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ABSTRACT 

In this paper, we investigate a constrained portfolio 

selection problem with cardinality constraint, minimum 

size and position constraints, and non-convex 

transaction cost. A hybrid method named Local Search 

Branch-and-Bound (LS-B&B) which integrates local 

search with B&B is proposed based on the property of 

the problem, i.e. cardinality constraint. To eliminate the 

computational burden which is mainly due to the 

cardinality constraint, the corresponding set of binary 

variables is identified as core variables. Variable fixing 

(Bixby, Fenelon et al. 2000) is applied on the core 

variables, together with a local search, to generate a 

sequence of simplified sub-problems. The default B&B 

search then solves these restricted and simplified sub-

problems optimally due to their reduced size 

comparing to the original one. Due to the inherent 

similar structures in the sub-problems, the solution 

information is reused to evoke the repairing heuristics 

and thus accelerate the solving procedure of the sub-

problems in B&B. The tight upper bound identified at 

early stage of the search can discard more sub-

problems to speed up the LS-B&B search to the 

optimal solution to the original problem. Our study is 

performed on a set of portfolio selection problems with 

non-convex transaction costs and a number of trading 

constraints based on the extended mean-variance 

model. Computational experiments demonstrate the 

effectiveness of the algorithm by using less 

computational time. 

 

INTRODUCTION 

In this paper, we tackle the single-period portfolio 

selection problem (PSP). In the problem concerned, a 

number of transactions can be carried out to adjust the 

portfolio during a given trading period. We take into 

account these transaction costs as well as a set of 

trading constraints.  These include the cardinality 

constraint (a limit on the total number of assets held in 

the portfolio, i.e. select k out n (k<n) assets to be held 

in the portfolio), the minimum position size constraint 

(bounds on the amount of each asset), the minimum 

trade size constraint (bounds on the amount of 

transaction occurred on each asset) and transaction 

costs. The goal of the problem is to minimize the risk 

of the adjusted portfolio and the transaction costs 

incurred, while satisfying the set of trading constraints 

in feasible portfolios. The aim of this paper is to 

develop a hybrid method to solve the complex PSP 

efficiently. The techniques developed here are 

employed to solve a specific problem, but it could be 

applied to other variants of PSP with cardinality 

constraint, and possible other combinatorial problems 

outside this domain.   

If the transaction cost function is linear, then the 

problem is generally easy to solve. However, a 

function which better reflects realistic transaction costs 

is usually non-convex (Konno and Wijayanayake 

2001). Some research show that realistic transaction 

costs usually include a fixed fee, and thus the cost is 

relatively higher when the amount of transaction is 

smaller (Konno and Wijayanayake 2001, Konno and 

Wijayanayake 2002). The transaction cost is thus 

usually represented by a linear piecewise concave 

function. This turns the problem into a non-convex 

optimisation problem, which is more difficult to solve.  

In this paper, we propose a new hybrid approach which 

integrates local search with B&B to solve the non-

convex portfolio selection problem heuristically. We 

conceptually divide the decision variables into two 

parts: the set of core variables which defines the 

cardinality constraint and the rest of variables.  

Variable fixing is applied to the core variables. The 

result of variable fixing has two facets: values (i.e. 0, 1) 

are assigned to the core binary variables and simplified 

sub-problem is generated. A local search together with 

variable fixing are performed on the core variables to 

generate a sequence of simplified sub-problems. These 

sub-problems are traversed heuristically to find the 
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minw  Minimum hold position 

minx  Minimum trading amount 

k Number of assets in the portfolio after 

transaction 

  

Variable  Feature 

wi Revised position of the 

portfolio after transaction 

Decision variable 

buy

ix  Amount of buying asset i Decision variable 

sell

ix  Amount of selling asset i Decision variable 

iz  Hold asset i or not in the 

revised portfolio 

Auxiliary variable 

buy

iz  Buy asset i or not Auxiliary variable 

sell

iz  Sell asset i or not Auxiliary variable 
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There are two groups of variables in the formulation of 

the problem, as denoted by the “feature” column. wi, 

buy

ix , sell

ix are decision variables. 
iz , buy

iz  and sell

iz  are 

auxiliary variables which are used to formulate the 

constraints. The column “core variable” denotes which 

variables are core variables. The selection of the core 

variables is problem dependent.   Several researchers 

have pointed out that the cardinality constraint presents 

the greatest computational challenge to the problem 

(Bienstock 1996, Jobst, Horniman et al. 2001, Stoyan 

and Kwon 2010, Stoyan and Kwon 2011). Actually, the 

PSP with cardinality constraint has been recognized to 

be NP-complete (Bienstock 1996, Mansini and 

Speranza 1999). To eliminate the cardinality constraint, 

we identify variables 
iz  which define the cardinality 

constraint 

1

        
i n

i

i

z k



  as a set of core variables. 

Based on the model PSP, we will introduce two 

additional reduced models (PSP basic, PSP sub) as 

follows which will be applied to evaluate the 

neighbourhood in the local search and to calculate the 

lower bound:  

1 1
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LS-B&B TO PSP ALGORITHM 

 

 



In this section, we propose a new hybrid search, named 

LS-B&B to PSP according to the property of the 

problem. To the PSP with binary variable zi we are 

dealing with, we know that exactly k out n binary 

variables will be assigned to 1 in the feasible and 

optimal solutions.  With this knowledge, we can apply 

variable fixing on a set of variables at one time, 

resulting into simplified sub-problem. A local search is 

performed on these set of variables to generate a 

sequence of sub-problems, and the best solution will be 

identified among them.  

Framework of LS-B&B to PSP 

We present the framework of LS- B&B to PSP, as 

shown in Fig.2. 

LS-B&B consists of four main components. The first 

component is the initialization phase (line 1). In this 

phase, variable fixing is applied to the core variables to 

generate a simplified sub-problem. Lower bound and 

upper bound of the problem are also initialized in this 

phase. 

The second component is a default B&B search (line 

7). It is called to solve the sub-problems to optimality. 

This solution to the sub-problem together with the 

variable assignments by variable fixing, forms the 

solution to the original problem. 

The third component is a local search (line 9) which is 

performed on set Z of variable zi to update sets S and. 

With the updated S, the sub-problem is updated 

correspondingly. Therefore, we state that this local 

search generates a sequence of sub-problems. 

The fourth component is an overall search procedure 

(the while loop). In this search procedure, a local 

search, variable fixing and a default B&B  work 

together to identify the best solution among the sub-

problems by pruning inferior sub-problems and solving 

the promising sub-problems to optimality. 

We present explanations of these components next.  

Components of LS-B&B to PSP 

Variable fixing 

(Hard) variable fixing has been used in MIP context to 

divide a problem into sub-problems. It assigns values 

to a subset of variables of the original problem. That is, 

certain variables are fixed to the given values. Based on 

the definition of variable fixing in (Bixby, Fenelon et 

al. 2000, Lazic, Hanafi et al. 2009), we apply this 

variable fixing to simplify the original problem into 

sub-problems in the following way.  We first denote a 

subsets S on the binary variable set B: S  B.  Then we 

fix variables in subsets S to 1, to obtain sub-problems 

ysubP  as follows: 

: min

. . ;

1,

[0,1],

y

T

sub

j

j

P c x

s t Ax b

x j S B

x j C


     
  

 

In this way, we simplify the original problem to a sub-

problem. One selection of the subsets S can generate 

one possible simplified sub-problem of the original 

problem. Therefore, we apply variable fixing together 

with a local search to generate a sequence of sub-

problems where we will search for the best solution.  

 

Fig. 2 The LS-B&B algorithm to PSP 

Initialization phase 

The main task of the initialization phase is the 

generation of a sub-problems 
ysubP  by variable fixing 

on variables zi on sets S. From the definition of
ysubP , 

we can state that 
ysubP is Porg with the initialization of 

variables in S to 1.  

In the initialization phase, the lower bound is obtained 

by solving the continuous relaxation of the sub-

LS- B&B 

LB: lower bound;  

UB: upper bound; 

(h,  x, w, z): a solution (x, w, z) of the problem with a 

corresponding objective value h; 

solveB&B: a default B&B solver; 

Z: set of zi; 

S: subset of Z; 

Porg: the original problem defined by model (PSP); 

ysubP : sub-problem defined by variable fixing; 

 

1: Initialization phase  

2: while (the number of iterations not met)  

3:           If (LB (
ysubP ) ≥ UB)  

4:                    prune the sub-problem 
ysubP ;  

5:                    go to line 9; 

6:           Else 

7:                    (h, x, w, z) = solveB&B(
ysubP ) ;  

8:                    if h <UB  set UB =h; 

9:           perform a Local search on set Z; 10:         

generate sub-problems by variable fixing:
ysubP  = 

Porg   (zi= 1), ziS;  
11:  set (x*, w*, z*) as the best solution among all (x, w, z) 

and h* be the corresponding objective value; 



problem 
ysubP based on model (PSP sub), and the upper 

bound is set as ∞.  

Default B&B search 

As we stated in the framework of LS-B&B, each of the 

sub-problems itself is still a MIQP problem due to the 

presence of binary variables zi
buy and zi

sell. However, 

due to the assignments of variable zi by variable fixing, 

the size of the sub-problem is much smaller comparing 

to the original one. Therefore, sub-problems can be 

handled by the default B&B. In this paper, the default 

B&B algorithm in the MIQP solver in CPLEX is 

applied to solve the promising sub-problems (when LB 

(
ysubP ) < UB ) to optimality. What is more, the inherent 

similar structures of the sub-problems enable a very 

successful reuse of solution information, so the 

repairing heuristics embedded in solveB&B are evoked 

to improve the search. 

Overall search procedure  

The overall search explores the sequence of sub-

problems. This is shown in the while loop in Fig.2. In 

this search, the lower bound of the sub-problem 
ysubP is 

computed by a general QP solver, which relaxes the 

sub-problem to a continuous problem, i.e. model PSP 

sub (line 3 in Fig.2). Here, the computation of the 

lower bound is different from the evaluation of a 

solution in the local search, which is based on model 

PSP basic.  The objective value of the feasible solution 

to the concerned sub-problem 
ysubP serves as the upper 

bound of the original problem. If the lower bound of a 

sub-problem is above the current upper bound found so 

far, we can discard this sub-problem during the search 

(line 4 in Fig.2). Otherwise, these promising sub-

problems are solved exactly by a default B&B (line 7 

in Fig.2). The solutions to the sub-problems together 

with the assignments of core variables consist of the 

feasible solutions to the complete original problem. 

These sub-problems are solved in sequence, and the 

best solution among them, together with the variable 

assignments done by variable fixing, approximates the 

optimal solution to the original problem. The whole 

procedure terminates by a pre-defined number of 

iterations in the local search. Therefore, the search is an 

incomplete search. It cannot guarantee optimality of the 

solution due to the nature of the local search on core 

variables zi. 

The local search together with variable fixing creates a 

sequence of sub-problems which have very similar 

structures. They only differ in the coefficient or the 

right-hand side of constraints which are related to zi. 

When solving this sequence of sub-problems, the 

solution information such as the basis list and basis 

factors from its simplex tableau (i.e., we apply the 

extended tableau simplex algorithm in the default 

MIQP solver) for the current problem are stored, and 

this can be retrieved and applied to the successive sub-

problems. This means the solution information (i.e., 

basis list and basis factors) of the problem 
ysubP can thus 

be reused to obtain solution to
'ysubP , so that 

'ysubP does 

not need to be solved again from scratch. This solution 

information reusing thus can evoke the repairing 

heuristics embedded in the default B&B solver. This 

solution information reusing has shown to be extremely 

efficient. 

 

EXPERIMENTAL RESULTS 

To evealuate our algorithm on more general benchmark 

instances, we also concern in this paper the portfolio 

optimisation instances publicly available in the OR 

library (ORlibrary), with additional constraints derived 

from the above real-world problem. Six problem 

instances are used to test the algorithm proposed in this 

paper, which can be found at (He and Qu, 2014). 

We set the minimum proportion of wealth to be 

invested in an asset, wmin, to 0.01%, and the minimum 

transaction amount, xmin, to 0.01%. We also set the 

parameters in the transaction cost function αi to 0.005 

and ßi to 0.0001 for all the assets. Other values of k in 

the cardinality constraint have been tested, ranging 

from 10 to 150 for different sizes of portfolios. 

 
Evaluations on the LS-B&B algorithm 

In LS-B&B, after fixing values for variables zi by 

variable fixing and the local search, the resulting MIQP 

sub-problems are created. If the lower bound of a sub-

problem is not greater than the current upper bound 

(we say it is a promising sub-problem, otherwise it will 

be pruned), it will be solved by the default B&B in 

CPLEX12.0. Therefore, when these sub-problems are 

processed, in conclusion four possible situations could 

emerge: (1) a sub-problem could be solved by B&B to 

optimality; (2) the repairing heuristic mechanism 

imbedded in CPLEX could be evoked and applied to a 

sub-problem to obtain a feasible solution heuristically; 

(3) a sub-problem could be pruned; this will happen if 

the optimal solution under continuous relaxation on 

model PSP sub is larger than the current upper bound; 

and (4) the solution of a sub-problem could be 

infeasible. 

Table 1 illustrates the behavior of the above four 

situations during the processing of sub-problems. The 

total CPU time of the algorithm is dependent upon the 

CPU time needed for each situation.  

 



Table 1. Information of sub-problem processing. 

Instance 

total 

CPU 

time 

sub-problem 

solved 

sub-problem 

repaired 

sub-problem 

pruned 

sub-problem

infeasible 

  Number 

Avg 

CPU 

time/p 

Numb 

Avg 

CPU 

time/p 

Number 

Avg 

CPU 

time/p 

Numb

Avg 

CPU 

time/p

Société 

Générale 
3.16 56 0.01 398 0.006 86 0 60 0 

HangS 3.09 184 0.01 178 0.005 120 0 118 0 

DAX 9.00 296 0.02 121 0.01 112 0.01 71 0 

FTSE 11.44 79 0.08 102 0.025 127 0.02 292 0 

S&P 13.55 286 0.04 114 0.01 77 0 123 0 

Nikkei 76.97 89 0.40 21 0.36 221 0.08 269 0.06 

Table 1 clearly indicates that the CPU time for 

identifying infeasibility is negligible. The CPU time for 

pruning the inferior sub-problem is quite efficient. 

Therefore, the more sub-problems pruned, the more 

efficient the search is. It can be interpreted from Table 

1 that solving sub-problems with repairing heuristics is 

quite efficient. These repairing heuristics are the results 

of solution information reuse in the B&B solver. 

Solving sub-problems exactly is the most time 

consuming situation comparing with the other three 

situations.  

Comparisons with the default B&B in CPLEX 

 
It is worth noting that LS-B&B is a heuristic approach 

to the problem. It cannot prove optimality of the 

solution due to the nature of the local search on core 

variables zi, although the sub-problems can be 

measured by the optimality gap. In order to evaluate 

the quality of the solutions we obtained from LS-B&B, 

we compare it against the optimal solution to the 

problem. It is however very difficult, if not impossible, 

to obtain and prove the optimal solution to the 

problems concerned. We therefore calculate the 

approximate optimal solution to the problem concerned 

by running the default B&B algorithm in CPLEX12.0 

for an extensive amount of time. 

 

In the comparison presented in Table 2, we aim to 

demonstrate the effectiveness of the repairing heuristic 

evoked in our proposed LS- B&B. Therefore, we 

present the characteristics of the sub-problems being 

repaired by heuristic against the characteristics of the 

default B&B. We compare LS-B&B with the default 

B&B in Table 2 in terms of the following criteria:  The number of nodes being processed in B&B to 

obtain the best integer feasible solution;  The gap between optimality and the quality of the 

best feasible solution; 

 If the repairing heuristic is evoked and succeed;   The total CPU time required. 

Table 2. Comparisons of default B&B and LS-

B&B. + denotes that the repairing heuristics are 

succeed. All the CPU time is measured in seconds. 

 

In Table 2, in LS-B&B, the number of nodes processed 

is the average of nodes being processed with repairing 

heuristics. From Table 2 we can see that by simplifying 

the problem through variable fixing, the repairing 

heuristics succeed in LS- B&B approach. The repairing 

heuristics cannot be evoked by the default B&B while 

solving the original problem.  

Without the simplification, the default B&B needs to 

explore a much larger number of nodes in the search to 

obtain feasible solutions, while LS-B&B with 

simplification requires much less time, shown in Table 

2. For example, for the largest instance Nikkei, more 

than 35,500 nodes have been explored in the default 

B&B to obtain a feasible solution with a gap of 0.44%.  

The optimality gap of solution obtained by LS- B&B is 

calculated by gap = (fLS – fR) / fR, where fLS is the 

objective value obtained by LS- B&B, and fR is the 

objective value of continuous relaxation. Table 2 

shows that, to achieve solutions of similar quality (as 

measured by the optimality gap), the CPU time needed 

by the default B&B is much greater than that required 

by LS-B&B (e.g. 180 CPU seconds as opposed to 

76.97 seconds for the instance Nikkie). 

The comparison of LS-B&B with the default B&B can 

be more clearly illustrated in Fig. 3, which plots of the 

objective values of LS-B&B and the approximate 

optimal values obtained by the default B&B with 

extensive runtime. 

It can be seen that LS-B&B converges very well for 

instances Société Générale, Hang Seng and Nikkei, 

where the gap between the objective values of LS-

B&B and approximate optimal is very small. For 

instance DAX, the best solution of LS-B&B is even 

better than the approximate optimal value. For 

instances FTSE and S&P, the gap is slightly larger. 

However, it should be noted that LS-B&B spends 



significantly less time (3-79 seconds) than the default 

B&B (180 and 600 seconds). 

 

 

Fig. 3 The gap between LS-B&B and the 

approximate optimal by the default B&B 

 

CONCLUSIONS  

In this paper, we have introduced the hybrid LS-B&B 

method to solve the portfolio selection problem with 

practical trading constraints and transaction costs. We 

have analysed a specific PSP problem which is 

modelled as MIQP. The hybrid method closely 

integrates local search with B&B. It implements an 

incomplete search which aims to seek near optimal 

solutions in a limited computational time. It simplifies 

the problem into much smaller sub-problems, which 

are much easier to solve than the original complete 

problem, hence can be searched intensively by B&B. It 

has been demonstrated by our experiments that the 

repairing heuristics are evoked by solution information 

reusing in solving sub-problems, thus the successive 

sub-problems can be solved more efficiently. The 

heuristic initialization of the core variables in our 

problem provides a tight upper bound to prune more 

sub-problems. 
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