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ABSTRACT 

 

The eastern and southern coastlines of the United States are two of the most cyclone-prone areas 

of the world. The effects of tropical cyclones vary mainly depending on wind intensity and 

geological features of the coast that it is crossing. Higher winds potentially generate higher storm 

surges and consequently larger floods occur along the coastlines. Therefore, it is critical to 

accurately predict winds, storm surge, and waves associated with a hurricane. 

In the present study, an integrated coastal and ocean process model, CCHE2D-Coast, is validated 

by assessing the model’s capabilities in simulating coast-ocean circulations driven by the 

astronomical tides on the U.S. East Coast. Through the skill assessment, discrepancies between 

numerically simulated water surface elevations and observed tidal elevations at NOAA tide 

gages are quantified. On the other hand, statistical errors of the tidal constituents parameters, 

amplitude and phase, are also determined. In this study, the tidal harmonic constants are 

identified by using a newly-developed parameter identification approach. 

CCHE2D-Coast is also further examined under meteorological forces driven by a hurricane. 

CCHE2D-Coast is applied to simulate meteorological and hydrodynamic processes during 

Hurricane Bob (1991) on the US Atlantic coast. Hindcasting storm surges and waves induced by 

Bob’s winds and tides were performed before and after the landfall of this hurricane. The results 

showed that the model performed well in reproducing the dynamic process driven by 

astronomical and meteorological forces. 
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To improve the model’s accuracy in reproducing hurricane wind fields during a real-time 

hurricane forecast, a hurricane wind model is developed in order to incorporate asymmetric 

effects into the Holland parametric wind model. The method is validated using the National 

Oceanic and Atmospheric Administration (NOAA)/ National Hurricane Center (NHC)/ 

Automated Tropical Cyclone Forecast’s (ATCF) guidelines. The best track date, which contains 

six-hourly information on the location, maximum winds, radii of 3 wind isotach, and central 

pressure of Hurricane Gustave (2008) is used to compute the wind field in the Gulf of Mexico. 

The simulation result suggests that the wind model performed well in reconstructing wind field. 

The asymmetric model captured the directional change of hurricane wind velocity around the 

storm center.  
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CHAPTER I:  

A BRIEF INTRODUCTION OF INTEGRATED COAST-OCEAN MODEL CCHE2D-COAST 
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In this chapter, a brief description of the integrated coast-ocean processes model, CCHE2D-

Coast, is presented. CCHE2D-Coast is an integrated coastal and ocean processes modeling 

system developed in the National Center for Computational Hydro-science and Engineering 

(NCCHE) at the University of Mississippi (e.g. Ding and Wang, 2008; Ding et al., 2013; Ding et 

al. 2014). It is applicable for simulating multi-scale hydrodynamics and morphodynamics of 

free-surface water flows such as river flows, tidal currents, waves, storm surges induced by 

tropical cyclonic wind, sediment transport, and morphological changes over large-scale coastal 

regions. 

Schematic layout of the model flow chart is depicted in Figure 1. This modularized application 

software is developed by using the state-of-art numerical simulation techniques and innovative 

physical knowledge in river, coastal, and ocean engineering. 

CCHE2D-Coast has been applied to solve engineering problems for flooding and inundation 

management, erosion protection, and infrastructure planning and design in coasts and estuaries. 

The integrated model is embodied into a user-friendly interface, CCHE2D-GUI, which supports 

this integrated model for generating computational grids, monitoring computational progress 

during computations, and visualizing numerical results during and after simulations. CCHE2D-

Coast is able to simulate large-scale and long-term problems on a standard PC. The low cost and 

accurate simulations make this tool specifically attractive to engineers and researchers in the 

areas. 
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Figure 1. Flowchart of CCHE2D-Coast 

 

CCHE2D-Coast has integrated systematically four major submodels for simulating deformations 

and transformations of irregular/multidirectional waves, tropical cyclonic barometric pressure 

and wind fields along storm tracks, tidal and wave-induced currents, and coastal morphological 

changes. For computing irregular waves, a multi-directional spectral wave action equation is 

adopted in the wave spectral module. The following wave deformation/transformation processes 

are included in the CCHE2D-Coast wave model. 

 Refraction 

 Diffraction 

 Shoaling effect 

 Wave breaking 

 Wave transmission through coastal structures 

 Bottom friction 

 Wave-current interaction 

Wind 

Module  
(Storm track, 

wind, air 

pressure) 

Tidal Module 
(Boundary 

conditions, tidal 

constituents) 

Wave Model  
(Refraction, 

Diffraction, wind 

energy input, 

Breaking, 

whitecapping, 

wave 

transmission, 

etc.) 

Current 

Model 
(Wind shear 

stress, Radiation 

Stress, Surface 

Roller Effect, 

Coriolis Force 

Bed Friction, 

Turbulence) 

Hydrodynamics process 

Sediment 

Transport 

Model 
(Sediment flux due 

to wave and 

current) 

Morphological 

Change Model 
(Shoreline 

evolution) 

Morphodynamics process 
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 Vegetation attenuation effect  

 Wind-induced wave 

 Whitecapping 

CCHE2D-Coast provides two options for modeling wave actions: a half-plane wave model and a 

full-plane wave model (Ding et al. 2013b). The former is to compute wave fields only from the 

upwinding direction to the downwind direction, for example, to simulate deformation and 

transformation processes of swelling waves from deepwater to shallow waters at shore. The latter 

is the simulation option by which the computations of wave fields are performed by scanning the 

domain back and forth in wind directions. The full-plane wave simulation can be used for 

computing waves induced by cyclonic wind fields. 

The wave spectra are discretized into a number of frequency bins, based on the equal energy 

dividend, by which each frequency bin represents an individual wave. The bins for wave 

directions are also discretized to cover a half-plane wave direction (θ) domain from +π/2 to –π/2.   

In this model, the wave-action equation and the shallow water equations were discretized in a 

same non-orthogonal quadrilateral grid system. Because non-orthogonal meshes have less 

restrictions for grid shapes than curvilinear grids (orthogonal grids), CCHE2D-Coast has more 

flexibility to simulate coastal and ocean processes in complex coastal zones with irregular 

coastlines. 

In this model, a nonlinear parametric hurricane cyclonic wind module is integrated to model 

cyclonic barometric pressure and wind fields along storm tracks by considering the decay effect 

of landfall and the earth surface resistance. 
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The hydrodynamic model contains the depth−averaged 2−D continuity and momentum equations 

to simulate flows driven by hydrological forcing such as tides, waves, river inflows, surface 

winds, and turbulence flows in a large-scale coastal and estuarine region. For detail and 

description regarding the different model’s module, please see the CCHE2D-Coast quick start 

guide. 

A time-marching algorithm was used to compute tidal and wave-induced currents (Jia et al. 

2002). A validated algorithm in CCHE2D for the treatment of wetting and drying processes was 

directly used for predicting the tidal flat variations and coastal inundations.  

CCHE2D-Coast provides two kinds of geographical coordinate systems (GCS): the Cartesian 

coordinates and the spherical coordinates. For the regional scale simulations, the model in the 

Cartesian coordinates requires geographically projected x- and y-coordinates; the spherical grid 

of CCHE2D then is based on geographic coordinate systems which commonly have units in 

decimal degrees measuring degrees of longitude and degrees of latitude. 

The CCHE2D-Coast in the Cartesian coordinate system has been extensively validated by 

simulating waves, wave-induced currents, and morphological changes in coastal applications in 

various laboratories and field scales (e.g. Ding et al. 2006; Ding and Wang 2008; Ding et al. 

2013). The purpose of this study is to validate the hydrodynamic model of CCHE2D-Coast in the 

spherical coordinates, in which the computational grid is generated on the GCS.  

As a summary, CCHE2D-Coast has the following principal features for simulating 

hydrodynamic and morphodynamic processes driven by tropical cyclones: 

 Deformation and transformation of multidirectional and irregular waves, 

 Tidal currents and River flows, 
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 Coriolis force, 

 Tropical cyclonic wind and atmospheric pressure 

 Bottom friction, 

 Storm surges and wave setup induced by cyclonic wind and wave fields 

 Nearshore currents induced by short-period waves 

 Sediment transport due to waves and currents, 

 Coastal/estuarine morphodynamic processes 

 Morphological changes around coastal structures, e.g., groins, offshore breakwaters, 

artificial headlands, jetties, artificial reefs, etc. 

In the presented study, validation of CCHE2D-Coast model is presented in section two, which 

considers simulation cases and quality measures and corresponding skill assessment metric’s 

results under astronomical tide-only driving forces. The Third chapter of this study presents a 

simulation result of wind, wave, and storm surge under Hurricane Bob (1991) forces. The fourth 

chapter presents the detail of newly-developed asymmetric hurricane parametric wind model. 

The final conclusion and remarks are presented in chapter five. 
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CHAPTER II:  

SKILL ASSESSMENT OF A COAST-OCEAN CIRCULATION MODEL FOR THE U.S. 

EAST COAST 
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In this chapter, coastal circulation driven by astronomical tide is simulated for U.S. East coast. 

The major objective of this part is to evaluate the quality of the integrated modeling system in 

simulating flow dynamics and capturing different features of water circulation in coastal and 

shallow estuaries. The aim was to objectively assess the ability of the hydrodynamic model to 

hindcast conditions driven by tidal forces across the U.S. East Coast. In order to determine 

whether the numerical model is reliable and accurate in simulating coastal hydrodynamic 

process, a number of statistical measures are employed to quantify the errors.  

As tidal forces are dominant dynamics in coastal regions, the ability to simulate coastal and 

ocean flow circulations driven by astronomical tides is essential for maritime navigation strategic 

management, coastal projects, and the study of marine systems and estuarine biology. 

Knowledge of tide hydrodynamics is an inseparable part of any marine biology study, as tidal 

currents greatly influence aquatic life in shallow coastal regions. Spatial and temporal variation 

of tidal water levels and velocities is important information required for recreational and 

commercial activities along the coastline. 

If the rise in water level as a result of tropical storm forces coincides with high tide, it can cause 

more severe flooding in coastal zones. Thus, accurate prediction of storm tide, the water level 

rise due to the combination of storm surge and the astronomical tide is required for coastal 

flooding management and resilience development. 

Early research on tidal flow dynamics was largely focused on analytical studies using linearized 

versions of the complete equations of motion. With the advancement in computing machines, 

analytical based studies were no longer pursued and eventually replaced by numerical models. 

As result of such technological advancement, finite difference methods were first employed to 
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solve the complete equations of motion (Leendertse, 1967). Therefore, the finite difference 

method was developed that could contain the transport equations, which allowed specific 

applications to shallow estuarine systems (Reid and Bodine, 1968; Leendertse, 1970; Leendertse 

and Gritton, 1971; Hess, 1976). 

Tide modeling has been discussed in numerous studies, as the common application, due to 

observability of water level, in Coast-Ocean hydrodynamic models validation, testing their 

capability, and skill assessment, as well as hindcasting and forecasting sea (Blumberg et al, 

1999; Zhang et al, 2006;). In most cases, the ability of integrated model systems to reproduce 

tidal current was successfully tested. However, the accuracy of simulated tide is heavily reliant 

on geometry and other hydrographic data. Capturing tide variation as a scenario of model 

validation is important since coastal circulation under tidal currents controls the main processes 

in shallow estuaries.   

Accurate tide prediction is essential for coastal infrastructure planning and construction activities 

in inlet, coastal and offshore areas. In the past decades, a considerable amount of research has 

been conducted to study the tidal flow circulation patterns existent across coastal, shallow 

estuaries, and other small water bodies (e.g. Lynch, 1983; Westerink and Gray, 1991).  

Modern technology in parallel with advancement in numerical models and data assimilation has 

made it possible to generate realistic and accurate global tidal models. Over the past decades, 

several models have been developed; from the early empirical solution which was provided by 

Schwiderski (1980) to the advanced and sophisticated finite element global models which have 

been used in recent years. For instance, the FES12 model, the latest version of the FES series of 

global finite element tide, was initiated by Le Provost et al. (1998). The model is able to generate 
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ocean tide elevations and currents computed by up-to-date finite elements modelling and data 

assimilation. DTU10, a global ocean tide model, was developed by Cheng and Andersen (2011) 

using the latest seventeen years multi Mission measurements from TOPEX/Poseidon (T/P) 

satellite altimetry for sea level residuals analysis. The model resolution is 0.125º x 0.125º, 

including the 12 major tidal constituents. TPXO8 model is the most recent in a series of tidal 

solutions produced using the representer-based variational scheme described by Egbert et al. 

(1994) and Egbert and Erofeeva (2002). 

Although dramatic progress has been achieved in improving the accuracy of global tide models, 

there are still limits and numerous complications associated with their applications. Some issues 

such as the necessity for approximate parameterizations of dissipation in the tidal equations, 

ocean bed topography, accurate open ocean boundary condition, and the effects of ocean 

stratification on the barotropic tides, which requires full 3D models, have not been effectively 

resolved (Egbert 2004).  

The accuracy of global ocean models has been discussed in several papers (Andersen et al. 1995; 

Ray 1996, 1997, and 2009; King and Padman 2005, Timko et al. 2012). For instance, Shum 

(1997) made a comprehensive study on ten global ocean tide models. The degree to which the 

global tide models were improved, investigated through a variety of assessments and metrics 

with regard to tide gauges and some other recorded data (Shum et al. 1997). Stammer (2014) also 

evaluated the accuracy of several global tide models against in-situ measured data. Ten tidal 

harmonic constituents in the diurnal, semidiurnal, and quarter-diurnal bands were employed to 

assess the accuracy of the models (Stammer et al. 2014).  
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Advances in scientific computing, utilizing robust numerical methods, accelerated the 

development of integrated model systems which has greatly enhanced the ocean circulation 

models over the last decades. 

 Technological improvements have allowed for higher resolution that conforms to shallow 

estuary geometry and have produced models capable of simulating flow dynamics more 

accurately at both small and large scales. As a result, several coastal ocean hydrodynamic models 

have been developed and successfully implemented in many studies over the past years (Pain et 

al. 2005 and Piggott et al. 2008); For instance, ADCIRC (Advanced Circulation), which is a 2D, 

depth-integrated, and baratropic time-dependent long-wave hydrodynamic circulation model 

developed by Luettich and Westerink (Luettich et al. 1992). FVCOM is a prognostic, finite-

volume, free-surface, and unstructured-grid coastal ocean circulation model (Chen et al. (2003). 

Several other 2D-3D ocean circulation models also exist which have a wide range of capabilities; 

DHI MIKE package (MIKE 21 & MIKE 3 Flow Model FM (http://www.mikebydhi.com)), 

CH3D which is curvilinear hydrodynamics (Sheng 1986), ELCIRC which is an unstructured-grid 

model designed for the simulation of 3D baroclinic circulation (Zhang et at. 2004), NCOM is a 

hydrostatic, baroclinic, with Boussinesq approximation,  free-surface, data assimilated ocean 

circulation model (Barron et al., 2005), HYCOM (Halliwell et al., 1998), The Princeton Ocean 

Model (POM) which is able to simulate flow circulation and mixing processes in regional 

shallow water, and global ocean (Blumberg, Mellor, 1987), SELFE (Zhang and Baptista, 2008), 

DELFT3D developed by Delft Hydraulics((www.deltares.nl)  has a capability to simulate Coast-

Ocean hydrodynamics in 2D-3D configuration under several driving forces such as wind, waves, 

and tide.  

http://www.mikebydhi.com/
http://www.deltares.nl/
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Theoretical aspects of model skill assessment and its application have been broadly referenced in 

literatures. Dee (1995) presented a pragmatic view of model validation; standard validation 

documents and processes are outlined as well as useful framework for organizing and presenting 

available information about model validation (Dee 1995). Lynch 2009 constitutes an effort to 

develop the theoretical basis for the underlying problem of skill assessment in all of its relevant 

senses (Lynch 2009).  

Several skill assessment procedures have been developed to quantify model’s performance 

quality. Different statistical approaches have been employed in different studies, with regard to 

specific applications, to measure corresponding misfit (which measures discrepancies between 

modeled and observation variables); Stow et al 2009 reviewed a number of skill assessment 

approaches and metrics; including univariate comparison of predictions and observations such as 

r or R (the correlation coefficient), RMSE (the root-mean-square error), AE (the average error or 

Bias), AAE (the average absolute error), and RI (the reliability index), and MEF (the modelling 

efficiency). 

 Similarly, studies such as Wilmott 1981; Wilmott et al 1985; Vested et al (1995); Warner et al 

(2005); Dingman et al (1986); Robinson et al (2002); Wallhead et al (2009); Stumpf et al (2009); 

Fitzpatrick (2009); Sheng and Kim (2009); Williams et al 1989; presented a set of standard 

analysis and quantitative metrics to assess performance of global/regional, biological/physical 

hydrodynamic models. 

In tidal regions, a comparison of identified tidal harmonic constants with known values can help 

to further assess the quality of the model in simulating water level. To this end, an optimization 

algorithm is employed to identify harmonic tidal components. The Limited memory Broyden–



13 

 

Fletcher–Goldfarb–Shanno approach (Liu and Nocedal, 1989), known as LBFGS, is employed as 

parameter identification algorithm.  

LBFGS, from a family of quasi-Newton methods, is a popular algorithm for parameter 

identification problems (Ding. et al, 2004). The newly-developed parameter identification 

approach is used to identify the amplitudes and phases of the tidal constituents corresponding to 

the particular measurement sites. The results demonstrated that the model can identify the tidal 

harmonic constituents with relatively small error. On the other hand, the hydrodynamic model 

accurately simulated the U.S East coast circulation under tidal forces. 

Computational domain  

A typical CCHE2D/CCHE2D-Coast computational mesh is formed by constructing non-

orthogonal quadrilateral grids using bathymetrical and topographic data. Figure 2 is the 

computational mesh was created using the CCHE-MESH program (Zhang and Jia 2009).  

https://en.wikipedia.org/wiki/Optimization_%28mathematics%29
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Quasi-Newton_method
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Figure 2. Computational domain in East Coast and Bathymetry and topography data 

 

The multi-block methodology was employed to decompose the computational domain into 

several subdomains, which were meshed separately. This was necessary in order to be able to 

accurately represent various features at various scales. The final mesh to cover the computational 

domain shown in Figure 2 has a total of 1,777,426 nodes (2,591 grid points in the longitudinal 

direction and 686 grid points in the latitudinal direction). Horizontal coordinate of nodes in 

computational domain is in longitude and latitude and values of the bed elevations is based on 

the in the geodetic North American Vertical Datum of 1988 (NAVD88). 
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BOUNDARY CONDITION 

It is imperative for a reliable and accurate tide circulation model to be able to include the main 

astronomical forces influencing tide. Tide is composed of harmonic constituents that are induced 

by wide range of gravitational forces; however, not all of these known forces significantly 

influence the tide and tide currents. A few tidal constituent components can impose large enough 

forces on water bodies across the earth that they can considerably affect the flow circulation 

pattern. Consequently, in this study, a small number of tidal constituents are used to generate tide 

water level as open ocean boundaries. 

The tidal potential and constituents, phase and amplitude, were obtained from the ADCIRC tidal 

table (Mukai et al. 2002). The primary harmonic components are O1, K1, Q1, M2, S2, N2, and 

K2 astronomical tidal constituents as well as the steady, M4 and M6 overtides. 

OBSERVATION 

The NOAA operates several monitoring gauge stations to record and publicly provide 

observation data at the U.S. Coastline. In this study, the observed water level that is collected 

from several stations is illustrated in Figure 3. The supporting information including a list of 

monitoring stations, ID, and location is also summarized in Table 1. The time series of 

observation is employed for the purpose of skill assessment. Moreover, harmonic constituent 

values published by NOAA at the same monitoring stations are collected to further evaluate 

model performance through harmonic analysis. 
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Figure 3. Map of observational measuring gauges operated by NOAA. 

 

SKILL ASSESSMENT OF CCHE2D-COAST MODEL 

As shown in Figure 4, the study domain is vast, composed of the Northeast and Mid-Atlantic of 

the U.S. coast. It is a complicated system as a variety of different features exist in different 

spatial scales; spatial and temporal variation in topography, bathymetry, meteorology, and tidal 

forces has made tide dynamics significantly differ from north to south of the domain. Tidal water 

level range can vary from a couple of meters in Fundy Bay, which is the home of the highest tide 

along the U.S. East Coast, to the small tides in the Mid-Atlantic. 
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Table 1. List of NOAA observation stations used in skill assessment. 

 

For the comparison between simulated and observed water level, the hydrodynamic model is 

driven by only harmonically-predicted astronomical tides for the ocean boundary water levels; 

there are no surface forces such as pressure or, wind and no river input discharges included in the 

computational domain. To quantitatively measure the quality of simulation, modeled variables 

are compared with their corresponding observed (accepted) values using number of statistical 

indices. 

Criteria Definition 

Number of statistical indices such Normalized Root-Mean Square Deviation (NRMSD), 

Coefficient of Determination (R2), Scatter Index (SI), and Normalized Bias (NB) are used to 

No. Station Name, State Station ID Longitude Latitude 

1 East Port, ME 8410140 -66.9817 44.9033 

2 Culter Naval Base, ME 8411250 -67.2967 44.6417 

3 BarHarbor, ME 8413320 -68.2050 44.3917 

4 Portland, ME 8418150 -70.2467 43.6567 

5 Boston, MA 8443970 -71.0533 42.3533 

6 Providence, RI 8454000 -71.4000 41.8067 

7 Woods Hole, MA 8447930 -70.6717 41.5233 

8 Nantucket island, MA  8449130 -70.0967 41.2850 

9 Newport, RI 8452660 -71.3300 41.5050 

10 Point Judith, RI 8455083 -71.4900 41.3633 

11 New London, CT 8461490 -72.0889 41.3583 

12 Montauk, NY 8510560 -71.9583 41.0483 

13 The Battery, NY 8518750 -74.0133 40.7000 

14 Sandy Hook, NJ 8531680 -74.0100 40.4667 

15 Cape May, NJ 8536110 -74.9583 38.9683 

16 Lewese, DE 8557380 -75.1200 38.7817 

17 Ocean City, MD 8570280 -75.0833 38.3233 

18 Chesapeake Bay Bridge Tunnel, VA 8638863 -76.1133 36.9817 

19 Charleston, SC 8665530 -79.9250 32.7817 
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quantify the misfit between model simulated variables and corresponding observation data; 

Denoting N= number of observations, a set of model simulation values as m, a set of observation 

values or known values as O, overbar is mean of the data. They are defined as: 

 

)(

N

1

=NRMSD
1

2

i

N

i

ii

OMax

mO




 (1) 

The normalized root-mean square deviation (Equation 1) is a frequently-used measure for 

discrepancies between the model prediction and the values actually observed. A close agreement 

can be achieved if a NRMSD is near zero. The maximum value of the observation set was 

chosen to normalize the root-mean square deviation. This index can indicate the model 

prediction accuracy in reproducing observation. 

tot

res2

S

 S
-1=R

S

S
      (2) 

 

In Coefficient of Determination (R2) where variance of observation data 𝑆𝑆𝑡𝑜𝑡 = ∑ (𝑂𝑖 − �̅�)2
𝑖 , 

the sum of residual square 𝑆𝑆𝑟𝑒𝑠 = ∑ (𝑂𝑖 − 𝑚𝑖)
2

𝑖 , and average of observation values is �̅� =

1

𝑁
∑ 𝑂𝑖

𝑁
𝑖=1 . Coefficient of determination, which is the square of the correlation coefficient, is a 

measure of the goodness-of-fit between two time series i.e. a measure that how many of data 

points are on the regression line. On the other hand, the more data on the regression line, the 

higher value of R2. If the prediction varies together with the observed data, a value near 1 (or 

100%) can be achieved. However, a value near 1 indicates that all the modeled and observed data 

may not match each other. R2 of 0 indicates that the modeled data does not represent observed 

values. If prediction inversely varies with observation, a negative value of R2 will result. 
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Averaged Bias (AB)
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Where 𝐸𝑖 = 𝑚𝑖 − 𝑂𝑖 denotes the error between the model and measurement. 

 











N

i

i

N

i

i

O

EE

1

1

2

N

1

 
N

1

=(SI)Index  Scatterd  (4) 
 

Where the average error is E̅ = (1 N⁄ )∑ |Oi − mi|
N
i=1  .The Scatter Index (SI) is the ratio of the 

standard deviation of the observation-to-prediction discrepancies to the average observation 

values (Hanson et al. 2009). 

Model validation 

Spurious oscillation in water level frequently occurs once the simulation begins in a cold start. 

This part of the time series has to be eliminated from the main data set as it represents unrealistic 

flow behavior. Thus, a test was carried out to determine which part of the data set should be 

removed. A number of days from where the simulation had been started, need to be skipped. 

Root Mean Square Error (RMSE), Scatter Index (SI), Coefficient of Determination (R2), and 

Averaged Bias, as measures of discrepancy between simulation and observation, were computed. 

A range of zero skipped days, i.e. the entire data set was included, to fourteen days considered to 

measure the error in the test. The result showed that RMSE values were relatively unchanged 

after a period of seven days. This result suggests that for any quantitative comparison between 

modeled and simulation data, it is necessary to skip 7 days of the modeled time series because 

the model needs to reach an equilibrium state (Figure 4). 
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Figure 4. This figure illustrates that the model reached an equilibrium state after 7 days of 

simulation run. 

 
To test the model performance, a number of phases were defined for model validation quality 

assurance. The model skill assessment procedure is divided into two parts. In the first phase, the 

model’s capability to reproduce water level is tested against the observation data. In the second 

phase, the model skill is evaluated by performing harmonic analysis. Since the model is set up 

under astronomical tides-only simulation, where meteorological and other driving forces are not 

available, it cannot capture the effect of other existing forces on the modeled water level (non-

tidal signals at the sea). 

In the mesh configuration, efforts have been made to make monitoring points as close as possible 

to the real physical location of NOAA stations. However, in a few cases, lack of fine mesh made 

the monitoring points fall hundreds of meters away from NOAA observation gauges which can 

cause some error in simulated water level. 

Number of skipped days

C
ri

te
ri

a
V

a
lu

e
s

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Averaged Bias

Scatter Index(SI)

Coefficient of Determination(R2)

Root-Mean-Square Error(RMSE)



21 

 

Model skill metrics 

The most conventional way to compare simulated model variables with measurements is visual 

comparison. A graphical comparing of time series is widely used in model’s performance 

assessment. Graphical plot reveals if the model fails or succeeds in reproducing the observed 

values. In addition, it can visually depict a bias in the model, or how well the model was able to 

capture variabilities and certain features. 

However, with advancement in measurement technologies, a dense observational data set is 

available to be used in model validation or skill assessment. Thus, it is necessary to provide an 

objective means to quantitatively assess the quality of the model’s performance. Therefore, a set 

of statistical measures and procedures are needed to conduct a comprehensive analysis of 

differences between model and measured data in a way that is suitable to a specific application. 

There are a number of statistical measures that are useful to assess the model’s behavior. There is 

no consensus on which statistical metric is the best in revealing the quality of a model’s 

performance. On the other hand, there is no unique measure that can perfectly reveal the entire 

aspect of the model’s behavior. Therefore, it is useful to employ several statistical tests to 

quantify misfit among the same set of data. Thus, the model’s performance should be evaluated 

using several metrics. (Stow et al. 2009).  

Fitzpatrick (2009) presented a summary of many of the skill metrics and procedures for model 

quality evaluation. Several statistical criteria have been employed in different studies and 

applications to quantify model accuracy as listed (Ganju et al. 2009; Jolliff et al. 2009; Brown 

and Davis 2006; Haefner 2005; Mason and Graham 1999; Parrish and Smith 1990; Reckhow et 

al. 1990; Reckhow and Chapra 1983; Thomann 1982): 
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 Basic discrepancy criteria such as absolute, relative, and root-mean-square error 

 Correlation of observations and predictions such as coefficient of determination 

 Parametric and nonparametric tests such as student’s t test and Wilcoxin, respectively    

 Plots of cumulative error, cumulative density functions, and model bias 

 Receiver operator characteristic (ROC) curves  

 Target and Taylor diagrams, useful visual methods for displaying multiple error criteria 

on a single plot 

A number of the skill assessment metrics were selected to quantify the model’s performance. In 

this study, the computation of metrics was focused on two sets of variables; the water level time 

series and harmonic constituents. 

RESULT AND ANALYSIS 

Comparing time series of tidal levels with observation (in time domain) 

In this section, the model result was computed at monitoring points that were defined over the 

computational domain. The simulation result was compared with the observation data collected 

from measurements at 19 stations along U.S. Northeast and Mid-Atlantic coast. In Figure 5 and  

Figure 6, a visual comparison between the NOAA observed and modeled water level is displayed 

for several stations listed in Table 1. The figures start date is from 0:00 UTC July 30, 1991 to 

0:00 UTC Aug 9, 1991. As the comparison shows, there is an obvious spurious oscillation of 

water level at 12:00 UTC Aug 1, 1991 where the short simulation run began (green line). 

This unrealistic water surface variation originates from a cold start run. Therefore, as discussed 

in the previous section, the first 7 days of short and long simulation run were removed from the 
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skill assessment metric’s measurements. There is a good agreement between model result and 

observation data set observed in visual illustration. The figures suggest that the model accurately 

captured sea water surface elevation variations. However, there are some misfits between the 

observed and modeled water level’s amplitude.  

It is worth noting that there are some other sources of error in tide modeling that can possibly 

lower the model’s quality in simulating tide currents. Limits within the integrated model systems 

are comprised of many different aspects; a finer mesh size can considerably increase 

hydrodynamic model’s accuracy in simulating flow circulation in shallow estuaries where the 

shape of the coastline and variability in near-shore bathymetry becomes very important.   
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Figure 5. Time series of water level at 10 NOAA gauge stations listed in Table 1 (No. 1-10). 

Observed values are shown as a red line with red circles attached to it. Modeled results are 

shown as blue and green lines for the long and short simulation run, respectively. 
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Figure 6. Time series of water level at 9 NOAA gauge stations listed in Table 1 (No. 11-19). 

Observed values are shown as a red line with red circles attached to it. Modeled results are 

shown as blue and green lines for the long and short simulation run, respectively. 
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series. Therefore, a model that is capable of incorporating all these complex forces and features 

may be able to improve the accuracy of tide modeling in coastal regions.  

The ideal observation data set that can be used in either visual comparison or skill assessment 

criteria is NOAA’s prediction data, not actual measurements. This is because NOAA’s predicted 

sea water level data does not include any effect from non-tidal signals such as wind and pressure 

forces. Thus, using an actual observation data set may increase the discrepancies associated 

within data comparison. However, to understand how accurately the model performed in 

reproducing tide in the both cases, a set of statistical criteria were computed. 

Comparing tidal constituents with the known values (provided by NOAA) 

Tidal harmonic constituents were derived from the time series using a harmonic analysis 

procedure. Newly-developed parameter identification was used to identify harmonic constants 

using modeled time series under astronomical tide-only simulation. Skill assessment criteria 

were computed based on the identified amplitudes and phases at several stations. The modeled 

time series, obtained from the long simulation run (108 days), is used for the harmonic analysis 

procedure.  

Results from CCHE2D-Coast simulation run are shown in blue and green for the long and short 

simulation run, respectively. The Normalized Root-Mean-Square Deviation (NRMSD) criteria 

were used to quantify how well the optimization was performed. The skill assessment result is 

displayed in Figure 10 and Figure 11 for each of the stations. The result of skill assessment is 

presented in a radar layout indicating the value of the criteria for each parameter. 

 

 



27 

 

 

 

Figure 7. Calculated values of Averaged Bias in a radar layout; the points in red represent 

measured values from long simulation run (108 days) and points in blue represent values from 

short simulation run (16.5 days). 
 

 

 
Figure 8. Calculated values of Coefficient of Determination(R2) in a radar layout; red points 

represent measured values from long simulation run (108 days) and blue points represent values 

from short simulation run (16.5 days). 
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Figure 9. Calculated values of Scatter Index (SI) in a radar layout; red points represent measured 

values from long simulation run (108 days) and blue points represent values from short 

simulation run (16.5 days). 
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are greater than 0.90, which represents a good closeness to a line of the best fit between the 

modeled and observed data. On the other hand, the regression line passes through 90% and 

greater of points on the scatter plot. 

The highest linearity between observation and simulation exists in East port and Cape May with 

96%, while R2 at Charleston is the lowest.  The Average Bias (AB) value illustrates that the 

model overestimates the tide in most of the stations, whereas it only underestimates water level 

in Providence. 

In a majority of the stations, R2 is greater than 0.85. However, deviation of the error from 

average error in some stations is not small. At Charleston, Averaged Bias (AB) and Scatter Index 

(SI) are large. This may be attributed to many factors, as partly explained in previous sections, 

such as the location of NOAA water level measuring gauges which may possibly be located in 

the bay or behind a barrier in embayment.  

Similarly, a relatively large Averaged Bias (AB) in Chesapeake Bay Bridge, Lewese, the 

Battery, Newport, and Boston can arise from many sources such as a poor mesh in computational 

domain near these stations. Around these stations, a finer mesh may help to better capture small 

variabilities that affect modeled water level. 

Analysis of assessment results of identified constituents 

The tide harmonic constituents obtained from the parameter identification were compared to 

accepted values published for the NOAA stations. Statistical index was computed to measure the 

model skill with respect to the seven main tidal harmonic constituents; semi-diurnal constants, 

including M2, S2, N2, and K2 as well as O1, Q1, and K1 as diurnal tide components.  
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Model skill was evaluated based on the identified components, amplitude and phase, using the 

statistical index NRMSD. The result suggests that, regardless of physical geographic location 

and accuracy of reproduced time series, the parameter identification approach performed much 

better in identifying amplitude (Figure 10) than phase (Figure 11).  

 

Figure 10. Skill assessment metric, Normalized Root-Mean-Square Deviation in identifying 

Amplitude. 
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Figure 11. Skill assessment result, Normalized Root-Mean-Square Deviation in identifying 

phase. 

 

The result indicated that the accuracy in identifying semi-diurnal tide constituents is greater than 
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Figure 12. Scatter plot of the identified Amplitude versus know values. 
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Figure 13. Scatter plot of identified Phase versus known values. 
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average value of NRMSD is 31%. As mentioned earlier, the accuracy of identified harmonic 

constituents depends not only on modeled time series. Strength of parameter identification in 

identifying parameters is also dependent on many factors which will be explained in the next 

sections.  
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Harmonic Analysis 

The routine prediction of tides at selected coastal stations is based on a simple principle. This 

principle asserts that the forces of any linear system can be decomposed into a sum of harmonics 

having the same frequencies but with different amplitudes and phases from the forces. For the 

open coastal stations, the prediction capability requires only that one have prior observation of 

the tides at that station over a suitable period of time from which the amplitudes and phases of 

the major tidal constituents can be ascertained. Thus, the problem is reduced to an analysis of the 

prior observations for the amplitudes and phases of the important periods. Once these values are 

known, the prediction for subsequent times is straight forward (Herbich 1999). Water elevation 

variation, for the tidal decomposition, can be written as: 

 0

1

( ) cos
N

i i i i i iX t X f A t V u       (5) 
 

Where N is number of tidal components, X0 is initial water level, 𝐴𝑖 is constant amplitudes, and 

𝜓𝑖 is constant phase (epochs). Nodal factor is given by 𝑓𝑖 and the equilibrium argument by 𝑉𝑖 +

𝑢𝑖. Among these terms, only the frequencies are an absolute constant for given constituents. The 

amplitudes and phases are spatially variable, but temporally constant values. The nodal factors 

and equilibrium arguments are spatially constant while they are temporally variable. 

Parameter Identification Procedures 

An efficient method of parameter identification is to take advantage of optimal control theories 

to minimize overall discrepancies between water level time series (calculated by traditional 

harmonic tide equation (Equation 5.) and in-situ measurements collected from NOAA tide and 
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current website. The discrepancies can be generally defined as a performance function in the 

form of: 

 
2

1

( )
M

cal obs

j j

j

J X X X


   (6) 

 

Where J is performance function that computes square error between water level calculated by 

harmonic tide equation (Eq 5) and observation data collected at each NOAA station. An iterative 

procedure is employed to minimize the performance function. 

The L-BFGS algorithm, which is established on the basis of the LMQN (Limited-memory quasi-

Newton) method, is capable of optimizing unconstrained problems, executed in parameter 

identification procedure (Ding et al, 2004). In L-BFGS algorithm is is capable of optimizations 

in large-scale problems because of the modest storage requirements using an approximation to 

the inverse Hessian matrix ∆J. A software package of the L-BFGS algorithm is available in the 

Harwell Library under the name VA15 (More´ et al., 1993). For the details of mathematical 

theory about the algorithm, see Liu et al. 1989. 

In L-BFGS algorithm, the norm of gradient of the objective function was computed (at each 

iteration), as well the value of objective function, in order to check if the optimal solution had 

been reached. In this study, the gradient of the performance function with regard to the two 

parameters were calculated. An instance of performance of objective and gradient function is 

illustrated in Figure 14. Gradients of performance function with regard to amplitude and phase 

are presented in Equation 7 and 8. 

   
1 1

2 cos
M N

cal obs

j j i i i i i
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   (7) 
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Figure 14. Convergence of norm of Gradient and performance function. 

 

Hereafter, the L-BFGS algorithm is briefly introduced which can be found in most monographs 

about numerical optimization (e.g., Nocedal et al, 1999). Each iteration for updating the 

parameters has the formΨk+1 = Ψk + αkdk , where Hk = approximate of inverse Hessian matrix 

which is update at every iteration through formula  

𝐻𝑘+1 = 𝑉𝑘
𝑇𝐻𝑘𝑉𝑘 + 𝛾𝑘𝑝𝑘𝑝𝑘

𝑇    (9) 

Where pk = Ψk+1 − Ψk; qk = ∇J(Ψk+1) − ∇J(Ψk) ; γk = 1/(qk
Tqk) ; Vk = I − γkqkpk

T ; and 

I=identity matrix. However, the approximated inverse Hessian Hk is generally dense. Each 

iteration for updating the matrix can be performed a cost of O(L2) arithmetic operations, so that 

the cost of storage and manipulating it is prohibitive due to the large number L of the parameter 

n. Instead of using Eq 𝐻𝑘+1 = 𝑉𝑘
𝑇𝐻𝑘𝑉𝑘 + 𝛾𝑘𝑝𝑘𝑝𝑘

𝑇   ), the Hk can be obtained implicitly by 

storing a certain number (e.g., m) of the vector pairs{pk, qk}.  
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The L-BFGS update formulas generate the matrix by using the vector pairs from the last m 

iterations (generally, 3 ≤ m ≤ 7). The update matrix Hk+1 is obtained by the following formula. 

Let m̂ = min{k,m − 1}. Then update H0  m̂ + 1 times by using the vector pairs {pj, qj} 

where j = k − m̂, k − m̂ − 1,… , k − 1, and 

Hk+1 = (Vk
T …Vk−m̂

T )Hk+1
0 (Vk−m̂ …Vk)  

+ γk−m̂(Vk
T …Vk−m̂+1

T )pk−m̂pk−m̂
T (Vk−m̂+1 …Vk)  

+ γk−m̂+1(Vk
T …Vk−m̂+2

T )pk−m̂+1pk−m̂+1
T (Vk−m̂+2 …Vk) +…+γkpkpk

T 

 

 

 

 

(10) 

 

From this formula, one can derive a recursive procedure to compute the product 

Hk+1∇J(Ψk+1) efficiently. A two-loop recursion scheme which can obtain the product only using 

inner product of vectors requires totally(4m + 1)L arithmetic operations (Nocedal et al, 1999). 

This calculation for searching direction is advantageous when the number of parameters becomes 

large. Moreover, this recursive iteration allows the initial matrix Hk+1
0  to be chosen freely and to 

vary between iterations (Liu et al, 1989; Nocedal et al, 1999). 
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CHAPTER III:  

HINDCASTING STORM SURGE AND WAVES IN HURRICANE BOB IN THE GULF OF 

MAINE USING CCHE2D-COAST 
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In this chapter, CCHE2D-Coast is applied to simulate meteorological and hydrodynamic 

processes during Hurricane Bob (1991) on the US Atlantic coast. Simulated physical parameters, 

i.e. wind speed, pressure, water surface elevations, significant wave heights, and peak wave 

periods in several monitoring points across the computational domain were carefully compared 

with the recorded data at corresponding NOAA CO-OPS and NDBC buoy stations. The model 

was validated by comparing hindcasting results with the observed data. The error in simulated 

parameters was small and comparison was found to be in a good agreement with corresponding 

observed data. 

On 19-20 August 1991, the Category 3 Hurricane Bob touched down on the East Coast and 

brought significant flooding into the New England Coast and the Gulf of Maine area. Hurricane 

Bob originally appeared as a low-pressure area in the Atlantic Ocean near the Bahamas (74.3° 

W, 25.6° N) at 00:00 GMT on August 16, 1991. The depression steadily intensified and became 

a tropical storm 18 hours later. The storm continued to strengthen as it moved northwestward and 

became ‘‘Hurricane Bob’’ at 77.10° W, 29.00° N at 18:00 GMT on August 17th, 1991.  

Hurricane Bob initially moved northeastward and brushed the North Carolina shelf between 

18:00 GMT on August 18, 1991 through 00:00 GMT on August 19, 1991 during which it 

reached to the hurricane category 3 with maximum sustained winds of 51.4 m/s. Around 18:00 

GMT on 19 August 1991, Hurricane Bob had weakened to the category 2 and made landfall near 

Newport, Rhode Island.  Shortly thereafter, it rapidly weakened to a tropical storm and moved 

across the Gulf of Maine (GoM) toward Maine and Canada, finally dissipating west of Portugal 

on 29 August 1991 after a long transit across the North Atlantic Ocean. The strong winds, high 
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storm surge, and heavy rains produced by Hurricane Bob caused extensive damage throughout 

New England with a total loss of $1.5 billion in economy, cleanup costs, uninsured losses, and 

flood claims (Mayfield 1992, Sun et al. 2013).  

This study considers several processes such as tidal condition specification, model spin-up, storm 

data collection, and model validation (hindcasting). Simulated physical parameters, i.e. wind 

speed, water surface elevations, significant wave heights and peak wave periods in several 

NOAA CO-OPS (National Oceanic and Atmospheric Administration Center for Operational 

Oceanographic Products and Services) and NDBC (National Data Buoy Center) buoy stations 

are carefully compared with the recorded data. The model was validated by comparing 

hindcasting results with observed data. 

HURRICANE TRACK 

The category 2 Hurricane Bob developed in the central Bahamas on August 16. Then, steadily 

intensified and reached hurricane status on the evening of August 17. Bob continued to 

strengthen during the next 48 hours, as it began an acceleration north-northeastward, paralleling 

the East Coast. The eye of Hurricane Bob passed over Block Island, Rhode Island at 

approximately 1330 UTC, and made landfall over Newport, Rhode Island shortly before 1400 

UTC (Vallee and Dion 1998).  
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Figure 15. Hurricane Bob best Track. Hurricane Bob made landfall at Rhode Island. 

 

The best track data of tropical storms, also known as HURricane DATabase (HURDAT), 

provided by NOAA as a report, contains the positional coordinates of the eye of the hurricane, 

hurricane central air pressure, and maximum sustained wind speed (Mayfield 1992). The 

variation of Hurricane Bob location is depicted in Figure 15. 
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NOAA GAUGE STATIONS AND BOUNDARY CONDITION 

A number of NOAA CO-OPS and NDBC buoy stations were used as monitoring gauge stations. 

Observation was used to illustrate the discrepancies between recorded  

Table 2. List of NOAA CO-OPS  and NDBC BUOY stations. 

 

No. Station Name, State(or Location) Station ID Longitude Latitude 

1 Bar Harbor, ME 8413320 -68.21 44.39 

2 Boston, MA 8443970 -71.05 42.35 

3 Cape May, NJ  8536110 -74.96 38.97 

4 Cutler Naval Base, ME  8411250 -67.30 44.64 

5 Eastport, ME 8410140 -66.98 44.90 

6 Lewes, DE 8557380 -75.12 38.78 

7 Nantucket Island, MA 8449130 -70.10 41.29 

8 Newport, RI  8452660 -71.33 41.51 

9 Ocean City Finishing Pier, MD 8570280 -75.83 38.33 

10 Point Judith, RI  8455083 -71.49 41.36 

11 Portland, ME 8418150 -70.25 43.66 

12 Providence, RI  8454000 -71.40 41.81 

13 Sandy Hook, NJ 8531680 -74.01 40.47 

14 The Battery, NY  8518750 -74.01 40.70 

15 Woods Hole, MA 8447930 -70.67 41.52 

16 New London, CT  8461490 -72.09 41.36 

17 Charleston, SC 8665530 -79.81 32.74 

18 Chesapeake Bay Bridge Tunnel, VA 8638863 -76.12 36.97 

NDBC Stations 

1 Portland, ME 44007 -70.16 43.54 

2 Nantucket 44008 -69.25 40.51 

3 Gulf of Maine, NH 44005 -68.95 43.21 

4 Boston, MA 44013 -70.65 42.35 

5 Long Island, NY 44025 -73.17 40.25 

6 Delaware Bay, NJ 44009 -74.70 38.46 

7 Ambrose Light, NY ALSN6 -73.80 40.45 

8 Matinicus Rock, ME MISM1 -68.86 43.78 

9 Buzzards Bay, MA  BUZM3 -71.03 41.40 

10 Isle of Shoals, NH IOSN3 -70.62 42.97 

11 Mt Desert Rock, ME  MDRM1 -68.13 43.97 
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data and hydrodynamic and meteorological simulated variables. The list of monitoring station 

and location of observation points is illustrated in Table 2 and Figure 16, respectively. In this 

simulation, the water level elevation at Bermuda (2695540) is used as the tidal boundary 

condition. 

 

Figure 16. Gauging stations on North of East coast. 

 

NDBC BUOY  

NOAA CO-OPS 
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HURRICANE TRACK MODEL 

A parametric cyclonic hurricane wind model proposed by Holland (1980) has been integrated in 

the CCHE2D-Coast model, which is to simulate variations of wind and atmospheric pressure 

along a given storm track. Provided that central pressure and maximum wind speed, Holland 

(1980) proposed a parametric wind model to reconstruct hurricane wind fields. 

SIMULATION RESULT OF STORM SURGES AND WAVES  

The simulation run of storm surges and waves started at 1200 UTC 08/17/1991 and ended on 

1200 UTC 08/24/2012. The surface wind field of Hurricane Bob was reconstructed by using the 

symmetric parametric cyclone wind model, Holland model, which takes into account the decay 

effect of hurricane landfall (Ding et al. 2013b). Thus, after the cyclone made landfall in Rhode 

Island, the decay of landfall was automatically considered by modifying the maximum wind 

speed and the central air pressure based the nonlinear surface wind model developed by Ding et 

al. (2013). 

As it was discussed in previous chapter, to avoid having the spurious fluctuation in simulated 

hydrodynamic variables, the model has to be initialized, or spun up. On the other hand, a well-

developed sea state is created for flow dynamic simulations driven by the storm winds. This 

model was spun up by simulating the tidal flows over the US east coast for 10 days, i.e. from 

1200 UTC 08/07/1991 to 1200 UTC 08/17/1991. The time-step size used was 120 seconds. 

During the spin-up period, the effect of surface wind was neglected.  

In the simulation of surge tide, the wave-induced radiation stresses, surface wind stresses, and 

the bottom friction stresses were considered. The frequency of wave-current interaction was two 

hours, namely, the wave field driven by the cyclone wind was updated every 2 hours during the 
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storm surge simulation. In the computation of wave-action equation of the spectral wave energy, 

a total of 21 frequency bins and 25 wave directions were used to discretize the wave spectra for 

the computations of irregular wind-induced waves. In this simulation, the effect of wave 

breaking in shallow waters and the whitecapping in deep waters were included.  

Wave set-up induced by storm winds can cause an additional increase in the water surface 

elevation and increases the extent of the inundation area. In the simulations of storm surge by 

coupling the wave model with the hydrodynamic model, the wave field was recomputed every 

two hours based on the latest flow results.  
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Figure 17. Maximum Water Elevation above NAVD88 by Bob (1991). 

 

Figure 17 shows the computed maximum water surface elevations for Hurricane Bob across the 

East Coast of the United States. Maximum water level is observed at Bay Fundy where there is 

home of high tides on the East Coast. In Figure 18 and Figure 19, the predicted air pressure and 
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wind velocity are compared to the recorded data from gauge stations at the several points across 

the computational domain.  

In stations, 44007, 44013, IOSN3, and BUZM3 the pressure drop match to the observed values 

while in ALSN6, MISM1, 44025, 44009, and 44005 the pressure model underestimated the 

pressure drop. The pressure model could not capture variation in pressure in far-field. This error 

is associated with parametric wind and pressure model that makes the wind and pressure field 

not very accurate in region far away from the hurricane’s center. 

Simulated wind velocity is in a good agreement with corresponding observed values in MDRM1, 

MISM1, BUZM3, IOSN3, 44008 BOUY stations at the moment when the hurricane passing is 

by them. In station 44008, the model performed well in capturing maximum wind speed, which 

matches to the observed value. However, the wind model’s result showed some errors in 

reproducing simulated wind velocity in some stations such as 44005, 44013, ALSN6, and 44009. 

In station 44009 and ALSN6, the model was unable to capture intensification of wind velocity 

due to induced forces from Hurricane Bob. In 44013, 44007, and IOSN3 wind velocity variation 

had a sharp fall and rise at the peak zone while sudden intensification or reduction in observed 

wind was recorded. 

In addition, the model performed well because there is not lag observed in simulated wind 

velocity and pressure drop. It commonly appears in simulation of hurricane wind field that the 

simulation has some delay in capturing the peaks. This error, if exists, can be attributed to the 

error within best track data from observations. 
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Figure 18. Comparisons of simulated pressure with observed data during Hurricane Bob. 
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Figure 19. Comparisons of simulated wind speed with observed data during Hurricane Bob. 
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Figure 20. Comparisons of computed vs observation of water elevation at different stations. 

 

 

Figure 20 and Figure 21 present the comparison between the computed and observed water 

surface level.  Model’s performance was quite well in hindcasting water level; the computed 
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amplitudes at Portland ME (8418150) and Boston MA (8447930) corresponded well with the 

observations values. In Woods Hole MA (8447930), Newport RI (8452660), Providence RI 

(8454000), Point Judith RI (8455083) the model captured the increase in water level due to 

hurricane driving forces while in Lewese DE (8557380) the model result underestimated the 

peak. 

Comparison of the observed and computed significant wave heights and the peak periods for the 

three selected gauge stations are shown in Figure 22 and Figure 23. Offshore of the South 

Portland Coast, at the NDBC 44007 buoy, 44005, and 44013 the computed significant wave 

heights captured the variations of the observations, although there are some minor differences 

observed. Only the computed peak wave height is smaller than that observed value. There is a 

lag in the simulation of significant wave height. At the three other stations, i.e. NDBC 44009, 

44008, and NDBC 44025 buoy, recorded peak is captured by the simulation result.  

The computed peak wave periods are relatively close to the corresponding observed data. The 

model result showed large discrepancies between computed wave peak periods at stations 44013. 

In stations 44008 and 44007 the model was able to capture the variations in peak period. 
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Figure 21. Comparisons of computed vs observation of water elevation at different stations. 
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Figure 22. Comparison of wave properties at stations NDBC #44025, #44009, #44005, #44007, 

#44008, #44013. 
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Figure 23. Comparison of wave properties at stations NDBC #44025, #44009, #44005, #44007, , 

#44008, , #44013. 
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CHAPTER IV:  

DEVELOPMENT AND VALIDATION OF ASYMMETRIC PARAMETRIC HURRICANE 

WIND MODEL 
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In this chapter, an Asymmetric Gradient Wind Model (AGWM) is developed based on the 

modified synthetic Holland-type vortex model. AGWM is created to capture the azimuthal 

variation of hurricane’s wind and pressure field. The curved fitted values of hurricane parameters 

are used to compute tangential velocity and pressure, at any azimuthal angle, around the storm 

center. 

There are several physical processes and forces that must be taken into account in storm surge 

modeling such as tides, wind friction, pressure drop, and Coriolis forces. Among these factors, 

the atmospheric forces are the predominant force components, which include pressure gradient 

and especially wind forces. There are other forces such as temperature gradient or Ekman 

balance which are not taken into account in this study. 

The hurricane’s high winds are the primary force that generates storm surge and waves. Thus, a 

good prediction of wind intensity and building a more accurate hurricane’s structure will 

improve the spatiotemporal extent of the hurricane storm surge simulation.  Thus, it is critical to 

make use of any available data, usually provided by National Hurricane Center (NHC), to 

construct a more accurate wind body of a tropical storm. The real-time data of wind and surface 

pressure are insufficient to allow a direct analysis of the central region of most tropical cyclones 

and they cannot be used alone to generate the wind field needed for a storm surge model (Powell 

et al., 2010). For this reason several models have been developed to infer wind and pressure 

fields. 

Over the past decades, several products, different numerical and statistical wind models, 

parametric and empirical formulas have been developed to help the improvement of the 

prediction and to enhance forecasting the spatial/temporal change of the hurricane wind field 
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during a storm event. Simple analytical and statistical models such as National Weather Service, 

NWS-23 (1979) contained specific official guidelines for the meteorological representation of a 

standard hurricane. The NWS-23 formulation was based on observational data that was recorded 

during hurricane reconnaissance flights in the North Atlantic from 1957 through 1969. 

Other parametric models are Holland  model 1980 (modified in 2010) Jelesnianski et al 1992, 

Houston et al 1999 formed a simple algebraic formulation of the radial gradient wind speed for 

storm surge analysis (SLOSH); Vickery 2000 developed a wind model by taking into account the 

effects of changing sea surface roughness and the air-sea temperature difference on the estimated 

surface-level wind speeds; Willoughby 1980, 2006 developed a wind profile as a statistical fit to 

the numerous observations; Emanuel et al 2004 formed a statistical/deterministic gradient wind 

model; Another approach is the steady-state dynamical model such as steady-state slab planetary 

boundary (PBL) model (Chow, 1970; Cardone et al., 1976,2009; Shapiro, 1983; Thompson, et 

al., 1996; Vickery et al., 2000). 

 The kinematical analysis winds such as National Oceanic and Atmospheric Administration 

(NOAA) National Hurricane Research Division H*Wind (Powell et al., 1996, 1998, 2010), 

mesoscale models such as interactive objective kinematic analysis (IOKA) (Cox et al., 1995), 

and Mesoscale numerical weather prediction model such as North American Mesoscale model 

known as NAM, Geophysical Fluid Dynamics Laboratory (GFDL), The MM5 (short for Fifth-

Generation Penn State Mesoscale Model) is a regional mesoscale model used for creating 

weather forecasts and climate projections and is maintained by Pennsylvania State University 

and the National Center for Atmospheric Research, the mesoscale Weather Research and 

Forecasting (WRF) model. 

https://en.wikipedia.org/wiki/Mesoscale_meteorology
https://en.wikipedia.org/wiki/Numerical_weather_prediction
https://en.wikipedia.org/wiki/Weather_forecast
https://en.wikipedia.org/wiki/Climate
https://en.wikipedia.org/wiki/Penn_State_University
https://en.wikipedia.org/wiki/National_Center_for_Atmospheric_Research
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Mesoscale dynamic models adopt the full governing equations which are taking into account the 

known physical processes and laws that govern the behavior of atmosphere. They can create a 

detailed picture of the dynamic state of atmosphere. However, in order to numerically simulate 

the complex structure of the atmosphere using mesoscale tools, a fine resolution mesh size is 

required.  This requirement imposes numerical models to employ extensive resources to run 

heavy-duty computations. Nevertheless, the complexity of coupling atmosphere models to storm 

surge and wave models, limited run-time, and computer memory made the parametric wind 

models are widely uses in reproducing the hurricane wind fields and driving forces to the storm 

surge and wave models.  

Parametrized wind models have zero computational cost and can be launched on personal 

computers. This is a big advantage over the mesoscale model which is basically using 

supercomputing machines to perform real-time hurricane’s wind forecasting. Therefore, 

parametric models are a good alternative to tradeoff between the accuracy and cost. 

To test the newly-developed model, Hurricane Gustav’s (2008) best track data is used to test the 

asymmetric wind model performance. The values of maximum wind speed, radii of wind 

isotachs, and central pressure were used to capture the spatiotemporal variation of the hurricane 

induced wind. In this chapter, the theoretical background regarding the application of parametric 

wind models and determining its key parameters is explained. Different modules are tested and 

result’s analysis presented for Gustav. 

THEORETICAL BACKGROUND 

Numerous numerical models employed analytical parametric gradient wind formulations. In this 

formulation, a few parameters exist; such as radius of maximum wind and maximum wind speed, 
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central pressure. In Figure 24, a schematic layout of hurricane’s structure and the location of 

maximum wind speed, which is commonly named as the maximum radius (𝑅𝑚𝑎𝑥), is illustrated. 

𝑅𝑚𝑎𝑥 is defined as the radial distance from the hurricane center at which the maximum wind 

speed is observed. The formulation can represent the radial profile of the pressure drops 

exponentially towards the center from the ambient pressure while wind profile has a sharp 

increase from the eye of the hurricane to the location of maximum wind and decreases towards 

the outer region of the storm (Figure 24). 

 

Figure 24.Schematic cross section of hurricane wind profile for north heading cyclones. 

 

Simple parametric hurricane wind models generally consider the wind around the hurricane to be 

circularly symmetric (Figure 25). Therefore, at a given radius for all azimuthal angles, the same 

wind speed will be generated (by excluding the forward movement speed of the storm). A simple 

hurricane wind model would consist of a circular storm rotating counterclockwise (in the 

Northern Hemisphere) around a central axis without any storm motion and no inflow or outflow.  
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Holland’s (Holland, 1980), popular parametric wind model, has been widely applied in tropical 

storm studies and has remained the most used method in forecasting hurricane wind field. This 

formula is basically a modified version of a Schlomer’s (1954) formula which suggested that the 

pressure field can be approximated by: 

𝑝(𝑟) = 𝑝𝑐 + (𝑝𝑛 − 𝑝𝑐)𝑒
(− 

𝐴

𝑟𝐵)
 (1) 

 

  

Figure 25. Schematic layout of symmetric hurricane wind field constructed based on Holland 

1980 symmetric model. 
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Where p(r) pressure at radial distance r, pc is the pressure at the center of the hurricane, pn the 

ambient pressure (theoretically at infinite radius) to specify pressure field that contains some 

parameters empirically estimated from the observations or determined climatologically (A and B 

are two parameters that can scale the wind profile). Hence, using the gradient wind equation 

which can be derived from the force balance between the Coriolis force, the centrifugal force, 

and the horizontal pressure gradient force: 

𝑉𝑔(𝑟)

𝑟
+ 𝑓𝑉𝑔(𝑟) =

1

𝜌𝑎𝑖𝑟
 
𝜕𝑝(𝑟)

𝜕𝑟
 

(2) 

The wind profile becomes: 

𝑉𝑔(𝑟) = [
𝐴𝐵(𝑝𝑛 − 𝑝𝑐)𝑒

(− 
𝐴

𝑟𝐵)

𝜌𝑎𝑖𝑟𝑟𝐵
+

𝑟2𝑓2

2
]

1
2

−
𝑟𝑓

2
 (3) 

Where Vg(r) is the gradient wind at radius r, respectively. f = 2Ω sinϕ is the Coriolis parameter, 

Ω rotation rate of the earth, ϕ  is latitude, and ρair the air density (assumed constant). Holland 

(1980) postulates that at the region of maximum winds, the Coriolis effect is very small 

compared to the two other existing forces, which are the pressure gradient and centrifugal force, 

and the air is in the cyclostrophic balance. These tangential winds are given by: 

𝑉𝑔(𝑟) = [
𝐴𝐵(𝑝𝑛 − 𝑝𝑐)𝑒

(− 
𝐴

𝑟𝐵)

𝜌𝑎𝑖𝑟𝑟𝐵
]

1
2

 (4) 

𝐴 = 𝑅𝑚𝑎𝑥
𝐵 

(5) 

And 

𝐵 =  𝑉𝑔
2

𝑚𝑎𝑥
𝜌𝑎𝑖𝑟 𝑒 (𝑝𝑛 − 𝑝𝑐)⁄  

(6) 

Thus, the pressure field and tangential wind at radius r will be:  
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𝑝(𝑟) = 𝑝𝑐 + (𝑝𝑛 − 𝑝𝑐)𝑒
(− 

𝑅𝑚𝑎𝑥
𝑟

)
𝐵

 (7) 

𝑉𝑔(𝑟) = √ (
𝐵

𝜌𝑎𝑖𝑟
) (

𝑅𝑚𝑎𝑥

𝑟
)
𝐵

(𝑝𝑛 − 𝑝𝑐)𝑒
(− 

𝑅𝑚𝑎𝑥
𝑟

)
𝐵

+
𝑟2𝑓2

2
−

𝑟𝑓

2
 (8) 

 

In the above formula, B is the key parameter that controls the shape of the wind profile (the 

steepness of the eyewall and the strength of the wind far from the cyclone’s center). According 

to Holland (1980), B parameter remains constant. However, in Holland (2008), the parametrized 

method was modified in order to incorporate additional available observation of winds such as 

latitude, translational speed, and intensification rate (∂pc ∂t⁄ ). Some other method suggested 

different formula to compute Holland shape parameter B , as given for example in Harper and 

Holland (1999), Vickery et al. (2000), Jakobsen and Madsen (2004), Powell et al. (2005),  

Willoughby et al (2006), and Vickery and Wadhera (2008). 

Due to existent friction and some other forces, the actual hurricane wind field is not symmetric 

(Figure 26). Since Holland’s model is axisymmetric, some modifications must be implemented 

in order to consider the asymmetric structure of the real wind fields (Harper et al., 2001). 

Fortunately, in recent years, additional information has become available during tropical storms 

which can be used to enhance the accuracy of wind models. 
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Figure 26. Asymmetric shape of a hurricane can be captured based on directionally variable 

parameters in Holland model. 

 

In the past decade, more observational data from tropical storms has become available from 

NHC forecast advisories. Additionally, the ATCF has provided best track observation and 

forecast data of hurricane’s spatiotemporal variation in position, wind field, and central pressure.  

Data from the best track data is composed of central pressure, maximum wind speed, and 

specified radius of the 1-min sustained surface wind isotachs 32.9, 25.7, and 17.5 ms−1 (64,50, 

and 34 kt ) in four quadrants of storms which are Northeast, Southeast, Southwest, 

Northwest(NE, SE, SW, and NW). This additional data is used to calculate azimuthally variable 

parameters of asymmetric Holland model.  
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NE 

SW SE

 

NW NE 

R64 

R50 

R34 



64 

 

Due to the complexity of hurricanes, it is imperative to make use of all available data (all 

isotach). Using one set of specified data, radii and wind speed of one isotach, in parametric 

model can only represent the complete radial variation correctly along the wind profile. In Figure 

27, it is illustrated that using information of one isotach can introduce large error in wind 

velocity either in far or near field; for instance, a wind profile (Figure 27-a) which was 

constructed based on the isotach 64kt data, underestimates the wind velocity at the far field.  

The wind profile developed based on the Holland formula is not flexible; it rarely occurs that a 

wind profile, constructed based on Holland formula, can pass through three data points, available 

data, which are the radii and wind speed of three isotachs. A combination of Vgmax
, Rmax , B, ψ 

parameters is not always available that one profile can be built that can go through three data 

points: (R64,V64), (R50,V50), and (R34,V34). Therefore, using all the three (if available) 

isotachs data at each quadrant, and combining them correctly (Figure 27-d), can help to improve 

consistency of parametric model to the observation data. 

Xie et al (2006) used the radial extent of hurricane’s wind field data, provided by NOAA 

hurricane forecast guidance, to develop a non-symmetric wind model by incorporating an 

asymmetric effect into the Holland symmetric model. They employed the asymmetric wind 

model in the storm surge simulation to examine the asymmetric hurricane wind field forecast, as 

well. In their model, a single value of Rmax for the wind field is replaced by a directionally 

varying Rmax = Rmax(θ) where θ is the azimuthal angle from the north to the angle of the 

quadrant of interest. With using the radii and wind speed from the best track data, Rmax at four 

quadrants was calculated. To obtain the azimuthal variation of Rmax, a curve fit procedure was 

utilized to interpolate data at each azimuthal angle. The issue with their fourth-order polynomial 
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curve fit was a numerical discontinuity at θ = 0  and θ = 2π and using only the highest isotach’s 

radii to build the wind profile. 

 

Figure 27. Wind profiles constructed under independent isotach data and composite profile using 

3 isotachs data. 

 

Mattocks et al (2008) used Xie’s approach and developed their synthetic asymmetric vortex wind 

forcing and implemented it to examine several different features of storm surge and wave 

models. They used a cubic splines interpolation which meets the continuity of interpolated values 

between 0 and 2π angles. In the Forbes et al 2010 study, storm surge forecasts were forced using 

an asymmetric gradient wind model (similar to Mattocks et al, 2008 ), directly coupled to 

ADCIRC at every time step and at every grid node.  
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Xie et al (2011) investigated the influence of the asymmetric structure of hurricane wind field on 

storm surge using a three-dimensional storm surge model. Their results suggest that accurate 

wind forcing is a fundamental factor ensuring the accuracy of storm surge and inundation 

forecasts. Axis-symmetric parametric hurricane wind models are still often used to compute the 

wind forcing for storm surge and inundation forecasting. However, it is well known that the wind 

fields of actual hurricanes are rarely axis-symmetric. Thus, it is important to understand how the 

asymmetric structure of wind fields affects storm surge and inundation forecasts. 

Hu et al (2012) developed a parametric hurricane wind model based on the asymmetric Holland-

type vortex model. The model creates a two-dimensional surface wind field based on the 

National Hurricane Center forecast (or observed) hurricane wind and track data. In their study, 

some modification to the asymmetric wind model was made in order to retain consistency 

between the input parameters and the model output. It is pointed out that it is better to include the 

Coriolis effects in the determination of the shape parameter B 

It is concluded that ignoring the Coriolis effects, in determining the scaling parameters of a 

synthetic wind model,  can lead to an error greater than 20% in the maximum wind speed for 

weak but large tropical cyclones.  In addition, a new method was introduced to develop a 

weighted composite wind field to make use of all wind parameters, not just the largest available 

specified wind speed and its 4-quadrant radii. It is pointed out that the improved parametric 

model performs well and has the ability to maintain the consistency of the input and output 

maximum wind speeds and wind structure. 
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Figure 28. Flowchart of asymmetric wind model implementation. 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

METHOD DESCRIPTION 

The new method to compute wind field around the storm center has been developed to make use 

of all available data, observed from inside of the hurricane structure, gathered either from the 

advisory or the best track data. Some modification was applied to Holland original model, which 
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is presented in following sections. In Figure 28, a flowchart that describes the implementation of 

asymmetric wind model is presented. 

Scaling parameter B 

As recommended by Hu et al (2012), neglecting Coriolis’s parameter can create error in the 

computation of Rmax and B. Therefore, rewriting the force balance, by keeping the Coriolis’s 

effect term, between hurricane primary circulation forces i.e., radial pressure gradient, Coriolis, 

and centrifugal forces at radius of maximum wind and for maximum wind speed i.e. Rmax and 

Vgmax
 , respectively and by considering ψ = (A RmaxB⁄ ) :  

𝐵 =  
(𝑉𝑔

2

𝑚𝑎𝑥
+ 𝑉𝑔𝑚𝑎𝑥

𝑅𝑚𝑎𝑥𝑓) 𝜌𝑎𝑖𝑟𝑒
𝜓

(𝑝𝑛 − 𝑝𝑐)𝜓
 (9) 

As in the formula of the shape parameter B, two parameters are available now, i.e., f and Rmax. 

As Coriolis parameter varies spatially, and then values of B will no longer spatially and 

temporally remain constant. Parameter ψ is introduced first by ADCIRC group (Mattocks et al 

2008) which indicates a relationship between B and ψ as following:  

𝜓 = 1 +
𝑉𝑔𝑚𝑎𝑥

𝑅𝑚𝑎𝑥𝑓

𝐵 (𝑉𝑔
2

𝑚𝑎𝑥
+ 𝑉𝑔

𝑚𝑎𝑥
𝑅𝑚𝑎𝑥𝑓)

 
(10) 

Then, the tangential wind formula becomes in the form of: 

𝑉𝑔(𝑟, 𝜃) = √ (𝑉𝑔
2

𝑚𝑎𝑥
+ 𝑉𝑔𝑚𝑎𝑥

𝑅𝑚𝑎𝑥𝑓) (
𝑅𝑚𝑎𝑥

𝑟
)
𝐵

𝑒
𝜓(1−(

𝑅𝑚𝑎𝑥
𝑟

)
𝐵
)
+

𝑟2𝑓2

4
−

𝑟𝑓

2
 (11) 

If we know the value of Vgmax
 and Rmax, normally we can compute the value of B and ψ. 

However, the value of Rmax frequently is not available. Therefore, it is practical to start with 
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initial value for B and ψ parameters and then once the value of Rmax is computed, using a root 

finding procedure, we can re-compute values of B and ψ. We will discuss this step in our 

procedures, in further detail, in the next section. Additionally, the translational speed motion of 

hurricane vortex is computed based on the location and time interval specified for the simulation 

run. The total wind speed at each point in the computational domain is calculated based on the 

combination of the tangential and translational speed of the vortex: 

�⃗⃗⃗� = 𝑉𝑔⃗⃗  ⃗ +  𝑉𝑡
⃗⃗  ⃗ (12) 

Where W⃗⃗⃗  denotes as total wind speed, Vg
⃗⃗  ⃗ is gradient (tangential), and Vt

⃗⃗  ⃗ is translation speed (ms
-

1
). 

Compute Rmax 

As shown in equation (11), the tangential wind formula can be solved to determine the value of 

Rmax where the value of Vg(r) tangential wind and its r radii are given. A popular root finding 

procedure, Brent’s method is used to calculate the Rmax for each set of isotach data at each 

quadrant (Mattocks et al 2008).  

Curve Fitting 

In the Asymmetric Gradient Wind Model, the added feature is considered to maintain the 

consistency between the parametric hurricane wind model and observation from the real wind 

field. Since hurricanes are not symmetric, the radius of wind isotach varies by quadrant 

(azimuthally). Therefore, to take into account the azimuthal variation of the hurricane’s 

parameters, a periodic cubic spline curve fitting procedure is employed.  
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This method is a good alternative to the polynomial interpolation (used by Xie et al 2006) 

because it can resolve the discontinuity issue between interpolated data, especially at 0 and 2π  

azimuthal angles which occurs as a result of accumulation of error at the end points.  

The advantage of the adopted method is that the first and second derivatives are continuous. As a 

result, the hurricane parameters are defined as a function of azimuthal angles around the 

hurricane. In addition, as the parameters, which need to be interpolated radially according to 

their location, will also vary. Then, they are a function of the distance from the center of the 

hurricane i.e.  B(r, θ), ψ(r, θ),  Rmax(r, θ). 

Composite wind 

As explained above, one simple vortex wind profile cannot represent the asymmetric geometry 

of the hurricane. Therefore, a combining method is used to build a weighted composite wind 

field in order to combine different wind profiles; For each set of isotach data, wind speed and 

their radii (inputs), one wind profile can be developed. Obviously, near the position(radius) of 

one tangential wind profile in four quadrants, the wind field based on the same wind speed 

would be much more accurate than the other wind fields (other isotach’s data) and should be 

given the highest weight in the combined wind field, while simultaneously, the weighting 

coefficient for other wind field(s) should approach zero.  

If the radii of three specified wind speeds, i.e., 34, 50, and 64 knots (17.5, 25.5, and 33 m/s, 

respectively), are provided in the NHC/ATCF forecast advisories, three modeled wind profiles 

(in ms
-1

), W64, W50 and W34 can be developed, respectively (Hu et al 2012).Then, a weighted 

composite wind field can be established by: 
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Where f64 = (W64 64⁄ ), f50 = (W50 50⁄ ), f34 = (W34 34⁄ ).  The performance of this methodis 

presented in the next section for two instances of Hurricane Irene and for fully simulated 

Hurricane Gustav (2008) wind field. 

VALIDATION RESULT AND ANALYSIS 

A hurricane wind  field based on the modified Holland’s(1980) wind vortex, which takes into 

account asymmetric features, is set up to assess the asymmetric wind model’s performance. By 

using the asymmetric gradient wind model and considering the azimuthal and radial variation, a 

tangential wind field is created based on the real advisory data from NHC for Hurricane Irene 

(2011).  

The model is tested against two instances of advisories; high and low intensity wind speeds, 

maximum wind speed, and their radii that were collected in four quadrants (NE, SE, SW, and 

NW), as shown in Table 3.  

 

 

 

 

 𝑊⃗⃗⃗⃗  ⃗64                                                                         𝐼    𝑊64 ≥ 64 

 
𝑓50

−1(1 − 𝑓64)�⃗⃗⃗� 50 + 𝑓64(1 − 𝑓50
−1)�⃗⃗⃗� 64

𝑓50
−1(1 − 𝑓64) + 𝑓64(1 − 𝑓50

−1)
           𝐼𝐼    50 ≤ 𝑊50 & 𝑊64 < 64 

 

 
𝑓34

−1(1 − 𝑓50)�⃗⃗⃗� 34 + 𝑓50(1 − 𝑓34
−1)�⃗⃗⃗� 50

𝑓34
−1(1 − 𝑓50) + 𝑓50(1 − 𝑓34

−1)
         𝐼𝐼𝐼    34 ≤ 𝑊34 & 𝑊50 < 50  

 

�⃗⃗⃗� 34                                                                       𝐼𝑉    𝑊34 < 34 

W=  (13)  
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Table 3. Parameters for asymmetric wind model test (high & low intensity wind) 

Wind with High Intensity Wind with Low Intensity 
Parameter Value Parameter Value 

Latitude  28.3° N
 
 Latitude  41.4° N 

Longitude  77.1° W
 
 Longitude  73.7° W 

Central Pressure 94200 Central Pressure 96600 

R64 (NE) 70 nmi
 
(130 km

 
) R64 (NE) 0 nmi (0 km) 

R64 (SE) 60 nmi (111 km) R64 (SE) 0 nmi (0 km) 

R64 (SW) 25 nmi (46 km) R64 (SW) 0 nmi (0 km) 

R64 (NW) 50 nmi (93 km) R64 (NW) 0 nmi (0 km) 

R50 (NE) 110 nmi (204 km) R50 (NE) 150 nmi (278 km) 

R50 (SE) 100 nmi (185 km) R50 (SE) 150 nmi (278 km) 

R50 (SW) 50 nmi (93 km) R50 (SW) 80 nmi (148 km) 

R50 (NW) 75 nmi (139 km) R50 (NW) 30 nmi (56 km) 

R34 (NE) 250 nmi (463 km) R34 (NE) 230 nmi (426 km) 

R34 (SE) 200 nmi (370 km) R34 (SE) 280 nmi (519 km) 

R34 (SW) 125 nmi (232 km) R34 (SW) 130 nmi (241 km) 

R34 (NW) 160 nmi (296 km) R34 (NW) 50 nmi (93 km) 

 

Figure 29. Implementation of weighted composite method for high intensity wind. 

 

Quadrant NW Quadrant NE 

Quadrant SW Quadrant SE 
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Figure 30. Wind field contour for high intensity wind. 

 

 

Figure 31. Implementation of weighted composite method for low intensity wind. 

 

Quadrant NW Quadrant NE 

Quadrant SW Quadrant SE 
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Figure 32. Wind field contour for low intensity wind. 

 

The model result for the composite wind profile with high and low maximum wind is shown in 

Figure 29, and Figure 31. The contour plot of hurricane’s wind field is illustrated in Figure 30, 

and Figure 32. The figures suggest that the composite method could successfully combine the 

three wind’s profile at each quadrant for the wind with high and low intensities (3 and 2 isotach’s 

radii data are available for high and low intensity, respectively). 

Gustav (2008) 

By ensuring that different parts of the asymmetric wind model, from the root finding (Rmax) to 

the weighted composite wind procedure, worked correctly, the model’s performance was further 

evaluated for time-varying actual hurricane data; an asymmetric wind model was developed 

based on the input parameters from the best track data: 

 Time of the storm’s advisories(every 6 hours) : yyyy-mm-dd hh 

 Longitude and Latitude of hurricane center (deg) : Long, Lat 

 Surface Pressure at the center of hurricane (Pa): Pc 
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 Ambient undistributed synoptic background surface pressure (Pa): Pn 

 Longitude and Latitude of hurricane center (deg) : Long, Lat 

 Maximum 1-min sustained wind speed of hurricane (kt) : Vmax 

 Wind radii in four quadrants (NE, SE, SW, NW) of hurricane at either 64kt, 50kt, 34kt 

(n.m): A set of radiuses (1:12) 

Gustav began as a tropical storm in the Lesser Antilles and rapidly intensified to form a 

hurricane. It was the most intense storm to hit Cuba in five decades. Hurricane Gustav decreased 

its strength in the Gulf of Mexico due to increased wind shear and intrusions of dry air. When 

Gustav made landfall at 1500 UTC on September 1, 2008 near Cocodrie, LA, USA, it was a 

category 2 storm on the Saffir–Simpson scale and subsequently weakened to a tropical storm. Its 

forward motion slowed down as it crossed southern and western Louisiana on September 1. By 

September 2, its status was down- graded to a tropical depression over northwestern Louisiana. 

 

Table 4. List of NOAA CO-OPS and NDBC observation station. 

Station 

No. 
Operator 

Station 

ID 
Location Latitude Longitude 

32 
NOAA CO-

OPS 
8762482 

West Bank 1, 

Bayou Gauche, LA 
29.8 -90.4 

35 
NOAA CO-

OPS 
8761927 

New Canal Station, 

LA 
30.0 -90.1 

38 
NOAA CO-

OPS 
8760922 

Pilots Station East, 

Sw Pass, LA 
28.9 -89.4 

40 
NOAA CO-

OPS 
8761724 

Grand Isle,  

LA 
29.3 

-90.0 

 

49 
NOAA CO-

OPS 
8736897 

Coast Guard Sector 

Mobile, AL 
30.6 -88.1 

55 
NOAA CO-

OPS 
8764227 

Lawma, Amerada 

Pass, LA 
29.4 -91.3 

79 
NOAA-  

NDBC BUOY 
DPIA1 

Dauphin Island, 

AL 
30.2 -88.1 

82 & 42 
NOAA CO-

OPS 
8747437 

Bay Waveland 

Yacht Club, MS 
30.3 -89.3 
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The simulation of wind field starts from 00:00 UTC on August 25, 2008 when the hurricane 

initiated. The simulation ran to the end of the last available best track data which was issued 

on12:00 UTC on September 05, 2008. In order to evaluate the accuracy of the model, a number 

of monitoring stations were selected in the Gulf of Mexico. The model results were compared to 

the actual observation at a number of the stations such as South of Louisiana, Mississippi, and 

Alabama, as well as to the symmetric wind model of CCHE2D-Coast. A map and the list of 

observation gauge stations are illustrated in Figure 33 and Table 4, respectively. 

In Figure 34, Figure 35,Figure 36, Figure 37,Figure 38,and Figure 39 the wind velocity and the 

pressure compared to the observed data and symmetric model’s output at West Bank 1 Bayou 

Gauche  LA (8762482),  New Canal Station, LA (8761927),  Pilots Station East  Sw Pass, LA 

(8760922) Grand Isle LA (8761724),  Bay Waveland Yacht Club MS  (8747437),  Coast Guard 

Sector Mobile AL (8736897) Lawma Amerada Pass LA (8764227), Dauphin Island AL 

(DPIA1), Bay Waveland Yacht Club MS (8747437) monitoring stations.  

In Bayou Gauche LA (8762482), New Canal Station LA (8761927), Waveland Yacht Club MS 

(8747437), the asymmetric model’s results are in a close agreement with the observed data. The 

asymmetric model captured a 25 (ms
-1

) wind velocity in Lawma Amerada Pass LA (8764227) 

station where the symmetric model failed to correctly reproduce the wind velocity at the peak; 

The symmetric model has a sharp rise and fall in wind velocity values at the peak while there is 

indication exist from the recorded data that wind model had a sharp and sudden variation around 

the peak. 

In the either asymmetric or symmetric model, the effect of background wind field does not exist. 

Much of the inconsistency between observed data and wind field, when the hurricane is at a far 
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distance from the monitoring station, is due to lack of background wind. In order to improve the 

two wind models, background wind should be included in the computation of total wind field. 

 

 

Figure 33. Map of observational measuring gauges operates by NOAA. 

 

The pressure result is shown in Figure 37, Figure 38, Figure 39 showed a close agreement 

between symmetric and asymmetric model. This agreement occurs because the pressure field in 

both models (asymmetric and asymmetric) is computed in a similar way. However, there are 

small differences exist in computation of the pressure field. It is worth noting that the symmetric 

model takes into account the effect of the landfall while asymmetric model does not have any 

8762482 
8761927 

8764227 

8747437 
8736897 

DPIA1 

8760922 

8761724 

NOAA Station 
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adjustment to the key parameters wind field upon the landfall. The asymmetric model showed an 

improvement in pressure profile in the far field. 
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Figure 34. Comparisons of the wind velocity produced by the Asymmetric model (Red line) and 

Symmetric model result (Blue line) and observed data (Black circle) , all valid for Hurricane 

Gustav at West Bank 1 Bayou Gauche (LA), New Canal Station (LA), Pilots Station East Sw 

Pass (LA). 
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.

 

Figure 35. Comparisons of the wind velocity produced by the Asymmetric model (Red line) and 

Symmetric model result (Blue line) and observed data (Black circle), all valid for Hurricane 

Gustav at Grand Isle LA (8761724), Bay Waveland Yacht Club MS (8747437), and Coast Guard 

Sector Mobile AL (8736897). 
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Figure 36. Comparisons of the wind velocity produced by the Asymmetric model (Red line) and 

Symmetric model result (Blue line) and observed data (Black circle), all valid for Hurricane 

Gustav at Lawma Amerada Pass LA (8764227), Dauphin Island AL (DPIA1), and Bay 

Waveland Yacht Club MS (8747437). 
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Figure 37. Comparisons of the air pressure produced by the Asymmetric model (Red line) and 

Symmetric model result (Blue line) and observed data (Black circle) , all valid for Hurricane 

Gustav at West Bank 1 Bayou Gauche  LA (8762482),  New Canal Station, LA (8761927),  and 

Pilots Station East  Sw Pass, LA (8760922). 
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Figure 38. Comparisons of the air pressure produced by the Asymmetric model (Red line) and 

Symmetric model result (Blue line) and observed data (Black circle) , all valid for Hurricane 

Gustav at Gustav Grand Isle LA (8761724), Bay Waveland Yacht Club MS (8747437), and 

Coast Guard Sector Mobile AL (8736897). 
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Figure 39. Comparisons of the air pressure produced by the Asymmetric model (Red line) and 

Symmetric model result (Blue line) and observed data (Black circle) , all valid for Hurricane 

Gustav at Lawma Amerada Pass LA (8764227), Dauphin Island AL (DPIA1), and Bay 

Waveland Yacht Club MS (8747437). 
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CHAPTER V:  

CONCLUSION AND REMARKS 
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In the presented study, an integrated modeling system, CCHE2D-Coast, was applied to simulate 

flow dynamics across the U.S. Northeast and Mid-Atlantic coast. The results demonstrated that 

the model, driven by astronomical tide-only generating forces, was able to capture Coast-Ocean 

flow dynamics across the U.S. East Coast where complex geometry exists. To further enhance 

the model skill in simulation of tide currents and improve the accuracy of the integrated model in 

hindcasting storm surges and waves induced by the wind, a finer resolution must be taken in 

shallow water regions.  

In the first phase of this study, the model was validated under astronomical tides-only simulation. 

Then, the validated model was used to simulate the storm surges and wind driven by Hurricane 

Bob (1991). In order to improve the accuracy of the integrated model, an asymmetric parametric 

model based on the Holland-type vortex model developed and evaluated against the actual 

hurricane best track data. 

 The model accuracy in reproducing flow circulation was tested through two simulations runs 

within different time spans. In the first simulation, model performance was evaluated in 

reproducing water level and the simulation result was compared against the observed data at 

several NOAA monitoring stations. To further assess the model’s performance, the modeled time 

series was employed to perform the harmonic analysis in order to identify harmonic constituents. 

Then, identified parameters were compared with the known values provided by NOAA at each 

observation gauge.  

A number of conventional skill assessments metrics were used to assess the model performance 

and quantifying the misfit between modeled and “a priory” known data. In this study, a suite of 

metrics comprised of Normalized Root-Mean Square Deviation, Coefficient of Determination, 
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Scatter Index, and Averaged Bias, for two sets of modeled time series, long and short simulation 

run, was utilized. 

The comparisons between the two cases showed that each metric has about equal value. Overall, 

the extent to which most metrics were obtained suggests that there is good agreement between 

modeled time series and observed data in the majority of monitoring points. This assured us that 

quality of simulation run is good enough to perform the harmonic analysis. 

A newly-developed parameter identification approach was used to identify harmonic 

constituents. As a phase shift that commonly exists in simulation results of water level time 

series, a direct use of modeled results in quantifying error between simulated and observed value, 

may introduce incorrect comparisons between them. Therefore, calculation of statistical index 

through identified parameters, harmonic constituents, can eliminate some sources of errors 

stemming from phase-lag between observation and simulation result.  

The identified components, amplitudes and phases, were used to compute the employed criterion 

with respect to known values. The result of statistical analysis suggests that the accuracy in 

identified amplitudes is greater than identified phases.  

In the second phase of model’s validation, the storm surges and wind driven by Hurricane Bob 

(1991) were computed with good correspondence to the observed data. The collected data from 

NOAA CO-OPS and NDBC BUOY monitoring stations were used to compare with the 

simulated wind, water elevation and wave. The agreement between simulation results and 

observation data showed that model was able to reproduce well the storm surge tide and waves at 

the East Coast of the US during hurricane Bob.  
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Moreover, the model result from the asymmetric model showed that wind field could more 

accurately be reproduced if asymmetric structure of hurricanes is implemented. The asymmetric 

model was developed to make use of all available observed data broadcasted by NOAA. The 

historical Hurricane Gustave’s best track data was used to test the asymmetric wind model 

against the observed data as well as symmetric model.  

Based on the model’s simulation result, the quality of the pressure model remained unchanged 

using the newly-asymmetric wind model. However, different wind fields were produced using 

asymmetric model in comparison with the symmetric one. The presented asymmetric model, 

similar to symmetric model, has no computational cost. Although, some other models such as 

H*wind model have shown better representation of actual wind model, the operational 

advantages of parametric model is, forecast data from each advisory, can be used to build and 

forecast wind field in a real-time hurricane simulation and create predictions for 6, 12, 24, 48 and 

up to 120 hours.   

There are a number of adjustments that can be implemented to enhance the asymmetric wind 

model, such as a more realistic damping factor for translational speed, some changes in curve 

fitting procedure, removing the effect of translational speed and considering boundary layer 

approximation in computing Rmax. In addition, implementation of parallel computing can 

reduce the total simulation run time for either asymmetric or symmetric model. In addition, the 

asymmetric model’s capability in creating more accurate storm surge and wind driven waves 

need to be tested.  
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