121 research outputs found

    Hybridising local search with Branch-and-Bound for constrained portfolio selection problems

    Get PDF
    In this paper, we investigate a constrained portfolio selection problem with cardinality constraint, minimum size and position constraints, and non-convex transaction cost. A hybrid method named Local Search Branch-and-Bound (LS-B&B) which integrates local search with B&B is proposed based on the property of the problem, i.e. cardinality constraint. To eliminate the computational burden which is mainly due to the cardinality constraint, the corresponding set of binary variables is identified as core variables. Variable fixing (Bixby, Fenelon et al. 2000) is applied on the core variables, together with a local search, to generate a sequence of simplified sub-problems. The default B&B search then solves these restricted and simplified subproblems optimally due to their reduced size comparing to the original one. Due to the inherent similar structures in the sub-problems, the solution information is reused to evoke the repairing heuristics and thus accelerate the solving procedure of the subproblems in B&B. The tight upper bound identified at early stage of the search can discard more subproblems to speed up the LS-B&B search to the optimal solution to the original problem. Our study is performed on a set of portfolio selection problems with non-convex transaction costs and a number of trading constraints based on the extended mean-variance model. Computational experiments demonstrate the effectiveness of the algorithm by using less computational time

    Hybridising local search with Branch-and-Bound for constrained portfolio selection problems

    Get PDF
    In this paper, we investigate a constrained portfolio selection problem with cardinality constraint, minimum size and position constraints, and non-convex transaction cost. A hybrid method named Local Search Branch-and-Bound (LS-B&B) which integrates local search with B&B is proposed based on the property of the problem, i.e. cardinality constraint. To eliminate the computational burden which is mainly due to the cardinality constraint, the corresponding set of binary variables is identified as core variables. Variable fixing (Bixby, Fenelon et al. 2000) is applied on the core variables, together with a local search, to generate a sequence of simplified sub-problems. The default B&B search then solves these restricted and simplified subproblems optimally due to their reduced size comparing to the original one. Due to the inherent similar structures in the sub-problems, the solution information is reused to evoke the repairing heuristics and thus accelerate the solving procedure of the subproblems in B&B. The tight upper bound identified at early stage of the search can discard more subproblems to speed up the LS-B&B search to the optimal solution to the original problem. Our study is performed on a set of portfolio selection problems with non-convex transaction costs and a number of trading constraints based on the extended mean-variance model. Computational experiments demonstrate the effectiveness of the algorithm by using less computational time

    Hybridising Local Search With Branch-And-Bound For Constrained Portfolio Selection Problems

    Full text link

    A two-stage stochastic mixed-integer program modelling and hybrid solution approach to portfolio selection problems

    Get PDF
    In this paper, we investigate a multi-period portfolio selection problem with a comprehensive set of real-world trading constraints as well as market random uncertainty in terms of asset prices. We formulate the problem into a two-stage stochastic mixed-integer program (SMIP) with recourse. The set of constraints is modelled as mixed-integer program, while a set of decision variables to rebalance the portfolio in multiple periods is explicitly introduced as the recourse variables in the second stage of stochastic program. Although the combination of stochastic program and mixed-integer program leads to computational challenges in finding solutions to the problem, the proposed SMIP model provides an insightful and flexible description of the problem. The model also enables the investors to make decisions subject to real-world trading constraints and market uncertainty. To deal with the computational difficulty of the proposed model, a simplification and hybrid solution method is applied in the paper. The simplification method aims to eliminate the difficult constraints in the model, resulting into easier sub-problems compared to the original one. The hybrid method is developed to integrate local search with Branch-and-Bound (B&B) to solve the problem heuristically. We present computational results of the hybrid approach to analyse the performance of the proposed method. The results illustrate that the hybrid method can generate good solutions in a reasonable amount of computational time. We also compare the obtained portfolio values against an index value to illustrate the performance and strengths of the proposed SMIP model. Implications of the model and future work are also discussed

    Metaheuristic approaches to realistic portfolio optimisation

    Get PDF
    In this thesis we investigate the application of two heuristic methods, genetic algorithms and tabu/scatter search, to the optimisation of realistic portfolios. The model is based on the classical mean-variance approach, but enhanced with floor and ceiling constraints, cardinality constraints and nonlinear transaction costs which include a substantial illiquidity premium, and is then applied to a large I 00-stock portfolio. It is shown that genetic algorithms can optimise such portfolios effectively and within reasonable times, without extensive tailoring or fine-tuning of the algorithm. This approach is also flexible in not relying on any assumed or restrictive properties of the model and can easily cope with extensive modifications such as the addition of complex new constraints, discontinuous variables and changes in the objective function. The results indicate that that both floor and ceiling constraints have a substantial negative impact on portfolio performance and their necessity should be examined critically relative to their associated administration and monitoring costs. Another insight is that nonlinear transaction costs which are comparable in magnitude to forecast returns will tend to diversify portfolios; the effect of these costs on portfolio risk is, however, ambiguous, depending on the degree of diversification required for cost reduction. Generally, the number of assets in a portfolio invariably increases as a result of constraints, costs and their combination. The implementation of cardinality constraints is essential for finding the bestperforming portfolio. The ability of the heuristic method to deal with cardinality constraints is one of its most powerful features.Decision SciencesM. Sc. (Operations Research

    From metaheuristics to learnheuristics: Applications to logistics, finance, and computing

    Get PDF
    Un gran nombre de processos de presa de decisions en sectors estratègics com el transport i la producció representen problemes NP-difícils. Sovint, aquests processos es caracteritzen per alts nivells d'incertesa i dinamisme. Les metaheurístiques són mètodes populars per a resoldre problemes d'optimització difícils en temps de càlcul raonables. No obstant això, sovint assumeixen que els inputs, les funcions objectiu, i les restriccions són deterministes i conegudes. Aquests constitueixen supòsits forts que obliguen a treballar amb problemes simplificats. Com a conseqüència, les solucions poden conduir a resultats pobres. Les simheurístiques integren la simulació a les metaheurístiques per resoldre problemes estocàstics d'una manera natural. Anàlogament, les learnheurístiques combinen l'estadística amb les metaheurístiques per fer front a problemes en entorns dinàmics, en què els inputs poden dependre de l'estructura de la solució. En aquest context, les principals contribucions d'aquesta tesi són: el disseny de les learnheurístiques, una classificació dels treballs que combinen l'estadística / l'aprenentatge automàtic i les metaheurístiques, i diverses aplicacions en transport, producció, finances i computació.Un gran número de procesos de toma de decisiones en sectores estratégicos como el transporte y la producción representan problemas NP-difíciles. Frecuentemente, estos problemas se caracterizan por altos niveles de incertidumbre y dinamismo. Las metaheurísticas son métodos populares para resolver problemas difíciles de optimización de manera rápida. Sin embargo, suelen asumir que los inputs, las funciones objetivo y las restricciones son deterministas y se conocen de antemano. Estas fuertes suposiciones conducen a trabajar con problemas simplificados. Como consecuencia, las soluciones obtenidas pueden tener un pobre rendimiento. Las simheurísticas integran simulación en metaheurísticas para resolver problemas estocásticos de una manera natural. De manera similar, las learnheurísticas combinan aprendizaje estadístico y metaheurísticas para abordar problemas en entornos dinámicos, donde los inputs pueden depender de la estructura de la solución. En este contexto, las principales aportaciones de esta tesis son: el diseño de las learnheurísticas, una clasificación de trabajos que combinan estadística / aprendizaje automático y metaheurísticas, y varias aplicaciones en transporte, producción, finanzas y computación.A large number of decision-making processes in strategic sectors such as transport and production involve NP-hard problems, which are frequently characterized by high levels of uncertainty and dynamism. Metaheuristics have become the predominant method for solving challenging optimization problems in reasonable computing times. However, they frequently assume that inputs, objective functions and constraints are deterministic and known in advance. These strong assumptions lead to work on oversimplified problems, and the solutions may demonstrate poor performance when implemented. Simheuristics, in turn, integrate simulation into metaheuristics as a way to naturally solve stochastic problems, and, in a similar fashion, learnheuristics combine statistical learning and metaheuristics to tackle problems in dynamic environments, where inputs may depend on the structure of the solution. The main contributions of this thesis include (i) a design for learnheuristics; (ii) a classification of works that hybridize statistical and machine learning and metaheuristics; and (iii) several applications for the fields of transport, production, finance and computing
    corecore