.0 
 

50 45.3 2.0 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0 
100 15.7 2.7 100.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 
300 4.8 1.4 300.0 0.0 300.0 0.0 284.1 10.4 300.0 0.0 

Dead Grass/ 
Shadow 
(A.P. Hill) 

500 2.4 1.8 500.0 0.0 500.0 0.0 471.4 15.7 500.0 0.0 
 

50 49.2 0.9 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0 
100 72.9 3.2 100.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 
300 68.4 5.3 300.0 0.0 300.0 0.0 7.5 41.1 300.0 0.0 

Road/ 
Shadow 
(A.P. Hill) 

500 43.4 5.4 500.0 0.0 500.0 0.0 21.9 84.5 500.0 0.0 
 

50 11.7 3.1 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0 
100 0.0 0.2 100.0 0.0 100.0 0.0 70.0 43.1 100.0 0.0 
300 0.0 0.0 300.0 0.0 300.0 0.0 297.5 2.6 300.0 0.0 

Grass/ 
Asphalt 
(D.C. Mall) 

500 0.1 0.3 500.0 0.0 500.0 0.0 491.8 5.3 500.0 0.0 
 

50 0.0 0.0 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0 
100 0.0 0.0 100.0 0.0 100.0 0.0 86.7 34.6 100.0 0.0 
300 0.0 0.0 300.0 0.0 300.0 0.0 300.0 0.0 300.0 0.0 

Grass/ 
Water 
(D.C. Mall) 

500 0.0 0.0 500.0 0.0 500.0 0.0 500.0 0.0 500.0 0.0 
 

50 27.1 2.7 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0 
100 0.0 0.0 100.0 0.0 100.0 0.0 88.9 30.2 100.0 0.0 
300 0.0 0.0 300.0 0.0 300.0 0.0 299.2 1.1 300.0 0.0 

Asphalt/ 
Water 
(D.C. Mall) 

500 0.0 0.0 500.0 0.0 500.0 0.0 496.8 2.8 500.0 0.0 
 

50 20.5 2.6 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0 
100 0.0 0.0 100.0 0.0 100.0 0.0 89.2 30.3 100.0 0.0 
300 0.0 0.0 300.0 0.0 300.0 0.0 299.4 0.9 300.0 0.0 

Gravel/ 
Asphalt 
(D.C. Mall) 

500 0.0 0.0 500.0 0.0 500.0 0.0 497.8 1.8 500.0 0.0 
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Table 9.  True Positives for Outlier Detection Method Comparison Tests (Multivariate-t 
Data) 
 

True Positives by Method 
Classical BACON F.MCD Juan-Prieto SDE-NTM 

Background/ 
Outlier 

Outliers 
Present 

Mean S.E. Mean S.E. Mean S.E. Mean S.E. Mean S.E. 
50 45.6 1.9 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0 
100 12.4 2.3 100.0 0.0 100.0 0.0 4.9 18.9 100.0 0.0 
300 5.8 1.6 300.0 0.0 300.0 0.0 286.4 5.8 300.0 0.0 

Grass/ 
Road 
(A.P. Hill) 

500 4.1 2.0 500.0 0.0 500.0 0.0 475.2 13.3 500.0 0.0 
 

50 44.2 1.9 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0 
100 15.2 2.8 100.0 0.0 100.0 0.0 3.2 12.5 100.0 0.0 
300 8.7 2.8 300.0 0.0 300.0 0.0 278.5 11.8 300.0 0.0 

Grass/ 
Shadow 
(A.P. Hill) 

500 8.2 2.4 500.0 0.0 500.0 0.0 465.0 23.4 500.0 0.0 
 

50 44.3 2.5 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0 
100 16.8 3.3 100.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 
300 8.7 2.4 300.0 0.0 300.0 0.0 282.4 8.7 300.0 0.0 

Dead Grass/ 
Shadow 
(A.P. Hill) 

500 7.6 2.5 500.0 0.0 500.0 0.0 468.6 17.4 500.0 0.0 
 

50 48.4 1.0 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0 
100 63.9 4.1 100.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 
300 67.6 5.8 300.0 0.0 300.0 0.0 32.2 83.8 300.0 0.0 

Road/ 
Shadow 
(A.P. Hill) 

500 59.3 4.0 500.0 0.2 500.0 0.0 85.8 174.8 500.0 0.0 
 

50 9.7 2.2 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0 
100 0.1 0.3 100.0 0.0 100.0 0.0 71.0 43.6 100.0 0.0 
300 0.2 0.6 300.0 0.0 300.0 0.0 295.9 3.2 300.0 0.0 

Grass/ 
Asphalt 
(D.C. Mall) 

500 0.2 0.4 500.0 0.0 500.0 0.0 487.4 7.9 500.0 0.0 
 

50 0.0 0.0 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0 
100 0.0 0.0 100.0 0.0 100.0 0.0 90.0 30.5 100.0 0.0 
300 0.0 0.0 300.0 0.0 300.0 0.0 300.0 0.0 300.0 0.0 

Grass/ 
Water 
(D.C. Mall) 

500 0.0 0.0 500.0 0.0 500.0 0.0 500.0 0.2 500.0 0.0 
 

50 23.4 2.9 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0 
100 0.1 0.4 100.0 0.0 100.0 0.0 88.6 30.1 100.0 0.0 
300 0.0 0.0 300.0 0.0 300.0 0.0 298.6 1.1 300.0 0.0 

Asphalt/ 
Water 
(D.C. Mall) 

500 0.0 0.2 500.0 0.0 500.0 0.0 493.4 3.6 500.0 0.0 
 

50 18.8 2.2 50.0 0.0 50.0 0.0 0.0 0.0 50.0 0.0 
100 0.0 0.0 100.0 0.0 100.0 0.0 82.2 37.4 100.0 0.0 
300 0.0 0.0 300.0 0.0 300.0 0.0 298.7 1.9 300.0 0.0 

Gravel/ 
Asphalt 
(D.C. Mall) 

500 0.0 0.0 500.0 0.0 500.0 0.0 495.9 3.1 500.0 0.0 
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contamination levels, and distributions.  Second, we see that the BACON, FAST-MCD, 

and SDE-NTM detectors successfully identify all outliers in the cases tested.  This 

finding is true for both the Gaussian data and the multivariate t-data, which is confirms 

our previous finding that robust estimation of the mean vector and covariance matrix can 

improve detection accuracy relative to the classical MSD detector, even if the Gaussian 

assumption is not valid.  The ability of these detectors to successfully find outliers in 

heavy-tailed distributions is important since it provides an alternative to the challenging 

task of correctly identifying a specific distribution from the multivariate t-distribution 

family.  A third observation from Tables 8 and 9 is the inability of the Juan-Prieto 

detector to find outliers when the contamination level is relatively low.  The likely cause 

of this limitation is that relatively few outliers are not likely to affect the uniformity of the 

data when projected onto the unit hypersphere. 

Turning to the false positive data reported in Tables 10 and 11, it is seen that 

when all detectors are applied to the Gaussian data, the number of false positives is close 

to zero for all levels of contamination and material combinations.  The reason for this 

seemingly ideal false positive rate is the use of a Bonferoni significance level of α/n used 

to threshold the respective test statistics for the different detectors, where α=0.05 and n is 

the total number of observations.  For all cases tested, the expected number of false 

alarms for the significance level used is less then one.   

In the case of the multivariate-t data, the false alarm data is somewhat more 

interesting.  First, we note that the false alarms for the BACON detector remain close to 

zero.  In contrast, the false alarms for the FAST-MCD and SDE-NTM methods are  
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Table 10.  False Positives for Multivariate Outlier Detector Comparisons (Multivariate 
Gaussian Data) 
 

False Positives by Method 
Classical BACON F.MCD Juan-Prieto SDE-NTM 

Background/ 
Outlier 

Outliers 
Present 

Mean S.E. Mean S.E. Mean S.E. Mean S.E. Mean S.E. 
0 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.2 
50 0.1 0.3 0.0 0.0 0.1 0.4 0.0 0.0 0.1 0.3 
100 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.2 
300 0.0 0.2 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0 

Grass/ 
Road 
(A.P. Hill) 

500 0.2 0.5 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0 
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 
50 0.0 0.0 0.0 0.0 0.2 0.4 0.0 0.0 0.1 0.3 
100 0.0 0.2 0.0 0.0 0.1 0.3 0.0 0.0 0.1 0.3 
300 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0 

Grass/ 
Shadow 
(A.P. Hill) 

500 0.1 0.3 0.0 0.0 0.0 0.2 0.7 1.9 0.0 0.0 
0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 
50 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.2 
100 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 
300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Dead Grass/ 
Shadow 
(A.P. Hill) 

500 0.0 0.2 0.0 0.0 0.1 0.3 1.3 6.6 0.0 0.0 
0 0.0 0.2 0.0 0.0 0.1 0.3 0.0 0.0 0.1 0.3 
50 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 
100 0.0 0.0 0.0 0.0 0.2 0.5 0.0 0.0 0.1 0.3 
300 0.0 0.0 0.0 0.0 0.1 0.3 1.5 4.8 0.0 0.2 

Road/ 
Shadow 
(A.P. Hill) 

500 0.1 0.3 0.0 0.0 0.2 0.6 8.8 25.9 0.0 0.2 
0 0.1 0.3 0.0 0.0 0.2 0.4 0.0 0.0 0.1 0.3 
50 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.2 
100 0.0 0.0 0.0 0.0 0.1 0.3 2.6 5.7 0.0 0.0 
300 0.2 0.5 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.2 

Grass/ 
Asphalt 
(D.C. Mall) 

500 0.2 0.6 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0 
0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 
50 0.0 0.2 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0 
100 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0 
300 0.3 0.5 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0 

Grass/ 
Water 
(D.C. Mall) 

500 0.6 0.8 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 
0 0.1 0.3 0.0 0.0 0.2 0.4 0.0 0.0 0.1 0.3 
50 0.0 0.0 0.0 0.0 0.1 0.4 0.0 0.0 0.0 0.0 
100 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 
300 0.1 0.3 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 

Asphalt/ 
Water 
(D.C. Mall) 

500 0.1 0.3 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0 
0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 
50 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 
100 0.1 0.3 0.0 0.0 0.1 0.3 0.0 0.2 0.1 0.3 
300 0.2 0.4 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0 

Gravel/ 
Asphalt 
(D.C. Mall) 

500 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table 11.  False Positive for Multivariate Outlier Detector Comparison (Multivariate-t 
Data) 
 

False Positives by Method 
Classical BACON F.MCD Juan-Prieto SDE-NTM 

Background/ 
Outlier 

Outliers 
Present 

Mean S.E. Mean S.E. Mean S.E. Mean S.E. Mean S.E. 
0 14.8 3.5 0.0 0.0 39.4 6.5 0.0 0.0 27.9 4.6 
50 10.6 2.8 0.0 0.0 38.7 7.3 0.0 0.0 25.2 5.3 
100 10.9 3.5 0.1 0.3 37.1 6.7 1.0 3.1 23.9 6.2 
300 11.1 3.0 0.0 0.2 30.4 5.9 0.0 0.0 14.6 3.4 

Grass/ 
Road 
(A.P. Hill) 

500 14.1 3.3 0.0 0.0 28.5 5.3 0.0 0.0 11.6 3.9 
0 14.6 3.4 0.0 0.2 40.5 7.2 0.0 0.0 26.8 5.1 
50 10.0 2.9 0.0 0.2 39.8 7.1 0.0 0.0 26.3 5.5 
100 10.6 2.8 0.0 0.0 38.8 6.2 0.9 4.6 24.5 4.8 
300 10.5 2.9 0.1 0.3 30.1 6.3 0.0 0.0 15.8 4.5 

Grass/ 
Shadow 
(A.P. Hill) 

500 10.1 3.5 0.0 0.0 26.5 6.1 0.0 0.0 10.0 3.9 
0 14.4 3.4 0.0 0.0 41.3 8.0 0.0 0.0 28.0 6.3 
50 9.9 3.1 0.0 0.0 38.9 6.9 0.0 0.0 25.8 5.4 
100 10.0 3.2 0.0 0.0 36.5 6.6 0.1 0.4 23.2 6.0 
300 10.0 3.2 0.0 0.2 31.2 6.0 0.0 0.0 16.3 3.8 

Dead Grass/ 
Shadow 
(A.P. Hill) 

500 11.1 3.4 0.0 0.2 26.0 7.1 0.0 0.0 10.8 3.7 
0 14.2 3.1 0.0 0.2 41.6 6.0 0.0 0.0 27.9 5.6 
50 6.1 1.9 0.0 0.2 38.8 6.4 0.0 0.0 25.6 5.6 
100 5.5 2.0 0.0 0.0 40.5 5.4 0.0 0.0 25.0 5.0 
300 4.3 1.7 0.0 0.0 31.9 6.3 2.8 7.4 16.5 4.4 

Road/ 
Shadow 
(A.P. Hill) 

500 3.8 2.5 0.0 0.0 27.6 5.9 21.6 62.6 11.4 3.3 
0 13.4 2.8 0.1 0.3 39.7 6.9 0.0 0.0 27.3 4.5 
50 11.9 2.9 0.0 0.0 39.4 6.2 0.0 0.0 25.8 4.5 
100 11.0 2.8 0.0 0.0 36.1 6.5 1.1 3.2 23.0 4.8 
300 16.0 3.6 0.0 0.2 33.1 4.6 0.0 0.0 17.0 4.0 

Grass/ 
Asphalt 
(D.C. Mall) 

500 19.5 3.4 0.0 0.2 26.1 4.3 0.0 0.0 10.5 3.8 
0 14.2 3.1 0.0 0.0 37.2 6.0 0.0 0.0 25.7 4.6 
50 10.7 2.9 0.0 0.0 36.6 6.1 0.0 0.0 23.7 4.3 
100 12.9 3.0 0.0 0.0 35.4 5.5 0.0 0.0 22.8 4.8 
300 17.4 2.3 0.0 0.0 31.0 5.3 0.0 0.0 15.9 3.1 

Grass/ 
Water 
(D.C. Mall) 

500 25.2 5.2 0.0 0.0 27.3 6.8 0.0 0.0 10.3 4.2 
0 14.0 3.3 0.0 0.2 40.3 5.6 0.0 0.0 26.9 4.8 
50 11.4 2.7 0.0 0.2 38.2 6.2 0.0 0.0 25.6 4.6 
100 13.0 3.1 0.0 0.0 35.5 5.9 0.1 0.5 23.5 4.5 
300 17.5 3.6 0.0 0.2 33.2 4.9 0.0 0.0 17.8 3.8 

Asphalt/ 
Water 
(D.C. Mall) 

500 20.1 4.4 0.1 0.3 26.0 5.1 0.0 0.0 11.3 3.9 
0 14.5 3.3 0.1 0.3 39.3 5.6 0.0 0.0 27.2 4.8 
50 10.7 3.0 0.0 0.0 38.3 6.1 0.0 0.0 24.7 5.4 
100 11.8 3.3 0.0 0.0 34.6 6.4 0.1 0.6 22.2 6.0 
300 16.1 3.2 0.0 0.2 32.1 6.8 0.0 0.0 16.5 4.4 

Gravel/ 
Asphalt 
(D.C. Mall) 

500 21.0 3.5 0.0 0.2 26.7 5.1 0.0 0.0 10.4 3.5 
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significantly higher.  The reason for this difference is that both the FAST-MCD and 

SDE-NTM methods arrive at a covariance estimate by first estimating the shape matrix of 

the data by trimming away all the observations far from the center.  Because good 

observations may also be trimmed, the shape matrix underestimates the true variance of 

the good data.  Hence, either the shape matrix or the Mahalanobis distances derived from 

it must be scaled before testing the distances for outliers.  We have found that the scaling 

process used for both the FAST-MCD and SDE-NTM methods still tend to underestimate 

the true variance in the data, particularly when compared to the scaling method used by 

the BACON detector.  Hence, it is reasonable to expect more false alarms with the 

FAST-MCD and SDE-NTM methods relative to the BACON detector, particularly with 

heavy-tailed data. 

A final observation of note in the false alarm data is the decreasing number of 

false alarms for the FAST-MCD and SDE-NTM detectors as the level of contamination 

increases.  We hypothesize that this phenomenon occurs for the following reason: as the 

contamination level increases, it is more likely that outliers are still contained in the set of 

observations used to estimate the shape matrix, since neither the FAST-MCD nor the 

SDE-NTM methods are guaranteed to generate a “clean” estimate.  Though few in 

number, these outliers are sufficient to artificially increase the variance of the data.  This 

increased variance will, in turn, result in a lower false alarm rate.  A similar affect was 

demonstrated in Smetek and Bauer (2006). 

The results given in Tables 8 through 11, lead to the conclusion that the BACON 

algorithm is the most effective outlier detection method of the four algorithms tested.  

Though the FAST-MCD, and SDE-NTM methods performed as well as BACON in terms 
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of true positive rate, BACON is more resistant to false alarms, particularly when heavy-

tailed data is used.  Another advantage of BACON relative to the other methods, is its 

computational speed.  Though rigorous, controlled time trials were not performed, our 

experience with the algorithms in this experiment and with much larger datasets revealed 

BACON to be at least one to two orders of magnitude faster than the other methods.  

Based on these results, it would seem that the BACON algorithm is the most logical for 

use with hyperspectral data.  In the following sections, we focus on adapting the BACON 

algorithm for this purpose, but for comparison sake, we adapt the FAST-MCD detector, 

as well. 

Image Clustering 

One of the fundamental assumptions of the BACON and FAST-MCD 

algorithms—and many other multivariate outlier detection methods—is the majority of 

the dataset comes from a single population with the remainder of the data belonging to 

one or more contaminating populations.  Thus, these methods attempt to robustly 

estimate the mean vector and covariance matrix of the good population so that they can 

be used to identify the contaminating observations.  If these methods are applied directly 

to a hyperspectral image, this single-population assumption is generally not valid and will 

lead to poor detection results.  For example, a typical hyperspectral scene may consist of 

large areas of forest, open fields, road, urban areas, water, etc., none of which may be 

considered as outlying.  Rather, they are simply different background constituents for the 

scene.  If BACON or FAST-MCD are applied to such a scene, however, these methods 

will likely consider the most prevalent background material to be the good observations 

while discarding everything else as outliers. 
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To allow methods such as BACON and FAST-MCD to operate effectively on 

multiple background images, the image must first be clustered into homogeneous groups 

to which BACON or FAST-MCD are applied individually.  If the number of clusters is 

set to coincide with the number of background materials in the scene, then any 

anomalous objects whose spectra occur relatively infrequently in the scene will be 

grouped with the most similar background material and should be amenable to detection 

by the BACON or FAST-MCD algorithms.  Clustering a dataset prior to applying a 

multivariate outlier detection method is not a new idea.  Woodruff and Reiners (2004) 

and Hardin and Rocke (2004) provide notable attempts to use cluster analysis for finding 

outliers in datasets with multiple good populations.  However, there are two primary 

disadvantages with the methods they propose.  First, they make use of robust cluster 

analysis, which adds considerable computational complexity to the clustering problem—

relative to the ubiquitous k-means algorithm—in an attempt to minimize the effect of 

outliers on the clustering solution.  A second disadvantage is the requirement to specify 

the number of groups as an input parameter to the clustering algorithm.  This requirement 

makes the overall detection process less autonomous, which conflicts with the objectives 

of our research. 

In the following sections, we develop a basic k-means-based clustering method 

for the BACON and FAST-MCD methods that can reasonably group a hyperspectral 

image into its major background materials prior to outlier detection.  In so doing, we first 

explore the robustness of the k-means algorithm and argue that we can forego the 

computational complexity of robust clustering in favor of k-means without fear of 

inaccurate solutions caused by outlying observations.  We then investigate methods for 
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automatically determining the number of background materials, k, in an image so that k-

means can be employed in autonomous manner with minimal input from the user. 

Robustness of the k-Means Algorithm 

Our desire to employ the k-means algorithm as a preprocessor for the BACON 

and FAST-MCD detectors is its wide-spread use in the hyperspectral analysis 

community.  The algorithm is relatively easy to use, it has been implemented in a number 

of image and statistical analysis software applications, and it can operate on large datasets 

in a reasonable amount of time.  However, it would seem somewhat contradictory to 

argue the virtues of robust estimation elsewhere in this dissertation while blindly using 

the k-means algorithm without first ensuring it can accurately cluster a hyperspectral 

image when the image may be contain a number of outlying spectra.  The issue of k-

means robustness is thoroughly discussed by Garcia-Escudero and Gordaliza (1999) who 

show that the break-down point of the k-means algorithm is the worst it can be, 1/n, 

where n is the number of observations in the dataset.  In other words, it can take a single, 

well-positioned outlier to cause k-means to fail.  The primary failure mode of the k-means 

algorithm, which we refer to as the clumping effect, is the assignment of the outlying 

observation to its own cluster while merging two other clusters into a single cluster. 

This poor robustness property of k-means does not seem to favor this algorithm 

for clustering hyperspectral data that may contain anomalies.  However, the additional 

computational complexity posed by robust clustering methods is not attractive either.  

Thus, we conduct the following experiment to determine the magnitude of the non-

robustness problem in the context of hyperspectral image data: 
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1) For each of four background materials, generate 1000 observations for a 

multivariate Gaussian distribution using mean vectors and covariance matrices 

obtained from sample spectra taken from actual hyperspectral images. 

2) Generate a specified number of outlier observations from a multivariate 

Gaussian distribution using the mean vector and covariance matrix obtained 

from sample spectra taken from an actual hyperspectral image.  Combine 

these outlying observations with the 4000 background observations. 

3) Apply the k-means algorithm to the contaminated dataset with k set to four, 

the actual number of background materials.  Use a Cosine assignment rule in 

which each observation is assigned to the cluster whose mean vector forms the 

smallest angle with the observation vector. 

4) Compute the accuracy of the clustering solution as the percent of background 

observations assigned to the correct group.  We were not concerned with how 

the outliers were assigned. 

5) Repeat Steps 1 through 4 50 times to obtain a mean estimate for the 

classification accuracy.  Also compute the standard error for the mean 

estimate. 

6) Repeat Steps 1 through 5 with an increased number of outliers.  The number 

of outliers ranged from 0 to 1000 outliers in increments of 50 outliers. 

7) Repeat Steps 1 through 6 after replacing the Cosine assignment rule in Step 3 

with the Squared Euclidean rule by which each observation is assigned to the 

cluster to which it is closest in terms of squared Euclidean distance. 



164 

8) Repeat Steps 1 through 7 using a different set of four background materials in 

Step 1 derived from a different hyperspectral image.  For this experiment, 

spectra were derived from the Fort A.P. Hill and D.C. Mall images used in 

previous experiments, as well as a 128-band HYMAP sensor image of the 

campus and surrounding community of Purdue University.  The mean spectra 

and band standard deviations for the materials obtained from the Purdue 

image are shown in Figure 20.  Table 12 lists the background and outlier 

materials used from each image. 

9) Repeat Steps 1 through 8 using a multivariate-t distribution with twelve 

degrees of freedom to generate the background and outlier observations in 

Steps 1 and 2. 

Before reviewing the results of this experiment, several clarifications need to be 

made.  First, in order to avoid local clustering solutions, Step 3 of the experiment actually 

consisted of 30 applications of the k-means algorithm to the contaminated dataset, with 

each application using a different random starting point for the four cluster means.  

Second, each application of k-means was allowed to progress through 100 iterations to 

converge to the final solution.  Third, the Cosine metric was used in Step 3 because 

inspection of actual hyperspectral image clustering solutions revealed that it was more 

effective in grouping observations with similar spectral shape, whereas the Squared 

Euclidean clusters for the same image tended to contain less-homogenous spectra.  To see 

why this is so, consider a very simple two-cluster problem in three dimensions.  Suppose 

that at an arbitrary iteration of the k-means algorithm the mean vector of cluster one is  
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μ1=(2,6,1)T and the mean vector of cluster two is μ2=(2,1,1)T.  Further, suppose we are 

attempting to assign a vector, x=(1,3,0.5)T, to the closest cluster.  Upon inspection, it is 

clear the x is simply a mean shift of μ1 which is a realistic scenario in hyperspectral 

imagery due to the effects of illumination on pixels containing the same materials.  Under 

the Cosine rule, we obtain the desired outcome of assigning x to cluster one since the 

angle between x and μ1 is zero.  However, even though the spectral shape of x is much 

closer to μ1 than μ2, the Squared Euclidean rule dictates x be assigned to cluster two since 

the squared Euclidean distance between x and μ2 is 5.25 as opposed 9.0 between x and μ1. 

A fourth clarification for the robustness experiment is that an excursion was also  

 

 
Figure 20.  Mean Spectra for Purdue University Image Materials 
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performed in which the contaminated dataset was normalized prior to applying the k-

means algorithm in Step 3.  By normalize we mean that each observation was divided by 

its respective vector norm.  This preprocessing step has the effect of reducing the 

variability of spectral signatures corresponding to the same material and has been used in 

the hyperspectral literature to help minimize the effects of illumination (Healey and 

Slater, 1999).  This normalization step is only used with the Squared Euclidean 

assignment rule, since normalizing the data prior to using the Cosine rule has no 

mathematical effect—the Cosine rule inherently normalizes the data. 

A final clarification for the experiment is the that the hyperspectral data used to 

produce the mean vectors and covariance matrices in Steps 1 and 2 was reduced in 

dimensionality to p=15 prior to running the experiment.  This reduction was performed 

by dividing the original image bands into 15 sequential blocks and using the block means 

as the new variables.  This type of data reduction preserves the general shape of the 

original spectral signatures, while significantly reducing the computation time required 

for the k-means algorithm.  In other tests not reported here, principal components analysis 

was also used as a data reduction technique; however, based on visual inspection, the 

PCA clusters appeared less-homogeneous than the band-aggregation clusters. 

Table 12.  Materials used for k-Means Robustness Tests 
 

Fort A.P. Hill D.C. Mall Purdue University 
Grass Grass Dirt 
Road Asphalt Grass 
Dead Grass Gravel Track 
Tree Roof Asphalt 
Shadow (Outlier) Water (Outlier) Water (Outlier) 
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The results of the k-means robustness experiment are summarized in Tables 13 

and 14 for the multivariate Gaussian and multivariate-t generated data, respectively.  The 

first column of these tables specifies which k-means method was used for the experiment.  

The naming convention for the k-means method contains three parts.  The first letter 

denotes the assignment rule used by k-means, where ‘C’ indicates the Cosine rule and ‘S’ 

indicates the Squared Euclidean rule.  The second letter of the method designator 

specifies if normalized (N) or un-normalized (U) data was used.  The third letter indicates 

if the outliers were generated from a single distribution (S), or if they were randomly 

selected from a set of multiple outlier materials (R)—this outlier generation method will 

be discussed in more detail momentarily.  The remaining columns of Tables 13 and 14 

give the mean accuracy of the k-means algorithm under different levels of contamination 

for the three underlying images used to generate the simulated data.  The standard error 

for each mean estimate is also provided. 

The first conclusion we draw from Table 13 is that the robustness of the k-means 

algorithm is dependent on the background materials that are being clustered.  When the 

outliers come from a single population, the highest level of contamination achieved with 

100% classification accuracy using the Fort A.P. Hill data is approximately 150 outliers 

out of 4150 total observations, or 3.6% (Methods C/U/S and S/N/S).  For the D.C. Mall 

data, 100% accuracy can be obtained with contamination levels of 20% using the S/U/S 

method.  In the case of the Purdue data, only a 1.2% contamination level can be tolerated 

before the classification accuracy drops below 100% (Method S/U/S).  From Table 14 we  
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Table 13.  k-Means Robustness Test Results (Gaussian Data) 
A.P Hill Data D.C. Mall Data Purdue Data Method Outliers 

Accuracy S.E. Accuracy S.E. Accuracy S.E. 
0 1.00 0.00 1.00 0.01 1.00 0.00 
50 1.00 0.01 1.00 0.01 0.75 0.06 
100 1.00 0.00 1.00 0.01 0.75 0.06 
150 1.00 0.00 1.00 0.01 0.75 0.06 
200 0.93 0.04 0.99 0.01 0.75 0.06 
300 0.75 0.06 0.99 0.01 0.75 0.06 
400 0.75 0.06 0.98 0.02 0.75 0.06 
500 0.75 0.06 0.85 0.05 0.75 0.06 
600 0.75 0.06 0.77 0.06 0.75 0.06 

C/U/S 

1000 0.75 0.06 0.77 0.06 0.75 0.06 
0 0.92 0.04 1.00 0.00 1.00 0.00 
50 0.93 0.04 1.00 0.00 1.00 0.00 
100 0.93 0.04 1.00 0.00 0.75 0.06 
150 0.92 0.04 1.00 0.00 0.75 0.06 
200 0.93 0.04 1.00 0.00 0.75 0.06 
300 0.93 0.04 1.00 0.00 0.75 0.06 
400 0.92 0.04 1.00 0.00 0.75 0.06 
500 0.73 0.06 1.00 0.00 0.75 0.06 
600 0.72 0.06 1.00 0.00 0.75 0.06 

S/U/S 

1000 0.72 0.06 1.00 0.00 0.75 0.06 
0 1.00 0.00 1.00 0.01 1.00 0.00 
50 1.00 0.00 1.00 0.01 0.75 0.06 
100 1.00 0.00 1.00 0.01 0.75 0.06 
150 1.00 0.00 1.00 0.01 0.75 0.06 
200 0.95 0.03 0.99 0.01 0.75 0.06 
300 0.75 0.06 0.99 0.01 0.75 0.06 
400 0.75 0.06 0.98 0.02 0.75 0.06 
500 0.75 0.06 0.86 0.05 0.75 0.06 
600 0.75 0.06 0.77 0.06 0.75 0.06 

S/N/S 

1000 0.75 0.06 0.77 0.06 0.75 0.06 
0 1.00 0.00 1.00 0.01 1.00 0.00 
50 1.00 0.00 1.00 0.01 1.00 0.00 
100 1.00 0.00 1.00 0.01 1.00 0.00 
150 1.00 0.00 1.00 0.01 1.00 0.00 
200 1.00 0.00 1.00 0.01 1.00 0.00 
300 1.00 0.00 1.00 0.01 1.00 0.00 
400 1.00 0.00 1.00 0.01 1.00 0.00 
500 0.86 0.05 0.99 0.01 1.00 0.00 
600 0.75 0.06 0.99 0.01 1.00 0.00 

C/U/R 

1000 0.75 0.06 0.99 0.01 1.00 0.00 
0 0.93 0.04 1.00 0.00 1.00 0.00 
50 0.93 0.04 1.00 0.00 1.00 0.00 
100 0.93 0.04 1.00 0.00 1.00 0.00 
150 0.93 0.04 1.00 0.00 1.00 0.00 
200 0.93 0.04 1.00 0.00 1.00 0.00 
300 0.93 0.04 1.00 0.00 1.00 0.00 
400 0.93 0.04 1.00 0.00 1.00 0.00 
500 0.93 0.04 1.00 0.00 0.99 0.01 
600 0.93 0.04 1.00 0.00 0.96 0.03 

S/U/R 

1000 0.93 0.04 1.00 0.00 0.75 0.06 
0 1.00 0.00 1.00 0.01 1.00 0.00 
50 1.00 0.00 1.00 0.01 1.00 0.00 
100 1.00 0.01 1.00 0.01 1.00 0.00 
150 1.00 0.00 1.00 0.01 1.00 0.00 
200 1.00 0.00 1.00 0.01 1.00 0.00 
300 1.00 0.00 1.00 0.01 1.00 0.00 
400 1.00 0.00 1.00 0.01 1.00 0.00 
500 0.84 0.05 0.99 0.01 1.00 0.00 
600 0.75 0.06 0.99 0.01 1.00 0.00 

S/N/R 

1000 0.75 0.06 0.99 0.01 1.00 0.00 
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Table 14.  k-Means Robustness Test Results (Multivariate-t Data) 
A.P Hill Data D.C. Mall Data Purdue Data Method Outliers 

Accuracy S.E. Accuracy S.E. Accuracy S.E. 
0 1.00 0.01 0.99 0.01 1.00 0.00 
50 1.00 0.01 0.99 0.01 0.75 0.06 
100 1.00 0.01 0.99 0.01 0.75 0.06 
150 1.00 0.01 0.99 0.01 0.75 0.06 
200 0.97 0.02 0.99 0.01 0.75 0.06 
300 0.75 0.06 0.99 0.02 0.75 0.06 
400 0.75 0.06 0.98 0.02 0.75 0.06 
500 0.75 0.06 0.80 0.06 0.75 0.06 
600 0.75 0.06 0.77 0.06 0.75 0.06 

C/U/S 

1000 0.75 0.06 0.76 0.06 0.75 0.06 
0 0.93 0.04 1.00 0.01 1.00 0.00 
50 0.93 0.04 1.00 0.01 1.00 0.00 
100 0.93 0.04 1.00 0.00 0.77 0.06 
150 0.93 0.04 1.00 0.01 0.75 0.06 
200 0.93 0.04 1.00 0.00 0.75 0.06 
300 0.93 0.04 1.00 0.00 0.75 0.06 
400 0.93 0.04 1.00 0.00 0.75 0.06 
500 0.74 0.06 1.00 0.01 0.75 0.06 
600 0.72 0.06 1.00 0.01 0.75 0.06 

S/U/S 

1000 0.72 0.06 1.00 0.01 0.75 0.06 
0 1.00 0.01 0.99 0.01 1.00 0.00 
50 1.00 0.01 0.99 0.01 0.75 0.06 
100 1.00 0.01 0.99 0.01 0.75 0.06 
150 1.00 0.01 0.99 0.01 0.75 0.06 
200 0.97 0.02 0.99 0.01 0.75 0.06 
300 0.75 0.06 0.99 0.02 0.75 0.06 
400 0.75 0.06 0.98 0.02 0.75 0.06 
500 0.75 0.06 0.80 0.06 0.75 0.06 
600 0.75 0.06 0.77 0.06 0.75 0.06 

S/N/S 

1000 0.75 0.06 0.76 0.06 0.75 0.06 
0 1.00 0.01 0.99 0.01 1.00 0.00 
50 1.00 0.01 0.99 0.01 1.00 0.00 
100 1.00 0.01 0.99 0.01 1.00 0.00 
150 1.00 0.01 0.99 0.01 1.00 0.00 
200 1.00 0.01 0.99 0.01 1.00 0.00 
300 1.00 0.01 0.99 0.01 1.00 0.00 
400 1.00 0.01 0.99 0.01 1.00 0.00 
500 0.85 0.05 0.99 0.01 1.00 0.00 
600 0.75 0.06 0.99 0.01 1.00 0.00 

C/U/R 

1000 0.75 0.06 0.99 0.02 1.00 0.00 
0 0.93 0.04 1.00 0.00 1.00 0.00 
50 0.93 0.04 1.00 0.01 1.00 0.00 
100 0.93 0.04 1.00 0.00 1.00 0.00 
150 0.93 0.04 1.00 0.00 1.00 0.00 
200 0.93 0.04 1.00 0.00 1.00 0.00 
300 0.93 0.04 1.00 0.00 1.00 0.00 
400 0.93 0.04 1.00 0.00 1.00 0.00 
500 0.93 0.04 1.00 0.00 0.99 0.01 
600 0.93 0.04 1.00 0.00 0.96 0.03 

S/U/R 

1000 0.93 0.04 1.00 0.00 0.75 0.06 
0 1.00 0.01 0.99 0.01 1.00 0.00 
50 1.00 0.01 0.99 0.01 1.00 0.00 
100 1.00 0.01 0.99 0.01 1.00 0.00 
150 1.00 0.01 0.99 0.01 1.00 0.00 
200 1.00 0.01 0.99 0.01 1.00 0.00 
300 1.00 0.01 0.99 0.01 1.00 0.00 
400 1.00 0.01 0.99 0.01 1.00 0.00 
500 0.85 0.05 0.99 0.01 1.00 0.00 
600 0.75 0.06 0.99 0.01 1.00 0.00 

S/N/R 

1000 0.75 0.06 0.99 0.02 1.00 0.00 
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see that similar results are obtained when the data is generated using a heavier-tailed 

distribution.  If we cast these contamination levels in the light of trying to detect 3m x 

10m vehicle targets in a 150000-pixel image with one-meter spatial resolution, they 

correspond to 180, 1000, and 60 vehicles in a 0.15-km2 area (approximately 37 acres) for 

the Fort A.P. Hill, D.C. Mall, and Purdue datasets, respectively, assuming the results in 

Tables 13 and 14 scale to the 150000-observation problem.  Thus, depending on the 

number of single-population anomalies that are expected to exist in an image, the non-

robust k-means algorithm may suffice as a pre-processor to the BACON or FAST-MCD 

algorithms. 

In many cases, the assumption that all outliers come from a single population may 

not be realistic.  For example, in a vehicle-detection problem, the vehicles may be painted 

in different schemes or be made from a number of different materials that have unique 

spectral signatures.  To determine if such conditions affect the robustness of the k-means 

algorithm, we repeated the robustness experiment with a modification to Step 2.  

Specifically, for each image we collected an equal number of five different anomaly 

spectra.  The materials and quantities collected from each image are listed in Table 15, 

and the mean spectra for these materials are given in Appendix A.  In generating the 

specified number of outliers at Step 2, we randomly select spectra from the appropriate 

outlier set with replacement until the desired number of outliers is reached.  This 

procedure effectively disperses the outliers in five general locations in the 15-

dimensional space as opposed to only one location in the original experiment.  The 

results obtained after this modification are indicated by the ·/·/R methods in Tables 13 

and 14. 
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When the outliers are more widely dispersed in the high-dimensional space, we 

see that 100% classification accuracy can be achieved by the k-means algorithm at 

contamination levels of 9.1%, 20%, and 20% for the Fort A.P. Hill, D.C. Mall, and 

Purdue data, respectively.  These results are achieved regardless if Gaussian or 

multivariate-t distributions are used to generate the data.  Based on these results, it is 

evident that the k-means algorithm is reasonably robust to the presence of outliers in a 

practical hyperspectral analysis setting, and can be reasonably expected to cluster a 

hyperspectral image into its constituent background materials without significant 

modification to the algorithm.  It should be cautioned, however, that our tests are 

somewhat limited in scope, particularly with respect to the number of observations in 

each background cluster.  Our tests employed equal numbers of observations in each 

cluster, whereas unequal sized clusters may lead to different results; however, our 

Table 15.  Materials used for Dispersed Outliers 
 
Image Material Number of Spectra Used 

Building Roof 10 
Target 1 10 
Target 2 10 
Shadow 10 

Fort A.P. Hill 

Dead Grass 2 10 
Water 20 
Trees 20 
Marble Walk 20 
Museum Dome 20 

D.C. Mall 

Shadow 20 
Arena Dome 20 
Roof 1 20 
Roof 2 20 
Baseball Diamond 20 

Purdue University 

Dirt 2 20 
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practical experience applying the k-means algorithm to actual images with unequal sized 

clusters has not revealed any alarming problems. 

Thus far, we have concluded that the k-means algorithm is reasonably robust to 

the presence of outliers, but we have yet to address if normalizing the data serves any 

useful purpose, or whether it is better to use the Cosine rule or Squared Euclidean rule to 

ensure accurate clustering.  To address these issues, we look more closely at the 

performance of the three basic k-means configurations tested: the Cosine rule applied to 

non-normalized data; the Squared Euclidean rule applied to non-normalized data; and the 

Squared Euclidean rule applied to normalized data.   Regardless of whether multivariate 

Gaussian or multivariate-t data is used for the test, the Cosine rule only achieves 100% 

accuracy up to 3.6% contamination under the single-population outliers assumption for 

both the Fort A.P. Hill and D.C. Mall data.  Though 3.6% contamination may seem low, 

as noted earlier, it is equivalent to approximately 180 vehicles in a 0.15-km2 area which 

may be sufficient for most anomaly detection applications.  More troubling, however, is 

the Cosine rule’s apparent non-robustness when applied to the Purdue data.  In this 

instance, less than 1.2% contamination resulted in two of the background materials being 

grouped in one cluster and the outliers being placed in their own cluster, producing only 

75% classification accuracy.  This catastrophic failure of k-means is, in fact, the clumping 

effect mentioned previously, which, if left unchecked, would lead to catastrophic failure 

of anomaly detection efforts with the BACON or FAST-MCD detectors.  Countering this 

deficiency, however, is the Cosine rule’s significantly improved performance when 

dispersed outliers are used.  Under this outlier assumption, the Cosine rule is able to 
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tolerate at least 9.1% contamination across the three datasets, and 20% contamination for 

the Purdue data. 

When the Squared Euclidean rule is applied to non-normalized data, it is seen that 

under the assumption of single-population outliers, 100% accuracy is never achieved for 

the Fort A.P. Hill data—even with 0.0% contamination.  We also see, however, that the 

Squared Euclidean rule is more robust than the Cosine rule when applied to the D.C. Mall 

and Purdue datasets, though its robustness to the Purdue data is somewhat marginal.  

When dispersed outliers are used, we see that the Squared Euclidean rule is still unable to 

accurately classify the Fort A.P. Hill data, while its performance against the Purdue data 

improves considerably.  Based on these results, the question arises as to why the Squared 

Euclidean rule is unable to correctly classify the Fort A.P. Hill data, regardless of the 

contamination level?  Inspection of the classification results in these cases reveals that the 

misclassifications are between the Grass and Tree observations.  Referring back to Figure 

12, we see that these materials are spectrally similar, and even overlap in some bands, 

thereby leading to the possibility that some Grass spectra may be closer to the mean 

spectra of the tree material in terms of squared Euclidean distance, and vice versa.  

However, despite the fact that these materials are close enough together in Euclidean 

space to foil the Squared Euclidean rule, there is sufficient difference in the shape of the 

signatures for the Cosine rule to separate the two.  This result supports our underlying 

rationale for considering the Cosine rule for use with hyperspectral data. 

We now look at the Squared Euclidean rule applied to normalized data.  From 

Tables 13 and 14 it is evident that this configuration achieves virtually the same 

robustness as the Cosine rule, regardless of the outlier assumption or the distribution of 
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the data.  For the Fort A.P. Hill and Purdue data under the dispersed outlier assumption, 

this change is an improvement upon the Squared Euclidean rule applied to non-

normalized data.  For the D.C. Mall data, this change translates to a slight decrease in 

robustness.  This decrease, however, means we only obtain 99% mean classification 

accuracy at any tested level of contamination versus 100% mean accuracy at any tested 

level of contamination.  When considering the standard error of the mean accuracy 

estimates, however, this difference is not statistically significant.  Under the single-

population outlier assumption, normalizing the data improves the robustness of the 

Squared Euclidean rule for the Fort A.P. Hill data, but decreases robustness for the other 

two datasets.  In general, then, we conclude that normalization prior to application of the 

Squared Euclidean rule should be considered when outliers are likely to be scattered 

throughout the Euclidean space, but should be used with caution if outliers are suspected 

to be relatively concentrated in one region.  We will have more to say about this latter 

recommendation momentarily. 

Based on the preceding discussion, we conclude that the Cosine rule provides the 

best alternative as a robust clustering method for hyperspectral data.  Though the rule is 

not the most robust method in all cases tested, it performs extremely well under the 

assumption of dispersed outliers, a condition we feel is more realistic in practical 

hyperspectral clustering applications.  We also find attractive the Cosine rule’s ability to 

better-separate similar materials, as revealed by the tests with the Fort A.P. Hill dataset.  

This strength of the Cosine rule is further supported by our practical experience 

clustering hyperspectral images in which we have found the Cosine rule more effective in 

forming clusters of spectra with similar shapes, as opposed to the Squared Euclidean rule 
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that tends to contaminate clusters with spectra that are close to the cluster mean in terms 

of Euclidean distance, but clearly have different spectral shapes. 

Though we favor the Cosine rule as the method to cluster hyperspectral data in the 

presence of outliers, it is obviously troubling that the rule can potentially fail depending 

on the nature of the outliers, as occurred with the Purdue dataset (though the Squared 

Euclidean rule does not offer much relief with this data.)  As stated previously, this 

failure manifested itself as two background materials being grouped into a single cluster 

and the outliers being assigned to their own cluster—the clumping effect.  Rather than 

blindly use the Cosine rule and hope that the clumping effect does not materialize, we 

now turn our attention to better understanding when this phenomenon is likely to occur.  

To begin, suppose we have a dataset containing k clusters and that the data is 

contaminated by n0 outlying observations from a single population.  Further, let C1 and 

C2 be the two clusters closest to the outlying observations with C2 being the closest.  We 

are interested in knowing something about the number, n0, that will cause k-means to 

group the observations in C1 and C2 into one cluster and place the outlying observations 

in their own cluster. 

To gain insight into values of n0 that will lead to the clumping effect, we note that 

the objective of k-means, as implemented in our experiments, is to form clusters that 

minimize the total sum of Euclidean distances between all observations and their 

respective cluster mean vectors.  That is, k-means attempts to form clusters that minimize 
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where Di is the sum of distances between the observations in cluster i and the mean 

vector of cluster i.  For clumping to occur, it must be the case that D>Dc, where Dc is the 
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sum of distances when C1 and C2 are grouped together and the outliers are in their own 

cluster.  In other words, the following must be true: 

 0 12
1 3

k k

i i c
i i

D D D D D D
= =

= > + + =∑ ∑  (5.36) 

where D0 is the sum of distances for the outlier cluster, and D12 is the sum of distances 

for the single cluster containing the observations in C1 and C2.  We can simplify (5.36) to 

 1 2 0 12D D D D+ > +  (5.37) 

We now expand (5.37) to reflect the number of observations in each cluster as well as the 

mean distance between a cluster observation and its respective cluster mean.  In so doing, 

(5.37) becomes 

 ( ) ( )1 1 2 20 0 20 1 12 2 12 0 0n d n d n d n d n d n d+ + > + +  (5.38) 

where 

1 1

2 2

1

1

20

the number of observations in ,
the number of observations in ,
the mean distance between observations and

        cluster mean for the cluster containing only 
         observations,

th

n C
n C
d

C
d

=
=
=

=

2

12

e mean distance between observations and
         cluster mean for the cluster containing  
         observations and outlier observations,

the mean distance between observations and
         cluste

C

d =

1

2

0

r mean for the cluster containing  and
          observations, and 

the mean distance between observations and
        cluster mean for the cluster containing only 
        outlier observations.

C
C

d =

 

Rearranging terms in (5.38), we can obtain a threshold for n0 above which the clumping 

effect will occur.  Specifically, clumping can be expected if the following is true: 
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In terms of determining the threshold for n0 prior to an actual cluster analysis, (5.39) is of 

limited value because little may be known about the mean distances required by the 

formula.  However, (5.39) offers considerable insight to the nature of the clumping effect.  

In particular, (5.39) leads to the following observations: 

i) Highly concentrated outlier whose underlying population has relatively small 

variance will cause the clumping effect at smaller values of n0 than more 

dispersed outliers.  This is true since lower variance will give lower values of 

d0. 

ii) Large separation between the outliers and the background data will cause the 

clumping effect at relatively low contamination levels since d20 will increase 

while d0 remains the same.  The increase in d20 increases the denominator of 

(5.38) while decreasing the numerator. 

iii) Clusters that are widely separated (large d12) are more robust to outliers since 

an increase in d12 causes an increase in the numerator of (5.39) while leaving 

the denominator unchanged. 

iv) A more concentrated cluster C1 (the second closest cluster to the outliers) will 

decrease d1, thereby increasing the critical value of n0. 

v) As the size of C1 and C2 increases, the number of outliers required to induce 

the clumping effect will also increase. 

Based on these observations, we can more confidently use the Cosine rule with k-

means if the following conditions hold true for a hyperspectral dataset: 1) the relative size 
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of the background clusters are significantly larger than the number of anomalies; 2) the 

anomalies are spectrally similar to at least one of the background materials; 3) the 

background materials are well-separated; and 4) the anomalies are not highly 

concentrated in Euclidean space.  In many anomaly detection studies, particularly when 

military targets are involved, we maintain that conditions 1 and 2 are usually met.  In 

cases were condition 3 may not be satisfied, the extremely large cluster sizes—typically 

on the order of several thousand spectra—dominates low separability between clusters.  

Similarly, large cluster sizes and the similarity of anomalies to one or more background 

materials generally reduces the need to satisfy condition 4.  In short, we do not feel the 

clumping effect is likely to occur in most real-world anomaly detection studies, based on 

the nature of actual hyperspectral imagery. 

To summarize the results of this section, we have demonstrated through simulated 

data experiments that the k-means algorithm is sufficiently robust to the presence of 

outliers, and can be used to cluster a hyperspectral image as a precursor to using the 

BACON or FAST-MCD algorithms.  Additionally, our experiments indicate that using 

the Cosine rule with the k-means algorithm can produce 100% classification accuracy at 

higher levels of contamination than the Squared Euclidean rule across the datasets tested 

when the outliers are dispersed in the Euclidean space.  Hence, we are led to using the k-

means algorithm with the Cosine rule as the preferred method for clustering a 

hyperspectral image as a preprocessing step prior to using the BACON or FAST-MCD 

algorithm.  In the following section, we turn our attention to automatically choosing a 

value for the number of clusters in an image. 
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Automatic Selection of k 

As stated previously, one of the fundamental objectives of this research is to 

develop an anomaly detection method that requires minimal user input.  It is our assertion 

that a detection methodology is of little operational value if the intended user—who may 

have limited technical training in applied statistics—must “read the tea leaves” at 

different stages of the detection methodology in order to get meaningful results.  As a 

step towards reaching this objective of autonomy, we now seek a suitable method for 

determining the number of clusters in a hyperspectral dataset in order to smoothly 

integrate the k-means algorithm with the BACON and FAST-MCD detectors.  As 

indicated by Everitt, Landau, and Leese (2001), a large number of informal and formal 

methods have been proposed over the years to address this difficult problem of 

determining k.  Over 20 years ago, Milligan and Cooper (1985) identified no fewer than 

30 formal methods, and the number has steadily grown since then.  It is not our intention 

to extend this line of research, but rather to test the more promising methods suggested by 

Everitt et al. to determine which methods are useful for hyperspectral data.  In the 

following paragraphs the methods tested are outlined, the experiments used to test the 

methods on both simulated and actual images are defined, and the significant conclusions 

derived from the experiments are presented. 

The methods for choosing k that we evaluated are five methods suggested by 

Everitt et al. (2001).  These methods were originally proposed by Calinski and Harabasz 

(1974), Marriott (1982), Kaufman and Rousseeuw (1990), Beale (1969), and Duda and 

Hart (1973).  In addition to these five statistically-based methods, we also developed and 

evaluated a simple method that sets k equal to the number of major colors in a true-color 
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image of the hyperspectral dataset.  This so-called Color Method attempts to mimic the 

manual process of visually inspecting an image to assess the number of background 

materials it contains.  Each of these methods are outlined in the following paragraphs. 

Calinski-Harabasz Method.  This method proceeds by generating clustering 

solutions for a range of values for k.  For each solution, the following metric is computed: 

 ( ) ( ) ( )trace trace
1

C k
k n k

⎛ ⎞ ⎛ ⎞
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The between-cluster scatter matrix, B, and the within-cluster scatter matrix, W, are 
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The final value for k under this method is the one that produces the largest value for 

(5.40) over the range of k values tested. 

Marriott Method.  In a process similar to the Calinski-Harabasz method, this 

method forms clustering solutions for different values of k over a specified range.  For 

each solution, the metric in (5.40) is replaced by the following: 

 ( ) ( )2 det .M k k= W  (5.43) 

The solution with the smallest value of M(k) determines the final value of k. 

Kaufman-Rousseeuw (Silhouette) Method.  Whereas the Calinski-Harabasz and 

Marriott methods focus on the scatter matrices of candidate clustering solutions, the 

Silhouette Method attempts to find the value k that ensures an observation is more similar 

to the other observations in it cluster than to observations in the next closest cluster.  To 

accomplish this task, the Silhouette method also forms cluster solutions for a range of k 

values, and then computes the average value of si over all observations in the dataset.  

The Silhouette metric, si, for observation xi is defined as 
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The average value of si will be in the range [-1,1], with positive values indicating 

observations are closer to their own cluster than to observations in other clusters.  The 
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Silhouette method determines the final value of k by finding the corresponding cluster 

solution that produces the largest average si. 

Beale Method.  Whereas the previous three methods search for the number of 

clusters that minimize or maximize a summary statistic, the Beale method employs a 

more formal statistical test to determine the best number of clusters.  Specifically, the 

method starts with k1 clusters and then computes the following statistic to determine if 

k2>k1 (usually k2=k1+1) clusters offers a better solution: 

 ( )
( )

( ) ( ) ( )
1 2 2

2 2 2

1 2 2/
1 2 2 1
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2 the sum of squared deviations from each
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  centroid when  clusters are used, and

the dimensionality of the data.
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The statistic in (5.45) is compared to a critical value from an F-distribution with p(k2-k1) 

and p(n-k2) degrees of freedom.  If the computed value exceeds the critical value, k2 is 

taken as a better value for k and the process is repeated with k1=k2 and k2 set to some 

larger value than the new k1.  The method terminates when the computed value of (5.45) 

does not exceed the critical value, at which point k is set to the current value of k1. 

Duda-Hart Method.  This method is similar to the Beale Method, but instead of 

testing if k2 clusters is better than k1 clusters, it starts with k1 clusters and determines if 

any of the clusters should be split into two clusters.  Specifically, the method computes 

the following statistic for the mth cluster in the starting set of k1 clusters: 
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If L(m) exceeds a critical value from a standard normal distribution, the mth cluster is 

split into two clusters.  For any new clusters produces during the first pass through the 

original k1 clusters, the test is repeated.  This process continues until no new clusters are 

formed, and the final value of k is the number of clusters when the method terminates. 

The Color Method.  The methods discussed to this point all use some statistic 

derived from the clustered data to determine if the number of clusters used adequately 

account for the structure in the data.  A limitation with these methods is they are 

computationally expensive, since they generally require the k-means algorithm to be run 

multiple times.  For very large hyperspectral datasets in high-dimensional space, the 

number of computations required to obtain an estimate for k can take on the order of tens 

of minutes for the Calinski-Harabasz, Marriott, Beale, and Duda-Hart methods, or hours 

for the Silhouette Method.  These computation times are generally not practical in an 

operational setting when an anomaly detection analysis should preferably be completed 

in minutes or faster.  As an alternative to these methods, we propose a basic method that 

sets k equal to the number of basic colors that account for 95% of the pixels in a true-
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color representation of a hyperspectral image.  As stated previously, this method attempts 

to automate the manual process of visually inspecting an image to determine the number 

of background materials.  We feel this is a reasonable approach to determining k since 

most background materials, such as healthy grass, dead grass, trees, concrete, soil, water, 

asphalt, etc., have relatively unique colors that are discernable in a true-color image.  

Though this method is not applicable to generic datasets in which color information is 

either not available or meaningless, we contend that it is worthy of investigation for 

hyperspectral data.  If nothing else, the fact that this method can produce an estimate of k 

in only a fraction of a second for even the largest of images makes it worthy of 

consideration. 

The process that the Color Method employs is as follows: 

1) For each image pixel, the digital numbers in the red (650nm to 750nm), green 

(550nm to 650nm), and blue (450nm to 550nm) bands of the original image 

are averaged to produce an RGB-triplet for the pixel. 

2) The RGB values are converted to the Hue-Saturation-Intensity (HSI) color 

space using conversion equations found in Gonazalez, Woods, and Eddins 

(2004). 

3) Each pixel is assigned to one of 54 color bins, where each bin is a region of 

the HSI color space.  The regions are created by dividing the Hue component 

into 6 equal regions, the Saturation component into three equally spaced 

regions, and the Intensity component into three equally spaced regions.  The 6 

Hue regions correspond approximately to six major colors of red, yellow, 

green, cyan, blue, and magenta. 
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4) The number of bins that contain 95% of the pixels is determined and used for 

the estimate of k. 

Though the Color Method is relatively straightforward, its simplicity comes with 

a price.  The number of color bins we employ is somewhat subjective and will 

unquestionably impact the final value of k—using more (less) bins will generally give 

higher (lower) values of k for the same image.  We chose the 54 bins as described 

because they define colors that are easily discernable to the human eye, and thus would 

reasonably model a human visually attempting to identify background materials.  The use 

of 95% as the coverage to threshold in Step 4 is also subjective.  Our use of this threshold 

was simply based on a preconceived notion of the percent of anomalies that may be 

present in an image.  It would also seem reasonable to include information on the number 

of observations in a bin, though we did not test such a strategy here.   

A final drawback with the Color Method is the well-known problem of rendering 

accurate true-color images, particularly when little is known about the measurement scale 

used to record the intensity of red, green, and blue light.  We have found that in actual 

images that contain materials with reflectance values close to 0% and 100% for each 

color band, the Color Method performs relatively well.  However, for images that do not 

adequately contain a full range of intensity values in each color band, the method tends to 

over-estimate the number of colors in the image because the absolute upper and lower 

bounds for each color band are set to those found in the image, rather than what the 

sensor is capable of detecting.  This incorrect definition of the measurement scale for 

each band essentially performs a histogram stretch on the image, thereby generating more 

colors than would actually be present in an accurate true-color image.  This problem can 
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be mitigated if the sensor’s true dynamic range for each color band is used in the 

detection algorithm, but this information may not be readily available to the end-user. 

k-Selection Tests with Simulated Data 

In the preceding paragraphs, we defined six methods for determining the number 

of clusters in a dataset.  We now describe the two experiments used to assess their 

relative merits for detecting clusters in hyperspectral imagery.  The first experiment uses 

simulated multivariate Gaussian and multivariate-t data to measure each method’s ability 

to detect the correct number of clusters in a dataset when we know definitively the true 

number of clusters.  The second experiment tests the ability of the best performers from 

the first experiment to detect the number of clusters in actual images in which we are not 

able to determine the true number of clusters with absolute certainty.  The first 

experiment is summarized as follows: 

1) Starting with k=2, choose k background materials from a set of m mean 

vectors and covariance matrices representing m different background 

materials derived from actual hyperspectral spectra. 

2) Generate 500 observations for each material selected in Step 1 using a 

multivariate Gaussian distribution and each material’s respective mean vector 

and covariance matrix.  Combine these observations to form the dataset. 

3) Apply each of the six algorithms defined previously to the dataset, and record 

the number of clusters each algorithm detects. 

4) Repeat Steps 1 through 3 30 times to account for the effects of random 

sampling. 
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5) Repeat Steps 1 through 4 for all remaining combinations of k background 

materials. 

6) Repeat Steps 1 through 5 with k=3,4,…,m. 

7) For each setting of k, record the percent of cases each algorithm correctly 

estimated k, the percent of cases each algorithm estimated k to be within plus 

or minus one of the true value, and the mode of the predicted value of k.  

8) Repeat the entire experiment using a multivariate-t distribution with 11 

degrees of freedom. 

This experiment was run three different times for background datasets derived 

from the Fort A.P. Hill, D.C. Mall, and Purdue images.  The materials used from each 

image are listed in Table 16.  In order to alleviate the computational burden of this 

experiment, we also reduced the dimensionality of the data to p=15 using the same band 

aggregation scheme employed in the k-means robustness experiment.  Finally, because 

the simulated datasets are not actual images, we explicitly specified the approximate 

dynamic range for the respective sensors in the Color Method to obtain a more realistic 

assessment of its performance. 

Table 16.  Materials used in Simulated Data k-Selection Tests 
 

Fort A.P. Hill Materials D.C. Mall Materials Purdue Materials 
ID Material ID Material ID Material 
1 Grass 1 Asphalt 1 Grass 
2 Road 2 Grass 2 Dead Grass 
3 Dead Grass 3 Dead Grass 3 Asphalt 
4 Trees 4 Gravel 4 Plowed Dirt 
5 Shadow 5 Roof 1 5 Athletic Track 

  6 Roof 2 6 Water 
  7 Water   
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The results of the first k-selection experiment are listed in Tables 17 through 22.  

Tables 17 and 18 give the multivariate Gaussian and multivariate-t results, respectively, 

for the Fort A.P. Hill dataset, while Tables 19 and 20 report similar data for the D.C. Mall 

dataset, and Tables 21 and 22 list the results for the Purdue data.  Relative to our 

objective of finding a suitable method for automatically determining k, these tables offer 

several suggestions.  First, it would appear that the Marriott, Beale, and Duda-Hart 

methods are not useful alternatives.  The Marriott method consistently chose values of k 

at or near the maximum value of 14 used in the search.  Conversely, the Beale and Duda-

Hart methods always selected the minimum value of 2 clusters used in the search process.   

Table 17.  Results of k-Selection Test using Simulated Fort A.P. Hill Data 
(Multivariate Gaussian) 
 

Number of Clusters  
Method 2 3 4 5 

Calinski-Harabasz     
% Correct 81.3 65.7 52.7 33.3 

% W/I +/- 1 98.7 84.3 69.3 40.0 
Mode 2.0 3.0 4.0 5.0 

Marriott     
% Correct 10.0 0.0 0.0 0.0 

% W/I +/- 1 10.0 0.0 0.0 0.0 
Mode 14.0 14.0 14.0 13.0 

Silhouette     
% Correct 90.3 64.7 39.3 100.0 

% W/I +/- 1 100.0 100.0 78.7 100.0 
Mode 2.0 3.0 3.0 5.0 

Beale     
% Correct 100.0 0.0 0.0 0.0 

% W/I +/- 1 100.0 100.0 0.0 0.0 
Mode 2.0 2.0 2.0 2.0 

Duda-Hart     
% Correct 100.0 0.0 0.0 0.0 

% W/I +/- 1 100.0 100.0 0.0 0.0 
Mode 2.0 2.0 2.0 2.0 

Color Method     
% Correct 70.0 30.0 0.0 0.0 

% W/I +/- 1 100.0 90.0 60.0 0.0 
Mode 2.0 2.0 3.0 3.0 
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We believe the Marriott method’s poor performance can be attributed to a rapidly 

decreasing value of det(W) as k increases, relative to the increasing value of k2.  Since the 

statistic in (5.43) is designed to use the k2 term to counter the det(W) term (which will 

always decrease with larger k), a rapidly decreasing det(W) can be expected to produce 

the results we obtained.  In regards to the Beale and Duda-Hart method results, it is 

possible that using a higher significance level to test the respective test statistics—we set 

α=0.05 for both methods—may produce better results; however, we did not explore this 

option further. 

Table 18.  Results of k-Selection Test using Simulated Fort A.P. Hill Data 
(Multivariate-t) 
 

Number of Clusters  
Method 2 3 4 5 

Calinski-Harabasz     
% Correct 71.7 28.9 41.1 15.2 

% W/I +/- 1 98.1 52.9 42.1 30.3 
Mode 2.0 3.0 4.0 12.0 

Marriott     
% Correct 10.3 0.0 0.0 0.0 

% W/I +/- 1 10.3 0.0 0.0 0.0 
Mode 12.0 10.0 13.0 13.0 

Silhouette     
% Correct 91.7 64.3 46.2 100.0 

% W/I +/- 1 100.0 100.0 76.3 100.0 
Mode 2.0 3.0 4.0 5.0 

Beale     
% Correct 100.0 0.0 0.0 0.0 

% W/I +/- 1 100.0 100.0 0.0 0.0 
Mode 2.0 2.0 2.0 2.0 

Duda-Hart     
% Correct 100.0 0.0 0.0 0.0 

% W/I +/- 1 100.0 100.0 0.0 0.0 
Mode 2.0 2.0 2.0 2.0 

Color Method     
% Correct 70.0 30.0 0.0 0.0 

% W/I +/- 1 100.0 90.0 60.0 0.0 
Mode 2.0 2.0 3.0 3.0 
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Whereas the Marriott, Beale, and Duda-Hart methods appeared to falter with the 

datasets used in the experiment, the Silhouette and Calinski-Harabasz methods faired 

somewhat better.  For the Fort A.P. Hill and D.C. Mall datasets, the Silhouette method 

was the stronger performer in its ability to choose the correct value of k and to provide a 

value within one cluster of the correct value.  For the Purdue dataset, the Calinski-

Harabasz method clearly gave the best performance.  The Silhouette method also did well 

with this dataset, but in the multivariate Gaussian case faltered with 5 of the 20 

combinations of three materials and 5 of the 15 combinations of four materials.  If these 

combinations were omitted from the statistics, the Silhouette method would have  

  

Table 19.  Results of k-Selection Tests using Simulated D.C. Mall Data (Multivariate 
Gaussian) 
 

Number of Clusters  
Method 2 3 4 5 6 7 

Calinski-Harabasz       
% Correct 90.3 59.6 32.6 14.1 6.2 0.0 

% W/I +/- 1 98.3 96.4 86.4 66.3 36.7 6.7 
Mode 2.0 3.0 5.0 6.0 8.0 9.0 

Marriott       
% Correct 0.0 0.0 0.0 0.0 0.0 0.0 

% W/I +/- 1 0.0 0.0 0.0 0.0 0.0 0.0 
Mode 14.0 14.0 14.0 14.0 14.0 13.0 

Silhouette       
% Correct 100.0 77.1 72.1 79.7 91.0 96.7 

% W/I +/- 1 100.0 100.0 97.0 95.1 100.0 100.0 
Mode 2.0 3.0 4.0 5.0 6.0 7.0 

Beale       
% Correct 100.0 0.0 0.0 0.0 0.0 0.0 

% W/I +/- 1 100.0 100.0 0.0 0.0 0.0 0.0 
Mode 2.0 2.0 2.0 2.0 2.0 2.0 

Duda-Hart       
% Correct 100.0 0.0 0.0 0.0 0.0 0.0 

% W/I +/- 1 100.0 100.0 0.0 0.0 0.0 0.0 
Mode 2.0 2.0 2.0 2.0 2.0 2.0 

Color Method       
% Correct 28.6 26.8 58.7 29.0 0.0 0.0 

% W/I +/- 1 57.1 80.9 100.0 93.8 56.2 0.0 
Mode 4.0 4.0 4.0 4.0 5.0 4.0 
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estimated the correct number of clusters 100% of the time when three and four clusters 

were used.  It is also apparent that, upon consideration of the distribution used to generate 

the test data, the Silhouette method has a better capacity to deal with heavy-tailed data.  

Though the Silhouette method’s performance is clearly affected when multivariate-t data 

is used, its degradation is not as severe as the decline experienced with the Calinski-

Harabasz method.   

Based on the preceding discussion, it would appear that the Silhouette method is 

the preferable method for automatically determining k.  However, this conclusion should 

be viewed with caution for several reasons.  First, the k-selection experiment used 

simulated data with equal cluster sizes.  Actual hyperspectral data and background  

Table 20.  Results of k-Selection Tests using Simulated D.C. Mall Data (Multivariate-t) 
 

Number of Clusters  
Method 2 3 4 5 6 7 

Calinski-Harabasz       
% Correct 39.6 33.7 27.8 15.7 21.9 0.0 

% W/I +/- 1 72.8 70.7 55.7 38.3 43.8 10.0 
Mode 2.0 3.0 5.0 6.0 8.0 10.0 

Marriott       
% Correct 0.0 0.0 0.0 0.0 0.0 0.0 

% W/I +/- 1 0.0 0.0 0.0 0.0 0.0 0.0 
Mode 14.0 13.0 12.0 11.0 13.0 14.0 

Silhouette       
% Correct 100.0 77.1 12.7 47.5 47.1 71.4 

% W/I +/- 1 100.0 100.0 93.5 91.5 100.0 100.0 
Mode 2.0 3.0 3.0 5.0 6.0 7.0 

Beale       
% Correct 100.0 0.0 0.0 0.0 0.0 0.0 

% W/I +/- 1 100.0 100.0 0.0 0.0 0.0 0.0 
Mode 2.0 2.0 2.0 2.0 2.0 2.0 

Duda-Hart       
% Correct 100.0 0.0 0.0 0.0 0.0 0.0 

% W/I +/- 1 100.0 100.0 0.0 0.0 0.0 0.0 
Mode 2.0 2.0 2.0 2.0 2.0 2.0 

Color Method       
% Correct 41.3 23.1 40.9 48.5 0.0 0.0 

% W/I +/- 1 89.2 73.2 100.0 91.2 50.4 0.0 
Mode 3.0 5.0 4.0 5.0 5.0 5.0 
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materials that appear in unequal proportions may give different results.  Second, the 

number of distances that need to be computed by the Silhouette method is 
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Thus, the Silhouette method can become quite computationally expensive for large 

datasets unless some action is taken to alleviate the problem.  A final precaution with  

Table 21.  Results of k-Selection Test using Simulated Purdue Data (Multivariate 
Gaussian) 
 

Number of Clusters  
Method 2 3 4 5 6 

Calinski-Harabasz      
% Correct 100.0 99.8 99.8 97.8 100.0 

% W/I +/- 1 100.0 100.0 100.0 100.0 100.0 
Mode 2.0 3.0 4.0 5.0 6.0 

Marriott      
% Correct 31.8 3.3 0.0 0.0 0.0 

% W/I +/- 1 31.8 3.7 0.2 0.0 0.0 
Mode 14.0 14.0 14.0 14.0 13.0 

Silhouette      
% Correct 100.0 75.0 60.0 32.8 0.0 

% W/I +/- 1 100.0 100.0 86.7 88.9 100.0 
Mode 2.0 3.0 4.0 4.0 5.0 

Beale      
% Correct 100.0 0.0 0.0 0.0 0.0 

% W/I +/- 1 100.0 100.0 0.0 0.0 0.0 
Mode 2.0 2.0 2.0 2.0 2.0 

Duda-Hart      
% Correct 100.0 0.0 0.0 0.0 0.0 

% W/I +/- 1 100.0 100.0 0.0 0.0 0.0 
Mode 2.0 2.0 2.0 2.0 2.0 

Color Method      
% Correct 26.7 25.0 35.1 66.7 100.0 

% W/I +/- 1 100.0 100.0 100.0 100.0 100.0 
Mode 3.0 4.0 5.0 5.0 6.0 
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using the Silhouette method to choose k is that our tests indicate it is very good at 

estimating k within one cluster of the correct value, but its ability to find the exact answer 

can be somewhat lacking.  This limitation is also evident with the Calinski-Harabasz 

method, which leads to the question: How accurate does the k-selection algorithm need to 

be?  Certainly, to obtain the most accurate anomaly detection results we would like to 

know the true value of k with certainty; however, we demonstrate later in this dissertation 

that using different values of k within a small range generally does not significantly 

change anomaly detection results.  Thus, if a selection algorithm can estimate k within 

Table 22.  Results of k-Selection Test using Simulated Purdue Data (Multivariate-t) 
 

Number of Clusters  
Method 2 3 4 5 6 

Calinski-Harabasz      
% Correct 100.0 54.2 51.0 59.2 100.0 

% W/I +/- 1 100.0 100.0 100.0 100.0 100.0 
Mode 2.0 3.0 4.0 5.0 6.0 

Marriott      
% Correct 11.9 6.7 0.0 0.0 0.0 

% W/I +/- 1 11.9 10.4 11.3 0.0 0.0 
Mode 12.0 9.0 11.0 11.0 11.0 

Silhouette      
% Correct 100.0 75.0 25.6 47.7 0.0 

% W/I +/- 1 100.0 100.0 75.2 89.8 100.0 
Mode 2.0 3.0 3.0 5.0 5.0 

Beale      
% Correct 100.0 0.0 0.0 0.0 0.0 

% W/I +/- 1 100.0 100.0 0.0 0.0 0.0 
Mode 2.0 2.0 2.0 2.0 2.0 

Duda-Hart      
% Correct 100.0 0.0 0.0 0.0 0.0 

% W/I +/- 1 100.0 100.0 0.0 0.0 0.0 
Mode 2.0 2.0 2.0 2.0 2.0 

Color Method      
% Correct 26.7 6.2 32.6 66.7 100.0 

% W/I +/- 1 100.0 100.0 100.0 100.0 100.0 
Mode 3.0 4.0 5.0 5.0 6.0 
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one or two clusters of the true value, it is generally sufficient to detect a range of 

militarily significant targets.   

Before moving on to the second k-selection test, several comments are in order 

concerning the Color Method.  As indicated by Tables 17 through 22, this method only 

performed well when applied to the Purdue dataset.  Though this marginal performance 

seems to argue against using this method, one must consider the scaling problem 

discussed previously.  Because we used artificial datasets in our tests, it was difficult to 

define the proper measurement scales to accurately represent the background materials in 

the RGB color space.  Though we attempted to manually specify the dynamic range for 

each color band, we are not confident that we were successful in this effort.  In light of 

this problem, we will continue to investigate this method further in our next experiment 

that uses actual imagery. 

k-Selection Tests using Actual Images 

In the preceding k-selection test, our primary goal was to identify useful k-

selection methods under controlled conditions.  In our second k-selection test, we now 

investigate the performance of the Silhouette, Calinski-Harabasz, and Color methods 

when applied to actual images.  Additionally, we used this experiment to gain insight into 

data pre-processing steps that may either reduce the computational burden of a method, 

or improve its accuracy.  With these objectives in mind, the second k-selection 

experiment is outlined as follows: 

1) Set the k-selection method to be tested. 

2) Set the image to be used for the test. 
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3) Preprocess the image data using a technique relevant to the k-selection method 

established in Step 1. 

4) Apply the k-selection method to the pre-processed image and record the 

number of clusters detected. 

5) Repeat Steps 3 and 4 for all preprocessing techniques defined for the k-

selection method. 

6) Repeat Steps 2 through 5 for all images to be tested. 

7) Repeat Steps 1 through 6 for all k-selection methods to be tested. 

Six hyperspectral images were used in Step 2 of the experiment.  True-color 

versions of these images are shown in Appendix B.  These images are chip-outs from 

larger images and were chosen to give a range of challenges for the selection methods.  

Table 23 lists the parent image for each image chip, as well as the respective sensor, 

number of pixels, and major background materials contained in the image.  Admittedly, 

determining the background materials for each image chip is somewhat subjective and 

was conducted by simple visual inspection of each image. 

The preprocessing steps used in Step 3 of the experiment were tailored to each 

selection method.  For the Calinski-Harabasz method, the general preprocessing factors 

included dimensionality reduction, data normalization, and random sampling.  The 

dimensionality reduction factor was used to determine the most useful way to reduce the 

number of variables in the dataset in an effort to increase processing speed.  The data 

normalization factor tested if normalizing each pixel in the image helped to increase 

separation between background materials, thereby improving the selection method’s 

ability to correctly estimate the number of clusters.  Finally, the random sampling factor  
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tested if the performance of the Calinski-Harabasz method is affected when applied to a 

randomly drawn subset of the image pixels.  If performance is not affected, this 

preprocessing step offers another strategy for reducing the computational burden of the 

Table 23.  Description of Images Used in k-Selection Test 
 
Chip ID Parent Image Sensor Pixels Major Background Materials 

1 Forest Radiance I HYDICE 23085 Trees, Shadow, Dead Grass, 
Healthy Grass, Road 1, Road 2, 
Bushes 

2 Desert Radiance II HYDICE 20447 Brush, Road, Light Soil, Medium 
Soil, Dark Soil 

3 Forest Radiance I HYDICE 3721 Dead Grass, Road, Healthy Grass 
4 D.C. Mall AVIRIS 11948 Water, Dead Grass, Healthy 

Grass, Trees, Gravel, Asphalt, 
Roof, Concrete 

5 Purdue HYMAP 12000 Dead Grass, Healthy Grass, Road, 
Roof 1, Roof 2, Roof 3, Stadium 
Seats 

6 Purdue HYMAP 11760 Trees, Plowed Dirt, Dead Grass, 
Road, Water 

 
 
Table 24.  Factor Definition for k-Selection Test 
 

Calinski-Harabasz Factors 
Dimensionality Reduction Normalization Random Sampling 
Full Dimensionality Don’t Normalize Spectra All Data 
5 Principal Components Normalize Spectra 2000 Spectra 
10 Principal Components  5000 Spectral 
Band Aggregation to 15 Bands   
Band Aggregation to 30 Bands   

Silhouette Factors 
Full Dimensionality Normalization Random Sampling 

5 Principal Components Don’t Normalize Spectra All Data 
10 Principal Components Normalize Spectra 2000 Spectra 
Band Aggregation to 15 Bands  4000 Spectra 
Band Aggregation to 30 Bands   

Color Method Factors 
Normalization Square-Root Transform  
Don’t Normalize Spectra Don’t use Transform  
Normalize Spectra Use Transform  
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selection method in addition to dimensionality reduction.  The levels used for each of the 

three factors are listed in Table 24.  These factors were combined in a full factorial design 

and applied to each image chip.  The same factors and experimental design were used for 

the Silhouette method, with the exception that different factor levels were used for the 

random sampling factor.  Because the Silhouette method is so computationally expensive, 

the method was not applied to the full dataset, and the sample size of 5000 spectra was 

replaced by a sample size of 4000 spectra—the practical limit that the method could 

handle. 

For the Color Method, only two factors were used: data normalization and the 

square-root transformation.  The normalization factor again was used to determine if 

normalization better-separated the background materials so that their number could be 

better determined.  The square-root transformation factor tests if taking the square root of 

all the spectra sufficiently minimizes the hazing effect caused by atmospheric particles, 

thereby improving the contrast between different colors in the image.  This 

transformation is a well-known technique commonly used in gray-scale and color image 

processing.  The levels for these two factors are simply using the preprocessing method 

or not.  As with the other two selection methods, these factors are combined in a factorial 

design and applied to each image. 

The results of the second k-selection test for the Calinski-Harabasz, Silhouette, 

and Color methods are listed in Tables 25, 26, and 27, respectively.  Each row of these 

tables lists the factor combination tested and the corresponding number of clusters the 

respective method detected in each image chip.  As a reference, the manually estimated 

number of background materials are listed in parentheses after each image chip name. 
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For the Calinski-Harabasz and Silhouette methods, the design point naming convention is 

in three parts—for example, “P5/N/All.”  The first part designates the variable reduction 

method used and can assume the values Full, P5, P10, A15, and A30 which stand for full 

dimensionality, five principal components, ten principal components, band aggregation 

into 15 variables, and band aggregation into 30 variables, respectively.  The  

Table 25.  Actual Image k-Selection Test Results (Calinski-Harabasz Method) 
 

Image Chip Design Point 
1 (7) 2 (5) 3 (3) 4 (8) 5 (7) 6 (5) 

Full/---/All 2 3 3 3 2 2
P5/---/All 3 2 3 3 6 3
P10/---/All 3 2 3 3 6 3
A15/---/All 2 6 3 3 2 2
A30/---/All 2 6 3 3 2 2
Full/N/All 3 3 3 10 4 3
P5/N/All 3 2 3 10 4 2
P10/N/All 3 2 3 3 4 2
A15/N/All 8 3 3 13 4 3
A30/N/All 6 3 3 13 4 3
Full/---/2000 2 6 3 3 2 2
P5/---/2000 3 2 3 3 5 3
P10/---/2000 3 2 3 3 3 3
A15/---/2000 2 6 3 3 2 2
A30/---/2000 2 3 3 3 2 2
Full/N/2000 6 3 3 13 4 3
P5/N/2000 3 2 3 3 4 2
P10/N/2000 11 2 3 10 4 2
A15/N/2000 6 3 8 13 4 3
A30/N/2000 6 3 3 13 4 3
Full/---/5000 2 6 3 3 2 2
P5/---/5000 3 2 3 3 6 3
P10/---/5000 3 2 3 3 6 3
A15/---/5000 2 6 3 3 2 2
A30/---/5000 2 3 3 3 2 2
Full/N/5000 3 3 3 10 4 3
P5/N/5000 3 2 3 11 4 2
P10/N/5000 3 2 3 3 4 2
A15/N/5000 8 3 3 13 4 3
A30/N/5000 6 3 3 13 4 3
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second part of the design point name indicates if normalization was performed on the 

data, and is set to “---“ if the data was not normalized or N if it was.  The third field of the 

design point name indicates if the selection method was applied to a random subset of the 

image data.  The use of All in this field specifies that the entire dataset was used.  A 

numeric value in this field indicates the size of the random subset.  Note that in the case 

of Image Chip 3, which only contained 3721 pixels, a random subset size of 4000 or 5000 

indicates the entire image was used. 

For the Color method, the design point naming convention uses only two parts to 

indicate whether or not normalization and the square root transformation were used.  Use 

of a “---“ in the first field indicates that the data was not normalized, and Norm indicates 

Table 26.  Actual Image k-Selection Test Results (Silhouette Method) 
 

Image Chip Design Point 
1 (7) 2 (5) 3 (3) 4 (8) 5 (7) 6 (5) 

Full/---/2000 2 6 3 3 2 2
P5/---/2000 3 2 3 3 6 3
P10/---/2000 3 2 3 3 6 3
A15/---/2000 2 7 3 3 2 2
A30/---/2000 2 6 3 3 2 2
Full/N/2000 5 3 3 14 4 3
P5/N/2000 3 3 3 10 4 2
P10/N/2000 3 2 3 11 4 2
A15/N/2000 8 3 3 12 4 3
A30/N/2000 9 3 3 13 4 3
Full/---/4000 2 7 3 3 2 2
P5/---/4000 3 2 3 3 5 3
P10/---/4000 3 2 3 3 6 3
A15/---/4000 2 7 3 3 2 2
A30/---/4000 2 7 3 3 2 2
Full/N/4000 3 3 3 10 4 3
P5/N/4000 3 2 3 3 4 2
P10/N/4000 3 2 3 10 4 2
A15/N/4000 6 3 3 13 4 3
A30/N/4000 3 3 3 13 4 3
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that it was normalized.  Similarly, a “---“ in the second field indicates the square root 

transformation was not employed, and Sqrt specifies that it was used. 

Addressing the Calinski-Harabasz method first, we notice in Table 25 that this 

method’s ability to estimate the same number of clusters as estimated manually is 

dependant on the preprocessing action applied to the image.  Further, the preprocessing 

action that works well for one image does not necessarily improve performance for 

another image.  For example, we see that band aggregation and normalization improve 

the method’s performance on Image Chip 1, but have minimal effect with Image Chips 2, 

3, 5, and 6, while producing too high a value of k for Image Chip 4.  Likewise, we see 

that using principal component analysis to reduce the number of variables works well 

with Image Chip 5, but has minimal benefit when applied to the other images.  Moreover,  

we see that none of the preprocessing actions give satisfactory results for Image Chips 4 

and 6.  Where these results complicate the issue of how best to use the Calinski-Harabasz 

method, it is encouraging that applying the method to a randomly drawn subset of the 

image does not appear to significantly affect performance relative to using the entire 

image.  Thus, it is reasonable to conclude that random sampling of the dataset offers a 

means to reduce the computational burden of the method. 

Table 27.  Actual Image k-Selection Test Results (Color Method) 
 

Image Chip Design Point 
1 (7) 2 (5) 3 (3) 4 (8) 5 (7) 6 (5) 

---/--- 6 3 5 4 4 5
Norm/--- 4 2 3 3 3 3
---/Sqrt 4 2 3 4 5 4
Norm/Sqrt 3 1 2 3 3 3
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As seen in Table 26, the performance of the Silhouette method in the second k-

selection experiment is similar to that of the Calinski-Harabasz method.  Specifically, we 

see that different preprocessing actions are useful with different images, and that none of 

the preprocessing combinations appear to benefit Image Chips 4 and 6.  The benefit of 

using random sampling with the Silhouette method cannot be determined with certainty 

because the methods computational complexity precluded its application to the full 

images except for Image Chip 3.  However, we can say that the using a sample size of 

2000 spectra as opposed to 4000 spectra did not significantly change performance of the 

algorithm, which is an encouraging result for this computationally intensive method. 

For both the Calinski-Harabasz and Silhouette methods, the underlying causes 

that dictate which preprocessing methods are better suited to specific images, is not 

known at this time.  It is reasonable to believe that relative sizes of background clusters, 

separability of spectra, and spectra variability are the primary factors that determine the 

benefits of one preprocessing technique over another, but further research is required to 

justify this hypothesis. 

Moving on to the Color Method, it seen in Table 27 that this method’s 

performance is also affected by image-dependent preprocessing.  For example, 

normalizing the data or applying the square root transformation improves the method’s 

performance on Image Chips 3 and 5, but tends to degrade performance on the other 

images.  A more notable finding is that when no preprocessing is applied to the images, 

the Color method tends to give estimates of k closer to the manually estimated number of 

materials than the Calinski-Harabasz or Silhouette methods.  This result is significant for 

two reasons.  First, we would prefer to use a k-selection method that does not require the 
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user to deliberate over the best choice of image preprocessing in order to conduct an 

anomaly detection analysis.  The Color method would appear to satisfy this goal better 

than the other two methods, though certainly not in a flawless manner.  Second, the Color 

method arrives at its estimate in a fraction of a second as opposed to tens of minutes or 

longer for the other two methods.  In short, the Color method arrives at better estimates of 

k when no preprocessing is applied, and does so in a fraction of the time.  Though it is 

possible to obtain comparable answers with the Calinski-Harabasz and Silhouette 

methods after applying an appropriate combination of preprocessing techniques, it is 

unknown at this time how to select the appropriate techniques for an arbitrary image. 

Conclusions 

In the preceding paragraphs we evaluated several methods for automatically 

determining the number of clusters in a hyperspectral dataset with the goal of identifying 

the most useful method for automatically clustering an image prior to applying the 

BACON or FAST-MCD outlier detectors.  This evaluation was performed using two 

experiments that tested the candidate selection methods with simulated and actual 

hyperspectral data, respectively.  In the first k-selection experiment which used simulated 

data, the Calinski-Harabasz and Silhouette methods performed the best of the algorithms 

tested.  However, in the second k-selection test in which actual images were used, the 

Color method gave more favorable results.  The question arises, then, as to which method 

should be used in our overall anomaly detection methodology?   

Though none of the methods tested can be viewed as clearly superior to the 

others, we suggest the Color Method as the method of choice for several reasons to which 

we have already alluded.  First, it is extremely fast, an important attribute for practical 
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anomaly detection analyses.  Second, the Color Method does not perform any worse than 

the Calinski-Harabasz or Silhouette methods when used on actual images.  Though the 

latter two methods handled the simulated datasets better than the Color Method, this 

better performance is due in-part to scaling problems imposed by the simulated data that 

conspire against the Color Method.  Finally, the Color Method performs better against the 

real images without any image preprocessing.  The Calinski-Harabasz and Silhouette 

methods, however, generally require some form of preprocessing to provide useful 

estimates of k.  Because the effect of different preprocessing actions depends on the 

image, we feel that the relative simplicity of the Color Method is more conducive to an 

autonomous anomaly detection methodology.  Before departing this topic to discuss the 

integration of image clustering with the BACON and FAST-MCD algorithms, we note 

that this problem of adequately estimating the number of clusters for use with k-means is 

an unresolved problem.  Though we choose to use the Color Method for the reasons 

stated, a more expansive investigation into this topic may lead to better solutions. 

The AutoDet Anomaly Detector 

Thus far in this chapter, we have identified the BACON and FAST-MCD 

multivariate outlier detection methods as suitable methods for detecting anomalies in 

large, high-dimensional datasets representative of hyperspectral data.  We have also 

determined that the k-means clustering algorithm is reasonably robust to datasets 

contaminated by outliers and can be used as a means to group the spectra of a 

hyperspectral image into homogenous groups so that the BACON and FAST-MCD 

methods can be applied to these groups.  Finally, we have argued that the Color Method 

is preferable to other k-selection methods for automating the specification of k in the k-
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means algorithm.  In this section we combine these components into an overall 

methodology—which we refer to as the AutoDet detector—that is well-suited to 

autonomously detect anomalies in a range of hyperspectral images.  By autonomous we 

mean that the only required input from the user is the hyperspectral image itself.  In the 

following paragraphs, we first outline the AutoDet method and then use Taguchi robust 

parameter design methods to configure the detector to produce accurate anomaly 

detection results across a range of hyperspectral images.  We conclude by demonstrating 

the superior performance of AutoDet relative to benchmark anomaly detectors found in 

the anomaly detection literature. 

Algorithm Overview 

The AutoDet anomaly detector can be run using either the BACON algorithm or 

the FAST-MCD algorithm and consists of the following basic steps: 

1) Ensure all atmospheric absorption bands and any bands with significant noise 

or artifacts have been removed from the hyperspectral image cube.  These 

bands are quite capable of causing false alarms and contribute no useful 

information for the AutoDet method. 

2) Apply the Color Method to the red, green, and blue color bands of the image 

to obtain an estimate of the number of background materials in the image. 

3) Reduce the dimensionality of the data by aggregating the original image bands 

into 30 bands using the band aggregation method described earlier in this 

chapter. 

4) Use the estimate obtained in Step 2 in the k-means algorithm to cluster the 

image.  Use the Cosine assignment rule within k-means to better ensure 



205 

spectra from the same material but under different illumination conditions are 

included in the same cluster. 

5) Apply the BACON or FAST-MCD algorithm to each cluster to obtain robust 

MSDs for the observations in the clusters. Produce a gray-scale image that 

displays the relative magnitude of the MSDs for each pixel. 

6) Threshold the robust MSDs to detect anomalous spectra and produce a binary 

image that indicates the location of anomalies. 

Though the AutoDet procedure is relatively straightforward, there are several 

algorithm specific implementation details in Steps 5 and 6 that require further 

explanation.  For the BACON algorithm, we modified the original algorithm’s criteria for 

adding new observations to the basic subset.  Specifically, at each iteration of the 

algorithm, we included an observation in the basic subset if the observation’s MSD was 

less than the 0.9999-quantile of the Chi-Square distribution with 30 degrees of freedom 

as opposed to the (1-α/n)-quantile as originally proposed, where n is the cluster size.  This 

modification was necessary because the extremely large cluster sizes—sometimes as 

large as 30000 spectra—common in hyperspectral images results in cut-off values so 

large that the target spectra we hope to detect are included in the basic subset, thereby 

defeating the objective of the BACON algorithm.   

In addition to modifying the basic subset threshold, we also use the component-

wise median vector for each cluster in forming the initial basic subset in our 

implementation of the BACON algorithm.  As stated by Billor et al., this option for 

forming the initial basic subset is non-affine equivariant, but provides a higher break-

down point than the alternative option of using classical MSDs in forming the initial 
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basic subset.  Based on cursory trials with the two methods, we confirmed that using the 

more robust component-wise median in forming the initial basic subset generally detects 

outliers that the non-robust method misses, and hence we choose to use this method in the 

AutoDet implementation of BACON. 

In configuring the FAST-MCD algorithm for use in Steps 5 and 6 of AutoDet, we 

set the so-called half-sample size to h=0.75n, where n is the cluster size.  We use this 

value of h as opposed to the higher-breakdown version of h=[(n+p+1)/2] because we feel 

that the contamination level in most anomaly detection studies is well below 25%, and 

that the algorithm better estimates the true shape of the cluster covariance matrix if larger 

values of h are used.  The nesting procedure used in FAST-MCD to deal with very large 

datasets is invoked when cluster sizes exceed 1000 spectra.  When the nesting procedure 

is used, we configured the algorithm to initialize the nesting procedure with 100 random 

samples.  These algorithms settings are based on recommendations given in Rousseeuw 

and van Driessen (1999). 

A notable modification we made to the FAST-MCD algorithm for use in 

AutoDet, deals with the scaling of the MSDs that it produces.  In the original description 

of the algorithm, the primary output of the method is the mean vector and covariance 

matrix of the half-sample of observations giving the smallest covariance determinant.  In 

searching for the half-sample with smallest covariance determinant, the algorithm will 

naturally exclude observations far from the centroid of the data.  If the actual number of 

outliers in the data is considerably less than (1-h), the excluded observations will consist 

of both good observations and outliers.  Hence, the covariance matrix of the half sample 

will tend to underestimate the total variance of the good data, which, in turn, will lead to 
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MSDs that are too large.  Under the assumption of Gaussian data, Rousseeuw and van 

Driessen suggest countering this problem by multiplying the half-sample covariance 

matrix by the scaling factor given in (5.10) followed by a one-step re-weighted estimate 

of the mean and covariance matrix using the procedure given by Rousseeuw and von 

Zomeren.  Only after the mean vector and covariance matrix of the half-sample are 

adjusted in this manner are the MSDs for the observations computed and compared to a 

suitable threshold for outlier detection.  Our experience with this method, however, 

indicates that it still tends to underestimate the true variance of the good data, thereby 

leading to large MSDs.  These inaccurate MSDs, in turn, lead to a large number of false 

alarms, as demonstrated in our simulated data tests of the FAST-MCD algorithm 

presented earlier.  This problem was also identified in Smetek and Bauer (2007). 

To correct for this problem, it was proposed in Smetek and Bauer (2006) that the 

original half-sample produced by FAST-MCD should be input to the BACON algorithm 

as a basic subset and “grown” using BACON’s iteration scheme.  Though this process 

significantly reduces false alarms relative to the original FAST-MCD algorithm, it is 

essentially just the BACON algorithm using FAST-MCD to generate the initial basic 

subset; therefore, outliers that tend to elude the original BACON algorithm may also 

elude the hybrid FAST-MCD/BACON algorithm.  In an effort to maintain the FAST-

MCD algorithm as a distinct method for detecting outliers, we explored additional 

methods for scaling the FAST-MCD MSDs.  Specifically, we implemented scaling 

methods described in Maronna and Yohai (1995) and Hardin and Rocke (2005), but met 

with the same limitations as the original FAST-MCD scaling method.  Additional 

methods proposed in the literature include those described in Rocke and Woodruff (1996) 
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and Atkinson (1994); however, these methods require the use of Monte Carlo simulations 

to determine dataset-dependent threshold values, a process we do not view as 

computationally practical given the size of hyperspectral datasets. 

Based on research conducted by Meidunas (2006), it is likely that the MSD 

scaling methods proposed in the literature fail to work satisfactorily with hyperspectral 

data because the data is not multivariate Gaussian; therefore, the MSDs are not Chi-

Square distributed, an assumption upon which these scaling factors are built.  For the 

BACON algorithm, which does a better job estimating the total variance in the data, 

using an inaccurate Gaussian assumption can still produce descent detection results, as 

indicated in our previous tests.  For the FAST-MCD algorithm, however, the 

underestimated variance evidently tolerates smaller departures from normality.  As an 

alternative to using an inappropriate Gaussian assumption, Meidunas offers methods for 

modeling the distributions of MSDs obtained from hyperspectral data.  However, these 

methods assume that the MSDs have been computed from an accurate covariance matrix; 

when using the FAST-MCD half-sample covariance matrix to compute the MSDs, this is 

not the case.  Though it may be possible to estimate the distribution of the half-sample-

based MSDs, standard methods for distribution estimation are not practical because 

MSDs corresponding to outlying observations will lead to distribution estimates with 

unusually heavy tails.  If these distribution estimates are used to threshold MSDs for 

anomaly detection, it is likely that outliers will be masked by the heavy tails. 

Though further research is certainly required to adequately resolve this MSD 

scaling dilemma, we are still in need of a procedure for use in Step 6 of the AutoDet 

procedure when using the FAST-MCD algorithm in Step 5.  As a simple solution, we use 
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the following: 1) construct the empirical cumulative distribution function (CDF) of the 

MSDs generated using the half-sample mean vector and covariance matrix estimate; 2) 

identify the MSD value above the 0.75-quantile of the empirical CDF at which the slope 

of the empirical CDF is close to zero; and 3) designate any observations whose MSDs 

exceed this zero-slope-point as anomalies.  The reasoning behind this method is that 

anomalies which are well-separated from the background spectra in hyperspectral data 

will tend to cause “steps” in the empirical CDF as illustrated in Figure 21.  These steps 

are characterized by the slope of the empirical CDF converging to zero before the step, 

followed by a sudden increase.  As will be seen later in this chapter, this method for  

 
Figure 21.  Example of Steps in CDF Caused by Anomalies 
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thresholding FAST-MCD MSDs performs well for some images, but can fail if the 

anomalous spectra are not well-separated from the background material.  As previously 

stated, further research is required to improve upon this method. 

Robust Parameter Design 

In constructing the AutoDet methodology, a number of decisions were required 

concerning how to set various parameters in the methodology in a manner that allows the 

detector to achieve good detection performance across a range of hyperspectral images.  

Some of these parameters include the number of features to use with BACON and FAST-

MCD, how these features should be constructed, and the cut-off threshold used in 

BACON’s iteration scheme.  Additionally, an analysis of the false-negatives produced by 

the anomaly detection tests conducted in Smetek and Bauer (2007) reveal that 

normalizing and/or standardizing a cluster’s data prior to applying BACON or FAST-

MCD could help reveal anomalies that otherwise evade detection.  In short, many 

alternatives present themselves as possible ways to implement the AutoDet methodology. 

To be consistent with our objective of developing an autonomous anomaly 

detector, we felt it necessary to remove the burden of configuring AutoDet from the user 

by providing a configuration that achieves consistently good performance across a range 

of images that the user may encounter.  Thus, we seek a combination of settings for a 

group of controllable algorithm parameters that produces detection results that are robust 

to a noise variable, namely the different hyperspectral images presented to the algorithm.  

This problem is none other than a robust parameter design problem, a solution to which 

can be obtained using classical Taguchi robust parameter design methods.  The following  
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paragraphs describe how the Taguchi method, as defined in Myers and Montgomery 

(1995), was used to configure the AutoDet methodology for both the BACON and FAST-

MCD methods. 

For the AutoDet-BACON algorithm, the Taguchi method was used to configure 

the four factors listed in Table 28.  The Normalization factor (Factor A) is used to 

Table 28.  Factors and Levels for Taguchi Experiments 
 
Detector Factor Levels Level Description 

-1 Do not normalize cluster data Normalization (A) 
+1 Normalize cluster data 
-1 Do not standardize cluster data Standardization (B) 
+1 Standardize cluster data 
-1 0.9999 Threshold (C) 
+1 0.999999 

1 15-Band Aggregation 
2 30-Band Aggregation 
3 5 Principal Components 

Features (D) 

4 10 Principal Components 
1 Scene 1 
2 Scene 2 
3 Scene 3 
4 Scene 4 
5 Scene 8 

AutoDet-
BACON 

Noise (E) 

6 Scene 9 
-1 Do not normalize cluster data Normalization (A) 
+1 Normalize cluster data 
-1 Do not standardize cluster data Standardization (B) 
+1 Standardize cluster data 

1 15-Band Aggregation 
2 30-Band Aggregation 
3 5 Principal Components 

Features (C) 

4 10 Principal Components 
1 Scene 1 
2 Scene 2 
3 Scene 3 
4 Scene 4 
5 Scene 8 

AutoDet-
FASTMCD 

Noise (D) 

6 Scene 9 
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determine if normalizing the spectra in a cluster prior to applying BACON improves 

anomaly detection.  This factor can assume one of two levels: either the data is 

normalized or it is not normalized.  The Standardization factor (Factor B) assesses the 

benefit of standardizing the cluster data prior to using BACON.  This factor also assumes 

one of two levels: the data is standardized or it is not standardized.  To standardize the 

data, we used the robust standardization method described by Chiang, Pell, and Seashotlz 

in which the value, xij, of observation i for variable j is replaced by 
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where 

the median value of variable .jx j=%  

The Threshold factor (Factor C) is used to study the effect of changing the cut-off 

value used in each iteration of BACON to form the basic subset.  As mentioned 

previously, the original BACON algorithm uses the (1-α/n)-quantile of the Chi-Square 

distribution with p degrees of freedom as the cut-off.  In our experiment we allow this 

factor to take-on the values of either the 0.9999-quantile or the 0.999999-quantile of the 

Chi-Square distribution.  The Features factor (Factor D) defines the manner in which the 

dimensionality of the hyperspectral data is reduced.  Four levels were considered for this 

factor: 1) band aggregation into 15 bands; 2) band aggregation into 30 bands; 3) PCA 

reduction using five principal components; and 4) PCA reduction using 10 principal 

components.   

The noise factor (Factor E) used in the Taguchi experiment defines the image to 

which the AutoDet-BACON algorithm is applied.  This factor has six levels 
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corresponding to six hyperspectral images.  These images are Scenes 1, 2, 3, 4, 8, and 9 

found in Appendix C.  Scenes 1, 2, and 4 are HYDICE sensor images taken from the 

Forest Radiance I data collection effort, and represent different degrees of clutter and 

target complexity with background materials comprised of different types of trees, grass, 

soil, and asphalt.  Scene 3 is taken from a COMPASS image of Fort A.P. Hill, VA, and 

represents a scene with similar background materials as those in Forest Radiance I 

scenes, but acquired using a different sensor.  Scenes 8 and 9 are also HYDICE images, 

but were taken from the Desert Radiance II dataset.  These two images contain similar 

targets as the Forest Radiance I images, but the background materials are considerably 

different, consisting primarily of barren soil with some sparse vegetation.  Collectively, 

these images provide a range of challenges for the AutoDet algorithm, and provide useful 

settings for the noise variable in the Taguchi experiment.  Conceptually, additional 

images can be added to this experiment at a later time to broaden the scope of this 

experiment. 

The experimental design used for the robust parameter design of the AutoDet-

BACON algorithm consists of a full factorial design in Factors A, B, C, and D nested 

with the six levels of the noise factor.  Table 40 in Appendix D lists the factor 

combinations used for each design point.  The response variable measured at each of the 

192 design points is the area under the Operating Characteristic (OC) curve computed 

over the false-positive fraction interval [0.0, 0.01].  This interval was used because false-

positive fractions exceeding 0.01 are generally too high to be of value for hyperspectral 

anomaly detection applications.  In a manner consistent with Taguchi robust parameter 

design, a signal-to-noise ration (SNR) was computed for each unique combination of 
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Factors A, B, C, and D using the responses for the respective combination across the six 

levels of Factor E.  The SNR used in this experiment is 
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where yi is the measured response at the ith level of the noise variable.  As indicated by 

Myers and Montgomery (1995), this expression for the SNR is applicable when the 

objective of the robust parameter experiment is to simultaneously find parameter settings 

that maximize the response variable while minimizing its variance across the levels of the 

noise variable.  Since we are attempting to find a configuration of AutoDet-BACON that 

maximizes the area under the OC curve in a consistent manner across multiple images, 

the SNR given in (5.49) appears reasonable.  It should be noted, however, that many 

expressions for the SNR have been proposed in the literature, with each possessing 

different strengths and weaknesses.  Further research may reveal an SNR expression that 

is more useful than what we use here. 

The results of the robust parameter design experiment conducted with the 

AutoDet-BACON algorithm are shown in Figure 22 and in Figures 74 through 79 in 

Appendix E.  Figure 22 plots the SNR value obtained for each of the 32 combinations of 

Factors A, B, C, and D.  From this plot, it is evident that design points 9 and 11 give the 

highest SNR values.  Design point 9 calls for using band aggregation into 30 features as a 

data reduction technique, as well as using the 0.9999-quantile threshold with the BACON 

iteration.  Design point 11 is the same as 9 with the additional preprocessing step of 

standardizing the data.  To confirm the validity of these results, we refer to the main 

effects and interaction plots displayed in Figures 74 through 75.  The main effects plot in 

Figure 74 confirms that band aggregation into 30 variables (level 2 of the Features factor)  
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produces the highest mean value of the response variable for the four feature reduction 

methods tested.  We also see that using the 0.9999-quantile threshold is the better option 

of the two levels tested.  A somewhat confusing result is the decrease in the mean 

response when the data is standardized.  This fact would seem to conflict with the SNR 

plot; however, inspection of the interaction plot in Figure 77 shows that standardizing the 

data slightly reduces the variability of the response.  This reduced variability is sufficient 

to make design point 11 attractive from an SNR perspective even though the mean 

response across the levels of noise decreases when standardization is used.  Another note 

in this regard, however, is that the interaction plots in Figure 75 indicate that  

 
Figure 22.  SNR Values for AutoDet-BACON Taguchi Experiment 
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standardization provides a slight improvement in the mean response when band 

aggregation into 30 variables and the 0.9999-quantile threshold are used—which are the 

settings for design point 11. 

Based on the preceding discussion, there is no compelling reason to choose design 

point 9 over design point 11, or vice versa, as the preferred configuration of AutoDet-

BACON.  However, in the interest of simplifying further experiments with the algorithm, 

we use design point 9 as the configuration of AutoDet-BACON for the remainder of this 

dissertation. 

We now turn our attention to the robust parameter design of AutoDet-FAST-

MCD.  The factors and levels used for this experiment are identical to those used for 

AutoDet-BACON with the exception that the threshold factor is omitted.  Thus, the 

experimental design consists of a full factorial design in the normalization, 

standardization, and features factors nested with the six levels of the noise variable.  The 

96 design points constituting this experimental design are listed in Table 41 of Appendix 

D, while the SNR, main effects, and interaction plots produced from the experiment are 

contained in Appendix E. 

The SNR plot shown in Figure 23 points to similar conclusions as before in that 

band aggregation into 30 variables with or without standardization produces the best 

results.  These configurations are represented by design points 5 and 7.  As with the 

AutoDet-BACON algorithm, the main effects and interaction plots indicate that, on 

average, standardization tends to reduce detection accuracy across the tested images, but 

when combined with band aggregation into 30 variables, it produces a slight 

improvement.  Based on these results, there is again no strong argument for using design 
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point 5 as opposed to design point 7 for the AutoDet-FASTMCD configuration.  To be 

consistent with AutoDet-BACON, however, we use design point 5. 

Comparison Tests 

In the preceding sections we introduced the AutoDet anomaly detection 

methodology and discussed how Taguchi robust parameter design was used to configure 

the detector to provide good classification accuracy across a range of images.  In this 

section we compare the performance of the AutoDet-BACON and AutoDet-FAST-MCD 

algorithms to each other and to the Sub-Space RX algorithm (SSRX) currently used for  

 
Figure 23.  SNR Values for AutoDet-FASTMCD Taguchi Experiment 
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real-world anomaly detection applications, and to a cluster-based anomaly detector 

similar to that proposed by Carlotto (2005).  Through this comparison, we show that the 

AutoDet methodology outperforms these two benchmark detectors when applied to a 

range of different images from those used in the Taguchi experiment.  We begin this 

discussion with a description of the images used for the comparison, followed by a brief 

description of the two benchmark detectors.  We then outline the test procedure used to 

compare the detectors, and conclude with a summary of the comparison test results. 

Seven images were used to perform the comparison tests, and can be found in 

Appendix C.  The images are referred to as Scenes 5, 6, 7, 12, 13, 17, and 19 based on a 

larger collection of images to which they belong.  Scenes 5 and 6 are derived from the 

Desert Radiance II dataset, and both contain target panels composed of different 

materials.  The primary difference between these two scenes are the addition of several 

larger targets and vegetation clutter in Scene 5.  Scene 7 is also from the Desert Radiance 

II datasets, but contains several vehicle and other manmade targets.  This scene also has a 

considerable amount of vegetation clutter in both the upper and lower portions of the 

image.  Scenes 12, 13, and 17 are derived from the Forest Radiance I dataset and contain 

the same targets as Scenes 2 and 4 used in the robust parameter design experiments.  

However, Scenes 12, 13, and 17 were acquired at a considerably higher altitude then 

Scenes 2 and 4, and therefore contain more sub-pixel targets.  Additionally, the targets in 

Scene 17 are placed closer to the tree-line than in the other images in an effort to make 

them more challenging to detect.  The final image, Scene 19, was provided by the Air 

Force Research Lab and contains several partially concealed targets with background 

materials consisting of trees, bare soil, asphalt, concrete, and other natural clutter.  
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Collectively, these scenes represent a range of target types, target sizes, background 

materials, scene clutter, acquisition altitudes, and collection sensors which provide 

considerable challenges for all the algorithms tested. 

As stated previously, the benchmark detectors to which AutoDet is compared are 

the Sub-Space RX detector described in Schaum (2004), and what we refer to as the 

Cluster Based Anomaly Detector (CBAD) which is similar to a detector by the same 

name originally described in Carlotto (2005).  The SSRX algorithm is essentially the RX 

detector described in Chapter 3 that is applied to the hyperspectral dataset after principal 

component data reduction.  Schaum suggests that the SSRX detector works best when 

applied to the lower variance principal component variables; however, our initial tests 

with this detector gave better performance using the first 10 principal components to 

reduce the dataset; therefore it is that implementation of SSRX we used for the 

comparison test.  To give the SSRX detector a fair chance at detecting a range of targets, 

we used both 21x21 and 41x41-pixel local processing windows.  We refer to these two 

versions of SSRX as SSRX-21 and SSRX-41. 

Our version of the CBAD detector is essentially the same as AutoDet.  The only 

difference between the two methods is that CBAD computes classical MSDs for each 

observation in a cluster as opposed to the robust MSDs computed with BACON or 

FAST-MCD.  Thus, our CBAD detector can be viewed as a non-robust version of 

AutoDet, and therefore provides a good benchmark by which to measure the benefits of 

using robust outlier detection methods to find anomalies.  It should be noted that our 

CBAD method differs from the original method given by Carlotto in two ways.  First, we 

use the Color Method to automatically estimate the number of clusters in the image, 
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whereas Carlotto’s implementation requires a manual selection of k.  Second, we use the 

k-means algorithm to perform the clustering as opposed to a quantization-based method 

used in the original detector.  Carlotto’s preference for the latter method is based 

primarily on computational speed, and no information is given on the method’s 

robustness to outlying observations. 

The actual comparison test procedure used to compare AutoDet-BACON, 

AutoDet-FAST-MCD, SSRX-21, SSRX-41, and CBAD is relatively simple.  Each 

method was applied to each of the seven images.  For a given image, we then used the 

resulting MSDs from each detector along with the image truth mask to construct OC 

curves for the detectors.  The range of false-positive fractions used in the OC curves is 

[0.0, 0.01] because false-positive fractions beyond this range generally have no 

operational value.  In fact, our research goal is to maximize the true-positive fraction at a 

false-positive fraction of 0.001.  It should also be noted that only the portion of an image 

that was analyzed by the SSRX-41 detector was used to generate the OC curves for all 

the detectors—a disadvantage of local processing methods is they cannot analyze the 

pixels at the periphery of an image. 

In addition to the OC curves, we also produced grey-scale images of the MSDs 

produced by each detector, as well as target images showing the location of anomalies 

determined by applying a threshold to the MSD images.  For the AutoDet-BACON, 

SSRX-21, SSRX-41, and CBAD detectors, the MSDs were compared to the 0.99999-

quantile of the Chi-square distribution with the appropriate degrees of freedom to 

produce the target images.  For the AutoDet-FAST-MCD detector, the slope method was 

used to determine an MSD threshold, as described earlier in this chapter.  Though these 
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images are illustrative of the effectiveness of each detector in finding targets, we do not 

regard them as a primary indicator of performance because of the subjective nature of the 

thresholds used.  That is to say, raising or lowering the MSD threshold that produces the 

target images will give different impressions of detector performance, and it was not 

practical for us to generate a number of these images for each detector to effectively use 

them as a comparison metric.   

It should also be noted that in comparing the AutoDet-BACON, AutoDet-FAST-

MCD, and CBAD detectors, the exact same clustering solution was used for each 

method.  Therefore, the possibility of k-means generating different solutions for each 

method was removed as a possible confounding factor for the experiment, making it 

easier to judge the benefits of each method. 

The seven OC curves produced by the comparison experiment are shown in 

Figures 24 through 30, and the MSD and target images for each detector are contained in 

Appendix F.  Upon inspection of the OC curves, several conclusions are evident.  First, 

either AutoDet-BACON—referred to as AutoDet in the OC curves—or AutoDet-FAST-

MCD outperform the benchmark detectors in all images tested.  Second, AutoDet-

BACON exhibits better OC curve performance than CBAD for all tested images, clearly 

demonstrating the benefit of using robust mean vector and covariance matrix estimates to 

compute MSDs for anomaly detection.  Third, though the AutoDet-FAST-MCD method 

was the best detector for Scenes 7 and 13, and the second best detector for Scenes 6 and 

12, it also demonstrated the capacity to be less accurate then the non-robust benchmark 

detectors when applied to Scenes 5, 17, and 19.  It is our hypothesis that this fluctuation 

in performance is due to the number of initial subsets used in the FAST-MCD nesting  
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procedure.  In our tests, we set this value to 100 subsets.  Further experimentation with 

this parameter may lead to a setting that gives more consistent detection performance.   

A final conclusion drawn from the OC curves is that the AutoDet detectors 

struggle to obtain good OC curve performance—which we subjectively determine to be a 

true-positive fraction of at least 0.60 at a false-positive fraction of 0.001—for Scenes 5, 7, 

and 17.  Our analysis of the false alarms generated for these scenes indicate that they are 

caused predominantly by natural anomalies that are anomalous relative to the major 

background materials in the respective scenes, but are not the manmade targets we are  

 
Figure 24.  Operating Characteristic Curves for Detector Comparisons (Scene 5) 
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Figure 25.  Operating Characteristic Curves for Detector Comparisons (Scene 6) 
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interested in detecting.  A clear example of these natural anomaly false alarms can be 

seen in the AutoDet-BACON MSD image for Scene 5 shown in Figure 86.  In the upper 

left corner of this image, it is clearly evident that the algorithm assigned high MSD 

values to the sparse vegetation contained in the scene.  The reason the vegetation is 

considered anomalous is the Color Method estimated the presence of only one 

background cluster for this scene—namely, soil.  Thus, the MSDs for the vegetation 

spectra were computed using the mean vector and covariance matrix for the soil, resulting 

in expectedly high values.  A confirmation of this hypothesis is given by the results from 

Scene 6.  This scene is essentially the same as Scene 5, with a notable difference being 

the absence of the vegetation clutter.  As seen in the OC curves for Scene 6, removal of 

this clutter leads to significantly better performance for all the detectors evaluated. 

In addition to the OC curves, the MSD and target images produced in the 

comparison test also offer insights into how the different detectors perform.  In both the 

MSD and target images it is clear that a major strength of the AutoDet and CBAD 

methods is their ability to detect large anomalies, which is expected based on the 

discussion of global anomaly detectors in Chapter III.  It is evident that using a larger 

processing window improves SSRX detection in this regard, but comes with the obvious 

cost of being able to analyze less of the image and increasing the chance that the 

processing window will contain non-homogenous materials.   

We can see the effect that non-homogeneous, or contaminated, window data has 

on the SSRX detector by inspecting the Scene 5 MSD image for SSRX-21 shown in 

Figure 86.  In this image, we notice a very strong anomaly located in the left, upper-

middle region of the image that is surrounded by a band of dark pixels. 
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Figure 26.  Operating Characteristic Curves for Detector Comparisons (Scene 7) 

 

 
Figure 27.  Operating Characteristic Curves for Detector Comparisons (Scene 12) 
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This shading of pixels in the immediate vicinity of anomalies can also be perceived to a 

lesser degree with other anomalies in the image—both manmade and natural.  This 

shading effect is caused by distorting effects the anomaly has on the window statistics of 

its neighboring pixels.  In particular, the anomalies tend to inflate the measured variance 

of the window pixels, thereby decreasing the MSDs of the shade pixels.  Though this 

distortion effect is most obvious in Figure 86, it occurs in varying degrees whenever a 

processing window overlaps multiple materials, as also noted by Schaum (2006). 

A final observation we make concerning the MSD images is that all the detectors 

are susceptible to false alarms caused by sensor artifacts.  In the images used for the 

comparison tests, these artifacts take the form of vertical stripes running through the 

images, and are most evident in Figures 86, 90, and 92.  In general, these artifacts are 

band-dependent, which means they can be eliminated by simply removing the effected 

band from the dataset.  In more severe instances in which many bands are affected, image 

smoothing may be an appropriate remedial action, though using these methods could 

sufficiently alter the spectral signatures in the image such that the distinctions between 

target and background spectra are blurred. 

Based on the preceding discussion, we conclude that the AutoDet methodology, 

and the AutoDet-BACON detector, in particular, is a superior alternative to the 

benchmark detectors for hyperspectral anomaly detection.  Moreover, this superiority is 

achieved through the combined benefits of robust MSD estimation as well as global 

anomaly detection.  Though we consider AutoDet to be an improvement over existing  
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Figure 28.  Operating Characteristic Curves for Detector Comparisons (Scene 13) 

 

 
Figure 29.  Operating Characteristic Curves for Detector Comparisons (Scene 17) 
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anomaly detectors, the method is not without limitations.  We address these limitations 

further in the following section. 

Limitations of AutoDet 

We have demonstrated through experimental tests with actual hyperspectral 

images that AutoDet can be an effective method for hyperspectral anomaly detection.  

However, our experience with the method has also revealed several areas in which 

AutoDet struggles.  Specifically, we recommend further research to improve AutoDet’s 

clustering methodology, its ability to deal with targets that are outlying in only a small 

subset of dimensions, and in the method used to threshold MSDs for anomaly detection.  

We address each of these areas in the following paragraphs.  

Clustering Limitations.  As discussed earlier in this chapter, clustering an image 

into groups that represent the major background materials in the scene is a key 

 
Figure 30.  Operating Characteristic Curves for Detector Comparisons (Scene 19) 
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component of the AutoDet methodology.  In its current implementation, AutoDet uses the 

Color Method and k-means to accomplish this task.  As we have seen, this process works 

reasonably well for a range of images, but it is not perfect.  Specifically, if a particular 

background material constitutes a relatively small percentage of the image, it can either 

be grouped with another background material, or with a group of anomaly pixels.  In the 

former case, the less predominant material is likely to be considered an anomaly relative 

to the more prevalent material, thus leading to the natural anomalies encountered in the 

comparison tests.  In the latter case, it is possible the background spectra and anomaly 

spectra are proportional in frequency, in which case the background spectra may be 

declared as anomalies while the anomaly spectra are declared as background.  Along 

similar lines, it is also theoretically possible, via the clumping effect discussed earlier in 

this chapter, that strong anomalies are placed in their own cluster.  Should this 

phenomenon occur—which we have yet to experience in practice—the AutoDet method 

would completely fail to detect the anomalies. 

As potential solutions to these clustering problems, the following options may 

prove useful.  In terms of minimizing natural anomalies, the use of spatial information 

describing the shape of the anomaly may help to better distinguish manmade objects such 

as vehicles from natural objects such as bushes or patches of dirt.  To counter the 

problem of anomalies being clustered in their own group, it may be useful to again use 

spatial information to post-process unusually small clusters to determine if they exhibit 

target-like characteristics.  For example, if the spectra in a small cluster form a number of 

spatially-connected groups similar in size to targets of interest, this might be enough 

evidence to designate the spectra as targets. 
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Marginally Outlying Targets.  A basic strategy of AutoDet is to use cluster 

analysis to group targets with the background material to which they are most similar, 

and then use BACON or FAST-MCD to separate the targets from background spectra.  In 

many instances, target spectra are sufficiently different from the background spectra in 

their assigned cluster such that this strategy works well.  However, some target material 

spectra we encountered differed from background spectra in only a small subset of 

dimensions.  These marginally outlying target spectra pose two problems.  First, the more 

similar a target spectra is to the background spectra, the more likely it is to be included in 

the mean vector and covariance matrix computed by BACON or FAST-MCD, thereby 

reducing the effectiveness of these algorithms.   

The second problem encountered with marginal outliers that may only be outlying 

in a small subset of dimensions is that they exploit a fundamental flaw with Mahalanobis 

Squared Distance detectors.  In particular, setting the threshold of a MSD detector so that 

it can detect outliers in a small subset of dimensions implies that it will also designate as 

outliers those spectra that are shifted a relatively small distance from the background 

mean vector in all dimensions.  This problem is significant since the spectral variability 

of background materials in hyperspectral imagery tends to manifest itself as shifts in the 

background mean spectra caused by changes in material illumination.  As a simple 

example of this problem, suppose we have a cluster of background and target spectra in 

dimension p=30, and that these p dimensions are uncorrelated.  Further, suppose the 

background spectra are distributed as N(0,σiiI), and that the target spectra only deviate 

significantly from the background mean spectra in the last three dimensions.  Thus, we 

want our MSD detector to be able to find a target vector, t, that has zeros in the first 27 
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elements and values that are three standard deviations from the background mean spectra 

in the last three elements—assuming a value of three standard deviations from the mean 

is considered an outlying measurement.  In such a scenario, the MSD of the target vector 

would be  
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and we would declare any observation with an MSD of 9 or higher as an outlier.  

However, under this rule we would also declare as an outlier any observation vector, b, 

that is only 0.54 standard deviations from the background mean vector in all 30 

dimensions, since MSD(b)=9.  Therefore, in our effort to detect targets with signatures 

similar to t, we are also likely to generate false alarms from pixels with signatures similar 

to b. 

To help mitigate the problem of marginal outliers contaminating the robust mean 

vector and covariance matrix computed by BACON or FAST-MCD, the criteria for 

allowing observations to be used in these computations can be tightened.  In the case of 

BACON, this action entails using a lower quantile of the Chi-square distribution in 

forming the basic subset, which was shown to improve detector performance in the 

preceding robust parameter design experiments.  For FAST-MCD, it may be possible to 

use the smaller half-sample size of h=[(n+p-1)/2] as opposed to h=0.75n to decrease the 

chance of marginal outliers being included in the final half-sample, though we did not 

conduct any research to confirm this hypothesis.  In regards to detecting outliers that are 

outlying in a small number of dimensions without generating mean-shift false alarms, it 
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may be helpful to perform a univariate outlier detection on each dimension in addition to 

evaluating MSDs; however, for such a method to be practical, it would also be useful to 

objectively determine the extent to which an observation must be outlying in a subset of 

bands for it also to be considered a multivariate outlier.  If this latter methodology is not 

developed, then bad sensor readings in a single dimension may unnecessarily trigger false 

alarms. 

MSD Thresholds.  A fundamental problem faced by hyperspectral anomaly 

detection algorithms is determining the proper threshold for a detectors output metric in 

order to distinguish anomalies from background spectra.  The AutoDet methodology 

currently has no advantage over other detectors in this regard.  In the case of AutoDet-

BACON, a Chi-Square threshold is used to separate anomalies from background, and it 

generally provides reasonable results despite evidence in the technical literature that 

hyperspectral data is typically not Gaussian.  In other words, the data is close enough to 

being Gaussian that modeling the BACON-derived MSDs with a Chi-square distribution 

can still provide useful results, though there is a clear risk in assuming good results will 

always be obtained.  For the AutoDet-FAST-MCD MSDs, the Gaussian assumption is 

more clearly violated because the method discards the tails of the data, as mentioned 

previously.  Thus, we are left contemplating the distribution of MSDs produced from a 

truncated, elliptically contoured multivariate distribution.  To avoid estimating the form 

of such a distribution, we instead choose to use our slope method to look for signs of 

anomalies in the empirical distribution of FAST-MCD MSDs.  Though this method 

works in some instances, it can also produce relatively poor results, as seen in the 

AutoDet-FAST-MCD target images produced in the detector comparison tests.  As an 
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example, we see in Figure 26, that AutoDet-FAST-MCD had the best OC curve 

performance for Scene 7, but the respective target image in Figure 89 would seem to 

indicate it performed no better than AutoDet-BACON or CBAD. 

As alternatives to blind faith in using BACON’s Chi-Square threshold and to 

using the slope method for FAST-MCD, we suggest developing more accurate methods 

for estimating the MSD distributions for these two detectors when applied to 

hyperspectral images.  A starting point in this endeavor is the research conducted by 

Meidunas (2006) which offers several possibilities for modeling hyperspectral data 

MSDs.  The challenge in using Meidunas’ distribution-fitting methods, however, is 

implementing them in an autonomous fashion so as to maintain the autonomy of the 

AutoDet methodology. 

k-Selection Methods.   We indicated earlier in this chapter that the Color Method 

was preferred over the other k-selection methods we tested because it is fast and produces 

better results with no data pre-processing when applied to actual hyperspectral imagery.  

However, our tests also indicate that this method has difficulty producing estimates that 

are the same as manually estimated k values.  In the six images used to test the Color 

Method, its estimates were within one cluster of the manual estimate for two images, 

within two clusters for two images, within three clusters for one image, and within four 

clusters for the remaining image.  Though this performance is certainly not ideal, is it 

good enough?  To shed some light on this matter, we applied AutoDet-Bacon to the same 

images used in the detector comparison test while varying the number of clusters used in 

the k-means algorithm from one to 12.  For each image, we constructed an OC curve 
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for the detector at each value of k.  These curves are shown in Figures 31 through 37.  

Additionally, we manually estimate the number of clusters in each image.  These manual 

estimates are listed in Table 29, along with the Color Method estimates for k.  Table 29 

also provides the value of k that resulted in the highest true-positive fraction at a false-

positive fraction of 0.001, as well as values of k that produce a true-positive fraction 

within 0.05 of the best k value (these values are listed in descending order by true-

positive fraction.) 

From Table 29, it is again evident that the Color Method does not provide 

estimates of k that are in agreement with manual estimates.  However, it is also apparent 

that when the Color Method is applied to four out of the seven images, the k estimate it 

provides works nearly as well as the best k value for the respective image at an FPF of 

0.001.  Further, if we had used our manual estimates for k rather than those provided by 

the Color Method, we would have only obtained significantly better results in two of the 

images tested (Scenes 1 and 19).  Thus, based on the images used in this test, the Color 

Method has some value in automating the k-selection process and removing this burden  

Table 29.  Manual and Color Method k-Estimates for Comparison Test Scenes 
 
Scene Color Method 

k Estimate 
Manual k 
Estimate 

Best Values of k for FPF of 0.001 (Listed 
in descending order by TPF) 

5 1 6-7 5, 6, 7, 4, 8, 3 
6 1 3-5 5, 4, 3, 1, 7 
7 3 4-5 1, 4, 3 
12 6 8-9 7, 8, 9, 3, 6, 5 
13 9 5-6 8, 1, 2, 6, 3, 9, 4, 10, 11 
17 5 6-7 1, 4, 9, 10, 12, 11 
19 4 6-8 11, 9, 10, 8 
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Figure 31.  Effect of k-Estimate on Scene 5 Detection 

 

 
Figure 32.  Effect of k-Estimate on Scene 6 Detection 



236 

 

 
Figure 33.  Effect of k-Estimate on Scene 7 Detection 

 

 
Figure 34.  Effect of k-Estimate on Scene 12 Detection 
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Figure 35.  Effect of k-Selection on Scene 13 Detection 

 

 
Figure 36.  Effect of k-Selection on Scene 17 Detection 
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from the user.  Of course, the fact that the Color Method also generated k values that are 

not best for two of the seven images clearly indicates the need for further research to find 

a better k-selection method. 

Before closing this discussion on AutoDet limitations, we note several perplexing 

results in Table 29 and Figures 31 through 37..  First, we note that for four of the seven 

images, using only one cluster generated very good results, if not the best.  Second, we 

note that for many of the scenes, a fairly large number of k values gave nearly the same 

results.  Finally, the k values that worked best for a particular image are not always 

sequential, as one might expect.  For example, the values that worked well for Scene 12 

were 3, 5, 6, 7, 8, and 9, but not 4.  Though we have not conducted any formal tests to 

confirm our hypothesis, we believe that these peculiar results are caused by the relative 

orientation of the outliers to the background data, as well as the nature of the k-means 

algorithm itself.  For example, if the outliers are sufficiently outside the data cloud 

 
Figure 37.  Effect of k-Selection on Scene 19 Detection 
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formed by the background observations, the covariance ellipsoid for the pooled 

background data may still exclude the outliers, thus giving good results with only one 

cluster.  In such a scenario, forcing k-means to then divide the background data into a 

less-than-optimal number of clusters will generate more false alarms since many 

dissimilar background materials will be assigned to the same clusters.  When the correct 

value for k is used, similar background observations are more likely to be clustered 

together, reducing the number of false alarms.  A simple illustration of this suspected 

phenomenon is shown in Figure 38. 

The manner in which k-means operates further contributes to counterintuitive 

results that can be caused by outlier orientation.  In our experimentation, for example, we 

noticed that increasing the value of k for the k-means algorithm often had the effect 

dividing high-variance, homogeneous clusters containing a large number of observations 

rather than dividing low-variance, heterogeneous clusters containing significantly fewer 

observations.  The reason for this phenomenon is that k-means simply tries to minimize 

the total sum of distances to cluster centroids without any regard for cluster structure.  

Relative to this objective, splitting a large, high-variance cluster is more advantageous 

than splitting a heterogeneous cluster whose respective sum of distances is relatively low.  

Thus, it may take a relatively large value of k to split some heterogeneous clusters since 

k-means will continue to divide the data from the homogenous cluster until no additional 

benefit is achieved.  If the heterogeneous cluster contains outliers that are masked due to 

the multiple background materials contained in the cluster, the value of k that gives the 

best OC curve performance may be considerably higher than the number of background 
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materials actually contained in the image.  Additionally, the values of k that do nothing 

other than sub-divide the homogenous data will all produce similar OC curves.  We 

believe that this phenomenon occurred in Scenes 13, 17, and 19, though further tests are 

required to confirm this hypothesis. 

Summary of Conclusions and Areas for Further Research 

The purpose of this chapter has been to develop a new hyperspectral anomaly 

detection algorithm using multivariate anomaly detection methods.  In pursuing this 

objective, we:  1) reviewed the multivariate outlier detection literature; 2) used simulated 

hyperspectral data experiments to show the problems outliers pose to existing anomaly 

detectors that use non-robust statistics; 3) evaluated the capability of different 

multivariate outlier methods to detect outliers in simulated hyperspectral data; 4) 

 
Figure 38.  Possible Effect of Different k-Values on Outlier Detection 
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explored the robustness of the k-means clustering algorithm to determine its worth as a 

preprocessing tool for multivariate outlier methods; 5) evaluated different methods for 

automatically selecting k for the k-means algorithm; 6) employed Taguchi robust 

parameter design to effectively join the k-means algorithm with the BACON and FAST-

MCD detectors to form the AutoDet methodology; and 7) showed that the AutoDet 

detector is superior to current benchmark detectors for detecting anomalies in actual 

hyperspectral imagery.  In the following paragraphs, we summarize the significant 

conclusions obtained from this effort. 

1) Based on our simulated Multivariate Gaussian tests, outliers can be masked 

from classical MSD detectors with as little as 2.4% contamination, depending 

on the background and outlier materials. 

2) For background-outlier material combinations that appear to be resistant to 

masking, covariance matrix distortions are still present.  In our principal 

component axis rotation tests, we showed that the background material’s 

covariance structure can significantly change with as little as 0.5% 

contamination. 

3) In our simulated data tests it was shown that the number of false alarms 

generated from a classical MSD detector may actually decrease in the 

presence of outliers due to the artificial inflation of the estimated variance of 

the data.  As contamination levels become large, however, the number of false 

alarms can be expected to increase. 

4) When the background data comes from heavy-tailed multivariate-t 

distributions, our tests indicate that multivariate Gaussian outlier detection 
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methods are more effective at finding outliers than non-robust MSD detectors, 

even if the distribution of the MSDs for the multivariate-t data is known with 

certainty. 

5) Controlled experiments using simulated Gaussian and multivariate-t data 

indicate that the BACON and FAST-MCD outlier detectors are effective at 

detecting outliers in datasets with high-dimensionality and large numbers of 

observations.  In the tests we conducted, these detectors found 100% of the 

outliers.  For the BACON detector, these outliers were found with virtually no 

false alarms and with the least computational effort of the methods tested.  

The FAST-MCD detector produced significantly more false alarms than the 

BACON algorithm due to its tendency to underestimate the true variance of 

the background data. 

6) The k-means clustering algorithm using the Cosine assignment rule is 

adequate for accurately clustering hyperspectral data into homogenous groups 

when the data is contaminated by outlying observations.  In our simulated data 

tests using both Gaussian and multivariate t-distributed data, this method 

accurately clustered data with contamination levels up to 9.1% when outliers 

are dispersed in the high-dimensional space.  In the presence of highly-

concentrated, distant outliers, the tolerated contamination level can drop to 

3.6% or less, depending on the background data. 

7) The primary failure mode of the k-means algorithm using the Cosine 

assignment rule is the clumping effect in which outliers are assigned to their 

own cluster and background materials are grouped together.  The clumping 
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effect is more likely to occur when: a) outliers are highly concentrated and 

distant from the background materials; b) background material are spectrally 

similar to on another; and c) the background clusters closest to the outliers 

contain relatively few observations. 

8) When applied to simulated hyperspectral datasets, the Silhouette and Calinski-

Harabasz methods are most effective at estimating the number of clusters in a 

dataset.  This conclusion was verified using datasets with different 

background materials and a range of known values of k. 

9) When applied to actual hyperspectral images, our proposed Color Method, 

which estimates k based on the number of colors detected in the visible region 

of the hyperspectral image, performed comparably to the Silhouette and 

Calinski-Harabasz methods without the need for any data preprocessing.  The 

Color Method also produced its estimates in fractions of a second, as opposed 

to minutes for the other two methods.  Based on these results, we view the 

Color Method as more practical in achieving an autonomous anomaly 

detection method. 

10) The AutoDet methodology, which combines the Color Method, k-means 

clustering, and the BACON or FAST-MCD algorithms into a single, 

autonomous anomaly detection method, out-performs the SSRX and CBAD 

detectors when applied to a range of hyperspectral images, as indicated by OC 

curve analysis. 

11) Comparisons between the AutoDet-BACON and CBAD detectors clearly 

indicate the benefit using robustly estimated mean vectors and covariance 
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matrices in an MSD detector to more accurately detect hyperspectral 

anomalies. 

12) The primary limitations with the AutoDet methodology are: a) its ability to 

detect marginally outlying targets; b) inconsistent estimation of the number of 

clusters in an image, leading to degraded detection accuracy; c) the potential 

for degraded performance due to the effect natural anomalies have on the 

clustering methodology; and d) a limited theoretical basis for accurately 

specifying a critical value that can be used to threshold the MSDs from the 

BACON and FAST-MCD detectors. 

To remedy the limitations of the AutoDet methodology, we recommend further 

research in the following areas: 

1) Develop alternative methods to the k-means algorithm for robustly clustering 

hyperspectral images.  Implementation of the method described by Hardin and 

Rocke (2004) may be a first step in this direction; however, this method may 

prove to be too computationally intensive for hyperspectral images. 

2) Develop improved methods for estimating the number of clusters in an image.  

Enhancing the Color Method so that it is more resistant to the scaling 

problems mentioned earlier in this chapter may improve its accuracy while 

maintaining the considerable speed advantage it has over statistically-based 

methods. 

3) Study the distribution of MSDs generated by the BACON and FAST-MCD 

methods in order to better threshold these MSDs for anomaly detection.  As an 

alternative, fast Monte Carlo simulation-based methods should also be 
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explored for estimating image-based thresholds on the fly. Starting points for 

this research are Meidunus (2006) and Hardin and Rocke (2005). 

4) Investigate methods for detecting marginal outliers that are only outlying in a 

small subset of dimensions.  As stated earlier, these types of outliers are 

difficult to detect using MSD detectors because setting the MSD threshold 

low-enough to reveal them will increase the false alarms generated by spectra 

shifted a small amount from the background mean vector. 

5) Expand the Taguchi experimental design used to configure the AutoDet 

detector to include more images and additional algorithm parameters.  For the 

FAST-MCD detector, such parameters may include the half-sample size and 

the number of starting subsets. 

6) Explore the use of spatial information to screen anomalies that are likely to be 

natural clutter as opposed to manmade targets of interest.  Use of 

phenomenology information for manmade materials may also be useful in this 

screening process. 

Of course, even if these research efforts are fruitful, there will always be a limit 

on the target detection accuracy an anomaly detection method can achieve, simply 

because hyperspectral images are likely to contain many non-target objects that also 

occur with low frequency in the image.  In a military context, the use of decoys can 

further complicate this problem.  Thus, as proposed in the target detection framework 

defined in Chapter 1, anomaly detection should be augmented with signature matching 

techniques to further improve the chance of detecting targets of interest.  In the following 
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chapter, we pursue this idea further by developing an autonomous signature matching 

algorithm to complement the AutoDet methodology. 
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VI.  Signature Matching using In-Scene Calibration 

In the previous chapter, we developed the AutoDet methodology as an 

autonomous anomaly detection method that performs well on a range of hyperspectral 

data with minimum user input.  However, it is also evident that natural anomalies and 

targets that are outlying in only a small subset of dimensions are problematic for 

AutoDet.  This limitation is not unique to AutoDet, but rather is a fundamental weakness 

of anomaly detection, in general.  Thus, the detection of anomalies in hyperspectral data 

is often one piece of the target detection puzzle, and must often be combined with other 

information to locate targets of interest.  Specifically, as our target detection framework 

in Chapter 1 indicates, we believe that the fusion of anomaly detection and signature 

matching analysis leads to a superior target detection methodology than either of the two 

methods used independently.  To this end, we now turn our attention to developing a 

signature matching methodology to complement the AutoDet anomaly detection method.  

As with AutoDet, it is our objective to construct a signature matching method that is as 

autonomous as possible in the sense that minimum information and interaction is required 

from the user, thus making the methodology accessible to a wide range of operational 

users.  In particular, we are interested in developing a signature matching algorithm that 

removes from the user the burden of atmospheric calibration and all the scene-specific 

knowledge of viewing geometry and atmospheric conditions that it requires.   

As indicated in the literature review of Chapter 4, the quest for signature matching 

algorithms that minimize the complications imposed by atmospheric calibration is not 

new.  However, the common thread winding through the invariant methods of Healey and 

Slater (1999), Pan, Healey and Slater (2000), Suen, Healey and Slater (2001), Thai and 
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Healey (2002), Liu and Healey (2004), Bajorski, Ientilucci and Schott (2004), and 

Bajorski and Ientilucci (2004), is the requirement to use atmospheric modeling software, 

such as MODTRAN4, to estimate the path radiance, sky irradiance, solar irradiance, and 

atmospheric transmission coefficients for different imaging scenarios in order to develop 

target subspaces for a material of interest.  As indicated by Ientilucci and Bajorski (2006), 

estimation of these parameters using MODTRAN4 can be a time-consuming process that 

requires a substantial amount of computing resources, motivating their research into the 

use of statistical regression models to make these invariant signature matching methods 

more computationally practical. 

As an alternative to these MODTRAN-based methods, we expand upon a concept 

proposed by Eismann (2006) and suggest the use of in-scene atmospheric calibration 

information to convert a target’s reflectance signatures into a set of possible image 

signatures the target may exhibit in the hyperspectral image.  These image signatures can 

be used to form target subspaces in the same manner as suggested by Healey and Slater 

and Thai and Healey, or they can be used in other signature matching methods such as 

the Linearly Constrained Minimum Variance (LCMV), Constrained Energy 

Minimization (CEM), or Target-Constrained Interference-Minimized Filter (TCIMF) 

methods described in Chang (2003).  The advantages of using in-scene information to 

perform the reflectance-to-radiance conversion are: 1) the need to run MODTRAN is 

eliminated; 2) the user only needs to provide target reflectance signatures to use the 

algorithm; 3) the variability in target image signatures can potentially be reduced since 

they are no longer based on a range of viewing geometries and atmospheric conditions 

that cannot possibly all exist for a specific scene; and 4) target radiance variability due to 
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signature noise may be implicitly incorporated in the reflectance-to-radiance conversion, 

whereas it is omitted in existing invariant signature matching methods. 

In the following paragraphs, we further describe our proposed signature matching 

methodology through an actual target detection example.  We then summarize the major 

steps of the final algorithm—which we refer to as AutoMatch—and demonstrate its 

performance relative to the spectral angle mapper (SAM) applied to atmospherically 

calibrated imagery and to alternative configurations of AutoMatch.  We conclude with a 

discussion of the limitations of our signature matching scheme and suggestions for future 

research. 

Proposed Signature Matching Process 

Perhaps the best way to describe our proposed AutoMatch method is to explain 

how it is applied to a basic signature matching problem.  The problem we use in this 

effort is the detection of the F2 target material contained in the hyperspectral image 

depicted in Figure 39 which is derived from the Forest Radiance I HYDICE dataset.  The 

actual location of this target is also indicated in Figure 39, and the ground-truth 

reflectance signatures for the target material are shown in Figure 40.  The task at hand, 

then, is to show how the AutoMatch method is used to detect the F2 material using its 

reflectance curves as the only input parameter. 

To begin, we note the fundamental obstacle to signature matching: our knowledge 

of the target material is expressed by reflectance signatures, while our image gives us the 

radiance signatures—or possibly just a relative energy intensity curve—detected by the  
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                                             (a)                                             (b) 
Figure 39.  Image Scene and Target Mask for Signature Matching Example 
The image scene in (a) is Scene 4 in Appendix C.  The target mask in (b) shows 
background in blue, target material in red, and buffer pixels in yellow. 
 

 
Figure 40.  Reflectance Signatures for the Target and Generator Libraries 
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sensor at each pixel location in the image.  To effectively compare the target reflectance 

signatures to the radiance signatures in the image, we must convert the reflectance 

signatures for the target material into a image signatures.  For sensors operating in the 

reflective region of the electro-magnetic spectrum, this conversion is performed via the 

following equation derived by Schott (1997) that gives the effective radiance reaching the 

sensor for wavelength band p as a function of the wavelengths, λ, in the band: 
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For the MODTRAN-based signature matching methods, the MODTRAN4 model 

is used to generate estimates of the atmospheric terms in (6.1) at discrete wavelengths in 

band p for different atmospheres and viewing geometry.  With these atmospheric terms, a 

numerical approximation to the integral in (6.1) is computed for band p for each 

atmosphere-viewing geometry permutation.  Rather than proceed down this road, 

however, we note that if the response function for band p is assumed constant, and if the 
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wavelength-dependent terms are assumed to be relatively constant over the band, then 

(6.1) can be simplified to 
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Assuming a sensor gain, gp, and dark current, dp, for the sensor in band p, the sensor 

reading, xp, for band p of a target material with an average reflectance, rp, in band p can 

be approximated by 
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 (6.3) 

Thus, we can generate possible image spectra for a target of interest if we can determine 

values of t0 and t1 in (6.3) instead of the more computationally intensive approach taken 

by the original invariant subspace methods.  In other words, if we know the average 

reflectance in band p for a target, and we have estimates of the coefficients t0 and t1 for 

the image, we can estimate the sensor reading produced by the target in band p of the 
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image.  If we perform this estimate for all bands in the image, we can obtain an estimate 

for the target material image signatures in terms of sensor digital numbers.  Note that by 

using (6.3) we are converting from target reflectance signature to a digital number 

signature, rather than a target radiance signature.  If the sensor output is calibrated to 

generate radiance readings, there is no difference between the two signatures.  However, 

if the sensor is not calibrated, or if the user simply does not know the sensor output units, 

(6.3) will automatically produce target image signatures in whatever units are applicable 

for the image.   

With (6.3) in-hand, the next step in the signature matching process is to estimate 

values for the coefficients t0 and t1.  Stated in vector form, we seek vectors t0 and t1 that 

produce a target image signature xt from a target reflectance signature rt through the 

linear equation 

 1 0t t= ⊗ +x t r t  (6.4) 

To estimate the vector t0, we use the simple approach of setting each component of the 

vector to the minimum sensor reading in the corresponding band.  For our target 

detection example, the t0 vector for the image is shown in Figure 41.  This approach 

assumes that the image contains materials that collectively have zero reflectance across 

all image bands.  If this assumption is valid, then the minimum value in each band should 

be the product of the band’s sensor gain and path radiance summed with the sensor dark 

current.  Obviously, not all images contain zero-reflectance materials for all bands, in 

which case this simple estimation method will tend to use values corresponding to 

shadow pixels.  In such instances, the sky radiance will also contribute to the minimum 

values in each band, thereby overestimating the respective component of t0.   
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Schott (1997) outlines more sophisticated methods for estimating t0 that avoid this 

problem; however, these methods require the user to identify known materials in the 

image or even transitions regions between shaded and illuminated pixels containing the 

same material.  Due to the added user interaction imposed by these methods, we opt for 

the simpler band-minimum method for this research. 

To determine the vector t1, we employ a technique commonly used in 

hyperspectral analysis for approximate in-scene atmospheric calibration.  In particular, 

we attempt to find a background material in the image whose reflectance signature, rb, is 

known, and then use the image spectra, xb, for this material to find the components of t1 

using the following: 

 
Figure 41.  Band Minimum Signature, t0, for Signature Matching Example 
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Of course, to be consistent with our objective of an autonomous signature matching 

algorithm, we need to locate a suitable background material without user intervention.  

To accomplish this task, we use either the normalized-difference vegetation index 

(NDVI) originally proposed by Rouse et al (1973), or the Bare-Soil Index (BI) proposed 

by Chen et al (2004) to identify image pixels containing vegetation or bare soil, 

respectively—this process is similar to the method used in the ARCHER system 

described by Stevenson et al. (2005).  These indices, which are computed for every pixel 

vector in an image, are defined as 
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where 

the average sensor reading for the pixel
  location across the short-wave IR (SWIR) bands, and

the average sensor reading for the pixel location
  across the blue light bands.

SWIR

B

=

=
 

In computing the NDVI and BI for the pixel vectors, we define the NIR, SWIR, red, and 

blue band ranges to be  700-1100nm, 1100-2500nm, 600-700nm, and 450-500nm, 

respectively.  Figures 42 and 43 show gray-scale images based on the NDVI and BI, 

respectively, for our target detection example.  In both images, brighter pixels indicate 

higher values of the indices. 

As seen in the NDVI and BI images, these indices appear reasonably effective at 

assigning high values to materials for which they are intended to locate.  In the NDVI 

image, trees and healthy grass obtain the highest values, while in the BI image, the large 

patch of dirt in the lower portion of the image generates the highest BI values.  So which 

pixel vector should be selected for use in (6.5)?  To answer this question, we make the 

observation that using only a single pixel vector in (6.5) is somewhat limiting and does 

not adequately describe the variability of a material’s image spectra due to different 

illumination conditions and sensor noise.  Thus, rather than select the single pixel vector 

corresponding to the highest index reading, we instead choose a number of pixel vectors 

with high index readings to better account for signature variability.  To ensure the 

selected vectors correspond to the same material, we first run the AutoDet algorithm on 

the image to cluster the image spectra into similar groups as well as to identify outlying 

pixels.  This latter step is important since both the NDVI and BI images indicate that 

potential targets may also receive a high index value.  Using the index, cluster, and  
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Figure 42.  Gray-scale Image of Pixel NDVI Values 
 

 
 

Figure 43.  Gray-scale Image of Pixel BI Values 
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anomaly information, we then select our background spectra in the following way: 1) 

identify the pixel vector with the highest reading that is not an anomaly; 2) identify the 

cluster to which the pixel vector is assigned; and 3) select additional pixel vectors from 

the same cluster identified in Step 2 that have the highest index values and are not 

anomalies.  For the AutoMatch method, we select a total of 200 pixel vectors in the 

manner described. 

For our target detection example, we use the NDVI as the selection index due to 

the large amount of vegetation in the image.  Figure 44 shows the 200 pixel vectors 

selected based on NDVI, cluster assignment, and anomaly status, and Figure 45 shows 

the location of these 200 spectra in the image.  As seen in these figures, the selection 

method appears to have chosen pixel vectors corresponding to a single material—namely, 

trees—and that the vectors appear to represent the same material under different 

conditions.  It is hoped that the spectral variability evident in Figure 44 is due to sensor 

noise and different illumination conditions; however, the validity of this assumption is 

difficult to confirm or guarantee. 

Using the selected pixel vectors—which we refer to as generator signatures—we 

are nearly in position to use (6.5) to estimate a set of possible t1 vectors corresponding to 

the generator signatures.  However, we first must determine the reflectance signature for 

the background material that produced the generator signatures.  Without any ground-

truth information for an image, there is generally no way of determining the reflectance 

signature of the background material with any certainty.  Instead, we use a library of 

reflectance signatures corresponding to similar materials and that is likely to contain the 

reflectance signature of the generator material.  For example, if we are searching for 
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targets in a desert scene and have selected generator signatures using the BI, then a soil 

library containing different desert soil reflectance spectra may be appropriate.  Ideally, 

this library should match the image scene as much as possible, but, as we demonstrate 

later in this chapter, a generic vegetation or soil library that is not tailored to the 

hyperspectral image can also give good detection results.   

For our target detection example, we use a reflectance library containing 

signatures for different broadleaf trees.  These signatures, shown in Figure 40, were taken 

from the USGS and Johns Hopkins University (JHU) spectral libraries included with the 

ENVI software package, and correspond to aspen, maple, walnut, blue oak, leather oak, 

live oak, and a generic deciduous tree signature.  It is important to note that the sweet 

 
 

Figure 44.  Generator Signatures Obtained using NDVI Values 
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gum and locust tree signatures that are actually contained in the example image are not 

included in this library. 

At this point, we have a set of reflectance signatures, a set of generator signatures, 

and the t0-vector.  Hence, it is now possible to compute possible t1 vectors using (6.5).  

To do so, we use every combination of generator-reflectance signature pairs as well as t0 

in (6.5) to produce a total of n1=ngnr t1 vectors, where ng is the number of generator 

signatures, and nr is the number of reflectance signatures.  In our example, ng=200 and 

nr=8, establishing n1 to be 1600.  By computing this set of vectors, we hope to implicitly 

account for the variability in the target image spectra due to illumination, sensor noise, 

and our uncertainty of the true identity of the generator material. 

 
 

Figure 45.  Image Showing Pixel Location for Generator Signatures 
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Having determined the t0 vector and a set of t1 vectors, we return to (6.4) and 

generate a set of image signatures that may represent possible realizations of the target 

material.  These target image signatures are generated by substituting all combinations of 

the target reflectance signatures and t1 vectors into (6.4) along with the estimate of t0.  In 

our example, we have three reflectance signatures for the F2 target material, which, when 

combined with the 1600 t1 vectors, produces 4800 possible target image signatures that 

may indicate what the F2 target looks like spectrally in the image.  Figure 46 plots these 

4800 image signatures in blue, and also shows the actual ground-truth image signatures 

for the F2 target in green.  As seen in this plot, the generated signatures serve as a 

reasonable approximation to the actual target signatures in the image, though the 

predicted sensor readings slightly underestimate the actual readings in the visible region 

of the EM spectrum.  Possible reason for this underestimation are discussed later in this 

chapter. 

At this point in the AutoMatch methodology, we have essentially arrived at the 

same point in the original invariant signature matching scheme of Healey and Slater 

(1999) at which we can use the generated image signatures to define a target subspace.  

The primary difference between the two methods is the manner in which the target image 

signatures are derived.  Therefore, if we are dealing with pure-pixel targets we can 

proceed with the original Healey-Slater method to complete the target detection, or use 

the method proposed by Thai and Healey for the case of sub-pixel targets.  Instead, we 

choose to use the TCIMF method of Ren and Chang (2000) which is a finite impulse 

response (FIR) filter that incorporates target and background signature information to 

detect targets in hyperspectral imagery.  We use the TCIMF filter because it is relatively 
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easy to implement, and more importantly, it produced better detection results when 

compared to the Healey-Slater and Thai-Healey methods, as we will see later in this 

chapter. 

The objective of the TCIMF filter is to find a filter vector, w, that when applied to 

an image vector, xi, produces a filter output of unity if xi is a target, a filter output of zero 

if xi is an undesired background signature, and minimizes the average output energy over 

all the signatures in the image.  Specifically, let yi represent the filter output when applied 

to xi.  That is to say 

 .T T
i i iy = =w x x w  (6.8) 

The average output energy is then defined to be 

 
Figure 46.  Generated and Actual Target Image Signatures for F2 Target 
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where R is referred to as the sample autocorrelation matrix of the matrix 

 { }1 2, , , .N=X x x xK  (6.10) 

If we form a matrix, D, whose d columns contain the image signatures of the d targets we 

wish to detect, and a matrix, U, whose u columns contain the image signatures of u 

undesirable background signatures, construction of the TCIMF filter involves finding a 

filter vector, w, that solves the optimization problem 
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The solution to (6.11) is found by Ren and Chang to be 
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To apply the TCIMF filter, the D and U matrices are populated with desired target 

image signatures and undesired background image signatures, respectively, wTCIMF is 

computed, and the filter is applied to each pixel vector in the image.  The resulting filter 

outputs are then compared to a threshold value to identify target pixels.  Unfortunately, 

the distribution of the filter outputs is not known, making this last step somewhat 

subjective.  Ren and Chang use plots of the filter output to identify targets, or produce 

gray-scale images generated by the filter outputs in which bright pixels indicate pixels 

with high TCIMF values. 
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In the context of AutoMatch, we initialize the D matrix to contain a single vector 

corresponding to the mean vector of the generated target image signatures.  For the U 

matrix, we use the mean vectors of the clusters produced by the AutoDet algorithm under 

the assumption that the clusters contain background materials whose filter output should 

be suppressed.  By forming the D matrix with only the mean vector of the generated 

target image signatures, it would seem that much of the information contained in the set 

of generated target signatures is being lost.  Whether or not this hypothesis is true 

warrants further research, but for now, we are content to use only the mean vector. 

Upon applying the TCIMF filter to the image, AutoMatch produces a gray-scale 

image of the relative magnitudes of the filter outputs, as well as a binary target image 

showing the pixels that exceed the (1-α)-quantile of the filter outputs.  In practice, α is set 

to the maximum tolerable false alarm rate measured as a fraction of the total number of 

image pixels.  Viewed in another light, this threshold strategy returns the maximum 

number of pixels one is willing to manually inspect without finding an actual target.  

Though this threshold method lacks theoretical rigor, it is used in operational target 

detection systems and is a reasonable approach to designating targets when nothing is 

known of the output metric’s distribution. 

For our target detection example, the TCIMF gray-scale image and the binary 

target image with α=0.0001 are shown in Figure 47.  Additionally, Figure 48 shows the 

OC curve for the TCIMF output values.  As seen in these figures, the AutoMatch 

algorithm is quite effective in detecting the F2 target material.  Moreover, the TCIMF 

filter does well in suppressing the background materials in the image making it  
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                       TCIMF Image                                              Binary Target Image 
 

Figure 47.  TCIMF and Target Image for Target Detection Example 
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easier to visually detect candidate targets.  We also see that in this particular example the 

threshold strategy used in AutoMatch was useful in highlighting the correct targets with 

no false-alarms.  The primary reason the threshold method was so successful in this 

example is the high degree of separation between the target and background signatures in 

terms of the TCIMF filter output, as indicated by the OC curve. 

Summary of the AutoMatch Target Detector 

In the previous section, we explained the basic components of the AutoMatch 

detector and demonstrated its application to a an actual target detection problem.  We 

now summarize the steps comprising the AutoMatch detector as follows: 

1) Specify the reflectance signatures for the target that is to be detected. 

 
 

Figure 48.  OC Curve for Target Detection Example 



267 

2) Specify either a soil or vegetation library of reflectance signatures for use in 

(6.5) to generate t1 vectors.  The choice of soil or vegetation signatures should 

be based on the expected background materials in the scene—i.e., use soil 

signatures for a desert scene and use vegetation spectra for a woodland scene. 

3) Compute the t0 vector as the band minimum values. 

4) Depending on the library specified in Step 2, compute either the NDVI or BI 

for every pixel vector in the image using (6.6) or (6.7), respectively. 

5) Run the AutoDet algorithm to cluster the image pixels and identify anomalous 

pixels that may also be targets. 

6) Identify the non-anomalous pixel vector with the highest index value from 

Step 4, as well as the cluster to which it belongs. 

7) Select the ng pixel vectors with the highest index values from the cluster 

identified in Step 6.  This set of vectors is referred to as the generator 

signatures. 

8) Use the generator signatures, the t0 vector, the nr reflectance signatures from 

the library in Step 2, and (6.5) to generate n1=ngnr t1 vectors. 

9) Use the t1 signatures and the nt reflectance signatures from the target library 

specified in Step 1 to generate Nt=ntn1 target image signatures. 

10) Use the mean vector of the target image signatures as the single column of the 

matrix D. 

11) Use the mean vectors of the clusters found in Step 5 to form the columns of 

the matrix U. 
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12) Use D and U in (6.12) to form the TCIMF filter vector, wTCIMF, and apply the 

filter to all the pixel vectors in the image. 

13) Produce a gray-scale image of the TCIMF filter outputs. 

14) Designate any TCIMF filter outputs that exceed the (1-α)-quantile of the 

outputs as targets. 

As indicated by this outline of the AutoMatch algorithm, the only parameters that 

need to be specified by the user are the target reflectance signatures, whether soil or 

vegetation should be used for t1 generation, either a soil or vegetation library, and a value 

for α.  Thus we have eliminated the need for any knowledge of viewing geometry and 

atmospheric conditions, and we avoid the complexity of running the MODTRAN4 model 

or managing any database containing its output.  Moreover, the user need not be 

concerned of the units of the hyperspectral data, making the AutoMatch detector easy to 

apply to an arbitrary hyperspectral image.  Though these attributes are desirable in our 

quest for an autonomous signature matching algorithm, the accuracy of the detector still 

must be assessed relative to other alternative methods.  We address this issue in the 

following sections. 

Detector Comparisons 

In the preceding sections of this chapter, we introduced the AutoMatch target 

detection algorithm as a method for locating targets in a hyperspectral image without the 

need for detailed atmospheric correction.  We now investigate if the detection 

methodology employed by AutoMatch can be expected to perform as well as standard 

signature matching methods applied to atmospherically calibrated imagery.  Additionally, 

we determine if using the TCIMF filter with the generated target image signatures is the 
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most useful implementation of AutoMatch relative to alternative configurations, and if 

the reflectance library used in Step 2 of AutoMatch significantly impacts detection 

accuracy.  To achieve these objectives, the following test was performed: 

1) Set the detection method to one of six methods. 

2) Set the hyperspectral image to one of seven images. 

3) Set the target material to a known target in the image whose location is 

verified by ground truth information. 

4) Set the reflectance library used in Step 2 of AutoMatch. 

5) Apply the detection method selected in Step 1 to the image. 

6) Construct an OC curve for the detection results. 

7) Repeat Steps 4 through 6 for additional libraries that are relevant to the image. 

8) Repeat Steps 3 through 7 for additional targets in the image. 

9) Repeat Steps 2 through 8 for each of the seven images. 

10) Repeat Steps 1 through 9 for each of the six detection methods. 

Additional implementation details for this test are described in the following paragraphs. 

Detection Methods Tested 

To assess the merits of the AutoMatch detector, we compared its performance to 

five other detectors: the Spectral Angle Mapper (SAM) applied to imagery calibrated 

using the FLAASH atmospheric calibration algorithm; the Healey-Slater method using 

the scene-derived target signatures; the Thai-Healey method using the scene-derived 

target signatures; the Thai-Healey method using scene-derived target signatures and the 

cluster means from AutoDet to form the background subspace; and an iterative version of 
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AutoMatch designed to improve detection through better estimates of the R matrix.  The 

following paragraphs describe each of these methods in more detail. 

FLAASH-SAM Detector 

This detection method applies the commonly used Spectral Angle Mapper 

signature matching algorithm to the test images calibrated with the FLAASH atmospheric 

calibration algorithm originally developed by the Air Force Research Laboratory 

(AFRL).  The SAM detector computes the following statistic for each pixel vector, x, in 

the image: 

 ( ) arccos t

t
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⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

r xx
r x

 (6.13) 

where rt is the reflectance signature of the target.  For our experiments, we used the mean 

target reflectance signature for the target, rt, whenever multiple reflectance signatures 

were available for the target.  The pixels generating the smallest values of the SAM-

statistic are designated as targets. 

When using reflectance signatures in the SAM detector, the image must be 

calibrated to units of reflectance.  For our tests, we applied the SAM detector to images 

that were calibrated using the FLAASH algorithm as part of the Forest Radiance I and 

Desert Radiance II data collection effort.  This calibration was performed using 

atmospheric conditions and viewing geometry existing at the time of image acquisition, 

and hence represents an ideal target detection scenario.  We therefore use the FLAASH-

SAM detector as the benchmark to which we measure the relative merits of the in-scene 

calibration methods. 
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Healey-Slater Variant of AutoMatch (HS Method) 

For this detection method, we follow the detection methodology proposed in 

Healey and Slater (1999) as closely as possible with the only difference being the 

generation of the target image signatures used to form the target subspace.  Specifically, 

we use the in-scene generation process discussed earlier as opposed to the MODTRAN4-

based method used in the original methodology. 

Thai-Healey Variant of AutoMatch (TH Method) 

This variant of the AutoMatch detector attempts to improve upon the HS Method 

by incorporating background information in the detection process to better detect sub-

pixel targets.  In implementing this detection method, we follow the detection 

methodology originally proposed by Thai and Healey (2002) as closely as possible.  As 

in the case of the HS Method, the primary difference between the original methodology 

and our implementation is the use of the in-scene generated target image signatures.   

We also note that we follow Thai and Healey’s suggestions for setting the t1 and t2 

parameters, and for their proposed non-negativity test.  The t1 and t2 parameters control 

the number of basis vectors used in defining the background subspace for the target 

model given in (4.9)—that is, the number of columns in the B matrix.  Thai and Healey 

suggest using values of t1=0.0002 and t2=0.000045, though no detailed explanation is 

provided for these recommendations.  The non-negativity test is used in the original 

implementation to discard pixel vectors that achieve a high likelihood ratio score but 

have a negative target component, Tθ, in (4.9).  Specifically, Thai and Healey suggest 

discarding any pixel vector that has an estimated Tθ vector whose “sum of absolute 
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values of the negative elements in the normalized unit length spectrum” is less than 0.01.  

Again, no detailed explanation is given for this non-negativity threshold. 

Thai-Healey Variant of AutoMatch using Cluster Means (TH-CL Method) 

In implementing the TH Method, we encountered several details of the original 

methodology that were somewhat awkward to implement.  As mentioned previously, use 

of the suggested t1 and t2 parameter settings led to the uncertainty of whether or not these 

values are applicable to a range of images or just those used in Thai and Healey’s original 

experiments.  Additionally, the original method calls for dividing the image into 

rectangular regions and estimating the B matrix for each region.  This suggestion 

increases the complexity of the algorithm, but more importantly, it opens a debate on the 

region size to use for best detection results.   

To avoid these implementation issues, we modified the TH Method to use a single 

B matrix estimated from the k cluster means generated by the AutoDet method.  

Specifically, we form a matrix, M, using the AutoDet cluster means as the columns.  We 

then perform a singular value decomposition on M and set B equal to the first k columns 

of the resulting SVD U matrix, since these columns are a basis for the column-space of 

M (assuming the column-space of M has a rank of k).  We then use this single B matrix 

for all pixel vectors in the image when computing the respective likelihood ratio.  Besides 

this revised computation of B, the TH-CL Method is the same as the TH Method.  

Iterative TCIMF (TCIMF-I Method) 

As described by Chang (2003), the R matrix used in the TCIMF filter has the 

effect of minimizing the filter output of background signatures.  However, if the 

signatures of targets that we are trying to detect are included in the computation of R, the 
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filter output for target signatures will also be reduced.  To counter this problem, Chang 

suggests screening the image for pixel signatures that are similar to the target signature 

using a metric such as SAM given in (6.13) with the mean target image signature from the 

D matrix replacing rt.  Any pixel vectors with a sufficiently small SAM value are then  

excluded from the R matrix computation.  A limitation with this method, however, is 

determining how small the SAM statistic must be to exclude a pixel vector from the 

computation.  To avoid this problem, we instead modify the original TCIMF method in 

the following manner: 1) compute the R matrix using all pixel vectors in the image; 2) 

apply the TCIMF filter to the entire image; 3) remove any pixel vectors producing 

significantly high TCIMF values and recompute R; and 4) reapply the TCIMF filter using 

the updated version of R.  In Step 3, pixel vectors are removed if their TCIMF value is 

more than five standard deviations from the mean value, where the number of standard 

deviations, zi, for the ith pixel vector is computed robustly as 
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the TCIMF output for pixel vector , and

the median TCIMF output for the image.
iT i

T

=

=%
 

Our choice of five standard deviations as the threshold value is based on typical non-

iterative TCIMF values of actual targets obtained using the AutoMatch detector.  Our 

tests in this area were not comprehensive, and further research may produce a better 

threshold. 
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Test Images and Targets 

The images used in the comparison test are Scenes 2, 4, 5, 6, 7, 8, and 9 found in 

Appendix C.  Scenes 2 and 4 are subsets of a single, larger scene from the Forest 

Radiance I dataset, while the remaining scenes are subsets from a single, larger scene 

from the Desert Radiance II dataset.  Our reasons for using these subsets as opposed to 

the two larger scenes are two-fold: first, we are interested in determining the effect of 

different degrees of scene clutter on detection performance; and second, the original 

images are too large to analyze in a timely manner.  In the case of the FLAASH-SAM 

detector, the scenes are exactly the same, but the units have been converted to reflectance 

using the FLAASH algorithm.  As stated previously, this atmospheric calibration was 

performed as part of the Forest Radiance I and Desert Radiance II collection efforts. 

The targets that we attempted to detect in each image are listed in Table 30 using 

the same nomenclature as in the Forest Radiance I and Desert Radiance II datasets.  

These targets represent a variety of different man-made materials ranging from sub-pixel 

to multiple-pixel sizes.  The reflectance signatures for these targets were ground-truthed 

at the time of the image acquisition using multiple field spectrometer measurements.  

Truth masks depicting the location of the targets and used in our OC curve computations, 

were also obtained from the Forest Radiance I and Desert Radiance II datasets.  For a 

given target, these truth masks indicate the location of pure pixels, sub-pixels, shade 

pixels, glare pixels, and pixels for the which the respective material could not be verified 

(guard pixels).  In computing our OC curves, we only measured a detector’s ability to 

detect pure pixel targets and sub-pixel targets; the shade and glare pixels were merged 

into the guard pixel category, and were not used in the OC curve computations. 
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Reflectance Libraries 

A total of six reflectance libraries where used in Step 4 of the test procedure.  The 

signatures contained in these libraries are shown in Appendix G.  Table 31 summarizes 

the contents of each library and lists the scenes with which they were used in our tests. 

As indicated in the table, we only used a library with a particular scene if the materials in 

the library matched those expected to be present in the scene.  For example, we only used 

libraries containing broad-leaf tree signatures with the Forest Radiance I scenes since the 

Table 30.  List of Targets Contained in Detector Comparison Scenes 
 

Scene Target List 
2 c5, c6, dv3, dv4, v1, v3, vf1, vf5, vf6, vf7 
4 f2, f3, f4, f6, f7, f8, f11, f12, f13, f14, t1, t2 
5 cb1, cb2, cb3, cb4, cb5, cb6, cr1, cr2, cr3, e2, e4, e5, f1, f2, f3, f4, f5, f6, f7, 

f8, f9, f10, m4, m5, m6, m7, m9, m10, m12, pp1, pp2, pp3, pr2, pw1, pw2, 
pw3, t1, t2 

6 cb1, cb2, cb3, cb4, cb5, cb6, cr1, cr2, cr3, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, 
m4, m5, m6, m7, m9, m10, m12, pp1, pp2, pp3, pr2, pw1, pw2, pw3, t1, t2 

7 e2, v5, v6, v10, v11, v12 
8 v5, v6 
9 cb1, cb2, cb3, cb4, cb5, cb6, cr1, cr2, cr3, f1, f2, f3, f4, f5, f7, m6, m7, pp1, 

pp3, pw1, pw2, pw3, t1, t2 
 
 
Table 31.  Summary of Generator Reflectance Signature Libraries 
 

Library Scenes Signatures 
FR Trees 2, 4 Sweet Gum, Locust 
Generic Trees 2, 4 Aspen 1, Aspen 2, Maple, Walnut, Blue Oak, 

Leather Oak, Live Oak, Generic Deciduous 
FR Soil 2, 4 Soil 1, Soil 2 
DR Soil 5, 6, 7, 8, 9 Soil 1, Soil 2, Soil 3, Soil 4, Soil 5, Soil 6 
Generic Soil 2, 4, 5, 6, 7, 8, 9 Silty Loam 1, Silty Loam 2, Sandy Loam 1, 

Sandy Loam 2, Sandy Loam 3, Sandy Loam 4, 
Sandy Loam 5, Sandy Loam 6, Sand 1, Sand 2, 
Grayish Brown Loam  

Generic Brush 7, 8 Coyote Bush, Rabbit Brush, Sage Brush, Salt 
Brush 
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Desert Radiance II are unlikely to contain broad-leaf trees.  For each image, we also used 

both a generic library and a library containing only ground truth signatures obtained 

during the Forest Radiance and Desert Radiance collections.  By using these generic and 

specialized libraries we are able to assess the impact of library accuracy on AutoMatch 

performance. 

Test Results 

Our comparison tests generated 1848 detection scenarios over the seven images, 

six detection methods, six generator libraries, and range of targets tested.  Rather than 

plot 1848 different OC curves, we summarize the OC curve results for each image scene 

in Tables 32 through 38.  In each of these tables, we list the number of targets in the 

scene that were detected at a true-positive fraction of greater than 0.4, 0.6, or 0.8 while 

only producing a false-positive fraction of less than 0.0005.  For each image, we list this 

information for each detection method and each generator library applied to the image.  

As an example of how to interpret this data, we refer to the (AutoMatch, TPF=0.040, FR 

Soils)-entry in Table 32.  The value of 8 in this entry indicates that for eight of the 11 

target materials that we attempted to detect in Scene 2, the AutoMatch method detected at 

least 40% of the respective target pixels while generating an FPF less than 0.0005.  By 

reporting our results in this manner, we make the assumption that an FPF of 0.0005 is a 

reasonably small number of false alarms.  Based on the range of TPF values that we use, 

we also assume that 40-80% target coverage at a FPF of 0.0005 is sufficient to visually 

distinguish a target from background materials. 

Using the information in Tables 32 through 38, we address the major questions 

this experiment is designed to answer: 1) Does the AutoMatch algorithm achieve similar 
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performance as detectors using more sophisticated atmospheric correction methods; 2) Is 

the TCIMF method the most useful detector to use in AutoMatch relative to the other  

Table 32.  Signature Matching Comparison Results for Scene 2 
Library Method TPF 

FR Trees Gen. Trees FR Soil Gen. Soil 
0.40 7 7 7 7 
0.60 4 4 4 4 

FLAASH-SAM 

0.80 2 2 2 2 
0.40 3 5 3 4 
0.60 2 4 2 2 

HS 

0.80 2 1 1 2 
0.40 2 0 3 0 
0.60 0 0 2 0 

TH 

0.80 0 0 0 0 
0.40 6 1 4 4 
0.60 2 1 3 3 

TH-CL 

0.80 2 1 2 2 
0.40 4 4 8 8 
0.60 2 1 4 3 

AutoMatch 
(TCIMF) 

0.80 1 1 2 1 
0.40 5 4 7 7 
0.60 2 2 3 3 

TCIMF-I 

0.80 2 2 3 3 
 
 
Table 33.  Signature Matching Comparison Results for Scene 4 

Library Method TPF 
FR Trees Gen. Trees FR Soil Gen. Soil 

0.40 7 7 7 7 
0.60 6 6 6 6 

FLAASH-SAM 

0.80 4 4 4 4 
0.40 5 6 7 7 
0.60 4 4 5 6 

HS 

0.80 3 3 5 5 
0.40 8 6 11 9 
0.60 7 5 10 7 

TH 

0.80 6 5 9 7 
0.40 9 9 9 8 
0.60 9 9 9 8 

TH-CL 

0.80 7 6 7 5 
0.40 10 9 10 10 
0.60 9 7 7 7 

AutoMatch 
(TCIMF) 

0.80 3 4 6 6 
0.40 10 9 9 8 
0.60 8 6 7 7 

TCIMF-I 

0.80 4 3 7 5 
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Table 34.  Signature Matching Comparison Results for Scene 5 
Library Method TPF 

DR Soil Generic Soil 
0.40 22 22 
0.60 15 15 

FLAASH-SAM 

0.80 7 7 
0.40 22 18 
0.60 19 12 

HS 

0.80 12 6 
0.40 20 13 
0.60 14 12 

TH 

0.80 13 9 
0.40 17 8 
0.60 13 8 

TH-CL 

0.80 11 7 
0.40 28 23 
0.60 23 15 

AutoMatch 
(TCIMF) 

0.80 16 11 
0.40 24 19 
0.60 19 14 

TCIMF-I 

0.80 15 10 
 
 
Table 35.  Signature Matching Comparison Results for Scene 6 

Library Method TPF 
DR Soil Generic Soil 

0.40 22 22 
0.60 18 18 

FLAASH-SAM 

0.80 10 10 
0.40 21 21 
0.60 19 13 

HS 

0.80 13 5 
0.40 16 13 
0.60 13 9 

TH 

0.80 10 8 
0.40 15 10 
0.60 11 9 

TH-CL 

0.80 9 8 
0.40 23 20 
0.60 20 15 

AutoMatch 
(TCIMF) 

0.80 16 9 
0.40 20 13 
0.60 17 11 

TCIMF-I 

0.80 10 9 
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methods tested; and 3) Does the accuracy of the reflectance library used by AutoMatch in 

the target signature generation process have a significant impact on detection accuracy?  

In regards to the first question, it is evident that the AutoMatch detector performed as 

well or better than the FLAASH-SAM detector at the FPF level of 0.0005 for Scenes 4, 5, 

7, 8, and 9, regardless of the generation library.  For Scenes 6, AutoMatch peformed 

better than FLAASH-SAM when the specialized library was used, and only slightly 

worse when the generic library was used.  For Scene 2, the performance of AutoMatch 

relative to FLAASH-SAM is dependent on the type of reflectance library used rather than 

the accuracy of the signatures.  That is to say, when the soil libraries are used, AutoMatch 

performs comparably to FLAASH-SAM, while using the vegetation libraries in 

AutoMatch significantly degrades its performance relative to FLAASH-SAM.  Based on 

these results, we conclude that the AutoMatch detector is a useful alternative to methods 

using more sophisticated atmospheric calibration algorithms.  Because these latter 

methods can only be used when atmospheric conditions and viewing geometry for an 

image are known or estimated, the value of AutoMatch—which requires none of this 

information—is further increased. 

To answer the second question, we note that for the five desert images, 

AutoMatch using TCIMF performs the best of all the alternative AutoMatch 

configurations tested, though the HS Method gives comparable performance depending 

on the generation reflectance library used.  For the Forest Radiance I scenes, AutoMatch 

with TCIMF is the better performer in some cases, but not all.  Specifically, AutoMatch 

with TCIMF performs the best for Scene 2 when the soil libraries are used, but lags  
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Table 36.  Signature Matching Comparison Results for Scene 7 
Library Method TPF 

Gen. Brush DR Soil Generic Soil 
0.40 2 2 2 
0.60 0 0 0 

FLAASH-SAM 

0.80 0 0 0 
0.40 1 4 1 
0.60 0 2 0 

HS 

0.80 0 1 0 
0.40 0 4 1 
0.60 0 2 0 

TH 

0.80 0 0 0 
0.40 0 1 0 
0.60 0 0 0 

TH-CL 

0.80 0 0 0 
0.40 0 4 4 
0.60 0 3 2 

AutoMatch 
(TCIMF) 

0.80 0 1 0 
0.40 0 2 2 
0.60 0 0 1 

TCIMF-I 

0.80 0 0 0 
 
 
Table 37.  Signature Matching Comparison Results for Scene 8 

Library Method TPF 
Gen. Brush DR Soil Generic Soil 

0.40 0 0 0 
0.60 0 0 0 

FLAASH-SAM 

0.80 0 0 0 
0.40 0 1 1 
0.60 0 1 0 

HS 

0.80 0 0 0 
0.40 0 0 0 
0.60 0 0 0 

TH 

0.80 0 0 0 
0.40 0 0 0 
0.60 0 0 0 

TH-CL 

0.80 0 0 0 
0.40 0 1 1 
0.60 0 1 1 

AutoMatch 
(TCIMF) 

0.80 0 1 1 
0.40 0 1 1 
0.60 0 1 1 

TCIMF-I 

0.80 0 1 1 
 



281 

behind the HS and TH-CL methods when using the vegetation libraries.  In Scene 4, the 

performance of AutoMatch with TCIMF is comparable to the TH, TH-CL, and TCIMF-I 

methods with none of them being clearly superior to the rest.  Based on these results, it is 

evident that AutoMatch using TCIMF is either the best or among the best detectors across 

all the images tested, and therefore is the most logical choice for use as the final 

AutoMatch detector. 

Turning our attention to the third question, we see in each of the output tables that 

the use of a generic reflectance library—as opposed to signatures of materials that are 

known to exist in the image scene—degrades the performance of all the AutoMatch 

variants (FLAASH-SAM performance is not affected because it does not generate target 

signatures).  The degree of degradation due to the generic libraries is detector-dependent.  

AutoMatch using TCIMF is the least sensitive to the reflectance library, while the TH 

and TH-CL methods can be significantly impacted by the type of reflectance library.  The 

Table 38.  Signature Matching Comparison Results for Scene 9 
Library Method TPF 

DR Soil Generic Soil 
0.40 14 14 
0.60 11 11 

FLAASH-SAM 

0.80 6 6 
0.40 15 10 
0.60 12 6 

HS 

0.80 10 3 
0.40 12 7 
0.60 9 4 

TH 

0.80 7 3 
0.40 15 8 
0.60 11 8 

TH-CL 

0.80 7 6 
0.40 15 14 
0.60 14 12 

AutoMatch 
(TCIMF) 

0.80 11 5 
0.40 14 13 
0.60 12 11 

TCIMF-I 

0.80 10 8 
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reason TCIMF is not as sensitive to the accuracy of the reflectance library is its use of the 

mean of the generated target signatures as opposed to the subspace defined by these 

signatures.  When a generic library is used, the variance of the reflectance signatures it 

contains is generally larger (this is definitely the case for the libraries we used).  This 

higher variance, in-turn, leads to higher variance in the generated target signatures.  

Where this increased variance in the generated target signatures may have little or no 

effect on the target signature mean vector, it will certainly inflate the size of the target 

subspace, thereby increasing the chance for false alarms. 

Beyond the three questions the comparison test was intended to answer, several 

other observations can be made from the test results.  To begin with, it is evident that 

none of the detectors tested—including the FLAASH-SAM method—are effective at 

detecting all the target materials used in the test.  With the false-positive fraction held at 

0.0005, we see that the best detectors can only achieve 40% target coverage for 8 out of 

11, 11 out of 12, 28 out of 38, 23 out of 35, 4 out of 6, 1 out of 2, and 15 out of 23 target 

materials in Scenes 2, 4, 5, 6, 7, 8, and 9, respectively.  Upon further analysis of our test 

output, we found that, for a given image, a subset of the target materials are difficult for 

all methods to detect.  In Table 39, we list the target materials that evaded 40% detection 

at a false positive fraction of 0.0005 by all detectors, regardless of the generator 

reflectance library used.  Table 39 also lists the targets that evaded 40% detection at a 

false positive fraction of 0.0005 for four or five out of the six methods tested.  In general, 

these problematic target materials fall in one of three categories: 1) their spectral 

signatures are very similar to background signatures in the image; 2) their signatures are 

very similar to other target materials in the scene, thereby causing many false 



283 

alarms by other targets of similar materials; or 3) their reflectance signatures have high 

variability, thereby increasing the size of the target subspace used in the HS, TH, and TH-

CL methods.  In regards to the third category, some of the problematic targets are 

vehicles for which reflectance signatures were measured at different points on the 

vehicle.  In some instances the measurement points were over different materials or under 

different levels of illumination, thus contributing to the high variance of the reflectance 

signatures.  Focusing on a single part of these types of targets where the reflectance 

signature is relatively constant, may improve the detection of these targets.  Further 

research is required to confirm this hypothesis and to improve detection of the other two 

categories of problem targets. 

A second observation we make from the test results is the inconsistency of the TH 

and TH-CL methods.  In particular, we notice that for Scenes 4 and 9 these methods are 

comparable to the AutoMatch method, but their performance lags for the remaining 

scenes.  The primary reason of this inconsistency is the non-negativity test recommended 

by Thai and Healey in the original implementation.  In our experiment, there were several 

instances in which target pixels failed this non-negativity test along with a large number 

Table 39.  List of Targets that are Difficult to Detect 
 
Scene Targets with less than 40% coverage at an 

FPF of 0.0005 for all 6 methods 
Targets with less than 40% coverage at an 
FPF of 0.0005 for 4 or 5 methods 

2 v5, vf6 dv4, vf5, vf7 
4 f2 f8, f13 
5 cr1, e5, m5, pr2 cr2, e2, e4, f8, m4, m6, m7, m9, m10, 

m12, pp1, pp2, pw2, t1, t2 
6 m5, m6, pr2, t2 cb1, cr1, cr2, f8, m4, m9, m10, m12, 

pp1, pw2, pw3, t1 
7 None e2, v5, v6, v11, v12 
8 None v5, v6,  
9 m6 cb1, cb4, cb5, cr1, cr2, m7, pw3, t2 
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of background pixels.  When these failures occurred, the pixels were discarded, per the 

recommendation of Thai and Healey, with the unfortunate consequence that some target 

pixels could no longer be detected, thereby corrupting the OC curve computations.  It is 

possible that using a different threshold than 0.01 in this non-negativity test will improve 

the performance of these detectors, but there is no practical guidance on what this 

threshold should be for an arbitrary image.  Thus, we are left with the conclusion that this 

non-negativity test is a limitation of the TH and TH-CL methods that must be resolved 

before these methods can be used in practice.   

An additional consequence of this non-negativity test problem is that the TH and 

TH-CL methods cannot be accurately compared due to the confusing effects produced by 

the non-negativity tests.  However, based on the results we obtained, the TH-CL method 

performed comparably or better than the TH method in Scenes 2, 4, 6, and 9, and only 

slightly worse for Scene 5—both methods performed poorly with Scene 8.  Thus, it 

would appear as though using the background cluster means to define the background 

subspace may lead to a less subjective strategy than the original method proposed by Thai 

and Healey. 

As a final observation from the comparison test, we note that there is little or no 

benefit gained by the TCIMF-I method as we have implemented it.  For a very small 

number of targets in Scenes 2 and 4, the iterative scheme improved the separability 

between the target and background materials, but in general, performance was either 

unaffected or even decreased.  Further research is required to determine if a better 

threshold for removing suspected targets on the first pass of the algorithm can improve 

upon these results. 
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AutoMatch Limitations 

In the previous section we demonstrated that the AutoMatch detector can 

effectively detect a range of targets in different hyperspectral images without the need of 

detailed atmospheric correction.  However, the detector is not without limitations, some 

of which we have alluded to already.  In particular, the method may produce inaccurate 

target signatures, it is limited in its ability to use target signature variance information, 

and its performance can be degraded when applied to images with non-homogeneous 

atmospheric conditions.  Each of these limitations is discussed further in the following 

paragraphs. 

Inaccurate Target Signatures 

In generating target image signatures, AutoMatch uses several pieces of 

information whose potential inaccuracies can lead to inaccurate target signatures.  To 

understand this limitation better, suppose that we are attempting to generate a target 

image signature using the generator signature, t1, target reflectance signature, rt, and 

band-minimum vector, t0.  Then for band λ, the generated target signature value is 

 1 0tG t r tλ λ λ λ= +  (6.15) 
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Further, suppose that t1 was computed using generation signature, g, and generator 

reflectance signature, rg.  Then t1λ has the value 

 0
1

g

g tt
r

λ λ
λ

λ

−
=  (6.16) 



286 

where 

the value in band  of , and
the value in band  of .g g

g
r

λ

λ

λ
λ

=
=

g
r
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Upon consideration of (6.17), it is evident that our estimate of Gλ can be adversely 

affected in the following ways: 

1) If the band minimum, t0λ, overestimates (underestimates) the actual product of 

the path radiance and sensor gain, summed with the dark-current in band λ, 

then Gλ will be too high (low), assuming the other parameters in (6.17) are 

accurate.  However, in bands where the target reflectance is relatively high, 

this problem is less of a concern. 

2) If rgλ is higher (lower) than the true reflectance of the material producing g, 

then Gλ will be too low (high), assuming the other parameters in (6.17) are 

accurate. 

3) If rtλ is higher (lower) than the reflectance signature of the actual target 

signatures in the scene due to effects such as weathering, Gλ will be too high 

(low), assuming the other parameters in (6.17) are accurate. 

In addition to these potential problems in generating the target signature vectors, 

we also notice for a given t1 and t0 the variance of (6.15) is 
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Thus, if the target reflectance signatures have a high variance, so will the variance of the 

generated signatures.  Additionally, the variance of the generated signatures in band λ 

will grow as the square of the value of t1 in band λ.  Finally, if the target reflectance 

signatures are relatively constant, but the t1 vectors we generate have high variance due 

to the generator reflectance signatures, the variance of target signatures will again 

increase.  If the variance of the generated signatures grows via either of these 

mechanisms, the subspace defined by these signatures will also grow, thereby increasing 

the chance for false alarms if the HS, TH, or TH-CL methods are used in AutoMatch.  

Because the TCIMF method does not use target subspaces, it is not affected by these 

potential variance problems, though the other generation problems listed above, which 

can impact the shape of the generated signatures, will affect all the methods, including 

TCIMF. 

Loss of Variance Information Using TCIMF 

Though TCIMF is somewhat resistant to increases in generated target signature 

variance due to potential inaccuracies in the generation process, its complete ignorance of 

the target signature variance can also lead to detection errors, particularly if the actual 

target signatures have high variance.  Because we only use the mean vector of the 

generated targets to form the D matrix of TCIMF, extreme observations from the actual 

target signature distribution may produce unintended results.  As an example, suppose the 

mean of the generated target signatures is dt, and that some of the actual target pixels in 
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the image have signatures equal to dt while other target pixels have signatures 

approximately equal to some multiple of dt, say κdt, due to differences in target 

orientation.  For the targets with signatures equal to dt, TCIMF should produce values of 

wTdt=1.  For the other target signatures, the output from TCIMF will be wTκdt =κwTdt=κ.  

If κ>1, the TCIMF output for the target will obviously be greater than one, while if κ<1, 

the TCIMF output will be less than one.  Though the former case may not pose a problem 

if we are simply looking for pixels with the highest TCIMF values, the latter case may 

result in missed targets depending on how we threshold the output values. 

In order to avoid this problem, we suggest further research to determine how 

better to account for the variability of target signatures using the TCIMF construct.  

There is no restriction on the number of signatures that can be used in the D matrix; 

however, the best way to populate this matrix from the generated target signatures 

requires further investigation.  Likewise, a method for constructing the U matrix beyond 

using simply the background cluster mean vectors may also help to better suppress 

background materials, thereby increasing the separation between target and background 

TCIMF values. 

Non-Homogeneous Atmospheric Conditions 

The final limitation of the AutoMatch detector that we address is its current 

assumption of homogeneous atmospheric conditions throughout the image scene.  

Depending on the size of the geographic region that the image covers, it is likely that the 

atmospheric conditions vary throughout the region due to different concentrations of 

airborne particles and water vapor.  If the generator signatures selected by AutoMatch are 

distributed throughout the image, these differences in atmospheric conditions may not 
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pose a problem.  However, if the generator signatures are concentrated in one region of 

the image, the t1 vectors computed from the signatures may not capture the atmospheric 

variations.  Should this event occur, the set of target signatures generated from the t1 

vectors may not adequately describe all the possible forms of the target image signatures 

that may be in the image.  A simple solution to this problem may be to divide the image 

into smaller regions for which the assumption of a homogeneous atmosphere is valid, and 

apply AutoMatch to each region.  Further research is required to assess the usefulness of 

this proposal. 

Summary of Conclusions and Areas for Further Research 

The preceding sections presented the AutoMatch detector as a new hyperspectral 

signature matching algorithm that can be applied to an arbitrary image without the need 

for atmospheric calibration.  We also compared the AutoMatch detector to alternative 

configurations of the methodology and to a benchmark atmospheric-calibration-based 

method.  Finally, we identified limitations of the algorithm and indicated areas in which it 

can be improved.  We summarize the significant conclusions from this research in the 

following paragraphs: 

1) When applied to a range of targets in different hyperspectral scenes, 

AutoMatch performed as well or better than the FLAASH-SAM detector 

which uses more sophisticated atmospheric calibration methods and requires 

more detailed knowledge of the hyperspectral image.  This result 

demonstrates the validity of the in-scene calibration methods used by 

AutoMatch. 



290 

2) When using generic generation reflectance libraries that where not well-

matched to the materials in the image scene, AutoMatch still performed as 

well or better than the FLAASH-SAM method.  Thus, AutoMatch is a useful 

detection tool when the only information available to the user are the 

reflectance signatures for the target of interest.  This characteristic of 

AutoMatch is consistent with our objective to develop an autonomous 

signature matching algorithm to complement the AutoDet anomaly detector. 

3) The TCIMF method was consistently the best, or among the best, detectors 

tested for use in the AutoMatch methodology.  Other methods we tested based 

on the algorithms of Healey and Slater and Thai and Healey performed well in 

some instances, but proved to be inconsistent across the range of targets and 

images tested.  The TH and TH-CL methods we tested proved to be limited by 

the non-negativity test employed in these methods. 

4) Inaccuracies in the generator reflectance libraries, the target reflectance 

libraries, and the estimation of the t0 vector, can lead to highly variable or 

inaccurate generated target image signatures.  Depending on the degree of 

similarity between the target and background materials, these inaccurate 

generated signatures can lead to a large number of false alarms. 

In order to improve upon the proposed AutoMatch detector, we suggest further 

research in the following areas: 

1) Investigate methods for incorporating the variability of the generated target 

image signatures and the background signatures into the TCIMF detector. 
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2) Adapt AutoMatch to account for the possibility of non-homogeneous 

atmospheric conditions in a hyperspectral scene.  This extension of 

AutoMatch is particularly important if the method is to be applied to scenes 

covering large geographic areas. 

3) Investigate the use of constrained least-squares methods for use with the TH 

and TH-CL variants of AutoMatch to eliminate the non-negativity test.  A 

starting point in this effort may be the Non-negativity Constrained Least-

Squares (NCLS) algorithm discussed in Chang (2003). 

4) Investigate the use of other methods or indices besides the NDVI and BI to 

select generator signatures.  Ideally, such methods would narrow the list of 

possible identities of the generator material, thereby improving the accuracy 

of the generator reflectance library and AutoMatch detection performance. 

5) Develop methods for fusing the output of the AutoDet and AutoMatch 

detectors to improve overall target detection accuracy, particularly against 

targets that are marginally detectable by either algorithm. 

This last recommendation is, as stated in Chapter 1, the final objective of our 

proposed target detection framework.  It is a particularly important research area since, as 

we have seen in this chapter and in the preceding chapter, some targets are exceedingly 

difficult to detect exclusively with anomaly detection or with signature matching 

methods.  The primary difficulty with many of these challenging targets is that they lie in 

a region of uncertainty in which they are not clearly anomalous or signature matches, but 

they cannot be clearly designated as background materials either.  It is hoped that the 

fusion of signature matching information with anomaly information will provide a 
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synergy that pushes the target declaration decision conclusively in one direction or 

another.  Further research in this area should strive to validate this hypothesis. 
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VII. Summary of Contributions  

In Chapter 1, we stated that the objectives of this research are to: develop a new 

anomaly detection methodology using multivariate outlier detection concepts; develop a 

signature matching target detection method that eliminates the need for atmospheric 

calibration; and ensure that both of these methodologies minimize the technical expertise 

and level of intervention required by the user.  In meeting these objectives we have 

contributed to the technical body of knowledge in several areas, as summarized in the 

following paragraphs. 

Anomaly Detection Contributions 

Our primary contribution to the field of hyperspectral anomaly detection is the 

AutoDet methodology developed in Chapter 5.  This methodology combines multivariate 

outlier detection methods with an automated k-means clustering scheme to improve 

anomaly detection accuracy relative to existing benchmark detectors.  Secondary 

contributions stemming from the development of AutoDet include: 

1) We demonstrated through simulated multivariate Gaussian data tests that 

anomalies can be masked from classical MSD detectors with as little as 2.4% 

contamination.  Additionally, our tests showed that the shape of a material’s 

covariance matrix estimate, as represented by the orientation of the first 

principal component axis, can be significantly distorted with as little as 0.5% 

contamination. 

2) It was confirmed through experiments with heavy-tailed, multivariate t-

distributed data, that multivariate Gaussian outlier detection methods are more 



294 

effective at finding outliers in this heavy-tailed data than non-robust MSD 

detectors, even if the distribution of the MSDs for the multivariate t-

distributed data is known with certainty.  In other words, when searching for 

anomalies in heavy-tailed data, it may be better to incorrectly make a 

Gaussian assumption for the data distribution as opposed to computing the 

MSDs using a contaminated covariance matrix estimate. 

3) Controlled experiments using simulated Gaussian and multivariate-t data 

showed that the BACON and FAST-MCD outlier detectors are effective at 

detecting outliers in datasets with high-dimensionality and large numbers of 

observations.  This contribution is significant since none of the algorithms 

proposed in the multivariate outlier detection literature have been shown to be 

scaleable to datasets comparable in size and dimension to hyperspectral data. 

4) Our use of Taguchi robust parameter design to determine a robust 

configuration for AutoDet that performs well across a range of images and 

targets is a novel approach to anomaly detector design.  Based on our 

literature review of anomaly detection methods, guidance is often lacking on 

the best way to set the input parameters of proposed algorithms, and if settings 

that are useful for one image are also useful for other images.  Through our 

tests, we show that robust parameter design methods can be a useful tool in 

this endeavor. 

5) Our comparison tests between the AutoDet methodology and benchmark 

anomaly detection methods show the superior performance of multivariate 

outlier detection methods in finding anomalies relative to detectors that 
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employ non-robust statistical methods.  Specifically, our tests showed that 

AutoDet outperformed the SSRX and CBAD detectors when applied to a 

range of images containing a variety of targets. 

Image Clustering Contributions 

As stated in Chapter 5, multivariate outlier detection methods generally assume 

that the good data in a sample comes from a single distribution and that any outliers in 

the sample come from one or more different distributions.  Since a typical hyperspectral 

image consisting of multiple background materials does not satisfy this assumption, the 

image data must be clustered into homogeneous groups of signatures and the outlier 

detection methods applied to each group.  In justifying the ability of the commonly used 

k-means algorithm for this purpose, we produced the following contributions: 

1) We used empirical tests to demonstrate the k-means clustering algorithm with 

Cosine assignment rule is adequate for accurately clustering hyperspectral 

data into homogenous groups when the data is contaminated by outlying 

observations.  In our simulated data tests using both Gaussian and multivariate 

t-distributed data, this method accurately clustered data with contamination 

levels up to 9.1% when outliers are dispersed in the high-dimensional space.  

In the presence of highly-concentrated, distant outliers, the tolerated 

contamination level can drop to 3.6% or less, depending on the background 

data. 

2) Our tests confirmed that a primary failure mode of the k-means algorithm 

using the Cosine assignment rule is the clumping effect in which outliers are 

assigned to their own cluster and background materials are grouped together.  
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We showed that the clumping effect is more likely to occur when: a) outliers 

are highly concentrated and distant from the background materials; b) 

background material are spectrally similar to one another; and c) the 

background clusters closest to the outliers contain relatively few observations. 

3) Five statistically-based k-selection methods were compared using simulated 

multivariate Gaussian and multivariate t-distributed data.  These experiments 

revealed the Silhouette and Calinski-Harabasz methods to be most effective at 

estimating the number of clusters in a dataset, relative to the other methods 

tested.  This conclusion was verified using datasets with different background 

materials and a range of known values of k. 

4) When applied to actual hyperspectral images, our tests demonstrate that our 

proposed Color Method, which estimates k based on the number of colors 

detected in the visible region of the hyperspectral image, performed 

comparably to the Silhouette and Calinski-Harabasz methods without the need 

for any data preprocessing.  Though the appropriate choice of image pre-

processing allowed the Silhouette and Calinski-Harabasz methods to give 

reasonable results, we found that the choice of pre-processing method was 

image-dependent.  A further advantage of the Color Method is its ability to 

produce estimates of k in fractions of a second, as opposed to minutes or hours 

for the other methods. 

Signature Matching Contributions 

The AutoMatch target detection algorithm is our primary contribution to the field 

of hyperspectral signature matching.  This algorithm is unique in its use of the NDVI and 
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BI metrics, as well as cluster and anomaly information, to select background materials for 

in-scene calibration.  AutoMatch also employs a novel approach for generating a set of 

possible image signatures for the target of interest that captures both the variability of 

target reflectance signatures and the uncertainty of the true identity of background 

materials used for the in-scene calibration.  The most significant contribution of 

AutoMatch is its ability to detect a range of target materials while requiring the user to 

only specify target reflectance signatures and a generic library of either vegetation or soil 

reflectance signatures.  Thus, AutoMatch bypasses the complexity of both detailed 

atmospheric calibration and the MODTRAN4-based methods introduced by Healey and 

Slater.  Additional contributions stemming from the development of AutoMatch are as 

follows: 

1) Our comparison tests between AutoMatch and the FLAASH-SAM algorithm 

demonstrate the ability of a nearly-autonomous, in-scene calibration signature 

matching algorithm to perform as well or better than an algorithm using 

detailed atmospheric correction.  These tests used 64 types of target materials 

and seven hyperspectral images to verify performance results, making our 

tests more comprehensive than any tests presented in the technical literature. 

2) We demonstrate through experimental testing with actual hyperspectral 

imagery that the Target-Constrained Interference-Minimized Filter (TCIMF) 

proposed by Ren and Change (2000) achieves better detection results with our 

generated target signatures than target subspace methods based on the 

methods of Healey and Slater and Thai and Healey.  We also revealed that the 

non-negativity test contained in the Thai-Healey method can limit the utility 
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of the algorithm due to its subjective nature and potentially detrimental impact 

on detection results. 

3) Analysis of our tests results revealed that certain target materials are 

extremely difficult to detect with any of the methods we tested.  This insight is 

valuable in guiding future research into detection methods that are more 

effective in dealing with these targets. 

Areas for Further Research 

In both Chapters 5 and 6, we identify research areas that may lead to 

improvements in the AutoDet and AutoMatch methodologies.  From these suggested 

research areas, we feel the following are most worthy of consideration: 

1) Develop methods to accurately threshold the MSDs produced by the BACON 

and FAST-MCD detectors.  The original method given by Billor, Hadi, and 

Velleman for BACON, and the scaling methods proposed for FAST-MCD 

assume the multivariate data is Gaussian, and hence use a quantile from the 

Chi-Square distribution as the MSD threshold.  For hyperspectral data that 

deviates from the Gaussian assumption, a Chi-Square threshold can lead to an 

increase in false alarms and decrease the confidence the detection results. 

2) Identify more accurate methods for automatically clustering hyperspectral 

image data.  As we illustrated in Chapter 5, our combination of the Color 

Method with k-means provides a satisfactory means for automatic clustering, 

but more accurate solutions can further increase the detection accuracy of the 

AutoDet methodology. 
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3) Investigate methods for incorporating target and background signature 

variability in the TCIMF method used in AutoMatch.  In the current 

implementation, we only use the mean vectors of the generated target 

signatures and background clusters in TCIMF.  Though we achieved good 

detection results with this approach, the TCIMF detector is theoretically 

capable of accommodating a better representation of the target and 

background materials.  The challenge in exploiting this capability, however, is 

determining the optimal representation of target and background variability 

that leads to the detection of more targets without reducing the separability 

between the two classes to the extent that false alarms increase. 

In addition to these three research areas, we also advocate further development of 

the target detection framework described in Chapter 1.  By using AutoDet and 

AutoMatch as the anomaly detection and signature matching components of this 

framework, the fusion methodology is the remaining piece of the architecture requiring 

development.  Should a successful fusion method be devised, we believe that the 

completed target detection framework will provide an autonomous target detection 

method that is practical for a diverse set of users and that achieves higher detection 

accuracy than can be attained by either anomaly detection or signature matching alone. 
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Appendix A:  Signatures of Dispersed Outliers Used in k-Means Robustness Tests 

This appendix contains the mean vectors of the materials used as dispersed outliers in the 

k-means robustness tests presented in Chapter 5.  Figures 49, 50, and 51 give the mean 

vectors for the signatures taken from the Fort A.P. Hill, D.C. Mall, and Purdue University 

images, respectively.  The error bars in each figure denote one standared deviation above 

and below the mean in each spectral band for the respective material signatures. 

 
Figure 49.  Signature Mean Vectors for Dispersed Fort A.P. Hill Outliers 
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Figure 50.  Signature Mean Vectors for Dispersed D.C. Mall Outliers 
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Figure 51.  Signature Mean Vectors for Dispersed Purdue Outliers 
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Appendix B:  Image Chips Used for k-Selection Tests 

This appendix contains true color representations of the six hyperspectral images used to 

compare the Calinski-Harabasz, Silhouette, and Color methods in the k-selection tests of 

Chapter 5. 

 

 

 

 
 

Figure 52.  Image Chip 1 (Taken from Forest Radiance I Dataset) 
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Figure 53.  Image Chip 2 (Taken from Desert Radiance II Dataset) 
 
 
 
 

 
 

Figure 54.  Image Chip 3 (Taken from Forest Radiance I Dataset) 



305 

 

 
 

Figure 55.  Image Chip 4 (Taken from D.C. Mall AVIRIS Image) 
 
 

 
 

Figure 56.  Image Chip 5 (Taken from Purdue HYMAP Image) 
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Figure 57.  Image Chip 6 (Taken from Purdue HYMAP Image) 
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Appendix C:  Image Scenes 

This appendix contains color renditions of the hyperspectral image scenes used 

throughout this dissertation.  The numbering scheme used with some of the images 

(Scene 1, Scene 2, etc.) refers to a large set of images, some of which were not used in 

this dissertation; therefore, it may appear as though some images are missing.  The 

originally naming convention was retained due to the extensive use of these names in 

other documents and computer code. 
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Figure 58.  Fort A.P. Hill Image 
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Figure 59.  D.C. Mall Image 
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Figure 60.  Purdue University Image 
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Figure 61.  Scene 1 (Taken from Forest Radiance I Dataset) 
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Figure 62.  Scene 2 (Taken from Forest Radiance I Dataset) 
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Figure 63.  Scene 3 (Taken from Fort A.P. Hill Image) 
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Figure 64.  Scene 4 (Taken from Forest Radiance I Dataset) 
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Figure 65.  Scene 5 (Taken from Desert Radiance II Dataset) 
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Figure 66.  Scene 6 (Taken from Desert Radiance II Dataset) 
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Figure 67.  Scene 7 (Taken from Desert Radiance II Dataset) 
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Figure 68.  Scene 8 (Taken from Desert Radiance II Dataset) 
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Figure 69.  Scene 9 (Taken from Desert Radiance II  Dataset) 
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Figure 70.  Scene 12 (Taken from Forest Radiance I Dataset) 
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Figure 71.  Scene 13 (Taken from Forest Radiance I Dataset) 
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Figure 72.  Scene 17 (Taken from Forest Radiance I Dataset) 
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Figure 73.  Scene 19 (Taken from the MAD 98 Site 19 Data Fusion Dataset) 
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Appendix D:  Taguchi Experimental Designs 

This appendix contains the Taguchi experimental designes used in the robust parameter 

designs of the AutoDet-BACON and AutoDet-FASTMCD methods in Chapter 5.  

Definitions for the factors and levels can be found in Chapter 5. 
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Table 40.  Experimental Design for AutoDet-BACON Robust Parameter Design 

 

Factor Design 
Point A B C D E 

1 -1 -1 -1 1 1 
2 1 -1 -1 1 1 
3 -1 1 -1 1 1 
4 1 1 -1 1 1 
5 -1 -1 1 1 1 
6 1 -1 1 1 1 
7 -1 1 1 1 1 
8 1 1 1 1 1 
9 -1 -1 -1 2 1 
10 1 -1 -1 2 1 
11 -1 1 -1 2 1 
12 1 1 -1 2 1 
13 -1 -1 1 2 1 
14 1 -1 1 2 1 
15 -1 1 1 2 1 
16 1 1 1 2 1 
17 -1 -1 -1 3 1 
18 1 -1 -1 3 1 
19 -1 1 -1 3 1 
20 1 1 -1 3 1 
21 -1 -1 1 3 1 
22 1 -1 1 3 1 
23 -1 1 1 3 1 
24 1 1 1 3 1 
25 -1 -1 -1 4 1 
26 1 -1 -1 4 1 
27 -1 1 -1 4 1 
28 1 1 -1 4 1 
29 -1 -1 1 4 1 
30 1 -1 1 4 1 
31 -1 1 1 4 1 
32 1 1 1 4 1 
33 -1 -1 -1 1 2 
34 1 -1 -1 1 2 
35 -1 1 -1 1 2 
36 1 1 -1 1 2 
37 -1 -1 1 1 2 
38 1 -1 1 1 2 
39 -1 1 1 1 2 
40 1 1 1 1 2 
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Table 40 (con’t) 
Factor Design 

Point A B C D E 
41 -1 -1 -1 2 2 
42 1 -1 -1 2 2 
43 -1 1 -1 2 2 
44 1 1 -1 2 2 
45 -1 -1 1 2 2 
46 1 -1 1 2 2 
47 -1 1 1 2 2 
48 1 1 1 2 2 
49 -1 -1 -1 3 2 
50 1 -1 -1 3 2 
51 -1 1 -1 3 2 
52 1 1 -1 3 2 
53 -1 -1 1 3 2 
54 1 -1 1 3 2 
55 -1 1 1 3 2 
56 1 1 1 3 2 
57 -1 -1 -1 4 2 
58 1 -1 -1 4 2 
59 -1 1 -1 4 2 
60 1 1 -1 4 2 
61 -1 -1 1 4 2 
62 1 -1 1 4 2 
63 -1 1 1 4 2 
64 1 1 1 4 2 
65 -1 -1 -1 1 3 
66 1 -1 -1 1 3 
67 -1 1 -1 1 3 
68 1 1 -1 1 3 
69 -1 -1 1 1 3 
70 1 -1 1 1 3 
71 -1 1 1 1 3 
72 1 1 1 1 3 
73 -1 -1 -1 2 3 
74 1 -1 -1 2 3 
75 -1 1 -1 2 3 
76 1 1 -1 2 3 
77 -1 -1 1 2 3 
78 1 -1 1 2 3 
79 -1 1 1 2 3 
80 1 1 1 2 3 
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Table 40 (con’t) 
Factor Design 

Point A B C D E 
81 -1 -1 -1 3 3 
82 1 -1 -1 3 3 
83 -1 1 -1 3 3 
84 1 1 -1 3 3 
85 -1 -1 1 3 3 
86 1 -1 1 3 3 
87 -1 1 1 3 3 
88 1 1 1 3 3 
89 -1 -1 -1 4 3 
90 1 -1 -1 4 3 
91 -1 1 -1 4 3 
92 1 1 -1 4 3 
93 -1 -1 1 4 3 
94 1 -1 1 4 3 
95 -1 1 1 4 3 
96 1 1 1 4 3 
97 -1 -1 -1 1 4 
98 1 -1 -1 1 4 
99 -1 1 -1 1 4 
100 1 1 -1 1 4 
101 -1 -1 1 1 4 
102 1 -1 1 1 4 
103 -1 1 1 1 4 
104 1 1 1 1 4 
105 -1 -1 -1 2 4 
106 1 -1 -1 2 4 
107 -1 1 -1 2 4 
108 1 1 -1 2 4 
109 -1 -1 1 2 4 
110 1 -1 1 2 4 
111 -1 1 1 2 4 
112 1 1 1 2 4 
113 -1 -1 -1 3 4 
114 1 -1 -1 3 4 
115 -1 1 -1 3 4 
116 1 1 -1 3 4 
117 -1 -1 1 3 4 
118 1 -1 1 3 4 
119 -1 1 1 3 4 
120 1 1 1 3 4 
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Table 40 (con’t) 
Factor Design 

Point A B C D E 
121 -1 -1 -1 4 4 
122 1 -1 -1 4 4 
123 -1 1 -1 4 4 
124 1 1 -1 4 4 
125 -1 -1 1 4 4 
126 1 -1 1 4 4 
127 -1 1 1 4 4 
128 1 1 1 4 4 
129 -1 -1 -1 1 5 
130 1 -1 -1 1 5 
131 -1 1 -1 1 5 
132 1 1 -1 1 5 
133 -1 -1 1 1 5 
134 1 -1 1 1 5 
135 -1 1 1 1 5 
136 1 1 1 1 5 
137 -1 -1 -1 2 5 
138 1 -1 -1 2 5 
139 -1 1 -1 2 5 
140 1 1 -1 2 5 
141 -1 -1 1 2 5 
142 1 -1 1 2 5 
143 -1 1 1 2 5 
144 1 1 1 2 5 
145 -1 -1 -1 3 5 
146 1 -1 -1 3 5 
147 -1 1 -1 3 5 
148 1 1 -1 3 5 
149 -1 -1 1 3 5 
150 1 -1 1 3 5 
151 -1 1 1 3 5 
152 1 1 1 3 5 
153 -1 -1 -1 4 5 
154 1 -1 -1 4 5 
155 -1 1 -1 4 5 
156 1 1 -1 4 5 
157 -1 -1 1 4 5 
158 1 -1 1 4 5 
159 -1 1 1 4 5 
160 1 1 1 4 5 
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Table 40 (con’t) 
Factor Design 

Point A B C D E 
161 -1 -1 -1 1 6 
162 1 -1 -1 1 6 
163 -1 1 -1 1 6 
164 1 1 -1 1 6 
165 -1 -1 1 1 6 
166 1 -1 1 1 6 
167 -1 1 1 1 6 
168 1 1 1 1 6 
169 -1 -1 -1 2 6 
170 1 -1 -1 2 6 
171 -1 1 -1 2 6 
172 1 1 -1 2 6 
173 -1 -1 1 2 6 
174 1 -1 1 2 6 
175 -1 1 1 2 6 
176 1 1 1 2 6 
177 -1 -1 -1 3 6 
178 1 -1 -1 3 6 
179 -1 1 -1 3 6 
180 1 1 -1 3 6 
181 -1 -1 1 3 6 
182 1 -1 1 3 6 
183 -1 1 1 3 6 
184 1 1 1 3 6 
185 -1 -1 -1 4 6 
186 1 -1 -1 4 6 
187 -1 1 -1 4 6 
188 1 1 -1 4 6 
189 -1 -1 1 4 6 
190 1 -1 1 4 6 
191 -1 1 1 4 6 
192 1 1 1 4 6 
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Table 41.  Experimental Design for AutoDet-FASTMCD Robust Parameter Design 
Factor Design 

Point A B C D 
1 -1 -1 1 1 
2 1 -1 1 1 
3 -1 1 1 1 
4 1 1 1 1 
5 -1 -1 2 1 
6 1 -1 2 1 
7 -1 1 2 1 
8 1 1 2 1 
9 -1 -1 3 1 
10 1 -1 3 1 
11 -1 1 3 1 
12 1 1 3 1 
13 -1 -1 4 1 
14 1 -1 4 1 
15 -1 1 4 1 
16 1 1 4 1 
17 -1 -1 1 2 
18 1 -1 1 2 
19 -1 1 1 2 
20 1 1 1 2 
21 -1 -1 2 2 
22 1 -1 2 2 
23 -1 1 2 2 
24 1 1 2 2 
25 -1 -1 3 2 
26 1 -1 3 2 
27 -1 1 3 2 
28 1 1 3 2 
29 -1 -1 4 2 
30 1 -1 4 2 
31 -1 1 4 2 
32 1 1 4 2 
33 -1 -1 1 3 
34 1 -1 1 3 
35 -1 1 1 3 
36 1 1 1 3 
37 -1 -1 2 3 
38 1 -1 2 3 
39 -1 1 2 3 
40 1 1 2 3 

 



331 

Table 41 (con’t) 
Factor Design 

Point A B C D 
41 -1 -1 3 3 
42 1 -1 3 3 
43 -1 1 3 3 
44 1 1 3 3 
45 -1 -1 4 3 
46 1 -1 4 3 
47 -1 1 4 3 
48 1 1 4 3 
49 -1 -1 1 4 
50 1 -1 1 4 
51 -1 1 1 4 
52 1 1 1 4 
53 -1 -1 2 4 
54 1 -1 2 4 
55 -1 1 2 4 
56 1 1 2 4 
57 -1 -1 3 4 
58 1 -1 3 4 
59 -1 1 3 4 
60 1 1 3 4 
61 -1 -1 4 4 
62 1 -1 4 4 
63 -1 1 4 4 
64 1 1 4 4 
65 -1 -1 1 5 
66 1 -1 1 5 
67 -1 1 1 5 
68 1 1 1 5 
69 -1 -1 2 5 
70 1 -1 2 5 
71 -1 1 2 5 
72 1 1 2 5 
73 -1 -1 3 5 
74 1 -1 3 5 
75 -1 1 3 5 
76 1 1 3 5 
77 -1 -1 4 5 
78 1 -1 4 5 
79 -1 1 4 5 
80 1 1 4 5 
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Table 41 (con’t) 
Factor Design 

Point A B C D 
81 -1 -1 1 6 
82 1 -1 1 6 
83 -1 1 1 6 
84 1 1 1 6 
85 -1 -1 2 6 
86 1 -1 2 6 
87 -1 1 2 6 
88 1 1 2 6 
89 -1 -1 3 6 
90 1 -1 3 6 
91 -1 1 3 6 
92 1 1 3 6 
93 -1 -1 4 6 
94 1 -1 4 6 
95 -1 1 4 6 
96 1 1 4 6 
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Appendix E:  Taguchi Main Effects and Interaction Plots 

This appendix contains the main effects and interaction plots for the robust parameter 

design experiments presented in Chapter 5.  Detailed definitions of the factors and levels 

used in these plots can be found in Chapter 5. 

 

 
Figure 74.  Main Effect Plot for AutoDet-BACON Experiment 
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Figure 75.  Interaction Plots for Main Factors (AutoDet-BACON) 

 
 

 
Figure 76.  Normalization-Noise Interaction Plots (AutoDet-BACON) 
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Figure 77.  Standardization-Noise Interaction Plots (AutoDet-BACON) 

 
 

 
Figure 78.  Threshold-Noise Interaction Plots (AutoDet-BACON) 
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Figure 79.  Features-Noise Interaction Plots (AutoDet-BACON) 
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Figure 80.  Main Effects Plot for AutoDet-FASTMCD Experiment) 

 
 

 
Figure 81.  Interaction Plots for Main Effects (AutoDet-FASTMCD) 
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Figure 82.  Normalization-Noise Interaction Plots (AutoDet-FASTMCD) 

 
 

 
Figure 83.  Standardization-Noise Interaction Plots (AutoDet-FASTMCD) 
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Figure 84.  Features-Noise Interaction Plots (AutoDet-FASTMCD) 
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Appendix F:  Anomaly Detector Comparison Test Output Images 

This appendix contains the output images for the anomaly detection comparison 

tests performed in Chapter 5.  For each of the images used in the test, the Mahalanobis 

Squared Distance (MSD) images, and binary target images produced by each detector are 

given.  The target mask for each image is also provided.  When viewing these images, 

several factors must be considered.  First, the target images are based on a threshold 

value that may not be optimal for the respective detection methods.  For the AutoDet-

BACON, CBAD, and SSRX methods, the threshold is set to the 0.9999-quantile of the 

Chi-Square distribution with p=30 degrees of freedom.  This distribution was used based 

on a Guassian assumption for the data that may have varying degrees of validity for the 

different detectors.  For the AutoDet-FASTMCD method, the threshold is established 

using the zero-slope method discussed in Chapter 5 since the MSDs from this detector are 

produced from a trimmed elliptically-contoured distribution for which the distribution of 

corresponding MSDs is not known.  The consequence of thresholding the MSDs in these 

ways is that the resulting thresholds will likely lie at different quantiles of the actual 

MSD distributions for the different detectors.  In other words, the target images generally 

do not represent the same region of the respective OC curves for each detector. 

The second factor to consider when viewing the images in this appendix is that 

the gray-scale MSD images are also based on a threshold that establishes the bin widths 

for the 256 shades of gray.  Because the MSDs for some outliers are extremely high, 

setting the bin widths based on the lowest and highest MSD values will generally produce 

a black image with only one or two white dots.  To make better use of the dynamic range 

of the gray-scale, we use the 0.9999-quantile of the Chi-Square distribution with p=30 
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degrees of freedom as the maximum value for the AutoDet-BACON, CBAD, and SSRX 

methods.  This threshold seems reasonable since it will cause all pixels that appear as 

outliers in the target image to appear white, while better illustrating the relative MSD 

values for the remaining pixels.  For the AutoDet-FASTMCD method we use the 0.97-

quantile of all the MSDs since, as before, the Chi-Square distribution assumption for the 

FAST-MCD MSDs is much less valid.  The end result of this strategy for creating the 

gray-scale MSD images is that comparisons between them should be avoided.  Rather, 

these images should be used to better understand the strengths and weaknesses of the 

respective detectors. 

As a final note concerning the images in the appendix, the color scheme used in 

the target masks is as follows: black represents non-target pixels in the image; white 

denotes target pixels used in the OC curve computations in Chapter 5; and red signifies 

border pixels for which the identity of the pixel could not be verified.  This latter 

category of pixels is not included in OC curve computations. 
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Figure 85.  Target Images for Anomaly Detector Comparisons (Scene 5) 
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Figure 86.  MSD Images for Anomaly Detector Comparisons (Scene 5) 
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Figure 87.  Target Images for Anomaly Detector Comparisons (Scene 6) 
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Figure 88.  MSD Images for Anomaly Detector Comparisons (Scene 6) 
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Figure 89.  Target Images for Anomaly Detector Comparisons (Scene 7) 
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Figure 90.  MSD Images for Anomaly Detector Comparisons (Scene 7) 
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Figure 91.  Target Images for Anomaly Detector Comparisons (Scene 12) 
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Figure 92.  MSD Images for Anomaly Detector Comparisons (Scene 12) 
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Figure 93.  Target Images for Anomaly Detector Comparisons (Scene 13) 
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Figure 94.  MSD Images for Anomaly Detector Comparisons (Scene 13) 
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Figure 95.  Target Images for Anomaly Detector Comparisons (Scene 17) 
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Figure 96.  MSD Images for Anomaly Detector Comparisons (Scene 17) 



354 

 

 
Figure 97.  Target Images for Anomaly Detector Comparisons (Scene 19) 
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Figure 98.  MSD Images for Anomaly Detector Comparisons (Scene 19) 
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Appendix G:  Generator Reflectance Signature Libraries 

This appendix contains plots of the reflectance signatures contained in the generator 

signature libraries used in the AutoMatch detector described in Chapter 6.  These 

signatures are used in Equation (6.5) to generate target image signatures for the target 

material being detected. 

 

 
Figure 99.  Forest Radiance Tree Library Reflectance Signatures 
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Figure 100.  Generic Tree Library Reflectance Signatures 

 
 

 
Figure 101.  Forest Radiance Soil Reflectance Library Reflectance Signatures 
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Figure 102.  Generic Soil Library Reflectance Signatures 

 
 

 
Figure 103.  Desert Radiance Soil Library Reflectance Signatures 
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Figure 104.  Generic Brush Library Reflectance Signatures 



360 

Bibliography 

Achard, V., A. Landrevie and J.C. Fort. "Anomalies Detection in Hyperspectral Imagery 
Using Projection Pursuit Algorithm," SPIE Conference on Image and Signal 
Processing for Remote Sensing X, 5573: 193-202 (2004). 

 
Ammeraal, L. Programming Principles in Computer Graphics. New York: Wiley, 1992. 
 
Atkinson, Anthony C. "Stalactite Plots and Robust Estimation for the Detection of 

Multivariate Outliers," in New Directions in Statistical Data Analysis and 
Robustness, S. Morgenthaler, E. Ronchetti and W.A. Stahel, Eds, Basel: 
Birkhauser, 1993, pp. 1-8. 

 
---. "Fast Very Robust Methods for the Detection of Multiple Outliers," Journal of the 

American Statistical Association, 89:1329-1339 (December 1994). 
 
Bajorski, Peter and Emmett J. Ientilucci. "Geometric Basis-Vector Selection Methods and 

Subpixel Target Detection as Applied to Hyperspectral Imagery," IEEE 
International Geoscience and Remote Sensing Symposium, 2004 (IGARSS '04), 5: 
3211-3214 (2004). 

 
Bajorski, Peter, Emmett J. Ientilucci and John R. Schott. "Comparison of Basis-Vector 

Selection Methods for Target and Background Subspaces as Applied to Subpixel 
Target Detection," SPIE Conference on Algorithms and Technologies for 
Multispectral, Hyperspectral, and Ultraspectral Imagery X, 5425: 97-108 (2004). 

 
Barnett, Vic. "The Ordering of Multivariate Data," Journal of the Royal Statistical 

Society, Series A, 138:318-344 (1976). 
 
Barnett, Vic and Toby Lewis. Outliers in Statistical Data, 3rd Ed. Chichester, UK: John 

Wiley & Sons, Inc., 1994. 
 
Beale, E.M.L. "Euclidean Cluster Analysis," Bulletin of the International Statistical 

Institute: Proceedings of the 37th Session, 2: 92-94 (1969). 
 
Bebbington, A.C. "A Method of Bivariate Trimming for Robust Estimation of the 

Correlation Coefficient," Applied Statistics, 27:221-226 (1978). 
 
Becker, Claudia and Ursula Gather. "The Masking Breakdown Point of Multivariate 

Outlier Identification Rules," Journal of the American Statistical Association, 
94:947-955 (September 1999). 

 
Beckman, R.J. and R.D. Cook. "Outlier...s," Technometrics, 25:119-163 (May 1983). 
 



361 

Bernoulli, Daniel and C.G. Allen. "The Most Probable Choice Between Severel 
Discrepant Observations and the Formation Therefrom of the Most Likely 
Induction," Biometrika, 48:3-13 (1961). 

 
Billor, Nedret, Ali S. Hadi and Paul F. Velleman. "BACON: Blocked Adaptive 

Computationally Efficient Outlier Nominators," Computational Statistics & Data 
Analysis, 34:279-298 (2000). 

 
Boardman, J.W., F.A. Kruse and R.O. Green. "Mapping Target Signatures via Partial 

Unmixing of AVIRIS Data," Fifth JPL Airborne Earth Science Workshop, JPL 
Publication 95-1: 23-26 (1995). 

 
Butler, R.W., P.L. Davies and M. Jhun. "Asymptotics for the Minimum Covariance 

Determinant Estimator," The Annals of Statistics, 21:1385-1400 (1993). 
 
Calinski, R.B. and J. Harabasz. "A Dendrite Method for Cluster Analysis," 

Communications in Statistics, 3:1-27 (1974). 
 
Campbell, N.A. "Robust Procedures in Multivariate Analysis I: Robust Covariance 

Estimation," Applied Statistics, 29:231-237 (1980). 
 
Carlotto, Mark J. "A Cluster-based Approach for Detecting Man-made Objects and 

Changes in Imagery," IEEE Transactions on Geoscience and Remote Sensing, 
43:374-387 (February 2005). 

 
Caroni, C. and P. Prescott. "Sequential Application of Wilks's Multivariate Outlier Test," 

Applied Statistics, 41:355-364 (1992). 
 
Catterall, Stephen. "Anomaly Detection Based on the Statistics of Hyperspectral 

Imagery," SPIE Conference on Imagery Spectroscopy X, 5546: 171-178 (2004). 
 
Chang, Chein-I and Shao-Shan Chiang. "Anamoly Detection and Classification for 

Hyperspectral Imagery," IEEE Transactions on Geoscience and Remote Sensing, 
40:1314-1325 (June 2002). 

 
Chang, Chein-I. Hyperspectral Imaging: Techniques for Spectral Detection and 

Classification. New York: Kluwer Academic/Plenum Publishers, 2003. 
 
Chen, Wanhui, Liangyun Liu, Chao Zhang, Jihua Wang, Jindi Wang and Yuchun Pan. 

"Monitoring the Seasonal Bare Soil Areas in Beijing Using Multi-Temporal TM 
Images," Proceedings of the 2004 International Geoscience and Remote Sensing 
Symposium, 5: 3379-3382  

 
Chiang, Leo H., Randy J. Pell and Mary Beth Seasholtz. "Exploring Process Data with 

the Use of Robust Outlier Detection Algorithms," Journal of Process Control, 
13:437-449 (2003). 



362 

Chiang, Shao-Shan, Chein-I Chang and I.W. Ginsberg. "Unsupervised Target Detection 
in Hyperspectral Images Using Projection Pursuit," IEEE Transactions on 
Geoscience and Remote Sensing, 39:1380-1391 (July 2001). 

 
Clare, Phil, Mark Bernhardt, William Oxford, Sean Murphy, Peter Godfree and Vicky 

Wilkinson. "A New Approach to Anomaly Detection in Hyperspectral Images," 
SPIE Conference on Algorithms and Technologies for Multispectral, 
Hyperspectral, and Ultraspectral Imagery IX, 5093: 17-28 (2003). 

 
Croux, Christophe and A. Ruiz-Gazen. "A Fast Algorithm for Robust Principal 

Components Based on Projection Pursuit," COMPSTAT 96, 211-216 (1996). 
 
Croux, Christophe and Gentiane Haesbroeck. "Influence Function and Efficiency of the 

Minimum Covariance Determinant Scatter Matrix Estimator," Journal of 
Multivariate Analysis, 71:161-190 (1999). 

 
Cui, H.J. and Y.B. Ting. "Projected Median of Absolute Deviation and Its Applications," 

Journal of Systems Science and Mathematical Science, 14:63-72 (1994). 
 
David, H.A. Order Statistics. New York: Wiley, 1981. 
 
Davies, L. "The Asymptotics of Rousseeuw's Minimum Volume Ellipsoid Estimator," 

The Annals of Statistics, 20:1828-1843 (1992). 
 
Donoho, D. L. "Breakdown Properties of Multivariate Location Estimators," PhD 

Qualifying Paper, Department of Statistics, Harvard University, Cambridge, MA, 
1982. 

 
Donoho, D. L. and P.J. Huber. "The Notion of Breakdown Point," in A Festschrift for 

Erich L. Lehmann, P.J. Bickel, K.A. Doksum and J.L. Hodges, Eds, Belmont, CA: 
1983, pp. 157-184. 

 
Duda, Richard O. and Peter E. Hart. Pattern Classification and Scene Analysis. New 

York: Wiley, 1973. 
 
Eaton, M.L. "Isotropic Distributions," in Encyclopedia of Statistical Sciences, S. Kotz, 

N.L. Johnson and C.B. Read, Eds, New York: Wiley, 1983, pp. 265-267. 
 
Egan, William J. and Stephen L. Morgan. "Outlier Detection in Multivariate Analytical 

Chemical Data," Analytical Chemistry, 70:2372-2379 (June 1998). 
 
Eismann, Michael T. Strategies for Hyperspectral Target Detection in Complex 

Background Environments. Draft Manuscript, Air Force Research Laboratory, 
Wright-Patterson AFB, OH,  

 



363 

Everitt, Brian S., Sabine Landau and Morven Leese. Cluster Analysis, 4th Ed. London: 
Arnold, 2001. 

 
Fang, Kai-Tai and Y. Wang. Number Theoretic Methods in Statistics. London: Chapman 

and Hall, 1994. 
 
Farrell, Michael D. and Russell M. Mersereau. "On the Impact of Covariance 

Contamination for Adaptive Detection in Hyperspectral Imaging," IEEE Signal 
Processing Letters, 12:649-652 (September). 

 
Friedman, J.H. and J.W. Tukey. "A Projection Pursuit Algorithm for Exploratory Data 

Analysis," IEEE Transactions on Computers, C-23:881-889 (1974). 
 
Gao, Shaogen, Guoying Li and Dongqian Wang. "A New Approach for Detecting 

Multivariate Outliers," Communications in Statistics--Theory and Methods, 
34:1857-1865 (2005). 

 
Gasko, M. and D. L. Donoho. "Influential Observation in Data Analysis," American 

Statistical Association Proceedings of the Business and Economic Statistics 
Section, 1: 104-109 (1982). 

 
Gaucel, J.-M., M. Guillaume and S. Bourennane. "Whitening Spacial Correlation 

Filtering for Hyperspectral Anomaly Detection," 2005 IEEE International 
Conference on Acoustics, Speech, and Signal Processing (ICASSP '05), 1: 333-
336 (2005). 

 
Gnanadesikan, R. and J.R. Kettenring. "Robust Estimates, Residuals, and Outlier 

Detection with Multiresponse Data," Biometrics, 28:81-124 (March 1972). 
 
Gonzalez, Rafael C., Richard E. Woods and Steven L. Eddins. Digital Image Processing 

Using Matlab. Upper Saddle River, NJ: Pearson Prentice Hall, 2004. 
 
Goovaerts, Pierre. "Factorial Kriging Analysis: A Useful Tool for Exploring the Structure 

of Multivariate Spatial Soil Information," Journal of Soil Science, 43:597-619 
(1992). 

 
Goovaerts, Pierre, Geoffrey Jacquez, Amanda Warner, Bob Crabtree and Andrew 

Marcus. "Detection of Local Anomalies in High Resolution Hyperspectral 
Imagery Using Geostatistical Filtering and Local Spatial Statistics," 2003 IEEE 
Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 1: 
385-394 (2004). 

 
Grossman, John M., Jeffrey Bowles, Daniel Haas, John A. Antoniades, Mitchell R. 

Grunes, Peter Palmadesso, David Gillis, Kwok Y. Tsang, Mark Baumbeck, Mark 
Daniel, John Fisher and Ioana Triandaf. "Hyperspectral Analysis and Target 
Detection System for the Adaptive Spectral Reconnaissance Program," SPIE 



364 

Conference on Algorithms for Multispectral and Hyperspectral Imagery, IV, 
3372: 2-13 (April 1998). 

 
Grubel, R. and David M. Rocke. "On the Cumulants of Affine-Equivariant Estimators in 

Elliptical Families," Journal of Multivariate Analysis, 35:203-222 (1990). 
 
Hadi, Ali S. "Identifying Multiple Outliers in Multivariate Data," Journal of the Royal 

Statistical Society, Series B, 54:761-771 (1992). 
 
---. "A Modification of a Method for the Detection of Outliers in Multivariate Samples," 

Journal of the Royal Statistical Society, Series B, 56:393-396 (1994). 
 
Hampel, F.R. "Contributions to the Theory of Robust Estimation," PhD Thesis, 

University of California, Berkeley, Berkeley, CA, 1968. 
 
---. "A Generalized Qualitative Definition of Robustness," Annals of Mathematical 

Statistics, 42:1887-1896 (1971). 
 
Hampel, F.R., E. Ronchetti, Peter J. Rousseeuw and W.A. Stahel. Robust Statistics: The 

Approach Based on Influence Functions. New York: Wiley, 1986. 
 
Hardin, Johanna and David M. Rocke. "Outlier Detection in the Multiple Cluster Setting 

Using the Minimum Covariance Determinant Estimator," Computational 
Statistics & Data Analysis, 44:625-638 (2004). 

 
---. "The Distribution of Robust Distances," Journal of Computational and Graphical 

Statistics, 14:928-946 (2005). 
 
Hawkins, Douglas M. "The Feasible Solution Algorithm for the Minimum Covariance 

Determinant Estimator in Multivariate Data," Computational Statistics & Data 
Analysis, 17:197-210 (1994). 

 
Hawkins, Douglas M. and David J. Olive. "Improved Feasible Solution Algorithms for 

High Breakdown Estimation," Computational Statistics & Data Analysis, 30:1-11 
(1999). 

 
Hazel, Geoffrey. "Multivariate Gaussian MRF for Multispectral Scene Segmentation and 

Anomaly Detection," IEEE Transactions on Geoscience and Remote Sensing, 
38:1199-1211 (May 2000). 

 
Healey, Glenn and David Slater. "Models and Methods for Automated Material 

Identification in Hyperspectral Imagery Acquired Under Unknown Illumination 
and Atmospheric Conditions," IEEE Transactions on Geoscience and Remote 
Sensing, 37:2706-2717 (1999). 

 



365 

Helbling, J.M. "Ellipsoides Minimaux de Couverture en Statistique Multivariee," PhD 
Thesis, Ecole Polytechnique Federale de Lausanne, Switzerland, 1983. 

 
Helge, H., Y. Liang and O.M. Kvalheim. "Trimmed Object Projections: A Nonparametric 

Robust Latent-Structure Decomposition Method," Chemometrics and Intelligent 
Laboratory Systems, 27:33-40 (1995). 

 
Hodges, J.L. "Efficiency in Normal Samples and Tolerance of Extreme Values for Some 

Estimates of Location," Proceedings of the 5th Berkeley Symposium on 
Mathematical Statistics and Probability, (1967). 

 
Hoffbeck, Joseph P. and David A. Landgrebe. "Covariance Matrix Estimation and 

Classification with Limited Training Data," IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 18:763-767 (1996). 

 
Hsueh, Mingkai and Chein-I Chang. "Adaptive Causal Anomaly Detection for 

Hyperspectral Imagery," 2004 IEEE International Geoscience and Remote 
Sensing Symposium (IGARSS '04), 5: 3222-3224 (2004). 

 
Huber, P.J. Robust Statistics. New York: Wiley, 1989. 
 
Hubert, M., Peter J. Rousseeuw and S. Verboven. "A Fast Method for Robust Principal 

Components with Applications to Chemometrics," Chemometrics and Intelligent 
Laboratory Systems, 60:101-111 (2002). 

 
Ientilucci, Emmett J. and Peter Bajorski. "Statistical Models for Physically Derived 

Target Sub-spaces," SPIE Proceedings on Imaging Spectrometry XI, 6302: 
(September 2006). 

 
Jackson, J.E. and G.S. Mudholkar. "Control Procedures for Residuals Associated with 

Principal Component Analysis," Technometrics, 21:341-349 (1979). 
 
Jackson, Qiong and David A. Landgrebe. "An Adaptive Method for Combined 

Covariance Estimation and Classification," IEEE Transactions on Geoscience and 
Remote Sensing, 40:182-1087 (2002). 

 
Jimenez, Luis O. and David A. Landgrebe. "Supervised Classification in High-

Dimensional Space: Geometrical, Statistical, and Asymptotical Properties of 
Multivariate Data," IEEE Transaction on Systems, Man, and Cybernetics, Part C, 
28:39-54 (1998). 

 
---. "Hyperspectral Data Analysis and Supervised Feature Reduction via Projection 

Pursuit," IEEE Transactions on Geoscience and Remote Sensing, 37:2653-2667 
(1999). 



366 

Juan, Jesus and Francisco J. Prieto. "Using Angles to Identify Concentrated Multivariate 
Outliers," Journal of the American Statistical Association, 43:311-322 (August 
2001). 

 
Kaufman, L. and Peter J. Rousseeuw. Finding Groups in Data: An Introduction to 

Cluster Analysis. New York: Wiley-Interscience, 1990. 
 
Kerekes, John P. and Dimitris Manolakis. "Improved Modeling of Background 

Distributions in an End-to-End Spectral Imaging System Model," Proceedings of 
the 2004 IEEE International Geoscience and Remote Sensing Symposium, 2: 972-
975 (2004). 

 
Kim, Myung Geun. "Multivariate Outliers and Decompositions of Mahalanobis 

Distance," Communications in Statistics--Theory and Methods, 29:1511-1526 
(2000). 

 
Kosinski, Andrzej S. "A Procedure for the Detection of Multivariate Outliers," 

Computational Statistics & Data Analysis, 29:145-161 (1999). 
 
Kwon, Heesung, S.Z. Der and Nasser M. Nasrabadi. "Adaptive Anomaly Detection 

Using Subspace Separation for Hyperspectral Imagery," Optical Engineering, 
42:3342-3351 (November 2003). 

 
Kwon, Heesung and Nasser M. Nasrabadi. "Kernel RX-Algorithm: A Nonlinear 

Anomaly Detector for Hyperspectral Imagery," IEEE Transactions on Geoscience 
and Remote Sensing, 43:388-397 (February 2005). 

 
Landgrebe, David A. "Hyperspectral Image Data Analysis," IEEE Signal Processing 

Magazine, 19:17-28  
 
---. Signal Theory Methods in Multispectral Remote Sensing. Hoboken, New Jersey: John 

Wiley & Sons, Inc., 2003. 
 
Lee, Kyungsuk. "A Subpixel Scale Target Detection Algorithm for Hyperspectral 

Imagery," PhD Dissertation, Rochester Institute of Technology, Rochester, NY, 
2003. 

 
Li, Guoying and Z. Chen. "Unknown," Journal of the American Statistical Association, 

80:759-766 (1985). 
 
Liu, Weimin and Chein-I Chang. "A Nested Spatial Window-Based Approach to Target 

Detection for Hyperspectral Imagery," 2004 IEEE International Geoscience and 
Remote Sensing Symposium (IGARSS '04), 1: 266-268 (2004). 

 



367 

Liu, Yong and Glenn Healey. "Using Nonparametric Distribution Estimates for Subpixel 
Detection of 3D Objects," SPIE Conference on Algorithms and Technologies for 
Multispectral, Hyperspectral, and Ultraspectral Imagery X, 5425: 91-96 (2004). 

 
Lopuhaa, Hendrik P. "On the Relation Between S-Estimators and M-Estimators of 

Multivariate Location and Covariance," The Annals of Statistics, 17:1662-1683 
(December 1989). 

 
Lopuhaa, Hendrik P. and Peter J. Rousseeuw. "Breakdown Points of Affine Equivariant 

Estimators of Multivariate Location and Covariance Matrices," The Annals of 
Statistics, 19:229-248 (March 1991). 

 
Lopuhaa, Hendrik P. "Highly Efficient Estimators of Multivariate Location with High 

Breakdown Point," The Annals of Statistics, 20:398-413 (March 1992). 
 
MacGregor, J.F. and T. Kourti. "Statistical Process Control of Multivariate Process," 

Control Engineering Practice, 3:403-414 (1995). 
 
Manolakis, D., C. Siracusa and G. Shaw. "Hyperspectral Subpixel Target Detection 

Using the Linear Mixing Model," IEEE Transactions on Geoscience and Remote 
Sensing, 39:1392-1409 (July 2001). 

 
Manolakis, D. and D. Marden. "Non Gaussian Models for Hyperspectral Algorithm 

Design and Assessment," IEEE International Geoscience and Remote Sensing 
Symposium, 2002 (IGARSS '02), 1: 1664-1666 (June 2002). 

 
Manolakis, D., M. Rossacci, J. Cipar, R. Lockwood, T. Cooley and J. Jacobson. 

"Statistical Characterization of Natural Hyperspectral Backgrounds Using t-
Elliptically Contoured Distributions," SPIE Conference on Algorithms and 
Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, 
5806: 56-65 (April 2005). 

 
Maronna, Ricardo A. "Robust M-Estimators of Multivariate Location and Scatter," The 

Annals of Statistics, 4:51-67 (January 1976). 
 
Maronna, Ricardo A. and Victor J. Yohai. "The Behavior of the Stahel-Donoho Robust 

Multivariate Estimator," Journal of the American Statistical Association, 90:330-
341 (March 1995). 

 
Marriott, F.H.C. "Optimization Methods of Cluster Analysis," Biometrika, 69:417-421 

(1982). 
 
Meidunas, Eduardo. "Robust Estimation of Mahalanobis Distances in Hyperspectral 

Images," PhD Dissertation, Department of Electrical and Computer Engineering, 
Air Force Institute of Technology, Wright-Patterson AFB, December 2006. 



368 

Moon, T.K. "The Expectation-Maximization Algorithm," IEEE Signal Processing 
Magazine, 31:47-60 (May 1993). 

 
Myers, Raymond H. and Douglas C. Montgomery. Response Surface Methodology:  

Process and Product Optimization Using Designed Experiments. New York: John 
Wiley &Sons, Inc., 1995. 

 
Neville, R.A., K. Staenz, T. Szeredi, J. Lefebvre and P. Hauff. "Automatic Endmember 

Extraction from Hyperspectral Data for Mineral Exploration," Fourth 
International Airborne Remote Sensing Conference/21st Canadian Symposium on 
Remote Sensing, 1: 891-896 (June 1999). 

 
Oigard, T.A. and A. Hanssen. "The Multivariate Normal Inverse Gaussian Heavy-Tailed 

Distribution: Simulation and Estimation," Proceedings of the IEEE International 
Conference on Acoustics, Speech, and Signal Processing, 2: 1489-1492 (2002). 

 
Pan, Jian-Xin, Wing-Kam Fung and Kai-Tai Fang. "Multiple Outlier Detection in 

Multivariate Data Using Projection Pursuit Techniques," Journal of Statistical 
Planning and Inference, 83:153-167 (2000). 

 
Pan, Zhihong, Glenn Healey and David Slater. "Modeling the Spectral Variability of 

Ground Irradiance Functions," SPIE Conference on Algorithms and Technologies 
for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, 4049: 82-93 
(2000). 

 
Rao, C.R. "The Use and Interpretation of Principle Component Analysis in Applied 

Research," Sankhya, 26:329-358 (1964). 
 
Reed, Irving S. and Xiaoli Yu. "Adaptive Multiple-Band CFAR Detection of an Optical 

Pattern with Unknown Spectral Distribution," IEEE Proceedings on Acoustics, 
Speech, and Signal Processing, 38:1760-1770 (October 1990). 

 
Ren, Hsuan and Chein-I Chang. "Target-Constrained Interference-Minimized Approach 

to Subpixel Target Detection for Hyperspectral Images," Optical Engineering, 
39:3138-3145 (December 2000). 

 
Richards, John A. and Xiuping Jia. Remote Sensing Digital Image Analysis: An 

Introduction, 3rd Ed. Berlin: Springer-Verlag, 1999. 
 
Riley, Ronald, Rob K. Newsom and Aaron K Andrews. "Anomaly Detection in Noisy 

Hyperspectral Imagery," SPIE Conference on Imaging Spectrometry X, 5546: 
159-170 (2004). 

 
Rocke, David M. and David L. Woodruff. "Computation of Robust Estimates of 

Multivariate Location and Shape," Statistica Neerlandica, 47:27-42 (1993). 



369 

Rocke, David M. "Robustness Properties of S-Estimators of Multivariate Location and 
Shape in High Dimension," The Annals of Statistics, 24:1327-1345 (1996). 

 
Rocke, David M. and David L. Woodruff. "Identification of Outliers in Multivariate 

Data," Journal of the American Statistical Association, 91:1047-1061 (September 
1996). 

 
Rosario, Dalton S. "Highly Effective Logistic Regression Model for Signal (Anomaly) 

Detection," IEEE International Conference on Acoustics, Speech, and Signal 
Processing (ICASSP '04), 1: 817-820 (2004). 

 
Rouse, J.W., R.H. Haas, J.A. Schell and D.W. Deering. "Monitoring Vegetation Systems 

in the Great Plains with Third ERTS," ERTS Symposium, NASA No. SP-351: 
309-317  

 
Rousseeuw, Peter J. "Multivariate Estimation with High Breakdown Point," Fourth 

Pannonian Symposium on Mathematical Statistics and Probability, (September 4, 
1983). 

 
Rousseeuw, Peter J. and Annick M. Leroy. Robust Regression and Outlier Detection. 

New York: John Wiley & Sons, Inc., 1987. 
 
Rousseeuw, Peter J. and Bert C. van Zomeren. "Unmasking Multivariate Outliers and 

Leverage Points," Journal of the American Statistical Association, 85:633-639 
(September 1990). 

 
Rousseeuw, Peter J. and C. Croux. "Alternatives to the Median Absolute Deviation," 

Journal of the American Statistical Association, 88:1273-1283 (1993). 
 
Rousseeuw, Peter J. and Katrien van Driessen. "A Fast Algorithm for the Minimum 

Covariance Determinant Estimator," Technometrics, 41:212-223 (August 1999). 
 
Schaum, Alan P. and Alan D. Stocker. "The Stochastic Mixing Model," 1997 

International Symposium on Spectral Sensing Research, (14-17 December 1997). 
 
Schaum, Alan P. "Joint Subspace Detection of Hyperspectral Targets," Proceedings of 

the 2004 IEEE Aerospace Conference, 3: 1818-1824 (6-13 March 2004). 
 
---. "A Remedy for Nonstationarity in Background Transition Regions for Real Time 

Hyperspectral Detection," Proceedings of the 2006 IEEE Aerospace Conference, 
(4-11 March 2006). 

 
Schott, John R. Remote Sensing: The Image Chain Approach. New York: Oxford 

University Press, 1997. 



370 

Schott, John R., Kyungsuk Lee, Rolando Raqueno and Gary Hoffman. "Use of Physics 
Based Models in Hyperspectral Imagery," Proceedings of the 31st Applied 
Imagery Pattern Recognition Workshop (AIPR '02), 1: 36-42 (October 2002). 

 
Schweizer, Susan M. and Jose M.F. Moura. "Hyperspectral Imagery: Clutter Adaptation 

in Anomaly Detection," IEEE Transactions on Information Theory, 46:1855-1871 
(August 2000). 

 
---. "Efficient Detection in Hyperspectral Imagery," IEEE Transactions on Image 

Processing, 10:584-597 (April 2001). 
 
Shi, Miaohong and Glenn Healey. "Using Multiband Correlation Models for the Invariant 

Recognition of 3-D Hyperspectral Textures," IEEE Transactions on Geoscience 
and Remote Sensing, 43:1201-1209 (May 2005). 

 
Slater, David and Glenn Healey. "Material Classification for 3D Objects in Aerial 

Hyperspectral Images," IEEE Computer Society Conference on Computer Vision 
and Pattern Recognition, 1999, 2: 268-273 (June 1999). 

 
---. "Physics-based Model Acquisition and Identification in Airborne Spectral Images," 

Proceedings of the Eighth IEEE International Conference on Computer Vision 
(ICCV), 2001, 2: 257-262 (July 2001). 

 
Smetek, Timothy E. and Kenneth W. Bauer. "A Comparison of Multivariate Outlier 

Detection Methods for Finding Hyperspectral Anomalies," Final Report of the 
75th MORSS, (June 2006). 

 
---. "Finding Hyperspectral Anomalies Using Multivariate Outlier Detection," 

Proceedings of the 2007 IEEE Aerospace Conference, (March 2007). 
 
Stahel, W.A. "Robuste Schatzungen: Infinitesimale Optimalitat und Schatzungen von 

Kovarianzmatrizen," PhD Thesis, ETH Zurich, Zurich, Switzerland, 1981. 
 
Stein, David W.J., Scott G. Beaven, Lawrence E. Hoff, Edwin M. Winter, Alan P. 

Schaum and Alan D. Stocker. "Anomaly Detection for Hyperspectral Imagery," 
IEEE Signal Processing Magazine, 19:58-69 (January 2002). 

 
Stevenson, Brian, Rory O'Connor, William Kendall, Alan D. Stocker, William Schaff, 

Rick Holasek, Detlev Even, Drew Alexa, John Salvador, Michael T. Eismann, 
Robert Mack, Pat Kee, Steve Harris, Barry Karch and John Kershenstein. "The 
Civil Air Patrol ARCHER Hyperspectral Sensor System," SPIE Proceedings on 
Airborne ISR Systems and Applications II, 5787: 17-28 (May 2005). 

 
Suen, Pei-hsiu and Glenn Healey. "Invariant Mixture Recognition in Hyperspectral 

Images," Eighth IEEE International Conference on Computer Vision, 1: 262-267 
(July 2001). 



371 

 
Suen, Pei-hsiu, Glenn Healey and David Slater. "The Impact of Viewing Geometry on 

Matrial Discriminability in Hyperspectral Images," IEEE Transactions on 
Geoscience and Remote Sensing, 39:1352-1359 (July 2001). 

 
Tadjudin, Saldju and David A. Landgrebe. "Covariance Estimation with Limited Training 

Samples," IEEE Transactions on Geoscience and Remote Sensing, 37:2113-2118 
(1999). 

 
Thai, Bea and Glenn Healey. "Using a Linear Subspace Approach for Invariant Subpixel 

Material Identification in Airborne Hyperspectral Imaging," IEEE Computer 
Society Conference on Computer Vision and Pattern Recognition, 1999, 1: 567-
572 (June 1999). 

 
---. "Invariant Subpixel Material Detection in Hyperspectral Imagery," IEEE 

Transactions on Geoscience and Remote Sensing, 40:599-608 (March 2002). 
 
Titterington, D.M. "Estimation of Correlation Coefficients by Ellipsoidal Trimming," 

Applied Statistics, 27:227-234 (1978). 
 
Tyler, David E. "Some Results on the Existence, Uniqueness, and Computation of the M-

Estimates of Multivariate Location and Scatter," SIAM Journal on Scientific and 
Statistical Computing, 9:354-362 (March 1988). 

 
Viljoen, H. and J.H. Venter. "Identifying Multivariate Discordant Observations: A 

Computer-Intensive Approach," Computational Statistics & Data Analysis, 
40:159-172 (2002). 

 
Walczak, B. and D.L. Massart. "Robust Principle Component Regression as a Detection 

Tool for Outliers," Chemometrics and Intelligent Laboratory Systems, 27:41-54 
(1995). 

 
West, Jason E., David W. Messinger, Emmett J. Ientilucci, John P. Kerekes and John R. 

Schott. "Matched Filter Stochastic Background Characterization for 
Hyperspectral Target Detection," SPIE Conference on Algorithms and 
Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, 
5806: 1-12 (28 March 2005). 

 
Wilk, M.B. and R. Gnanadesikan. "Graphical Methods for Internal Comparisons in 

Multiresponse Experiments," Annals of Mathematical Statistics, 35:613-631  
 
Wilks, S.S. "Multivariate Statistical Outliers," Sankhya, 25:407-426 (1963). 
 
Winter, Edwin M. "Detection of Surface Mines Using Hyperspectral Sensors," 2004 

IEEE International Geoscience and Remote Sensing Symposium (IGARSS '04), 3: 
1597-1600 (2004). 



372 

 
Woodruff, David L. and David M. Rocke. "Heuristic Search Algorithms for the 

Minimum Volume Ellipsoid," Journal of Computational and Graphical Statistics, 
2:69-95 (1993). 

 
---. "Computable Robust Estimation of Multivariate Location and Shape in High 

Dimension Using Compound Estimators," Journal of the American Statistical 
Association, 89:888-896 (September 1994). 

 
Woodruff, David L. and Torsten Reiners. "Experiments With, and On, Algorithms for 

Maximum Likelihood Clustering," Computational Statistics & Data Analysis, 
47:237-253 (2004). 

 
Zani, Sergio, Marco Riani and Aldo Corbellini. "Robust Bivariate Boxplots and Multiple 

Outlier Detection," Computational Statistics & Data Analysis, 28:257-270 (1998). 
 
Zhang, Ye and Yanfeng Gu. "Kernel-Based Invariant Subspace Method for 

Hyperspectral Target Detection," IEEE International Conference on Acoustics, 
Speech, and Signal Processing, 2004 (ICASSP '04), 5: 801-804 (May 2004). 

 



373 

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of 
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an 
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

06-14-2007 
2. REPORT TYPE  

Doctoral Dissertation 
     

3. DATES COVERED (From – To) 

Jun 2004 – Jun 2007 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

4.  TITLE AND SUBTITLE 
 

Hyperspectral Imagery Target Detection Using Improved Anomaly 
Detection and Signature Matching Methods 
  
 

5c.  PROGRAM ELEMENT NUMBER 

5d.  PROJECT NUMBER 

 
5e.  TASK NUMBER 

6.  AUTHOR(S) 
 

Smetek, Timothy E., Major, USAF 
 
 
 5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 

  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/EN) 
 2950 Hobson Street, Building 642 
 WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 

     AFIT/DS/ENS/07-07 

10. SPONSOR/MONITOR’S ACRONYM(S) 
 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 N/A 

11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
       
        APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

 
13. SUPPLEMENTARY NOTES  
 
 
 
14. ABSTRACT  
     This research extends the field of hyperspectral target detection by developing autonomous anomaly detection and signature matching methodologies that reduce 
false alarms relative to existing benchmark detectors.  The proposed anomaly detection methodology adapts multivariate outlier detection algorithms for use with 
hyperspectral datasets containing thousands of high-dimensional spectral signatures.  In so doing, the limitations of existing, non-robust anomaly detectors are 
identified, an autonomous clustering methodology is developed to divide an image into homogeneous background materials, and competing multivariate outlier 
detection methods are evaluated.  To arrive at a final detection algorithm, robust parameter design methods are employed to determine parameter settings that achieve 
good detection performance over a range of hyperspectral images and targets.  The final anomaly detection algorithm is tested against existing local and global anomaly 
detectors, and is shown to achieve superior detection accuracy when applied to a diverse set of hyperspectral images. 
     The proposed signature matching methodology employs image-based atmospheric correction techniques in an automated process to transform a target reflectance 
signature library into a set of image signatures.  This set of signatures is combined with an existing linear filter to form a target detector that is shown to perform as well 
or better relative to detectors that rely on complicated, information-intensive atmospheric correction schemes.  The performance of the proposed methodology is 
assessed using a range of target materials in both woodland and desert hyperspectral scenes. 
15. SUBJECT TERMS 

Hyperspectral Imagery, Spectrum Analysis, Target Detection, Hyperspectral Anomaly Detection, Hyperspectral 
Signature Matching, Multivariate Outlier Detection, Robust Parameter Design, Atmospheric Correction, 
Multispectral 
16. SECURITY CLASSIFICATION OF: 19a.  NAME OF RESPONSIBLE PERSON 

Kenneth W. Bauer, Jr., Professor (ENS) 
a. REPORT 
 

U 

b. ABSTRACT 
 

U 

c. THIS PAGE 
 

U 

17. LIMITATION OF  
     ABSTRACT 
 
 

UU 

18. NUMBER  
      OF 
      PAGES 
 

388 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-6565, ext 4328; e-mail:  Kenneth.Bauer@afit.edu 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 



374 

 


	Hyperspectral Imagery Target Detection Using Improved Anomaly Detection and Signature Matching Methods
	Recommended Citation

	tmp.1585684764.pdf.6SYWj

