673 research outputs found

    Efficacy of reduced order source terms for a coupled wave-circulation model in the Gulf of Mexico

    Full text link
    A study is conducted that focuses on the trade-off between run time and accuracy of using reduced order source terms in a coupled wave-circulation model. In the study, ADCIRC+SWAN is used to model Hurricane Ike and Hurricane Ida. Water levels from the coupled model are compared to gauge data and significant wave height, peak period, and mean wave direction are compared to buoys. Results show potential for efficacy of reduced order source terms in order to eliminate computational cost while sacrificing minimal accuracy with respect to field measurements

    An adaptive discontinuous Galerkin method for the simulation of hurricane storm surge

    Get PDF
    Numerical simulations based on solving the 2D shallow water equations using a discontinuous Galerkin (DG) discretisation have evolved to be a viable tool for many geophysical applications. In the context of flood modelling, however, they have not yet been methodologically studied to a large extent. Systematic model testing is non-trivial as no comprehensive collection of numerical test cases exists to ensure the correctness of the implementation. Hence, the first part of this manuscript aims at collecting test cases from the literature that are generally useful for storm surge modellers and can be used to benchmark codes. On geographic scale, hurricane storm surge can be interpreted as a localised phenomenon making it ideally suited for adaptive mesh refinement (AMR). Past studies employing dynamic AMR have exclusively focused on nested meshes. For that reason, we have developed a DG storm surge model on a triangular and dynamically adaptive mesh. In order to increase computational efficiency, the refinement is driven by physics-based refinement indicators capturing major model sensitivities. Using idealised numerical test cases, we demonstrate the model’s ability to correctly represent all source terms and reproduce known variability of coastal flooding with respect to hurricane characteristics such as size and approach speed. Finally, the adaptive mesh significantly reduces computing time with no effect on storm waves measured at discrete wave gauges just off the coast which shows the model’s potential for use as a robust simulation tool for real-time predictions

    A High-resolution Storm Surge Model For The Pascagoula Region, Mississippi

    Get PDF
    The city of Pascagoula and its coastal areas along the United States Gulf Coast have experienced many catastrophic hurricanes and were devastated by high storm surges caused by Hurricane Katrina (August 23 to 30, 2005). The National Hurricane Center reported high water marks exceeding 6 meters near the port of Pascagoula with a near 10-meter high water mark recorded near the Hurricane Katrina landfall location in Waveland, MS. Although the Pascagoula River is located 105 km east of the landfall location of Hurricane Katrina, the area was devastated by storm surge-induced inundation because of its low elevation. Building on a preliminary finite element mesh for the Pascagoula River, the work presented herein is aimed at incorporating the marsh areas lying adjacent to the Lower Pascagoula and Escatawpa Rivers for the purpose of simulating the inland inundation which occurred during Hurricane Katrina. ADCIRC-2DDI (ADvanced CIRCulation Model for Shelves, Coasts and Estuaries, Two-Dimensional Depth Integrated) is employed as the hydrodynamic circulation code. The simulations performed in this study apply high-resolution winds and pressures over the 7-day period associated with Hurricane Katrina. The high resolution of the meteorological inputs to the problem coupled with the highly detailed description of the adjacent inundation areas will provide an appropriate modeling tool for studying storm surge dynamics within the Pascagoula River. All simulation results discussed herein are directed towards providing for a full accounting of the hydrodynamics within the Pascagoula River in support of ongoing flood/river forecasting efforts. In order to better understand the hydrodynamics within the Pascagoula River when driven by an extreme storm surge event, the following tasks were completed as a part of this study: 1) Develop an inlet-based floodplain DEM (Digital Elevation Model) for the Pascagoula River. The model employs topography up to the 1.5-meter contour extracted from the Southern Louisiana Gulf Coast Mesh (SL15 Mesh) developed by the Federal Emergency Management Agency (FEMA). 2) Incorporate the inlet-based floodplain model into the Western North Atlantic Tidal (WNAT) model domain, which consists of the Gulf of Mexico, the Caribbean Sea, and the entire portion of the North Atlantic Ocean found west of the 60 degree West meridian, in order to more fully account for the storm surge dynamics occurring within the Pascagoula River. This large-scale modeling approach will utilize high-resolution wind and pressure fields associated with Hurricane Katrina, so that storm surge hydrographs (elevation variance) at the open-ocean boundary locations associated with the localized domain can be adequately obtained. 3) Understand the importance of the various meteorological forcings that are attributable to the storm surge dynamics that are setup within the Pascagoula River. Different implementations of the two model domains (large-scale, including the WNAT model domain; localized, with its focus concentrated solely on the Pascagoula River) will involve the application of tides, storm surge hydrographs and meteorological forcing (winds and pressures) in isolation (i.e., as the single forcing mechanism) and collectively (i.e., together in combination). The following conclusions are drawn from the research presented in this thesis: 1) Incorporating the marsh areas into the preliminary in-bank mesh provides for significant improvement in the astronomic tide simulation; 2) the large-scale modeling approach (i.e., the localized floodplain mesh incorporated into the WNAT model domain) is shown to be most adequate towards simulating storm surge dynamics within the Pascagoula River. Further, we demonstrate the utility of the large-scale model domain towards providing storm surge hydrographs for the open-ocean boundary of the localized domain. Only when the localized domain is forced with the storm surge hydrograph (generated by the large-scale model domain) does it most adequately capture the full behavior of the storm surge. Finally, we discover that while the floodplain description up to the 1.5-m contour greatly improves the model response by allowing for the overtopping of the river banks, a true recreation of the water levels caused by Hurricane Katrina will require a floodplain description up to the 5-m contour

    Multiscale, Multiphysics Modelling of Coastal Ocean Processes: Paradigms and Approaches

    Get PDF
    This Special Issue includes papers on physical phenomena, such as wind-driven flows, coastal flooding, and turbidity currents, and modeling techniques, such as model comparison, model coupling, parallel computation, and domain decomposition. These papers illustrate the need for modeling coastal ocean flows with multiple physical processes at different scales. Additionally, these papers reflect the current status of such modeling of coastal ocean flows, and they present a roadmap with numerical methods, data collection, and artificial intelligence as future endeavors

    Extratropical storm inundation testbed : intermodel comparisons in Scituate, Massachusetts

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 5054–5073, doi:10.1002/jgrc.20397.The Integrated Ocean Observing System Super-regional Coastal Modeling Testbed had one objective to evaluate the capabilities of three unstructured-grid fully current-wave coupled ocean models (ADCIRC/SWAN, FVCOM/SWAVE, SELFE/WWM) to simulate extratropical storm-induced inundation in the US northeast coastal region. Scituate Harbor (MA) was chosen as the extratropical storm testbed site, and model simulations were made for the 24–27 May 2005 and 17–20 April 2007 (“Patriot's Day Storm”) nor'easters. For the same unstructured mesh, meteorological forcing, and initial/boundary conditions, intermodel comparisons were made for tidal elevation, surface waves, sea surface elevation, coastal inundation, currents, and volume transport. All three models showed similar accuracy in tidal simulation and consistency in dynamic responses to storm winds in experiments conducted without and with wave-current interaction. The three models also showed that wave-current interaction could (1) change the current direction from the along-shelf direction to the onshore direction over the northern shelf, enlarging the onshore water transport and (2) intensify an anticyclonic eddy in the harbor entrance and a cyclonic eddy in the harbor interior, which could increase the water transport toward the northern peninsula and the southern end and thus enhance flooding in those areas. The testbed intermodel comparisons suggest that major differences in the performance of the three models were caused primarily by (1) the inclusion of wave-current interaction, due to the different discrete algorithms used to solve the three wave models and compute water-current interaction, (2) the criterions used for the wet-dry point treatment of the flooding/drying process simulation, and (3) bottom friction parameterizations.This project was supported by NOAA via the U.S.IOOS Office (award: NA10NOS0120063 and NA11NOS0120141) and was managed by the Southeastern Universities Research Association. The Scituate FVCOM setup was supported by the NOAA-funded IOOS NERACOOS program for NECOFS and the MIT Sea Grant College Program through grant 2012-R/RC-127.2014-04-0

    Developing an Unstructured Grid, Coupled Storm Surge, Wind Wave and Inundation Model for Super-regional Applications

    Get PDF
    During extreme weather conditions such as hurricanes and nor\u27easters, both the currents and wind waves generated by the atmospheric forces are important. Although they may act and dominate on different temporal and spatial scales, their interactions and combined effects are without doubt significant. In this dissertation, a major effort has been made to couple an unstructured grid circulation model SELFE (semi-implicit, Eulerian-Lagrangian finite element model) and the WWM II (Wind Wave model II). Moreover, this new coupled model system can be executed in a parallel computational environment. After the coupled model was successfully built, the model was verified with ideal test cases, either through comparisons with analytic solutions or with laboratory experiments. It was further validated by field-measured data during two hurricane events. The SELFE-WWM II model framework described above was used to participate in a SURA testbed project that was recently funded by the NOAA IOOS program. The purpose was to improve the storm surge and inundation modeling skill throughout the Gulf of Mexico as well as along the U.S. East Coast. The coupled tide, surge, and wind wave models in two and three dimensions were tested and compared systematically. Two well-known cases were investigated in detail. One was the event of Hurricane Ike of 2008 in the Gulf of Mexico and the other was the April Nor\u27easter of 2007 in the Gulf of Maine. For the Gulf of Mexico study, the key scientific issue is the origin of the forerunner. It has long been recognized that the forerunner plays an important role in generating large hurricane-induced storm surge in the Gulf of Mexico. The forerunner is a phenomenon whereby water level throughout the vast coastal region was elevated days before the hurricane makes landfall. The forerunner can contribute significantly to the total water level that results subsequently during the primary surge when the hurricane makes landfall. The 2008 Hurricane Ike, which devastated the Galveston Bay along the Texas Coast, is a good example: 1.4 m out of 4.5 m maximum surge was contributed by the forerunner in the Gulf of Mexico. The consensus from initial results of multiple models indicates that the forerunner occurred as a result of Ekman set-up along the broad Louisiana-Texas (LATEX) shelf by the shore-parallel wind field. By contrast, the primary surge was dominated by the low pressure and the maximum wind along a path perpendicular to the shore as the hurricane made landfall. It was found that the cross-shore Ekman set-up is highly sensitive to the bottom boundary layer (BBL) dynamics, especially to the drag coefficient. Given the fact that the Gulf of Mexico is known to be rich in fluid mud, and near-bed flows generally are very weak under fair-weather conditions, one plausible hypothesis is that, during the stormy condition, the suspended sediment-induced density stratification is likely to be ubiquitously present at the bottom boundary layer. A sediment-transport model and wave-current bottom boundary layer sub-model including the sediment-induced stratification effect were coupled to the unstructured grid circulation and wind wave model (SELFE-WWM II) for simulating the forerunner during Hurricane Ike. The model results demonstrate that the bottom boundary layer dynamics have a significant effect on the velocity veering as well as the Ekman set-up across the shelf. In the Gulf of Maine study, the high-resolution coupled SELFE-WWM II model was applied in the Scituate Harbor, a small, shallow coastal embayment, south of Boston. The key issue for the study was the recurring inundation related to the role played by wind waves during nor\u27easter events. With limited observation data in the Scituate, the model result from SELFE was compared with that from FVCOM. The major findings are summarized as follows: (1) wind waves generated by the nor\u27easter can profoundly affect the coastal current by increasing the magnitude and altering its direction, (2) while the mean water level inside the Harbor stays the same, the total transport across the harbor mouth increases when wind waves are included, and (3) the total inundation area, primarily in the northern and southern basins within the Harbor, does increase when wind waves are included. There is a question as to why the inclusion of the wind waves did not cause the mean water level to change inside the Harbor while the inundation area was increased. The plausible explanation is that this lack of impact could be that the Stokes transport was small and the increase of water level by the wave set-up was compensated by the expansion of the inundation area in the shallow region

    Development of Large-Scale Unstructured Grid Storm Surge and Sub-Grid Inundation Models for Coastal Applications

    Get PDF
    Storm surge and inundation induced by hurricanes and nor\u27easters pose a profound threat to coastal communities and ecosystems. These storm events with powerful winds, heavy precipitation, and strong wind waves can lead to major flooding for cities along U.S. Coasts. Recent examples of Hurricane Irene (2011) in North Carolina and Virginia and Hurricane Sandy (2012) in New York City not only demonstrated the immense destructive power by the storms, but also revealed the obvious, crucial need for improved forecasting of storm tide and inundation. in part I, a large-scale unstructured-grid 3-D barotropic storm tide model SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model) is developed with open ocean boundary aligning along the 60-degree West longitude to catch most Atlantic hurricanes that may make landfall along U.S. East and Gulf Coasts. The model, driven by high-resolution NAM (North America Mesoscale) and ECMWF (European Centre for Medium-Range Weather Forecasts) atmospheric fields, was coupled with Wind Wave Model (WWMIII) to account for wave effects, and used to simulate storm surge in 3-D barotropic mode rather than the traditional 2-D vertical average mode. For Hurricane Sandy, the fully coupled wave-current interaction 3-D model using ECMWF atmospheric forcing performs the best. The storm tide results match well with observation at all nine NOAA tidal gauges along the East Coast. The maximum total water level in New York City, is accurately simulated with absolute error of amplitude less than 8 cm, and timing difference within 10 minutes. The scenarios of 2-D versus 3-D and with versus without wind wave model were compared and discussed in details. Overall, the wave contribution amounts to 5-10% of surge elevation during the event. Also, the large-scale model with similar setup is applied to hindcasting storm tide during Hurricane Irene and the results are excellent when compared with observed water level along Southeast Coast and inside Chesapeake Bay. in part II, a high-resolution sub-grid inundation model ELCIRC-sub (Eulerian-Lagrangian CIRCulation) was developed from the original finite-volume-based ELCIRC model. It utilized the sub-grid method for imbedding high-resolution topography/bathymetry data into the traditional model grid and delivering the inundation simulation on the street level scale. The ELCIRC-sub contains an efficient non-linear solver to increase the accuracy and was executed in the MPI (Message Passing Interface) parallel computing platform to vastly enlarge the water shed coverage, and to expand the numbers of sub-grids allowed. The ELCIRC-sub is first validated with a wetting/drying analytic solution and then applied in New York City for Hurricane Sandy (2012). Temporal comparisons with NOAA and USGS water level gauges showed excellent performance with an average error on the order of 10 cm. It accurately captured the highest surge (during Hurricane Sandy) at Kings Point on both maximum surge height and the explosive surge profile. Spatial comparisons of the modeled peak water level at 80 locations around New York City showed an average error less than 13 cm. The modeled maximum modeled inundation extent also matched well with 80% of the FEMA flooding map. in terms of robustness and efficiency for practical application, ELCIRC-sub surpasses the prototype model UnTRIM2

    CaMEL and ADCIRC storm surge models-A comparative study

    Get PDF
    The Computation and Modeling Engineering Laboratory (CaMEL), an implicit solver-based storm surge model, has been extended for use on high performance computing platforms. An MPI (Message Passing Interface) based parallel version of CaMEL has been developed from the previously existing serial version. CaMEL uses hybrid finite element and finite volume techniques to solve shallow water conservation equations in either a Cartesian or a spherical coordinate system and includes hurricane-induced wind stress and pressure, bottom friction, the Coriolis effect, and tidal forcing. Both semi-implicit and fully-implicit time stepping formulations are available. Once the parallel implementation is properly validated, CaMEL is evaluated against ADCIRC, an established storm surge model, using a hindcast of storm surge due to Hurricane Katrina. Observed high water marks are used to verify that both models have comparable accuracy. The effects of time step on the stability and accuracy of the models are investigated and indicate that the semi- and fully-implicit solvers in CaMEL allow the use of larger timesteps than ADCIRC's explicit and semi-implicit solvers. However, ADCIRC outperforms CaMEL in parallel scalability and execution wall clock times. Wall times of CaMEL improve significantly when the largest stable time step sizes are used in respective models, although ADCIRC still is faster

    Validation Of Integrated Coast-Ocean Model Cche2D-Coast And Development Of Wind Model

    Get PDF
    The eastern and southern coastlines of the United States are two of the most cyclone-prone areas of the world. The effects of tropical cyclones vary mainly depending on wind intensity and geological features of the coast that it is crossing. Higher winds potentially generate higher storm surges and consequently larger floods occur along the coastlines. Therefore, it is critical to accurately predict winds, storm surge, and waves associated with a hurricane. In the present study, an integrated coastal and ocean process model, CCHE2D-Coast, is validated by assessing the model’s capabilities in simulating coast-ocean circulations driven by the astronomical tides on the U.S. East Coast. Through the skill assessment, discrepancies between numerically simulated water surface elevations and observed tidal elevations at NOAA tide gages are quantified. On the other hand, statistical errors of the tidal constituents parameters, amplitude and phase, are also determined. In this study, the tidal harmonic constants are identified by using a newly-developed parameter identification approach. CCHE2D-Coast is also further examined under meteorological forces driven by a hurricane. CCHE2D-Coast is applied to simulate meteorological and hydrodynamic processes during Hurricane Bob (1991) on the US Atlantic coast. Hindcasting storm surges and waves induced by Bob’s winds and tides were performed before and after the landfall of this hurricane. The results shothat the model performed well in reproducing the dynamic process driven by astronomical and meteorological forces. To improve the model’s accuracy in reproducing hurricane wind fields during a real-time hurricane forecast, a hurricane wind model is developed in order to incorporate asymmetric effects into the Holland parametric wind model. The method is validated using the National Oceanic and Atmospheric Administration (NOAA)/ National Hurricane Center (NHC)/ Automated Tropical Cyclone Forecast’s (ATCF) guidelines. The best track date, which contains six-hourly information on the location, maximum winds, radii of 3 wind isotach, and central pressure of Hurricane Gustave (2008) is used to compute the wind field in the Gulf of Mexico. The simulation result suggests that the wind model performed well in reconstructing wind field. The asymmetric model captured the directional change of hurricane wind velocity around the storm center

    Finite Element Modeling Of Tides And Currents Of The Pascagoula River

    Get PDF
    This thesis focuses on the simulation of astronomic tides of the Pascagoula River. The work is comprised of five steps: 1) Production of a digital elevation model describing the entire Pascagoula River system; 2) Development of an inlet-based, unstructured mesh for inbank flow to better understand the basis of the hydrodynamics within the Pascagoula riverine system. In order to assist in the mesh development, a toolbox was constructed to implement one-dimensional river cross sections into the two-dimensional model; 3) Implementation of a sensitivity analysis of the Pascagoula River two inlet system to examine the inlet effects on tidal propagation; 4) Improvement of the inlet-based model by performing a preliminary assessment of a spatially varied bottom friction; 5) Implementation of an advection analysis to reveal its influence on the flow velocity and water elevation within the domain. The hydrodynamic model employed for calculating tides is ADCIRC-2DDI (ADvanced CIRCulation Model for Shelves, Coasts and Estuaries, Two-Dimensional Depth Integrated). This finite element based model solves the shallow water equations in their full nonlinear form. Boundary conditions including water surface elevation at the off-shore boundary and tidal potential terms allow the full simulation of astronomic tides. The improved astronomic tide model showed strong agreement with the historical data at seven water level monitoring gauge stations. The main conclusions of this research are: 1) The western inlet of the Pascagoula River is more dominant than the eastern inlet; however, it is necessary to include both inlets in the model. 2) Although advection plays a significant role in velocity simulation, water elevations are insensitive to advection. 3) The astronomic model is sensitive to bottom friction (both global and spatial variations); therefore, a spatially varied bottom friction coefficient is suggested. As a result of this successful effort to produce an astronomic tide model of the Pascagoula River, a comprehensive storm surge model can be developed. With the addition of inundation areas the surge model can be expected to accurately predict storm tides generated by hurricanes along the Gulf Coast
    • …
    corecore