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Abstract
Numerical simulations based on solving the 2D shallow water equations using a discontinuous Galerkin (DG) discretisation have
evolved to be a viable tool for many geophysical applications. In the context of flood modelling, however, they have not yet been
methodologically studied to a large extent. Systematic model testing is non-trivial as no comprehensive collection of numerical test
cases exists to ensure the correctness of the implementation. Hence, the first part of this manuscript aims at collecting test cases from the
literature that are generally useful for storm surgemodellers and can be used to benchmark codes. On geographic scale, hurricane storm
surge can be interpreted as a localised phenomenon making it ideally suited for adaptive mesh refinement (AMR). Past studies
employing dynamic AMR have exclusively focused on nested meshes. For that reason, we have developed a DG storm surge model
on a triangular and dynamically adaptivemesh. In order to increase computational efficiency, the refinement is driven by physics-based
refinement indicators capturing major model sensitivities. Using idealised numerical test cases, we demonstrate the model’s ability to
correctly represent all source terms and reproduce known variability of coastal floodingwith respect to hurricane characteristics such as
size and approach speed. Finally, the adaptive mesh significantly reduces computing time with no effect on storm waves measured at
discrete wave gauges just off the coast which shows the model’s potential for use as a robust simulation tool for real-time predictions.
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1 Introduction

Extreme storms and floods are among the most devastating
natural disasters worldwide faced by inhabitants of coastal
areas and those whose livelihood depends onmarine resources
alike (see, e.g. (Lin et al. 2010)). Their accurate simulation and

prediction are vital for hazard assessment and the implemen-
tation of mitigation strategies such as the opening and closing
of flood barriers in order to protect local populations and
property. Due to the time critical nature of forecasts, current
operational simulation environments that form the basis of
flood forecasts are chosen for their robustness and optimised
run time. However, this efficiency comes at the cost of having
to use reduced hydrodynamical model approximations for the
underlying processes and simplified parameterisations for
physical forcing terms. This means that operational models
often do not model the full physics (Tull 2018). Instead, such
simple inundation models simply raise water levels to a given
constant elevation. Linear approaches like this are computa-
tionally inexpensive and work well for generalised scenarios
and at broad geographic scale, but as we becomemore specific
and local in the attempted projections, the complexities in-
crease, and non-linearities become more significant in the be-
haviour of the modelled physical processes. Therefore, we
cannot use linear mathematical approaches to precisely model
these situations. Non-linear models, on the other hand, can be
costly, and the high-order information they contain might re-
quire advanced filtering to guarantee numerical robustness
and efficiency. These more accurate models, however, are of
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critical importance. As was shown in (Barnard et al. 2019), the
accuracy of projections for future events, in particular with
respect to our changing climate, depends on the accurate
modelling of small scale physical dynamics at large scale.

In this study, we focus on discontinuous Galerkin (DG)
methods to solve the 2D non-linear shallow water equations.
These depth integrated equations are computationally less de-
manding than more accurate 3D Navier–Stokes equations and
have been shown to yield good results for coastal applications.
Since realistic measurement data often lacks high-order
smoothness, and we aim to build a model that will eventually
be useful for practical applications, we furthermore concen-
trate on piecewise linear polynomials to represent our quanti-
ties of interest. This leads to a formally second order in space
accurate numerical scheme which we believe to be sufficient
to be useful. DG methods have recently gained a lot of atten-
tion for geophysical applications because of their local mass
conservation and geometric flexibility. Moreover, numerical
computations are performed locally since elements only com-
municate over element interfaces (edges) through the compu-
tation of numerical fluxes. This is a particular advantage for
current state-of-the-art computational architectures and al-
though beyond the scope of this study, we remark that the
local nature of this discretisation makes it ideal for
parallelisation as shown for example in (Abdi et al. 2019).

Due to their relative computational expense, current oper-
ational flood models do not employ DG discretisations; they
are based on other numerical techniques (see also Danilov
2013). A common choice is continuous finite elements
(Piggott et al. 2008a), because they work well with non-
uniform meshes. However, they only yield global mass con-
servation and parallelisation is more difficult because large
linear systems often need to be inverted. The majority of com-
puter models used in practice rely on finite difference
discretisations. Those have the advantage of discretisations
for parameterisations of source terms such as bottom friction
being existent and well established. We remark, though, that
in theory, the implementation of parameterisations in a DG
framework would be easy as it offers the opportunity to con-
trol in cell values as opposed to point values only and it does
not formally require differentiability of the source term. In
addition to representing complex coastlines by the use of cur-
vilinear meshes—an approach that has been successfully used
in finite difference frameworks—DG methods offer the pos-
sibility to represent varying geometries directly through high-
order approximations within elements. Another common
choice for flood modelling are finite volume (FV) methods
which are conservative and work well even on unstructured
grids as shown in (Danilov 2013). First-order DGmethods are
equivalent to FV methods, so that DG methods can be seen as
one possibility to extend FVmethods to higher-order accuracy
without requiring high-order reconstructions that might be
computationally expensive.

A higher computational efficiency of mesh-based numerical
methods such as DG methods can be achieved by using non-
uniform meshes (Piggott et al. 2008b) or dynamical adaptive
mesh refinement as in (Behrens et al. 2005), leading to an im-
proved performance on current computing architectures. DG
methods have been successfully employed in combination with
a non-uniform but static mesh to hindcast the coastal flooding
caused by hurricane Ike (Dawson et al. 2011). Ideally, and to save
computational time, the use of dynamically adaptive non-
uniform meshes would be preferable. These meshes are usually
driven by either heuristic (or physics-based) refinement indica-
tors or error estimators that are based on model sensitivities
which in turn can be derived from solving adjoint equations, as
in (Farrell et al. 2013) for a finite element framework. Solving
adjoint equations, however, can be computationally expensive as
it requires the solution of a different set of equations backwards
in time with coefficients that result from the forward solution of
the system. This increases memory requirements significantly.
Additionally, Beckers et al. (2019) show that the discontinuous
nature of DG methods poses systematic difficulties on deriving
appropriate adjoint equations. The additional flexibility of a dy-
namically adaptive mesh would decrease the dependence of a
high level of mesh optimisation that is particular for the geo-
graphic region of interest. An approach using finite volumes on
a quadrilateral nested mesh has been used in one previous study
(Mandli and Dawson 2014), but the full potential of dynamically
adaptive mesh refinement using physics-based refinement indi-
cators for fully adaptive meshes is yet to be explored. Hence, this
study aims at investigatingDGmethods for flood applications on
a dynamically adaptive triangular mesh.

The accurate modelling of inundation using the shallow
water equations is mathematically challenging as the interface
between water and land becomes a moving boundary, and the
theoretical validity of the underlying equations breaks down
in near-dry regions. Recently developed numerical methods
show improved robustness due to improved limiting and fil-
tering techniques (Vater et al. 2015; Vater et al. 2019). We will
adopt the novel limiting strategy presented in (Vater et al.
2019) which features a velocity-based reconstruction of the
momentum and allows us to compute meaningful velocities
even close to the wet/dry interface.

Themajor driving forces of storm surges are extremewinds
and pressure gradients. This study considers hurricane storm
surges in Sect. 4.1 and employs the cyclonic wind model by
(Holland 1980) to compute continuous wind fields as well as
corresponding atmospheric pressures. Finally, we implement
all source terms that are relevant for coastal flooding and
storm waves and show that in combination with the dynami-
cally adaptive mesh refinement as proposed in (Behrens et al.
2005), we built a new model that is suitable for coastal storm
surge modelling.

In summary, in this study, we combine a DG model with a
dynamically adaptive mesh that is driven by physics-based
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refinement indicators. We show that a recently developed ad-
vanced limiting strategy to treat wetting and drying as well as
the discrete implementation of all relevant source terms lead to
robust and accurate results on this mesh.

This paper is organised as follows. Section 2 outlines the
numerical model and summarises the implementation of all
relevant source terms, and Sect. 2.2 gives a brief introduction
to the adaptive mesh refinement used later on. The results
section is separated into two sections: Section 3 presents a
number of numerical test cases ranging from analytical to
idealised yet realistic scenarios that showcase the model’s in-
undation stability, conservation properties, as well as the ro-
bustness of the wind forcing. In Sect. 4, we then investigate
the described model using the adaptive mesh refinement from
Sect. 2.2 to demonstrate its suitability for idealised storm
surge modelling on a dynamically adaptive mesh. The Sect.
5 gives an outlook for future work and discusses implications,
shortfalls and limitations of the study.

2 A discontinuous Galerkin discretisation
of the full 2D non-linear shallow water
equations

The system of equations of interest for this study are depth-
integrated shallow water equations in two dimensions which
can be written in flux form

∂U
∂t

þ ∇⋅F Uð Þ ¼ S Uð Þ in Ω� T ; ð1Þ

where the prognostic variables are U = (h, hu)⊤: the water
depth h and the 2D momentum hu with a 2D velocity
u = (u, v)⊤ defined on Ω × T, with Ω ⊂ℝ2 and T a finite time
interval. Spatial coordinates are denoted as x = (x, y)⊤ ∈Ω. The

partial temporal derivative is denoted by ∂U
∂t and ∇⋅:¼ ∂

∂x ;
∂
∂y

� �
⋅

is the 2D divergence operator. The flux F and source term S
are defined as

F Uð Þ ¼ hu
hu⊗uþ g

2
h2I2

" #
;

S Uð Þ ¼ − 0
gh∇bþ τC−ρ−1 τW þ h∇pA þ τBð Þ

� �
ð2Þ

where g = 9.81 m s−2 is the acceleration due to gravity and I2 is
the 2 × 2 identity matrix. We denote the temporally constant
bathymetry by b = b(x) and introduce the notation H(x, t) =
h(x, t) + b(x) for the total height (see also Fig. 1). In addition to
the influence of bathymetry, the source term S comprises a
Coriolis forcing τC, a vector-valued wind stress τWand the water
density ρ, which we will assume to be constant throughout this
study, as well as the atmospheric pressure pA and a bottom

friction τB which are described in more detail in Sect. 2.1.
Throughout this paper, vector-valued quantities are indicated by
a bold print while all other quantities are assumed to be scalar.

It is well understood that the shallow water approximation is
somewhat over simplified for applications of coastal inundation,
where non-hydrostatic effects may very well play a significant
role. On the other hand, many practical applications involve large
uncertainties in data and parameterisations of small-scale effects
can be calibrated to yield practically useful results. Furthermore,
a very effective extension of the shallow water solver by non-
hydrostatic correction following Casulli and Stelling (1998) can
be applied to our discretisation (see Jeschke et al. 2017).

We discretise Eq. (1) using a discontinuous Galerkin ap-
proach comprised of (a) decomposing the domain Ω =∑iΩi

into triangles, (b) approximating U =∑kUk(t)ϕk(x) by linear
Lagrange polynomials locally in each triangle and (c) integrat-
ing locally in space against test functions. Our test functions
are linear Lagrange polynomials, so that the resulting semi-
discrete system reads

Z
Ωi

Utϕ jdxþ
Z

Ωi

∇ ⋅ F Uð Þϕ jdxþ
Z

∂Ωi

F* Uð Þ−F Uð Þ� �
⋅ nϕ jdS ¼

Z
Ωi

S Uð Þϕ jdx:

ð3Þ

In Eq. (3), F∗ is a numerical Rusanov flux at the cell inter-
faces defined as

F* ¼ F ULð Þ þ F URð Þ
2

− λmax UR −ULð Þ;

where UL and UR are the prognostic variables on the left and
right of the respective edge and λmax ¼ max jujþð ffiffiffiffiffi

gh
p

; jvj
þ ffiffiffiffiffi

gh
p Þ is the maximum local directional shallow water wave

speed, see also (Toro 2009). As demonstrated in (Toro 2009),
other choices to computeF∗ are available. In this study, we chose
the Rusanov flux for its computational simplicity and its slightly
higher dissipation compared to the computation of the exact
solution of the Riemann problem (see (LeVeque 2002)) which
we believe adds to the robustness of the presented DG method.
Note that we integrated the flux integral by parts twice to obtain
the often called strong form (Hesthaven and Warburton 2008).
This form has desirable properties with respect to well-balancing

Fig. 1 2D shallow water equations: sketch of variables h, H and b,
projection onto y = 0 at time t = t∗. Here, z is an upward pointing
vertical coordinate
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as shown in (Beisiegel 2014) and elaborated in more detail in
Sect. 2.1.3. We solve the integrals in Eq. (3) with an exact, i.e.
third-order, interpolatory Gauss quadrature with corresponding
Gauss–Legendre points in order to not introduce lower order
numerical errors into the scheme.

This allows to extract the time derivative and, after
re-organisation, write the system (Eq. (3)) as a system
of equations in t of the form

dUk

dt
¼ H Ukð Þ ð4Þ

where H denotes the discretised flux and source terms. This
system (Eq. (4)) can be solved using a strong-stability preserv-
ing (SSP) multi-stage Runge–Kutta method provided suitable
boundary conditions. For hyperbolic problems, this type of
time integrator is preferred because it maintains stability prop-
erties of the continuous equations such as total variation sta-
bility; hence, they prevent spurious energy build-up even in
the presence of shocks (see for example (Gottlieb et al. 2011)).
Due to superior stability properties demonstrated in (Kubatko
et al. 2008), we used a three-stage, second-order Runge–Kutta
method (RK23) for this study:

U
nþ1

3
k ¼ Un

k þ
Δt
2

H Un
k

� �
U

nþ2
3

k ¼ U
nþ1

3
k þ Δt

2
H U

nþ1
3

k

� �
Unþ1

k ¼ 1

3
Un

k þ 2U
nþ2

3
k

� �
þ Δt

3
H U

nþ2
3

k

� �
;

where a slope limiter is applied to the prognostic variables
after every intermediate step. The slope limiter we are using
is velocity-based and non-destructive with respect to well-
balancing and non-negativity preservation. It modifies (h,
hu)⊤ in elements where artificial gradients occur and sets
h = 0 for small water depth h < ϵtolm, provided a user-
defined and test case–dependent parameter ϵtol. This will re-
move oscillations within elements that are typically treated by
using dynamic viscosity as in (Marras et al. 2016); hence, an
additional viscosity source term is not needed for the present-
ed test cases. More detail can be found in (Vater et al. 2019)
where the limiter was successfully applied to tsunami bench-
mark test cases and to model flood scenarios. In the present
study, we show that it can be used as well for accurate shore
line modelling and the reduction of spurious oscillations on
adaptive meshes even when a variety of source terms are
involved.

Hyperbolic problems are time step restricted and numer-
ical stability of methods for their explicit solution depends
on the Courant–Friedrich–Levy (CFL) condition (see
Courant et al. 1928). Using a maximum possible value
for a stable CFL number—we found cflmax = 0.3 a good
choice for linear DG elements—and using the three-stage

Runge–Kutta method described above, we can compute a
stable time step by

Δt ¼ cf lmax⋅Δxmin

cmax ; ð5Þ

where cmax ¼ max
k

∥uk∥2 þ
ffiffiffiffiffiffiffi
ghk

p� �
is the global maximum

shallow water velocity, with k running over all degrees of

freedom. The quantity Δxmin ¼ min
k

Δxmin
k is an estimate of

the shortest height Δxmin
k of a triangle that is computed using

the volume formula for triangles at the current time step lead-
ing to a global time stepΔt. This is done before each time step
allowing for a temporally changing and maximum possible
global time step.

2.1 Implementation of source terms

Coastal flooding is a problem involving the interplay between
many source terms. The source terms directly impact the mo-
mentum and thus the free surface. For reasons of comprehen-
siveness, we will give detail of their implementation in the
following subsections.

2.1.1 Earth’s rotation

Hurricanes can cover large areas up to 100s or 1000s of km2.
On large geographic scale, Earth’s rotation has a non-
negligible influence on water circulation. In the presented
model, this Coriolis forcing τC is of the form τC = f(−hv,
hu)⊤ and f = 2ω sin (φ) with φ the latitude and ω = 7.2921 ·
10−5 rad s−1 the rotation rate of the Earth. A common approx-
imation of the Coriolis force is the β-plane approximation, i.e.
we linearly approximate f = f0 + βy, where f0 ∈ℝ, y is a planar
coordinate and β≈ 2ω

rE
is a constant that depends on the Earth’s

rotation and radius rE. We will use both parameterisations, the
conventional and the β-plane approximation in this study.

2.1.2 Bottom friction

The bottom friction τB is assumed to take on the form of a

quadratic Manning law τB ¼ gn2∥u∥2

h7=3
hu, where n is a dimen-

sionless roughness parameter that is directly related to the
nature of the bed and will take on values between 0.001 and
0.01 depending on the specifics of the test case. The bottom
friction depends on the prognostic variables U. In coastal
areas, numerical flow directions might be reversed during
wave run up due to small fluid depths and a resulting large
friction term. To ensure stability of the numerical result, we
follow the split-implicit time stepping procedure in
(Kesserwani and Liang 2012) to ensure that flow directions
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do not reverse within one time step. This means that friction
terms for h < εtol m and ∥hu∥2 < εtol2 m2s−1 are neglected,
where εtol is the wet/dry tolerance of the slope limiter men-
tioned in Sect. 2 and εtol2 is another small parameter. We chose
εtol ∈ [10−4, 10−2], and εtol2 = 10−8 throughout this study. In
the first momentum equation for hu, we then compute for
every degree of freedom

Sf ¼ −g4=3n2
hu∥hu∥2

2

h7=3

D ¼ 1−Δtg4=3n2
2huð Þ2 þ hvð Þ2

h7=3
∥hu∥2

2:

Then, if ΔtSf/D < ∣ hu∣, the flow will not reverse within
that time step and we can compute the friction term asΔtSf/D;
otherwise, the friction is set to 0.

Analogously, the bottom friction can be computed for the
second momentum equation by interchanging the roles of u
and v.

2.1.3 Bathymetry and well-balancing

Non-linear interaction with bathymetry plays a crucial role in
wave amplification. Special care has to be taken to prevent
spurious waves caused by erroneous numerical approxima-
tions of bathymetry gradients. In this study, we solve the
strong form (Eq. (3)) of the equations, which plays a crucial
role in the following discussion. Well-balancing, i.e. preserva-
tion of the steady state at rest, is a desirable property of nu-
merical discretisations. The steady state at rest assumes ba-
thymetry gradients to be the only present source term. While
well-balancing is achieved by setting gravity to 0 in cells
adjacent to the wet/dry interface (Vater et al. 2019), the strong
form is well-balanced on a discrete level without any modifi-
cation when the flux divergence ∇ · F(U) is discretised after
differentiation, since in general

∇⋅ ∑k F Ukð Þð Þϕk xð Þð Þ ≠ ∑k Fdiv Ukð Þϕk xð Þ: ð6Þ
where Fdiv(Uk) and F(Uk) are the nodal coefficients of the
divergence of the flux and the flux, respectively. Since edge-
based terms are always balanced, we show that for every wet
element Ωi we obtain

Fdiv Ukð Þ ¼ S Ukð Þ: ð7Þ
for u = 0. Equation (7) is fulfilled as long as the flux diver-
gence and the source evaluated at the Lagrange points are
balanced. This will always be the case in fully wet cells for
the water at rest where u = 0, as

Fdiv Ukð Þ ¼ 0; hk∇hkð Þ⊤ ¼ 0;−hk∇bkð Þ⊤ ¼ S Ukð Þ;
always holds true for all degrees of freedom k. This balance is
not achieved if the order of differentiation and discretisation of

∇ · F(U) are reversed. This can be easily shown by a counter
example on a master element with edges (−1, −1), (−1, 1), (1,
−1) and using linear Lagrange polynomials.

2.1.4 Wind fields and wind drag coefficients

The wind stress is τW = γττ with a wind friction γτ ∈ℝ+ that
models the energy transfer from the atmosphere to the ocean.
Given an externalwind fieldv, thewind stress canbe computedas

τ vð Þ ¼ cdρa∥v∥2v x; tð Þ ð8Þ
where cd ∈ℝ is a drag coefficient and ρa is the air density
which we assume to be 1.15 kg m−3. The dimensionless drag
coefficient cd = cd(v) depends on wind speeds. For hurricane
models, several different wind drag parameterisations have
been explored and commonly used ones are depicted in Fig.
2 (left). In Garrat (1977) (blue line), observations from the past
10 years are used to show that for absolute wind speeds ∣v∣
within a range of 4 to 21 m s−1 the drag coefficient fulfils a
linear relationship cd · 10

3 = 0.75 + 0.067 ∣v∣ or a power law
of the form 0.51|v|0.46. We note that the understanding is that
the drag coefficient is dimensionless and units are removed
from occurring velocities ∣v∣. In Weisberg and Zheng (2006)
(gray line), a drag coefficient as in (Large and Pond 1981) is
used to study sensitivities with respect to approach speed,
direction of approach and landfall location (see also Sect.
4.1 of this manuscript). Finally, Powell (2007) discusses wind
drags for more extreme winds ∣v∣ > 50 m s−1 and numerical-
ly computes drag coefficients that exceed those known in the
literature. Their new drag coefficients show improved results
for practical applications.

2.1.5 Atmospheric pressure

The atmospheric pressure gradient ∇pA models part of the
influence of the atmosphere onto the water column. In areas
of relatively low air pressure in comparison to the ambient air
pressure, this causes the water surface to slightly bulge up-
wards, increasing h in this area. The influence of the pressure
gradient is non-negligible: Numerical observations show that
about 10% of the resulting surge can be attributed to the pres-
sure gradient. It is implemented in a straight forward manner,
utilising the local derivatives of the Lagrange polynomial ex-
pansion. The contribution of the gradient of the atmospheric
pressure to the source integral can be written as

∂pA
∂x

ξkð Þ ¼ ∑
l

∑
m

∂ϕl

∂x

	 




xm

ϕm ξkð Þ
!
pA xlð Þ

∂pA
∂y

ξkð Þ ¼ ∑
l

∑
m

∂ϕl

∂y

	 




xm

ϕm ξkð Þ
!
pA xlð Þ
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where ξk are the Gauss–Legendre quadrature points, xl are
Lagrange interpolation points and the matrix multiplication
inside the parentheses projects the derivatives of the basis
functions ϕl onto quadrature points ξk. Note that the model
projects every triangle onto a master triangle, so that compu-
tationally, these matrix entries are constants and the matrix
multiplication only has to be done once.

2.2 Adaptive mesh refinement

The computational model as described at the beginning of this
Sect. 2 uses the mesh generator amatos (Behrens et al. 2005)
to create dynamically adaptive and conforming triangular
meshes. Smaller triangles are obtained by bisection (Rivara
1984). While the numerical method works equally well on
truly unstructured meshes (as demonstrated in (Vater et al.
2019)), the more structured hierarchical mesh refinement ap-
proach has a number of computational advantages that are of
interest here. A depth-first traversal of the refinement tree
gives rise to a space filling curve that allows for optimisation
of the memory layout as well as computational organisation
for optimised parallel computations (see, e.g. Behrens 2005;
Behrens and Bader 2009).

The dynamic grid manipulation involves problem-
dependent refinement indicators ηΩi

for each element Ωi

(Behrens 2006) to control the element-wise refinement or
coarsening. A commonly used example for a useful indicator
is the gradient of the total water height at time t:

ηΩi
tð Þ ¼ max

x∈Ωi

∥∇H x; tð Þ∥2:

For applications such as idealised hurricane storm surge,
see also Sect. 4.1 of this manuscript, a composite refinement
indicator might be necessary that refines areas of bathymetry
gradients as well as areas of strong winds. The indicator we
used for this purpose is defined as

ηΩi
tð Þ ¼ ∇b xð Þj jΩi;1

þ u tð Þj jΩi;2
;

with u = (u, v)⊤ the horizontal velocity vector and �j jΩi;1
; �j jΩi;2

the discrete L1, and L2 norm on element Ωi respectively.
The width of elements is controlled by user-defined mesh

levels λref and λcrs with λcrs ≤ λref. Starting from a macro-
triangulation, the mesh is uniformly refined λcrs times until
the coarse mesh level is reached. Subsequently, the refinement
indicator is computed to determine elements that need to be
flagged for refinement or coarsening. Moreover, user-defined
tolerances 0 ≤ θcrs < θref ≤ 1 determine the fraction of the do-
main to be modified as follows:

if ηΩi
≤θcrsηmax →coarsen element Ωi 11ð Þ

if ηΩi
≥θrefηmax →refine element Ωi;

ð9Þ

with ηmax ¼ ηmax tð Þ ¼ max
Ωi⊂Ω

ηΩi
tð Þ the maximum value of the

refinement indicator over all elements at time t. This manipu-
lation strategy is carried out in a loop until the desired finest
mesh level λref is reached. This approach will produce meshes
that consist of small elements on mesh level λref in the area of
interest with a continuous but narrow transition zone to coarse
elements on mesh level λcrs outside the area of interest.

The node values are then interpolated or restricted after mod-
ification using the known Lagrange basis functions for each
element. In regions close to the waterline, we keep the mesh
relatively fine (see also Sect. 4.1) to avoid well-balancing is-
sues. The refinement process has the further advantage of using
a cache-efficient space-filling curve-ordering of elements
(Behrens and Bader 2009), which allows fast access of
neighbouring elements: This feature is particularly beneficial
for local numerical discretisations such as discontinuous
Galerkin method since elements only communicate over edges.

For convenience, the meshes are kept conforming, i.e. free
of hanging nodes, throughout the simulation. We stress that

Fig. 2 Wind drag coefficients cd for hurricane storm surge models (left), Normalised wind speed (solid line) and pressure (dashed line) profiles using
Holland’s model (right). Wind speeds are normalised by vmax¼max

∥x∥2

v and pressures by the difference between ambient and central pressure pn− pc
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this is not required by the method itself. Hanging nodes would
require to combine two or more Riemann solutions over one
(coarse) edge as was recently demonstrated (Hermann et al.
2011; Kopera and Giraldo 2014).

3 Results I: Source terms

In this section, we present test cases to show the major func-
tionalities of the model. Note that physical dimensions are not
explicitly given, but we assume throughout this paper that we
are using SI base units. In some cases, we chose to not use SI
base units to increase readability. In those cases, the dimen-
sions are explicitly mentioned. The following subsections will
in particular focus on the aspects of:

– Inundation stability and conservation properties (Sect. 3.1)
– Balanced wind and pressure forcing (Sect. 3.2)
– Robustness of wind forcing (Sect. 3.3)

3.1 Tidal flow in a symmetric embayment

Here, we show one configuration of the simulation of an em-
bayment first presented in Ip et al. (1998). Similar simulations
have been reported on in Luettich andWesterink (1995) using
the finite element model ADCIRC as well as in Dawson et al.
(2011) using another discontinuous Galerkin model and a
modified bathymetry. This simulation is to show idealised
estuarine flooding by an in- and outgoing tide to show inun-
dation stability and conservation properties of the model.

On a square domainΩ = [−L, L]2 with L = 1500, a symmet-
ric bathymetry as shown in Fig. 3 is defined by b xð Þ ¼
3:0− 1:50þ bxð Þe−3by2 , where we use the definition xb¼ 10−3x;by
¼ 10−3y: Moreover, the water surface is assumed to be in a
steady state at rest. On the right boundary of the domain (at
x = L), a tidal forcing is prescribed as

H x; tð Þ ¼ hde þ 3sin
2πt
T

	 �
;

Fig. 4 Hypothetical embayment:
cross sections of the solution for
x ∈ [−1500, −1000] projected
onto y = 500 at times t = 0,31.1,
and 62.1 hours (top to bottom)

Fig. 3 Hypothetical embayment: 2D plot of bathymetry profile (left) and cross sections (right)
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for x = L, y ∈ [−L, L], where T is the M2 tide, i.e. a temporal
period of T = 4,471,200 (equivalent to 12.42 hours) is pre-
scribed (Ip et al. 1998) and hde denotes the water depth in
the deepest end of the domain. All other boundaries are set
to be impermeable. Friction is assumed to be negligible, i.e.
n = 0. For the initial water surface which is at rest, the
water surface is levelled with the highest point of the
bathymetry bmax = 3.0.

To avoid polluted results caused by the definition of the
boundary condition, we artificially increased the domain by
L to the right, i.e. forbx≥1:5, and assume the bathymetry in this
area to be identically 0, hence adding a discontinuity to the
bathymetry. As we will see, this did not pose a problem to our
robust numerical method. We ran five full tidal cycles with a
time step of Δt ≈ 4, a spatial resolution of Δx = 93.75 and a
CFL number of 0.3 which we found to be the largest possible
CFL number for this particular test case that allowed for a
stable computation and which is similar to the maximal CFL
numbers found in (Xu et al. 2014) for similar applications.
The determination of theoretical bounds for CFL numbers
for multi-dimensional problems is difficult, and most results
are restricted to one space dimension (Kubatko et al. 2014).
Snapshots of the numerical solutions over a cross section at
y = 500 are found in Fig. 4 which shows that wetting and
drying is occurring on the left boundary of the domain and,
hence, that the inundation scheme is stable. We observe—see
left display in Fig. 5—global mass conservation in agreement

with (Ip et al. 1998) showing that the limiter presented in
(Vater et al. 2019) is non-destructive with respect to global
mass conservation and that the variation of total fluid volume

due to the tidal in/outlet is of the order of O 107
� �

. We note
that the model used in (Ip et al. 1998) achieves a much larger
time step ofΔt = 111.78 at a spatial resolution ofΔx = 75. We
attribute this to the fully implicit evolution scheme that their
model uses.

Furthermore, we numerically computed the integral of the
flux Hu over cross sections at x ∈ {±1200, ±600, 0}:

∫L−L hþ bð Þ x; yð Þ � u x; yð Þ dy

The results are shown in the right display of Fig. 5. We see
that after a short calibration time, the results match the results
in (Ip et al. 1998) well and yield values for the cumulative
transport of the order 103. We note that especially atbx ¼ −1:20, we still get meaningful and non-zero results.
This is notable because that part of the domain is close to
the left hand boundary and therewith exposed to wetting and
drying (see Fig. 4 for a close-up) and shows that the slope
limiting strategy is gentle enough to reduce spurious oscilla-
tions while also yielding realistic values for velocities. Finally,
we point out that the results are found to not be sensitive to the
parameter ϵtol that determines a cut-off value for small water
depths. We ran the simulation with 10−6 ≤ ϵtol ≤ 10−3 and did
not find different results.

Fig. 5 Hypothetical embayment: plot of fluid volume (left) and comparison of integrated flux Hu (coloured lines) with the results presented in Ip et al.
(1998) (black lines) for four full tidal cycles over cross sections at x̂ ∈ 0;�0:6;�1:2f g ] (right) over time

Fig. 6 Steady-State Wind Test Case: 1D projection of the initial
conditions. In this figure, z denotes a vertical coordinate

Table 1 Steady-State Wind Test Case: analytical solution hana, and
numerical solution h at discrete points x ∈ {500, 10,500, 20,500}

x m 500.00 10,500.00 20,500.00

Analytical solution ξana(x)
hana(x) = hd + ξana(x)

−2.04 · 10−2 0.00 · 10−2 2.04 · 10−2

4.9706 5.0000 5.0204

Numerical solution ξ(x)
h(x) = hd + ξ(x)

−2.04 · 10−2 0.00 · 10−2 2.04 · 10−2

4.9706 5.0000 5.0204
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3.2 Steady-State Wind Test Case

This test case was described in (Davis and Sheng 2003). In a
rectangular basin, Ω = [0, L] × [0,D] with dimensions L =
21000 and D = 5000 with constant bathymetry b(x) = 0 and
impermeable boundaries on all four edges; a linear water sur-
face hd + ξ is described as shown in Fig. 6. Here, hd = 5 and

ξ xð Þ ¼ τ1
ghdρ

x−
L
2

	 �
;

with g the acceleration due to gravity, ρ = 103 kg m−3, the
water density, and absent initial velocities u = 0. A constant
wind stress is assumed as τ = (τ1, τ2)

⊤ = (0.1,0)⊤ and γτ = 1
(for the definition of γτ see also 2.1.4). In previous studies
(Davis and Sheng 2003; Qiang et al. 2016), the steady state
is described as shown in Table 1. The main balance here is to
be achieved in the x-momentum equation between the flux
divergence ∇ · F(U) and the wind stress, i.e.

g hd þ ξð Þ ∂
∂x

ξ xð Þ¼! 1

ρ
τ1 xð Þ; ð10Þ

on a discrete level. Here we used the symbol¼! to indicate that
the balance is to be enforced. The partial derivative of ξ can be

computed as ∂
∂x ξ xð Þ ¼ τ1 ghdρð Þ−1 as ξ is a linear function of

x. Substituting in the derivative of ξ and τ1 = 0.1 in Eq. (10),
we get after division by g:

hd þ ξð Þ � 0:1

ghdρ

	 �
¼ 0:1

gρ
⇔ hd þ ξð Þ ¼ hd:

This equality is approximately satisfied because ξ ≪ hd by
definition, i.e. hdþξ

hd
≈1.

For the simulation, we used a variable time step with a CFL
number of 0.3 which is close to the theoretical maximum and
was found to lead to stable results and a Runge–Kutta time
stepping scheme of second order (RK23) until Tend = 10

4 with

Fig. 7 Steady-State Wind Test
Case: relative error at x = 500
(solid line), x = 10,500 (dashed
line), and x = 20,500 (dashed
dotted line)

Fig. 8 Steady-State Wind Test
Case: surface elevation (top) and
meridional velocities (middle and
bottom) at cross section y =
2500 at times t ∈ [0, Tend/2, Tend]
in colour and for all other times in
between in light gray
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a spatial resolution ofΔx = 656.3. TheManning friction does not
have a significant impact in this case as the numerical velocities
are negligible. The dynamically computed time step using Eq. 7
wasΔt ≈ 8.9 throughout the simulation. The results are shown in
Table 1 and Fig. 7. In Table 1, we compare point values at t = Tend
with the steady state solution hana and find them to be identical.
Figure 7 considers the relative errors in surface height h at the
numerical wave gauges at x ∈ {500, 10,500, 20,500} over time in
more detail. We observe that numerical errors are of the orderO
10−5
� �

and that they stay bounded over time. We remark that
although possible in this DG method, we did not consider phys-
ical viscosity in these simulations. This is in contrast to the find-
ings in (Davis and Sheng 2003) who solved RANS equations
with horizontal and vertical eddy viscosities to achieve an exact
solution. The reason for this is that their model allowed the def-
inition of an eddy viscosity of the form AHΔu and a boundary
condition of the form ∂zAv∂zu at the free surface. By setting
Avuz = τ/ρ, they achieve an exact balance of the wind field and
the gradient leading to an exact solution. Overall, we see that the
steady-state values from Table 1 are matched and the wind and
gravity forces are balanced. Our observed relative errors are of

the order O 10−5
� �

and are decreasing with increasing spatial
resolution. Figure 8 furthermore shows snapshots of the numer-
ical solution over the cross section at y = 2500 at discrete time
steps. Shown are the fluid height and velocities for increments of
500 in light grey and for t= 0, Tend/2, Tend in colour. We observe
that due to the boundary conditions, small meridional velocities
u = (u, v)⊤ form at the walls at (x= 0 and x= 21000). However,
they stay bounded throughout the simulation, do not influence
the surface height h significantly and do not destroy the steady-
state balance. We attribute this to enough numerical diffusion
being present in the model to disperse energy and prevent
build-up.

3.3 Wind-induced circulation in a semi-enclosed
homogeneous, rotating basin

This test case is described in (Sanay and Valle-Levinson
2005). In a semi-enclosed rectangular domain Ω = [0,
10D] × [0,D] with D = 10,000, a piecewise linear bathymetry
(see also the sketch in Fig. 9) of depth hmax ∈ℝ is prescribed
as follows:

b xð Þ ¼ 2 hmax−h0ð Þ
D

y−
D
2





 



:
Here, x = (x, y)⊤ is the spatial coordinate and h0 = 3.0 is the

minimum water depth. The water surface is at rest at time t= 0
and a constant wind stress τ = (τC, 0)

⊤, τC ∈ℝ, alignedwith the x-
axis is prescribed and linearly rampedup over a period of 6 hours.
Six different configurations of the parameters, which are given in
Table 2, were tested to assess how the maximal occurring veloc-
ities are impacted by rotation, strength of the wind stress τ, as
well as depth of the basin hmax.

We show simulation results on a uniform grid using 81,920
triangular linear elements with radii of the inscribed circles of
aboutΔr = 38.5. This corresponds to a spatial distance ofΔx=
781.25 and Δy = 156.25 between grid points. On the left most
edge of the basin, we used transmissive boundary conditions.
Impermeable boundary conditions are prescribed on all other
boundaries. A quadratic Manning law was used with n =
0.0025 as was suggested in a previous study (Sanay and Valle-
Levinson 2005) to parameterise the bottom friction and a β-ap-
proximation to model the Coriolis forcing as described in Sect.
2.1.1 was used with f0 = 0.001.

The results are found in Fig. 10. For all six configurations the
magnitudes of the velocities are plotted in colour as well as the
velocity vectors for every 100th point. Note that configurations 5
and 6 are scaled by factors of 10 and 0.2 respectively to improve
readability.

Figure 11 shows cross sections of velocities (scaled
with the maximum occurring velocity) at x = 50,000
(mid basin) and x = 98,000 (close to the head of the
channel located at x = 100,000). In general, we observe
a re-circulation zone of below 10,000 from the head
which is in line with the observations reported in

Fig. 9 Wind-induced circulation
in a semi-enclosed homogeneous,
rotating basin: sketch of initial
condition. Depicted are the ba-
thymetry and initial water surface
(left) and the wind field (right)

Table 2 Wind-induced circulation in a semi-enclosed homogeneous,
rotating basin: parameters for all six experiments

Experiment number τC in Pa f0 in s
−1 hmax in m

Configuration 1 0.080 0 20

Configuration 2 0.080 10−4 20

Configuration 3 0.080 10−4 60

Configuration 4 0.080 10−4 8

Configuration 5 0.008 10−4 20

Configuration 6 0.500 10−4 20
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Fig. 10 Wind-induced circulation in a semi-enclosed homogeneous, rotating basin: velocities for all configurations (1–6) at time t = 37,500 (top to bottom)
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(Sanay and Valle-Levinson 2005). The major character-
istics of this test case are reproduced by the simulation
results: We find a positive correlation between wind
strength and velocities (two bottom panels of Fig. 10)
as well as a negative correlation between water depth h
and the magnitude of the velocities ∣u∣. For the non-
rotational case (configuration 1, top panel in Fig. 10),
we agree with the observations from (Sanay and Valle-
Levinson 2005) and find a symmetric profile of the
meridional velocities. This changes for all rotational test
cases in which we find asymmetries near the head (at
x = 98,000—see Fig. 11). We furthermore find (see Fig.
11) steeper gradients on the left shoal for configurations
2 and 3. For configuration 4, Sanay and Valle-Levinson
(2005) find a symmetric velocity profile—almost as for
configuration 1—this, we cannot confirm. However, we
would like to point out that they used different equa-
tions to model this problem. Hence, an explanation
might be found, again, in the characteristics of the shal-
low water equations. They are depth-integrated, so that
the Coriolis force effects the entire water column. The
model employed in (Sanay and Valle-Levinson 2005)
used between 10 and 30 vertical layers in their model
which we believe to add a dissipation that we are un-
able to reproduce.

Resolution appears to be a critical issue for this test
case. With a spatial resolution of only Δr = 154 (a total
of 5120 triangles in Ω), with Δr is the radius of the
inscribed circle, we observe that after long integration
times instabilities develop in the form of vortices at the
bo t tom end of the domain fo r a l l ro t a t iona l

configurations (2–6), indicating that the resolution is
not sufficient for a realistic and physically correct solu-
tion. We attribute this effect to the depth-integrated
character of the shallow water equations as well as the
occurrence of a geostrophic imbalance. As opposed to
the model used in (Sanay and Valle-Levinson 2005) that
included several vertical layers and with that the ability
to dissipate energy in the vertical dimension resulting in
a rotation of the fluid in the (y–z) plane, the depth
integrated shallow water equations cannot take vertical
motion into account.

4 Results II: Adaptive mesh refinement

In this section, we show and comment on the use of
adaptive mesh refinement in the presented model. To do
this, we will focus on two test cases:

– Idealised storm surge modelling and sensitivity analysis
(Sect. 4.1)

– Idealised dam break (Sect. 4.2)

4.1 Idealised hurricane approaching a linearly sloping
coast

In order to study the viability of the current model for
use in hindcasts, we implemented an idealised test
which is similar to a test presented in (Mandli 2011).
It is designed to reproduce observations of a published

Fig. 11 Wind-induced circulation in a semi-enclosed homogeneous, rotating basin: scaled velocities at t = 20,000
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sensitivity study (Weisberg and Zheng 2006). The latter
showed that hurricane flood intensity is sensitive to the
storm’s approach speed, direction of approach θ and
landfall location. Our idealised test set up is defined
as follows:

Let Ω = [−200,000, 500,000] × [−300,000, 300,000] be
a rectangular basin with a transmissive boundary at
x = − 200,000, impermeable boundaries otherwise and a
bathymetry defined by the piece-wise linear function

b xð Þ ¼ 0 for x≤350� 103

αb � x−350� 103
� �

otherwise;

�
where αb = 0.025 is the slope of the bathymetry and
x = (x, y)⊤ is the spatial coordinate (see also Fig. 12).
The initial water surface is at rest and described by
h(x, 0) = max (3000.0 − b(x), 0.0).

We then initialise a cyclone at an initial position (see large
black dot in Fig. 12) and an approach angle θ. The correspond-
ing wind stress τ requires the computation of a continuous
wind field. This can either be accomplished by using re-
analysis data or a parameterised model that allows the deriva-
tion of a continuous wind field from a few discrete parameters;
see (Beisiegel and Dias 2019) for a short discussion on using a

parameterised model in combination with re-analysis data for
the Republic of Ireland. In the present model, the wind field is
computed using a parameterised model (Holland 1980),
which we elaborate on in more detail in Sect. 4.1.1, with
parameters pc = 95,000 Pa, pn = 100,500 Pa, A = 23 and B =
1.5 which are representative for the 2008 hurricane Ike. Six
different configurations as in (Mandli 2011) are implemented
(cf. Table 3) and final times Tend are chosen such that the
storm’s landfall is captured. Note, that we use oceanographic
conventions, i.e. 0∘ corresponds to travelling to the right. The
boundary conditions are transmissive at x = − 200 × 103 and
impermeable otherwise. Transmissive boundaries for this sub-
critical flow were implemented following (Antonopoulos and
Dougalis 2016) using a standard approach based on Riemann
invariants.

4.1.1 Holland’s model to compute hurricane winds

The wind stress in Eq. (8) depends quadratically on the wind
v. For hurricanes, winds can be computed using the model
(Holland 1980):

v xð Þ ¼ v rð Þ � t with v rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AB pn−pcð Þe− A

rB

ρaρrB
þ r2 f 2

4

s
−
rf
2
;

where r is the distance from the centre of the storm; t the
tangent to the circle with radius r, A, B ∈ℝ are shape param-
eters; pn and pc are the ambient and central pressure respec-
tively; ρ the water density; and f the Coriolis parameter. The
scaling parameters A and B are then obtained from the maxi-
mum wind speed as well as the radius of maximum winds
(RMW):

B ¼ max jvjð Þ2=Δp � ρaeð Þ and A ¼ RMWB; ð11Þ
where e is Euler’s number. An example for a normalised wind
profile is found in Fig. 2.

Fig. 12 Idealised hurricane approaching a linearly sloping coast: top–
down view of set up with beach indicated by blue line, wave gauges by
dots, the initial storm position by a large black dot, and the approaching

angle with θ (left); cross section of bathymetry (blue line) and resting
water surface (dashed line) (right)

Table 3 Idealised hurricane approaching a linearly sloping coast:
parameters for all six experiments

Configuration Start point in km Approaching
angle, θ (°)

Approaching
speed (m s−1)

1 (0.0, 0.0)⊤ 0 5

2 (200.0, −100.0)⊤ − 45 5

3 (200.0, 100.0)⊤ 45 5

4 (425.0, −100.0)⊤ − 90 5

5 (425.0, 100.0)⊤ 90 5

6 (0.0, 0.0)⊤ 0 25
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The windmodel (Holland 1980) also gives a corresponding
atmospheric pressure

pA ¼ pc þ pn−pcð Þe−A
rB ;

as is seen from Fig. 2 (right) which shows pressures (dashed
line) normalised by pn − pc as well as wind speeds normalised
by max |v|2.

4.1.2 Numerical results

We ran the simulation with a temporally changing time step, an
explicit RK23 time integrator, and a CFL number of 0.2 with a
spatial resolution of Δx = 10,937.5 a Manning parameter of
n = 0.001, and the wind drag as in (Weisberg and Zheng
2006). We note that this CFL number differs from the one used

Fig. 13 Idealised hurricane approaching a linearly sloping coast: waterfall plot of time series at even numbered wave gauges from bottom to top for all
six configurations. Amplitudes are in m with an added offset of 10 · k for wave gauge Gk for all k

Table 4 Idealised hurricane
approaching a linearly sloping
coast: maximum wave height
ηmax with respect to ramp up time
at gauges G10, G12 and G20

Ramp up time 15 min 30 min 1 hour 2 hours 4 hours

ηmax at G10 41.4 × 10−2 41.4 × 10−2 41.7 × 10−2 41.6 × 10−2 41.7 × 10−2

ηmax at G12 6.5 × 10−2 6.4 × 10−2 6.5 × 10−2 6.3 × 10−2 6.5 × 10−2

ηmax at G20 2.3 × 10−2 2.2 × 10−2 2.2 × 10−2 2.3 × 10−2 2.4 × 10−2
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in all other experiments in this study but was found to be
necessary to ensure numerical stability. We then compared
the wave signal η(x, t) = h(x, t) − 3000.0 at numerical wave
gauges Gk located at Gk · 10

−5 = (4.5, −2.5 + 0.5k)⊤ for
k = {0, 2, 4,…, 20} (see left display of Fig. 12) with the find-
ings in (Mandli 2011) and found overall good agreement. The
results are found in Fig. 13. It shows the water wave signal for
all six configurations obtained at the numerical wave gauges
Gk for all even numbered wave gauges with the amplitudes
plotted in metre with a vertical offset of 10 · k for gauge Gk

to increase readability. In agreement with the literature
(Weisberg and Zheng 2006), we find that the observed
flooding is sensitive to the approaching angle. The plots for
configurations 2 and 3 in Fig. 13 show significantly different
signals at the wave gauges to the left and right of the wave
gauge at which the storm made landfall. They differ in shape
and arrival time. The general N shape of the largest waves as
seen in (Mandli 2011), however, could not be reproduced.
Since higher resolution simulations with a halved Δx showed
the same behaviour, we attribute this effect to the implemen-
tation of impermeable boundary conditions in this test case.
The rotational direction of the wind velocity, and the imper-
meable boundaries at x = ± 300 × 103 are thought to be re-
sponsible for the only approximate symmetries between con-
figurations 2 and 3, as well as 4 and 5. In the absence of
Coriolis forcing, the rotational direction impacts the flow,

such that the plot of configuration 2 in Fig. 13 is not exactly
the same as the plot for configuration 3 mirrored at y = 0. We
furthermore remark that all configurations show small oscil-
lations right after the storm made landfall. This is due to the
treatment of the wind stress which was switched off after the
storm reached the beach.

4.1.3 Influence of ramp up times and robustness

Numerical models often require a gentle ramping up of source
terms in order to reduce spurious oscillations and to allow for
a robust computation. In our simulations, we ramped up the
wind stress τ and pressure p using an exponential blending in
time. For early times, t ≤ tru this filter F takes on the form

F ϕð Þ ¼ ϕe
− t−tru

c f tru

� �2

;

with ϕ the quantity that is to be started and cf a tunable
coefficient.

The storm only starts travelling towards the coast
with angle θ after the ramp up time tru is reached.
Before, it is kept at its starting position, so that the
wind and pressure fields are slowly ramped up until
they reach their full strength. We ran configuration 1
with five different ramp up times between 15 min and
4 hours (see also Table 4) to test the robustness of the
results. Ideally, we would like tru to be as small as
possible to save computing time but large enough to
not pollute numerical results. We observe that for all
times between 15 min and 4 hours we get robust

Table 5 Idealised hurricane
approaching a linearly sloping
coast: maximum and minimum
wave height with respect to
different drag coefficients at
gauges G10, G12 and G20

Gauge no. Weisberg and Zhang Garrat Powell Constant

10 ηmax 41.6 × 10−2 41.6 × 10−2 41.6 × 10−2 41.7 × 10−2

ηmin −10.0 × 10−2 −9.9 × 10−2 −9.8 × 10−2 −9.5 × 10−2

12 ηmax 6.3 × 10−2 6.3 × 10−2 6.5 × 10−2 6.5 × 10−2

ηmin −10.5 × 10−2 −10.5 × 10−2 −10.4 × 10−2 −10.0 × 10−2

20 ηmax 2.3 × 10−2 2.3 × 10−2 2.4 × 10−2 2.4 × 10−2

ηmin −8.1 × 10−2 −8.0 × 10−2 −7.9 × 10−2 −7.6 × 10−2

Fig. 14 Idealised hurricane approaching a linearly sloping coast:
maximum wave height ηmax versus maximum wind speed, max v, for
different drag coefficients (black squares—Weisberg and Zheng, red plus-
ses—Powell, blue xs—Garrat and grey circles—constant. Because of the
close agreement of obtained ηmax, markers overlay

Table 6 Idealised hurricane approaching a linearly sloping coast:
Holland parameters for storms of different sizes/varying RMW

Configuration Δp max ∣v∣
in m s−1

RMW in
km

A B

1a 4600.0 50.0 10.0 50.11 1.7

1b 4600.0 50.0 20.0 162.313 1.7

1c 4600.0 50.0 47.0 695.931 1.7

1d 4600.0 50.0 75.0 1533.171 1.7
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numerical results. Furthermore, as is seen from Table 4,
the maximum wave height does not show a lot of var-
iation depending on different ramp up times and the
maximum variation is found to be 3 × 10−3. Wave gauge
signals, however, detect a small wave at times t ≈ 1 h
for ramp up times below 2 hours. Hence, we chose a
ramp up time of tru of 2 hours for this study.

Table 7 Idealised hurricane approaching a linearly sloping coast:
Maximum wave height for different storm sizes at wave gauge G10

Configuration
1a

Configuration
1b

Configuration
1c

Configuration
1d

ηmax 38.6 × 10−2 48.4 × 10−2 55.2 × 10−2 63.4 × 10−2

Fig. 15 Idealised hurricane approaching a linearly sloping beach:
Simulation results for configuration 1 at time t = 0, midway to landfall
and close to landfall (left to right). Depicted are the current magnitudes of

the uniform (top) and adaptive (top middle) simulation; the adaptive
meshes (bottom middle) and absolute difference between both simula-
tions (bottom)
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4.1.4 Sensitivity with respect to the wind drag parameter cd

Modelling the energy transfer from the atmosphere to the
ocean surface is accomplished through a wind drag parameter
cd (a source term; see also Eq. (8) that couples the external
wind field to the hydrodynamic model). As described in Sect.
2.1.4, several wind drag parameterisations have been devel-
oped in the literature. Exemplarily, we tested the set of four

parameterisations described in Sect. 2.1.4 for configuration 1
in order to determine their influence on maximum wave
heights at wave gauges Gk which we assume a good indicator
for wave run-up at the coast. Table 5 shows maximum and
minimum wave heights for the original configuration 1 at se-
lected wave gauges closest to the storm’s landfall. We repeat-
ed the simulation with all four different wind drag models and
observe merely minor differences of the order of at most 0.5 ×

Fig. 16 Idealised hurricane approaching a linearly sloping beach:
Simulation results for configuration 2 at time t = 0, midway to landfall
and close to landfall (left to right). Depicted are the current magnitudes of

the uniform (top) and adaptive (top middle) simulation; the adaptive
meshes (bottom middle) and absolute difference between both simula-
tions (bottom)
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10−2. The parameter cd = cd(v) depends on the wind speed.
Therefore, we ran configuration 1 with varying maximum
wind speeds max ∣ v ∣ ∈ {15, 25, 35, 45, 55} for every wind
dragmodel. As shown in Fig. 14, we see that the differences in
maximum wave heights ηmax are negligible. In fact, they are,
again, of the order of at most 0.5 × 10−2. Hence, we conclude
that in an idealised model such as the one presented in this

manuscript different wind drag models do not lead to signifi-
cantly different results. This can be explained by the form of
the wind stress τ = ρacd ∥ v∥2v. Using the selected
parameterisations, cd will differ at most by a factor of 2 in
very localised regions of the storm, which does not lead to a
significant increase or decrease in the observed wave heights
close to the coast.

Fig. 17 Idealised hurricane approaching a linearly sloping beach:
Simulation results for configuration 3 at time t = 0, midway to landfall
and close to landfall (left to right). Depicted are the current magnitudes of

the uniform (top) and adaptive (top middle) simulation; the adaptive
meshes (bottom middle) and absolute difference between both simula-
tions (bottom)
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4.1.5 Influence of storm size

The size of a hurricane plays an important role in the
observed flooding. For reasonable storm sizes, a vari-
ability of about 30% in observed surge is reported
(Irish et al. 2008). In the wind model (Holland 1980),
the shape and size of the storm depend on the shape
parameters A and B. These, in turn, depend on the

radius of maximum winds (RMW), the difference be-
tween ambient and central pressure Δp = pn − pc, the
air density ρa and the maximum wind speeds as shown
in Eq. (11). Assuming storm conditions that are repre-
sentative for the 2017 hurricane Ophelia, we simulate
configuration 1 as described above and vary the radius
of maximum winds. According to (Hsu and Yana 1998),
the average radius of maximum winds of hurricanes is

Fig. 18 Idealised hurricane approaching a linearly sloping beach:
Simulation results for configuration 4 at time t = 0, midway to landfall
and close to landfall (left to right). Depicted are the current magnitudes of

the uniform (top) and adaptive (top middle) simulation; the adaptive
meshes (bottom middle) and absolute difference between both simula-
tions (bottom)
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47 km, with a standard deviation of 27 km which is
why we chose to run simulations with the radii stated
in the Table 6. As can be seen, only parameter A varies
with varying RMW if all other conditions are kept fixed
as it describes the radial scaling on the RMW and the
location of the maximum wind relative to the origin. We
measured the maximum wave height at wave gauge
G10—the location at which the synthetic storm made

landfall—and will hence record the maximum surface
elevation ηmax. The results are depicted in Table 7. We
see that with this simple parameterisation, we achieve
measured maximum wave heights with a variability of
about 39%. Given that we tested with parameters resem-
bling hurricane Ophelia for the most part, we conclude
that we are within the range of variability that was
found in (Irish et al. 2008).

Fig. 19 Idealised hurricane approaching a linearly sloping beach:
Simulation results for configuration 5 at time t = 0, midway to landfall
and close to landfall (left to right). Depicted are the current magnitudes of

the uniform (top) and adaptive (top middle) simulation; the adaptive
meshes (bottom middle) and absolute difference between both simula-
tions (bottom)
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4.1.6 Adaptive simulations

Dynamically changing non-uniform meshes as described in
Sect. 2.2 are ideal for simulating localised phenomena at a
reduced computational cost. Since storm wave heights are
strongly influenced by changes in bathymetry as well as the

size and strength of a storm, we define a refinement indicator
ηΩi

to take both of them into account for every element Ωi:

ηΩi
¼ ∇bj jΩi;1

þ vj jΩi;2
: ð12Þ

Using the indicator (Eq. (12)), we achieve a refinement of
the beach or bathymetry gradient as well as the storm position

Fig. 20 Idealised hurricane approaching a linearly sloping beach:
Simulation results for configuration 6 at time t = 0, midway to landfall
and close to landfall (left to right). Depicted are the current magnitudes of

the uniform (top) and adaptive (top middle) simulation; the adaptive
meshes (bottom middle) and absolute difference between both simula-
tions (bottom)
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(see Figs. 15, 16, 17, 18, 19 and 20). Figures 15, 16, 17, 18, 19
and 20 show numerical results for configurations 1–6 on an
adaptive and a uniform mesh. Plotted are the non-uniform
meshes and currents at the initial time, about halfway to land-
fall and close to landfall. We can see that the adaptive and
uniform simulations yield comparable results with small er-
rors in areas of high resolution and slightly larger errors

outside. The refined region in the adaptive simulation com-
prises the entire area close to the coast as well as the cyclone
and with time we see that the refined area resolving the cy-
clone moves with the storm. Some numerical error is observed
which we attribute to the choice of the heuristic refinement
indicator which captures physical features that only indirectly
correlate with numerical error and model sensitivities. This,

Fig. 21 Idealised hurricane approaching a linearly sloping beach: Waterfall plot of wave gauges Gk over time for uniform (black dashed line) and
adaptive (blue solid line). Amplitudes are in m with an offset of 10 · k m for wave gauge Gk

Fig. 22 Idealised dam break:
Domain description with inlet
depicted by a diamond
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however, does not impact the measured wave heights near the
coast. The maximum wave heights measured at gaugesGk are
depicted in Fig. 21 and show good agreement between the
adaptive and uniform simulations. Hence, since our interest
lies in the wave gauge signal, the refinement indicator seems
suitable. Although dynamic mesh refinement adds computa-
tional overhead, this was not found to be significant. For con-
figuration 1 (Fig. 15), the uniform simulation comprised 8192
elements, while the adaptive simulation only used on average:
2714 (and a maximum 3074) elements—a reduction to at least
37.52% of the elements (on average 33.13%). In terms of run
time, the adaptive simulation used about 31.33% of the com-
putational time by yielding quantitatively the same result in
terms of measured wave heights. A similar behaviour can be
observed for all configurations.

4.2 Idealised dam break

In a rectangular domain Ω = [0, 31] × [0,8.3] that is separated
by a wall at x = 4 (see also Fig. 22), two different constant
water levels are prescribed as

h x; 0ð Þ ¼ h1 x≤4
h2 otherwise

�
;

with h1 = 0.6 and h2 = 0.05. We furthermore assume zero ini-
tial velocities u(x, 0) = 0. At time t = 0, a dam break is

simulated by removing the wall between 3.95 ≤ y ≤ 4.35 as
indicated by the diamond in Fig. 22.

To preserve the space-filling curve (SFC) ordering of the
elements and to resolve the narrow inlet, we used the macro-
triangulation depicted in Fig. 23 as an initial mesh for the
uniform as well as adaptive mesh refinement. This comes at
the expense of the time step being limited by the narrowest
element which we will further comment on later in this
paragraph.

We ran the uniform simulation with a CFL number of
0.3 which resulted in a time step of about Δt = 5 · 10−4 and
a total number of elements of 69,632 which corresponds to
a 12 times uniform refinement of the mesh depicted in Fig.
23. Snapshots of the numerical solution at times t = 0, 2,
and 4 on a uniform and adaptively refined mesh are found
in Fig. 24. We observe that a large wave develops from the
inlet and starts travelling across the shallow part of the
domain. Using the fine resolution uniform simulation as a
reference solution, we ran an adaptive simulation, refining
according to momentum maxima, i.e. using a refinement
indicator ηΩi

tð Þ ¼ max
x∈Ωi

ju x; tð Þj. The adaptive mesh com-

prised a finest resolution identical to the uniform simula-
tion but a coarsest resolution resulting from only 8 times
refining the macro-triangulation. The results on the adap-
tive and uniform mesh are virtually indistinguishable. We
can see that the fine mesh area follows the emerging wave

Fig. 23 Idealised dam break:
Macro-triangulation

Fig. 24 Idealised dam break: Snapshots of numerical solution on uniform (top) and adaptive mesh (middle) at times t = 0, 2, and 4 s (left to right), and
corresponding adaptive mesh (bottom)
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and only regions are refined that experience fluid move-
ment. Due to the not uniform macro-triangulation, the re-
gion around the inlet is highly refined, ensuring that flows
are accurately captured. The adaptive mesh comprised on
average 8437 elements which is about 12% of the number
of elements of the uniform simulation. In terms of comput-
ing time, the adaptive simulation only took 30.5% of the
computing time for the uniform simulation—leading to a
cost reduction of almost 70%.

5 Conclusions and future work

In this study, we have developed a discontinuous Galerkin
model on a dynamically adaptive triangular mesh that solves
the fully 2D non-linear shallow water equations for the simu-
lation of coastal flooding and idealised storm surges.

Numerical test cases that we believe to be a good basis for a
test suite that might be useful for storm surge modellers dem-
onstrate that the obtained model is inundation stable due to
advanced slope limiting techniques (Vater et al. 2019) and
maintains important conservation properties such as mass as
well as integrated fluxes as described in Sect. 3.1 for the sim-
ulation of a hypothetical embayment. Moreover, a steady state
is achieved numerically in Sect. 3.2 in which a balance be-
tween pressure gradients and wind stress is simulated. In Sect.
3.3, we show the robustness of the wind forcing and the effect
of Coriolis forcing on wind-induced circulation. We further-
more see that the wind forcing is robust with respect to ramp
up times; hence, no spurious artefacts are introduced.

Finally, in Sect. 4.1, we show the capability of the
model to simulate idealised hurricane storm surge using
the wind parameterisation (Holland 1980), hence making
it suitable for simulation of realistic hurricanes such as the
2008 Atlantic hurricane Ike or the 2017 hurricane
Ophelia. A sensitivity analysis furthermore reveals that
the model is not sensitive to the choice of wind drag
parameterisation or storm ramp up time. The observed
variability of maximum wave heights (and therewith wave
run up) with varying RMW confirms previously published
studies, underlining the capability of the model to yield
realistic results. Most notably, using dynamically adaptive
meshes, we obtain virtually the same signal at wave
gauges close to the beach at significantly less computa-
tional cost: The reduction of computing time was mea-
sured to be up to 70%. Overall, this is to demonstrate that
the developed model is suitable for the simulation of
idealised hurricane storm surge and shows a satisfactory
robustness and accuracy as well as adaptive mesh capa-
bilities that help reduce computing costs significantly.

The same reduction of about 70% could also be shown for
the idealised dam break problem in which we showed that the
mesh is accurately following the emerging waves.

In this study, we have dealt with a number of idealised test
cases and demonstrated the model’s potential to use an adap-
tive mesh for the simulation of hurricane storm surge. The
application of the presented model to more realistic data is
beyond the scope of this paper and will be left for future
research. The results presented, however, allow the conclusion
that the combination of dynamically adaptive mesh refine-
ment with a DG discretisation significantly increase the po-
tential practicality of the model and can be seen as a first
indication of DG methods being a useful tool for the applica-
tion to hurricane storm surge modelling.
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