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Abstract

Hyperspectral target detection promises new operational advantages, with increasing

instrument spectral resolution and robust material discrimination. Resolving surface ma-

terials requires a fast and accurate accounting of atmospheric effects to increase detec-

tion accuracy while minimizing false alarms. This dissertation investigates deep learning

methods constrained by the processes governing radiative transfer to efficiently perform

atmospheric compensation on data collected by Long-Wave Infrared (LWIR) hyperspectral

sensors. The atmospheric compensation problem is approached from the perspective of

increasing operational demands, focusing on methodologies that accelerate data through-

put while providing accurate data products. First, the importance of atmospheric com-

pensation is illustrated from the standpoint of LWIR land cover classification followed by

an investigation of atmospheric dimension reduction methods to support radiative transfer

modeling. Next, two new atmospheric compensation algorithms are presented: DeepSet

Atmospheric Compensation (DAC) and Multimodal DeepSet Atmospheric Compensation

(MDAC). Both approaches depend on generative modeling techniques and permutation-

invariant neural network architectures to predict atmospheric transmittance, upwelling ra-

diance and downwelling radiance from in-scene data only.

Both DAC and MDAC utilized a worldwide database of atmospheric measurements

forward modeled with MODerate resolution atmospheric TRANsmission (MODTRAN)

6.0 to operate across globally and temporally-diverse atmospheric conditions. Generative

modeling techniques were used to project the forward modeled data to a low-dimensional

data manifold. Data manifold sampling resulted in realistic, spectrally-resolved transmit-

tance, upwelling radiance and downwelling radiance vectors. Additionally, MDAC also

predicts the atmospheric measurements (T, H2O, O3) that would have produced the pre-
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dicted transmittance and radiance vectors. The LWIR radiative transfer equation was used

in all network loss functions to minimize at-sensor radiance mean-squared error rather than

directly computing transmittance, upwelling and downwelling radiance mean-squared er-

ror. This modification to the network loss function provided lower reconstruction error

across a diversity of materials, leading to better performance in the remote sensing task.

Additionally, the MDAC algorithm employed a weighted atmospheric state loss function,

driven by knowledge of atmospheric radiative transfer.

Both the DAC and MDAC methods were evaluated on collected LWIR hyperspectral

data resulting in comparable performance to Fast Line-of-Sight Atmospheric Analysis of

Hypercubes - Infrared (FLAASH-IR) while reducing atmospheric compensation time. Tar-

get detection results were compared between MDAC and FLAASH-IR demonstrating com-

parable performance, however, MDAC resulted in an 8 times reduction in target detection

time. This accelerated target detection pipeline is necessary for many real-world, time

sensitive operations.

v



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Limitations and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Summary of Research Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . 7
1.5 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

II. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Hyperspectral Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Atmospheric Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 In-Scene Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Model-Based Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Temperature-Emissivity Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 TUD Vector Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.2 Multimodal Representation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.3 Permutation-Invariant Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5.4 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6 Hyperspectral Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.7 Hyperspectral Target Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

III. Analysis of Long-Wave Infrared Hyperspectral Classification
Performance Across Changing Scene Illumination . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1 Paper Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5.1 Classification Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.2 Classification Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vi



Page

3.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

IV. Fast and Effective Techniques for LWIR Radiative Transfer
Modeling: A Dimension Reduction Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1 Paper Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.2 TUD Dimension Reduction Techniques . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4.4 Radiative Transfer Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.5 Atmospheric Measurement Augmentation . . . . . . . . . . . . . . . . . . . . . 101

4.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5.1 Atmospheric Measurement Augmentation . . . . . . . . . . . . . . . . . . . . . 103
4.5.2 At-Sensor Loss Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.5.3 Dimension Reduction Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.5.4 Radiative Transfer Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.5.5 Atmospheric Measurement Estimation . . . . . . . . . . . . . . . . . . . . . . . . 113

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

V. Learning Set Representations for LWIR In-Scene Atmospheric
Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1 Paper Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3.1 Atmospheric Compensation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4.1 TUD Vector Dimension Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.4.2 In-Scene Atmospheric Compensation . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.4.3 Algorithm Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4.4 Pixel Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.5.1 Autoencoder Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.5.2 Synthetic Data Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.5.3 Real HSI Data Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

vii



Page

VI. Multimodal Representation Learning and Set Attention for
LWIR In-Scene Atmospheric Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.1 Paper Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.4 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.5.1 Multimodal Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.5.2 Set Attention for In-Scene Atmospheric

Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.5.3 Algorithm Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.5.4 Pixel Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.5.5 Target Detection Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.6.1 Multimodal Generative Model Results . . . . . . . . . . . . . . . . . . . . . . . . 167
6.6.2 Atmospheric Compensation with Synthetic Data . . . . . . . . . . . . . . . . 170
6.6.3 Collected HSI Data Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.6.4 Target Detection Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

VII. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.1 Contributions and Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A. Estimating Model Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

B. Increased Sensor Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

C. Disentangled Latent Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

viii



List of Figures

Figure Page

1 Example hyperspectral data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Planck’s function for varying temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 LWIR At-Sensor Radiance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Example At-Sensor Radiance and TUD Vector . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Temperature estimation using clear bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Example recovered emissivity spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Maximum smoothness recovered emissivity spectrum . . . . . . . . . . . . . . . . . . . 25

8 Alpha Residuals estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

9 Improved Alpha Residuals Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

10 TIGR collection locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

11 Radiosonde collection times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

12 TIGR atmospheric measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

13 MODTRAN generated TUD vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

14 TUD vector integrated area relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

15 Standard Autoencoder (AE) Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

16 Example MMAE Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

17 PCA applied to collected hyperspectral data . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

18 Classification maps for collected hyperspectral data . . . . . . . . . . . . . . . . . . . . . 53

19 RX detector results for collected LWIR data . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

20 RX decision boundary for collected LWIR data . . . . . . . . . . . . . . . . . . . . . . . . 56

21 Anomaly detector ROC curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

22 Detection maps for SMF and ACE detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ix



Figure Page

23 ROC plots for SMF and ACE detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

24 Pixel labels for land cover classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

25 Representative Training Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

26 Biased Training Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

27 Mako TUD vector after downsampling LBLRTM output . . . . . . . . . . . . . . . . . 92

28 Example AE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

29 PCA applied to TIGR TUD vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

30 AE applied to TIGR TUD vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

31 RT model training process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

32 Generated atmospheric measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

33 Brightness temperature error using augmented data . . . . . . . . . . . . . . . . . . . . 104

34 At-sensor radiance loss compared to MSE loss . . . . . . . . . . . . . . . . . . . . . . . . 106

35 Latent component effect on reconstruction error . . . . . . . . . . . . . . . . . . . . . . . 108

36 RT model error as a function of emissivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

37 RT model performance on test samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

38 TUD prediction errors after latent component estimation . . . . . . . . . . . . . . . . 114

39 Atmospheric state estimates for a given latent code . . . . . . . . . . . . . . . . . . . . 115

40 Example AE architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

41 Permutation-invariant network, φ(·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

42 Latent code prediction network, ρ(·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

43 DAC training flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

44 Example set generation result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

x



Figure Page

45 AE brightness temperature RMSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

46 DAC brightness temperature RMSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

47 DAC errors with respect to set diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

48 DAC errors for varying emissivity percentages . . . . . . . . . . . . . . . . . . . . . . . . 140

49 DAC collected data prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

50 DAC/FLAASH-IR brightness temperature RMSE . . . . . . . . . . . . . . . . . . . . . 143

51 Recovered emissivity estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

52 DAC/FLAASH-IR spectral angle errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

53 DAC spectral angle error with increasing set size . . . . . . . . . . . . . . . . . . . . . . 145

54 DAC predictions on second collected data cube . . . . . . . . . . . . . . . . . . . . . . . 146

55 MMAE architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

56 Jacobian-derived atmospheric weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

57 MDAC network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

58 MMAE loss comparison results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

59 MMAE latent space continuity results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

60 MDAC set attention for varying scene conditions . . . . . . . . . . . . . . . . . . . . . . 171

61 MDAC results for collected data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

62 AR and TES comparison for MDAC, DAC and FLAASH-IR . . . . . . . . . . . . 174

63 ROC curves for MDAC, DAC, and FLAASH-IR . . . . . . . . . . . . . . . . . . . . . . 175

64 SCR results for MDAC, DAC and FLAASH-IR . . . . . . . . . . . . . . . . . . . . . . . 176

65 Generated outputs from the MMAE model . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

66 MDAC ensemble predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

67 MDAC ensemble prediction interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

xi



Figure Page

68 High resolution TUD vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

69 Brightness temperature error using high resolution sensor . . . . . . . . . . . . . . . 189

70 Temperature measurement generation results . . . . . . . . . . . . . . . . . . . . . . . . . 192

71 Water vapor measurement generation results . . . . . . . . . . . . . . . . . . . . . . . . . . 192

72 Latent component sensitivity to generative processes . . . . . . . . . . . . . . . . . . . 193

73 Generated TUD and atmospheric state vectors . . . . . . . . . . . . . . . . . . . . . . . . 193

xii



List of Tables

Table Page

1 Study A Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Study B Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Study C Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Study D Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 MODTRAN Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Training/Test Pixel Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 1D-CNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8 Land Cover Classification Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9 Maximum F1 Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

10 Biased Data Classification Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

11 Classifier Inference Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

12 Predicted Material Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

xiii



List of Abbreviations

1D-CNN One-Dimensional Convolutional Neural Network.

AAC Autonomous Atmospheric Compensation.

AAE Adversarial Autoencoder.

ACE Adaptive Coherence/Cosine Estimator.

AE Autoencoder.

AI Artificial Intelligence.

ANN Artificial Neural Network.

AR alpha residuals.

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer.

ATREM atmospheric removal program.

AUC-BT brightness temperature RMSE area under the curve.

CAE Contractive Autoencoder.

CNN Convolutional Neural Network.

DAC DeepSet Atmospheric Compensation.

DAE Denoising Autoencoder.

ELU exponential linear unit.

EM electromagnetic.

FLAASH Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes.

FLAASH-IR Fast Line-of-Sight Atmospheric Analysis of Hypercubes - Infrared.

FPA focal plane array.

GAN Generative Adversarial Network.

GMM Gaussian Mixture Model.

GPU Graphical Processing Unit.

HEHR High Emissivity High Reflectivity.

HELR High Emissivty Low Reflectivity.

xiv



HSI Hyperspectral Imagery.

ICA Independent Component Analysis.

ILS instrument line shape.

ILSVRC ImageNet Large-Scale Visual Recognition Challenge.

ISAC In-Scene Atmospheric Compensation.

ISR Intelligence, Surveillance and Reconnaissance.

JPL Jet Propulsion Laboratory.

json JavaScript Object Notation.

KL Kullback-Leibler.

KNN K-nearest neighbors.

LBLRTM Line-by-Line Radiative Transfer Model.

LIDAR Light Detection and Ranging.

LUT look up table.

LWIR Long-Wave Infrared.

MDAC Multimodal DeepSet Atmospheric Compensation.

MMAE Multimodal Autoencoder.

MNF minimum noise fraction.

MODTRAN MODerate resolution atmospheric TRANsmission.

MSE Mean-Square Error.

MWIR midwave infrared.

NASA National Aeronautics and Space Administration.

NATO North Atlantic Treaty Organization.

NESR noise-equivalent spectral radiance.

PCA Principal Component Analysis.

PCRTM principal component radiative transfer model.

PCRTTOV principal component radiative transfer for TOVs.

xv



RBF Radial Basis Function.

ReLU Rectified Linear Unit.

RMSE root mean square error.

ROC Receiver Operating Characteristic.

RT Radiative Transfer.

RX Reed-Xiaoli.

SAE Stacked Autoencoder.

SAM Spectral Angle Mapper.

SCR Signal to Clutter Ratio.

SEBASS Spatially Enhanced Broadband Array Spectrograph System.

SMF Spectral Matched Filter.

SNR Signal to Noise Ratio.

SPIE Society of Photonic Instrumentation Engineers.

SVD singular value decomposition.

SVM Support Vector Machine.

SWIR shortwave infrared.

TES Temperature-Emissivity Separation.

TIGR Thermodynamic Initial Guess Retrieval.

TUD Transmittance, Upwelling, and Downwelling.

VAE Variational Autoencoder.

VNIR visible and near-infrared.

xvi



PHYSICS-CONSTRAINED HYPERSPECTRAL DATA EXPLOITATION ACROSS

DIVERSE ATMOSPHERIC SCENARIOS

I. Introduction

Remote sensing encompasses the science and art of collecting information about the

Earth’s surface without physically contacting the materials under investigation [1]. While

the field of remote sensing includes multifarious technologies and methodologies, this re-

search is focused on electro-optical data collected across hundreds of contiguous wave-

length measurements, known as hyperspectral remote sensing. Hyperspectral data is pas-

sively collected with sensors receptive to electromagnetic (EM) energy between 0.4 - 14 µm.

This research investigates thermal hyperspectral data, specifically the Long-Wave Infrared

(LWIR) domain encompassing 7.5 - 14 µm. Infrared-active gases such as water vapor,

ozone and carbon dioxide distort the collected LWIR data and must be accounted for, a

process known as atmospheric compensation. Performing atmospheric compensation is a

necessary data processing step to retrieve the detailed surface information measured by the

hyperspectral sensor. The hundreds of contiguous bands provide information useful for

fields of study from forestry and geology to search and rescue operations and target de-

tection [2, 3]. This research leverages machine learning and deep learning approaches to

accelerate this necessary data processing step, allowing for faster data exploitation.

The technological evolution of hyperspectral remote sensing can be traced to World War

II and the Cold War where defense satellites were some of the first technologies to collect

broadband images. Additionally, the advantages of spaceborne imaging were recognized

in the 1960s as part of the manned space programs: Mercury, Gemini and Apollo [4]. The

photographs taken by crew members aboard these missions proved detailed information
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about the Earth could be collected from space. These results accelerated development of

satellite programs such as Landsat, to collect multispectral information from unmanned

satellites. The first Landsat satellite collected multispectral data across 7 bands spanning

visible and near-infrared (VNIR) to LWIR spectrum [2]. This sensor provides repetitive

measurements of the Earth in an easily accessible digital format, allowing researchers from

diverse fields of study to leverage multispectral data. The small number of spectral chan-

nels provided by a multispectral sensor works well for land-cover classification tasks in

which materials such as forest, cropland and urban areas are easily differentiated. Landsat

continues to collect information about the Earth’s surface with Landsat 7 and 8 currently in

operation.

The success of multispectral sensors such as Landsat led to further development in im-

proving sensor spectral resolution. Scientists in the 1980s at the National Aeronautics and

Space Administration (NASA) Jet Propulsion Laboratory (JPL) are credited with creating

the first sensor with sufficient spectral resolution to be designated hyperspectral imaging.

Rather than tens of bands present in multispectral sensors with spectral resolutions ap-

proaching 100 nm, hyperspectral sensors collect across hundreds of bands with spectral

resolution on the order of 10 nm [5]. This increased spectral resolution is necessary for dif-

ferentiating similar materials within a scene, identifying concealed objects or performing

change detection with temporally-varying hyperspectral data [6].

1.1 Motivation

Hyperspectral remote sensing is a key enabling technology to increase the informa-

tion content in Intelligence, Surveillance and Reconnaissance (ISR) data products. These

products must be generated at unrivaled speeds to address many defense applications. The

North Atlantic Treaty Organization (NATO), European Defense Agency and U.S. Depart-
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ment of Defense identified the following defense applications well-suited for hyperspectral

technologies [7–10]:

• Battlespace situational awareness

• Discrimination between targets and decoys

• Defeating camouflage

• Early warning for long range missiles and space surveillance

• Detection of weapons of mass destruction

• International treaty monitoring

• Landmine detection.

Many of these applications can be addressed with monochromatic or multispectral data, but

the additional information provided by hyperspectral sensors can accelerate the decision-

making process. Additionally, VNIR/shortwave infrared (SWIR) sensors can now be found

on small unmanned aerial vehicles to support a multitude of defense use-cases [11]. Minia-

turization of LWIR sensors is limited by the size of cryogenic coolers, however, recent

breakthroughs in cryocooler designs are leading to smaller thermal detectors [12], paving

the way toward wider spread LWIR hyperspectral sensor use. These advancements can

lead to data saturation, requiring efficient algorithms and methods to produce useful data

products. As the number of LWIR data sources grow, the ability to quickly and accurately

perform atmospheric compensation becomes more important since all other data exploita-

tion relies on this processing step.

Atmospheric compensation converts measured at-sensor radiance to surface-leaving ra-

diance by estimating the vertical distribution of aerosols, water vapor and atmospheric

temperature between the sensor and target. If other meta data such as weather forecasts
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or recent atmospheric measurements are available, this estimation problem becomes more

tractable [13]. In many defense applications, meta data is not available and atmospheric

compensation must be performed quickly to support time-sensitive data products. Atmo-

spheric compensation errors can corrupt the recovered surface-leaving radiance, limiting

the data product accuracy and slowing the decision-making process.

Defense-focused hyperspectral data processing requires both fast and accurate atmo-

spheric compensation methods to address current and future security challenges. Model-

based methods relying on computationally-expensive radiative transfer calculations are ac-

curate, but often too time-consuming. Faster model-based atmospheric compensation is

possible with precomputed lookup tables containing likely atmospheric conditions to be

encountered during flight [14]. In-scene methods are ideal for real-time analysis, but are

prone to errors if model assumptions are not satisfied. These assumptions include the pres-

ence of distinct materials in the scene and a clear band to estimate ground temperature [15].

Recent advances in machine learning promise solutions to the atmospheric compensation

problem, but these methods must be validated to provide confidence in the generated data

product. As this research will demonstrate, constrained machine learning solutions depen-

dent on radiative transfer can provide both accurate and timely atmospheric compensation

estimates. Applying finely tuned machine learning and artificial intelligence algorithms to

portions of the image processing chain represents a significant step forward in advancing

hyperspectral technology.

1.2 Objective

This research identifies suitable techniques from the fields of machine learning and

deep learning to expedite atmospheric compensation and shorten target detection time. Un-

like other in-scene atmospheric compensation techniques, this approach does not involve a

manual pixel selection step performed by the user, further increasing data throughput for
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current and future high data-rate LWIR hyperspectral systems. The algorithms investigated

in this research are influenced by the equations governing transmission of EM radiation and

evaluated using domain-specific metrics. This approach allows both training and evalua-

tion performance to be placed in the context of the remote sensing task. Rather than using

mean-squared error metrics between target and prediction signals, the methods presented

here rely on domain-specific transforms for measuring model error. This results in models

tuned with preferable properties, such as low error for reflective materials.

The deep learning architectures utilized in this research are derived from generative

models and permutation-invariant networks. Breakthroughs in generative modeling have

led to ultra-realistic image generation [16, 17]. These generative approaches are applied

here to create representational atmospheric state estimates, useful for radiative transfer

modeling and atmospheric compensation. Domain knowledge is applied to interrogate

the generative model and reveal the physically-plausible predictions made as the model

is tuned. Permutation-invariant neural networks are another recent advancement in deep

learning, allowing networks to learn a fixed quantity of representative features from a

set composed of identically-defined members. This research investigates permutation-

invariant networks for predicting a single atmospheric output for a set of measured pixel

spectra. Both the permutation-invariant network and generative model are trained and eval-

uated using domain-specific information.

To evaluate the efficacy of these approaches, models are tested on collected data and

compared to established atmospheric compensation methods. Target detection is performed

to demonstrate comparable performance, while reducing overall detection time. Demon-

strating comparable performance on collected data is necessary to validate the limitations

and assumptions outlined in the next section.
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1.3 Limitations and Assumptions

The field of atmospheric compensation is extensive and well-studied in both the VNIR/SWIR

and LWIR domains. Atmospheric compensation research typically employs several limi-

tations and assumptions to make the problem tractable, while still maintaining an accurate

solution for most scenarios. The following assumptions and limitations common to most

atmospheric compensation research are applied:

• Target detection is performed in cloud-free conditions along the line of sight between

the sensor and the ground. This limits the atmospheric conditions that must be con-

sidered while maintaining an operationally relevant remote sensing configuration.

Additionally, cloud identification is not considered in this research.

• All imagery is collected or simulated in a nadir-viewing geometry with lambertian

surfaces assumed for all materials. Atmospheric compensation in off-nadir geome-

tries is more complex because of varying path lengths between the sensor and scene

objects. The method presented in [18] investigates oblique in-scene atmospheric

compensation. By applying a nadir-viewing assumption, this research remains ap-

plicable to a wide range of current sensors. Future work will consider off-nadir

extensions to this research.

• Atmospheric conditions are assumed homogeneous for all pixels within a single hy-

perspectral cube. This assumption simplifies synthetic data generation allowing for a

multitude of atmospheric conditions to be tested for an ensemble of materials. This

assumption holds for many real-world scenarios and does not limit the applicabil-

ity of this research. As sensor altitude increases, atmospheric variability across a

scene will increase. This research primarily investigates sensor altitudes between

0.15-3.05 km.
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• This research only considers LWIR data in the range 7.5-14.0 µm. Demonstrating the

utility of deep learning approaches in the LWIR domain for atmospheric conditions

is an important first step toward extending these methods to the midwave infrared

(MWIR) and VNIR/SWIR domains. Additionally, the LWIR domain is of interest

for many operational scenarios.

1.4 Summary of Research Objectives and Contributions

This section reviews the major research objectives and contributions for each research

study in this dissertation, using the nomenclature studies A - D for the results presented in

Chapters III - VI respectively. For clarity, a table outlining the objectives and contributions

is presented for each study.

Study A investigated LWIR hyperspectral classification using collected data spanning a

24 hour period. This research found that both shallow and deep classifiers perform poorly

when trained on at-sensor radiance data, rather than emissivity or surface-leaving radiance

[19]. Intentionally biasing the training data such that validation data included pixel temper-

atures outside the training data range also led to lower classification performance. Under

the biased training data configuration, the CNN classifier resulted in the highest classifi-

cation performance, although still unacceptably low for the data set. The biased training

data configuration was examined because of real-world data collection limitations, where

it is difficult to guarantee a training data set that encompasses all atmospheric conditions,

surface materials and material temperatures. By performing atmospheric compensation, all

classification results improved with nearly perfect performance for most materials. This

transformation was not easily understood by multiple neural network layers and demon-

strates a useful preprocessing method for land cover classification problems.

Study B compared dimension reduction approaches to create faster radiative transfer

models. These models can be used to support faster model-based atmospheric compen-

7



Table 1. Summary of objectives and contributions from Study A discussed in Chapter III

Objectives

AO1 Compare classification performance using temporally-varying LWIR hyperspectral
data

AO2 Evaluate how atmospheric compensation effects temporally-varying LWIR
hyperspectral data classification

Findings and Contributions

A1 Classification algorithms such as Support Vector Machine (SVM), Convolutional
Neural Network (CNN) and Artificial Neural Network (ANN) are unable to
generalize when the validation data contains material temperatures outside the
training data surface temperature distribution.

A2 The CNN classifier demonstrated a 7% higher classification accuracy than SVM
and ANN when evaluated on pixels with temperatures outside the training data
range. The large convolutional filters extracted features across multiple bands to
identify salient characteristics that were invariant to the pixel temperature biases.

A3 Performing any type of atmospheric compensation significantly improved all
classifier results. This included scenarios where the classifier was trained on pixel
temperatures not encountered in the validation set.

sation approaches relying on lookup table generation. A dimension reduction-based data

augmentation technique was introduced in Study B significantly increasing the number

of atmospheric measurements to forward model with MODerate resolution atmospheric

TRANsmission (MODTRAN). Leveraging the augmented data reduced reconstruction er-

rors, verifying the AE model required additional samples to generalize. Study B also pre-

sented a new loss function derived from the LWIR radiative transfer equation that reduced

AE reconstruction error. This loss function measured model error for a range of possi-

ble materials providing a better measure of performance compared to mean-squared error.

The radiative transfer model was created by sampling the pretrained AE latent space. This

approach accelerated radiative transfer calculations by an order of 15 while minimizing

at-sensor radiance errors.
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Table 2. Summary of objectives and contributions from Study B discussed in Chapter IV

Objectives

BO1 Utilize the LWIR radiative transfer equation to constrain Autoencoder (AE) latent
space construction

BO2 Compare dimension reduction techniques for creating a fast radiative transfer
model

Findings and Contributions

B1 A novel loss function was created that relied on the LWIR radiative transfer
equation to minimize AE reconstruction error. Compared to mean-squared error,
this physics-based loss function proved more favorable for minimizing at-sensor
radiance error.

B2 The Stacked Autoencoder (SAE) latent space was sampled with a small neural
network, resulting in a 15 times faster radiative transfer model compared to
correlated-k techniques.

B3 Utilizing the low-dimensional latent space, atmospheric state vectors could easily
be estimated from a Transmittance, Upwelling, and Downwelling (TUD) vector.
This involved optimizing the decoder inputs for the TUD vector output followed
by encoder input optimization.

B4 Data augmentation strategies were investigated to increase the number of TUD
vectors available for training. The augmentation strategy led to lower
reconstruction error and was used throughout the dissertation research to increase
the number of TUD vector training samples.

Study C demonstrated an in-scene atmospheric compensation method based on gen-

erative models and permutation-invariant networks. Rather than training on a spatially-

resolved data cube, subsets of pixels were generated that could have been selected from a

data cube. This small modification, combined with a permutation-invariant network and an

efficient at-sensor radiance set generation algorithm resulted in the DeepSet Atmospheric

Compensation (DAC) algorithm. The permutation-invariant network leveraged max pool-

ing to transform the set of N pixel representations into a one-dimensional set representation.

The DAC errors were explored both on synthetic and collected data, with comparable per-

formance to Fast Line-of-Sight Atmospheric Analysis of Hypercubes - Infrared (FLAASH-

IR) while reducing inference time.
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Table 3. Summary of objectives and contributions from Study C discussed in Chapter V

Objectives

CO1 Identify neural network architectures useful for in-scene atmospheric
compensation

CO2 Determine if neural network-based in-scene atmospheric compensation errors
correspond to known physical limitations

Findings and Contributions

C1 Permutation-invariant neural networks are useful for estimating the underlying
TUD vector from a set of pixels. The set pooling operation must be carefully
chosen such that predictions are stable as the number of pixels varies.

C2 At-sensor radiance data can be generated from a TUD library, emissivity library,
pixel temperature sampling and scene emissivity. The set generation algorithm in
[20] can be used for any LWIR experiment requiring many representations of
at-sensor radiance.

C3 In-scene atmospheric compensation using permutation-invariant networks and a
generative SAE reduces atmospheric compensation time from 67 s to 0.3 s. This
reduced inference time supports accelerated LWIR target detection.

Study D investigated the ability of permutation-invariant networks to also estimate the

atmospheric state vector (T, H2O, O3) from in-scene data. MODTRAN was used to for-

ward model the atmospheric state vector prediction, forming a second TUD estimate. This

new TUD estimate provided comparable compensation results to both DAC and FLAASH-

IR. Rather than using max pooling as was investigated in Study C, Study D leveraged

attention mechanisms to better understand what set features were dominant in atmospheric

prediction. Reflective pixels typically received the highest attention scores, a conclusion

supported by the LWIR radiative transfer equation. To understand the utility of the results

of this research, a review of LWIR hyperspectral remote sensing is presented in Chapter II.

This review also discusses methods for exploiting remote sensing data to include a variety

of machine learning and deep learning approaches.
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Table 4. Summary of objectives and contributions from Study D discussed in Chapter VI

Objectives

DO1 Determine if atmospheric state vectors (T, H2O, O3) and TUD vectors can be
recovered from in-scene data

DO2 Evaluate new set pooling operations to better understand what features the
permutation-invariant network is sensitive to.

D03 Compare target detection performance between FLAASH-IR and the new
atmospheric compensation methods developed in this dissertation

Findings and Contributions

D1 A combination of weighted atmospheric state loss, at-sensor radiance loss and
Kullback-Leibler (KL) divergence were used to create a joint atmospheric state
and TUD vector representation. The combination of these loss functions results in
lower model error, improving in-scene atmospheric compensation performance.

D2 Attention mechanisms in the set pooling operation are influenced by reflective
materials in the scene. This functionality agrees with the LWIR radiative transfer
equation as reflective materials are necessary for downwelling radiance prediction.

D3 A multimodal generative model is capable of producing physically-plausible
atmospheric state vectors and their corresponding TUD vectors. Sampling the joint
low-dimensional space identified latent components encoding the physical
parameters such as total column water vapor content, resulting in an explainable
latent code useful for deterministic generative modeling.

D4 Faster target detection is possible when using the Multimodal DeepSet
Atmospheric Compensation (MDAC) method compared to FLAASH-IR without
degrading detection performance on collected data.

1.5 Approach

All analysis in this dissertation is focused on accelerating LWIR atmospheric compen-

sation using in-scene data to support faster target detection for current and future sensors.

Chapter II describes necessary contextual information needed to develop novel atmospheric

compensation methods. This includes a review of data sources such as atmospheric mea-

surement libraries and material spectral libraries. A review of radiative transfer models

and the mechanisms governing emission, absorption and scattering of EM radiation are de-

scribed. Chapter II also provides necessary background on the neural network architectures
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explored in this work, highlighting relevant research from other domains such as machine

vision and image classification. A review of other compensation algorithms is provided

to examine strengths and weaknesses compared to the approach investigated here. Finally,

target detection methods are presented with a focus on techniques supporting near real-time

detection.

Chapter III motivates the atmospheric compensation problem by applying well-studied

deep and shallow classifiers to collected LWIR data. This research demonstrates that classi-

fication methods fail to generalize across temporally-varying cubes without first conducting

atmospheric compensation.

Chapter IV investigates generative model techniques to create a faster radiative trans-

fer model, useful for supporting model-based atmospheric compensation methods. An

atmospheric generative model is created by forming a low-dimensional data manifold with

smooth transitions between atmospheric states. Manifold components are mapped back to

known atmospheric features such as atmospheric temperature or total column water vapor

content. Through these visualizations and low-dimensional interpolations, we can verify

the generative model creates physically-plausible modifications to the atmospheric state.

Chapters V and VI develop atmospheric compensation algorithms that sample the gen-

erative model data manifold. In Chapter V, less emphasis is placed on the generative model

as it was already well defined by previous results, but a detailed error analysis is conducted

on the permutation-invariant sampling network. Chapter VI revisits both the generative

model and the sampling network to fuse multiple modalities into an in-scene atmospheric

compensation algorithm and in-scene atmospheric state estimator. Finally, Chapter VI also

demonstrates the model utility with respect to the target detection problem, showing com-

parable performance while reducing detection time.
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II. Background

2.1 Hyperspectral Remote Sensing

In the past two decades, hyperspectral remote sensing has gained significant attention

in areas such as forestry, geology, agriculture and defense because of its ability to discrim-

inate materials using hundreds of narrow band spectral channels [21]. These sensors are

carefully calibrated such that laboratory measurements contained in spectral libraries can

be directly compared to field measurements allowing for material identification. Each pixel

measurement represents a vector across all spectral channels of the sensor. After collecting

measurements for all pixels in a scene, a three dimensional data cube is formed, width by

height by spectral channel [22]. An example hyperspectral cube is shown in Figure 1 where

the spectra from a group of pixels is plotted and an image generated from a single band is

also displayed.

Figure 1. An example hyperspectral data cube is shown (top center) where plotting the spectral data
for a single pixel results in a radiance curve (bottom left) and visualizing a single band for all pixels
creates an image (bottom right).

To collect data across hundreds of spectral bands, the incident electromagnetic energy

must be dispersed across the sensor’s focal plane array (FPA) in such a way that both

spectral and spatial information is encoded. This is achieved with a FPA consisting of a
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spatial and spectral dimension rather than two spatial dimensions for panchromatic sensors.

A single row or column of pixels within the scene is projected onto the two-dimensional

FPA array. Along the FPA spectral axis, the electromagnetic (EM) radiation from a single

pixel is measured at hundreds of contiguous bands. To gather information about all pixels

in the scene, the sensor must scan in either a cross-track or along-track direction with

respect to the platform’s motion [2]. As the sensor scans, spectral and spatial information

is combined forming a three-dimensional cube. The values recorded by the FPA are digital

counts which must be converted to radiance values through sensor-specific radiometric

calibration.

The at-sensor radiance observed by the sensor contains detailed material information

across hundreds of bands. Fundamentally, the observed radiance is derived from quantum

mechanics based on intrinsic material properties such as the absorption coefficient and the

complex index of refraction of the material [21]. While these properties aren’t directly

measurable, the apparent spectral properties are. These properties consist of surface re-

flectance, transmittance and emissivity [2]. Incident EM radiation on a surface must either

reflect off the material’s surface, transmit through the material or be absorbed by the mate-

rial by conservation of energy. Equivalently,

ρ(λ )+α(λ )+ τ(λ ) = 1 (2.1)

where ρ(λ ) is apparent reflectance, α(λ ) is apparent absorbance, τ(λ ) is apparent trans-

mittance measured at wavelength λ with each term ranging from 0 to 1. Spectral irradiance,

E(λ ), is defined as the EM power per unit area, per spectral bandwidth received by a sur-

face. The apparent reflectance is then a ratio between the reflected radiance, L(λ ), and the

total irradiance:

ρ(λ ) = π
L(λ )
E(λ )

. (2.2)
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By Kirchoff’s Law, materials in thermodynamic equilibrium follow α(λ ) = ε(λ ). For

opaque surfaces, τ(λ )≈ 0, Equation 2.1 can be rewritten to relate reflectance to emissivity:

ρ(λ ) = 1− ε(λ ) (2.3)

In the Long-Wave Infrared (LWIR) domain, thermal emission of EM energy must be

considered. A blackbody material absorbs all incident radiation making the material an

ideal radiating surface since all absorbed energy is also emitted to maintain the same mate-

rial temperature [21]. Planck’s function provides the spectrum of a blackbody material for

a given temperature:

B(λ ,T ) =
2hc2

λ 5
1

ehc/λkT −1
(2.4)

where c = 2.998× 108 m/s, h = 6.626× 10−34 Js, k = 1.381× 10−23 J/K and T is the

Figure 2. Planck’s function for the LWIR domain at varying surface temperatures.

surface temperature. Planck’s function in the LWIR domain is plotted in Figure 2 for

varying surface temperatures commonly encountered. Using Planck’s function, the spectral

emissivity, ε(λ ), is defined as the ratio between the radiance emitted from a material at
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temperature T , LT (λ ) to that of a blackbody radiator at the same temperature

ε(λ ) =
LT (λ )

B(λ ,T )
. (2.5)

Given a material emissivity and temperature, the total at-sensor radiance for the LWIR

domain consists of three distinct components: surface-emitted, surface-reflected and at-

mospheric upwelling radiance. Figure 3 describes at-sensor radiance, L(λ ), graphically in

terms of these components. This configuration applies to diffuse, lambertian surfaces in

thermal equilibrium with no angular dependence and is described by

L(λ ) = τ(λ )
[
ε(λ )B(λ ,T )+ [1− ε(λ )]Ld(λ )

]
+La(λ ), (2.6)

where

λ : Wavelength

τ(λ ) : Atmospheric Transmission

ε(λ ) : Material Emissivity

B(λ ,T ) : Blackbody Function

Ld(λ ) : Downwelling Radiance

La(λ ) : Path Radiance.

The downwelling radiance, Ld(λ ) represents the thermal emission of the atmosphere

downward toward the target pixel. If the material is reflective (ε(λ ) 6= 1), some of this

radiance is reflected to the sensor [2]. The path radiance, La(λ ), represents atmospheric

thermal emission directly to the sensor. To characterize surface materials with LWIR sen-

sors, the surface emissivity and surface temperature must be estimated from the at-sensor

radiance signal. Extracting this data requires an accurate accounting of the atmosphere,
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Figure 3. The LWIR at-sensor radiance broken down into the contributing components for a diffuse,
lambertian surface in thermal equilibrium. This configuration assumes a nadir sensor viewing geome-
try. Figure based on Figure 11.31 in [21].

known as atmospheric compensation. This process is followed by Temperature-Emissivity

Separation (TES) to estimate emissivity and temperature. Next, atmospheric compensation

techniques are discussed followed by a review of TES methods.

2.2 Atmospheric Compensation

Atmospheric compensation techniques are typically based on one of two paradigms:

scene-based compensation and model-based compensation [2]. Scene-based compensation

attempts to use the wealth of information provided by the imaging spectrometer for a sin-

gle scene to estimate scene visibility or atmospheric species such as water and ozone [13].

Often, scene-based methods will utilize a priori knowledge of materials present to assist at-

mospheric estimation. Model-based methods use radiative transfer modeling techniques to

simulate scattering and absorption of atmospheric constituents in order to retrieve surface

reflectance spectra [13]. Typically, model-based methods are computationally expensive

and difficult to perform in real-time. Furthermore, estimates of various aerosol concentra-

tions are needed to create accurate models. Measuring these atmospheric constituents using

radiosonde data is costly and time-consuming. Profiles derived from climatology models
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can be used in place of radiosonde data, but they typically miss temporal and spatial varia-

tions within a particular scene [23].

Significant effort has been placed on atmospherically compensating hyperspectral data

using both paradigms. In some cases, a mix of scene-based and model based approaches

are used to both efficiently and accurately estimate transmission and scattering. The spec-

tral range under consideration also impacts the compensation algorithm formulation. The

LWIR domain requires estimation of surface temperatures to arrive at material emissiv-

ity while the visible and near-infrared (VNIR)/shortwave infrared (SWIR) is dependent on

scattering mechanisms to calculate surface reflectance values. In general, more work has

been done in the VNIR/SWIR than the LWIR for atmospheric compensation [13, 21].

Assuming homogeneous atmospheric conditions between the sensor and all pixels in

the scene, the terms strictly defining the atmosphere in Equation 2.6 are τ(λ ), La(λ ) and

Ld(λ ). These terms are often referred to as the Transmittance, Upwelling, and Down-

welling (TUD) vector for the atmosphere. If the TUD vectors are estimated accurately, the

surface-leaving radiance, Ls(λ ) can be calculated by

Ls(λ ) =
L(λ )−La(λ )

τ(λ )
= ε(λ )B(λ ,T )+ [1− ε(λ )]Ld(λ ). (2.7)

An example of each term in the simplified LWIR radiative transfer equation is shown in

Figure 4 for a 300 K foamboard material. In this case, the atmospheric transmission is

very high with a corresponding low path radiance. Both the surface-leaving radiance and

at-sensor radiance exhibit spectral features similar to the measured material emissivity be-

cause of the clear atmospheric conditions.

2.2.1 In-Scene Methods.

In-scene compensation methods rely only on the data available in the scene and are

typically more computationally efficient compared to model-based methods. One of the
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Figure 4. The at-sensor radiance L(λ ) is shown based on the TUD vector shown for a 300 K foamboard
material.

most common LWIR compensation techniques is the In-Scene Atmospheric Compensa-

tion (ISAC) method. The ISAC method begins by identifying blackbody pixels (ε(λ )≈ 1)

within a scene. Based on Equation 2.6 for blackbody pixels, the surface-reflected compo-

nent is zero and the surface-emitted radiance is B(λ ,T ) resulting in the blackbody pixel at

sensor radiance:

LBB(λ ) = τ(λ )B(λ ,T )+La(λ ). (2.8)

To solve for τ(λ ) and La(λ ) each blackbody pixel temperature must be estimated. Us-

ing a band with high transmission and low upwelling radiance (λ0 ≈ 10µm) results in

LBB ≈ B(λ0,T ). Inverting Planck’s function recovers the pixel temperature estimate as

described by the spectral apparent temperature or brightness temperature [2]:

T̂BB(λ0) = B−1(
λ0,LBB(λ0)

)
=

hc

λ0k ln
(

2hc2

λ 5
0 LBB(λ0)

+1
) . (2.9)
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The spectral apparent temperature is a spectral-varying quantity, however, for true black-

body pixels, this quantity should be constant across all wavelengths. Figure 5 shows an

example of this process where λo is overlaid on τ(λ ) and La(λ ) highlighting how close

these values are to 1.0 and 0.0, respectively. Additionally, Figure 5 shows the brightness

temperature for a high emissivity material, with a nearly constant temperature across all

wavelengths. If λ0 has less than unity transmission (as shown in Figure 5), T̂BB(λ0) will

underestimate the true temperature. Radiative transfer models such as MODerate resolu-

tion atmospheric TRANsmission (MODTRAN) can be used to correct this scaling if at-

mospheric state information such as the vertical distribution of water vapor and ozone are

known.

After estimating the blackbody pixel temperatures, a linear regression is performed

across each band to determine τ̂(λ ) and L̂a(λ ). Identification of blackbody pixels within

the scene can be challenging, however, materials such as vegetation and water bodies have

low reflectance and provide reasonable estimates of these atmospheric terms.

This research only considers nadir-viewing geometries, but work in off-nadir geome-

tries has shown significantly different performance results using standard atmospheric com-

pensation algorithms. This is expected as path lengths vary for materials in the scene,

resulting in non-homogeneous atmospheric terms. In-scene methods attempt to slice the

Figure 5. Left: The clear band, λo ≈ 10µm is shown compared to transmittance and upwelling radi-
ance. Right: The brightness temperature, T̂BB for a high emissivity material is shown with λo overlaid
result in a pixel temperature estimate of roughly 298 K.
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image to reduce this problem, however, the number of horizontal image slices is scene

dependent. An oblique in-scene atmospheric compensation algorithm is discussed in [18]

that is similar to ISAC. However, this work also introduces radiance detrending which is

an unsupervised classification of materials in the scene to identify the most probable atmo-

spheric state. Radiance detrending allows for spectral signals to be tied to distances in the

scene and therefore infer path radiance and transmission.

2.2.2 Model-Based Compensation.

Model-based atmospheric compensation methods convert at-sensor radiance values to

surface reflectance values using radiative transfer models. MODTRAN is one of the most

popular radiative transfer models and was developed by Spectral Sciences Inc. and the Air

Force Research Laboratory for analyzing optical measurements through the atmosphere

[24]. Line-by-line calculations can be performed over the ultraviolet to long wavelength

infrared spectrum using predefined climatology data. Effects such as absorption/emission

and scattering, surface reflections and solar illumination are all considered resulting in line-

by-line resolutions as small as 0.2 cm−1 [24].

Applying MODTRAN, or an equivalent radiative transfer model, requires some prior

knowledge of the scene, such as atmospheric constituents, but can provide highly accurate

atmospheric corrections. Even gas plumes and thick clouds can be accurately modeled

if enough information is known about the atmosphere of interest. Many of the assump-

tions underlying model-based compensation are reasonable in operational scenarios such

as knowing the sensor location and time of collection. This type of information helps re-

duce the under determined estimation problem to a more tractable form.

Many atmospheric compensation algorithms have been developed for the VNIR/SWIR

domain. One such atmospheric compensation algorithm is the Fast Line-of-sight Atmo-

spheric Analysis of Spectral Hypercubes (FLAASH) algorithm, developed by the Air Force
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Research Laboratory and Spectral Sciences, Inc. in the 1990s [25]. FLAASH is similar to

other methods such as atmospheric removal program (ATREM) with one important dif-

ference: FLAASH accounts for adjacency effects between pixels, cloud cover and various

scattering phenomenon. The FLAASH algorithm addresses cloud cover and hazy condi-

tions by averaging the reflectivity of surrounding pixels, ρs, using Equation 2.10 which

returns the at-sensor reflectance:

ρs = Tg

(
ρatm +

tdtuρ

1−ρad jS
+

(ρad j−ρ)tdtu
1−ρad jS

)
(2.10)

where

Tg : Total atmospheric gas transmittance

ρatm : Atmospheric reflectance into the sensor

td : Scattering attenuation from TOA

tu : Scattering attenuation from surface to sensor

S : Spherical albedo of the atmosphere

ρad j : Average reflectivity of surrounding pixels

Including adjacency effects in the overall reflectance calculation has been shown to

improve atmospheric modeling performance [25]. The most significant performance in-

creases have been observed in hazy conditions where scattering into the sensor field of view

is most prevalent. Similar to other model-based atmospheric compensation algorithms, the

FLAASH algorithm relies on MODTRAN for atmospheric modeling to determine atmo-

spheric terms in Equation 2.10 [25].

The FLAASH algorithm was also extended to the infrared spectral range, appropriately

named FLAASH-IR [26]. FLAASH-IR was validated with a Telops Hyper-Cam interfer-
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ometric hyperspectral imager in ground to ground applications, where estimates for atmo-

spheric transmission, path radiance and downwelling were calculated again using MOD-

TRAN. Similar to other infrared compensation methods, FLAASH-IR assesses spectral

smoothness to identify probable surface temperatures for a given material emissivity [26].

The FLAASH-IR was also tested on reflective objects such as bare-metal with acceptable

results. Overcast conditions can contribute to lower apparent reflectance values, but overall

the spectral shape is still preserved [26].

Regardless of the atmospheric compensation method employed, real-time material iden-

tification requires accurate and efficient compensation techniques. One of the primary goals

of this research is to investigate how machine learning methods can be leveraged towards

this goal. After validating the atmospheric compensation approach, material classification

or detection can be performed for a wide range of atmospheric conditions with limited

labeled training data. The next section reviews the fields of machine learning and deep

learning to provide an algorithmic basis for hyperspectral classification techniques. This is

followed by discussion on how these techniques can be applied to hyperspectral data for

both classification and target detection scenarios focusing on necessary preprocessing steps

such as atmospheric compensation or data standardization.

2.3 Temperature-Emissivity Separation

Assuming the atmospheric compensation approach provided an estimate of τ(λ ) and

La(λ ), temperature-emissivity separation recovers the pixel emissivity and temperature.

For blackbody pixels, the brightness temperature will equal the surface temperature. For

all other pixels, temperature-emissivity separation is an ill-posed problem because for K

spectral bands there are 2K + 1 unknown variables contained in Ld(λ ),ε(λ ),T . To make

this problem more tractable, Ld(λ ) can be assumed negligible in some situations and the

pixel’s maximum apparent spectral brightness temperature, Tmax, can be used for pixel
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temperature, resulting in the emissivity estimate [2]:

ε̂(λ ) =
L̂s(λ )

B(λ ,Tmax)
. (2.11)

The temperature assumption in Equation 2.11 is straightforward to implement, but may

provide insufficient results. Applying this technique to a foamboard pixel using the τ(λ )

and La(λ ) estimates shown in Figure 4 results in the emissivity estimate shown in Fig-

ure 6. The overall spectral shape is similar between the reconstructed emissivity and mea-

sured values, but some atmospheric features are clearly present. Additionally, the overall

emissivity estimate is higher than the measured value and Tmax = 311K using the method

outlined in Equation 2.11.

Figure 6. Applying Equation 2.11 to a foamboard pixel collected by a LWIR spectrometer results in an
emissivity estimate with similar spectral features, but large overall error. This result may be sufficient
for some applications, such as target detection, depending on the spectra of other materials within the
scene.

To further improve on the results in Figure 6, an estimate of Ld(λ ) is necessary to

improve the emissivity estimate. Lookup tables generated by MODTRAN can be used to

determine the most likely Ld(λ ) for a given τ(λ ) and La(λ ) or autoencoder networks can

be used as presented in the results section of this research. With a complete TUD estimate,
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emissivity can be expressed as [2]:

ε̂(λ ) =
L(λ )− L̂a(λ )− τ̂(λ )L̂d(λ )

τ̂(λ )
[
B(λ ,T )− L̂d(λ )

] . (2.12)

Solving for emissivity is still an ill-posed problem for a sensor with K bands, as there are

K+1 unknowns (ε̂(λ ),T ) for K measurements. Considering the emissivity estimate in Fig-

ure 6, the recovered emissivity should be a smooth function of wavelength to remove resid-

ual atmospheric features [27]. To enforce this heuristic in the recovered signal, a range of

temperatures are tested with a smoothed emissivity profile. Specifically, a smoothed emis-

sivity, ε̃(λ ) and temperature estimate, T̂ are used with the TUD estimate to create L̂(λ ).

The minimum error between the observed and predicted radiance recovers the emissivity

and temperature [2]:

T̂ = min
T

[
K

∑
k=1

(
L(λk)− L̂(λk)

)2

]
(2.13)

Applying this technique to the foamboard pixel using a 3-point averaging filter leads to

Figure 7. Enforcing a smoothness criteria on the recovered emissivity using a 3-point local averaging
filter results in more accurate emissivity estimates compared to the result shown in Figure 6.

the emissivity estimates shown in Figure 7. Most atmospheric features have been removed

from the signal, and will likely lead to better target detection or classification across a wider

range of scenes.
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In many target detection scenarios, accurate pixel emissivity recovery is more important

than exact temperature estimation. Based on this requirement, other TES approaches have

been implemented with less dependence on the recovered pixel temperature, referred to as

alpha residual TES. Using Wien’s approximation of the planckian function for a particular

wavelength λ j:

LW
BB(λ j) =

C1

λ 5
j π

[
exp
(

C2
λ jT

)] (2.14)

where C1 = 3.74151×10−16 (Wm2) and C2 = 0.0143879 (m ·K). Taking the natural log-

arithm of the surface emitted radiance term in the LWIR radiative transfer equation using

Wien’s approximation for the planckian results in [28]:

ln
(
ε(λ j)LW

BB(λ j)
)
= lnε(λ j)+ lnC1−5lnλ j− lnπ− C2

λ jT
(2.15)

Following the derivation in [28], each side of Equation 2.15 is multiplied by λ j and the

mean over N spectral channels is taken resulting in N equations without a temperature

dependence:

α(ε(λ j)) = λ j lnε(λ j)−
1
N

N

∑
j=1

λ j lnε(λ j) (2.16)

The temperature independent calculation using the surface-leaving radiance, with an as-

sumed downwelling radiance of zero is [28]:

α(ε(λ j)) =λ j lnLs(λ j)−
1
N

N

∑
j=1

λ j lnLs(λ j)

−λ j lnC1 +
lnC1

N

N

∑
j=1

λ j

+λ j5lnλ j−
5
N

N

∑
j=1

λ j lnλ j

−λ j lnπ− lnπ

N

N

∑
j=1

λ j.

(2.17)
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With laboratory measured spectrum, Equation 2.16 can be directly compared to Equa-

tion 2.17 without recovering pixel temperatures. Figure 8 demonstrates the result of this

process for a foamboard pixel showing comparable signal features between the transformed

emissivity and recovered alpha residual emissivity. Atmospheric features are clearly present

in the recovered alpha residual emissivity estimate and may be problematic for materials

with less pronounced emissivity features.

Figure 8. Applying Equation 2.17 to surface-leaving foamboard data results in the recovered alpha
residual emissivity estimate shown. The recovered estimate contains atmospheric features but has
comparable shape to the transformed emissivity.

A limitation in the derivation of Equation 2.17 is the assumption that downwelling

radiance is zero resulting in Ls(λ ) = ε(λ )LBB(λ ). As shown in Figure 8, this results in

residual atmospheric features in the recovered signal. This limitation was addressed in

[29] where an initial temperature estimate is needed to recover the modified alpha residual

estimate. Specifically, an α operator was defined as:

Tα

[
x(k j)

]
,

48lnx(k j)

k j
− 48

N

N

∑
j=1

lnx(k j)

k j
, (2.18)
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where Tα [ε(k j)] = α(ε(λ j)) from Equation 2.16 with a change of variable k j = 48/λ j.

Including the downwelling radiance, the modified surface-leaving radiance equation is :

Ls(λ j)−Ld(λ j) = ε(λ j)[LBB(λ j,T )−Ld(λ j)]. (2.19)

After applying the α operator to Equation 2.19, the alpha residual calculation can be ex-

pressed as [29]:

α̂(ε(k j, t)) =Tα [Ls(k j)−Ld(k j)]+Tα

[
1− e−k jt

]

−Tα

[
1− Ld(k j)(ek jt−1)

C(k j)

]
−Tα [C(k j)],

(2.20)

where C(k j) = C1/λ 5
j . The temperature dependence can be removed from Equation 2.20

by assuming t = 300/To and using a fast TES method to estimate an initial temperature To.

Figure 9 shows the result of applying Equation 2.19 to foamboard surface-leaving radiance

data. By accounting for downwelling radiance, atmospheric features are reduced com-

pared to results based on Equation 2.17. This approach is of interest to this research since

downwelling radiance vectors will be estimated. TES methods that utilize the additional

information from downwelling radiance will further highlight the utility of compensation

methods derived in this research. To support a wide range of atmospheric compensation

and target detection research, a TUD vector library is discussed next and will serve as the

primary database for this research.

2.4 TUD Vector Data

Based on the previous discussion, it’s clear that accurate TUD vector estimates are nec-

essary for extracting pixel emissivity and temperature. Atmospheric compensation methods

such as Fast Line-of-Sight Atmospheric Analysis of Hypercubes - Infrared (FLAASH-IR),

often rely on lookup tables of precomputed atmospheric data to accurately compensate a

28



Figure 9. Applying Equation 2.19 to foamboard surface-leaving radiance data results in the recovered
alpha residual estimate shown. Atmospheric features are less significant in this estimate compared to
Figure8, showing the importance of correctly estimating and including downwelling radiance in the
TES method.

data cube. This section discusses one particular database used throughout this research, the

Thermodynamic Initial Guess Retrieval (TIGR) atmospheric state data.

The TIGR database consists of 2311 atmospheric measurements based on 80,000 world-

wide radiosonde reports [30] [31]. The locations of the 2311 measurements are shown

in Figure 10. The downselecting process employed to arrive at 2311 samples placed

an emphasis on selecting both rare and frequent atmospheric states with equivalent fre-

quency. The downselected atmospheric conditions represent a wide range of atmospheric

conditions, useful for remote sensing models. Radiosonde collection dates are shown in

Figure 11, highlighting that measurements cover a range of seasons and years. Each ra-

diosonde consists of 43 discrete pressure level measurements ranging from the Earth’s sur-

face (1013 hPa) to > 30 km (< 1hPa). Additionally, the profiles are grouped by airmass

category such as polar, tropical and mid-latitude to further inform or constrain model-

ing predictions. Temperature cumulative water vapor content and cumulative ozone vapor

content are plotted against atmospheric pressure level in Figure 12, showing how these

measurements change with altitude. Temperature and water vapor content have the largest
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Figure 10. Radiosonde collection locations for the 2311 samples in the TIGR database. [30] [31]

impact on the observed at-sensor radiance for values close to the Earth’s surface, while

ozone only plays a significant role at higher altitudes.

The radiosonde data available within the TIGR database must be converted to TUD

vectors for use in atmospheric compensation models. Radiative transfer models such as

MODTRAN or Line-by-Line Radiative Transfer Model (LBLRTM) can be used with sev-

eral scene assumptions to create a corresponding TUD database [32, 33]. In MODTRAN

6.0, JavaScript Object Notation (json) files can be used to specify all atmospheric parame-

ters necessary for generating TUD vectors. This update also makes it very straightforward

to run MODTRAN from other languages such as Python which is used in this research.

The json used to run MODTRAN is provided with the source code, but constant param-

eters are outlined in Table 5. The 1976 U.S. Standard Atmosphere (Model 6) is used for

all trace gases [34]. Column water vapor, ozone content and temperature are varied based

on the TIGR measurements. Since all TIGR measurements are based on the same pressure

grid, no modifications are made to the MODTRAN json pressure argument. MODTRAN

requires a pressure level altitude which was not provided with the TIGR data but can be
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Figure 11. Time of radiosonde collection for the 2311 samples in the TIGR database.

calculated using the hydrostatic equation. Each layer thickness can be calculated by:

Z2−Z1 =
Rd

g

∫ p1

p2

T (p)
d p
p

(2.21)

where Z2−Z1 is the thickness between pressure levels p1 and p2, Rd = 287 J/(K kg) and

g = 9.81m/s2.

Using MODTRAN with the constants specified in Table 5 and the varying atmospheric

temperature, water vapor content ozone content and pressure level altitude, Figure 13 shows

the TIGR-derived TUD vectors. These samples were originally created at 0.5 wavenum-

ber spectral resolution and then downsampled to the Spatially Enhanced Broadband Array

Spectrograph System (SEBASS) instrument line shape (ILS). Careful characterization of

the sensor ILS is necessary before performing this downsampling. Characterization er-

rors lead to misaligned band centers and band widths resulting in larger overall error when

applying these vectors to collected data.

The τ(λ ) and La(λ ) vectors are highly correlated based on the LWIR radiative trans-

fer model formulation. Atmospheric states that can absorb more radiation (low τ(λ )) can
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Figure 12. Radiosonde measurements making up the TIGR data. Atmospheric temperature and water
vapor content have the largest impact on observed radiance at lower altitudes while ozone plays a
significant role at higher altitudes.

Figure 13. MODTRAN generated TUD vectors based on the TIGR radiosonde data. These vectors
have been downsampled to match the SEBASS ILS.

also emit more radiation (high La(λ )). Conversely, atmospheric states with a low den-

sity of absorbing constituents (high τ(λ )) also cannot emit as much radiation (low La(λ )).

To visualize these relationships, the normalized integrated area under τ(λ ) and La(λ ) are

plotted in Figure 14 with atmospheric surface temperature, cumulative water vapor con-

tent and cumulative ozone content overlaid. The plots in this figure illustrate that atmo-

spheric states consisting of warmer, humid conditions trend toward lower transmittance

and higher upwelling radiance. Additionally, atmospheric states with higher ozone con-

centrations also have lower transmittance and higher upwelling radiance because of the

additional molecules available to absorb and emit radiation.
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Table 5. Constant MODTRAN parameters specified in json file. The json argument is shown in paren-
thesis under the parameter description.

Ground Altitude
(GNDALT) 0.0

Sensor/Sun Azimuth
(PARM1) 0.0

Solar Zenith
(PARM2) 45.0

Target Altitude
(H2ALT) 0.0

FWHM
(FWHM) 1.0

Visibility
(VIS) 50.0

Wavenumber Start
(V1) 7.14×102 Haze Model

(IHAZE) AER RURAL
H2O Scaling
(H2OSTR) 1.0

Wavenumber End
(V2) 1.3×103 O3 Scaling

(O3STR) 1.0
CO2 Scaling
(CO2MX) 360.0

Sampling
(DV) 0.5

Clouds
(ICLD) CLOUD NONE

Day of Year
(IDAY) 265

Scattering Function
(IPH) 2

Target Temp
(TPTEMP) 300

Background Temp
(AATEMP) 295

Target Reflectance
(SURFP:CSALB) LAMB CONST 50 PCT

CO2, N2O, CO,
CH4, O2, NO 6

Background Reflectance
(SURFA:CSALB) LAMB CONST 50 PCT

SO2, NO2, NH3,
HNO3

6

2.5 Deep Learning

Machine learning is now a part of daily life powering speech recognition systems, social

media content filtering, facial recognition software and autopilot for autonomous vehicles.

Only until recently were many of these breakthroughs realized by the data representations

created through deep learning systems. Conventional machine learning systems utilize ex-

pert knowledge to create useful data representations while deep learning takes advantage

of many nonlinear transformations to generate propitious data representations. The deep

representations are learned through the training process, with deeper transformations spe-

cific to the training task and shallow transformations (closer to the input) capturing generic

data transformations such as edge detection for image analysis [35]. Deep learning sys-

tems now exceed human performance on many tasks as shown by the recent success of

Google’s AlphaGo system beating the world Go champion or DeepMind’s Starcraft Artifi-

cial Intelligence (AI) beating human professional players [36, 37]. In both cases, the deep

representations created new techniques and strategies not seen by professional players.
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Figure 14. The integrated area under τ(λ ) plotted against the integrated area under La(λ ) shows a
linear relationship between these two terms. As the atmosphere becomes more transparent (

∫
τ(λ )dλ

increases), upwelling radiance decreases. This is because there are less particles to absorb radiation so
there are also less particles to emit radiation.

The breakthroughs in deep learning can be attributed to several important advance-

ments: initialization, optimization and training. For years it was observed that deep net-

works were infeasible because poor initialization led to model convergence at poor local

minimums. By performing a greedy layer-wise pretraining, the initialization problem could

be avoided resulting in significantly better model results [38]. Furthermore, it was shown

that layer-wise pretraining can be avoided if the weight initialization scheme is dependent

on the size of the network. One such heuristic is called normalized standardization:

Wi, j ∼ U

(
−
√

6
m+n

,

√
6

m+n

)
(2.22)

where Wi, j is the weight between node i and j, m is the number of inputs to the layer,

n is the number of outputs and U denotes a uniform distribution [39]. This initialization

scheme was shown to stabilize the magnitude of the gradients for deep networks allowing

information to flow to lower layers, leading to better weight convergence. This weight

initialization is only applicable to networks implementing activation functions symmetric

about 0, such as the sigmoid and hyperbolic tangent. This is because the mean output of

each layer is 0 and the standard deviation is 1. Functions such as Rectified Linear Unit

(ReLU) require a different weight initialization since a mean output of 0 leads to vanishing
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gradients with deeper layers. He et. al proposed a weight initialization for networks using

rectifier activation functions such that the randomly chosen weights were multiplied by
√

2/
√

n where n is the number of incoming weights [40].

The most significant optimization advancement accelerating the field of deep learning

forward was the shift in activation functions from the sigmoid to ReLU or half-wave rec-

tifier. It was observed that sigmoid activation functions tend to saturate as more layers

were appended to the network [41]. This reduced the flow of information across all nodes

and limited the model’s ability to generalize. Additionally, using ReLUs reduced training

time for deep networks, an important benefit for quickly iterating across many models.

Other optimization improvements include improved methods for weight updates such as

the Adam optimizer or RMSprop algorithm [42]. Both optimizers are standard approaches

used in many applications with their own set of hyperparameters to be tuned for the task at

hand.

The extended training times required to converge on acceptable solutions coupled with

the need for large, labeled datasets had prohibited use of neural networks for many appli-

cations. With the advent of the internet, labeled data is freely available. This data ranges

from labeled pictures and video to text information from Wikipedia [43]. Training times

were reduced significantly when NVIDIA launched the CUDA programming interface for

its Graphical Processing Units (GPUs). This allowed for parallel implementations of the

many matrix multiplications needed to train a model [44]. Furthermore, the field of deep

learning experienced an influx of researchers when packages such as Tensorflow and Keras

allowed users without CUDA programming experience to quickly iterate through many

models [43]. More recently, renewed attention has been placed on improved training al-

gorithms as hardware limits are reached. Hashing functions have been investigated to ac-

celerate training without the need for costly weight updates to every node in multi-million
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parameter networks [45]. These algorithms are still under investigation, but may result in

significantly more efficient model training.

One of the most well-known research breakthroughs applying these advancements in

optimization, initialization and training was the best performing model at the 2012 Ima-

geNet Large-Scale Visual Recognition Challenge (ILSVRC) competition [44]. The ILSVRC

competition requires models to correctly label images from 1000 different categories, based

on 1.2 million training images, 50,000 validation images and 150,000 test images. The

best performing model utilized ReLU activation functions to reduce convergence time with

5 convolutional layers followed by 3 fully connected layers. Multiple GPUs were used to

reduce training time and extensive use of regularization methods such as Dropout helped

prevent overfitting. This approach reduced the Top-5 error rates by 10% over the next

best performing model, proving that deep networks could be trained for image prediction

without hand-engineered filters. This is especially important in the analysis of hyperspec-

tral data where known physical phenomenon can motivate hand-engineered filters. If ad-

equately sized datasets are available, this hand-engineering can be avoided allowing the

model to learn the most salient features through gradient descent.

The ILSVRC competition provided images with labeled classes for the network to pre-

dict. This is an example of supervised learning in which a known outcome is used to direct

the model’s learning process [46]. Unsupervised learning has no known outcome, so the

model can only determine informative ways to cluster or group the data. Since there is no

known outcome, it is difficult to measure success and often the quality of the approach is

dependent on the end user’s judgement of the transformed data. Even with this limitation,

unsupervised methods, such as Autoencoders (AEs), can be useful for finding informative

low-dimensional embeddings to explain high-dimensional data [47]. Next, a brief review of

AEs is presented for unsupervised learning applications related to hyperspectral imagery.
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2.5.1 Autoencoders.

While many recent deep learning successes utilize labeled training samples, AEs are

a unique type of network architecture for unsupervised learning. An AE consists of two

separate networks: an encoder f and decoder g. The encoder transforms or encodes the

input signal x to an embedded representation zzz, typically with fewer dimensions than the

input as shown in Figure 15. The decoder network reconstructs or decodes the embedded

representation and error is measured using the loss function L :

L (x,g( f (x))) (2.23)

When the loss function is mean-squared error and the decoder is linear, an AE can replicate

results from Principal Component Analysis (PCA). The constraints placed on the embedded

space allow AEs to learn a data manifold where most of the probability mass is centered

[48]. These constraints can be introduced by forcing the embedded space z to have fewer

dimensions than x (undercomplete) or by requiring z to be sparse. After applying one or

more constraints and minimizing the loss, similar input signals will cluster in the embedded

space as has been shown using the handwritten digits data MNIST [47]. The Contractive

Autoencoder (CAE) provides an explicit regularization to encode small perturbations of x

to similar locations within the embedded space, f (x) [49]:

LCAE(x, x̂) = L (x,g( f (x)))+ γ ∑
i j

(
∂h j(x)

∂xi

)2

(2.24)

where h j is node j in the hidden layer and γ is a regularization constant. Equation 2.24

penalizes sensitivity of the hidden representation, h j(x), to small changes in the input x.

CAEs can identify the most important variations in the data as smaller variations will be

penalized resulting in meaningful hidden components [49]. Unfortunately, the CAE is

expensive to compute as more hidden layers are added to the network architecture.
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Figure 15. Standard AE Architecture

A computationally inexpensive regularization approach that shares many of the same

properties as CAEs is the Denoising Autoencoder (DAE) where the input is corrupted be-

fore propagating through the AE network [50]. The DAE tries to reconstruct the original

signal resulting in hidden components that are robust to small perturbations around each

training sample.

While AEs have been extensively studied for many years, there have been recent mod-

ifications to the types of constraints placed on the embedded space. The Variational Au-

toencoder (VAE) model imposes a prior distribution, pθ (z)∼N(000,III), on the AE embedded

space [51, 52]. This constraint creates a continuous embedding space which can be sam-

pled to create new samples not observed in the data. Specifically, the posterior is pθ (z|x)

and for a given latent code sample zi, a new value xi can be generated from the conditional

distribution according to pθ (x|z = zi). The entire data generated process can be described

by

p(x) =
∫

pθ (x|z)pθ (z)dz

but unfortunately this is intractable to compute since we must integrate over all values of

z. Instead, in [52], an encoder model predicts distribution parameters φ , such that qφ (z|x)

approximates the intractable distribution pθ (z|x).
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To measure the difference between pθ (z|x) and qφ (z|x), the Kullback-Leibler diver-

gence, DKL, between the distributions is calculated:

DKL =
(
qφ (z|x)||pθ (z)

)
(2.25)

and the goal is to minimize DKL with respect to φ . Assuming the encoder model, qφ (z|x),

predicts Gaussian distribution parameters, φ : {µµµ,σσσ} the posterior z∼ qφ (z|x) can be sam-

pled using µµµ +σσσ �εεε where εεε ∼ N(000,III) [52]. Additionally, DKL can be rewritten as:

DKL =
1
2

J

∑
j=1

(
1+ log

(
σ

2
j
)
−µ

2
j −σ

2
j
)

(2.26)

where j is the latent code dimension. Using DKL allows qφ (z|x) to approximate pθ (z|x)

but the probability of generating real data, pθ (x), should be maximized while DKL is min-

imized. Given a sample xi, the expected generated value is Ezi∼qφ (z|xi)

[
log pθ (xi|zi)

]
and

so the entire VAE loss function can be described by;

L (θ ,φ ,x) =−DKL
(
qφ (z|x)||pθ (z)

)
+Ez∼qφ (z|x)

[
log pθ (x|z)

]
(2.27)

As discussed earlier, VAEs create a generative model by sampling the embedded space

between training points. Since the embedded space follows the prior distribution, pθ (z),

sampling between training points is expected to generate results comparable to the training

data with only minor changes based on the embedded space components.

Signals generated by VAEs typically do not contain high frequency features, leading

to higher reconstruction error but a smoothly varying latent code. Sampling VAE latent

codes fit with the ImageNet data results in understandable attribute vectors such as hair

color or glasses, but introduces unacceptable image distortions. Generative models such

as Generative Adversarial Networks (GANs) avoid such distortions and can create much
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more detailed images difficult for humans to identify as real or fake [16]. The Adversar-

ial Autoencoder (AAE) is another type of AE utilizing the properties of GANs to improve

upon the generative ability of VAEs [53]. Both VAEs and AAEs shape the latent space with

a prior distribution, but AAEs utilize adversarial training to enforce latent space distribu-

tions. AAEs consist of an encoder (generator), decoder and discriminator networks. The

generator network, G, is similar to the VAE encoder as it predicts parameters for a probabil-

ity density function. The discriminator network, D, tries to identify samples that originated

from the true prior distribution and samples derived from the predicted distribution. This

min-max formulation can be formalized as [53]:

min
G

max
D

Ex∼pdata [log(D(x))]+Ez∼p(z) [log(1−D(G(z))] (2.28)

where z is the encoder predicted distribution parameters, pdata is the data distribution, p(z)

is the prior and G(z) is the sampling of the prior with these parameters. As training pro-

ceeds, the generator network predicts more realistic distribution parameters, resulting in

latent space distributions close to the prior. The decoder still reconstructs the data into the

original data space.

Since AAEs are optimizing both reconstruction error and discriminator accuracy, train-

ing is performed in two phases: reconstruction and regularization. In the reconstruction

phase, only the encoder and decoder network weights are updated. The regularization

phase uses the encoded data representation for discriminator training to identify samples

from the true prior distribution (positive samples) and samples from the encoder generated

distribution (negative samples). The encoder weights are then updated to create samples

more representative of the prior distribution. Large changes during the reconstruction phase

can adversely impact regularization phase results (i.e. the discriminator can easily identify

positive and negative samples). AAEs also require more training iterations compared to

VAEs because small learning rates must be used to ensure network training avoids mode
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collapse. Mode collapse is a side-effect of the adversarial training process in which the gen-

erator and discriminator continue switching between modes in the data rather than using

the entire multi-modal distribution.

Generative models such as VAEs, AAEs and GANs have been extensively applied to

image data with applications ranging from data augmentation and style transfer to recom-

mending merchandise based on a user provided picture. Application of generative models

in hyperspectral classification research is limited. This research will utilize generative mod-

els for creating realistic TUD vectors such that surface leaving radiance can be estimated

allowing for higher precision classification or target detection across diverse atmospheric

conditions. Additionally, the generative models can also be used for data augmentation

to increase classifier performance when labeled data is limited to a subset of atmospheric

conditions.

2.5.2 Multimodal Representation Learning.

The AE networks discussed in the previous section focused on reconstructing a single

vector input with variations in how the latent space was constrained. In cases where mul-

tiple measurement sources or modes are available, a combined representation should be

formed to further constrain the latent space. Multimodal representation learning is a grow-

ing area of research, motivated by the observation that humans integrate multi-source infor-

mation, such as audio-visual, to understand their environment [54]. Learning a combined

representation can lead to improved results compared to learning two separate representa-

tions independently [55]. Some of the earliest research in learning multimodal representa-

tions combined audio of spoken words with video of people speaking to form a combined

representation based on a Multimodal Autoencoder (MMAE) (Figure 16) [54].

In [54], they explored using one or both modes to learn a joint representation, allowing

the network to generate the most likely video based on audio only and vice versa. Their
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Figure 16. An example MMAE architecture is shown where two modes are presented to the network
either simultaneously or one at a time. The MMAE must recover both modes when one or both modes
are present at the input.

research demonstrated that generative modeling was possible with missing data modalities.

A recent modification to the work presented in [54], found that unlabeled video data could

be used to create a generative model for audio and images [56]. The model created in [56]

could generate images of people playing guitar when presented the sound of a guitar or

create realistic dog noises when presented pictures of dogs. Interestingly, the model was

sensitive enough to distinguish bass guitars from acoustic guitars and create the correct

corresponding imagery.

Multimodal representation learning can also be extended to textual information as shown

in sentiment analysis research of online videos. In this domain, audio, video, text and hu-

man gesture information are combined to determine an overall video sentiment or opinion

[57, 58]. Social media platforms such as Facebook and Twitter provide a nearly infinite

data source for sentiment analysis research with many labeled datasets readily available

[59, 60]. Healthcare research has also investigated multimodal representation learning,
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combining medical test results, patient symptoms and imagery from multiple sources to

predict the likelihood of a disease [61, 62].

Applications such as healthcare have heterogeneous modalities, creating challenging

data fusion problems. Deterministic fusion techniques such as concatenation are too in-

flexible for many domains because this configuration only captures intra-modal relation-

ships and misses any inter-modal dependencies [63]. Fusion techniques can be divided into

three types: early, late and hybrid [64]. An example of early fusion is concatenation where

the data is combined and then a joint representation is learned. Late fusion learns modal

representations independently and then uses a voting or averaging to combine learned rep-

resentations. Hybrid fusion is a dynamic technique that depends on early and late fusion

results to produce the most useful representation. Numerous studies have investigated hy-

brid fusion techniques for combining heterogeneous data sources [65, 66]. The approaches

include high order tensor pooling [64], adversarial training [66] and automatic architecture

searches [67].

Recent advancements in generative modeling, such as VAEs [51, 52] have also been

applied to multimodal data sources [68]. Creating a generative model for both modes at

once is challenging because each mode must be independently conditioned on the same

latent space. Given two observation variables (modes), x,w and the latent space variable

z∼ pθ (z) = N(000,I), the generating functions for the modes assuming an independent con-

ditioning on the latent space:

X,W∼ p(x,w|z) = pθx(x|z)pθw(w|z) (2.29)

where the parameter θ represents the decoder network parameters for each mode, X and

W respectively. Similar to the earlier VAE discussion, letting qφ (·) represent the encoder

network, then the posterior distribution is qφ (z|x,w) and the loss is calculated according to
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[68]:

L (θ ,φ ,x,w) =−DKL

(
qφ (z|x,w)||pθ (z)

)
+

Eqφ (z|x,w)

[
log pθx(x|z)

]
+Eqφ (z|x,w)

[
log pθw(w|z)

] (2.30)

The last two terms are reconstruction error over each output mode and the first term en-

forces the prior distribution over the latent space using the Kullback-Leibler divergence

measure already discussed.

A multimodal representation learning approach is of interest to this research because

the TUD vectors are derived from atmospheric state vectors: atmospheric temperature,

water vapor content and ozone content. Both atmospheric state and TUD data can be

used to create a joint, low-dimensional representation. Training models do not require

fitting the model with missing modes, since the training data will have both atmospheric

state data and the associated TUD vector. Applying a variational loss term to the joint

representation as described in Equation 2.30 is another interesting way to constrain the

latent space. Enforcing a continuous latent space across both atmospheric state and TUD

vectors will improve sampling algorithm convergence for applications such as atmospheric

compensation or radiative transfer modeling.

2.5.3 Permutation-Invariant Neural Networks.

Many machine learning problems rely on fixed input vectors to predict an output, known

as instance-based learning [44, 69]. Classification and regression are common instance-

based learning problems solved by models consuming fixed-input vectors [42]. Alterna-

tively, parsing unstructured, variable length inputs remains a challenging problem limiting

the cross-domain utility of many machine learning models. Domains such as 3D point

cloud classification [70–72], scene classification [73] and outlier detection [69, 74] depend

on sets of input data to predict a target value. This class of problems is referred to as set-
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input learning or multi-instance learning where the the set order or the number of samples

in the set should not impact algorithm performance [69]. These requirements are not easily

met with standard neural network layers that expect fixed input dimensions. Permutation-

invariant neural networks are specifically designed to meet these design requirements.

Given a set X = {x1, . . . ,xM},xm ∈ RN , a function f (·) is permutation-invariant if for

any permutation π [75]:

f ({x1, . . . ,xM}) = f ({xπ(1), . . . ,xπ(M)}). (2.31)

The function f (·) can take on many forms such as sum-decomposition or max pooling

across the set. In the case of sum decomposition the permutation-invariant function f (·)

operating on the set X can be expressed by:

f (X) = ρ

(
M

∑
m=1

φ(xm)

)
(2.32)

where (ρ,φ) are typically neural network layers [76]. If the operator φ(·) is chosen such

that Φ = ∑
M
m=1 φ(xm) is injective, then an operator ρ(·) can be chosen such that

ρ = f ◦Φ
−1,

f = ρ ◦Φ,

and f (X) = ρ

(
M

∑
m=1

φ(xm)

)
,

such that f (X) is a valid set function [75, 77]. As stated in [75], this conclusion only

extends to the countable case (M is finite). The function φ(·) is applied to every input in

the set X, resulting in a low number of parameters when implemented as a neural network

layer. When each member of the input set X is of dimension n and the output dimension
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of φ(·) ∈ Rd , the φ(·) weight matrix contains n× d values, independent of the number of

members in the set X.

Additionally, in [76] it was shown the set max operator can be used to create a contin-

uous, valid set function on X. Specifically, the max operator returns the maximum value

across the set at each of the vector values in φ(X) and can be described as:

f (X) = ρ

(
max
m∈M

φ(X)

)
(2.33)

An advantage of the max-pooling operator over the sum-decomposition is a robustness to

the number of elements in the set. As the set size, M, increases the max-pooling operator

results in a better estimate of the true value.

A majority of the research in set-input learning is focused on the classification of Light

Detection and Ranging (LIDAR) point clouds supporting fields such as autonomous driv-

ing, target detection and augmented reality [78]. One of the most well-known networks in

this domain is PointNet where the authors utilized a max decomposition to simultaneously

classify point clouds and segment individual points [76]. The PointNet research identified

a subset of points Cs, known as the critical set, that were necessary for correct classification

and segmentation. The number of critical points was directly related to the dimension of

the set representation vector produced from the pooling operation. Visualizing the LIDAR

point cloud critical points results in points spanning the shape of the object.

An improvement to PointNet was presented in [70], where a hierarchical structure was

used to recursively apply PointNet to partitions of LIDAR point clouds. This proved ben-

eficial for increasing point cloud classification by leveraging distance metrics to select a

diversity of points. This intriguing idea is necessary for hyperspectral atmospheric com-

pensation when data cubes consist of hundreds of thousands of pixels. Retooling PointNet

for hyperspectral data requires careful data sampling techniques to verify the critical set,

Cs, is extracted from the data cube.
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Recently, attention mechanisms have pushed the state-of-the-art in neural language pro-

cessing, image classification and neural machine translation by weighting portions of the

input more heavily to achieve a task [79, 80]. Set-input learning has also investigated

attention mechanisms to replace the sum or max pooling operations with a trainable set

decomposition [69, 81]. Attention-based pooling also provides a set of weights to interpret

the value of each member in the set.

Using the previous nomenclature, the transformed set is H = φ(X) where H ∈ RM×d

assuming the network φ(·) has d output nodes. The attention-based pooling in [81] utilizes

a weighted dot product to measure the importance of samples within the set X [81]:

z =
M

∑
i=1

aihi

where the weighting term, ai is:

ai =
exp
(
wT tanh(VhT

i )
)

∑
M
i=1 exp

(
wT tanh(VhT

j )
)

The learned weight vector, w ∈ R1×l contains l nodes and the weight matrix V ∈ Rl×d

transforms the sample representations into an l× 1 vector. Neither w or V are dependent

on the number of samples M in the set X. Applying an attention-based pooling operation

to a permutation-invariant network provides insights into what features are important for

creating the set representation vector z. In LWIR atmospheric compensation scenarios, it

is expected that pixels with blackbody-like characteristics will have high attention scores,

ai, to resolve τ(λ ) and La(λ ) while lower emissivity pixels are also necessary to recover

Ld(λ ).
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2.5.4 Convolutional Neural Networks.

Convolutional Neural Networks (CNNs) are a type of network architecture useful for

analyzing data taking on a grid form such as 1D spectral data, 2D imagery or 3D hyper-

spectral cubes [82]. These biologically-inspired networks have played an important role in

tasks such as image classification [44], facial recognition [83], and address classification

from Google Streetview imagery [84] often exceeding human-level performance [85]. Ad-

ditionally, CNNs have been extensively studied for 1D data in applications such as speech

recognition [86] and classification of spectral data within hyperspectral cubes [87].

A fully-connected network contains parameters for each input-output pair in each layer.

This leads to an unacceptably large number of parameters to train if the input data has many

dimensions. CNNs are sparsely connected at each layer, significantly reducing the number

of trainable parameters needed for meaningful affine transformations of the data [42]. Each

layer of a CNN consists of many kernels or filters significantly smaller than the input vector

size. The kernels are applied at small local inputs and shared across all nodes of the input

space creating unique feature maps.

During training on image data, kernel weights converge toward edge detectors for lower

layers and abstract feature detectors at higher layers. In image classification tasks convo-

lutional layers are followed by pooling layers to extract statistical summaries across large

receptive fields of the input. Max-pooling is the most commonly applied pooling approach,

reporting the maximum value from the nonlinear activation within a local neighborhood of

input points. Pooling makes the entire transformation invariant to small shifts in the data,

allowing features to be detected regardless of their location. Pooling can be conducted on

individual feature maps or across all feature maps, known as global pooling. Applying

CNNs to 1D spectral data from a single pixel in a hyperspectral image requires careful

consideration of kernel size and pooling operations. Kernels will extract local relationships

amongst neighboring spectral bands, creating feature maps tuned to specific material prop-
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erties. Examples include the depth of water absorption bands in observed spectrum or the

asymmetric band feature centered at 9 µm for silica oxygen bonding [21]. Adjusting the

kernel size such that it covers specific regions of interest in the EM spectrum will result in

understandable filters, but classification performance may not be optimized.

The spectral location where features are detected is critically important as material

properties are wavelength dependent. Applying pooling to 1D spectral data would create

an invariance to shifts in the spectral data. This isn’t recommended and in practice pooling

is found to reduce classification performance because of feature location importance when

changing atmospheric conditions are considered [19]. Global pooling across all feature

maps may still be appropriate if feature locations can be maintained.

Classifying data using CNNs requires a mapping from the convolutional feature maps

to class labels. This is accomplished by flattening all feature maps into a high-dimensional

feature vector and propagating this vector through one or more fully-connected layers. The

final classification layer utilizes the softmax activation function to represent a probability

distribution over n different classes [42]:

softmax(z)i =
exp(zi)

∑
N
j=1 exp(z j)

(2.34)

where

zi = log(P(y = i|x)) (2.35)

and x is the input vector. The goal of the training algorithm is to predict the correct class

by maximizing logsoftmax(z)i. Most publicly available hyperspectral datasets contain la-

beled data for fewer than 20 classes. In reality, hundreds to thousands of materials must be

identified or labeled as background for real-world image classification tasks. Image clas-

sification competitions commonly use datasets with thousands of possible image labels.

Hyperspectral data classification will require larger datasets covering a wider range of ma-
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terials for operational use. In the next section, a review of hyperspectral classification is

provided detailing the current state-of-the-art in this field.

2.6 Hyperspectral Image Classification

Hyperspectral image classification has been an active area of research since the incep-

tion of hyperspectral sensors. Image classification consists of labeling all pixels in the

scene as one of K predefined materials or classes creating an abundance or classification

map. For each of the K materials, hundreds of pixels contain these materials providing

replicates for classifier training. Hyperspectral classification is different from target detec-

tion as target detection scenarios may only contain a single pixel containing a material of

interest [6]. Classification applications include land-use mapping, geology, forestry, urban

development studies and many others [88].

Exploiting the high-resolution spectral information sampled across hundreds of con-

tiguous spectral bands necessitates new approaches compared to gray scale and multispec-

tral image analysis. Supervised classification approaches require labeled training samples

that span the expected data variability to achieve stable classification performance. Col-

lecting and labeling enough data to fill the high-dimensional space created by hundreds of

spectral channels is time-consuming and costly. For a constant number of training samples,

classification performance decreases as the number of spectral channels increases, known

as the curse of dimensionality [89]. To address this limitation in training data availability,

most supervised classification techniques use feature extraction or reduction techniques to

reduce the input parameter space.

PCA is the most common feature reduction technique applied to hyperspectral data,

capturing nearly all data variance in less than 20 components for sensors spanning hundreds

of spectral channels [90]. An example of the component loadings is shown in Figure 17 for

the Kennedy Space Center hyperspectral dataset where the first component clearly captures
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loads strongly on water pixels against all other pixels in the scene. A drawback of PCA

is that it only considers variance within the data, regardless if the variance is caused by

the signals of interest or sensor noise. If sensor noise can be estimated, the components

can be sorted based on their Signal to Noise Ratio (SNR) rather than data variance. This

approach is known as minimum noise fraction (MNF). Another common feature reduction

technique for hyperspectral data is Independent Component Analysis (ICA). ICA identifies

the underlying components making up a signal based on the assumption that no more than

one of these components are Gaussian distributed and all are statistically independent of

one another [46] [91]. ICA is known for its ability to perform blind source separation in

problems where an unknown number of underlying sources are present.

Neural networks, specifically AEs, have also been comprehensively studied for feature

reduction. AEs can create low dimensional latent spaces or embeddings allowing for lower

reconstruction error than PCA while also producing informative latent dimensions. When

varied, these dimensions reveal interesting relationships in the data and provide insight

of the high-dimensional structure [47]. Chen et al. were the first to use AEs to create

informative low-dimensional feature vectors for hyperspectral classification [92]. They

implemented an iterative approach where an AE was trained to convergence and then the

decoder was removed, leaving an input to latent space representation. This process was

repeated adding additional layers to create a Stacked Autoencoder (SAE). The output of the

SAE was used to compare classification algorithms such as Support Vector Machine (SVM)

and K-nearest neighbors (KNN) resulting in competitive performance for all techniques.

The work performed by Chen et al. is also considered the first deep learning model for

hyperspectral classification since the model is composed of multiple hidden layers.

Additional deep learning-based classification approaches have been investigated for hy-

perspectral image classification. Hu et al. applied 1D CNNs along the spectral axis to

classify hyperspectral data [87]. They showed 1D CNNs could outperform Radial Basis
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Figure 17. Intensity plots showing the first 3 components using PCA on a benchmark hyperspectral
dataset (Kennedy Space Center) where the color represents the component loading. Most variance in
the data is from water pixels in the center and the urban area on the left side of the image.

Function (RBF) SVM classifiers and fully-connected networks on benchmark hyperspec-

tral data. Since convolution is performed directly on the spectral data, feature reduction is

not necessary as the entire CNN will extract the most salient spectral features. A compar-

ison of SVM, fully-connected networks, and 1D CNNs is shown in Figure 18 highlighting

small differences in each of these approaches for the Kennedy Space Center dataset. These

results were generated by this author to replicate the results of previous research in this

field. Qualitatively, Figure 18 shows the high sensitivity of the 1D CNN compared to SVM

and fully-connected networks. The results shown in Figure 18 do not consider spatial in-

formation, but this is an active area of research [88, 93].

The 1D CNN work performed by Hu et al. was extended to a 2D CNN implementation

by Makantasis et al., using both spatial and spectral information to encode pixel data [94].

A neighborhood of 5 pixels was defined around each pixel and 3x3 convolutions were

performed on each patch. PCA was performed along the spectral axis resulting in less than

30 components or transformed spectral channels. The 3x3 convolutions were performed

on each of the components, achieving over 98% accuracy on all benchmark datasets. As

shown in [95], small objects can be missed with 2D CNNs because of inappropriately
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(a) (b) (c)

Figure 18. Visualizing classification results using (a) SVM, (b) fully-connected network, and a (c) 1D
CNN for the Kennedy Space Center shows some small differences, but overall the methods are able to
accurately predict most pixels in the scene. Truth data is only provided for a small number of pixels in
the entire scene.

sized neighborhoods or single pixel or sub-pixel materials. The sensor spatial resolution is

an important property to consider when applying 2D CNNs for hyperspectral classification.

Since hyperspectral data forms a three-dimensional data cube, 3D CNNs were also in-

vestigated for hyperspectral classification [96]. Similar to [87], Chen et al. defined small

pixel patches around a pixel of interest such that small convolutional filters could be ap-

plied. The patch size was 27x27 pixels with filters of size 4x4x32 where the last dimension

is the spectral axis. To prevent overfitting on the limited number of training samples, weight

regularization and dropout were also used. Interestingly, both Hu et al. and Chen et al. used

the same benchmark datasets, but report significantly different patch sizes for optimal CNN

performance. In both cases, the reported overall and average accuracy is greater than 98%

on the benchmark datasets.

More advanced deep learning algorithms such as recurrent neural networks [93] and

GANs [97] have been applied to the same benchmark hyperspectral datasets considered in

the papers outlined so far. These approaches offer additional advantages in network over-

fitting and data augmentation, however, it is difficult to determine an optimal classification

technique since performance is saturated across most datasets. For example, in [93] a re-

current network is trained on the Pavia University dataset and compared with a random
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forest classifier, SVM and a CNN. The overall accuracy of all these methods is between

82% and 86% with the CNN achieving the highest overall accuracy. Additionally, training

and test sample distributions aren’t equivalent across papers compounding the problem of

identifying an optimal classification method.

Applying these techniques to datasets, real or synthetic, with atmospherically diverse

data will provide a better measure of their practical use and help to identify the leading clas-

sification approach. Limited work has been performed comparing classifier performance

across atmospherically varying data. In [98], an AE creates a low-dimensional embedding

for pixels in shadow and sunlight for the VNIR and SWIR domains. The shadow invariant

embedding allows all pixels to be projected to a sunlit representation, making classification

easier as scene illumination changes throughout the day. Physics-based data augmenta-

tion was extensively used to provide the AE representative samples. Similar to [98], in

[19], classification performance was compared across a 9 hour period in the LWIR do-

main to determine an optimal classification approach, however, no data augmentation was

used, but a significant improvement in performance was observed using CNNs compared

to fully-connected networks and SVMs.

2.7 Hyperspectral Target Detection

Distinctly different from hyperspectral land cover classification is hyperspectral target

detection in which materials of interest occur with low probability. The low occurrence of

target pixels limits the type of algorithms that can be used. The Neyman-Pearson criterion

is used to maximize target detection probability while reducing false-alarm rates to an

acceptable level [21, 99]. Target detection is a binary classification problem where pixels

are labeled as either background or targets through two steps: anomaly detection and target

identification [100].
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Anomaly detection approaches do not consider target information, but instead identify

pixels with significantly different spectral signatures from neighboring pixels. The Reed-

Xiaoli (RX) detector is a benchmark method for anomaly detection that adapts mean and

covariance estimates of background clutter for local regions around a pixel under test [101].

The RX detector is defined as:

rRX(x) = (x− µ̂µµ local)
T

Σ̂ΣΣ
−1
local (x− µ̂µµ local) (2.36)

where the statistics µ̂µµ local and Σ̂ΣΣlocal are estimated based on a local neighborhood of pixels.

Figure 19. The RX detector described in Equation 2.36 is applied to a collected data cube, where the
pixel detection statistics are shown spatially (top) and as a histogram (bottom). Applying a threshold
at approximately 27 will remove most of the background pixels from further processing.

A guard band around the pixel under test can be used to ensure candidate target pixels don’t

interact with local background statistics. Using local windows to estimate background

statistics around an individual pixel is computationally expensive and not recommended

for real-time processing [21]. Instead, the entire data cube can be used to calculate Σ̂ΣΣ
−1

and µ̂µµ assuming target pixels are rare in the scene. RX detection results are shown for

a collected data cube in Figure 19. Applying a threshold to the histogram in Figure 19
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at approximately 27 will remove most of the background pixels. Panels present in the

scene are easily identified visually based on the RX detection statistic but smaller objects

may be difficult to resolve. Commonly, PCA is applied along the spectral axis to remove

redundancy in the collected data. Figure 20 shows the first two principal components with

an RX decision boundary overlaid. Numerous false-alarms are observed, but most of the

background pixels have been correctly identified.

Figure 20. PCA was applied to a collected data cube along the spectral axis and the first two principal
components are shown. Applying the RX detector on this reduced data results in the decision boundary
shown. Point colors represent the truth data showing many false alarms.

The anomaly detection processing step is useful for many applications such as search

and rescue or change detection. Change detection is an active area of research leverag-

ing anomaly detection approaches to identify subtle differences between registered images

[102, 103]. The detected differences are often lost in the background data and can only be

detected using anomaly detectors with temporally-varying data.

Change detection scenarios require careful construction of background mean and co-

variance matrices. A nonlinear approach investigated in [104] showed how an AE model
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could be used to perform anomaly detection. A Mahalanobis distance (MD) detector was

compared to a denoising AE (DAE) for the anomaly detection task. Additionally, an RX

detector was defined using a background covariance matrix derived from DAE background

estimates, denoted as MD Σ̂
−1
DAE.

Figure 21. Receiver Operating Characteristic (ROC) curves are shown for various anomaly detection
methods utilizing AE models in unique ways. MD stands for Mahalanobis distance or the RX detector.
The MD Σ̂

−1
DAE results use an AE to define the background pixels and calculate background statistics for

the RX detector. A denoising AE (DAE) and an RX detector applied to the low-dimensional AE latent
space is compared (AE-MD).

After anomaly detection, signature-matched target detection approaches utilize an ex-

emplar spectrum to identify remaining pixels as either targets or background. This con-

clusion depends on a hypothesis test where the null hypothesis, H0, concludes the pixel is

background material while the alternative, H1, concludes the pixel is a target. Since targets

are exceedingly rare, the Neyman-Pearson criterion is used to maximize the probability of

detection at an acceptable probability of false-alarm level. The likelihood ratio for pixel

spectra, x is:

l(x) =
p(x|H1)

p(x|H0)
(2.37)

where p(x|Hi) is the probability density function for the ith distribution. Unfortunately, in

most real-world scenarios these probability density functions are not known a priori and

must be estimated. The generalized likelihood ratio test uses image data to identify the
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maximum-likelihood estimates, θi, of the probability density function parameters such that

this new likelihood ratio test can be expressed as:

l(x) =
maxθ1 p(x|H1)

maxθ0 p(x|H0)
(2.38)

The observed pixel spectra x can be described by the additive signal model [21]:

x = αs+b, (2.39)

where s is the the known target signal and α accounts for deviations in the target spectrum

from subpixel mixing or changes in illumination [2]. The background clutter model is

described by b ∼ N(000,σ2I). The Spectral Angle Mapper (SAM) uses the additive signal

model described to create the hypothesis test:

H0 : x = b

H1 : x = αs+b.

Converting to the logarithmic form of the generalized likelihood ratio test, the detection

statistic for the SAM detector is:

r(x) =
xT x
σ2 −

(x−αs)T (x−αs)
σ2 =

2αxT x−α2sT s
σ2 (2.40)

After substituting the maximum likelihood estimate for α = sT x/sT s the generalized like-

lihood ratio test for the SAM detector is [2]:

rSAM(x) =
1

σ2
(sT x)2

(sT s)
=

(sT x)2

(sT s)xT x
(2.41)

after estimating the background variance using xT x.
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The assumption of zero mean, white background is a significant drawback for the SAM

detector. The Spectral Matched Filter (SMF) detector improves on this by allowing a back-

ground distribution to follow b ∼ N(µµµ,ΣΣΣ). The SMF detection statistic can be formulated

as:

rSMF(x) = (s−µµµ)T
ΣΣΣ
−1(x−µµµ)− (x−αs−µµµ)T

ΣΣΣ
−1(x−αs−µµµ) (2.42)

and after substituting in the maximum likelihood estimate for α and simplifying becomes

[105]:

rSMF(x) =

[
sT Σ̂ΣΣ

−1
(x− µ̂µµ)

]2

sT Σ̂ΣΣ
−1s

. (2.43)

The additive signal model is applicable for sensors with large ground sampling dis-

tances, but as sensor resolution improves, target pixels begin to fill a substantial portion of

the pixel. In this case, a replacement model is more appropriately specified by:

H0 : x = βb

H1 : x = αs+βb

Subtracting the cube mean µµµ from both the target spectrum and all pixel spectra results

in the background distribution b ∼ N(000,ΣΣΣ). To estimate Σ̂ΣΣ, N training pixels are selected

that do not contain targets. After simplifying the generalized likelihood ratio, the Adaptive

Coherence/Cosine Estimator (ACE) detection statistic is [106]:

rACE(x) =
(sT Σ̂ΣΣ

−1x)2

(sT Σ̂ΣΣ
−1s)(xT Σ̂ΣΣ

−1x)
(2.44)

Next, the entire target detection pipeline is demonstrated using the SMF and ACE de-

tectors. The data considered was collected by the SEBASS LWIR sensor and are the same

images used in [107, 108]. The target emissivity was converted to at-sensor radiance using

the estimated surface temperature for the cube and the predicted TUD vector. Then, apply-
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ing the RX detector results in the background pixel classification shown in Figure 22 in the

second pane from the left. These pixels were used to create the background covariance ΣΣΣ

and mean µµµ vector for each detection algorithm. The detection maps are shown in Figure 22

for SMF and ACE, where both methods correctly identify the labeled pixels. Additionally,

ROC plots are shown in Figure 23 demonstrating high detection rates at low false-alarm

rates. The target material used in these plots was foamboard, containing distinct spectral

features making detection easier.

There are numerous metrics available for comparing detectors such as ROC curves, area

under ROC curves, precision, recall or Signal to Clutter Ratio (SCR). SCR is commonly

used in hyperspectral target detection and is described by:

SCR =
µ(rt)−µ(rb)√
σ(rt)2 +σ(rb)2

(2.45)

where µ(rt) is the mean detection statistic for target pixels while µ(rb) is the mean detec-

tion statistic for background pixels. The standard deviation of these measures is represented

by σ(·) where a higher SCR reflects a better target detection result.

Modeling the background clutter as a Gaussian distribution is not always practical since

real data rarely follows this distribution. Modeling the background as a mixture of Gaus-

sians is also problematic since it’s unclear how many Gaussian mixtures are needed. By

leveraging kernel machine learning [109], these problems can be overcome and detector

performance improved. Specifically, the data is projected to a high-dimensional space with

a kernel function enforcing data separability. There are numerous kernel functions available

but the most commonly used function is the RBF described by:

K(xi,x j) = exp

(
−
∥∥xi−x j

∥∥2
2

2σ2

)
(2.46)
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Figure 22. Background and target detection maps
for SMF and ACE

Figure 23. ROC plots based on the detection plots
shown in Figure 22.

where σ is the Gaussian standard deviation that is adjusted for the classification task. This

non-linear mapping is useful for a wide range of detection algorithms as shown by the

comparison in [110] where the kernel-based detectors outperform standard detectors on

several hyperspectral datasets.

SVM classifiers are a specific type of kernel machine learning methods which have

been extremely successful for hyperspectral classification. Their use is limited in target de-

tection because of an insufficient number of target training samples to define the non-linear

classification boundary. This limitation can be avoided by creating a subspace of represen-

tative target samples using radiative transfer models such as MODTRAN to synthetically

augment target data. A data augmentation approach was implemented in [111] to create an

atmospherically invariant subspace detector for the VNIR-SWIR domain.

Neural networks are another machine learning approach that has resulted in state-of-

the-art results for hyperspectral classification. Applying neural networks for target identi-

fication also requires a synthetically-augmented database of target samples to fit the net-

work’s nonlinear decision boundary. As shown in [112], small neural networks can be
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used for target detection with performance exceeding standard detection algorithms such

as ACE. The real-world accuracy of machine learning approaches, such as SVM and neu-

ral networks, will depend on the data augmentation strategy. Specifically, realistic noise

must be included in example target spectra for correct identification. Sensor spatial resolu-

tion will also impact detection ability as low resolution sensors collect mixed-pixel spectra

requiring data augmentation to also include this variability.

The following chapters will leverage the background material reviewed in this chapter

to derive faster in-scene atmospheric compensation algorithms. The next chapter presents

a case study on the importance of performing atmospheric compensation to support ac-

curate material classification, comparing TES methods with a variety of machine learning

classifiers. The following chapters derive generative modeling techniques and permutation-

invariant network architectures to accelerate in-scene atmospheric compensation leading to

faster target detection.
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III. Analysis of Long-Wave Infrared Hyperspectral Classification

Performance Across Changing Scene Illumination

3.1 Paper Overview

This conference paper was presented at the Society of Photonic Instrumentation Engi-

neers (SPIE) Defense and Commercial Sensing conference 17 April, 2019. Hyperspectral

image classification is considered across changing atmospheric conditions, demonstrating

limitations in land cover classification techniques if the collected hyperspectral data is not

corrected for atmospheric effects. This study compared classifier performance by modify-

ing how training and test data were selected. Specifically, test data partitions considered

cubes containing surface temperatures within and outside the training data range. This re-

search found that One-Dimensional Convolutional Neural Network (1D-CNN) classifiers

achieve the highest accuracy when surface temperatures are outside the training data range,

emulating real-world conditions where an exhaustive training set is not available.

This paper was presented at the 2019 SPIE Defense and Commercial Sensing Confer-

ence and published in the conference proceedings.

3.2 Abstract

Hyperspectral sensors collect data across a wide range of the electromagnetic spec-

trum, encoding information about the materials comprising each pixel in the scene as

well as atmospheric effects and illumination conditions. Changes in scene illumination

and atmospheric conditions can strongly affect the observed spectra. In the long-wave in-

frared, temperature variations resulting from illumination changes produce widely varying

at-aperture signals and create a complex material identification problem. Machine learning

techniques can use the high-dimensional spectral data to classify a diverse set of materials

with high accuracy. In this study, classification techniques are investigated for a long-wave
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hyperspectral imager. A scene consisting of 9 different materials is imaged over an entire

day providing diversity in scene illumination and surface temperatures. A Support Vector

Machine classifier, feedforward neural network, and one-dimensional convolutional neural

network (1D-CNN) are compared to determine which method is most robust to changes in

scene illumination. The 1D-CNN outperforms the other classification methods by a wide

margin when presented hyperspectral data cubes significantly different from the training

data distribution. This analysis simulates real-world classifier use and validates the robust-

ness of the 1D-CNN to changing illumination and material temperatures.

3.3 Introduction

Hyperspectral imaging is the science of simultaneously collecting spatial and spectral

information to allow for detailed material characterization and identification [2]. Unique

to hyperspectral imaging is the per-pixel collection of hundreds to thousands of continuous

spectral channels across a wide bandpass in the electro-optical spectrum. As a hyperspec-

tral imager scans a scene, a three-dimensional – two spatial, one spectral – data cube is

formed. Slicing the hyperspectral cube across any spectral band produces a spatial image

of the scene, and viewing any pixel across all spectral channels produces a spectrum en-

coding information about the material(s) within that pixel along with thermal, atmospheric,

and illumination conditions.

The idea of hyperspectral imaging was first proposed in the 1980s at the NASA Jet

Propulsion Laboratory [22]. Since that time, advances in spectrometer design, data pro-

cessing, atmospheric compensation and spectral resolution have led to many hyperspec-

tral imaging applications ranging from land cover mapping and crop health assessment to

search and rescue operations [2, 21, 113]. Initially, these sensors were found only on air-

borne platforms, but as their size has continued to decrease they can now be found on small

unmanned aerial vehicles.
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Regardless of the platform and remote sensing application, these sensors can generate

large volumes of data. For example, the Earth Observing-1 (EO-1) Hyperion spaceborne

sensor can collect at a rate of 71.9 GB/h in the range of 0.4–2.5µm across 220 spectral

bands [114, 115]. As hyperspectral imaging sensors proliferate, robust and efficient meth-

ods to automate the reduction and exploitation of their high-bandwidth will be required.

Machine learning approaches have already demonstrated great performance on hyperspec-

tral data.

Recently, deep learning approaches have shown promising results on benchmark hy-

perspectral data sets in accurately identifying a wide range of materials. Unfortunately,

most spectral-based classification research has only considered a single hyperspectral data

cube at a time. A classification algorithm trained on data from a single scene is expected to

perform poorly when presented new data collected under different illumination and/or at-

mospheric conditions. However, operational sensors require real-time performance across

diverse atmospheric conditions. (While atmospheric correction is possible, it can be a

time-consuming step which nonlinearly (and often imperfectly) transforms the at-aperture

signal.) Algorithms which directly process the at-aperture signal and are robust to changes

in atmospheric conditions would simplify the use of hyperspectral data products with min-

imal postprocessing.

To address changing at-aperture radiance as a function of atmospheric variability, this

paper applies Support Vector Machine (SVM), Artificial Neural Network (ANN), and 1D-

CNN to hyperspectral data cubes collected throughout an entire day. The hyperspectral

sensor and the objects in the scene are stationary, but varying illumination causes the ob-

jects to move in and out of shadows. This is the first comparison of these machine learning

algorithms on multi-cube Long-Wave Infrared (LWIR) hyperspectral data in order to iden-

tify architectures which are robust to changing scene illumination.
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In the following sections a review of relevant research is presented, highlighting related

machine learning methods applied to hyperspectral data. This is followed by an overview

of the data collection, data preprocessing and classifier implementation details. Results are

presented for all classification methods focusing on advantages and disadvantages of each

method. Finally, we conclude with major takeaways from this study and areas where future

work will be focused.

3.4 Background

To support a wide range of applications for hyperspectral imagery, significant research

has been conducted to correctly identify a diverse set of materials within a particular scene

[116]. These applications include land cover mapping, target detection and material clas-

sification. The material detection scheme is heavily dependent on the types of materials

within a particular scene and target populations. Target detection is primarily focused on

finding one object, possibly at the sub-pixel level, out of hundreds of thousands of possible

pixels [2]. This is in contrast to land cover mapping applications, in which each scene often

has hundreds of pixels for each material of interest.

Many classification algorithms have been implemented for hyperspectral data analysis.

Methods such as Adaptive Coherence/Cosine Estimator (ACE), Spectral Angle Mapper

(SAM) or Spectral Matched Filter (SMF) seek to identify pixels in a scene by defining

a background spectral signature and a target spectral signature [117]. The background

pixel spectra are typically assumed to fit a multivariate normal distribution; however, in

practice, the tails of the background data distribution diverge from the multivariate normal

distribution [6], leading to increased false-alarm rates and pixel misclassification. Addi-

tionally, these techniques are typically performed on emissivity or reflectivity and require

atmospheric compensation and possibly temperature estimation before pixel classification.
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A large number of machine learning methods have also been investigated for classify-

ing hyperspectral data. These techniques can operate directly on the sensor data without

atmospheric compensation. Machine learning methods such as SVM have been shown to

increase material identification accuracy on several benchmark hyperspectral datasets, out-

performing method such as ACE, SAM and SMF. [118], [119] SVMs are able to handle

high-dimensional data with limited training samples, making them an excellent choice for

hyperspectral classification [88]. A nonlinear SVM consisting of a Gaussian Radial Basis

Function (RBF) is typically employed on most classification problems. This classification

approach results in greater than 90% accuracy on many commonly investigated hyperspec-

tral data sets [88]. While training time is very short for SVM classifiers, pixel inference

can be time consuming compared to neural network classifiers.

Recently, deep learning techniques have achieved state-of-the-art performance in ar-

eas such as computer vision, machine translation and natural language processing [48].

Classifying hyperspectral data has many underlying similarities with these challenging big

data problems, making deep learning a logical next step for hyperspectral classification.

The stacked autoencoder implementation by Chen et al. (2014) was the first use of a deep

model to classify hyperspectral data [92]. By continually training layers of the stacked au-

toencoder, deep representations of the spectral data were created leading to state-of-the-art

classification at the time. Additionally, the pixel inference time is much shorter compared

to SVM classifiers making deep learning approaches a viable technique for real-time clas-

sification scenarios.

Since many of the spectral bands are highly correlated, a 1D-CNN can be oriented to

perform convolution along the spectral dimension, selecting salient features across small

spectral windows. 1D-CNNs use a series of learned filters to detect specific patterns in the

spectral data. The 1D-CNN has been shown to outperform SVMs on several benchmark

hyperspectral data sets, motivating this research to revisit this algorithm with multiple hy-
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perspectral cubes of training data [87]. Significant research has also been performed toward

spatial-spectral classification. This area utilizes the spatial information in a scene to fur-

ther improve classification accuracy over spectral only classifiers. The work presented in

this paper does not consider spatial-spectral classifiers because we are primarily interested

in how well spectral classifiers perform with slight changes to scene illumination. Ad-

ditionally, spectral-only classifiers may be more useful in single pixel to sub-pixel target

detection scenarios versus spectral-spatial classifiers.

Research using multiple hyperspectral data cubes to train and test classification algo-

rithms is limited. All deep learning research discussed thus far have trained and tested on a

single data cube - meaning they only contain information from one particular atmospheric

scenario. Variations in the amount of direct sunlight, cloud cover and other atmospheric

conditions all have direct effects on material surface temperatures and the at-aperture radi-

ance. Atmospheric compensation is an entire field of study devoted to determining atmo-

spheric effects so that the surface-leaving radiance can be estimated from the at-aperture

signal. In spectral bands where thermal radiation is relevant, atmospheric correction is often

followed by temperature-emissivity separation to extract unique pixel emissivity spectrum.

A simplified radiative transfer equation appropriate for describing the at-aperture radi-

ance, L(λ ), in the LWIR is given by [2]

L(λ ) = τ(λ )

[
ε(λ )B(λ ,T )+

[
1− ε(λ )

]
Ld(λ )

]
+La(λ ), (3.1)

where
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λ : Wavelength

T : Material Temperature

τ(λ ) : Atmospheric Transmission

ε(λ ) : Material Emissivity

B(λ ,T ) : Planckian Distribution

Ld(λ ) : Downwelling Atmospheric Radiance

La(λ ) : Atmospheric Path Radiance

Planck’s blackbody distribution function is

B(λ ,T ) =
2hc2

λ 5
1

ehc/λkT −1
, (3.2)

where k is Boltzmann’s constant, c is the speed of light and h is Planck’s constant. Atmo-

spheric compensation specifically estimates τ(λ ), La(λ ) and Ld(λ ) such that the surface

leaving radiance Ls(λ ) can be defined as:

Ls(λ ) =
L(λ )−La(λ )

τ(λ )

= ε(λ )B(λ ,T )+ [1− ε(λ )]Ld(λ ).

From Equation 3.1, it is apparent that training and testing on a single cube does not

allow a classifier to learn relationships between La(λ ), Ld(λ ), or τ(λ ) as these are con-

stant for a single cube. Furthermore, omitting this diversity in training data reduces the

classifier’s ability to interpolate to new atmospheric scenarios.

Our work uses the same data collected and analyzed by Martin [112] where he showed

a small neural network could outperform detection algorithms such as ACE when trained

on multi-cube data encompassing changing atmospheric conditions. As atmospheric con-
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ditions change throughout the day, so too will parameters in Equation 3.1, likely resulting

in classification model degradation. Our work extends Martin’s research to explore the ef-

fect of atmospheric change on classifier performance and compares several classification

models’ robustness against atmospheric change.

3.5 Methodology

Data was collected using a LWIR hyperspectral sensor at an angle of 68 degrees off-

nadir and an approximate path length of 150 m [112]. Panels consisting of various materials

were present in the scene to support several hyperspectral research projects. A subset of

these panels were used in this work as shown by the labeled pixels in Figure 24. Sandpaper

(36 and 320 grit), glass, tarp and canvas were placed in the scene in a vertical orientation

and angled orientations. High Emissivty Low Reflectivity (HELR) and High Emissivity

High Reflectivity (HEHR) targets were also placed in the scene to test the classifier’s per-

formance on two opposing reflectivity profiles.

Other materials are present in the scene, however, these are not considered for this

work. Specifically, mixed pixel panels and the panels in the lower right portion and upper

right portion of the image will not be used. Each scene is 486 by 1994 pixels.

HELR

HEHR

36 Grit SP

320 Grit SP

Concrete

Glass

Tarp

Canvas

Grass

Figure 24. Labeled pixels used for classification in each hyperspectral cube.
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Table 6. Number of pixels used in for the training and test distributions.

Name Training Test

HELR 6000 7680

HEHR 6000 8400

36 Grit SP 6000 4860

320 Grit SP 6000 5140

Glass 6000 6840

Tarp 6000 7500

Canvas 6000 5380

Grass 6000 12500

Concrete 6000 13500

Total 54000 71800

Data collection was conducted across a 9 hour period, resulting in 26 hyperspectral

cubes used in this analysis. In each cube, pixels were hand-labeled corresponding to the

9 different material types considered. Since the number of pixels per class was uneven,

the total number of training samples per material was downsampled to 6000. Test data

consisted of entirely separate cubes from the training data and the total number of samples

are shown in Table 6. The spatial orientation of pixels within the scene are shown in Figure

24. The scene is partially shaded by nearby trees providing illumination diversity during

the day-long collection. Since the path length is only 150 m and data was collected across

only 9 hours, surface temperature is expected to account for most of the variation in the

data over the samples.

A simple method was used to estimate an emissivity-like spectral quantity. First, In-

Scene Atmospheric Compensation (ISAC) [15] was used to estimate transmittance and

atmospheric path radiances and transform the at-aperture radiance into surface-leaving ra-

diance Ls(λ ). The brightness temperature was then computed for each pixel according
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to

TB(λ ) =
hc

λk ln
(

2hc2

λ 5Ls(λ )
+1
) (3.3)

Finally, assuming a negligible Ld(λ ), a proxy for material emissivity, ε̂(λ ), was computed

via

ε̂(λ ) =
Ls(λ )

B(λ ,Tmax)
, (3.4)

where Tmax corresponds to the pixel’s maximum spectral brightness temperature. After

transforming all at-aperture radiance values to ε̂ , the classification approaches will again

be applied to compare performance. Applying ISAC to estimate material emissivity adds

additional processing time. This additional time will be considered when evaluating clas-

sifiers.

This study examines the performance of different classification algorithms on multi-

cube classification. Towards this goal, the training data partitioning is performed using

two different approaches. The first approach, denoted Representative, creates training data

representative of all 26 hyperspectral cubes. This is done by ensuring pixel surface temper-

atures in the test set are similar to the temperatures in the training set as shown in Figure

25. High classification accuracy is expected in this case since the training set represents the

test set temperature variability.

The second approach, denoted Biased, examines classifier performance when test data

surface temperatures are not contained in the training data set. This approach examines

the robustness of classification algorithms when temperatures fall outside the training data

distribution as shown by the temperatures in Figure 26. Specifically, HELR, HEHR, glass,

grass, and concrete all contain test set temperatures outside the training set range. The two

types of sandpaper have less training samples for temperatures between 310 and 325 K in

the biased configuration leading to a more difficult modeling challenge.
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After testing and comparing classification performance using the at-aperture radiance

for both the representative and biased training sets, the biased set is converted to material

emissivities. This is done by first applying the ISAC algorithm to estimate τ(λ ) and La(λ )

from Equation 3.1 for each cube [15]. The total surface leaving radiance and material

emissivity is estimated using Equation 3.4. This is only performed on the biased data set

to test whether classification performance improves when using this data transformation.

The representative training set case is not transformed to material emissivities because, as

shown later, classification results are very high for all methods.

3.5.1 Classification Algorithms.

Three different classification techniques are considered in this study: SVMs, ANNs and

1D-CNNs. These methods have been extensively studied for hyperspectral classification,

with SVM being the most common baseline approach. Only the spectral data of each pixel

is used as input to each classifier with no information about neighboring pixels consid-

ered. The spectral data is normalized using the commonly applied z-score standardization,

resulting in zero mean and unit standard deviation per spectral channel.

The SVM classifier investigated here utilizes a RBF kernel function described by

K(x, x̃) = e(−γ‖x−x̃‖2), (3.5)

where γ = 1/2σ2 and x, x̃ represent two input samples. To train an SVM classifier, σ

must be adjusted to determine an optimal Gaussian function for projection. Additionally, a

complexity parameter must also be adjusted to allow for some misclassification leading to a

more generalized classifier [120]. Successive, finer resolution grid searches are performed

using validation metrics to determine these parameters.

The ANN used in this study consists of a single hidden layer with 20 neurons. Initially,

much deeper networks with more parameters were considered. This configuration was
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Figure 25. Representative Training Samples Figure 26. Biased Training Samples

selected after repeatedly pruning unnecessary connections while monitoring validation ac-

curacy. Specifically, training a new model with 19 hidden neurons resulted in decreased

validation accuracy while larger networks had nearly identical validation performance. All

hidden layer neurons utilize the Rectified Linear Unit (ReLU) activation function which

can be described as

ReLU(x) =





x, if x > 0

αx, if x < 0
(3.6)

where α is a hyperparameter allowing additional information to flow through the network

when negative inputs are provided to the function. This activation function is also known

as a Leaky ReLU because of this feature.

The ANN output layer utilizes a softmax activation function to create class probabilities

for each of the 9 materials labeled in the training data. The overall network structure con-

sists of 20 hidden nodes and 9 output nodes. The maximum output probability represents

the network’s prediction for a particular sample. Ideally, network predictions are heavily

weighted toward the correct class with minimum probabilities assigned to all other classes.

The 1D-CNN consists of two convolutional layers followed by a fully connected layer

and an output layer for material prediction. The architecture used here does not contain
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max-pooling layers as these were found to significantly reduce performance. Instead, a

strided convolutional layer was used to reduce the number of network parameters and was

motivated by the results presented by Springenberg et al [121]. The entire network structure

is shown in Table 7 where 1DConv50-4 refers to a 1D-CNN layer consisting of 4 different

kernels, each of width 50. The column names refer to the type of layer where C refers

to a CNN layer, D1 refers to a dropout layer and FC refers to a fully-connected layer.

The dropout layer was introduced to improve network generalization after confirming the

model had adequate capacity to overfit the training data. The hyperbolic tangent activation

function was used for all nodes in the 1D-CNN.

The model shown in Table 7 contains 3,328 weights to be trained. This same architec-

ture is evaluated for both the Representative data partition and the Biased partition. Sim-

ilarly, the ANN model consists of 4,950 parameters and will also be evaluated on both

partitions. The ANN model has slightly more parameters, however, reducing the number

of nodes in the single hidden layer any further resulted in significantly worse performance.

Table 7. 1D-CNN Network Architecture

C1 C2 D1 FC Output

1DConv50-4 1DConv40-4
0.5 9 9

Stride: 1 Stride: 4

3.5.2 Classification Metrics.

Classifier performance is evaluated using several well-known metrics. First, the overall

and average accuracy on the validation set is measured during each hyperparameter adjust-

ment in the training phase. This allows for a quick overview of classifier performance to

determine if the optimization step was correct. The overall accuracy (OA) is the ratio of

the number of predicted correct labels to the total number of samples. This metric does not

consider individual class accuracy. Average accuracy (AA) is the average of the individ-
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ual class accuracies and can highlight instances when a classifier is performing poorly on

particular classes.

The test accuracy will be biased since the classes are unbalanced in the validation and

test sets. To remedy this, the Kappa score is used which considers the number of samples

per class to compare algorithm performance. The Kappa score is

k =
po− pe

1− pe

where po is the class accuracy ratio and pe is the expected accuracy ratio given random

labeling. Additionally, the maximum F1 score is also calculated:

F1 = 2
PD

1+PD +PFA

where PD is the probability of detection and PFA is the probability of false-alarm. The F1

score represents the average between classifier precision and recall. Since neural network

approaches rely on a random weight initialization, both the Convolutional Neural Network

(CNN) and ANN models are repeatedly trained from different weight initializations. Re-

sults reported using these method will include a standard deviation, denoted as ±. The

SVM classifier does not rely on a random weight initialization and so no standard devia-

tion results are reported.

In the next section results are presented first for the training data partition encompass-

ing all surface temperature variability. This is followed by results for the biased training

data partitioning where the test set contains samples with surface temperature outside the

training data distribution. The three classification algorithms are compared for both con-

figurations and strengths and weaknesses between the methods are identified.
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3.6 Results

The Representative training partition is expected to result in higher classification per-

formance since this is the ideal case where the collected training data matches all possible

test conditions. The expectation of being able to collect data under a large enough set of

atmospheric conditions is a difficult assumption to satisfy when parameters such as atmo-

spheric transmittance, upwelling and downwelling radiance play a significant role in the

at-aperture signal. The Biased training data represents this case when training samples do

not span the test data distribution.

As shown in Table 8 for the Representative training column, all three classification al-

gorithms achieve over 90% average classification accuracy. The ANN and 1D-CNN have

nearly perfect classification across all classes. The kernels used in the 1D-CNN are in-

tentionally very large to capture interband dependencies across portions of the spectrum.

The ANN is able to simultaneously view all interband dependencies at once, and this likely

makes the classification problem more difficult since some spectral bands are more sensi-

tive to changing atmospheric conditions than others.

The Biased training partition represents a more realistic situation in which the train-

ing data does not fully span all possible test scenarios. All three classification techniques

showed degraded performance when applied to the Biased partition. The SVM classifier is

unable to generalize beyond the training distribution resulting in significantly lower clas-

sification accuracy for all materials. The ANN maintains high classification accuracy for

concrete, canvas and tarp materials. The tarp and canvas test sets are generally not biased

since the training set nearly spans the test set surface temperature range. Compared to the

other materials in the scene, concrete has a unique spectral profile making this material

easy to identify for this scenario. The 1D-CNN shows the best classification performance

on the biased data partition with maximum classification accuracy for nearly all materials.

High emissivity materials such as grass show a significant classification improvement over
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the ANN results. The at-aperture radiance for these materials is quite sensitive to the sur-

face temperature, resulting in highly variant spectral profiles across cubes. The 1D-CNN

kernels appear less sensitive to surface temperature and create informative feature maps for

material classification.

The 1D-CNN has the highest F1 score on 6 out of 9 classes as shown in Table 9. The

lowest F1 scores are on the two types of sandpaper. This was unsurprising since these

materials have similar spectral profiles. Next, the at-aperture radiance values are converted

to material emissivity to determine if this transformation improves classifier performance

in the biased partition scenario.

Table 8. Classification Accuracy for the data partitions shown in Figures 25 and 26. The bold font
represents the maximum classification accuracy per material for the Representative and Biased data
partitions.

Representative Training Biased Training

Material SVM ANN 1D-CNN SVM ANN 1D-CNN

HELR 87.19 99.21 ± 0.39 99.90 ± 0.01 23.54 85.31 ± 6.37 86.52 ± 2.79
HEHR 99.76 99.66 ± 0.12 99.91 ± 0.01 64.34 80.82 ± 6.41 99.07 ± 0.59

36 Grit SP 84.01 95.80 ± 0.35 92.17 ± 0.28 63.42 83.25 ± 2.39 61.81 ± 12.48

320 Grit SP 85.74 94.87 ± 0.91 88.30 ± 0.22 47.03 57.87 ± 3.79 75.87 ± 10.70
Glass 94.58 95.95 ± 0.52 98.27 ± 0.001 84.50 88.31 ± 4.93 96.70 ± 0.96
Tarp 95.85 99.34 ± 0.08 99.57 ± 0.001 91.95 99.02 ± 0.07 97.19 ± 1.04

Canvas 98.09 98.82 ± 0.65 99.90 ± 0.001 79.44 94.24 ± 0.07 98.70 ± 0.73
Grass 95.51 98.32 ± 0.35 99.95 ± 0.001 42.24 76.19 ± 3.70 88.70 ± 1.64

Concrete 98.85 99.99 ± 0.001 99.99 ± 0.001 57.75 99.96 ± 0.03 99.99 ± 0.001

OA 89.70 97.15 ± 0.22 98.03 ± 0.01 59.63 76.87 ± 2.18 87.32 ± 1.98
AA 92.05 97.68 ± 0.21 97.44 ± 0.01 61.40 82.43 ± 1.90 88.41 ± 0.94

Kappa 91.16 97.42 ± 0.23 97.16 ± 0.01 57.11 80.48 ± 2.10 87.12 ± 1.04

Having verified that the ANN and 1D-CNN models have an adequate number of pa-

rameters to correctly classify the data, we then employed the same architectures on the

emissivity proxy ε̂ computed for the biased set. The classification accuracies are shown in

Table 10 where all classifiers show significant performance improvements over the results
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Table 9. Maximum F1 Score for Biased Training Data Configuration. The bold font represents the
maximum score per material.

Material SVM ANN 1D-CNN

HELR 0.27 0.68 0.75
HEHR 0.59 0.87 0.94

36 Grit SP 0.47 0.45 0.55
320 Grit SP 0.38 0.63 0.60

Glass 0.88 0.85 0.94
Tarp 0.56 0.90 0.98

Canvas 0.82 0.91 0.89

Grass 0.45 0.85 0.92
Concrete 0.71 1.00 0.98

shown in Table 8 for the biased data. The ANN model does contain 1,622 more parameters

than the 1D-CNN model and results in the highest OA, AA and Kappa performance. Based

on the high classification performance using ε̂ rather than at-aperture radiance, the ANN

and 1D-CNN models can likely be further pruned leading to faster inference times.

The results shown in Table 10 demonstrate that an SVM or very small neural network

can be used to achieve high classification, however, these results don’t consider the total

inference time on new data. Transforming at-aperture radiance to emissivity is a time-

consuming operation which may be unacceptable to real-time, remote sensing scenarios.

Each classification method was tested on a single hyperspectral cube to compare inference

time. The timing includes all data cube preprocessing such as z-score standardization and

required array reshaping for matrix multiplications. The inference times reported in Table

11 are average times and were conducted using an Intel Xeon E5-2660 and Nvidia Titan V

graphics card for an entire 486 by 1,994 pixel scene.

The highest accuracy model when considering the biased radiance data was the 1D-

CNN, but after converting to emissivity space the ANN showed the best performance. If

near real-time classification is necessary, the 1D-CNN model coupled with the at-aperture
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Table 10. Biased Data Partition Classification Accuracy using Pixel Emissivity

Material SVM ANN 1D-CNN

HELR 71.19 73.50 ± 2.44 73.54 ± 3.88
HEHR 99.02 96.75 ± 0.15 97.98 ± 0.46

36 Grit SP 83.65 80.79 ± 2.38 72.94 ± 5.36

320 Grit SP 72.18 87.92 ± 3.48 89.22 ± 1.52
Glass 97.55 99.50 ± 0.25 99.24 ± 0.19

Tarp 98.32 95.58 ± 0.32 93.79 ± 0.55

Canvas 99.69 99.92 ± 0.04 98.90 ± 1.12

Grass 99.67 99.56 ± 0.01 98.50 ± 0.47

Concrete 100.0 99.99 ± 0.01 99.99 ± 0.01

OA 92.35 94.09 ± 0.21 93.23 ± 0.41

AA 91.20 92.77 ± 0.42 91.73 ± 0.71

Kappa 90.22 91.97 ± 0.46 90.81 ± 0.79

radiance values, L(λ ), is the best choice since emissivity calculations are not necessary

to achieve high classification accuracy. For applications which may not require real-time

classification and accurate atmospheric estimates can be made, the ANN model using emis-

sivity data is the best choice. The data used in this analysis was collected across a short

path length leading to minimal atmospheric effects. Longer path lengths, such as those

encountered with air- and space-based platforms, will further distort the at-aperture signal

requiring highly-accurate estimates of the atmosphere to estimate material emissivity.

Table 11. Total inference time for one hyperspectral cube

L(λ ) ε(λ )

SVM ANN 1D-CNN SVM ANN 1D-CNN

Inference Time (s) 239.78 27.19 39.49 303.54 80.82 98.91
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3.7 Conclusions and Future Work

This study has compared the performance of three hyperspectral classification algo-

rithms on data collected across an entire day. Different from other studies, this paper has

highlighted how these methods perform when tested on new hyperspectral data indepen-

dent from the training data cubes. Training and testing on independent cubes showed the

ability of classification methods to adapt to changing atmospheric conditions and surface

temperatures. Additionally, the training and testing data sets were intentionally partitioned

such that the test data contained surface temperatures not encountered in the training set.

All methods performed well when the training data was representative of the test data, but

the 1D-CNN showed the best generalization results when surface temperatures extended

beyond the training data range.

The training and test sets were also converted to pixel emissivity to train the three

classification methods. All methods showed nearly perfect classification performance when

using the proxy for emissivity; however, the short path length likely introduced minimal

atmospheric effects on the at-aperture signal.

Total inference time for each technique was also investigated. While classification per-

formance can be improved when using pixel emissivity estimates, this comes with addi-

tional computational costs and time. The 1D-CNN using at-aperture radiance values allows

for very fast pixel classification without significant reductions in accuracy.

It is unclear how these classifiers will behave when applied to space-based imagery

across widely varying atmospheric conditions. Future work in this area will focus on the

atmospheric parameter estimation problem for space-based platforms. Classification al-

gorithms will again be trained on a subset of all possible conditions. Moving towards

real-time classification, in-scene atmospheric compensation approaches will be explored to

maximize classifier speed.
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The high accuracy results using ε̂ are dependent on the atmospheric compensation ap-

proach. Future work in this area will investigate the use of generative models, such as

those presented by Kingma et al [52], to create highly-accurate and efficient atmospheric

estimates, allowing for real-time classification with improved performance.
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IV. Fast and Effective Techniques for LWIR Radiative Transfer

Modeling: A Dimension Reduction Approach

4.1 Paper Overview

This paper investigated Autoencoder (AE) networks for compressing Transmittance,

Upwelling, and Downwelling (TUD) vectors resulting in faster radiative transfer calcula-

tions to support a wide range of remote sensing applications. A new loss function was

introduced, dependent on the underlying Long-Wave Infrared (LWIR) radiative transfer

equation. This loss function outperformed standard mean-squared error for minimizing

at-sensor radiance error. Additionally, a sampling network was developed to determine

the low-dimensional components necessary for making radiative transfer model predic-

tions. After fitting the complete radiative transfer model, the network was optimized from

the output to the input allowing for estimates of atmospheric state to be made based on a

known TUD vector.

This paper was published in the Journal of Remote Sensing on 9 August, 2019.

4.2 Abstract

The increasing spatial and spectral resolution of hyperspectral imagers yields detailed

spectroscopy measurements from both space-based and airborne platforms. These detailed

measurements allow for material classification, with many recent advancements from the

fields of machine learning and deep learning. In many scenarios, the hyperspectral im-

age must first be corrected or compensated for atmospheric effects. Radiative Transfer

(RT) computations can provide look up tables (LUTs) to support these corrections. This

research investigates a dimension reduction approach using machine learning methods to

create an effective sensor-specific LWIR RT model. The utility of this approach is inves-

tigated emulating the Mako LWIR hyperspectral sensor (∆λ ' 0.044µm, ∆ν̃ ' 3.9cm−1).
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This study employs physics-based metrics and loss functions to identify promising dimen-

sion reduction techniques and reduce at-sensor radiance reconstruction error. The derived

RT model shows an overall root mean square error (RMSE) of less than 1 K across reflec-

tive to emissive grey body emissivity profiles.

4.3 Introduction

Next generation hyperspectral imagers continue to improve in both spatial and spec-

tral resolution with increasingly lower noise-equivalent spectral radiance (NESR) values,

presenting unique opportunities in efficiently characterizing pixel materials [122]. A pixel

in a hyperspectral image can be represented as a vector across all spectral channels, pro-

ducing a three dimensional data cube for an entire image, width by height by spectral

channel [22]. Hyperspectral imagers have been deployed in both airborne and space-based

platforms with uses ranging from precision agriculture to search and rescue operations [2].

The spectral bands making up a hyperspectral cube can span from the visible to the LWIR,

sampled across hundreds of narrow spectral channels [21]. The visible to shortwave in-

frared (SWIR) (0.4 - 3.0 µm) is dominated by scattering while the LWIR (5.0 - 14.0 µm) is

dominated by material emission [13]. The atmospheric state — which includes the altitude-

dependent temperature and pressure; how column water vapor content, carbon dioxide,

ozone, and other trace gases are distributed vertically; the kind and size distributions of

various aerosols — has a significant impact on the at-sensor radiance. Understanding and

accounting for these atmospheric effects is critical for quantitative exploitation of hyper-

spectral imagery, especially in the domain of material identification.

RT calculations convert the atmospheric state parameters — temperature, water, and

ozone values as functions of altitude or pressure — into spectral radiances observed at

the sensor by discretizing the atmosphere into thin, homogeneous layers. At each layer,

high spectral resolution RT calculations (e.g., LBLRTM) are performed, or approxima-
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tions thereof (e.g., MODTRAN). Due to the large number of discrete absorption lines of

the many trace gases in the atmosphere, millions of calculations are required to model a

sensor’s entire spectral range with high fidelity [123]. This computational complexity is

the primary bottleneck in remote sensing retrieval problems, often limiting the use of RT

models in real-time data analysis.

To avoid the high computational cost of line-by-line RT calculations, approximate RT

models are used to increase computational speed while trading off accuracy [124]. One

of the most widely used approaches to improve RT computation time is the correlated-

k method, which divides opaque spectrum into a subset of b bands and then applies a

weighting k to these bands, dependent on the opacity distribution of the b bands [125].

Similar to the weighting scheme employed in the correlated-k method, Principal Com-

ponent Analysis (PCA) has also been implemented to reduce RT computation time [123].

PCA can be applied on the input space (atmospheric state parameters) and/or on the output

space (spectral radiances) to reduce RT computational time. In [126], PCA was applied

to atmospheric state parameters for quickly estimating spectra in the O2 A-band with an

error of 0.3% compared to multi-stream methods with a 10-fold reduction in computation

time. In [123], PCA was applied to a database spectral radiances identifying a lower dimen-

sional space of only a few hundred components compared to the thousands of dimensions

in the original data space. Implementations such as principal component radiative trans-

fer model (PCRTM) [123] or principal component radiative transfer for TOVs (PCRTTOV)

[127] perform RT computations for a subset of bands and map these to the low-dimensional

space to create the highly-efficient RT model. In [128], PCA was considered on both the

input atmospheric parameter space and the output spectral radiance space to further reduce

computational time with an overall error of 0.05%.

This study focuses on efficient conversion of atmospheric state parameters into spectral

radiances for the LWIR domain using neural network approaches. This is achieved by
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performing dimension reduction on the output spectral radiance space (TUD vectors) and

then fitting a neural network to sample the low-dimensional space. Our approach is similar

to PCRTM [123], however, we utilize autoencoder networks for the dimension reduction

step instead of PCA.

The most salient contributions and findings of this research include:

• Employing machine learning techniques which: (1) are computationally faster than

correlated-k calculation methods; (2) reduce the dimension of both the TUD and

atmospheric state vectors; (3) produce the desirable latent-space-similarity property

such that small deviations in the low-dimension latent space result in small deviations

in the high-dimension TUD

• Developing a data augmentation method using PCA and Gaussian Mixture Models

(GMMs) on real atmospheric measurements that lead to improved model training

and generalizability

• Improving machine learning model training by introducing a physics-based loss func-

tion which encourages better fit models than traditional loss functions based on mean

squared error

• Demonstrating an effective AE pre-training strategy that leverages the local-similarity

properties of the latent space to reproduce TUDs from atmospheric state vectors

Together, these contributions form the basis of a novel method for efficient and effective

RT modeling, using a small number of parameters.

4.3.1 Background.

Atmospheric compensation techniques estimate the atmospheric effects imposed on the

at-sensor signal, leading to atmospherically-corrected data for material classification and
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identification. In the LWIR, the simplest RT model for describing the at-sensor radiance,

L(λ ), from a diffuse (lambertian) thermal emitter and scatterer, can be expressed as [2]:

L(λ ) = τ(λ )

[
ε(λ )B(λ ,T )+

[
1− ε(λ )

]
Ld(λ )

]
+La(λ ), (4.1)

where

λ : wavelength

T : material temperature

τ(λ ) : atmospheric transmission

ε(λ ) : material emissivity

B(λ ,T ) : Planckian distribution

Ld(λ ) : downwelling atmospheric radiance

La(λ ) : atmospheric path (upwelling) radiance

Both τ and La are specific to the line of sight between the sensor and the surface, whereas

Ld represents a cosine-weighted average of the downwelling radiance for the hemisphere

above the surface. Planck’s blackbody distribution function, B(λ ,T ), is given by

B(λ ,T ) =
2hc2

λ 5
1

ehc/λkT −1
, (4.2)

where k is Boltzmann’s constant, c is the speed of light and h is Planck’s constant. Atmo-

spheric compensation recovers the surface leaving radiance Ls(λ ) by estimating τ(λ ) and

La(λ ) in Equation 4.1 as shown in Equation 4.3.

Ls(λ ) = ε(λ )B(λ ,T )+ [1− ε(λ )]Ld(λ ). (4.3)
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One of the most popular LWIR atmospheric compensation techniques is the In-Scene

Atmospheric Compensation (ISAC) method which first identifies blackbody pixels within

the scene to estimate τ(λ ) and La(λ ) [15]. By using only pixel spectra from blackbod-

ies, the surface leaving radiance is equivalent to Planck’s blackbody distribution and the

simplified LWIR at-sensor radiance can be expressed as

L(λ )ε(λ )→1 = τ(λ )B(λ ,T )+La(λ ). (4.4)

Under the assumption that distinct blackbody pixels can be identified and their temper-

atures known, a linear fit can be performed across all spectral channels to identify τ(λ )

and La(λ ). In practice, temperature estimates are made in the most transmissive part of

the at-sensor spectral radiance, but they are often systematically biased since τ(λ̃ ) and

La(λ̃ ) are unknown and assumed to be 1 and 0, respectively, for that particular spectral

channel λ̃ . A common method to remove the biases introduced into τ and La by inac-

curate surface temperatures relies on spectral analysis near the isolated water absorption

feature near 11.73 µm. This method is very similar to the Autonomous Atmospheric Com-

pensation (AAC) method, which estimates a transmittance ratio and an upwelling radiance

parameter derived from the off- and on-resonance spectral values at the same isolated water

band [129]. By assessing this water feature, both transmittance and path radiance contri-

butions can be independently estimated, allowing the biased ISAC estimates of τ and La

to be fixed, or under further assumptions about the atmosphere, allowing full estimates

of τ and La to be made. To ensure algorithmic efficiency for both ISAC and AAC, pre-

computed look-up tables of τ(λ ) and La(λ ) are forward modeled with a RT model over a

wide range of possible atmospheric water and temperature profiles. In the LWIR portion

of the spectrum, Temperature-Emissivity Separation (TES) follows atmospheric compen-

sation to estimate material emissivity and surface temperature from Ls(λ ) [130].
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In this study, we conduct dimension reduction on the TUD vectors (τ(λ ), La(λ ), Ld(λ ))

in Equation 4.1 which span a wide range of global atmospheric variability. Specifically,

this research uses the Thermodynamic Initial Guess Retrieval (TIGR) database comprising

a myriad of atmospheric conditions in the form of temperature, water vapor, and ozone

profiles on a fixed pressure grid. The 2311 atmospheric profiles provided in the TIGR

database are based on 80,000 radiosonde measurements collected worldwide [30, 31]. The

TIGR atmospheric profiles are first filtered for cloud-free conditions and then forward mod-

eled using the Line-by-Line Radiative Transfer Model (LBLRTM) (version 12.8) to create

realistic TUD vectors which also span a broad range of atmospheric conditions.

Conducting dimension reduction on the TIGR-derived TUD vectors creates a low-

dimensional representation that can be sampled to create new TUD vectors without the

need of costly RT calculations. Research performed in [131] specifically considered a low-

rank subspace of τ(λ ) and La(λ ) for atmospheric compensation in the LWIR spectrum.

They performed a singular value decomposition on representative τ(λ ) and La(λ ) vectors

generated by MODTRAN for a given seasonal model and flight altitude. Blackbody pixels

were identified within a scene based on their projection onto these subspaces, thus provid-

ing a way to directly estimate transmittance and upwelling radiance for a scene. The neural

network approach we take for TUD vector compression is not invertible, therefore we can-

not directly apply the approach outlined in [131] for atmospheric compensation. The RT

model can assist the atmospheric compensation in [131], by quickly providing a wide range

of transmittance and upwelling vectors to construct the low-rank subspaces.

Creating a low-dimensional TUD representation is also important for data augmentation

applications, distinctly different from atmospheric compensation. To identify a material of

interest, many augmented representations of that material through diverse atmospheric con-

ditions can be created using a low-dimensional TUD representation. By providing many

of the commonly investigated classification techniques augmented at-sensor data represen-
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tative of diverse and realistic TUD vectors, atmospherically-robust classification can be

improved. This was the approach employed in [112], where a small neural network was

trained to detect specific materials in the LWIR across varying atmospheric conditions.

The neural network-based approaches investigated here offer a highly efficient method to

generate realistic TUD vectors to support data augmentation.

Additionally, the utility of the low-dimensional representation is explored by mapping

the atmospheric state (temperature, water vapor and ozone profiles) to the low-dimensional

space, thus creating a highly-efficient RT model. This RT model can be used for data aug-

mentation as discussed above or to support model-based compensation techniques where

hundreds of possible transmittance and upwelling vectors can be computed in real-time,

avoiding the use of precomputed look-up tables. By performing dimension reduction

prior to fitting this mapping, similar atmospheric conditions cluster together in the low-

dimensional space. Additionally, based on this clustering, small deviations in the low-

dimensional space correspond to small changes in generated TUD vectors, further improv-

ing the mapping from atmospheric measurements to the low-dimensional space.

In the next section, dimension reduction techniques are reviewed and the TIGR dataset

is explained in further detail. Metrics based on Equation 4.1 are also derived to ensure

dimension reduction techniques are correctly evaluated. Sampling of the low-dimensional

TUD representation is also outlined to demonstrate the utility of these techniques and high-

light the importance of latent-space-similarity where deviations in the latent space corre-

spond to similar deviations in high-dimension TUD space.

Following the methodology section, results are presented comparing dimension reduc-

tion performance derived from the TIGR data and an augmented version of the TIGR data.

After confirming improved performance with the augmented data, a novel physics-based

loss function is compared to Mean-Square Error (MSE) to further improve dimension re-

duction reconstruction error. Finally, a RT model is formulated from the dimension re-
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duction algorithms, showing the importance of the dimension reduction pre-training step

toward reduced TUD prediction error.

4.4 Methodology

This section first reviews the atmospheric measurement data and corresponding for-

ward modeled TUD vectors used for dimension reduction. Metrics for comparing the per-

formance of each technique are also reviewed, with a focus on incorporating properties

from the simplified RT model in Equation 4.1. A unique data augmentation scheme is also

discussed to increase the number of TUD samples for model fitting.

4.4.1 Data.

The TIGR database consists of 2311 atmospheres selected from over 80,000 worldwide

radiosonde reports. These atmospheric conditions represent a broad range of conditions fa-

vorable for capturing atmospheric variations in remotely sensed data. Each sample contains

temperature, water content and ozone at 43 discrete pressure levels ranging from the Earth’s

surface (1013 hPa) to > 30 km (<1 hPa) [30, 31]. Cubic interpolation was used to upsam-

ple these profiles to 66 pressure levels, with finer sampling in the lower, most dense part of

the atmosphere. Additionally, the profiles are grouped by air mass category such as polar,

tropical and mid-latitude. The entire TIGR data matrix shape is 2311 atmospheric profiles

by 198 measurements, where the 66 pressure level measurements for temperature, water

content and ozone are concatenated.

By using atmospheric profiles that span nearly all expected atmospheric variability, RT

can be conducted to generate TUD vectors encapsulating nearly every possible atmospheric

scenario. The LBLRTM was used to create high resolution TUD vectors, however, the

spectral resolution must be downsampled for a particular sensor to ensure the dimension

reduction techniques are applicable to real-world sensor resolutions.
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The LWIR Mako hyperspectral sensor is a high-performance, airborne sensor imaging

across 7.8−13.4µm into 128 spectral channels with a noise-equivalent temperature differ-

ence of 0.02 K at 10 µm and 300 K [122, 132]. The high-resolution LBLRTM generated

TUD vectors (11,513 spectral channels) are downsampled according to the Mako instru-

ment line shape creating representative TUD vectors for this sensor. Additionally, the TUD

vectors are generated to represent a sensor altitude of 3.3 km. The result of this process

is shown in Figure 27, where after downsampling, the TUD data matrix shape is 2311

samples by 384 spectral measurements (τ(λ ),La(λ ),Ld(λ ) concatenated). The goal of the

dimension reduction algorithms discussed next is to project the length 384 TUD vectors to

a lower dimensional space such that reconstruction error is minimized.
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Figure 27. The high-resolution LBLRTM transmittance, upwelling and downwelling vectors are shown
with their downsampled counterparts for the Mako LWIR sensor. The downsampled vectors are the
data used in the remainder of this study.

4.4.2 TUD Dimension Reduction Techniques.

PCA removes correlation from data by projecting it onto a new coordinate system which

maximizes data variance. Let xi be a single measurement with P features and X be the data

matrix containing N measurements such that X ∈ RN×P. To apply PCA to data matrix X,

first an eigendecomposition is performed on the data covariance matrix Cx such that

Cx = ADAT (4.5)
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where the matrix A is an orthonormal square matrix consisting of P eigenvectors and D is

a diagonal matrix consisting of the corresponding eigenvalues [46]. The eigenvalues are

sorted in descending order and the L eigenvectors corresponding to the largest eigenvalues

are kept, where L << P. This selection is based on the cumulative sum of data variance

explained with the eigenvectors. The smallest eigenvalue components are considered noise

and have little impact on reconstructing the original signal. In this study, we will vary

the number of L components to minimize reconstruction error. The subset of selected

eigenvectors are used to linearly transform the data to the low-dimensional representation

y ∈ RL by:

yi = AT xi.

An AE is a neural network designed for performing nonlinear compression by project-

ing data to a low-dimensional latent space, followed by nonlinear reconstruction from the

latent space. An AE is composed of two networks to perform this operation: an encoder

network and a decoder network. The encoder compresses the input data, x, into a lower

dimensional latent space, z, and the decoder reconstructs the data based on the latent space

mapping into y [47]. Equations for these two transformations are

z = f (Wzx+bz)

y = f (Wyz+by)

(4.6)

where x ∈ Rd is the input data, z ∈ Rl is the latent space representation with l � d. The

reconstructed data is y ∈ Rd and by and bz are the biases of the hidden and output layer

layers respectively. Wz and Wy are the weight matrices from the input to hidden layer

and hidden layer to output layer, respectively. An AE diagram is shown in Figure 4.6

specifically for TUD compression and decompression using the encoder, decoder and latent
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space nomenclature. This figure is only notional, and does not represent the number of

nodes actually used in this study.

Figure 28. An example AE model where the TUD vectors are compressed through one or more encoder
layers to a low-dimensional latent space. The decoder transforms the low-dimensional latent space
back to the original TUD vector.

The AE predicted TUD vectors are compared to the LBLRTM generated TUD vectors

through a loss function to determine model performance and update the weight matrices.

The loss function used for measuring reconstruction error between TUD vectors is an im-

portant design variable influencing how the AE structures the latent space and ultimately

what the network understands about TUD reconstruction. A commonly used loss function

is MSE, calculated according to:

MSE =
1
K

K

∑
i=1

(xi−yi)
2 (4.7)

where K equals the number of dimensions in the TUD vector, and xi and yi are the predicted

and truth TUD vectors respectively. MSE will be used in this study, but an additional

loss function will be derived later based on the underlying LWIR RT model. In many

applications, a series of hidden layers are used to create a latent space representation of the

data. This architecture is commonly referred to as a Stacked Autoencoder (SAE), where

the functions shown in Equation 4.6 are nested to include additional layers. The activation
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function, f , can be linear or non-linear. A comprehensive search of activation functions

found the Rectified Linear Unit (ReLU) [133] yielded the best results over functions such

as hyperbolic tangent, sigmoid, exponential linear units, and scaled exponential linear units.

The ReLU function used in this study is

RELU(x) =





x, if x > 0

αx, if x≤ 0

where α controls how much information is passed through the network for negative inputs.

This small slope increases information flow during backpropagation allowing more weights

to be influenced by training samples [134].

The number of latent components is an important design parameter controlling model

complexity and reconstruction performance. Using two latent components allows for visu-

alizations of the latent space by overlaying measurement parameters such as surface tem-

perature and total atmospheric water vapor content. For the PCA model, the first two com-

ponents capture 99.50% of the data variance. Plotting just these two components shows a

smoothly varying relationship between the components and these physical parameters as

shown in Figure 29. Both the validation set (158 samples) and test set (176 samples) are

plotted to highlight this underlying dependence on atmospheric conditions.

Similar plots are shown in Figure 30 when considering a 2 component SAE model.

Interestingly, the SAE disperses the validation and test set points throughout the latent

space which is beneficial for sampling the low dimensional representation. Small changes

in latent space components should result in small changes in the generated TUD vectors.

This latent-space-similarity is an important property when fitting a sampling method to

correctly identify a small number of components to generate a TUD vector. Small sampling

errors should not result in large TUD deviations. Since it’s difficult to visualize higher
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dimension latent spaces, this property can be observed by fitting a small neural network to

correctly predict the latent components for a known TUD.

The PCA model has little change in components 1 and 2 for cold, dry atmospheric

conditions as shown by the tight clustering of these points. There appears to be a stronger

dependence on component 2 for cold, dry atmospheres, while hot, humid conditions are

dependent on both components. The SAE components are both influenced by surface tem-

perature, while component 2 appears more dependent total water vapor content. Based on

the preliminary results shown in Figures 29 and 30, sampling the two-dimensional AE la-

tent space will result in lower reconstruction error because of the tight clustering of cold

dry atmospheric conditions shown in the PCA latent space. Using only two components

results in large reconstruction error, therefore, we will consider additional latent compo-

nents to cluster similar atmospheric conditions together in a low-dimensional space while

minimizing reconstruction error.
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Figure 29. The first two principal components using a 6 component PCA model with the augmented
TIGR data. Hot, humid atmospheric conditions vary with component 1 and 2 while cold, dry atmo-
spheres are more dependent on component 2

4.4.3 Metrics.

For all methods considered, the reconstruction error must be placed in context of the

at-sensor radiance to provide meaningful reconstruction performance. At-sensor radiance

errors are dependent on the material emissivity as shown in Equation 4.4 where down-
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Figure 30. Autoencoder latent space when trained using 2 components. The points are scattered
throughout the latent space with an overall clustering of similar atmospheric conditions. Both compo-
nents appear dependent on surface temperature. Component 1 also appears more dependent on total
water content versus component 2.

welling radiance does not play a role in the total error. However, if the surface material is

reflective (ε(λ ) = 0), the simplified LWIR RT equation becomes

L(λ )ε(λ )→0 = τ(λ )Ld(λ )+La(λ ) (4.8)

where errors in τ(λ ) and Ld(λ ) are now exaggerated. Using a standard metric, such as

MSE, does not capture this dependence on material emissivity and provides misleading

model performance for reflective versus emissive materials. A more appropriate metric for

this domain considers the material emissivity in the at-sensor radiance error calculation.

For a test emissivity, εt(λ ), the estimated at-sensor radiance, L̂(λ ) is calculated based

on the reconstructed TUD vector. Additionally, the original TUD vector is used in conjunc-

tion with εt(λ ) to calculate the true at-sensor radiance L(λ ). The RMSE, Et , is calculated

across all spectral channels such that

Et =

√
1
K

K

∑
i=1

(
L(λi)− L̂(λi)

)2 (4.9)

where K represents the number of spectral channels and Et is now in radiance units rep-

resenting the emissivity dependent RMSE. For the LWIR domain, errors are typically ex-

pressed in terms of temperature where conversion of radiance to brightness temperature is
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defined as [2]:

TBB(λ ) =
hc

λk ln
(

2hc2

λ 5L(λ ) +1
) (4.10)

By transforming at-sensor radiance to brightness temperature, the at-sensor error between

L̂(λ ) and L(λ ) can now be expressed in Kelvin. In general, reconstruction performance im-

proves as εt(λ ) approaches 1.0 based on Equation 4.4. The actual emissivity values used

are assumed grey bodies (spectrally flat) and linearly sampled between 0 and 1. Calculat-

ing the emissivity dependent RMSE provides additional information over standard MSE

between predicted and truth TUD values. Model selection is performed based on perfor-

mance across the entire emissivity domain resulting in lower error for reflective materials.

Constructing a model with low error across a range of emissivity values requires modi-

fications to model training. As shown by the emissivity dependent RMSE metric, standard

MSE will not provide sufficient information to properly update model weights. Instead, the

loss function for training the SAE must include emissivity dependent information. The loss

function must still be differentiable and result in stable training performance. To achieve

this, we use the TUD MSE calculation for stablized training, but also include an at-sensor

radiance MSE dependent on material emissivity:

L (x,y) =
1

3K

3K

∑
i=1

(xi−yi)
2 +

γ

MK

M

∑
j=1

K

∑
i=1

(
Lx(λi,ε j)− L̂y(λi,ε j)

)2
, (4.11)

where x is the truth TUD vector, y is the reconstructed TUD vector and K is the num-

ber of spectral bands. The terms Lx(λi,ε j) and L̂y(λi,ε j) represent the at-sensor radiance

using the truth and predicted TUD vectors respectively. The at-sensor radiance loss is cal-

culated using a linear sampling of M emissivity values between 0 and 1, noted by ε j in

the loss calculation. A regularization term, γ , is included in Equation 4.11 to trade-off

at-sensor radiance error and the TUD reconstruction error. In this study, we only consider
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γ = 1, however, future work will consider this additional hyperparameter in the network

optimization.

By including a loss component for the at-sensor radiance, network weights are updated

to minimize at-sensor radiance error rather than strictly TUD reconstruction error. This

is an important additional constraint since material emissivity impacts the difficulty of the

reconstruction problem as shown by Equation 4.8. The MSE component in Equation 4.11

is necessary to stabilize training since errors in one component of the TUD vector can cause

a reduction in overall loss depending on material emissivity. In practice, training networks

without the MSE component caused large deviations in loss values as the network weights

tried to simultaneously optimize for a range of emissivity values.

4.4.4 Radiative Transfer Modeling.

We consider the utility of the low-dimension TUD representation by applying it to the

problem of RT modeling. Specifically, this section considers how to map atmospheric state

vectors to the previously fit AE latent space. Our approach for creating the RT model

is similar to pre-training performed in other domains such as AEs to create useful feature

maps for classification [92]. Figure 31 displays an overview of the entire RT model training

process. The first step in Figure 31 is the fitting of the TUD dimension reduction technique

already discussed.
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Figure 31. The RT model is created by first creating a low-dimensional representation of the TUD
vectors with acceptable at-sensor radiance reconstruction errors. The latent space and decoder pa-
rameters are locked and a sampling model is fit to correctly identify the low-dimensional components
to map atmospheric measurements to their corresponding TUD vectors. This diagram is specific for
the SAE approach, but the encoder and decoder can be replaced with equivalent PCA transformations.

Next, a sampling network is trained to correctly predict the latent space components

using atmospheric state vectors as shown by the second step in Figure 31. During this step

of the training process, no updates are made to the previously trained decoder network.

Once the sampling network weights have converged, the entire RT model is trained end-to-

end (third step in Figure 31), allowing small weight updates in both the sampling network

and the decoder. We observed less than 200 iterations are needed for the final training step

as network weights are nearly optimized for the TUD regression task. As shown later, we

compare the results of this process to a fully-connected neural network without the two

pre-training steps shown in Figure 31.

Creating a RT model also highlights differences in the latent space construction among

differing dimension reduction techniques. Ideally, similar atmospheric conditions will form

clusters in the low-dimensional space. Sampling anywhere within these clusters should

result in similar TUD vectors reducing the impact of sampling errors. Additionally, small

changes in generative model components should lead to small deviations in the generated

TUD vectors. We found that pre-training an AE to reconstruct TUD vectors was useful for

enforcing a similarity between generative model components and their corresponding TUD

vectors. Both of these properties allow a sampling method to quickly learn a relationship
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between atmospheric measurements and the corresponding generative model components.

Difficulties in sampling the latent space to generate TUD vectors may be the result of one

or both of these properties not being satisfied.

The loss function for updating the nonlinear sampling layers is dependent on the di-

mension reduction method used to form the latent space. For SAE dimension reduction,

the loss function is simply the MSE calculated between predicted components and truth

components. In this case, truth components are derived from the encoder model. For PCA,

components are ordered according to the variance they capture, therefore, it is important

for the sampling method to correctly predict components capturing higher variance. The

loss function used in this case is a weighted MSE described as:

MSEPCA =
1
K

K

∑
i=1

wi(xi−yi)
2, (4.12)

where wi corresponds to the percentage of variance (expressed as a fraction) captured by

component i during the PCA fitting process. This scaling ensures a weighted reconstruction

reflecting component importance. Next, TIGR data augmentation is discussed as more at-

mospheric measurement samples are needed to fit the large number of dimension reduction

model parameters.

4.4.5 Atmospheric Measurement Augmentation.

The 2311 TIGR atmospheric measurements span expected atmospheric variability, pro-

viding a set of basis measurements to fit dimension reduction models. To accurately fit the

thousands of weights within a neural network, additional TUD vectors are needed to in-

terpolate between the TIGR samples. In this section, a data augmentation approach is

introduced, resulting in over 11,000 new TUD vectors derived from the TIGR database.

This study will only consider cloud free conditions requiring a relative humidity cal-

culation to be performed on each TIGR measurement. Using a threshold of 96% relative
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humidity, we downselect the TIGR data to 1755 samples. Each remaining temperature,

water vapor content and ozone measurement is concatenated forming vectors of length

198. A weighted PCA approach is employed by air mass type (Polar, Tropical, etc.) on

the concatenated measurement vectors such that reconstruction error is minimized at low-

altitudes. Low-altitude atmospheric dynamics have a larger impact on the resulting TUD

vector, requiring more accurate reconstruction at these altitudes to generate realistic TUD

values. Here, 15 components were used to capture nearly all variance (> 99.9%) using the

weighted scheme.

Next, a 10 mixture GMM is fit to the 15 dimensional latent space created by the

weighted-PCA approach. Sampling the multivariate normal distribution results in new

latent space samples that are inverse transformed using the weighted-PCA model. This

creates new temperature, water content and ozone measurement vectors for a particular

air mass category. The relative humidity of the generated measurements is again calcu-

lated, removing new measurements exceeding 96%. Measurement vectors exceeding 10%

of filtered TIGR bounds are removed and any measurements with pressure level gradients

larger than the TIGR data are also removed. By filtering the generated results, the gener-

ated measurements closely match the statistics of the original data as shown in Figure 32.

These measurements are forward-modeled with LBLRTM increasing the number of sam-

ples in the TUD training data. This data augmentation step is important as the number of

parameters in most AE models is significantly higher than the number of samples in the

original TIGR database. Model validation and testing will only consider held out sets of

original TIGR samples to ensure model performance isn’t based on possible errors in the

augmentation process.
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Figure 32. Generated atmospheric measurements based on sampled PCA components from the GMM.

Using the metrics, models and augmented data outlined in this section, algorithm per-

formance is compared in the next section. The best performing methods are considered

for the RT modeling problem where we show the overall effectiveness of using SAE pre-

training to improve RT performance.

4.5 Results and Discussion

In this section, we first consider the impact of including the augmented atmospheric

measurements in fitting the dimension reduction algorithms. After validating the aug-

mented data improves model performance, we next compare the loss function described

in Equation 4.11 against MSE. Finally, the latent space created by each dimension reduc-

tion technique is sampled following the process outlined in Figure 31 to compare RT model

performance.

4.5.1 Atmospheric Measurement Augmentation.

Using the data augmentation approach outlined in Section 4.4.5, over 11,000 new atmo-

spheric measurements were created from the original 1755 filtered TIGR measurements.
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These measurements were forward-modeled through LBLRTM to create high-resolution

TUD vectors. The augmented TUD vectors were downsampled to the Mako instrument

line shape (ILS) resulting in 128 spectral channels for each component of the TUD vec-

tor. To test the validity of this augmentation strategy, we consider dimension reduction

performance with and without the use of the augmented TUD samples.

All results are reported on test TUD vectors derived from the original TIGR database

to verify the models generalize to real measurement data. The validation and test TIGR

data points were selected based on total optical depth. Optical depth, OD(λ ), is related

to transmittance by τ(λ ) = e−OD(λ ). The validation and test sets contain the entire range

of optical depth encountered in the TIGR data, ensuring these sets are not biased toward

a particular atmospheric condition. To extract average performance information, 5 fold

cross validation was used for the PCA model where the training and validation sets were

still configured to contain the entire range of total optical depths in the data. For the SAE

model, random weight initialization was used to derive performance statistics.
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Figure 33. Dimension reduction techniques show improved results when using the augmented TIGR
data. All models reduce the input data to 5 components in this plot, however, the number of components
is an additional hyperparameter that will be considered later.
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As shown in Figure 33, reconstruction performance improves when using the aug-

mented data to train both the SAE and PCA algorithms. Since the SAE has many parame-

ters to fit, the additional information encoded in the augmented data allows this technique

to extract these underlying relationships with lower error. This additional information also

improves PCA reconstruction performance by enforcing the axes of maximum variance

within the data.

The SAE encoder and decoder have mirrored configurations with the encoder consist-

ing of 40 nodes followed by 15 nodes connecting to the latent space. The overall network

node structure is 384-40-15-N-15-40-384 where N represents the number of latent compo-

nents and 384 corresponds to the TUD vector dimension. This configuration was found by

conducting a hyperparameter sweep across the number of layers, nodes per layer, learning

rate, batch size, and activation functions. In Figure 33, all models use 5 components to

evaluate the utility of the augmented data. A learning rate of 0.001 was found to achieve

acceptable results when training for 500 epochs. Additionally, the ReLU activation func-

tion was used for all nodes, except the output layer which consisted of linear activation

functions. MSE loss was used for all SAE models in Figure 33. Next, the augmented data

is used to evaluate the utility of the physics-based loss function described in Equation 4.11.

4.5.2 At-Sensor Loss Constraint.

The same SAE architecture used to create Figure 33 is used again in this analysis where

we evaluate the utility of the loss function in Equation 4.11. To compare the MSE against

our new loss function, two identical networks were trained. Specifically, each network

was initialized with the same weights and samples presented in identical order, where the

only difference between the networks is in the loss calculation. Both networks utilize 5

components in the latent space for dimension reduction to demonstrate differing loss char-

acteristics for a particular network configuration. As shown in Figure 34, the physics-based
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loss function provides lower reconstruction error for reflective materials (ε(λ )≤ 0.5). This

is the designed behavior of the loss function since the at-sensor radiance error for reflective

materials increases based on the relationship shown in Equation 4.8. As the material emis-

sivity trends toward one, the at-sensor radiance can be described by Equation 4.4, where

errors are no longer multiplicative. In this regime, MSE and the physics-based loss function

converge. The error bars in Figure 34 are based on random weight initialization of the net-

works for repeated training trials. MSE shows significantly less variance across repeated

training, but is unable to reach the lower RMSE values for reflective materials observed

with the physics-based loss function. MSE outperforms the physics-based loss function for

emissive materials since the reconstruction problem no longer benefits from this additional

information and inhibits the model training process.
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Figure 34. Comparison of SAE performance when using strictly MSE loss or the loss function de-
scribed in Equation 4.11. Updating the model using information from the at-sensor radiance error
improves reconstruction performance for reflective materials. The error bars represent the perfor-
mance standard deviation when training multiple networks with identical architectures and random
weight initialization.
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4.5.3 Dimension Reduction Performance.

Using the same SAE structure discussed in Section 4.5.1, the augmented training data

and the physics-based loss function, the number of components were adjusted to compare

dimension reduction performance. Rather than creating plots similar to Figure 33 for each

component configuration, the area under the RMSE curve was calculated (smaller is bet-

ter), creating the plot shown in Figure 35. When the area under the curve is similar for

multiple methods, we cannot determine which method is better without further analysis.

This is because the individual curves demonstrate different performance characteristics for

emissive and reflective materials. For example, we cannot say which method is best when

using 8 components without also considering the material emissivity.

From Figure 35, it is clear that lower reconstruction error can be achieved with the

SAE when using a low number of components. While PCA can achieve overall lower

error with greater than 8 components, this isn’t ideal for sampling the low-dimensional

space as additional components complicate the sampling process. For the SAE model, 4

components is adequate for reconstructing the data, when considering the 176 test samples

used to create these results.
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Figure 35. Varying the number of latent components and calculating the area under the RMSE curve
shown in Figure 34 shows how many components are necessary to reconstruct the TIGR data. Re-
sults are plotted for the validation set consisting of 158 samples using the augmented data for training
and the loss function outlined in Equation 4.11 for SAE training. The PCA error bars correspond to
performance standard deviation when using 5 fold cross-validation. The SAE errors bars show the
performance standard deviation when random weight initialization is used.

4.5.4 Radiative Transfer Modeling.

The low-dimensional representations created by PCA and SAE can be used for efficient

radiative transfer modeling by mapping TIGR atmospheric measurements to the encoder-

predicted latent components. This mapping is more difficult if diverse atmospheric condi-

tions are closely grouped in the latent space, or similarly, if small deviations in the latent

space create large TUD vector differences. The same metrics used for developing the di-

mension reduction methods are also used to compare RT models as we are primarily con-

cerned with at-sensor radiance reconstruction error across a range of material emissivities.

The 66 pressure level measurements for air temperature, water content and ozone inter-

polated from the TIGR database are concatenated together forming a 198 dimensional input

vector for latent space prediction. A two layer, fully-connected neural network (58-29) is

used to map the atmospheric measurement vector to the latent space. This network utilizes
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ReLU activation functions, a learning rate of 0.001, and a batch size of 16. This network

configuration was identified by performing a hyperparameter sweep across number of lay-

ers, nodes per layer, activation functions, batch sizes, and learning rates resulting in over

1,400 model comparisons. The atmospheric measurements were z-score standardized by

feature and the latent space components were normalized between 0 and 1. This network

configuration was used for the 6 component PCA model and the 4 component SAE model.

The 6 component PCA model was selected for this analysis because of the large reduc-

tion in RMSE error from 5 to 6 components. In both cases, the network was trained for

500 epochs with validation and training loss stabilizing between 200 and 300 epochs. This

model configuration was found by performing a hyperparameter sweep for the PCA model

and identifying the configuration with minimum validation set at-sensor reconstruction er-

ror for a range of emissivity values. The sampling network weights were updated based

on latent space component prediction errors with SAE utilizing standard MSE loss. For

sampling the PCA latent space, weighted MSE loss was used as outlined in Equation 4.12.

The resulting RMSE for each RT model is shown in Figure 36 where the RT model de-

rived from the SAE decoder has the lowest error across all emissivity values. The Artificial

Neural Network (ANN) model results shown in Figure 36 represent a baseline approach

where an end-to-end neural network was trained with the same network configuration as

the SAE RT model (198-58-29-4-15-40-384) using MSE for the model loss function. The

performance difference between the SAE RT model and the ANN model highlight the ad-

vantages of first using an AE to initially fit network weights before training the RT model.

Initially, training the SAE weights clusters similar atmospheric conditions together, lim-

iting the impact of RT model sampling errors, improving overall RT model performance.

Additionally, the at-sensor radiance loss function used in the SAE approach significantly

improves model performance for reflective materials. Without the at-sensor radiance loss
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function or the weight initialization imposed by training an AE model, the ANN model is

unable to reconstruct TUD vectors with the accuracy of the SAE RT model.

The SAE RT model was trained by first fitting encoder and decoder networks to mini-

mize at-sensor radiance reconstruction error, followed by training a small sampling network

to correctly predict latent components. This training methodology did not allow updates

to the decoder network after training of the sampling network. The SAE RT tuned model

result shown in Figure 36, has the same configuration as the SAE RT model, but the de-

coder weights were also updated after the sampling network training converged. This final

training step utilized the same physics-based loss function used for the initial SAE training,

improving reconstruction performance for reflective emissivity values. Since the previous

training steps had already created weight matrices resulting in high performance, only small

changes were needed to further reduce reconstruction error.

Additionally, the 15 component PCA model results are shown. In this case, even higher

RMSE error is observed since correctly sampling the 15 components is a more complex

task. While the 15 component PCA model has the lowest reconstruction error during the

TUD reconstruction training phase, the added complexity in latent space fitting limits the

utility of this model. In all cases, the highest errors are observed for reflective materials

since errors in transmittance and downwelling radiance are multiplicative in this region.
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Figure 36. The performance of the RT models is shown as a function of emissivity where it is clear the
SAE derived RT models create a latent space that is easier to sample with a small neural network. In
all cases performance improves as materials become more emissive since downwelling radiance plays
a less significant role in these cases. The 15 component PCA model is also shown, where sampling the
15 components correctly becomes a complex problem resulting in lower overall performance.

Considering only the SAE RT Tuned model, the at-sensor radiance RMSE as a function

of wavenumber and emissivity is shown in Figure 37. These results are the average RMSE

for the 176 test TIGR samples at each emissivity level. For emissive materials, RT model

errors are below 0.5 K for most bands. The ozone absorption bands between 1050 and

1100 cm−1 lead to larger errors because of limited transmittance in this domain of the

spectrum resulting in large deviations in the at-sensor radiance. The challenge of correctly

identifying a TUD vector for reflective materials is seen by the high RMSE for ε = 0.01 in

Figure 37. While these errors appear large on the scale shown in Figure 37, these errors are

significantly larger using other models based on the results for ε = 0 in Figure 36.
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Figure 37. The average at-sensor radiance RMSE RT model errors for 176 test TIGR samples as a
function of surface emissivity expressed in spectral brightness temperature. Model errors decrease
with increasing emissivity, consistent with the findings in Figure 36.

Based on the results shown in Figure 37, the SAE-based RT model can estimate TUD

vectors with errors below 0.5 K for most spectral bands and a range of emissivity values.

These generated TUD vectors are useful for estimating surface leaving radiance described

in Equation 4.3 if estimates of atmospheric conditions can be provided.

Also, the RT model can be used to quickly estimate TUD vectors. The RT model devel-

oped here is approximately fifteen times faster than the correlated k method. On average, a

single TUD vector can be predicted in 0.1 seconds, however, this increase in performance

is amplified when considering batch processing as multiple TUD predictions can be per-

formed in parallel. By reducing TUD prediction time, this method is useful for quickly gen-

erating augmented representations of emissivity profiles based on a multiple atmospheric

state vectors. The data was constructed such that this method could be used for the Mako

LWIR hyperspectral sensor, however, resampling of the high-resolution LBLRTM data can

be performed for other sensors.
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4.5.5 Atmospheric Measurement Estimation.

Finally, we consider estimation of the most likely atmospheric measurements for a

given TUD vector using the formulated RT model. Instead of propagating inputs forward

through the RT model, this section considers estimation of the model’s inputs for a given

output. Since the RT model is composed of a sampling network (atmospheric measure-

ments to latent components) and a decoder network (latent components to TUD vectors)

the estimation problem can be partitioned into two steps.

First, the latent space components are identified that correspond to the TUD vector.

Since the latent space only consists of 4 components, finding these 4 components using an

optimizer takes little time and results in predicted TUD vectors closely matching the given

TUD vector. This optimization is performed with respect to the decoder network of the

RT model. As an example of this process, we select a TUD vector with a 50th percentile

reconstruction error from the test data set. Figure 38 shows the LBLRTM generated TUD

components and the predicted TUD from optimizing the 4 latent components.
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Figure 38. The top 3 panels are the predicted TUD components plotted against the LBLRTM gen-
erated TUD components. The predicted TUD components were generated by optimizing the 4 latent
components. The bottom 3 panels are the TUD component residual curves, showing low error across
most spectral channels.

After identifying the latent components, inputs to the sampling network (atmospheric

measurements to latent components) must be optimized to identify measurements that will

produce the estimated latent components. Unfortunately, the input measurement vector

contains 198 values (temperature, water content and ozone at 66 pressure levels) and op-

timizing this large number of values for 4 components is a time-consuming and difficult

task.

To make this problem more tractable, a PCA transform was applied to the training data

atmospheric measurements. Using 10 components to represent the atmospheric measure-

ments captures 90% of data variance and simplifies the optimization problem as only 10

values must be optimized to predict the 4 latent components. For the same TUD vector

used in Figure 38, the result of the atmospheric measurement estimation process is shown

in Figure 39. Interestingly, the largest errors occur at high altitudes, where deviations in

these measurements have less impact due to lower air density.
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Figure 39. Predicted atmospheric measurements compared to the TIGR atmospheric measurements.
The predicted atmospheric measurements will produce a close match to a given TUD vector but do
show some deviations from the original TIGR measurement, specifically at high altitudes. Fortunately,
high altitude error has less impact on the at-sensor radiance error because of lower air density.

The results shown in Figures 38 and 39 are for a single TUD vector. This process was

repeated for all TUD vectors in the test data set to determine overall performance metrics.

Errors between predicted temperature and water content measurements and the correspond-

ing TIGR atmospheric measurements are weighted by the density at the discrete pressure

levels as errors at high altitudes will have a lower impact on the TUD vector prediction. For

all 176 test set TUD vectors, we observe an average error of 2.61 K for predicted temper-

ature profiles and 0.45 cumulative H2O % for predicted water content profiles. For ozone

measurements, an atmospheric density weighting was not applied. The observed average

error for ozone measurement estimation was 0.79 ppmv.

Overall, the goal of the RT model is predict TUD vectors, based on known or estimated

atmospheric measurements. By showing the model’s ability to estimate atmospheric mea-

surements from a given TUD vector (inverse problem), we have demonstrated the utility

of low-dimension representations of the TUD vectors. Additionally, since the latent space
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clusters similar atmospheric conditions together (latent-space-similarity), an ensemble of

likely atmospheric measurements can be generated for a given TUD by applying small

deviations to latent components.

4.6 Conclusions

This study has leveraged SAEs with a novel physics-based loss function to reduce TUD

vector dimensionality such that fast and effective LWIR RT models could be constructed

by sampling the low-dimensional TUD representation. By using an AE pre-training step,

the low-dimensional TUD representation clustered similar atmospheric conditions together

reducing sampling errors. Additionally, the pre-training step verified that small deviations

in the low dimensional TUD representation corresponded to small deviations in the high

dimensional TUD vector. These approaches were shown to reconstruct at-sensor radiance

with errors below 0.5 K for most emissivity values.

The dimension reduction results utilized real atmospheric measurements from the TIGR

database and augmented data derived from this same database. Using augmented atmo-

spheric measurements improved both PCA and SAE performance for a range of material

emissivities. PCA was shown to reconstruct data with lower error than the SAE when us-

ing beyond 8 components. The SAE performance did not improve significantly when using

more than 4 components, demonstrating adequate capacity for the augmented TIGR data.

Sampling the low-dimensional representations created by these methods highlighted

significant differences in TUD reconstruction. This study found the SAE latent space eas-

ier to sample, resulting in lower RT model errors. Additionally, training the entire RT model

after pre-training the sampling network and decoder networks improved RT performance.

The RT model was further explored to identify the most likely atmospheric measurements

for a given TUD vector. This analysis revealed that RT model inputs could easily be opti-

mized resulting in predicted atmospheric measurements with some agreement to the TIGR
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measurements. While this was not the goal of this work, we will explore the utility and lim-

itations of SAEs in the inverse problem of estimating atmospheric conditions from spectral

measurements.

Optimizing the latent components for a particular TUD vector is a straightforward pro-

cess, however, no known physical quantities are directly correlated with these components.

No constraints were placed on the formulation of this latent space other than the overall net-

work loss function. This unconstrained representation creates a disentanglement problem

limiting the utility of the SAE as a generative model when limited atmospheric information

is available. Future work in this area will consider additional constraints on the latent space

to improve upon this disentanglement problem, offering a means for creating TUD vectors

with properties representative of specific atmospheric conditions. Specifically, if complete

atmospheric measurements are not available, this analysis will determine what information

is required to predict the most likely TUD vector using a small number of components.

Methods such as Variational AEs, multi-modal AEs and Generative Adversarial Networks

coupled with physical constraints will be investigated toward this goal.
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V. Learning Set Representations for LWIR In-Scene Atmospheric

Compensation

5.1 Paper Overview

Previous research investigated methods for compressing worldwide Transmittance, Up-

welling, and Downwelling (TUD) data allowing for faster radiative transfer calculations.

Similarly, the low-dimensional latent space created by an Autoencoder (AE) network can

be used to support in-scene atmospheric compensation. This paper utilizes previous re-

search in AE models and new network architectures dependent on permutation invariant

neural network layers to estimate a scene’s TUD vector. A novel data generation algo-

rithm was created to fit an in-scene atmospheric compensation neural network without the

need for spatially-resolved hyperspectral data cubes. Results are presented for both syn-

thetic and collected hyperspectral data demonstrating comparable or better performance to

current Long-Wave Infrared (LWIR) atmospheric compensation approaches.

This paper was published in the IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing.

5.2 Abstract

Atmospheric compensation of LWIR hyperspectral imagery is investigated in this paper

using set representations learned by a neural network. This approach relies on synthetic at-

sensor radiance data derived from collected radiosondes and a diverse database of measured

emissivity spectra sampled at a range of surface temperatures. The network loss function

relies on LWIR radiative transfer equations to update model parameters. Atmospheric pre-

dictions are made on a set of diverse pixels extracted from the scene, without knowledge

of blackbody pixels or pixel temperatures. The network architecture utilizes permutation-

invariant layers to predict a set representation, similar to work performed in point cloud
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classification. When applied to collected Hyperspectral Imagery (HSI) data, this method

shows comparable performance to Fast Line-of-Sight Atmospheric Analysis of Hypercubes

- Infrared (FLAASH-IR), using an automated pixel selection approach. Additionally, in-

ference time is significantly reduced compared to FLAASH-IR with predictions made on

average in 0.24 s on a 128 pixel by 5000 pixel data cube using a mobile graphics card. This

computational speed-up on a low-power platform results in an autonomous atmospheric

compensation method effective for real-time, on-board use, while only requiring a diver-

sity of materials in the scene.

5.3 Introduction

Hyperspectral sensors continue to improve in both spatial and spectral resolution, al-

lowing for a wide range of applications such as land cover mapping, search and rescue

operations and target detection [2, 21, 135]. Each HSI pixel contains information sampled

across hundreds of narrow spectral channels creating a three-dimensional data cube: width

by height by spectral channel. HSI data collected in the LWIR region of the electromag-

netic spectrum (8 - 14 µm) contains surface emissivity and temperature information. These

measurements are important for atmospheric modeling, climate change studies and urban

heat island analysis [136, 137]. Efficiently and accurately extracting emissivity and tem-

perature information remains a challenging problem. The goal of this paper is, with limited

assumptions on material content in a scene, to develop and evaluate an efficient method for

extracting atmospheric information from a LWIR HSI data cube.

Compared to the reflective region of the electromagnetic spectrum (0.4 - 2.5 µm), the

LWIR domain is dominated by emission of surface materials and atmospheric constituents.

The at-sensor radiance, L(λ ), for a lambertian surface can be described by the simplified
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LWIR radiative transfer model [2]:

L(λ ) = τ(λ )

[
ε(λ )B(λ ,T )+

[
1− ε(λ )

]
Ld(λ )

]
+La(λ ), (5.1)

where

λ : wavelength

T : material temperature

τ(λ ) : atmospheric transmission

ε(λ ) : material emissivity

B(λ ,T ) : Planckian distribution

Ld(λ ) : downwelling atmospheric radiance

La(λ ) : atmospheric path (upwelling) radiance.

The Planckian distribution is:

B(λ ,T ) =
2hc2

λ 5
1

ehc/λkT −1
, (5.2)

where c is the speed of light, k is Boltzmann’s constant and h is Planck’s constant. Trans-

mittance and path radiance are spectrally-varying quantities which depend on the spatially-

varying temperature and constituent concentrations in the atmosphere [13]. Water vapor,

ozone, and carbon dioxide are among the most important infrared-active gases affecting the

remotely sensed spectrum. Path radiance represents atmospheric emission directly into the

sensor line-of-sight, while downwelling radiance represents atmospheric emission toward

the surface. Assuming a lambertian surface, downwelling radiance is a cosine-weighted

average over the entire hemisphere above the surface. Downwelling radiance reflected off
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the surface enters the sensor line of sight, requiring reflective materials to estimate this

term.

Emissivity retrieval from L(λ ) can be divided into two steps: atmospheric compensa-

tion and Temperature-Emissivity Separation (TES). Atmospheric compensation methods

estimate the TUD (τ(λ ),La(λ ),Ld(λ )) vector allowing estimation of the surface-leaving

radiance Ls(λ ):

Ls(λ ) =
L(λ )−La(λ )

τ(λ )
= ε(λ )B(λ ,T )+

[
1− ε(λ )

]
Ld(λ ). (5.3)

Next, TES algorithms are applied to simultaneously estimate ε(λ ) and T . Separating

these terms is complicated by their coupling in the emissive portion of the surface-leaving

radiance. For a sensor with K spectral bands, estimating ε(λ ) and T is an under-determined

problem as there are K+1 unknowns (ε(λ ),T ) and only K observed radiance values. TES

algorithms apply constraints to ε(λ ) making the estimation problem more tractable. Typi-

cally, ε(λ ) is an assumed smoother function of wavelength than the observed atmospheric

features [27]. Additionally, if the downwelling radiance can be estimated, emissivity can

be expressed as [14]:

ε(λ ) =
Ls(λ )−Ld(λ )

B(λ , T̂ )−Ld(λ )
, (5.4)

where T̂ is the estimated pixel temperature. Pixel temperature is determined by minimizing

atmospheric features in the estimated emissivity profile, resulting in a smoother spectral

emissivity. More recent methods such as subspace-based TES [138], project the original

data to a lower-dimensional subspace to determine maximum-likelihood estimates of both

temperature and emissivity.

This study presents a new method for in-scene LWIR atmospheric compensation us-

ing a neural network approach with minimal assumptions on scene material content, while

efficiently producing comparable results to other compensation methods on collected HSI
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data. The DeepSets network introduced in [75] is the basis of our approach and so our

method is named DeepSet Atmospheric Compensation (DAC). The DAC algorithm relies

on a non-linear TUD vector dimension reduction performed using an AE network to recon-

struct spectrally-resolved TUD vectors. This low-dimensional TUD representation is uti-

lized with permutation-invariant neural network layers to fully reconstruct the TUD vector

for a given set of pixels. No blackbody pixel assumptions are made and pixel temperature

estimates are not necessary to predict the underlying TUD vector. In the next section a re-

view of various atmospheric compensation methods is presented, highlighting differences

between previous methods and our new compensation approach.

5.3.1 Atmospheric Compensation Methods.

Atmospheric compensation algorithms can be divided into two paradigms: model-

based methods and in-scene methods. Radiative transfer models such as MODerate resolu-

tion atmospheric TRANsmission (MODTRAN) support model-based compensation meth-

ods using the known or estimated atmospheric state information (column water vapor, trace

gas content) to calculate the TUD vector in Equation 5.1 [24, 26]. Model-based methods

are computationally more expensive than in-scene methods, but can be implemented effi-

ciently if look-up tables encompassing expected conditions are computed before collecting

data [139].

One model-based approach considered in this study is FLAASH-IR, which retrieves

scene atmospheric parameters based on a look-up table of precomputed TUD vectors from

MODTRAN [26]. The look-up table is generated by varying atmospheric surface tem-

perature, water vapor column density and an ozone scaling factor. Typically 10-20 pixels

must be selected consisting of varying brightness and emissivity profiles. High reflectivity

materials are useful for downwelling radiance estimation and should be included in pixel

selection. Mean-Square Error (MSE) between the observed radiance and predicted radi-
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ance is minimized by varying surface temperature and atmospheric scaling parameters to

recover the TUD vector. As will be shown later, our approach also benefits when reflec-

tive materials are present in the scene, but selects these materials automatically through a

spectral angle measurement.

Another LWIR atmospheric compensation approach utilizing a MODTRAN look-up

table and a coupled subspace model is presented in [131]. This approach utilizes singular

value decomposition (SVD) to form basis matrices of transmittance and upwelling radi-

ance. Blackbody pixels are identified using the basis matrices to retrieve surface leaving

radiance. The DAC algorithm utilizes an AE model to perform dimension reduction on

the TUD vectors, similar to the SVD approach employed in [131]. Nonlinear dimension

reduction using an AE model allows for lower reconstruction error compared to linear ap-

proaches, but requires additional training data to properly fit the network weights.

In-scene methods typically do not rely on look-up tables to estimate atmospheric pa-

rameters, but some material information is required to make the atmospheric compensation

problem tractable. One of the most common approaches is the In-Scene Atmospheric Com-

pensation (ISAC) method that first identifies blackbody pixels (ε(λ )≈ 1), where at-sensor

radiance can be described by [15]:

L(λ ) = τ(λ )B(λ ,T )+La(λ ). (5.5)

A linear fit is performed on each spectral channel to estimate τ(λ ) and La(λ ). Each pixel

temperature must be determined prior to this fitting procedure. Temperature estimates are

made in the most transmissive spectral bands, but can be systematically biased. Water ab-

sorption features near 11.73 µm are used to reduce biases introduced by inaccurate surface

temperature estimates. Treating τ(λ ) and La(λ ) as independent fit parameters, when in

fact they are strongly correlated, can also exaggerate fit errors [140].
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5.4 Methodology

Training the DAC algorithm requires a library of worldwide atmospheric measure-

ments, forward modeled with MODTRAN, forming a training set of diverse TUD vectors.

Additionally, a low-dimensional representation of these TUD vectors is used to reduce

model fitting complexity [141]. Next, the TUD vector dimension reduction process is re-

viewed and how this method fuses with DAC is explained.

5.4.1 TUD Vector Dimension Reduction.

The Thermodynamic Initial Guess Retrieval (TIGR) database is derived from over

80,000 radiosonde measurements collected worldwide and consists of 2311 atmospheric

temperature, water vapor and ozone measurements on a fixed pressure grid [30, 31]. These

measurements are filtered for cloud free conditions with 96% relative humidity threshold,

reducing the number of atmospheric measurements to 1755.

To increase the number of training samples used for neural network fitting, a data aug-

mentation strategy is employed on the remaining 1755 atmospheric measurements. First,

Principal Component Analysis (PCA) is applied to the measurements using 15 components

for each air mass category (Tropical, Polar, etc.). Reconstructing low altitude atmospheric

measurements is weighted more heavily in the PCA fitting process, since these measure-

ments have a greater impact on the resulting TUD vector. A Gaussian Mixture Model

(GMM) is fit to the 15 dimensional space, and sampling this GMM creates new mea-

surement components that are transformed back into pressure level measurements. After

filtering these measurements for relative humidity, they are included in the training data.

All atmospheric measurements are forward modeled using MODTRAN 6.0 to create

high resolution TUD vectors based on a nadir sensor zenith angle. In this study, the Spa-

tially Enhanced Broadband Array Spectrograph System (SEBASS) instrument line shape

(ILS) is applied to the high resolution output, creating sensor-specific TUD vectors [142].
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Training, validation and test data partitioning is based on total optical depth of the original

TIGR measurements resulting in 161 validation TUD vectors, and 179 test TUD vectors.

Combining the remaining TIGR samples with the augmented data results in 8,450 train-

ing TUD vectors. Each training sample is considered at 17 different altitudes (0.15 km -

3.05 km), leading to a training set of 143,650 TUD vectors. This altitude range was used

because previously collected SEBASS data spanned these altitudes. Validation and test

samples are generated at altitudes not considered in the training set. Similar to the work

performed in [141], a low-dimensional representation of the generated TUD vector library

is created using an AE network (Figure 40). An AE consists of two networks, an encoder

and decoder, to perform nonlinear data compression. The encoder transforms input data

y ∈Rd to the latent space representation z ∈Rl where l� d. The decoder reconstructs the

input from z to produce ŷ and weights are updated based on the error between y and ŷ. The

entire AE data transformation can be expressed with:

z = f (Wzy+bz),

ŷ = f (Wyz+by),

(5.6)

where Wz and Wy are the encoder and decoder weight matrices respectively. Additionally,

a bias term is also used at each node, represented by bz and by. The function f is a non-

linear transform used throughout the network. In this work, we consider two activation

functions: the leaky Rectified Linear Unit (ReLU) and the exponential linear unit (ELU)

described by:

Leaky RELU(x) =





x, if x > 0

αx, if x ≤ 0

ELU(x) =





x, if x > 0

α(exp(x)−1), if x ≤ 0
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Figure 40. TUD vectors are compressed by the encoder into the latent space and then reconstructed by
the decoder network. Reconstruction error is minimized through weight updates during the training
process. Additionally, a scalar altitude input is also presented with the TUD vector allowing the model
to scale to multiple altitudes.

where α allows information to flow through the network when the activation function out-

put is negative.

Networks weights are updated using their individual contribution to overall network

error, measured by the loss function. The loss function, which was presented previously

[141], features both a standard reconstruction error term as well as an at-sensor apparent

radiance error:

L (ŷ,y) =
1

3K

3K

∑
i=1

(ŷi− yi)
2 +

γ

MK

M

∑
j=1

K

∑
i=1

(
Lŷ(λi,ε j)−Ly(λi,ε j)

)2 (5.7)

Here, y is the truth TUD vector and ŷ is the reconstructed vector, K is the number of spectral

channels, Lŷ(λi,ε j) and Ly(λi,ε j) are the at-sensor radiance values for the vectors ŷ and y.

Additionally, a linear sampling of M grey-body emissivity values between 0 and 1 are

used to calculate this loss term, improving reconstruction error for reflective and emissive

materials [141].

The hyperparmeter γ controls the relative importance between the contribution of the

TUD MSE and the at-sensor radiance MSE within the loss function, and is set to γ = 1

in this study. As γ approaches zero, more emphasis is placed on TUD MSE resulting in
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higher reconstruction error for reflective materials as shown in [141]. Similarly, when γ > 1

more emphasis is placed on at-sensor radiance error. The TUD MSE term is necessary to

stabilize training and in our experience, increasing γ to a large value can lead to unstable

AE training.

The TUD AE presented here differs from the work of [141] because sensor altitude is

also included in the model. This scalar input allows the AE to correctly reconstruct TUD

vectors at a range of altitudes making the model more applicable to real-world scenarios

where sensor altitude varies. For sensors operating at a constant altitude, this model can be

retooled to consider a small range of altitudes in the sensor’s operating range, or a single

altitude can be considered as was previously demonstrated in [141]. Validation and test sets

consist of hold out samples where neither the atmospheric state nor the sensor altitude were

observed in the training set. Performance on validation and test sets explain the network’s

ability to generalize to new samples or highlights models that are overfit to the training

data.

5.4.1.1 Autoencoder Metrics.

TUD vector reconstruction error must be placed in context of the overall remote sens-

ing goal to select AE models with the best performance. Predicted at-sensor radiance is

calculated using the predicted TUD vector, a range of grey-body emissivity values, and

an assumed pixel temperature. Since this study is focused on the LWIR domain, spec-

tral radiance values were transformed to brightness temperature TBB(λ ) for conveniently

representing model errors. TBB(λ ) is computed by inverting Planck’s function:

TBB(λ ) =
hc

λk ln
(

2hc2

λ 5L(λ ) +1
) . (5.8)

127



The root mean square error (RMSE) in Kelvin can be calculated with:

Et =

√
1
K

K

∑
i=1

(
TBB(λi)− T̂BB(λi)

)2
, (5.9)

where index t corresponds to a test grey body, εt(λ ), used in Equation 5.1 to compute

L(λ ). The test emissivity values range from 0 to 1 producing an RMSE describing overall

performance between reflective and emissive materials for the AE model. Next, the entire

in-scene atmospheric compensation method is introduced utilizing the fit AE model.

5.4.2 In-Scene Atmospheric Compensation.

Numerous methods are available for LWIR in-scene atmospheric compensation, typi-

cally relying on the selection of blackbody pixels to determine τ(λ ) and La(λ ). Rather than

following this paradigm, the DAC algorithm relies on an automated selection of diverse

pixels, without knowledge of ε(λ ) or pixel temperature to estimate atmospheric effects on

LWIR HSI data.

Given N diverse pixels X = {x1, . . . ,xN}, extracted from a data cube collected across

K bands, xi ∈ RK , the DAC network, f (X), must predict the AE low-dimensional rep-

resentation z. Since this function operates over a set of extracted pixels, f (X) must be

permutation-invariant to the pixel selection order. Additionally, this network must also

provide similar predictions as the number of pixels varies within the set X. After predicting

z, the previously trained decoder network, d(·) can be used to reconstruct the full TUD

vector.

This class of problems is referred to as set-input learning where a single target corre-

sponds to a set of input samples [69, 75, 143]. Recently, new network architectures have

been investigated for domains such as point cloud classification, anomaly detection and

image tagging to address set-input learning, referred to as DeepSets or PointNet for point

cloud classification [75, 78]. These architectures utilize a permutation-invariant function,
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Figure 41. The permutation invariant transform φ(X) used in this study consists of a neural network
applied to all pixels in the set X followed by a centering operation of the transformed pixel represen-
tations. The set S is transformed by a dense layer and upsampled. The N× 256 set representation is
collapsed into a single permutation-invariant set representation through a max operation.

Figure 42. The ρ(·) network is shown highlighting the use of skip connections to propagate the set
representation to deeper layers. The input to this network is the result of the permutation-invariant set
extraction concatenated with the sensor altitude, as. Each layer inside the network block contains 50
nodes and the predicted latent space contains 4 components.

φ(·), to extract a set feature vector. This operation can be broken down into two steps:

set transformation and set decomposition. Set transformation is performed by φ(·) with U

output nodes to produce the set V:

V = φ(X), V ∈ RN×U (5.10)

Next, set decomposition can be performed using any permutation invariant function. In this

study, the maximum value is taken across the N pixels, resulting in the set feature vector u:

u j = max
i∈N

Vi j u ∈ R1×U (5.11)
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The entire permutation invariant function can be written as:

f (X) = ρ

(
max
i∈N

φ(X)

)
, (5.12)

where ρ is another transformation (neural network) applied to the set feature vector u.

Additionally, φ(X) can be applied to any number of N inputs, since the max operator pools

all N samples into a set feature vector.

The max decomposition of φ(X) is shown in Figure 41. First, a K node neural net-

work layer transforms the at-sensor radiance pixels into the set S. Next, S is centered to

encode overall set information in the learned representation improving convergence during

training. This operation is similar to batch normalization [144], however, we apply this

normalization across the transformed set, rather than the batch. After set centering, a layer

containing M nodes is used to transform the centered representation before upsampling.

The number of nodes M is a hyperparameter we vary during model evaluation. Upsam-

pling layers are required to provide enough information in the set feature vector for the

following ρ(·) network to predict the target value. The upsampling layers create the set

V ∈ RN×256.

The ρ(·) network predicts the low-dimensional TUD representation ẑ using the set in-

formation extracted by the max decomposition. The previously fit decoder network, d(·),

returns the fully spectrally resolved TUD vector such that (τ̂(λ ), L̂a(λ ), L̂d(λ )) = d(ẑ).

Predictions made by ρ(·) are altitude dependent. To include this information in f (X),

the sensor altitude, as, is concatenated to the input of ρ(·) (Figure 42). This allows ρ(·)

to modify its low-dimensional prediction, ẑ, to changes in altitude, ultimately making the

model more applicable for real-world conditions. The ρ(·) network shown in Figure 42

makes extensive use of skip connections, allowing the extracted 1×257 vector to propagate

to deeper network layers. Finally, combining the max decomposition and ρ(·) networks,
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the DAC algorithm can be expressed as:

f (X) = ρ

(
max
i∈N

[φ(X)] ,as

)
(5.13)

To identify the best network architecture, hyperparameter sweeps were performed on

the number of nodes M in φ(X) and the number of nodes per layer in ρ(·). Additionally,

batch size, learning rates and activation functions were also varied. The network archi-

tecture used in this study sets M = 90 in the φ(X) network utilizing the ELU activation

function. Additionally, the ρ(·) network contains 3 layers containing 50 nodes, all using the

ELU activation function. The network was trained with N = 50, however, this can be varied

during model evaluation since the max decomposition is along the pixel axis. A learning

rate of 0.001 and a batch size of 64 was used to fit network weights. The Adam optimiza-

tion algorithm was used for calculating weight updates [17]. Networks were constructed

using Python 3.6.8, Keras version 2.2.4, Tensorflow 1.15 and hyperparameter sweeps were

conducted across 20 Graphical Processing Units (GPUs) using Ray Tune version 0.7.6

[145] [146]. Since the AE and DAC model only use 132 MB of memory, multiple models

can be trained in parallel on a single GPU. The model contains 109,026 weights fit through

the training process discussed next.

5.4.3 Algorithm Training.

Each training example consists of a set of at-sensor radiance spectra, X, and the low-

dimensional TUD representation, z, generated by the encoder network. Creating the at-

sensor radiance spectra requires a library of emissivity spectra, TUD vectors and a method

for assigning pixel temperatures.

Pixel emissivity spectra are selected from the Advanced Spaceborne Thermal Emission

and Reflection Radiometer (ASTER) database and downsampled using the SEBASS ILS.

To verify model performance on new data, 200 emissivity spectra are held out leaving
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Algorithm 1 Set Generation
Input: εεε , τττ , LaLaLa, LdLdLd , to, N
Output: LLL

Emissivity Selection :
1: εt = U(0.75,1.0)
2: εεε f = εεε s.t. ε̄̄ε̄ε < εt
3: εεεR = εεε f s.t. ε̄̄ε̄ε f < εt−0.10
4: εεεE = εεε f s.t. ε̄̄ε̄ε f ≥ εt−0.10
5: PE = U(0.5,0.95)
6: NE = int(PE ·N)
7: NR = N−NE
8: εεεS = [NR samples from εεεR, NE samples from εεεE]

At-Sensor Radiance Generator
9: w = U(2,20)

10: for i = 0 to N do
11: T = U(to−w, to +w)
12: LsLsLs = εεεS[i]B(T )+(1−εεεS[i])LdLdLd
13: LLL[i] = τττLsLsLs +LaLaLa
14: end for
15: return LLL

978 profiles for training. The held out emissivity spectra contain a range of reflective and

emissive materials to evaluate model performance.

Selecting the N emissivity spectra for a particular training set begins by dividing the

ASTER database into emissive and reflective samples. To model a wide range of scenes,

an initial emissivity threshold is calculated, εt ∼ U(0.75,1.0), where U is a uniform

distribution. Emissivity spectra with means exceeding this threshold are removed, resulting

in a filtered emissivity database, εεε f . The filtered database is divided into emissive samples,

εεεE , and reflective samples, εεεR, based on a threshold of εt−0.10.

Next, the percent of emissive samples, PE , in the set N is sampled according to the

distribution PE ∼ U(0.5,0.95). The number of reflective, NR, and emissive, NE , materials

in the scene are determined by PE . Emissivity spectra are sampled from the emissive and

reflective portions of the filtered ASTER database forming the set emissivity spectra, εεεS.

This process is outlined in Algorithm 1 under Emissivity Selection, where εεε corresponds
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Figure 43. The entire DAC network training pipeline is shown highlighting the inputs to the Set Gen-
eration algorithm resulting in the at-sensor radiance pixels X. Using the known sensor altitude, as,
the DAC model, D(·), predicts the low-dimensional TUD representation such that the decoder model,
d(·) can reconstruct the TUD vector. The loss function, L (ŷ,y) (Equation 5.7) directs weight updates
within the DAC network.

to the training or validation ASTER database samples. By varying PE and εt , training

sets dominated by blackbody pixels with little diversity can be created, and highly diverse

scenes can be created containing both reflective and emissive materials.

After selecting a set of N emissivity spectra, N pixel temperatures must be assigned

to calculate at-sensor radiance. The surface-level temperature measurement, to, from the

TIGR data is used to assign pixel temperatures, Ti, such that Ti ∼ U(to−w, to +w), where

w ∼ U(2,20). By allowing the Ti uniform distribution width to vary, scenes containing

little temperature variation and high temperature variation can be generated. After initial-

izing the emissivity spectra and pixel temperatures, a set of at-sensor radiance values, L,

are calculated for a single TUD vector as shown by the entire set generation process in

Algorithm 1. Figure 43 shows the entire training process to include the role of the DAC

model, decoder model and overall network loss calculation. Figure 44 shows the result of

this process for 50 sampled emissivity spectra, where εt = 0.85, PE = 0.75 and the surface

temperature was 296 K.
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Considering the 978 emissivity training spectra and the set size N = 50, the number

of possible emissivity training sets is
(978

50

)
= 3×1084. Additionally, each pixel emissivity

temperature is randomly sampled following the strategy outlined in Algorithm 1, further

increasing the number of training samples for a single TUD vector. Using 8,450 TUD

vectors sampled at 17 altitudes results in a large training data set to fit the DAC network.

Based on the large number of training samples possible, spectral noise was not added to

the ASTER emissivity spectra. Similarly for the validation set, the number of emissivity

spectra combinations based on 200 hold out emissivity spectra is
(200

50

)
= 4.5×1047, and

161 TUD vectors are considered across 2 altitudes, none of which were a part of the training

data.

While the number of possible training and validation samples is very large, we find

training only requires 150 iterations for network performance to converge. During each

training iteration, 50 batches are randomly generated from the training TUD database.

Specifically, using a batch size of 64, the set generation algorithm shown in Algorithm 1 is

executed 64 times to generate a single training batch. During each training iteration, weight

updates are made based on 3,200 TUD vectors.

The encoder network of the previously trained AE model is used to map the under-

lying TUD vector to the low-dimensional representation z. The DAC algorithm predicts

ẑ such that the decoder network, d(·), can fully reconstruct the TUD vector. The same

loss function used in the AE model training (Equation 5.7) is used for the DAC network,

L (d(ẑ),d(z)), where the inputs are the decoder transformed TUD vectors. Again, M grey-

body emissivity values, e j, between 0 and 1 are used calculate DAC loss, allowing network

weight updates to minimize at-sensor radiance error for reflective and emissive materials.
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Figure 44. An example of set X is shown in the bottom right plot where N = 50. The lowest atmospheric
temperature measurement was 296 K for the given TUD vector. The emissivity threshold, εt was 0.85,
sampled PE was 0.75, resulting in a mean emissivity less than 0.75 for 25% of the materials and a mean
emissivity between 0.75 and 0.85 for 75% of the materials.

5.4.4 Pixel Selection.

Applying the trained model to real data requires selection of N pixels to predict ẑ and

ultimately the cube TUD vector. This selection process should be automated, increasing

data throughput, while providing reliable results. As shown in Figure 41, the set X must

contain some pixel diversity to extract a set representation. Specifically, if all N pixels are

identical, φ(X) will converge to zero after centering the set S.

To extract N pixels from a real data cube, the mean at-sensor radiance spectrum, L̄(λ ),

is calculated. Next, the spectral angle, θi, between pixel i and L̄(λ ) is calculated:

θi = cos−1
(

Li(λ ) · L̄(λ )
‖Li(λ )‖‖L̄(λ )‖

)
, (5.14)

where ‖·‖ denotes the l2 norm and Li(λ ) is the at-sensor radiance for pixel i. After sorting

all pixels by spectral angle from the mean radiance spectrum, the 10% largest spectral an-

gles are used for pixel selection. First, the lowest spectral angle pixel (90th percentile) is
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selected and a one pixel guard band is applied spatially. Any pixels within this guard band

are removed from the sorted array and no longer considered for selection. This process is

repeated by linearly sampling N pixels across the sorted spectral angle array. Endmember

extraction techniques were investigated for pixel selection, but added significant compu-

tational overhead without noticeable improvement in algorithm performance. Anomaly

detection approaches such as Mahalanobis distance were also considered, but did not yield

noticeable improvements while also requiring data covariance calculation.

5.5 Results

This section first presents the AE model results applied to the TIGR data across a range

of altitudes. The trained AE model is then used to create the training data samples for

fitting the DAC model. After reporting training results for both methods, several different

measured hyperspectral data sets are used to verify DAC performance is comparable to

FLAASH-IR.

5.5.1 Autoencoder Results.

The relative humidity filtered TIGR data and augmented samples are used to fit the

AE model. A hyperparameter sweep was performed across the number of nodes per layer,

number of layers, batch size, learning rate, activation functions, latent components and loss

functions. The network with minimium brightness temperature RMSE on the validation

TUD vectors was selected. Additionally, each model was trained 10 times starting from a

random weight initialization and the model with the best mean performance was selected

as the best overall architecture. The selected model consisted of a two layer encoder with 4

latent components: 276-48-16-4 where 276 is the TUD vector dimension and 48-16 are the

encoder layer dimensions. The decoder is the reverse order of the encoder: 4-16-48-276.

The leaky ReLU activation function was used with the at-sensor radiance loss described in
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Figure 45. Brightness temperature RMSE is reported for TUD samples never used in training. The
sensor altitudes also were never observed in the training data. The AE model generalizes well to these
new samples with most errors below 1 K except for reflective materials (ε(λ ) = 0).

Equation 5.7. Model training executed for 300 iterations, using a batch size of 64 and a

learning rate of 1×10−4.

The RMSE in brightness temperature of the AE model is shown in Figure 45. These

results are based on TUD vectors and altitudes not included in the training data, represent-

ing model performance when presented new data. Brightness temperature RMSE increases

for lower emissivity (higher reflectivity) materials, where errors in transmission and down-

welling radiance are mutiplied in the simplified LWIR radiative transfer equation. The

errors reported in Figure 45 represent the lowest achievable error of the DAC method since

all DAC low-dimensional predictions are transformed through the decoder network.

5.5.2 Synthetic Data Results.

The DAC network results are shown in Figure 46 for the validation TUD samples, emis-

sivity profiles and altitudes. These results highlight the DAC network ability to accurately

predict the underlying TUD vector from a set of at-sensor radiance values on new samples.

The largest observed errors are in the downwelling radiance because estimating this com-

ponent is dependent on reflective materials in the scene. To determine how these errors
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Figure 46. DAC brightness temperature RMSE for the hold out synthetic data is reported as a function
of grey body emissivity. The hold out data consisted of TUD vectors never observed in the training
data. Additionally, these hold out samples were tested at new altitudes not included in the training set
showing the model interpolates to new TUD vectors and altitudes.

impact overall at-sensor error, next we consider scenes with varying scene emissivity and

temperature statistics.

To explore the DAC algorithm’s dependency on a diversity of pixels, sets of N pixel

sets were randomly sampled from the ASTER database with varying scene statistics. The

spectrally-averaged emissivity ε̄i for a selected emissivity, εi, measured across K bands

is ε̄i = 1
K ∑

K
j=1 εi(λ j) and the set mean emissivity of N selected emissivity spectra is

εµ = 1
N ∑

N
i=1 ε̄i. Additionally, the set standard deviation, εσ , is calculated according to:

εσ =

√
1

N−1

N

∑
i=1

εµ − ε̄i. (5.15)

The set mean and standard deviation were calculated for each randomly sampled set. Sam-

pling continued until a range of set means and standard deviations were recorded. The

standard deviation represents the diversity of pixels within the scene, while the set mean

corresponds to reflective versus emissive scenes.

These N pixel sets were used with varying temperature distributions to determine DAC

error. Figure 47 shows the at-sensor error in brightness temperature as a function of set
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mean and standard deviation for the TUD validation set. The two plots in Figure 47 cor-

respond to different temperature uniform distribution widths w. Errors decrease with in-

creased mean emissivity because errors in downwelling radiance play a less significant

role as emissivity approaches 1.0. Additionally, errors are also reduced as the pixel diver-

sity increases within a scene, supporting that DAC relies on diverse pixels to estimate the

TUD vector. These trends are consistent for low temperature variance (w = 2) and high

temperature variance (w = 20) and overall performance is better as temperature variance

increases. Additionally, a portion of the error shown in Figure 47 is derived from the AE

errors shown in Figure 45. This is because all DAC predictions are transformed through

the AE decoder network. The errors shown in Figure 47 represent at-sensor error but don’t

fully explain individually how τ(λ ), La(λ ) and Ld(λ ) errors vary. Next, additional N pixel

sets are created to further identify trends in these errors.
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Figure 47. At-sensor brightness temperature error contours are shown for the DAC model for ran-
domly sampled sets of pixel emissivity spectra with overall mean and standard deviations shown. Here
w is the uniform distribution width for sampling pixel temperatures. Errors decrease with increasingly
diverse sets of pixels and increased mean emissivity as expected from the LWIR radiative transfer
equation.

From the simplified LWIR radiative transfer equation, it is expected that downwelling

radiance prediction error will increase when reflective materials aren’t present in the scene.
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Figure 48. Increasing the percentage of emissive samples, PE , leads to larger error in the model’s
downwelling prediction. This error is expected from Equation 5.1, since blackbody materials provide
little information to resolve Ld(λ ). The sets used to generate this plot held εt = 1.0 in Algorithm 1.

To verify this observation with the DAC model, synthetic data sets were created containing

an increasingly higher percentage of emissive materials, PE . Additionally, the emissivity

threshold in Algorithm 1 was set to 1.0 for set generation. As shown in Figure 48, the

downwelling radiance error increases significantly when scenes consist of materials with

a mean emissivity greater than 0.9. Also, transmittance and upwelling radiance errors are

unaffected by scenes consisting of nearly all blackbody pixels as expected from Equation

5.1. Next, the trained model is applied to collected data cubes to evaluate atmospheric

compensation performance in a real-world scenario.

5.5.3 Real HSI Data Results.

This study uses the same data cubes reported in [108] and [107], collected at altitudes

ranging from 0.45 km to 2.7 km with the SEBASS LWIR imager. First, we consider a 128

by 5000 pixel cube collected at 0.45 km under clear sky conditions. The collected data

contains varying size material panels at different tilt angles and surface roughness. Only

flat panels within the scene are considered to evaluate downwelling radiance prediction

accuracy. The labeled materials are: Foam Board, Low Emissivity Panel (LowE), Glass,
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Figure 49. Real data TUD predictions where close agreement is observed for the atmospheric terms,
τ(λ and La(λ ), while larger deviations are seen for Ld(λ ). This cube was collected at 1856L from an
altitude of 0.45 km under clear sky conditions.

Medium Emissivity Panel (MedE) and Sandpaper. The ground truth emissivity for each

material was measured with a D&P spectrometer. Measured emissivity spectra are shown

in Figure 51 with emissivity predictions using TES to be discussed later. Additionally,

downwelling radiance was also measured with a D&P spectrometer by measuring radiance

from an infragold sample.

The first hyperspectral data cube considered was collected at 1856L from an altitude

of 0.45 km under clear sky conditions. Predictions from DAC and FLAASH-IR are shown

in Figure 49, where the largest difference is in the downwelling radiance component. The

DAC Ld(λ ) prediction closely aligns with the D&P spectrometer measurement demon-

strating the ability of this method to extract information from reflective pixels in the scene.

Truth data for τ(λ ) and La(λ ) are not available, however, these predictions are considered

in the total at-sensor radiance error discussed next.

Using the pixel labels to assume a known emissivity, at-sensor radiance error can be

calculated if pixel temperatures can be estimated. Pixel temperature, Ti, is determined by
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minimizing the MSE between the measured and predicted emissivity:

min
Ti

1
K

K

∑
j=1

(
ε(λ j)− ε̂i(λ j)

)2
, (5.16)

where the predicted emissivity is also a function of pixel temperature:

ε̂i(λ )(Ti) =
Li(λ )− L̂a(λ )− τ̂(λ )L̂d(λ )

τ̂(λ )
[
B(λ ,Ti)− L̂d(λ )

] . (5.17)

Radiance predictions are made using the estimated TUD, estimated pixel temperature

and measured emissivity. Figure 50 shows the resulting errors in brightness temperature

where materials are organized in increasing emissivity from left to right. The number of

pixels per material are shown in parenthesis and violin plots are used to display the dis-

tribution of errors. For this data cube, the DAC predictions result in lower error across a

range of material emissivity spectra, with only small improvements for the highest emissiv-

ity material, sandpaper. A log-scale is used in Figure 50 to highlight differences in LowE

and MedE errors that approach 0.4 K. Additionally, the estimated temperatures from each

compensation method are shown in Table 12 with close agreement observed between both

methods.

The previous results used the known pixel emissivity to estimate pixel temperature,

however, this is unrealistic in real-world conditions, since pixel emissivity isn’t known be-

forehand. Next, TES is applied to the HSI data to compare compensation performance.

A total of 2048 temperatures between 280 K and 350 K are considered to maximize the

smoothness of the estimated emissivity spectra with a seven-point local averaging filter

based on the method presented in [27]. The mean TES estimated emissivity spectra are

shown in Figure 51, where both DAC and FLAASH-IR provide similar estimates. The

FLAASH-IR estimates are derived from the TES method described to compare TUD pre-

dictions, rather than using the reported emissivity within the FLAASH-IR software.
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Figure 50. Brightness temperature error is shown when using the measured pixel emissivity and pixel
labels to estimate individual pixel temperatures. The materials are organized from left to right in
increasing emissivity. The dashes within each plot are the inner quartile range where the thick dashes
are the median error. The number of pixels per material are shown in parentheses.

Table 12. Predicted Material Temperatures [K] using pixel labels to minimize emissivity error.

Foam Board LowE Glass MedE Sandpaper

Measured 318.27 330.32 321.85 341.79 338.27

FLAASH-IR 335.34 335.81 330.44 344.95 341.15

DAC 330.29 334.17 329.90 344.85 342.12

Numerous target detection algorithms exist differing in background clutter modeling,

subpixel replacement strategies and detection statistic calculation. For many algorithms,

detection statistics are based on a spectral angle measurement between a known emissivity

measurement and the extracted emissivity from TES. Using the TES emissivity estimates,

spectral angles are calculated using the measured emissivity spectra with spectral angle er-

ror, θ , shown in Figure 52. Lower spectral angle errors for the DAC algorithm are observed

across all materials supporting the utility of this approach for target detection scenarios.

The φ(X) network can use any number of pixels since the max decomposition is per-

formed along the pixel axis. Varying the set size from 5 to 200 pixels and calculating

the spectral angle error after conducting TES is shown in Figure 53. Using only 5 pixels

does not contain enough information to accurately predict the scene TUD vector leading to
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Figure 51. Predicted emissivity curves are shown for both FLAASH-IR and DAC. Emissivity estimates
were made using the maximum-smoothness TES technique [27].
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Figure 52. Brightness temperature errors are shown between the two methods where TES was used
with each TUD prediction to determine ε(λ ) and T . These estimates were forward modeled to deter-
mine the at-sensor radiance. Comparable performance is observed, but the DAC method operates in
under one second including automated pixel selection.
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higher spectral angle error. The model was trained using sets of 50 pixels, however, from

Figure 53 only 10 pixels are needed for this cube. For more diverse scenes such as urban

areas, additional pixels are expected to further improve TUD prediction accuracy.

Foam
Board

LowE Glass MedE Sandpaper

0.025

0.050

0.075

θ

5 10 20 200

Figure 53. Varying the input set size N between 5 and 200 pixels and performing TES using the pre-
dicted TUD vectors demonstrates how set size impacts overall spectral angle error. For this cube 5
pixels is not adequate to correctly predict the TUD vector, but increasing to 10 pixels captures the
necessary diversity in the data.

Next, a data cube collected at an altitude of 1.2 km is considered to demonstrate DAC

performance at a new altitude. This cube was collected in the afternoon five days after

the previous cube collect. Weather was noted as clear sky conditions during this collec-

tion. Figure 54 shows the predicted TUD vector and the resulting spectral angle error after

applying TES. While radiosonde data is not available to compare atmospheric state vec-

tors between the data cubes, a significant change in τ̂(λ ) and L̂a(λ ) is noted between the

collects.

Finally, inference time is another important factor to consider when deploying these

methods in real-world scenarios. The DAC algorithm benefits from accelerated computa-

tion using a graphics card, however, to compare inference time between FLAASH-IR and

DAC, both methods were tested on an Intel i7-4710MQ processor. Inference time for DAC

was on average 0.35 s while FLAASH-IR took approximately 67 s not including lookup

table generation. Running DAC on an Nvidia RTX 2060 mobile graphics card reduced
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Figure 54. Applying DAC and FLAASH-IR to a data cube collected at 1.2 km shows good agreement
between the two approaches. This data cube was collected at a different time of day from the cube
results reported in Figure 49 and 52. The spectral angle errors are based on applying max smoothness
TES [27] using the predicted TUD vectors. This cube was collected at 1638L under clear sky conditions
5 days after the previous cube was collected. Violin plots are not shown because the number of pixels
per material is significantly smaller at this altitude.

inference time to 0.24 s. The DAC inference times include automatic pixel selection using

the spectral angle method detailed in Equation 5.14.

5.6 Conclusion

The use of in-scene atmospheric compensation algorithms allows for efficient estima-

tion of key components in the LWIR radiative transfer equation, but typically with higher

error versus their model-based counterparts. This study has presented a hybrid approach,

dependent on previously generated MODTRAN data, but applicable to a wide range of
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conditions and altitudes. The inference step only requires in-scene data, without the need

for lookup table generation, making this method applicable for real-time predictions. We

demonstrated comparable performance to FLAASH-IR with an inference time of 0.24 s us-

ing a mobile graphics card. This computational speedup is important for efficiently dealing

with the large volumes of data generated by modern LWIR sensors.

A key enabler of the DAC algorithm presented here was the use of permutation-invariant

neural network layers. This approach allowed the model to estimate the underlying TUD

vector from in-scene data without generating spatially resolved hyperspectral data cubes.

Additionally, permutation-invariant layers were necessary to handle the diversity of possi-

ble at-sensor radiance pixel sets, derived from varying materials, material temperatures and

atmospheric conditions.

The results and analysis presented included both synthetic data and collected HSI con-

firming this method generalizes to real-world conditions. The entire training pipeline can

be retooled for a particular sensor, only requiring a modified ILS for training data genera-

tion. There is a wide range of future work in this area, including testing against additional

measured HSI data sets, varying types of AE models, pixel selection strategies and modifi-

cations to the DAC network. Future work will also consider off-nadir sensor zenith angles

and modifications to the neural network architecture to support this additional information

in the data compression and TUD estimation steps.
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VI. Multimodal Representation Learning and Set Attention for LWIR

In-Scene Atmospheric Compensation

6.1 Paper Overview

This paper extends the research in the previous chapter by implementing a Multimodal

Autoencoder (MMAE) to combine atmospheric state vector information (T,H2O,O3) with

Transmittance, Upwelling, and Downwelling (TUD) vector data. The atmospheric com-

pensation algorithm derived in this research can predict both outputs using only in-scene

data. The MMAE depends on three unique loss functions to create a smoothly varying

latent space. Sampling the MMAE low-dimensional components shows clearly defined at-

tribute vectors such as total column water vapor content. While the MMAE is useful on its

own for radiative transfer modeling, this paper also considers new set pooling operations

to improve the permutation-invariant network approach presented earlier. The set pooling

operation in this paper utilizes an attention mechanism to display which pixels in the scene

are most informative for the atmospheric compensation prediction. This provides addi-

tional confidence in the model since more attention is paid to reflective pixels to recover

the downwelling radiance term. Atmospheric compensation results are compared against

Fast Line-of-Sight Atmospheric Analysis of Hypercubes - Infrared (FLAASH-IR) through

a target detection study.

This paper has been submitted to the IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing.

6.2 Abstract

A multimodal generative modeling approach combined with permutation-invariant set

attention is investigated in this paper to support Long-Wave Infrared (LWIR) in-scene at-

mospheric compensation. The generative model can produce realistic atmospheric state
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vectors (T,H2O,O3) and their corresponding TUD vectors by sampling a low-dimensional

space. Variational loss, LWIR radiative transfer loss and atmospheric state loss constrain

the low-dimensional space, resulting in lower reconstruction error compared to standard

Mean-Square Error (MSE) approaches. A permutation-invariant network predicts the gen-

erative model low-dimensional components from in-scene data, allowing for simultaneous

estimates of the atmospheric state and TUD vector. Forward modeling the predicted at-

mospheric state vector results in a second atmospheric compensation estimate. Results are

reported for collected LWIR data and compared to FLAASH-IR, demonstrating commen-

surate performance when applied to a target detection scenario. Additionally, an approxi-

mate 8 times reduction in detection time is realized using this neural network-based algo-

rithm compared to FLAASH-IR. Accelerating the target detection pipeline while providing

multiple atmospheric estimates is necessary for many real-world, time sensitive tasks.

6.3 Introduction

Long wave infrared hyperspectral sensors collect data between 8 - 14 µm across hun-

dreds of contiguous bands, providing detailed information about the Earth’s surface and

material temperatures. Accurate characterization of surface constituents is important for a

wide range of applications such as urban heat island analysis, search and rescue operations

and target detection [23, 135, 136]. Fully leveraging thermal hyperspectral data for these

applications requires precise atmospheric compensation algorithms for accurate material

characterization. Additionally, these compensation methods should be efficient and require

minimal user input to operate on the large volumes of data collected by modern sensors.

This paper extends previous research in efficient LWIR atmospheric compensation [20], in-

vestigating new architectures to form a joint representation of atmospheric measurements

and their corresponding radiometric quantities. The major contributions of this paper are:
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• The Multimodal DeepSet Atmospheric Compensation (MDAC) architecture is in-

troduced, predicting both atmospheric state (T,H2O,O3) and the τ(λ ), La(λ ), and

Ld(λ ) vectors to support in-scene atmospheric compensation.

• Variational loss and weighted atmospheric state loss are shown to further improve in-

scene atmospheric compensation performance against the results presented in [20].

• Set attention pooling is investigated to convey reflective pixels’ role in the MDAC

prediction. Emphasis of reflective pixels in the atmospheric compensation prediction

is in agreement with the LWIR radiative transfer equation.

• Atmospheric compensation errors are compared from the target detection perspective

using collected LWIR data, demonstrating comparable performance to FLAASH-IR

while reducing total detection time.

In the next section, a review of permutation-invariant neural networks for LWIR atmo-

spheric compensation is discussed. This is followed by an overview of LWIR hyperspectral

data processing, necessary for evaluating model errors and characteristics.

6.4 Background

Given N pixels X = {x1, . . . ,xN}, extracted from a data cube collected from an alti-

tude as across K bands, xi ∈RK , the DeepSet Atmospheric Compensation (DAC) network,

D(X,as), predicts a low-dimensional representation, z, of the estimated TUD (τ̂(λ ), L̂a(λ ), L̂d(λ ))

vector, yT [20]. A decoder network, d(·), transforms z to yT , such that

ŷT = d(D(X,as)) (6.1)

The pixel set X corresponds to a single yT vector and the DAC network should provide the

same yT prediction regardless of the order of the pixels in X. To achieve this functionality,
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the DAC network is permutation-invariant to pixel order in X, relying on a set transfor-

mation operation φ(·) and a max pooling operation to form a one-dimensional set feature

vector. The low-dimensional z prediction is made with another prediction network, ρ(·),

such that the entire DAC network can be expressed by:

D(X,as) = ρ

(
max
i∈N

[φ(X)] ,as

)
. (6.2)

Instead of max pooling the transformed set representations created by the φ(·) network,

this research leverages recent advancements in set attention pooling to perform the set de-

composition operation [69, 81]. Attention mechanisms are loosely based on how human

vision operates: focusing on objects of high importance while blurring background objects.

By focusing or attending to the most salient data aspects for a particular task, model perfor-

mance can be improved while also increasing interpretability [147]. These advantages are

achieved through a weighted average where the weights are attention scores that highlight

feature importance.

Set attention pooling is a modified attention mechanism used in cases where multiple

instances correspond to a single output value [69, 81]. Some samples in the set will con-

tain more information, captured by the set attention scores, and have a stronger influence

on the set decomposition operation. Set attention pooling is of interest to the LWIR at-

mospheric compensation problem because pixels receiving higher attention scores can be

further investigated to identify unique spectral properties. This additional interpretability

is necessary for validating model performance on a wide range of conditions.

In addition to set attention pooling, this research also extends [20] by investigating

a multimodal representation. The decoder network d(·) in [20] utilized the TUD vector

data to create the low-dimensional data manifold z, however, this research also utilizes the

atmospheric state vector, yA, creating a MMAE to constrain the data manifold z. Evaluating
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the benefits of these modifications requires a review of LWIR hyperspectral data analysis

discussed next.

The observed at-sensor radiance, L(λ ), consists of two factors: surface-leaving radi-

ance, Ls(λ ), attenuated by atmospheric transmission, and atmospheric emission directly to

the sensor. Assuming a lambertian surface, the simplified LWIR radiative transfer equation

can be described as [2]:

L(λ ) = τ(λ )Ls(λ )+La(λ ) (6.3)

where Ls(λ ) consists of emissive and reflective contributions:

Ls(λ ) = ε(λ )B(λ ,T )︸ ︷︷ ︸
Emissive

+
[
1− ε(λ )

]
Ld(λ )︸ ︷︷ ︸

Reflective

. (6.4)

Based on these definitions, the entire simplified at-sensor radiance equation can be de-

scribed by:

L(λ ) = τ(λ )

[
ε(λ )B(λ ,T )+

[
1− ε(λ )

]
Ld(λ )

]
+La(λ ), (6.5)

where

λ : wavelength

T : material temperature

τ(λ ) : atmospheric transmission

ε(λ ) : material emissivity

B(λ ,T ) : Planckian distribution

Ld(λ ) : downwelling atmospheric radiance

La(λ ) : atmospheric path (upwelling) radiance
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The Planckian distribution is:

B(λ ,T ) =
2hc2

λ 5
1

ehc/λkT −1
, (6.6)

where c is the speed of light, k is Boltzmann’s constant and h is Planck’s constant.

The signal of interest in LWIR target detection is the material emissivity defined as a ra-

tio between the radiance emitted at temperature T and the radiance emitted by a blackbody

(ε(λ ) = 1) at the same temperature [14]:

ε(λ ) =
L(λ ,T )
B(λ ,T )

. (6.7)

Retrieving emissivity consists of two steps: atmospheric compensation and Temperature-

Emissivity Separation (TES). Atmospheric compensation methods estimate the TUD vec-

tor, such that surface leaving radiance can be recovered. Model-based atmospheric com-

pensation approaches rely on radiative transfer models such as MODerate resolution at-

mospheric TRANsmission (MODTRAN) to predict TUD vectors based on known or esti-

mated atmospheric state information (column water vapor, trace gas content, air tempera-

ture) [24, 26]. By generating a look-up table of TUD vectors from expected atmospheric

conditions, model-based methods can be implemented efficiently for real-time use [139].

Specifically, methods such as FLAASH-IR modify the surface temperature, water vapor

column density and the ozone scaling factor to minimize the error between observed and

predicted radiance [26].

In-scene atmospheric compensation methods rely on blackbody pixels to make the com-

pensation problem tractable. The In-Scene Atmospheric Compensation (ISAC) method

identifies blackbody pixels allowing at-sensor radiance, LBB(λ ), to be described by [15]:

LBB(λ ) = τ(λ )B(λ ,T )+La(λ ). (6.8)
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Pixel temperature is estimated through clear bands (τ(λ ) ≈ 1), such that the only remain-

ing unknowns are τ(λ ) and La(λ ). A linear fit is performed on each spectral channel to

determine these terms. The ISAC procedure does not recover the downwelling radiance,

important for accurately characterizing reflective materials.

Next, TES is typically performed to estimate both ε̂(λ ) and T̂ . For a sensor with K

spectral bands, decoupling these terms is an under-determined problem as there are only K

measurements but K + 1 unknowns (ε̂εε, T̂ ). A common approach to this under-determined

problem is to assume ε(λ ) is a smooth function of wavelength compared to the atmospheric

features [27]. Assuming downwelling radiance was estimated during the atmospheric com-

pensation process, emissivity can be estimated as [14]:

ε̂(λ ) =
L̂s(λ )− L̂d(λ )

B(λ , T̂ )− L̂d(λ )
. (6.9)

Unfortunately, TES methods recover material temperatures with limited accuracy, lead-

ing to increased errors in ε̂(λ ) [148]. Unique from TES procedures, researchers have in-

vestigated methods to determine ε̂(λ ) with less dependence on T̂ . The alpha residuals

approach introduced in [28] and extended in [149] converts a target emissivity, εt(λ ) to

αεt (λ ) by:

αεt (λi) = λi ln [εt(λi)]−
1
K

K

∑
j=1

λ j ln
[
εt(λ j)

]
. (6.10)

The alpha residual formulation presented in [28] and [149] omits the reflective component

in the surface leaving radiance. In [29], the reflective component was included allowing

improved emissivity estimation for reflective and emissive materials. In both [149] and

[29] an estimate of pixel temperature is needed, but target signal estimation is robust to

temperature estimation errors.

Both TES and alpha residual approaches rely on TUD vector estimates derived from

the atmospheric compensation process. This study presents an efficient method for in-
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scene LWIR atmospheric compensation and compares this method’s performance using

both TES and alpha residuals from a target detection perspective.

6.5 Methodology

The MDAC model, Dm(·), predicts a low-dimensional representation, ẑ, of both the

scene atmospheric state vector, ŷA and the TUD vector, ŷT . A multimodal decoder, dm(·),

is used to reconstruct both outputs from ẑ such that the atmospheric compensation and

atmospheric state estimation problem can be described by:

ŷA, ŷT = dm(Dm(X,as)). (6.11)

This result depends on the ability of the MDAC model to predict the latent space com-

ponents z from the set X and the decoder model to reconstruct yA and yT from z. The

decoder model is a part of the overall MMAE that is trained prior to fitting the MDAC

network. The MMAE model architecture and training is explained in the next section.

6.5.1 Multimodal Generative Models.

This research utilizes the same TUD database and corresponding atmospheric state vec-

tors used in [20]. Specifically, we use the Thermodynamic Initial Guess Retrieval (TIGR)

database after filtering for cloud free conditions based on a 96% relative humidity threshold

[30, 31]. Following the data augmentation strategy outlined in [20, 141], a total of 8,450 at-

mospheric state vectors are created. These vectors were forward modeled with MODTRAN

6.0 assuming a nadir sensor zenith angle at altitudes between 0.15 km - 3.05 km resulting

in 143,640 TUD vectors. This altitude range spans previously collected data altitudes, al-

lowing for model comparisons with real data. The high resolution TUD vectors created by

MODTRAN were downsampled to the Spatially Enhanced Broadband Array Spectrograph
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System (SEBASS) instrument line shape (ILS) to create a sensor-specific TUD database

[142]. Validation samples were created from held out atmospheric state vectors at unique

altitudes from the training data.

A MMAE (Figure 55) is used to compress both the atmospheric state vector and the

TUD vector into a joint latent space, z. MMAEs have been investigated in other domains

such as audio and video where it is possible to generate one mode from the other [54]. In

this research, both modes are always present during training since only the MMAE decoder

is used for atmospheric compensation. The MMAE architecture is leveraged to improve

feature fusion compared to concatenating the TUD and atmospheric state vectors.

Independent input and output branches combined through joint encoder and decoder

networks are used to form the MMAE. The yT encoder consists of two layers of 25 and

10 nodes and the yA encoder consists of two layers of 20 and 15 nodes. The joint encoder

takes the concatenated 10 and 15 node encoder outputs and transforms this representation

to the latent space using two layers of 16 and 10 nodes. The latent space is the bottleneck

in the representation learning problem, with 6 dimensions considered in this research based

on previous results from TUD vector compression [19, 20]. This compression operation is

reversed as shown in Figure 55 to create the decoder model.

Interpolations across the latent space should lead to semantically smooth variations in

both atmospheric state and TUD outputs. This is a necessary property to support MDAC

latent space sampling and is achieved by enforcing a prior distribution on the latent space.

This research applies a Gaussian prior such that z∼ p(z) = N(0,I). This constraint is used

in Variational Autoencoders (VAEs) [17] and was extended in [68] for multiple modalities

to define a joint multimodal VAE. Given the atmospheric state vector yA and the TUD

vector yT , the joint multimodal VAE generative processes for these modes are [68]:

yA,yT ∼ p(yA,yT | z) = pθA(yA | z)pθT (yT | z) (6.12)
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Figure 55. TUD vectors are compressed by the encoder into the latent space and then reconstructed by
the decoder network. Reconstruction error is minimized through weight updates during the training
process. Additionally, a scalar altitude input is also presented with the TUD vector allowing the model
to scale to multiple altitudes.

where the parameter θ represents the decoder network for each mode. The encoder net-

work, qφ , predicts distribution parameters µµµ ∈ R1×c, σσσ ∈ R1×c for a latent space with

c components. Using the reparameterization trick introduced in [17], the posterior z ∼

qφ (z | yA,yT ) can be sampled according to µµµ +σσσ �εεε where εεε ∼ N(0,I). To enforce the

prior distribution on the latent components, the Kullback-Leibler (KL) divergence is calcu-

lated according to [17]:

LKL
(
qφ (z |yA,yT ) ‖ p(z)

)
=

1
2

d

∑
j=1

(
1+ log

(
σ

2
j
)
−µ

2
j −σ

2
j
)
. (6.13)

While LKL enforces a prior distribution on the latent components, atmospheric state

and TUD vector reconstruction error must also be minimized to provide a useful model.
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Similar to previous work [20, 141], the TUD vector reconstruction error is minimized using

LT (ŷ,y) =
1

3K

3K

∑
i=1

(ŷi− yi)
2 +

γ

MK

M

∑
j=1

K

∑
i=1

(
Lŷ(λi,ε j)−Ly(λi,ε j)

)2
, (6.14)

where y is the truth TUD vector and ŷ is the reconstructed vector. K is the number of

spectral channels, Lŷ(λi,ε j) and Ly(λi,ε j) are the at-sensor radiance values for a grey-body

emissivity ε j. A linear sampling of M grey-body emissivity values between 0 and 1 are used

to calculate loss, improving reconstruction error for reflective and emissive materials. The

hyperparameter γ is a regularization term controlling the relative importance between the

TUD MSE and the at-sensor radiance MSE within the loss function.

Atmospheric state error is minimized using a weighted MSE loss function described

by:

LA(ŷ,y) =
1

3p

3p

∑
i=1

wi(ŷi− yi)
2 (6.15)

where the weights w ∈ R1×3p are derived from the atmospheric pressure levels leading to

the largest deviation in at-sensor radiance. To identify these pressure level dependent devi-

ations, a Jacobian matrix is calculated between at-sensor radiance and each measurement

vector. Each pressure level measurement is modified by 1% of the training data mean value

resulting in the Jacobian matrix described in Equation 6.16:

JL(M) =




∂L(λ1)
∂M(a1)

. . . ∂L(λK)
∂M(a1)

... . . . ...

∂L(λ1)
∂M(ap)

. . . ∂L(λK)
∂M(ap)




(6.16)

where M represents the particular measurement (T,H2O,O3). The mean absolute change

in at-sensor radiance across all bands for a particular pressure level, p, and measurement
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Figure 56. The atmospheric state weighted MSE loss function utilizes the concatenated weight vectors
shown. These weights allow the model to accurately predict atmospheric measurements that have
the largest impact on the generated TUD vector. Both temperature and water vapor content must be
reconstructed correctly at low altitudes (high pressure levels), while ozone concentration has the largest
impact at high altitudes.

vector M is calculated according to:

wM
p =

1
K

K

∑
i=1
|JLi(Mp)|. (6.17)

Next, wM is normalized between 0 and 1 across p pressure levels to form w̃M. Each nor-

malized measurement weight vector is concatenated to create w in Equation 6.15 such that

w = [w̃T , w̃H2O, w̃O3],w ∈R1×3p. The result of this process is shown in Figure 56 agreeing

with typical concentration variation of water vapor and ozone at the altitudes shown. Sim-

ilarly, temperature profiles can often be fit using only surface temperature and lapse rate

[15]. The weight w̃T captures this behavior by emphasizing only the measurements closest

to the surface.

The total MMAE network loss is calculated by combining each mode loss and the latent

space KL loss:

L (ŷA,yA, ŷT ,yT ) = LA(ŷA,yA)+LT (ŷT ,yT )+βLKL
(
qφ (z |yA,yT ) ‖ p(z)

)
(6.18)
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where β is used to trade off reconstruction accuracy against enforcing the prior distribution.

The inclusion of β is based on [150] where interpretable latent space components can be

recovered if the data generating processes are understood. This research leverages this

modification to create an interpretable latent space, capturing variables such as atmospheric

water vapor content and atmospheric temperature, allowing new samples to be generated

with known properties.

Each layer in the MMAE performs a transform with the function y = f (wx+b) where

f (·) is the activation function, w is the layer weight matrix and b is the layer bias vec-

tor. The MMAE implemented here utilizes the exponential linear unit (ELU) activation

function:

ELU(x) =





x, if x > 0

α(exp(x)−1), if x ≤ 0

The activation for predicting µµµ is linear and the activation for predicting σσσ is ELU(x)+1

to guarantee positive variances. Additionally, each mode’s output layer utilizes a linear

activation function.

6.5.1.1 Generative Model Metrics.

Evaluating the MMAE performance on hold out samples is necessary to determine if the

model has generalized to the underlying relationships in the data or over fit to the training

Figure 57. The MDAC network consists of a set transformation, set decomposition and a network
ρ(·) for predicting the MMAE latent components. The set transformation converts the input set X to
the set H using the input transform and feature transform shown. The set H is converted into the set
representation vector u with the attention pooling operation A(·). Sensor altitude, as, is concatenated
to u before entering the ρ(·) network.

160



samples. The hold out samples considered here consist of TUD vectors and atmospheric

state vectors never encountered in the training data. Additionally, the validation sensor

altitudes were never observed in the training set. To measure hold out sample performance

with respect to at-sensor radiance error, a range of grey-body emissivity values, ε , with an

assumed pixel temperature of 300 K are used to create simulated at-sensor radiance spectra,

L(λ ,ε). Since this study is focused on the LWIR domain, spectral radiance values were

converted to brightness temperature, TBB(λ ,ε):

TBB(λ ,ε) =
hc

λk ln
(

2hc2

λ 5L(λ ,ε) +1
) . (6.19)

Using yT and ŷT to create L(λ ,ε) and L̂(λ ,ε) respectively, the root mean square error

(RMSE) in degrees Kelvin can be calculated with:

E(ε) =

√
1
K

K

∑
i=1

(
TBB(λi,ε)− T̂BB(λi,ε)

)2 (6.20)

The grey body emissivity is varied from 0 to 1 producing an RMSE curve describing overall

performance between reflective and emissive materials. Additionally, MODTRAN [24]

can be used to convert ŷA to a TUD vector, resulting in the same error metric for the

atmospheric state prediction. When multiple models are compared at once, the brightness

temperature RMSE area under the curve (AUC-BT) is reported to capture reflective to

emissive performance with a single scalar value:

AUC-BT =
∫ 1.0

0.0
E(ε)dε (6.21)

Since the AUC-BT metric measures RMSE across reflective to emissive materials, lower

values represent better reconstruction performance with perfect reconstruction represented

by AUC-BT = 0.
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6.5.2 Set Attention for In-Scene Atmospheric Compensation.

The MDAC model utilizes the MMAE decoder model to predict ŷA and ŷT , from a

set of pixels, X. This set-input learning has been investigated in domains such as point

cloud classification where a set of points correspond to a single target value or class label

[69, 75, 143]. An important characteristic of methods solving set-input learning problems

is permutation-invariance to the points in the set. Regardless of pixel selection order, the

MDAC algorithm must still provide the same TUD and atmospheric state prediction.

Permutation-invariant predictions are made by the MDAC network using two opera-

tions: set transformation and set decomposition. In this study, the set transformation oper-

ation is a neural network consisting of an input transform and feature transform as shown

in Figure 57. The input transform consists of a K node layer to transform each pixel iden-

tically, followed by a set centering operation. The weights in the K node layer are shared

across all pixels, maintaining permutation invariance. The feature transform utilizes 4 lay-

ers each with 100 nodes, again sharing weights across all pixels. The set transformation

concludes with pixel representation upsampling to create the set H:

H = φ(X), H ∈ RN×M (6.22)

where M = 512 from the upsampling layer. The rows of H correspond to transformed pixel

representations hi which must be pooled together by the set decomposition operation. To

understand the role each pixel plays in the overall model prediction, this study investigates

set attention pooling [81]:

u =
N

∑
i=1

aihi, u ∈ R1×M (6.23)
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where u is the set representation vector and ai is the attention score for pixel i calculated

according to:

ai =

exp
(

wT(tanh
(
VhT

i
)
� sigm

(
UhT

i
)))

N
∑
j=1

exp
(

wT
(

tanh
(

VhT
j

)
� sigm

(
UhT

j

))) (6.24)

The trainable parameters are w ∈ R1×L, V ∈ RL×M and U ∈ RL×M, where L corresponds

to the attention pooling dimension. The value of L is varied as part of the overall network

hyperparameter sweep with the results in this study using L = 512. In Equation 6.24,

tanh(·) corresponds to the hyperbolic tangent function, sigm(·) is the sigmoid function and

� is an Hadamard product. The set pixel representations are initially transformed by matrix

V which is learned through the training process. The tanh(·) operation is approximately

linear between -1 and 1 and so the sigm(·) function is used as a gating function to model

more complex dependencies [81, 151]. The matrix U controls the gating mechanism and

is also learned through the training process. The vector w converts the pixel representation

into a scalar value that is used in the overall softmax function to create the attention weights

ai which sum to 1.

The set representation vector u captures information necessary to predict ŷA and ŷT ,

however, to create a multi-altitude model the sensor altitude as is concatenated to u. This

concatenated vector forms the input to the ρ(·) network, which predicts the low dimen-

sional components of the MMAE model, µ̂µµ and σ̂σσ . The ρ(·) network consists of 10 layers

each with 100 nodes utilizing skip connections to propagate the set representation vector

to deeper layers as shown in Figure 57. Similar to the MMAE model, the ρ(·) output layer

utilizes a linear activation for predicting µµµ and ELU(x)+ 1 for predicting σσσ . The output

layer has 12 nodes because the first 6 outputs are for µ̂µµ and the last 6 are for σ̂σσ . Denoting

the attention weighted sum in Equation 6.23 as A, the MDAC network can be specified as:

Dm(X,as) = ρ
(
A(φ(X)),as

)
. (6.25)
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The network configuration shown in Figure 57 was the result of a hyperparameter sweep

over possible set transformation networks, ρ(·) networks and the number of attention nodes

in the set decomposition. Additionally, batch size, learning rate, and activation functions

were varied in the hyperparameter sweep. The results presented here utilize a learning

rate of 1×10−3 and a batch size of 512. The number of pixels in each training set was

N = 50 and so for a single batch, 512 sets were presented to the network (25,600 pixels).

The Adam optimization algorithm was used for calculating weight updates [17]. Networks

were constructed using Python 3.6.8, Keras version 2.2.4, Tensorflow 1.15 and hyperpa-

rameter sweeps were conducted across 20 Graphical Processing Units (GPUs) using Ray

Tune version 0.7.6 [145] [146].

6.5.3 Algorithm Training.

The MDAC algorithm is trained using sets of at-sensor radiance data X created from an

underlying TUD vector and atmospheric state vector. The same TUD and atmospheric state

data are used to fit MMAE and MDAC models. Training the MDAC algorithm follows the

strategy outlined in [20], with the exception that MDAC has multiple outputs requiring ad-

ditional loss calculations. Emissivity profiles are sampled from the Advanced Spaceborne

Thermal Emission and Reflection Radiometer (ASTER) database with 200 emissivity sam-

ples held out for model validation and 978 different material profiles used during training.

Emissivity selection and pixel temperature assignment follows the set generation algorithm

outlined in [20]. During training, the at-sensor radiance set X contains N = 50 pixels re-

sulting in
(978

50

)
= 3×1084 possible training emissivity sets.

Only the MDAC weights are updated during training, leaving the MMAE weights un-

changed. The MDAC weights are updated based on the yA and yT error using the loss

functions LA and LT , respectively. The same atmospheric weights, wi, are again used
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to calculate the loss on yA reinforcing atmospheric state reconstruction at pressure levels

impacting the predicted TUD vector.

6.5.4 Pixel Selection.

Accurate MDAC prediction is predicated on access to a set of diverse pixels with respect

to emissivity and temperature. To select N diverse pixels from a collected data cube, this

study follows the pixel selection strategy outlined in [20] where the spectral angle, θi,

between pixel i and the cube mean, L̄(λ ), is calculated according to:

θi = cos−1
(

Li(λ ) · L̄(λ )
‖Li(λ )‖‖L̄(λ )‖

)
(6.26)

An iterative pixel selection strategy is employed starting with the 90th percentile pixel with

respect to sorted cube spectral angles. A one pixel guard band is applied spatially, remov-

ing all neighboring pixels from being included in the set X. A uniform sampling of the

10% highest spectral angles is conducted following this procedure resulting in N diverse

pixels with respect to the cube mean. Prior to pixel selection, anomalous pixels such as

those from dead pixels, are removed from the sorting process. These noisy pixels may not

follow the simplified radiative transfer model leveraged in this work and are eliminated

from atmospheric compensation consideration.

6.5.5 Target Detection Analysis.

After sampling a collected data cube using the method presented in Equation 6.26, the

MDAC predictions can be used to compensate a data cube and perform target detection.

The target detection method used in this study is the Adaptive Coherence/Cosine Estimator
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(ACE) detector defined by [106]:

rACE(x) =
(sT Σ̂ΣΣ

−1x)2

(sT Σ̂ΣΣ
−1s)(xT Σ̂ΣΣ

−1x)
, (6.27)

where x is a sample pixel, s is the target, and Σ̂ΣΣ is the estimated background covariance.

To estimate ΣΣΣ, a Mahalanobis anomaly detector is applied to filter background pixels from

possible targets. The Mahalanobis detector can be described by:

rMD(x) = (x− µ̂µµ)T
Σ̂ΣΣ
−1

(x− µ̂µµ) , (6.28)

where µ̂µµ is the cube mean and Σ̂ΣΣ is the cube covariance. The detection statistic, rMD(x), is

sorted and pixels below the 90th percentile are classified as background. These background

pixels are used to form Σ̂ΣΣ for the ACE detector. Target detection results can be compared

using the Signal to Clutter Ratio (SCR) defined as:

SCR =
µ(rt)−µ(rb)√
σ(rt)2 +σ(rb)2

, (6.29)

where µ(rt) is the mean detection statistic for target pixels and µ(rb) is the mean detection

statistic for background pixels. Similarly, the standard deviations of these two classes are

calculated with σ(·). Large SCR values imply higher detection statistics on target pixels

compared to background pixels with little variance among both classes.

6.6 Results

This section first presents the MMAE results and demonstrates the model’s ability to

generate new atmospheric states and TUD vectors. Next, the MMAE is used as part of the

overall MDAC algorithm to perform in-scene atmospheric compensation and atmospheric

state estimation. Results are presented for synthetic data to demonstrate model character-
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Figure 58. Loss configuration results are shown using the AUC-BT reconstruction error (lower is
better) where the best performance is achieved when both LT and LT are used. As β is increased
beyond 0.01, reconstruction error increases because the latent space is overconstrained and no longer
has adequate capacity to capture data variability.

istics followed by analysis on SEBASS collected data cubes spanning multiple days and

sensor altitudes. Atmospheric compensation results are compared to FLAASH-IR through

a target detection comparison.

6.6.1 Multimodal Generative Model Results.

Models utilizing LKL, LA, LT are first compared against models using MSE to demon-

strate the benefit of these loss functions in minimizing model reconstruction error. The

pairwise model comparisons considered for the MMAE network outputs (yA,yT ) respec-

tively are: (MSE, MSE), (MSE,LA), (LT ,MSE), (LT ,LA). Additionally, for each model

configuration, LKL is investigated by varying β from 0.0 to 1.0. Each loss and β configura-

tion result is based on 10 randomly initialized models to provide estimates of model mean

performance.

The AUC-BT results for each MMAE output are shown in Figure 58 for all loss config-

urations and considered β values. Reconstruction errors on yT are reduced by using either

LA or LT compared to MSE with the lowest reconstruction error observed when both LA

and LT are used. The yA error is not reduced for the (LT , MSE) case compared to the
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baseline MSE model. This is driven by the observation that similar TUD vectors can be

created from significantly different atmospheric state vectors. While atmospheric state to

TUD vectors is a one-to-one function, TUD vectors to atmospheric state is not.

Figure 58 also highlights the role KL divergence plays in reconstruction accuracy. In-

creased reconstruction error is observed when β > 10−2 because the latent components

are over-constrained, reducing modeling capacity. From Figure 58, it is not clear which β

value should be selected or if KL divergence should even be used since β = 0 has compa-

rable reconstruction error. Next, latent space continuity is evaluated for each β model, an

important attribute for latent space sampling.

Latent space continuity is evaluated by modifying N latent space representations, z ∈

RN×c, and measuring the output deviation in terms of AUC-BT, denoted as ∆AUC-BT.

This process is outlined in Algorithm 2, where e is the encoder model, d is the decoder

model, yT and yA are the validation data containing N samples, ∆∆∆ ∈ RN×c is the latent

space deviation matrix and ε is a grey body emissivity. The rows of matrix ∆∆∆ are formed

by randomly picking points on a hypersphere using [152]:

∆∆∆i =
r√

x2
1 + x2

2 + · · ·+ x2
n




x1

x2

...

xn




, xl ∼ N(0,1) (6.30)

where ‖∆∆∆i‖= r. To make comparable changes to each β model latent space z, Algorithm 2

applies Principal Component Analysis (PCA) whitening to z resulting in z̃. After adding ∆∆∆

to z̃, the whitening process is reversed and the decoder transforms the new latent samples to

y′T and y′A. Output deviations are measured according to AUC-BT as shown in Algorithm 2.
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Algorithm 2 Latent Space Variation
Input: e, d, yT , yA, ∆∆∆, ε

Output: ∆AUC-BT
Modify latent components :

1: z← e(yT ,yA)
2: ŷT , ŷA← d(z)
3: ΣΣΣ← E[(z−E[z])(z−E[z])T ]
4: U,ΛΛΛ← s.t. ΣΣΣ = UΛΛΛUT

5: z̃ = (ΛΛΛ−1/2UT z)
6: z̃∆ = z̃+∆∆∆

7: z′ = UΛΛΛ1/2z̃∆

Measure output deviation
8: y′T ,y′A← d(z′)

9: E(ŷT ,y′T ,ε)←
√

1
K ∑

K
i=1
(
TBB(λi,ε)− T̂BB(λi,ε)

)2

10: ∆AUC-BT← ∫ 1.0
0.0 E(ŷT ,y′T ,ε)dε

11: return ∆AUC-BT

Applying Algorithm 2 to each β model results in the ∆AUC-BT shown in Figure 59

where smaller output deviations are observed for larger β values. The right axis of Fig-

ure 59 shows the validation reconstruction error for the (LT ,LA) loss configuration from

Figure 58. When β > 10−2, KL divergence loss begins to negatively affect reconstruction

error as the latent space is over-constrained. In this research, β = 10−2 is selected to trade

off a continuous latent space and low reconstruction error.

Many generative model studies have investigated latent space attribute vectors allowing

for new samples to be generated with certain properties such as images of faces wear-

ing sunglasses or smiling [153, 154]. Varying the MMAE latent space components re-

veals analogous attribute vectors allowing atmospheric state conditions to be precisely

controlled. The MMAE model using β = 10−2, LA and LT is used to identify one such

attribute vector. A single latent component is varied from -3.0 to -1.0 while all other com-

ponents are unchanged resulting in the atmospheric measurements and TUD vectors shown

in the Appendix. The predicted atmospheric measurements show significant changes in the

total water vapor content as a single component is varied with corresponding changes in the
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Figure 59. Making small changes to latent components and measuring the change in the ŷT is plotted
on the left axis. The model validation performance is shown on the right axis, also shown in Figure 58
for the (LT ,LA) configuration. Increasing β results in a more continuous latent space as shown by
the decreasing ∆AUC-BT values. However, increasing β beyond 10−2 over-constrains the latent space
resulting in poor validation performance (right axis). By selecting β = 10−2, the MMAE has both a
continuous latent space and low reconstruction error.

predicted TUD output. Interestingly, as water vapor content increases, atmospheric tem-

perature also increases, supporting the relative humidity threshold set as part of the training

data selection. This particular range in the latent space varies outputs from cold, dry atmo-

spheric conditions to warmer, humid conditions. Sampling additional points in this region

of the data manifold is useful for a range of applications such as radiative transfer model-

ing and data augmentation. Next, the joint, low-dimensional representation created by the

MMAE will be used for in-scene atmospheric compensation.

6.6.2 Atmospheric Compensation with Synthetic Data.

Using the previously fit MMAE network, the MDAC network was trained to predict

the low-dimensional representation z from a set of at-sensor radiance samples, X. At-

sensor radiance sets were generated based on the set generation algorithm presented in

[20]. Using a batch size of 512 and set size of N = 50, training executed for 50 epochs

using training data created from the set generation algorithm. At the conclusion of 50

epochs, new training data was generated, with this process repeated 60 times. During each
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50 epoch training iteration, error was gradually reduced as the model was fit to the new

data. We found that 60 iterations of this training process resulted in stable errors, even

when the model was presented new at-sensor radiance sets.

Figure 60. At-sensor radiance sets were created with an increasing percentage of blackbody pixels. The
attention scores for reflective scenes (low blackbody pixel %) are small and clustered together while
scenes containing only a few reflective pixels have larger attention scores to emphasize the importance
of the reflective pixels.

The MDAC network relies on attention pooling to convert the pixel set X into the set

representation vector, u. The attention weights, ai, represent the importance of each pixel

in forming the set representation. To evaluate data characteristics the attention pooling

operation has learned, at-sensor radiance sets were generated with varying blackbody pixel

percentage within the scene. These synthetic scenes were used to evaluate the attention

weights with the results shown in Figure 60.

Reflective material dominated scenes (low blackbody percentage), result in low mag-

nitude, tightly clustered, attention scores because multiple pixels contain information nec-

essary for recovering the scene TUD vector. For low blackbody percentage scenes, the

blackbody pixels are unique with respect to the set, however, the attention score is still low

for these pixels because no additional downwelling information is provided. As the gen-

erated scenes change from reflective material dominated to emissive material dominated
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(large blackbody percentage), the overall attention magnitude increases. The remaining

reflective pixels are important for downwelling radiance estimation and receive a larger

attention score.

6.6.3 Collected HSI Data Results.
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Figure 61. Applying MDAC to a collected data cube results in the two TUD predictions yA and yT
shown. The τ(λ ) and La(λ ) estimates are comparable for all methods. As expected, the largest model
discrepancy is in the downwelling estimate, which relies on the selection of reflective pixels to estimate
this term. This cube was collected at 1856L from an altitude of 0.45 km under clear sky conditions.

This study uses the same data cubes reported in [20, 107, 108], collected at altitudes

ranging from 0.45 km to 2.7 km with the SEBASS LWIR imager. The collected data con-

tains varying size material panels at different tilt angles and surface roughness, however,

only flat panels within the scene are considered to evaluate downwelling radiance accuracy.

The labeled materials are: Foam Board, Low Emissivity Panel (LowE), Glass, Medium

Emissivity Panel (MedE) and Sandpaper. The ground truth emissivity for each material

was measured with a D&P spectrometer and downwelling radiance was measured using an

infragold sample.

The first cube considered was collected at 0.45 km under clear sky conditions. Predic-

tions for FLAASH-IR, DAC [20], and each output of MDAC are shown in Figure 61. It

is important to note the yA prediction in Figure 61 is based on the model’s atmospheric

state prediction (T, H2O, O3) converted to a TUD vector using MODTRAN. While no ra-
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diosonde data is available to directly compare the atmospheric state prediction, this atmo-

spheric state estimate does result in a similar TUD vector using only in-scene data. Next,

the TUD estimates are compared from a target detection perspective, using both TES [27]

and improved alpha residuals (AR) [29].

6.6.4 Target Detection Results.

In many scenarios, the object temperature is of less interest than the object emissivity,

such as geological studies or military target detection. To support these applications, the

improved AR approach outlined in [29] is used for comparing detection performance. In

domains where material temperature is important, the commonly used maximum smooth-

ness TES approach [27] is investigated. For Foam Board and LowE materials, the recovered

signals are shown in Figure 62 based on the TUD predictions shown in Figure 61. Close

agreement is observed between all AR results for this data cube, while the TES results

contain some biases. These biases are derived from incorrect temperature estimates made

during the TES process, but the distinctive signal features are still clearly evident. The

results presented thus far are for a single data cube. To further compare performance, two

additional data cubes are considered and aggregated target detection results are reported.

For each of the three investigated data cubes, the ACE background covariance ma-

trix, ΣΣΣ, was estimated using the Mahalanobis anomaly detector with a threshold of 90%

to classify pixels as background or anomaly. Applying the ACE detector in AR space or

emissivity space results in the average ROC curves shown in Figure 63 for Foam Board

and LowE materials. The yA output has the lowest ROC curve for TES, however, this is

expected since estimating the atmospheric state vector from in-scene data using only 92

spectral bands is a challenging problem. Comparable detection performance is observed

for all methods using improved AR, because this method is less dependent on pixel tem-

perature estimation. Mean and standard deviation results of the SCR metric described in
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Figure 62. Predicted alpha residual curves and emissivity spectra are shown for FLAASH-IR, DAC
and the two MDAC outputs. Alpha residual estimates were made using the improved alpha residual
method discussed in [29] and the emissivity estimates were made using the maximum smoothness TES
procedure from [27].

Equation 6.29 are shown for each material across all three cubes in Figure 64. Using TES

or improved AR results in consistent SCR performance for all atmospheric compensation

approaches, however, improved AR is faster to compute because temperature estimation

can be performed on a coarser grid.

Many target detection scenarios are time-sensitive, requiring an efficient data pipeline

to convert measured at-sensor radiance to a detection statistic. Atmospheric compensation

with MDAC takes on average 0.3 s including pixel selection. Combining MDAC with the

improved AR approach and the Mahalanobis anomaly detector for background statistic

estimation allows for target detection in 8.5 s using the data cubes reported in this study.

Replacing MDAC with FLAASH-IR in this processing chain results in 75 s target detection,

which may be significant for some detection applications.
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Figure 63. Mean Receiver Operating Characteristic (ROC) curves are shown for DAC, each MDAC
output and FLAASH-IR for two materials across three different collected cubes. The probably of false
alarm axis utilizes a logarithm scale because of the low false alarm rates for all methods and materials.

6.7 Conclusion

This study has presented a new LWIR in-scene atmospheric compensation approach,

producing both an atmospheric state vector and TUD vector from in-scene data only. The

compensation approach takes advantage of a pretrained generative model that jointly maps

atmospheric state vectors and TUD vectors to a low-dimensional space using LWIR ra-

diative transfer loss, variational loss and a weighted atmospheric state loss. Sampling the

generative model yields physically plausible outputs with correct dependencies between

atmospheric constituents, transmission and radiance. Given a set of in-scene data, the

permutation-invariant MDAC method produces low-dimensional components which map

through the generative model to compensate the data cube.

Both of the MDAC predictions were compared against FLAASH-IR and DAC on col-

lected data cubes, demonstrating commensurate detection performance, with a significant

reduction in processing time. The use of attention set pooling in the MDAC network re-
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Figure 64. Considering three collected data cubes, the SCR results are shown based on multiple at-
mospheric compensation approaches. Similar performance is observed for all compensation methods,
however, DAC and the MDAC outputs yA and yT reduce the compensation time allowing for faster
target detection.

vealed the model’s use of reflective pixels, agreeing with the LWIR radiative transfer equa-

tion. This is an important model property, as fully understanding the mechanisms governing

network prediction is necessary for dealing with diverse data. While not a primary goal of

this study, the atmospheric state predictions of the MDAC network demonstrated that lim-

ited atmospheric sounding can be performed. The comparable detection results using the

atmospheric state vector prediction suggest the model prediction was a reasonable estimate

of the actual atmospheric state.

Applying this approach to higher resolution sensors is an area of future work that will

identify how increased sensor resolution impacts target detection performance. Increas-

ing sensor resolution is expected to improve the atmospheric state estimate, supporting the

in-scene atmospheric sounding results presented in this study. Also, applying this atmo-

spheric compensation method to additional data cubes is necessary to better understand

how emissivity and temperature diversity affects target detection results.
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6.8 Appendix

Figure 65. Modifying a single latent component from -3.0 to -1.0 results in the generated atmospheric
state vectors and TUD vectors. Warping the latent space in this range allows samples to be created
varying from cold, dry atmospheric conditions (-1.0) to warmer, humid conditions (-3.0). By increas-
ing the total water vapor content, more radiation can be absorbed (lower transmittance) and more
radiation can be emitted (higher path and downwelling radiance).
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VII. Conclusions and Future Work

This dissertation has presented new methods for in-scene atmospheric compensation

using novel deep learning approaches constrained by the physical processes governing ra-

diative transfer. Generative modeling approaches were applied to atmospheric databases,

creating low-dimensional atmospheric data manifolds, useful for supporting the overall at-

mospheric compensation algorithm.

Chapters I and II reviewed the challenges and opportunities of Long-Wave Infrared

(LWIR) hyperspectral target detection. This included an emphasis on atmospheric com-

pensation within the image processing chain and the need for faster, automated methods.

Many methods require prior knowledge of materials within the scene to solve the atmo-

spheric compensation problem. The methods presented here avoid this assumption by em-

ploying a neural network approach over a set of collected pixels. Additionally, applying

domain-specific knowledge to network construction and training proved beneficial for min-

imizing model errors. Next, these contributions are discussed in greater detail by chapter

in the following section.

7.1 Contributions and Findings

Chapter III compared classification performance using Support Vector Machine (SVM),

Convolutional Neural Network (CNN) and Artificial Neural Network (ANN) models on

time-varying LWIR hyperspectral data. This research evaluated classifier ability to adapt

to changing scene surface temperatures. Validation set partitioning was modified to eval-

uate classifier performance on surface temperatures exceeding those observed in training.

This research motivated further investigations in atmospheric compensation based on the

following findings:
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A1: Classification algorithms such as SVM, CNN and ANN are unable to generalize

when the validation data contains material temperatures outside the training data

surface temperature distribution.

A2: The CNN classifier demonstrated a 7% higher classification accuracy than SVM and

ANN when evaluated on pixels with temperatures outside the training data range.

The large convolutional filters extracted features across multiple bands to identify

salient characteristics that were invariant to the pixel temperature biases.

A3: Performing any type of atmospheric compensation significantly improved all classi-

fier results. This included scenarios where the classifier was trained on pixel temper-

atures not encountered in the validation set.

Performing atmospheric compensation is necessary to minimize false-alarms during

target detection, but model-based methods often rely on radiative transfer codes to gen-

erate the relevant transmittance and radiance terms. Chapter IV explored dimension re-

duction techniques to accelerate radiative transfer modeling. Dimension reduction us-

ing Principal Component Analysis (PCA) was compared against a uniquely constrained

Autoencoder (AE) approach to create a low-dimensional Transmittance, Upwelling, and

Downwelling (TUD) vector representation. Visualizing the low-dimensional representa-

tions showed clustering based on surface temperature and total column water vapor con-

tent. This research demonstrated using AE models to support radiative transfer modeling

with the following findings:

B1: A novel loss function was created that relied on the LWIR radiative transfer equation

to minimize AE reconstruction error. Compared to Mean-Square Error (MSE), this

physics-based loss function proved more favorable for minimizing at-sensor radiance

error.
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B2: The Stacked Autoencoder (SAE) latent space was sampled with a small neural net-

work, resulting in a 15 times faster radiative transfer model compared to correlated-k

techniques.

B3: Utilizing the low-dimensional latent space, atmospheric state vectors could be esti-

mated from a TUD vector. This involved starting at the network output and optimiz-

ing backwards to the input.

B4: Data augmentation strategies were investigated to increase the number of TUD vec-

tors available for training. The augmentation strategy led to lower reconstruction

error and was used throughout the dissertation research to increase the number of

TUD vector training samples.

Chapter V utilized the metrics, loss functions and network architectures from Chap-

ter IV to build a complete in-scene atmospheric compensation method. The DeepSet At-

mospheric Compensation (DAC) model was compared against Fast Line-of-Sight Atmo-

spheric Analysis of Hypercubes - Infrared (FLAASH-IR) showing comparable or better

performance on collected hyperspectral data. Additionally, DAC errors increased when

reflective materials were absent, supported by the LWIR radiative transfer equation. The

contributions and findings of this research were:

C1: Permutation-invariant neural networks are useful for estimating the underlying TUD

vector from a set of pixels. The set pooling operation must be carefully chosen such

that predictions are stable as the number of pixels varies.

C2: At-sensor radiance data can be generated from a TUD library, emissivity library and

careful sampling of pixel temperature and scene emissivity. The set generation algo-

rithm in [20] can be used for any LWIR experiment requiring many representations

of at-sensor radiance.
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C3: In-scene atmospheric compensation using permutation-invariant networks and a gen-

erative SAE reduces atmospheric compensation time from 67 s to 0.3 s. This reduced

inference time supports accelerated LWIR target detection.

After establishing the benefits of an in-scene atmospheric compensation method derived

from a generative model and permutation-invariant networks, the previous results were

further extended in Chapter VI to include the atmospheric state vector. The atmospheric

state, defined as temperature, column water vapor content and column ozone content, is

typically used with a radiative transfer model to generate a TUD vector. The Multimodal

DeepSet Atmospheric Compensation (MDAC) model derived in Chapter VI estimates an

atmospheric state vector and TUD vector using only in-scene data resulting in the following

findings:

D1: A combination of weighted atmospheric state loss, at-sensor radiance loss and Kullback-

Leibler (KL) divergence were used to create a joint atmospheric state and TUD vector

representation. The combination of these loss functions results in lower model error,

improving in-scene atmospheric compensation performance.

D2: Attention mechanisms in the set pooling operation are influenced by reflective mate-

rials in the scene. This functionality agrees with the LWIR radiative transfer equation

as reflective materials are necessary for downwelling radiance prediction.

D3: A multimodal generative model is capable of producing physically-plausible atmo-

spheric state vectors and their corresponding TUD vectors. Sampling the joint low-

dimensional space identified latent components encoding the physical parameters

such as total column water vapor content, resulting in an explainable latent code

useful for deterministic generative modeling.

D4: Faster target detection is possible when using the MDAC method compared to FLAASH-

IR without degrading detection performance on collected data.

181



Together these contributions and findings demonstrate the utility of combining genera-

tive modeling techniques with permutation-invariant networks and domain-specific knowl-

edge to create enhanced atmospheric compensation methods. Next, areas of future work

are discussed to further extend this research.

7.2 Future Work

Both the DAC and MDAC algorithms were created specifically for the Spatially En-

hanced Broadband Array Spectrograph System (SEBASS) LWIR hyperspectral sensor, but

can quickly be retooled for any sensor with a known instrument line shape (ILS). Future

hyperspectral and ultraspectral sensors with increasing spectral resolution should be in-

vestigated to validate this approach. Specifically, the MDAC algorithm showed promising

results as both an atmospheric compensation method and atmospheric sounding algorithm.

Sensors with increased spectral resolution should reduce the atmospheric sounding error

within MDAC, but this must be verified with additional experimentation. This area of

future work may also provide information on sensor spectral resolutions necessary for spe-

cific remote sensing applications.

A nadir viewing geometry was assumed in this research, however, there are real-world

scenarios where off-nadir atmospheric compensation is needed. Both the DAC and MDAC

methods must be investigated for off-nadir geometries to support a wider range of applica-

tions. Sensor zenith angle should be included as a model input, just as sensor altitude is

currently leveraged. When considering off-nadir geometries, path length varies throughout

the scene. This violates the assumption that a homogeneous atmosphere can be assumed for

the entire scene as transmittance and path radiance will vary across pixels. Scene segmen-

tation approaches can be applied to make atmospheric estimates over small homogeneous

regions. Segmentation is challenging because a trade off is made between creating seg-
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mented images with enough data for accurate atmospheric compensation while minimizing

atmospheric variation within the image [18, 155].

Both the DAC and MDAC algorithms should be further extended for the visible and

near-infrared (VNIR)/shortwave infrared (SWIR) domain. VNIR/SWIR sensors are more

common with smaller form factors, allowing wider spread use for civilian and military ap-

plications. In the current implementation, the MDAC atmospheric state vector estimate can

be forward modeled with MODerate resolution atmospheric TRANsmission (MODTRAN)

to estimate VNIR/SWIR atmospheric terms, however, zenith angle must also be known.

Additionally, some atmospheric constituents will have a larger effect in the VNIR/SWIR

domain, requiring careful standard model selection. A VNIR/SWIR at-sensor radiance

training data set can be created for training the MDAC method by sampling over zenith

angle, sensor altitude and a range of TUD vectors and emissivity spectra. It is unclear what

modifications will be needed to the MDAC network to adapt to these additional variations

or how much additional data will be needed.

Further analysis is still needed on a wider range of collected LWIR hyperspectral data.

The collected data used in this dissertation was from the same region and was collected

over a period of days. A globally diverse set of images is needed to validate both DAC

and MDAC performance. The training and validation data was derived from the Thermo-

dynamic Initial Guess Retrieval (TIGR) data, however, conditions may exist where these

algorithms perform poorly. Identifying reasons why atmospheric compensation perfor-

mance degrades will be an important area of research guiding future modifications to the

network.

This research relied on the TIGR atmospheric measurement database because all mea-

surements were on a constant pressure grid and the measurements encompassed a diversity

of weather conditions. Other atmospheric measurement databases are available and should

be explored in future work. Changes to surface altitude, pressure grid and noisy mea-
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surements must be considered when forming a larger atmospheric database. This research

utilized a data augmentation technique on the TIGR data to avoid pressure axis alignment

and data parsing challenges. Additional collected measurements may reveal limitations of

the model for specific atmospheric conditions and help inform training data construction.
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Appendix A. Estimating Model Uncertainty

Quantifying uncertainty in neural network predictions is necessary for embedding the

methods presented in this research with operational systems. The models trained in this re-

search were optimized to produce point estimates, but no information on model uncertainty

was included. This section discusses a bootstrap method to estimate model uncertainty

and then applies this approach to the Multimodal DeepSet Atmospheric Compensation

(MDAC) results presented in Chapter VI for collected and synthetic data.

In classification problems, the neural network model typically utilizes a softmax output

activation function to predict the probability of each possible class. These probabilities

provide some insight into the model’s confidence and can be used as one type of uncertainty

measure. Regression problems rely on linear outputs to provide a point estimate, ŷ of the

target value y. Unfortunately, this point estimate does not contain uncertainty information

but modifications to the training and evaluation process can ameliorate this problem.

One of the most common approaches for measuring neural network uncertainty is the

bootstrap method [156–158]. This method relies on an ensemble of trained models to

produce a mean point estimate, ŷi for B models such that [156]:

ŷi =
1
B

B

∑
b=1

ŷb
i (1.1)

and a variance estimate σ2
ŷi

such that:

σ
2
ŷi
=

1
B−1

B

∑
b=1

(
ŷb

i − ŷi
)2 (1.2)

This approach depends on B well-trained models to estimate σ2
ŷi

and ŷi but poorly trained

models can result in large biases in these estimates. Error metrics during training must be

analyzed to remove models that did not converge to limit the effect of biased models in

ensemble predictions.
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Constructing a prediction interval for new samples requires an estimation of the error

variance, σ2
ε̂

, where [156]:

σ
2
ε̂
' E

[
(y− ŷ)2]−σ

2
ŷ (1.3)

and a set of variance squared residuals computed by:

r2
i = max

(
σ

2
ε̂i
,0
)

(1.4)

An additional neural network can be trained to predict r2
i from input values using the en-

semble predictions to create r2
i . This bootstrap approach is expensive during training since

B+1 models must be fit, but inference is efficient because neural network forward passes

are only required.

This bootstrap approach was applied to the MDAC algorithm letting B = 10 to form

the network ensemble. Increasing the ensemble size will result in better variance estimates,

but B = 10 was selected because of hardware limitations. Each MDAC model utilized an

independent Multimodal Autoencoder (MMAE) model and both the MMAE and MDAC

models were trained until validation loss stabilized. Each model was trained on unique

subsets of the training data such that no two models were fit with the same samples. A

permutation-invariant network was trained to predict the ensemble squared residuals, uti-

lizing max pooling to compress the set of at-sensor radiance values into a one-dimensional

set representation. Figure 66 shows the ensemble mean prediction and one standard devia-

tion, while Figure 67 shows the prediction interval based on Equation 1.4. The Fast Line-

of-Sight Atmospheric Analysis of Hypercubes - Infrared (FLAASH-IR) estimate is within

the ensemble prediction interval with close agreement to the ensemble mean estimate for

all Transmittance, Upwelling, and Downwelling (TUD) components. The permutation-

invariant network used to determine the error variance, σ2
ε̂

, was not comprehensively tuned.
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Additional training and modifications to this network may lead to smaller prediction inter-

vals.

Figure 66. The mean and one standard deviation of ensemble predictions for a collected data cube
demonstrate comparable performance for all model random initializations.

Figure 67. The prediction interval produced using Equation 1.4 and an additional neural network to
create the estimate σ2

ε̂
.
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Appendix B. Increased Sensor Resolution

This research investigated the Mako and Spatially Enhanced Broadband Array Spectro-

graph System (SEBASS) Long-Wave Infrared (LWIR) hyperspectral sensors for radiative

transfer modeling and in-scene atmospheric compensation. Specifically, the Multimodal

DeepSet Atmospheric Compensation (MDAC) results presented in Chapter VI utilized SE-

BASS data to recover both an atmospheric sounding and Transmittance, Upwelling, and

Downwelling (TUD) vector estimate. Next generation LWIR hyperspectral sensors con-

tinue to increase spectral resolution, gathering more information about the atmospheric

state and surface elements. This section compares MDAC results using a fictitious higher

resolution sensor against the 92 spectral band SEBASS results to demonstrate the research

methodology presented in this dissertation can also benefit future hyperspectral sensors.

Figure 68. An example TUD vector is shown for the SEBASS sensor with 92 spectral bands and a
future sensor using 256 spectral bands.

The higher resolution sensor instrument line shape (ILS) consists of 256 spectral bands

sampled from 8 µm to 12.5 µm. A guassian lineshape was used with a constant full-width

half max for all bands of 0.017 µm. This assumption is unrealistic as actual instrument line-

shapes vary with wavelength, however, this analysis is only interested in how the MDAC

algorithm handles additional spectral information. An example TUD vector is shown in

Figure 68 for both the SEBASS ILS and this future sensor ILS. The additional spectral

bands capture more atmospheric features as shown by the high frequency content between
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8 µm to 9 µm. This additional information content is useful for methods such as MDAC

since the low-dimensional latent space can be restructured to include this information.

The MDAC latent space was typically varied between 3 and 6 components, resulting

in acceptable reconstruction error and atmospheric compensation performance using the

SEBASS sensor. Increasing the input dimension may require additional latent components

without changing any other network architecture parameters. In this analysis, increasing

the spectral dimension from 92 channels to 256 channels required a corresponding increase

from 6 latent components to 8 latent components in the Multimodal Autoencoder (MMAE)

configuration. The MMAE errors are shown in Figure 69 for both the SEBASS resolution

and the notional 256 channel instrument resolution.

(a) (b)

Figure 69. At-sensor brightness temperature error for (a) SEBASS sensor using 92 spectral bands, (b)
notional 256 spectral band sensor. The increased information content provided by the notional 256
channel sensor results in lower reconstruction error.

189



Appendix C. Disentangled Latent Components

The latent space formed by compressing atmospheric state vectors and Transmittance,

Upwelling, and Downwelling (TUD) vectors is useful for generative modeling if proper

constraints are applied during training. Modified training approaches based on β -Variational

Autoencoders (VAEs) were investigated in this dissertation showing improved latent space

smoothness when Kullback-Leibler (KL) divergence loss was applied to the latent space.

Models leveraging KL divergence loss can produce a disentangled latent representation,

revealing the underlying data generating processes. When single latent components are

sensitive to known generating processes, while being invariant to others, new samples can

be generated with known properties.

The Long-Wave Infrared (LWIR) TUD vectors used in this research were derived from

a set of atmospheric measurements, T, H2O and O3 as a function of pressure level. Since

MODerate resolution atmospheric TRANsmission (MODTRAN) was used to convert these

measurements to TUD vectors without modifications to any other MODTRAN parameters,

these measurements can be considered the data generating processes governing the TUD

vector structure. Latent component sensitivity to these parameters can be identified, result-

ing in a controllable generative model.

Identifying latent component sensitivity requires modifications to the Multimodal Au-

toencoder (MMAE) input vectors that are physically plausible. First, temperature profiles

are modified starting with a Thermodynamic Initial Guess Retrieval (TIGR) atmospheric

temperature profile. A new surface temperature, T ′s is sampled according to T ′s = N(Ts,7),

where Ts is the TIGR atmospheric temperature profile surface measurement. To create a

new atmospheric temperature profile, this research follows the strategy outlined in [138]:

T ′ = (1+g)(T −T ′s )+T ′s +∂T, (3.1)
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where g is a slope parameter sampled according to g = U(−0.5,0.5) and ∂T is an offset

sampled according to ∂T = U(−7,7). This process creates a new temperature profile,

however, only the first 6 measurements (starting at the surface) are used to modify the

existing measurement, T . After updating the temperature measurement, relative humidity

is measured at each pressure level to verify a 96% threshold is not violated.

Next, the water vapor density profile is modified based on the research presented in

[140]. Specifically, it was observed in [140] water vapor density as a function of altitude,

z, could be fit with the following form:

H2O(z) = ae−bz, (3.2)

creating a new water vapor density profile requires modifying the fit parameters a and b.

These values are sampled according to a′ = N(a,a/2) and b′ = N(b,b/2). These sampled

fit parameters create a new water vapor density profile, where only the first three pressure

levels are used to modify the existing profile, H2O(z). Again, relative humidity calculations

are performed to verify the 96% threshold is not violated. After sampling either a new

temperature or water vapor density profile, the new atmospheric state vector is used with

MODTRAN to create a corresponding TUD vector. The result of this process is shown in

Figures 70 and 71. These two vectors form the input to the MMAE for identifying latent

component dependencies on temperature or water vapor content.

Latent space dependencies are identified by measuring the absolute change in latent

component values when the MMAE input is modified with either temperature or water

vapor profile deviations. Two MMAE models are considered here: a model utilizing KL

divergence loss with β = 0.2 and a second model that does not use KL divergence loss,

β = 0.0. Modifying temperature and water vapor density profiles results in the latent com-

ponent deviations, ∆zi, shown in Figure 72 where β = 0.2 creates a more disentangled

representation. Without using KL divergence, multiple components must be modified at
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Figure 70. Generated temperature profiles and the corresponding TUD vectors based on low level
temperature modifications.

Figure 71. Generated water vapor density profiles and the corresponding TUD vectors showing the
significant influence water vapor content has on LWIR spectral features.

once to reflect changes in the underlying generative process. For β = 0.2, component 2 is

predominantly responsible for changes in water vapor content, however, component 6 also

plays a role. Neither model has a definitive component for changes in atmospheric temper-
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ature, but as noted in Figure 70 the changes applied to atmospheric temperature resulted in

small deviations to the TUD vector.

Figure 72. Latent component changes as the underlying generative process is modified. Using KL
divergence creates a more disentangled latent representation as highlighted by the larger deviations
for a single component, rather than small changes in multiple components at once.

The information contained in Figure 72 is useful for sampling the latent space to create

atmospheric state vectors and TUD vectors with specific properties. Modifying component

2 using β = 0.2 leads to atmospheric state vectors with varying water vapor profiles and

corresponding changes to the TUD vectors as shown in Figure 73. This model can now be

used to generate more training to support this research, leading to semi-supervised algo-

rithm development. The results shown in Figure 73 are not dependent on MODTRAN and

allow for thousands of possible measurements and TUD vectors to be generated in seconds.

Figure 73. Modifying component 2 in the MMAE model using β = 0.2 results in a generative model
with a disentangled component sensitive to changes in water vapor content. The lines plotted represent
the different values of component 2 listed in the legend.
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