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ABSTRACT 

During extreme weather conditions such as hurricanes and nor'easters, both 
the currents and wind waves generated by the atmospheric forces are important. 
Although they may act and dominate on different temporal and spatial scales, their 
interactions and combined effects are without doubt significant. In this dissertation, a 
major effort has been made to couple an unstructured grid circulation model SELFE 
(semi-implicit, Eulerian-Lagrangian finite element model) and the WWM II (Wind 
Wave model II). Moreover, this new coupled model system can be executed in a 
parallel computational environment. After the coupled model was successfully built, 
the model was verified with ideal test cases, either through comparisons with analytic 
solutions or with laboratory experiments. It was further validated by field-measured 
data during two hurricane events. 

The SELFE-WWM II model framework described above was used to 
participate in a SURA testbed project that was recently funded by the NOAA IOOS 
program. The purpose was to improve the storm surge and inundation modeling skill 
throughout the Gulf of Mexico as well as along the U.S. East Coast. The coupled tide, 
surge, and wind wave models in two and three dimensions were tested and compared 
systematically. Two well-known cases were investigated in detail. One was the event 
of Hurricane Ike of 2008 in the Gulf of Mexico and the other was the April Nor' easter 
of 2007 in the Gulf of Maine. 

For the Gulf of Mexico study, the key scientific issue is the origin of the 
forerunner. It has long been recognized that the forerunner plays an important role in 
generating large hurricane-induced storm surge in the Gulf of Mexico. The 
forerunner is a phenomenon whereby water level throughout the vast coastal region 
was elevated days before the hurricane makes landfall. The forerunner can contribute 
significantly to the total water level that results subsequently during the primary surge 
when the hurricane makes landfall. The 2008 Hurricane Ike, which devastated the 
Galveston Bay along the Texas Coast, is a good example: 1.4 m out of 4.5 m 
maximum surge was contributed by the forerunner in the Gulf of Mexico. The 
consensus from initial results of multiple models indicates that the forerunner 
occurred as a result of Ekman set-up along the broad Louisiana-Texas (LATEX) shelf 
by the shore-parallel wind field. By contrast, the primary surge was dominated by the 
low pressure and the maximum wind along a path perpendicular to the shore as the 
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hurricane made landfall. It was found that the cross-shore Ekman set-up is highly 
sensitive to the bottom boundary layer (BBL) dynamics, especially to the drag 
coefficient. Given the fact that the Gulf of Mexico is known to be rich in fluid mud, 
and near-bed flows generally are very weak under fair-weather conditions, one 
plausible hypothesis is that, during the stormy condition, the suspended sediment­
induced density stratification is likely to be ubiquitously present at the bottom 
boundary layer. A sediment-transport model and wave-current bottom boundary 
layer sub-model including the sediment-induced stratification effect were coupled to 
the unstructured grid circulation and wind wave model (SELFE-WWM II) for 
simulating the forerunner during Hurricane Ike. The model results demonstrate that 
the bottom boundary layer dynamics have a significant effect on the velocity veering 
as well as the Ekman set-up across the shelf. 

In the GulfofMaine study, the high-resolution coupled SELFE-WWM II 
model was applied in the Scituate Harbor, a small, shallow coastal embayment, south 
of Boston. The key issue for the study was the recurring inundation related to the role 
played by wind waves during nor' easter events. With limited observation data in the 
Scituate, the model result from SELFE was compared with that from FVCOM. The 
major findings are summarized as follows: (1) wind waves generated by the 
nor' easter can profoundly affect the coastal current by increasing the magnitude and 
altering its direction, (2) while the mean water level inside the Harbor stays the same, 
the total transport across the harbor mouth increases when wind waves are included, 
and (3) the total inundation area, primarily in the northern and southern basins within 
the Harbor, does increase when wind waves are included. There is a question as to 
why the inclusion of the wind waves did not cause the mean water level to change 
inside the Harbor while the inundation area was increased. The plausible explanation 
is that this lack of impact could be that the Stokes transport was small and the 
increase of water level by the wave set-up was compensated by the expansion of the 
inundation area in the shallow region. 

Keywords: Gulf of Mexico, Bottom boundary layer, Forerunner, Sediment-induced 
stratification, Geostrophic-controlled surge, Wave-current interaction, Unstructured 
grids, SELFE, WWM II 
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CHAPTER I. Introduction 

1.1 Background and significance 

Storm surge is defined as an abnormal rise of sea level accompanying tropical 

or extratropical storms, and whose height is the difference between observed sea level 

and the level that would have occurred in the absence of the storms (National 

Hurricane Center, NWS, 2009). The five distinct processes that can alter the water 

level in tidal water regions are: (a) the pressure effect, (b) the wind effect, (c) the 

Coriolis force effect, (d) the effect from waves, and (e) the effect by rainfall (Harris, 

1963). 

An extratropical storm (mid-latitude storm) such as a nor'easter is a type of 

macro-scale storm that moves along the East Coast of the United States and the 

Atlantic Canada. It differs from a tropical cyclone in that a nor'easter is a cold-core 

low-pressure system that forms in the middle latitudes and thrives on cold air, while a 

tropical storm is a warm-core low pressure system developed in the tropics. 

Nor'easters may occur at any time of the year but are mostly known for their 

formations in the spring and winter seasons. These extratropical storms usually 

develop between Georgia and New Jersey within I 00 miles of the coastline, and are 

drawn across to the northeast by the jet stream. They usually strengthen while moving 

to the north, and reach peak intensities while off the Canadian Coast, with the 
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strength sometimes equaling that of tropical storms. During a typical nor' easter, the 

temperature usually falls significantly, indicating the presence of cold air. High wind 

gusts and heavy precipitation are also associated with a nor'easter, which can cause 

severe floods to the coastal areas (Gao, 2011). The 2007 Patriot's Day Nor' easter and 

2009 Mid-Atlantic Nor' easter are good examples of extratropical storms that caused 

dramatic storm surge and coastal inundation to the Gulf of Maine areas and the 

Chesapeake Bay coastal areas, respectively. 

In contrast, tropical storms (hurricanes or typhoons) are smaller and more 

intense than extratropical storms (mid-latitude storms) and more difficult to predict in 

atmospheric models since they require very high resolution (Emanuel et al., 2008). 

Their impact within coastal regions can be more devastating, especially if they make 

landfall in areas with high population density. High tides, coastal surges driven by 

atmospheric pressures and winds, and wave set-up induced by wave-breaking can all 

contribute to their destructive power and cause severe coastal flooding. 

The coastal inundation caused by storm surge along the U.S. Atlantic and Gulf 

Coasts has been a great threat to residents' properties, communities' infrastructures, 

and human life, as well as to the coastal ecosystem. For example, in the States, the 

City of New Orleans is still recovering from Hurricane Katrina that occurred in 2005. 

It was the sixth strongest Atlantic hurricane in history and the third strongest on 

record to make landfall in the States. The most severe loss of life and damage of 

properties occurred in New Orleans, Louisiana, which was flooded as the levee 

system catastrophically failed several hours after the storm had moved inland (United 
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States Congress, 2006). Another example was during the 2008 Atlantic hurricane 

season, when a hundred people were killed by four consecutive tropical cyclones 

(Fay, Gustav, Hanna, and Ike) in August and September. The 2008 season was very 

destructive, with over 50 billion U.S. dollars in damage, mostly during Hurricane Ike, 

which was the most destructive storm in 2008. This hurricane made landfall near 

Galveston, Texas, at a Category 2 intensity and caused a particularly devastating 

storm surge due to its size and path. 

In order to reduce the loss of human life and the damage to properties caused 

by storm surge associated with coastal inundation in the near-shore area, many 

numerical models have been developed to give an early warning of storm surge and 

inundation in different areas (Blumberg and Mellor, 1987; Flather et al., 1991; 

Luettich et al., 2002; Jelesnianski et al., 1992; Westerink et al., 1994; Zhang et al., 

2008a). For example, the Sea, Lake, and Overland Surge from Hurricane (SLOSH) 

model developed by the National Oceanic and Atmospheric Administration (NOAA) 

(Jelesnianski et al., 1992) partitions the U.S. East Coast and Gulf Coast into more 

than 30 overlapping basins (Glahn et al., 2009). Additionally, in order for a structured 

grid model such as SLOSH to cover a large area and maintain the fine resolution near 

the coast without losing computational efficiency, a polar, elliptical, or hyperbolic 

grid with gradually varying cell size is usually chosen to represent the model domain. 

This allows the model grid to cover a basin extending from the inland areas possibly 

flooded by storm surge to the deep water 200 km to 250 km offshore. Due to the 

shape of the grid cell, the structured grid model is often inadequate to represent 
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complex shoreline geometry and the ship channel in the waterway. Moreover, the 

inflexibility of the grid size further limits its capability to cover a sufficiently large 

domain to account for the remote effect (Blain et al., 1994; Shen and Gong, 2009). 

To properly resolve the complex geometry that results from artificial 

structures along the shorelines, ADCIRC, the second - generation storm surge model, 

was built by using a continuous Galerkin finite element numerical scheme and a 

generalized wave continuity equation (GWCE) to render a smooth, noise-free, 

dampened solution. It uses the unstructured grid to resolve the complex coastline and 

the bathymetry of shallow water, and employs a large domain with an offshore 

boundary 1800 km in length and extending to longitude 60 degrees W, covering the 

entire U.S. East Coast and the Gulf of Mexico. Overcoming some of the shortcomings 

of SLOSH, ADCIRC was able to attain some success on large scale tide, storm surge, 

and inundation simulation (Blain et al., 1994; Westerink et al., 1994). 

Another considerable issue of storm surge simulation is the uncertainty in 

forecasting wind and pressure fields driving storm surge models (Zhong et al., 2010). 

On the temporal scale, the longer the forecast period is, the larger the uncertainty for 

the predicted wind. On the spatial scale, all coastal areas that are influenced by the 

storm need to be covered in the surge model grid. A fine-resolution atmospheric 

model grid covering the entire East Coast and Gulf Coast is ideal. However, it is not 

feasible to run the model over a large domain with a fine-resolution grid covering the 

entire U.S. East Coast and Gulf Coast due to the limitation of computation power 

required to solve the numerical algorithms. Thus, an ensemble approach using 
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products from several different atmospheric models and mixed spatial resolutions (i.e. 

a coarse grid in the open ocean and fine resolution along the coast) is optimal (Xu et 

at., 2010). 

In recent years, due partly to Hurricane Katrina's damage in New Orleans, and 

partly to the potential increase in the strength and frequency of hurricane and sea 

level rise associated with climate change, there has been a renewed interest for further 

improving accuracy, robustness, and reliability of the storm surge and inundation 

models. This interest will need to be accompanied with a better understanding ofthe 

physical processes and advances in operational capability for real-time prediction 

(Valle-Levinson et al., 2002; Wang et al., 2005; Bernier and Thompson, 2006; Li et 

al., 2006; Kohut et al., 2006; Weisberg and Zheng, 2006, 2008; Shen et al., 2006a, 

2006b, 2009; Gong et al., 2007, 2009; Xie et al., 2008; Shen, 2009; Shen and Gong, 

2009; Dietrich et al., 201 0; Rego and Li, 201 Oa, 201 Ob; Xu et al., 201 0; Bertin et al., 

2012; Kennedy et al., 2011). 

In terms of the total water level, a broad energy spectrum exists in oceans, 

with wave periods ranging from seconds to months. Short waves, such as wind-driven 

waves and swell, have periods that range from 0.5-25s. Longer waves, such as 

seiches, tsunamis, storm surges, and tides, have periods that range from minutes to 

months. These short and long waves are well-separated in the energy spectrum and 

have well-defined spatial scales. These separations lead to distinct modeling 

approaches, depending on whether the associated scales can be resolved. For the 

oceanic scale, short wave models cannot resolve spatially or temporally the individual 
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wind-driven waves, and thus they treat the wave field as an energy spectrum and 

apply the conservation of wave action density to account for wave-current 

interactions. Although wind-driven waves and circulation are separated in the 

spectrum, they can interact (Peregrine and Jonsson, 1983). For example, waves may 

affect the generation of surges by affecting sea surface roughness. Janssen (1989, 

1991) introduced the concept of wave stress in which wave age affects the sea surface 

roughness and implemented it in the WAM model (The Wamdi Group, 1988). It 

should be pointed out here that, although the wind stress can be modeled empirically 

very successfully through wind speed and wave age, the actual process of transfer of 

momentum and energy from the atmosphere to the sea via wind waves is still not 

fully understood (Janssen, 2004). Wave action can also enhance the bottom friction 

experienced by currents in shallow water regions as discussed, e.g. Grant and Madsen 

(1979). Water level (including tide and surge) and currents affect the propagation of 

waves and the location of wave-breaking zones. Conversely, the effect of rapidly 

oscillating surface wind waves on currents is manifested through the provision of 

additional momentum and mass flux to the mean flows. It is usually accommodated 

by averaging the rapid oscillations over longer time scales and provides a mechanism 

for the inclusion of the so-called wave effect on current (WEC). The tenns 

corresponding to WEC in the mean flow equations can be represented as the gradient 

ofradiation stress (Longuet-Higgins and Stewart, 1964) or as vortex force (VF, Craik 

and Leibovich, 1976). The radiation stress is defined as the flux of momentum due to 

surface gravity waves. Wave transfonnation generates radiation stress gradients that 
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drive set-up and currents. However, the VF representation splits the wave-averaged 

effects into gradients of a Bernoulli head and a vortex force. The Bernoulli head is an 

adjustment of pressure in accommodating incompressibility (Lane et al., 2007), while, 

after wave averaging, the vortex force is a function of wave-induced Stokes drift and 

flow vorticity. Wind-driven waves affect the vertical mixing and bottom friction that, 

in tum, affect the circulation. Also high-wave events have combined with massive 

flooding (e.g., New Orleans during Hurricane Katrina in 2005) and have warranted 

attention in recent years. Thus, in many coastal applications, waves and circulation 

processes should be coupled (Funakoshi et al., 2008; Bunya et al., 201 0; Dietrich et 

al., 2010). 

The coupling of wave and circulation models has been implemented typically 

with heterogeneous meshes (Bunya et al., 20 I 0). A coupling application may have 

one unstructured circulation grid and several structured wave meshes, and the models 

may pass information via external files. This so-called "loose" coupling is 

disadvantageous because it requires intra-model interpolation at the boundaries of the 

nested, structured wave grids and inter-model interpolation between the wave and 

circulation grids. Recently, a new generation of wind wave model (WWM) was 

developed, which solves the Wave Action Equation on spatially unstructured grids 

(Hsu et al., 2005; Roland, 2009). This unstructured wind-wave model allows direct 

coupling with the circulation model. The original version of the WWM (Hsu et al., 

2005) utilizes the Crank-Nicolson scheme, and for the solution of the W AE (wave 

action equation) in geographical space, the CNTG (Crank-Nicolson Taylor-Galerkin) 
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FEM (Finite Element Method) has been implemented into the WWM. The above­

mentioned schemes are non-monotone and result in oscillations when strong gradients 

in the solution are present. In order to remedy this behavior, alternative numerical 

schemes have been implemented into the WWM II. Since the WWM II employs a 

Residual Distribution method for the discretization of the model area (unstructured 

mesh), resolution can be enhanced near-shore and relaxed in deep water, allowing the 

model to simulate the wave evolution efficiently (Roland et al., 2012). 

Given that the U.S. East Coast and Gulf Coast are regions that are constantly 

under threat by tropical and extratropical storms, it is highly desirable to develop a 

super-regional storm surge and wind wave model that is robust, reliable, and accurate 

and that can be coupled operationally with ensemble atmospheric forcing for coastal 

inundation prediction. There are several models, such as ADCIRC+SWAN or 

FVCOM+SW AVE, that are being developed to reach these goals. However, the 

operability and scalability are still the key issues. My dissertation will be focusing on 

cooperating with faculty members between VIMS and the Center for Coastal Margin 

Observational and Prediction, Oregon Health and Science University, in developing a 

computationally efficient numerical model named Eulerian-Lagrangian Circulation 

(ELCIRC, Zhang et al., 2004) and semi-implicit, Eulerian-Lagrangian finite element 

model (SELFE, Zhang et al., 2008). ELCIRC and SELFE have had some successes 

recently in casting the model domain in spherical coordinates and implementing on an 

MPI parallel computational platform, features that are extremely important for a 

large-scale super-regional model. A major effort of my dissertation will be to jointly 
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develop an unstructured grid storm surge model coupled with wind waves and inland 

inundation, and apply tests in three different regions under realistic tropical and 

extratropical storms. These four tests include (I) Chesapeake Bay under 2003 

Hurricane Isabel, (2) Hurricane Ivan (2004) in the Gulf of Mexico, (3) Louisiana and 

northern Texas (LATEX) coasts under 2008 Hurricane Ike, and (4) New England 

under the 2007 Patriot's Day Nor'easter. Important processes of current-wave 

interactions such as (I) wave-induced radiation stress, (2) wave-enhanced surface 

stress, and (3) wave-enhanced bottom stress will also be investigated and elucidated 

in detail in this dissertation. 

1.2 Objectives 

The overall objective of this study is to develop an efficient, reliable, and 

accurate storm surge model coupled with wind waves and inland inundation, and is 

capable of being applied in multiple regions for tropical and extratropical storms. 

Tropical storm surge will be validated by the 2003 Hurricane Isabel in Chesapeake 

Bay and the 2004 Hurricane Ivan and the 2008 Hurricane Ike in the Gulf of Mexico; 

extratropical storms will be validated for the 2007 Patriot's Day Nor' easter in the Gulf 

of Maine. In this study, a state-of-the-art, unstructured grid, semi-implicit, Eulerian­

Lagrangian, finite element model with parallel computing capability (SELFE) will be 

jointly developed and applied for modeling tides, storm surge, wind wave, and the 

resulting inundation along the U.S. East and Gulf Coasts and for tropical and 

extratropical storms. The specific objectives of this study are: 
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1. To develop a super-regional model covering the entire U.S. East Coast and 

Gulf of Mexico with the computationally efficient model SELFE capable of 

predicting storm surge and inundation. 

2. To employ wind data and simulate four cases of storm surge, including (I) the 

2003 Hurricane Isabel in Chesapeake Bay, (2) the 2004 Hurricane Ivan in the 

Gulf of Mexico, (3) the 2008 Hurricane Ike in the Gulf of Mexico, and (4) the 

2007 Patriot's Day Nor' easter in the Gulf of Maine. The model results will be 

compared with observation data to examine the prediction capability of our 

super-regional model. 

3. To demonstrate the importance of the inclusion of the wave-circulation 

interaction by employing the integrated SELFE+WWM II model. 

4. To identify the wave effects (wave-induced radiation stress, wave-enhanced 

surface stress, and wave-enhanced bottom stress) on storm surge by using the 

fully coupled mode compared with the decoupled mode. 

5. To identify the influence of wave-current interaction on inland inundation. 

The outline of this dissertation is as follows: 

In Chapter 2, details of the coupled hydrodynamic model SELFE and the 

Wind Wave Model WWM II are described, including the governing equations, 

treatment of surface and bottom boundary conditions, parameterization of turbulence 

vertical mixing, wet and dry scheme, Coriolis force, tidal potential, and total source 

term in the wave action equation. The physical mechanics of their coupling, such as 
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wave-induced radiation stress, wave-enhanced surface stress, and wave-enhanced 

bottom stress, are also introduced. 

In Chapter 3, the coupled model is then validated using two analytical and 

several laboratory tests, followed by two field tests of Hurricanes Isabel (2003) and 

Ivan (2004). In all cases, the coupled model is shown to be able to qualitatively and 

quantitatively capture the important physical processes for wave-current interaction at 

a modest cost. The parallel performance of our coupled model is also evaluated in this 

chapter. 

The storm surge simulations of 2008 Hurricane Ike are described in Chapter 4, 

and results are presented and analyzed here. Before that, the coupled model is 

calibrated using a harmonic tide at its open boundary. Then atmospheric forces such 

as air pressure and winds are included for the storm surge and inundation simulations. 

Model surge results are compared to NOAA water level observations for storm surge 

evaluation, and model wave characteristics are compared with NDBC buoy records. 

Additionally, more effort is made to investigate the effect of sediment stratification 

on the bottom boundary layer as well as the forerunner surge, which caused severe 

coastal inundation 24 hours before landfall during Hurricane Ike in the northern Gulf 

of Mexico. 

The modeled surge and inundation results of the 2007 Patriot's Day 

Nor' easter in the Gulf of Maine are presented in Chapter 5 to investigate the effects 

of wave-current interactions on the storm surge and coastal inundation. Specifically, 

we are interested in the contribution of waves to the peak storm surge as well as the 
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changes in the inundations and drying areas in Scituate Harbor during the 2007 

Patriot's Day Nor' easter. 

Chapter 6 summarizes the work being done in this study, and gives a final 

conclusion and discussion. 
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CHAPTER II. Development of fully coupled 3D wave-current interaction model on 

unstructured grid 

2.1 Introduction 

The interaction of ocean waves and currents is a rapidly evolving research 

topic and is shown to be of importance for various applications. Examples of this are 

SST predictions (e.g. Janssen, 2010), suspended sediment transport in the coastal 

regions, where surface currents are strongly influenced by Stokes' drifts due to wave 

motion, and storm surge and inundation simulations, where waves can have a 

significant contribution to the total water levels (Warner et al., 2008; Bennis and 

Ardhuin, 2011 ). 

The nonlinear interaction between long-period "currents" (e.g. tidal 

circulation) and short-period (<30 sec) "waves" plays an important role in the near­

shore region (so-called surf zone), through at least the following mechanisms: (1) the 

wave-induced momentum flux via radiation stress, which was originally derived by 

Longuet-Higgins and Stewart (1962, 1964) and later expanded for 30 flows by 

Mellor (2003, 2005, 2008, 2011a, b) and Xia et al. (2004); the more sophisticated 

"vortex-force" formalism was discussed by McWilliams et al. (2004); Ardhuin et al. 

(2008); and Uchiyama et al. (2010); (2) wave-induced surface roughness, stress, and 

surface mixing (e.g., Janssen, 1989, 1991, 2001; Craig and Banner, 1994); (3) wave­

induced bottom stress in shallow waters (Grant and Madsen, 1979, hereafter GM79; 
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Xie et al., 2001, Zhang et al., 2004). Other important mechanisms include the Stokes' 

drifts generated by the wave (Ardhuin et al., 2009; Bennis and Ardhuin, 2011 ). 

However, the interaction of wind-generated waves with the ocean currents is still a 

very active research area since some of the underlying processes are still not fully 

understood. For example, there is no consistent derivation of the wave action equation 

(WAE) on vertical shear currents available so far (although traces can be found in 

Lavrenov (2004 ); a full elaboration of wave growth on vertically sheared currents 

needs a careful derivation starting from basic principles). 

The new advancements in the theoretical framework notwithstanding, the 

ultimate validation of the new wave-current interaction formulations needs to be 

carried out with a realistic and consistent numerical model at contrasting scales 

ranging from O(lm) to 0(1000km) and beyond (e.g., global wave climate). Several 

fully coupled wave-current models have been proposed in the past decade (Xia et al., 

2004; Xie et al., 2001; Warner et al., 2008; Uchiyama et al., 2010), most ofwhich are 

based on structured-grid formulation due to its inherent simplicity. However, in the 

nearshore zone, the geometry and bathymetry are so complex and the unstructured­

grid technique (Dietrich et al., 2011a) is needed to present the critical features such as 

levee systems along the coastal regions. The advantages of using unstructured-grid 

coupled models as well as the relative merit of each unstructured-grid model 

(ADCIRC+SWAN, FVCOM+SW AVE, and the present SELFE+WWM II, which is 

used in this study) are being carefully investigated in a NOAA/IOOS-sponsored 
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project for the U.S. East Coast and Gulf of Mexico regions (SURA/inundation 

project, 2011). 

In this chapter we introduce a new community-driven, parallel, and innovative 

numerical framework that can be utilized to study the wave-current interaction 

processes based on unstructured meshes in geographical space. We shall only 

introduce the basic numerical building blocks that pave the way for future 

development in this field. In particular, we have coupled the wind wave model 

(WWM II, Roland, 2009) to the ocean circulation model SELFE (Zhang and Baptista, 

2008a), accounting for the wave-induced momentum flux from waves to currents, 

based on the radiation stress formulations according to Longuet-Higgins and Stewart, 

1964, Xia et al., 2004, and Mellor, 2003 (currently we are also working on the vortex 

force formalism based on Ardhuin et al., 2011), the wave boundary layer (WBL) 

according to Grant and Madsen, 1979, surface mixing following Craig and Banner, 

1994, and the current-induced Doppler shift for waves (Komen et al., 1994 ). 

The new model is suitable for the study of the combined wave-current action 

in super-regional scale applications. The current model is based on SELFE, originally 

proposed by Zhang and Baptista (2008a) and applied by many others (Burla et al., 

2010; Bertin et al., 2009; Brovchenko et al., 2011; Bruneau et al., 2011). As a 30 

hydrodynamic model with unstructured triangular grid cells in the horizontal and 

hybrid terrain-following S-Z coordinates in the vertical, SELFE uses an efficient 

semi-implicit time stepping in conjunction with an Eulerian-Lagrangian method 

(ELM) to treat the advection. As a result, numerical stability is strongly enhanced and 
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the errors from the "mode splitting" method are avoided; in fact, the only stability 

constraints are related to the explicit treatments of the horizontal viscosity and 

baroclinic pressure gradient, which are much milder than the stringent CFL condition. 

The default numerical scheme is 2"d -order accurate in space and time, but optional 

higher-order schemes have been developed as well (e.g., the dual Kriging ELM 

proposed by LeRoux et al., I997). The model also has the capacity to calculate 

wetting and drying in a natural way, and has been rigorously benchmarked for 

inundation problems (Zhang and Baptista, 2008b; Zhang et al., 20 II; NTHMP, 20 II). 

As an open-source community-supported model, SELFE has been well-demonstrated 

to be accurate, efficient, robust, and flexible, with a wide range of applications from 

general circulation (Brovchenko et al., 20 II), tsunami inundation (Zhang et al., 

20II), storm surge (Bertin et al., 20I2), ecology (Rodrigues et al., 2009), oil spill 

(Azevedo et al., 2009), and water quality studies (Teng et al., in prep.). 

For realistic applications, phase-averaged wave models (so-called spectral 

wave models) have the advantage of simulating sea state in an efficient way (Komen 

et al., 1994). The wave model we adopt in this study is the Wind Wave Model II 

(WWM II), which is based on the source code by Hsu et al. (2005) but has been 

overhauled by Roland (2009) in nearly all aspects of numerical schemes, physics, 

robustness, and the efficiency to its present version. The WWM II incorporates the 

framework of residual distribution schemes (Abgrall, 2006) within a hybrid fractional 

splitting method utilizing third-order Ultimate Quickset schemes in spectral space, as 

also used by Tolman (1992) in the Wave Watch III (WWIII) model, and robust and 
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accurate integration of the source tenns based on a multiple splitting technique using 

TVD Runge-Kutta schemes for shallow water wave-breaking and bottom friction, 

dynamic integration of the triad interaction source tenn, and semi-implicit integration 

of the deep water physics. 

The WWM II model has previously been coupled to the SHYFEM (Shallow 

Water Finite Element Model, Umgiesser et al., 2004) and shown to be efficient in a 

variety of applications ranging from the Lagoon of Venice (Ferrario et al., 2008), the 

Adraitic Sea, and the Gulf of Mexico (Roland et al., 2009). Moreover, it was 

successfully applied by Babanin (2011) in a multi-scale application in the South 

China Sea in order to investigate typhoon-induced waves in the vicinity of Taiwan. 

The numerical schemes for the advection of wave action in geographic space 

in WWM II have also been successfully exported to the WWIII model and 

demonstrated to be accurate and efficient in several studies (Ardhuin et al., 2009, 

2010; Ardhuin and Roland, 2012). 

The work described in this chapter is a logical continuation from previous 

efforts, and further integrates WWM II into a current model such as SELFE that is 

fully parallelized with a domain decomposition method. The wave and current models 

have been tightly coupled, with WWM II written as a routine inside SELFE. In 

addition, the whole system has been parallelized via domain decomposition and 

Message Passing Interface (MPI); the two models share the same sub-domains but 

may use different time steps and a different integration strategy such as quasi-steady 

integration in theW AE in order to maximize efficiency. 
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At this stage of the development, the physical model for wave-current 

interaction is based on some relatively simple formulations of the underlying 

processes mentioned above. We show the capabilities as well as the limitations of this 

approach in different validated cases and indicate in this way the clear necessity for 

the implementation of a consistent theoretical framework developed in this field 

(Bennis and Ardhuin, 20 II). 

In this chapter, we present the details of each model and the coupling strategy. 

In Section 2.2, the descriptions of formulations for the current model, including 

governing equations, treatment of bottom and surface boundary conditions, 

turbulence closure model, wetting and drying scheme, Coriolis force, and tidal 

potential are presented. In Section 2.3, the details of the wind wave model, such as 

the governing equations and the physical formulations for source terms, are 

described. The details of coupling strategy are presented in Section 2.4. 

2.2 Hydrodynamic (current) model 

2.2.I Basic equations 

The SELFE (Semi-implicit Eulerian-Lagrangian Finite Element) model 

developed by Zhang and Baptista (2008a) is used to simulate the storm surge and 

inundation caused by hurricanes and nor'easters in this study. The model is governed 

by the three-dimensional shallow-water equations with the Boussinesq 

approximation, and transport equations for salt, heat, and tracers. The equations are 
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solved for free surface elevation, water velocities, salinity, and temperature of the 

water in a Cartesian coordinate system that has an eastward x -axis, a northward y-

axis, and an upward z-axis, written as follows (Zhang and Baptista, 2008a): 

" .... + aw 0 v·u -= az 

011 +'V·f11 udz=O ot -h 

nil ... " 1 a ( a;) u f'~~ .... -=f-g'VTf+ag'VqJ--'VPA+- v- -- 'Vpd(+'V·(Jl.'VU) 
Dt Po az az Po z 

ns a ( as) . - = - K - + preczp. -eva. 
Dt az h az 

DT o (K oT) + Q 
Dt = az h az PoCp 

ap 
-= -Po9 oz 

where 

t: time [s]; 

x, y, z: Cartesian coordinates [m]; 

ll(X, y, t): free surface elevation [m]; 

'V: horizontal gradient (:x, :) [m-1
]; 

u: Cartesian horizontal water velocity components (u, v) [m s-1
]; 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 



w : vertical velocity [m s"1
]; 

h(x, y): bathymetric depth [m]; 

f: Coriolis parameter [s-1
]; f = -fk xu; 

g :acceleration of gravity [m s"2
]; 

~ :tidal potential [m]; 

a : effective Earth elasticity factor (0.69); 

p(x, y, t): water density [kg m·3]; 

Po: reference water density [kg m"3
]; 

P A(X, y, t) : atmospheric pressure at the free surface [N m"2
]; 

S, T : salinity and temperature of the water (psu, 0 C); 

v, Kh :vertical eddy viscosity and horizontal eddy viscosity [m2 s·1]; 

K: vertical eddy diffusivity, for salt and heat [m2 s"1
]; 

Q: rate of absorption of solar radiation [W m·1
]; 

Cp: specific heat of water [J kg-1 K 1
] 
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The differential equation system for Equations (2.1) to (2.5) is closed with the 

hydrostatic approximation (Equation (2.6)), equation of state, parameterizations for 
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horizontal and vertical mixing via turbulence closure equations, and appropriate 

initial and boundary conditions. 

2.2.2 Initial and boundary conditions 

Initial conditions 

The governing equations presented in Section 2.2.1 require, in general, the 

initial condition (for elevation, velocities, salinity, and temperature) to start the 

model. Since only the barotropic mode is invoked for storm surge and inundation 

simulation, the initial condition applied is the "no motion" condition and the model is 

"spun up" by the tidal elevation specified at the open boundary using a ramp-up 

function. The ramp-up function being used is a hyperbolic tangent function and the 

duration is 1 day. For a super-regional scale domain, the tidal potential forcing also 

needs to be turned on. 

Vertical boundary conditions 

Vertical boundary conditions for the original horizontal momentum equations 

without wind wave effects are described in this section. At the sea surface, the 

internal Reynolds stress is balanced by the applied shear stress. A bulk aerodynamic 

algorithm developed by Zeng et al. (1998) is used to account for ocean surface fluxes 

under various conditions of stability of the atmosphere. The balance between the 

internal Reynolds stress and the parameterized surface shear stress is shown as 

follows: 

(2.7) 
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1 

where pa is the air density [kg m-3
], IWI = (Wx2 + W/)2, Wx and Wy are the 

horizontal components of wind velocity at 10 m above the sea surface [m s-1
], and 

C0 s is the wind drag coefficient (without wind wave effects) based on the following 

equation (Smith, 1980; Pond and Pickard, 1998): 

-3 -Cos = 10 (0.61 + 0.063IWI) (2.8) 

Eq. (2.8) shows that Cos is in the form of a linear function with constant values 

outside the range. 

Because the bottom boundary layer is usually not well-resolved in ocean 

models, the no-slip boundary condition at the sea bottom (u = v = 0) is replaced by a 

balance between the internal Reynolds stress and the bottom frictional stress, 

(2.9) 

where Cob is the bottom drag coefficient without the wave effect. Typically the 

bottom drag coefficient varies in space and also temporal scales and, thus, site-

specific calibration is often required. Instead of using a constant drag coefficient Cob 

for the entire domain, a logarithmic law is often applied to calculate the spatially 

varied Cob by specifying the local bottom roughness (in meters) at each node. The 

latter requires a rather finer discretization of the bottom in the model vertical grid to 

get good estimations of Cob· The coefficient estimated by the logarithmic law is given 

as follows: 

(2.1 0) 
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where K = 0.4 is the von Karman constant, Zb is the height from the bottom to the top 

of the bottom computational cell, and Zo is the local bottom roughness. 

2.2.3 Turbulence closure model 

SELFE uses the Generic Length Scale (GLS) turbulence closure through the 

General Ocean Turbulence Model (GOTM) suggested by Umlauf and Burchard 

(2003; 2005), which encompasses most ofthe 2.5 closure schemes [k-£ (Rodi, 1984); 

k-{l) (Wilcox, 1998); Mellor andY amada, 1982]. Under this framework, the transport, 

production, and dissipation of the turbulence kinetic energy (k) and of a generic 

length-scale variable ('I') are expressed by: 

!!!f.=!._ (vljl oK) + vM2 + JJ.N2 - E 
Dt oz k oz (2.11) 

(2.12) 

where 

v~, vljl: vertical turbulent diffusivities; 

cljll• cljl 2, cljl3 : model-specific constants (Umlauf and Burchard, 2003; Zhang et al., 

2004); 

Fw : wall proximity function; 

M, N: shear and buoyancy frequencies; 

E: dissipation rate; 
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The generic length-scale is defined as: 

(2.13) 

where c~ = m, l is the turbulence mixing length, p, m, and n are constants and lead 

to the different closure models mentioned above. Therefore, vertical viscosities and 

ditfusivities that appear in Equations (2.3) to (2.5) are related to K, l, and stability 

functions and can be defined as follows: 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

where u: and uljl are the Schmidt numbers, and stability functions, Sm and sh, are 

given by an Algebraic Stress Model (Kantha and Clayson, 1994; Canuto et al., 200 I; 

Galperin et al., 1988). At the free surface and at the bottom of oceans, the turbulent 

kinetic energy and the mixing length are specified as Direchlet boundary conditions: 

(2.18) 

(2.19) 

where Tb is a bottom frictional stress, K 0 is the von Karman constant (0.4), BI is a 

constant, and db and ds are the distances to the bottom and free surface, respectively. 
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The more detailed descriptions of the turbulence model in SELFE can be found in 

Zhang and Baptista (2008a). 

2.2.4 Wetting and drying algorithm 

The inundation scheme used in SELFE is natural and relatively 

straightforward. At the beginning of each computing time step, the interfaces between 

wet and dry regions are computed. Then, at the end of this time step, each node on the 

interfaces is examined in order to determine if the "shorelines" need to be advanced 

or retreated. The interfaces are then updated and the process is repeated until new 

interfaces are found. The procedure for the wetting and drying scheme used in SELFE 

can be simplified as follows: 

1. Compute wet and dry interfaces (rn) at time step n (Fig. 2-1 a); 

2. At the end of time step n + 1, go through and examine all interfacial nodes on 

rn. If a node (e.g. node A) is surrounded by wet elements (with all nodes 

being wet-based on the newly computed elevation (h + 11 > ho, where ho is a 

small positive number used in the code in lieu of zero in order to avoid 

underflow)), the local interface line (or "coastline") is advanced into the dry 

region, and the velocity at the center of the dry side is calculated as the 

average of the adjacent sides (Fig. 2-1 b); 

3. Update interfacial lines based on the computing results from step 2, and iterate 

until the final "coastlines" at the step n +I (rn+l) are found (Fig. 2-lc); 
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4. Go through all nodes on rn+1, and constant extrapolation of the elevations is 

calculated into the dry region (e.g., elevation(A") = elevation(A')) if the total 

volume flux from the adjacent sides on the interface is into the dry region 

(Fig. 2-1 d). 

Note that step 4 is similar to the extrapolation strategy in Titov and Synolakis 

(1995), and is an efficient way to smooth numerical instabilities commonly found 

near the interfaces; otherwise the large elevation gradients near the interface would 

lead to unrealistically large velocity. 

2.2.5 Coriolis force and tidal potential 

The earth rotation is represented through the Coriolis acceleration in the 

momentum equations. The Coriolis parameter, f, is a sine function oflatitude, q>: 

f(cp) = 20 sincp (2.20) 

where n = 7.29 x lo-s rad s-1 is the angular velocity of the earth rotation. The ~­

plane approximation is used to minimize coordinate inconsistencies that are produced 

by Cartesian coordinates in a super-regional domain. Hence, 

(2.21) 

where subscript C denotes the mid-latitude of the domain and ~ is the local derivative 

of the Coriolis factor f. 

In order to simulate the super-regional scale tide, the tidal potential, caused by 

the marine tides and small periodic deformations of the entire solid body of the 

planet, is defined following Reid ( 1990): 
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</)(<p,A, t) = Ln,j Cjn/jn(to)Lj(<p) COS [21r~j~to) + j.A + Vjn(to)] 

where 

(2.22) 

Cjn :constant characterizing the amplitude oftidal constituent n ofspeciesj 

o=o, declinational; j== 1' diurnal; j==2, semi-diurnal); 

t0 : reference time; 

/jn(t0 ) :time-dependent nodal factor; 

Vjn(t0 ) :time-dependent astronomical argument 

Li ( <p) : species-specific coefficients 

(L0 = 3sin2 <p; L1 =sin (2<p), L2 = cos 2 <p); 

7jn : period of constituent n of species j. 

2.2.6 Numerical algorithm and new features of SELFE 

Numerical algorithm 

A detailed numerical algorithm of SELFE is well-described in Zhang and 

Baptista (2008a). The key features ofSELFE are presented as follows: 

1. SELFE solves the differential equation system with finite-element and finite 

volume schemes by using a semi-implicit method (Casulli and Walters, 2000). 

2. The advection is solved with the Eulerian-Lagrangian method (ELM) in the 

momentum equations. 
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3. SELFE treats the advection terms in the transport equations either with the 

ELM, the finite-volume upwind (FVUM), or the high-order Total Variation 

Diminishing (TVD) scheme. 

4. Horizontally, unstructured triangular grid cells are used in SELFE (Fig. 2-2), 

the orthogonality of the horizontal grid is not necessary since finite element 

discretization is used. In the vertical grid, SELFE uses hybrid-vertical 

coordinates, which means partly terrain-following S-coordinates and partly Z­

coordinates (Fig. 2-3a and 2-3b). 

SELFE solves Eqs. (2.2) and (2.3) simultaneously using a semi-implicit 

scheme with ELM treatment of advection in Eq. (2.3). A Galerkin finite-element 

scheme is applied to Eqs. (2.2) and (2.3), resulting in a positive-definite, symmetric, 

and sparse matrix that can be solved with an efficient iterative solver such as the 

Jacobi Conjugate Gradient Method (Zhang and Baptista, 2008a). In SELFE, linear 

shape functions are used as weighted functions. Since SELFE uses linear shape 

functions for the elevations, the two components ofthe horizontal velocity are solved 

from the momentum equation independently from each other after the elevations are 

found. After the elevations are found at all nodes, SELFE solves the momentum Eq. 

(2.3) along each vertical column at side centers. The pressure gradient and the vertical 

viscosity terms are treated implicitly, and other terms treated explicitly. After the 

velocities at all sides are determined, the velocity at each node is computed by a 

weighted average of all surrounding sides in its ball, and evaluated by proper 

interpolation in the vertical. Alternatively, the velocity at a node can also be 
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computed within each element from the three sides using the linear shape function 

and is kept discontinuous between elements. Since this approach leads to parasitic 

oscillations, a Shapiro filter (Shapiro, 1970) needs to be used to suppress the noise. 

To solve the vertical velocity, a finite-volume method is applied to a typical prism, as 

depicted in Fig. 2-3c, because it serves as a diagnostic variable for local volume 

conservation especially when a steep slope is present (Zhang et al., 2004). The 

vertical velocity is then solved from the bottom to the surface, in conjunction with the 

bottom boundary condition (u, v, w)·n=O. The closure error between the calculated w 

at the free surface and the surface kinematic boundary condition is an indication of 

the local volume conservation error (Luettich et al., 2002). Because the primitive 

form of the continuity equation is solved in the model, this closure error is generally 

negligible. 

Parallelization 

The efficiency of SELFE is boosted with parallelization using the MPI 

(Message Passing Interface) and domain decomposition (schematic picture is shown 

in Fig. 2-4) with the ParMETIS graph partitioning library. The detailed scalability 

analysis of the MPI SELFE is presented in the next chapter. 

2D mode 

The original 3D SELFE utilizes the bottom boundary layer formulation 

(logarithmic profile) to decouple Eqs. (2.2) and (2.3), and therefore the 3D 

formulation in SELFE cannot be simplified to 2D. However, decoupling is readily 

done in 20 using the assumption that the velocity is uniform in the vertical with only 
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1 layer. The discretized Eq. (2.3) with the Manning formulation for the bottom drag 

2 

( Cd = !~~~ where n0 is Manning coefficient) represents a simple relation between the 

unknown velocity and the elevation gradient, which can be directly substituted into 

Eq. (2.2). The detailed formulations of the 2D model can be found in Zhang et al. 

(2011). 

Spherical coordinates 

For super-regional scale applications, map projection will lead to unacceptable 

errors and spherical coordinates are ultimately required. Most of the ocean models 

achieve this by transforming the governing equations into the spherical coordinates 

(i.e., latitude and longitude). In SELFE, an alternative and more elegant approach was 

adapted. This kind of approach was proposed by Comblen et al. (2009), where a 

series of local frames are utilized at various locations of the unstructured grid 

(nodes/sides/elements); inside these local frames the original form of Eqs. (2.1) -

(2.3) can be used without any modification, and the problem essentially boils down to 

a series of coordinate transformations. The advantages of such an approach include: 

(1) polar singularity is fully circumvented; (2) only small modifications are needed 

for the existing codes, and in the case of SELFE, all the useful properties of the 

matrix are preserved. Note that, since all distances are measured in physical space 

instead of the transformed latitude/longitude space, very fine-scale inundation can be 

conducted within this kind of framework. The spherical-coordinate configuration of 

SELFE has been verified by the 1964 Prince William Sound Tsunami simulations 

(Zhang et al., 2011). Note that, in this study, simulations for our wave-current 
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coupled model were conducted using spherical coordinates for most of the cases, 

except the small Scituate domain described in Chapter 5. 

Non-hydrostatic mode 

The default SELFE model uses the hydrostatic assumption so the flow is 

assumed to be essentially horizontal and vertical acceleration is small. In some 

applications (e.g. internal waves, short waves, and landslide tsunamis), this 

assumption is no longer valid. 

The hydrostatic assumption can be relaxed through the so-called second-order 

pressure correction method (Fringer et al., 2006). The key is the decomposition of 

total pressure P into hydrostatic and non-hydrostatic components: 

p g f11 - =- pdc; + q 
Po Po z 

(2.23) 

Where p is density of the water with a reference value p0 and q is the normalized non-

hydrostatic pressure. The vertical momentum equation then becomes: 

Dw iJ ( ow) iJq 
Dt = iJz V Tz - "8; (2.24) 

where we have neglected the horizontal viscosity and other terms that are generally 

small. 

A predictor-corrector method is used to solve the equations in hydrostatic and 

non-hydrostatic steps. The hydrostatic step follows a similar technique as described in 

Zhang and Baptista (2008a). The correction step leads to a classical Pressure Poisson 

Equation (PPE) to q, which is then solved with a 3D Galerkin finite-element method. 

Since the Laplacian operator is positive and symmetric, the resulting matrix can also 
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be solved efficiently using the same solver. Since we do not use the non-hydrostatic 

mode in this study, details for the non-hydrostatic SELFE can be found at 

http://www .stccmop.org!CORIE/modeling/selfe/. 

2.3 Spectral wave model (WWM II) 

2.3.1 Governing equations and numerical approach 

The Wave Action Equation (hereafter WAE), describing growth, decay, 

advection and refraction of wind waves due to depths and currents (computed by the 

hydrodynamic model), can be written for Cartesian coordinates as follows (e.g. 

Komen et al., 1994): 

( . ) a(. ) a Vx XN +-ON +-(aN)= S,o, at aa ae ............ 
............__. ~ TotaJSourceTenn 

Change in Time Advection 111 honzontal space Advection in spectral space 

i_N + 

(2.25) 

where N is the wave action density spectrum that is invariant in slowly varying media 

(Bretherton and Garrett, 1969), and is expressed as: 

E N _ (t,X,a,8) 
(t,X,a,O) - (1' 

(2.26) 

with E being the variance density of the sea level elevations. The advection velocities 

in the different phase spaces (Eqs. (2.27) - (2.29)) are given following the Geometric 

Optics Approximation (e.g., Keller, 1958). 

· dX dm 
X=cx = dt = dk =cg+UA (2.27) 

http://www.stccmoD.org/CORIE/modeling/selfe/
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• } 80" iJd auA 
B=c =---+k·-

8 k8d&m as (2.28) 

(2.29) 

Here s represents the coordinate along the wave propagation direction and m 

represents that perpendicular to it. X is the Cartesian coordinate vector (x, y) in the 

geographical space, d is the water depth obtained from SELFE, k is the wave number 

vector, c8 the group velocity and 'iJ x is the gradient operator in the geographical 

space. The group velocity is calculated from the linear dispersion relation. The 

effective advection velocity UA(k) depends in general on the wave number vector of 

each wave component (Andrews and Mcintyre, 1978a, b). In the presented 

applications, this was approximated by the surface current. In Eq. (2.25), the terms on 

the left-hand side represent, respectively, the change of wave action in time, the 

propagation of wave action in geographical space, depth-, and current-induced 

refraction (with propagation velocity or turning rate es), and the shifting of cr due to 

variations in mean current and depth (with propagation velocity or shifting rate c0 ). 

The wave diffraction effect is introduced into the WAE through the correction of 

wavenumber and propagation velocities using a diffraction-corrected parameter (see 

Holthuijsen et al., 2003 or Liau et al., 2011 ). This approximation is based on the mild-

slope equation or the extended mild-slope equation for the wave-refraction-

diffraction. The source term S101 at the right-hand side describes the net source terms 

defined by the energy input due to wind, the nonlinear interaction in deep and shallow 
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water, the energy dissipation due to whitecapping, and depth-induced wave-breaking 

and the energy dissipation due to bottom friction. 

Sror is the source term including the energy input due to wind (S;n), the 

nonlinear interaction in deep and shallow water (Snt4 and Snt3), the energy dissipation 

in deep and shallow water due to whitecapping and wave-breaking (Sds and Sbr), and 

the energy dissipation due to bottom friction (Sb.t); the source term can be presented 

as: 

(2.30) 

WWM II solves the W AE using the fractional step method as described by 

Yanenko (1971). The fractional step method allows the splitting of the time-

dependent four-dimensional problems in well-defined parts Eqs. (2.31-2.34) for 

which dedicated numerical methods can be used in order to have a well-defined 

consistent and convergent numerical method (e.g. Tolman, 1992): 

aJV· a • 
-+-(c81V)=O;[JV (t=O) =1V0] on [O,At) at ao 

aJV.... [ .... ••• J 
--a;-=S(N .. ),tot; JV (t=O) =JV (t=LV) on [O,At] 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

WWM II first solves the geographical part (Eq. 2.33). As an alternative and 

innovative method to the well-known family of finite volume schemes or finite 
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element schemes, the family of Residual Distribution Schemes (RD schemes, also 

known as "fluctuation splitting schemes", (e.g. Abgrall, 2006)) has been implemented 

in the present WWM II model. 

The RD schemes are a new family of numerical schemes that borrow ideas 

from the finite element (FE) and the finite volume (FV) framework. As a result, 

compact schemes and accurate solutions that are carefully designed in order to obey 

most important constraints, such as the conservation property, positivity, and linear 

preservation (2"d-order in smooth flow) and that can be well parallelized, can be 

achieved. Abgrall (2006) gives a recent review on the history and future trends of 

fluctuation splitting schemes. The residual distribution technique was first introduced 

by Roe (1982) and further developed and improved by other scientists (e.g. Abgrall, 

Deconinck, Roe and others). In the 2"d step, the spectral advection is treated by using 

Ultimate Quickest scheme (Leonard, 1991) in theta- and sigma-space following the 

approach in WWIII (Tolman, 1992). The source terms are integrated in three separate 

fraction steps according to their time scales or nonlinearity. In the I st step we 

integrate the dissipative terms in shallow water such as wave-breaking and bottom 

friction and this is done without the necessity of an action limiter using a TVD 

Runge-Kutta scheme of 3rd order (Gottlieb and Shu, 1998). Following this we 

integrate the triad interaction source terms using a dynamic approach as suggested by 

Tolman (1992). The reason for this procedure is that the strong influence of the 

limiter on the integration of the triad interaction term has been found whereas, in the 

dynamic approach, the limiter is applied only in the last iteration step. In the last step 
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we integrate the deep water source terms using the well-known semi-implicit 

approach by Hersbach and Janssen (1999). This approach ensures good convergence 

and reduces the influence of the limiter only to the deep water physics with a small 

influence in the integration of the triad interactions, thus increasing the consistency of 

the entire numerical solution. There is absolutely no limiter acting on the left-hand 

side of the WAE. 

The implemented schemes in the wave model are accurate (e.g., less than 6% 

SCI in the application of WWIII; Ardhuin et al., 20 12) and very efficient over global 

and local scales. However, for an unstructured grid, the spatial resolution near the 

coastlines (shallow water regions) is usually very high (e.g.- lm), an implicit scheme 

is more efficient, and we are in the process of parallelizing it using the domain 

decomposition method. 

2.3.2 Physical formulation 

Most of the source terms are formulated as semi-empirical relations, except 

for the Boltzmann integral, describing the nonlinear energy transfer in deep water 

(Sn14), which can be calculated exactly using e.g. EXACT -NL (Van Vledder, 2006) 

for arbitrary wave spectra. An exact calculation of the nonlinear energy transfer is for 

practical applications not feasible because the solution procedures are too complex. 

The efficient calculation of the Boltzmann integral has fascinated scientists since the 

derivation ofthe formula by Klaus Hasselmann in 1962. In 1985, Klaus Hasselmann 

and Susanne Hasselmann found a good approximation for the quadruplet interactions, 



38 

which is called DIA (Discrete Interaction Approximation). This approximation made 

it possible to introduce a nonlinear physical process into spectral wave models. The 

introductions of the DIA spurred the development of the so-called 3rd generation 

spectral wave models. 

In WWM II, the wind input term, Sin, (see e.g. Janssen (2001) for a review) 

and the dissipation term, (Sets-), (see e.g. Babanin (2011) for a review) in the total 

source term of W AE are undergoing continuous improvement and developments with 

the latest understanding of the underlying physical processes as well as more 

sophisticated measurements. Recently the wind input and dissipation functions have 

been further improved (Ardhuin et al., 2010) and validated on a remarkable data set in 

global and coastal waters (Ardhuin et al., 2010, 2012). The WWM II has basically 

two main parameterizations for the wind input and dissipation: the first one was used 

at the ECMWF (The European Centre for Medium-Range Weather Forecasts) and the 

details were given in Bidlot et al. (2002), and a second and more recent one was 

proposed by Ardhuin et al. (2010), which includes dominant wave-breaking in the 

dissipation term and also an alternative to treat shallow water wave-breaking (Sbr) 

with one dissipation term only (Fillipot et al., 2010). In this study, we have used the 

wind input and dissipation terms given by Ardhuin et al. (20 1 0). The conservative 

approach for shallow water wave-breaking of Battjes and Janssen (1978) is also 

available in WWM II. Wave dissipation by bottom friction is modeled based on the 

results obtained from the JONSW AP experiment (Hasselmann et al., 1973); an 
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alternative formulation of the bottom friction is given by Mathisen and Madsen 

(1996). 

The latest version of WWM II was verified in Roland (2009) for laboratory 

experiments, analytical solutions, and field observations with good results using the 

alternative numerical schemes. A detailed description of WWM II, including 

numerical schemes as well as physical processes, can be found in Roland (2009). 

2.4 Modeling wave-current interaction 

In the current version of the coupled model, three aspects of current-wave 

interaction are considered: (1) wave-induced radiation stress based on the formulation 

of Longuet-Higgins and Stewart (1964); (2) wave-enhanced surface stress as well as 

mixing due to the surface wave-breaking (e.g., Craig and Banner, 1994); (3) wave­

enhanced bottom stress (e.g., GM79). Brief descriptions of these aspects, which are 

included in our model simulations, are given in this section. 

2.4.1 Wave-induced radiation stress 

Since the original paper by Zhang and Baptista (2008a), the ocean circulation 

model, SELFE, has evolved into a comprehensive modeling system that can be 

configured in many different ways; e.g., hydrostatic or non-hydrostatic options; 3D 

bottom deformation as occurred during seismically or landslide-generated tsunamis; 

in 2D or 3D configuration; in Cartesian (i.e., map projection) or spherical coordinates. 

The descriptions of these new features are presented in the previous section. The 3D 
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Reynolds-averaged Navier-Stokes equations with hydrostatic assumption, wave-

induced radiation stress and under Cartesian coordinates that are used in this study 

can be presented as follows: 

Do = .E..(v au)- g'V1J + F 
Dt az az 

and the continuity equation: 

Ow 
'V·u+-=0 

az 

(2.35) 

(2.36) 

where D denotes the material derivative, u is the horizontal velocity, 17 is the surface 

elevation, v = (8/ ax, a! cy) is the horizontal gradient operator, g is the gravitational 

acceleration, w is the vertical velocity, and the explicit term in Eq. (2.35) is given by: 

I 
F='V·(,u'Vu)- jkxu--'VpA +ag'Vtp+R, (2.37) 

Po 

where k is a unit vector of the z-axis (pointing vertically upward), f is the Corio lis 

factor, a is the effective earth-elasticity factor, rp is the earth tidal potential, ,u and 

v are the vertical and horizontal viscosities (m2s"l) respectively that may be solved 

from turbulence closure schemes (e.g. GOTM; Zhang and Baptista, 2008a), p 0 is 

reference water density (in this paper, reference density is set as 1000 kg m ·\ p is 

water density, and p A is the atmospheric pressure. It should be noted that SELFE 

treats all terms in Eq. (2.35) semi-implicitly except for F; in other words, the radiation 

stress terms (R5) are treated explicitly. The finite-element formulation outlined in 

Zhang and Baptista (2008a) is applied to the additional radiation stress terms when 

the wave-induced stresses are considered in the model run. 
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The radiation stress term Rs (a net momentum of flux produced by wave 

transformation in shallow water) is parameterized with different formulations 

(Mellor, 2003, 2005, 2008, 20IIa, b; Xia et al., 2004) and there is still a great deal of 

controversy on the vertical profile of the stress (Bennis and Ardhuin, 20 I1 ; Mellor 

2011 a, b; Bennis et al., 2011 ). At the first stage of model development, we simply 

adopted the simplest radiation stress formulation orginally proposed by Longuet-

Higgins and Stewart (I962, 1964), although we have also implemented other options 

and the more sophisticated vortex-force formulations will be implemented in the near 

future. 

The wave-induced stresses (gradient of the radiation stress) according to 

Longuet-Higgins and Stewart (1964) in the x- and y-directions can be estimated in 

the linear form, accounting for the mean flow momentum as given in Mastenbroek et 

al. (I993): 

R, = (R.x,R.y) 

I as XX 1 as :ry 
R =------

sx PoH 8x PoH 8y 
(2.38) 

I as yy I as :ry 
R =----------

sy p
0
H 8y p

0
H ax 

with Sxx, Sxy, Syy being the components ofthe radiation stress tensor, defined for an 

irregular wave spectrum according to Battjes (1974) as: 



2Jr 

sxy =IJ"' N(u.e{J' cg(u) sin(B)cos(B)dBdu 
C p(u) 

0 
0 

0 

2n 

S" ~I I N1,,1 · u-[ :::: (sin' (B)+ I)-~] dBdu 

0 
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(2.39) 

where H=h+TJ is the total water depth, e is the angle between the X -axis and the 

dominant wave direction, and Cg and Cp are group and phase velocities. Note that the 

stress is uniform in the vertical dimension under this formulation. 

While vertically varying radiation stress formulations have been developed 

(e.g. Mellor, 2003, 2005, 2008, 20lla, b; Xia et al., 2004), some formulations (e.g. 

Mellor, 2003; Xia et al., 2004) contain errors (Sheng and Liu, 2011) and others (e.g. 

Mellor, 2008) require additional efforts for incorporation into our coupled modeling 

system. Hence, these vertically varying formulations are not considered in this study. 

2.4.2 Wave-enhanced surface stress 

When considering the effect of wave-enhanced surface stress, the total surface 

stress is estimated based on the actual sea state using the theory of Janssen (1991) and 

the extension made to it (e.g., sheltering of the young waves) in Ardhuin et al. (2010). 
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The total stress is passed to the current model in order to account for the surface stress 

and the enhanced mixing due to the wave-breaking is expounded upon in Craig and 

Banner (1994). 

The wave decay due to the wave dissipation at the cost of whitecapping and 

depth-induced breaking also results in transfer of momentum from waves into the 

currents that can be parameterized using effective shear stress (Kim et al., 2008) and 

"roller" (Warner et al., 2008; Uchiyama et al., 20 I 0). All these effects can be 

implemented in our modeling system easily but we do not consider their effects in 

this study. More recent and sophisticated formulations of wave-turbulence (e.g. 

Ardhuin and Jenkins, 2006; Babanin, 2011; Janssen, 2011) will be considered in the 

future development of the coupled modeling system. 

2.4.3 Wave-enhanced bottom stress 

In shallow water regions, the wave-induced bottom stress in the wave bottom 

boundary layer plays an important role in sediment transport and can thus 

significantly enhance bottom shear stress. The formulation of wave-enhanced bottom 

stress we adopted in this study was originally proposed by Grant and Madsen (GM 

79) and later modified by Mathisen and Madsen (1996) and implemented by Zhang et 

al. (2004) for the prediction of tide and wind-driven circulation in the Singapore 

Straits. When the effects of wave-enhanced bottom stress are considered, the original 

bottom roughness (i.e., the sediment diameter or ripples height, z0), will be replaced 
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with an apparent roughness zob as given below. The quadratic law adopted in SELFE 

(the same as in Eq. (2.1 0)) is: 

{T hx' 'T by}= PoC v(U
2 + V2Y12 {u, v} 

Cv = [K!Iog(zh I z0 )Y (2.40) 

where K = 0.4 is the von Karman constant, Zb is the height from the bottom to the top 

of the bottom computational cell, and z0 is the bottom roughness related to the 

sediment grain size in the fixed bed without ripples. 

The direction of the current Be can be obtained as tan Be = Tbx/Tby• and the 

total magnitude of the current bottom shear stress is Tb = Tlx + rly· Therefore, the 

angle between wave and current Bwe can be defined as Be- Bw. 

The maximum wave bottom stress is defined as: 

(2.41) 

where Uw is the orbital velocity amplitude: 

(2.42) 

where aw is the wave amplitude, w is the angular frequency. The combined wave-

current friction factor, fwe• is a function of the relative strength of currents and waves, 

specified by (Zhang et al., 2004): 
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I -r b I r=-
rw 

cr = (1 + 2y I cosBWC I +y
2 J'2 

(2.43) 

And fwc is given by 

[ (
c u )-0·

109 

} f .. =Cr exp 5.61 ~ -0.73 
30z0w 

(2.44) 

Eqs. (2.42), (2.43), and (2.44) are solved iteratively for (y, Cy, Tw) by first assuming 

y = O,Cy = 1 to obtain an initial estimate ofTw from Eq. (2.44) and (2.41). With this 

value ofTw, the values ofy and cy are updated using Eq. (2.43) and the procedure is 

repeated until the y converges to within two significant digits. Convergence is usually 

achieved within a few iterations. After these quantities are found, the apparent 

roughness is given by: 

(2.45) 

where the wave boundary layer thickness liwc is given by: 

rc:;,: 
VP. [ {c u )-G.o

71 J t5,.c = Po exp 2.9 _r_w -1.45 . 
m 30z0m 

(2.46) 

The apparent roughness Zob• as given by Eq. (2.45), should be used to replace 

z0 in Eq. (2.40). Previous studies (e.g., Zhang et al., 2004) indicate that this apparent 

roughness can be much larger than z0 even with modest waves inside estuaries. 
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2.5 Model coupling procedure 

We first parallelized WWM II using the same domain decomposition scheme 

as that used by SELFE (see details in Section 2.2.6). The usage of the same sub­

domains in the two models can eliminate the need for interpolation and simplify the 

exchange of information between current and wave models, resulting in better 

efficiency. The WWM II is then recast as a subroutine inside SELFE. Due to very 

different time stepping schemes used in SELFE and WWM II, the time steps used in 

the two models are kept different in order to take advantage of each model's 

efficiency, and information exchange between the two models occurs at a pre­

specified interval. During the information exchange, the sea surface elevation, 

wet/dry flags, and surface horizontal velocities are passed from SELFE to WWM II, 

and the calculated radiation stress, total surface stress, and the wave orbital velocity 

(needed in the GM79 model) are returned to SELFE. The robustness of both models 

has proved to be crucial for successful application of the coupled model to large field­

scale tests (see Chapter 3). 

2.6 Conclusions 

The evolution of surface waves is influenced by the ambient currents on both 

global and local scales. The actually available spectral wave models are continuously 

evaluated (e.g., Bidlot et al., 2002) and these models are at a stage where it is not easy 
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to make further improvements if the effect of currents is neglected, either on coastal 

or ocean scales. 

In the coastal zones, surface waves induce coastal circulation and can have a 

strong influence on the total water levels, which are important for the coastal 

morphology and the coastal defense structures and, of course, give a feedback to the 

wave itself. 

In this chapter, we present the new development of a fully coupled wave­

current interaction model based on a 3D hydrodynamic model (SELFE) and the 

spectral wave model (WWM II), both implemented on unstructured grids, which 

makes the coupled model effective in multi-scale applications without grid nesting. 

Three effects of current-wave interaction are considered in our coupled model: ( 1) 

wave-induced radiation stress based on the formulation of Longuet-Higgins and 

Stewart (1964); (2) wave-enhanced surface stress as well as mixing due to the surface 

wave-breaking (e.g., Craig and Banner, 1994); (3) wave-enhanced bottom stress 

(e.g., GM79). The two models are tightly coupled with the same domain 

decomposition but with different time-stepping schemes to ensure maximum 

efficiency and flexibility. Our modeling framework represents a basis for the future 

research into the important topic of wave-current interactions, the wave propagation 

in inhomogeneous media (e.g. Liau et al., 2011; Toledo et al., 2012) and the 

improvement and validation of the physical framework for phase-averaged surface 

wave models. We carefully verified our coupled model and the detailed tests are 

presented in the next chapter. 
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(a) dry 

rn 

(b) dry 

(c) dry 

B' 

(d) dry 

B' 

Figure 2-1 The wetting and drying scheme in SELFE. (a) Initial wet/dry interface at 

step n; (b) evaluate wet/dry status for interfacial nodes based on new elevation at step 

n + 1; (c) update the wet/dry interface, and iterate between (b) and (c); (d) final 

extrapolation of elevations along the final interface (or "coastline"). Note that this 

figure is re-plotted from Zhang and Baptista (2008b ). 
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Figure 2-2 Example of horizontal triangular grid used in SELFE model. Note that 

this figure is re-generated from Cho (2009). 
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c k+l 

k 

Figure 2-3 A vertical grid of hybrid coordinate system used in SELFE. (a) a 

schematic view; (b) vertical view; (c) a unit of computational triangular prism with 

uneven bottom and top surfaces. Note that this figure is re-plotted from Zhang and 

Baptista (2008a). 
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Figure 2-4 A schematic view of domain decomposition used in SELFE. Each color 

(number) presents each sub-domain on different computing node. Each sub-domain is 

augmented with I layer of ghost elements (gray regions) where exchange the 

information between different sub-domains. 
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CHAPTER III. Model calibration 

3.1 Introduction 

In the previous chapter, we introduced the basic physical mechanisms and 

numerical methods of our coupled model. Then the model was carefully tested using 

analytical solutions of current-induced shoaling and refraction on wave action, 

analytical solutions of wave set-up on a linearly sloped beach profile, and several 

laboratory experiments taken from the ONR Test Bed Project (Ris et al., 2002). 

Although primarily proposed to validate spectral wave models alone, this Test Bed 

contains many valuable cases for the validation of a fully coupled wave-current 

model as well. 

We have selected some of these cases for the validation of the current 

modeling system; in particular, we have compared wave-induced set-up based on the 

laboratory experiment of Boers ( 1996), as well as wave-breaking and eddy formation 

behind a submerged wave breaker based on the HISWA wave tank experiment of 

Dingemans ( 1987); we have also investigated the performance of the coupled model 

in wave blocking conditions as measured in the laboratory by Lai et al. (1989). In 

addition, we have investigated the performance of the coupled model for extra­

tropical and tropical storm events, and here we will present the results for two tropical 

storms: the 2003 Hurricane Isabel making landfall along the U.S. East Coast and the 

2004 Hurricane Ivan in the Gulf of Mexico. Detailed discussions are included in each 

subsection below. 
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3.2 Model verification- analytical solutions and laboratory experiments 

3.2.1 Current induced shoaling and refraction on wave 

For the verification of current-induced shoaling and refraction, a deep water 

situation was considered where a monochromatic wave train with a period of 5.0 s 

and wave height of 1.0 m enters from the southern boundary of the computational 

domain. Three test cases are considered: (a) wave propagation in the same direction 

as the current; (b) wave propagation opposite to the direction of the current; and (c) 

for the slanting current case, the wave propagates with an angle of 60° to the x-axis 

into a current field, which is parallel to the x-axis with a constant positive gradient in 

the propagation direction. The computational domain consists of a rectangular basin 

that is 4 km long and I km wide. In Case (a) and Case (b), the speeds of currents are 

parallel to the y-axis and increased from the southern boundary to the northern 

boundary (ranging from 0.0 to 1.0 m/s). On the other hand, in the Case (C), the 

current is parallel to the x-axis. The directional distribution was set to 2° in order to 

be able to reproduce a nearly monochromatic wave at the deep water boundary. The 

directional resolution was kept constant with dO = 2•. The settings of these three 

cases are shown in Fig. 3-1 schematically. 

The analytical solutions for the following and opposing currents can be 

calculated (Phillips, 1977) with: 

Hz c~ = I 
H[ c(c+2U) 

(3.1) 

where 



c 1 1 u ! - = -+-(1 + 4-)2 
Cj 2 2 Cj 
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(3.2) 

and Hi and Ci are the incident wave height and incident wave celerity, H and c are the 

local wave height and the local wave celerity, and U is the current velocity. For the 

slanting current case, the analytical solutions for wave direction and wave height are 

(Jonsson, 1993): 

H = H· sin(29i) 
1 sin(29) 

(3.3) 

(3.4) 

Here, w is the absolute radian frequency, and ki and k are the incident and the 

local wave numbers, separately. ei and 8 are the incident and local wave directions. 

The results are presented in Fig. 3-2. The agreement with linear theory is good in the 

first two cases (following and opposing currents); the computational errors are less 

than 1% for the significant wave height. For the slanting current case, the 

computational error is slightly larger than the first two cases; the error is less than 2% 

in significant wave height and less than 0.1 o in direction. Overall, the results are 

acceptable as a first step of coupled model development. 

3.2.2 Analytical solution for the wave set-up 

Longuet-Higgins and Stewart (1964) gave an analytical solution for wave set-

up on a gently sloping beach. In the simple ID steady-state problem, the balance of 

forces is between the pressure gradient and the radiation stress and can be written as: 
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B17 1 oE(2n- 0.5) 
g-= 

ax p 0 H ax 
(3.5) 

where E is the total wave energy per unit surface area, and n = ..!.. (1 + 2
kH ) . The 

2 sinh2kH 

solution is given in two separated zones: inside and outside the surf zone with the 

boundary defined as x = x 8 (see Fig. 3-3). Outside the surf zone ( x ~ x 8 ), we have: 

17 =- 2sinh 2kh 
(3.6) 

In addition, the conservation of wave energy leads to: 

(3.7) 

where variables with the subscript "0" are the quantities related to the incident wave. 

Inside the surf zone ( x ~ x 8 ), the wave amplitude is proportional to the local water 

depth: 

a= f3(h+TJ), (3.8) 

where ~0.41 is a wave-breaking constant in terms of wave amplitude as given by 

Xia et al. (2004). 

If we assume a long-wave dispersion relation within this zone (i.e. n:;;:; 1 ), we 

then have: 

(3.9) 

where the subscripts "B" denote quantities at x :;;:; x 8 • 
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Matching the two solutions of Eqs. (3.6) and (3.9) leads to 4 equations for 4 

k~0 -~(1 + ~Jkk! +~k4 = 0 
Co p Co 

(3.10) 

where c0 = a~n0 I k0 ,k = oi I g . After kB is solved from Eq. (3.1 0), the complete 

solution can be constructed within each zone. The solution, however, exhibits a sharp 

jump near the breaking point x = x8 , due to the use of the long-wave dispersion 

relation above. If we have not assumed the long-wave dispersion relation in each 

zone, the unknowns can still be found by solving the original nonlinear equation 

system mentioned above. The latter approach is used here and the nonlinear equations 

are solved with an iterative method inside Matlab. 

To test our SELFE-WWM II coupled model, we impose a train of 

monochromatic waves with an amplitude of 9 em and a period of 1.5 s at the right-

hand boundary for WWM II (for SELFE, the elevation calculated from the analytical 

solution is imposed there); the initial elevations and velocities are set to 0. The 

coupling time step (0.05s) is chosen to be the same as the time step used in SELFE, 

and the explicit N-scheme (a kind of RD scheme; readers can find more details in 

Roland, 2009) is used in WWM II with the sub-timestep being determined by the 

local CFL condition. The horizontal grid has a uniform resolution of 12.5 em in x 

(Fig. 3-4) and 9 evenly distributed a levels are used in the vertical grid. To remain 

consistent with the analytical solution, no bottom friction was used in this test. The 

total simulation time is I hour in order to reach a steady state. 
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A first check of the coupled model is on whether a steady-state solution is 

reached as predicted by the analytical solution. It can be seen from Fig. 3-5 that the 

surface elevation at a location close to the shoreline (x=0.38m; h=0.038m) reaches a 

steady state; it takes about 0.6 hours for the initial high-frequency oscillations to 

dissipate before converging to a steady state, which is an indication of the 

monotonicity and consistency of the coupled model. The modeled steady-state results 

compare very well with the analytical solutions for both wave height and wave­

induced set-up (Fig. 3-6). 

3.2.3 Wave set-up and wave-breaking ofBoers (1996) 

In the work of Boers ( 1996), depth-induced wave-breaking and wave-induced 

set-up were examined under laboratory control experiments. Boers investigated the 

evolution of random uni-directional wave trains in a laboratory flume and measured 

wave spectra and surface elevation as the waves propagate towards a bar-through 

profile as often found in natural conditions (see Fig. 3-7). Observed wave spectra, as 

well as wave-induced set-up, are available at a large number of locations, making this 

a valuable test case for the validation of the wave-current coupled model. There are 

three cases for this lab test with different wave boundary conditions, given in terms of 

the one-dimensional wave spectra (Fig. 3-8), and characterized by different mean 

wave lengths and wave heights. 

The main challenge in this test is related to the complex bottom profile and the 

inclusion of the inundation zone; as a result, a steady state condition cannot be 
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reached if either the current or the wave model has stability issues. Therefore, the 

very fact that a steady state condition is reached in our coupled model, at a location 

very close to the shoreline, is testimony to the stability and robustness of both current 

and wave models (Fig. 3-9). 

The coupled model is run on a uniform grid of 5-cm resolution in the 

horizontal and 9 evenly distributed a levels in the vertical grid. The coupling time 

step is 0.1 sec and consistent with the time step used in SELFE. The lab-measured 

wave spectra (Fig. 3-8) and historic time-series elevation are imposed at the boundary 

for WWM II and SELFE, respectively. Since no information is provided for the 

bottom roughness, we used a constant bottom roughness of I mm over the entire 

model domain. The WWM II was set up to account for the quasi-resonant wave-wave 

interactions, bottom friction based on the JONSW AP formulation, and wave-breaking 

according to Battjes and Janssen (1978). For the wave-breaking formulation we had 

to reduce the default dissipation rate by 50% to 0.5 and set a fixed maximum wave 

height to a depth ratio of 0.8 in contrast to the default value of 0. 73. The near­

resonant interactions had to be re-tuned and we reduced the coefficient suggested by 

Eldeberky ( 1996) and Dingemans ( 1998) to 0.5 in order to not overestimate the 

transfer of low-frequency energy towards the higher harmonics. Even though the 

downshift of the average period (tm02) is well predicted on average, the model does 

not reproduce the downshifts in the vicinity of strong wave-breaking dissipation (Fig. 

3-1 0). The reason for this overestimation is probably because the approximation 

made by Eldeberky is for flat-bottom topography and therefore the estimation of the 
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near-resonant nonlinear transfer based on this approximation is not expected to be 

very accurate (Dingemans, 1998), especially in this test case. The wave-induced set­

up is extremely sensitive to the spatial gradients of the wave spectrum, and since the 

model exaggerates the gradients of the total energy, the coupled model overestimates 

the wave-induced set-up consistently (Fig. 3-10). 

The modeled significant wave heights and steady-state set-up profiles for the 

three laboratory cases compared well with the measured data (Fig. 3-10). The model 

tends to overpredict the set-up in the surf zone, but the reasons for this may be 

explained by the fact that we used a constant radiation stress profile (Section 2.4.1) 

and there was a strong sensitivity of the wave-induced forces on the wave height 

gradients in the wave model. 

3.2.4 HISWA experiment ofDingemans (LSI test, 1987) 

To test our coupled model in a 2D configuration, the ONR (Office of Naval 

Research) test L51 was used. The laboratory experiment of Dingemans (1987) was 

performed in a rectangular basin with a flat bottom and with a submerged breakwater 

(Fig. 3-1la). The north and south boundaries parallel to the x-axis are fully reflective 

and a target JONSW AP spectrum with a peak period of 1.25 sec and height of 0.10 m 

was generated by the wave maker at the left-hand side boundary while, at the right­

hand side boundary, a passive wave absorber was installed. The mean wave direction 

is along the x-axis with a directional spread of approximately 25°. The waves 

propagate across the breakwater with a significant loss of energy, generating a 
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relatively large high-frequency spectral peak. The breaking waves also generate a 

mean circulation in the rectangular basin. 

The wave spectra derived from the laboratory data are imposed in the wave 

model at the left boundary, and a Neumann-type boundary is used on both the north 

and south boundary of the basin while the east boundary condition is set to be fully 

absorbing. In this test, we used 72 directional bins (0 ° to 360°) and 24 frequency bins 

(0.315Hz to 3.125Hz). As far as the current model is concerned, the basin is 

completely closed with fully reflective boundaries since the wave maker and the 

absorber operate at a higher frequency. The horizontal grid we used for this test is 

shown in Fig. 3-1 Jb (the resolution ofthis grid is 40 em). As in the previous tests, we 

used 9 evenly distributed a levels in the vertical grid. The coupling and SELFE time 

step is chosen to be 0.5 sec, and the total simulation duration is 2500 sec, as a steady 

state condition is attained after approximately 800 sec. 

The modeled steady-state surface velocity compares very well with the 

laboratory measurements, both qualitatively and quantitatively (Fig. 3-12). In 

particular the location of the eddy and the vortices are both well simulated. The 

direction of the eddy indicates that the wave overtopping is the dominant process in 

this case as opposed to the diffraction/refraction effects as in the case shown in 

Nicholson et al. ( 1997). 

The modeled wave heights also compare reasonably well with the 

experimental results, and capture the wave-breaking process as waves propagate over 

the breakwater (Fig. 3-13). Unsurprisingly, the largest error occurs on the down-wave 
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side of the breakwater. The errors at the 3 gauges nearest to the left boundary indicate 

the errors in the wave boundary condition. The laboratory dataset also includes other 

types of measurements (e.g., vertical profiles ofvelocity) and will be used for further 

study as the coupled model incorporates more 3D formulations (e.g., 3D radiation 

stress profile). 

3.2.5 The wave blocking experiment ofLai et al. (1989) 

The last laboratory experiment used in this study investigates the capability of 

the coupled model to predict the wave decay under blocking conditions. The 

experiment conducted by Lai et al. (1989) investigated the evolution of uni­

directional random waves running against an opposing current that was intensified by 

an underwater bar (Fig. 3-14). The current velocity reaches a maximum amplitude of 

24 cm/s over the bar, which is sufficient to block a large portion of the wave spectra 

imposed on the boundary. The waves propagate from left to right and are blocked on 

the toe of the bar. 

The grid used in this study has a uniform resolution of 2 m in the cross-shore 

direction and 0.02 m in the direction of wave propagation, and six uniformly 

distributed a levels are used for the vertical discretization. The coupled model uses 

the same time step of 0.1 sec, and the total simulation time is 10 minutes, which is 

sufficient to produce a convergent steady-state solution (see Fig. 3-15). 

The wave spectra from the data of the 6 measurement stations (locations are 

shown in Fig. 3-14), where gauge I is at the left-hand boundary, are shown in Fig. 3-



63 

16. The results are compared to the spectral balance as proposed by Ardhuin et al. 

(201 0). It can be clearly seen that the high-frequency portion of the spectra that is 

blocked by the strong counter-current vanishes in the phase-averaged model, whereas 

in the flume wave energy is still present. In the vicinity of the spectral peak of the 

measurements, it can be seen that the model is able to shift correctly the wave spectra 

in frequency space, and the peak of the measured and modeled wave spectra are very 

near to each other. However, the dissipation of wave energy is strongly over­

estimated. One reason for that may be given by the fact that, near the blocking point, 

part of the wave energy is reflected as shown in Shyu and Phillips (1990) and the 

decay rate in blocking conditions is different due to the intense generation of 

turbulence. 

The most significant implication of this comparison is that our fully coupled 

model, SELFE-WWM II, was able to reach a convergent solution, and therefore it 

serves as a good basis for future investigation of possible new formulations that are 

able to improve the results under strong blocking conditions. This is very important, 

especially for practical applications in tidal estuaries and other current-dominated 

·regions where strong currents are present and are directed against the wave 

propagation. 
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3.3 Model verification- field events 

3.3.1 Hurricane Isabel (2003) in the Chesapeake Bay 

Hurricane Isabel was the costliest and deadliest hurricane during the 2003 

Atlantic season. Isabel fonned near the Cape Verde Islands from a tropical stonn on 

September 6, 2003 in the tropical Atlantic Ocean, moved northwestward, and steadily 

strengthened to reach peak winds of 165 mph on September 11, 2003. After 

fluctuating in intensity for four days, Isabel gradually weakened and made landfall on 

the Outer Banks ofNorth Carolina as a Category 2 hurricane with winds of 105 mph 

on September 18, 2003. Isabel quickly weakened over land and became an 

extratropical stonn over western Pennsylvania the next day (Wikipedia.org). The 

total damage due to Isabel was about $3 billion with 16 fatalities, mostly in North 

Carolina and Virginia. The track of Hurricane Isabel is shown in Fig. 3-17. Based on 

Cho et al. (2012), Isabel was defined as a western-type stonn, which passed to the 

west of the Bay and created the highest surge in the northern part of the Bay (Pore, 

1960, 1965; Wang et al., 2005; Shen et al., 2005, 2006a, 2006b). Under this type of 

stonn, the up-estuary local wind tends to penetrate deeper into the water column, 

which reduces stratification by reversing gravitational circulation (Cho et al., 2012). 

In order to accurately capture the wave dynamics from the deep ocean to near­

shore and to account for the remote wind effect during Hurricane Isabel (Shen et al., 

2006; Cho et al., 2012), the model domain used in this test (Fig. 3-18a) includes a 

large part of the mid-Atlantic Bight from Georgia to New Jersey, with higher 
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resolution (I km) inside the Chesapeake Bay (Fig. 3-18b) where extensive 

observations (water levels, winds, and wave characteristics such as significant wave 

heights, peak wave periods, mean wave periods, and peak wave directions) are 

available (Table 3-1; Fig 3-19). Note that the definitions of wave characteristics that 

are used for model-data comparison can be found in Appendix B. 

The atmospheric forcing we used in this study is a blend of the NARR wind 

(North America Regional Re-analysis; normally with 32-km resolution; more details 

can be found at http://www .esrl.noaa.gov /psd/data/gridded/data.narr .pressure.html) 

and the high-resolution WRF wind (with approximately 4-km resolution) that we 

obtained from the NWS (National Weather Service). Fig. 3-20 shows a comparison 

between modeled and measured winds at Chesapeake Light buoy (Station CHL V2, 

Fig. 3-19). As can be seen, the modeled wind errors are generally small, although 

larger errors can be found during several transition regimes (e.g.. around Sept. 18, 

2003) during and after Hurricane Isabel. 

The model grid for this case has about 26k nodes (Fig. 3-18a) in the horizontal 

and 34 S levels in the vertical grid (with stretching parameters 8r6 and fJb=0.5). The 

current and wave models are coupled using a time step of 50 sec, and the smaller time 

step (by the SELFE standard) was used to reduce splitting errors in WWM II. The 

dual kriging ELM is used to obtain high-order accuracy for the momentum advection 

in SELFE. For WWM II. we used 36 direction and 36 frequency bins, with the cut-off 

frequencies being 0.03 and 1 Hz (these were the default settings for all wave model 

runs in this study). The wind growth and dissipation formulations in WWM II are 

http://www.esrl.noaa.gov/psd/data/gridded/data.narr.pressure.html
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from Ardhuin et al. (20 I 0). At the offshore open boundary, the integrated wave 

parameters were prescribed based on the hindcast results produced by the WWIII 

(Wave Watch III) from the IOWAGA project (Integrated Ocean Waves for 

Geophysical and other Applications; http://wwz.ifremer.fr/iowaga). Tides were 

forced on the open-ocean boundary with the seven dominant astronomical tidal 

constituents and included the diurnal o~. K1 and Q1 constituents and the semidiurnal 

M2, N2, S2 and K2 constituents, using data from Le Provost's FES95.2 global model 

(Le Provost et al., 1998; Mukai et al., 2002). In addition, tidal potential functions are 

forced within the model domain for the same constituents. Periods, tidal potential 

constants, and the earth elasticity factors, which reduce the magnitude of the tidal 

potential forcing due to the earth tides, are listed in Table 3-2. Finally, the nodal 

factor and equilibrium argument for boundary and interior domain forcing tidal 

constituents are based on the starting time of the simulation. 

Prior to storm surge simulation, the SELFE model was calibrated first with 

respect to the bottom frictional coefficient by simulating mean tide characteristics 

during Hurricane Isabel. The model was forced by 7 main tidal constituents at its 

open boundary, namely 01, K1. Q~. M2, N2, S2 and K2. Earth tidal potential of each 

tidal constituent was also applied to interior cells of the model domain. The 

simulation of tide using a time step of 50 s started from 9/8/2003 UTC and lasted for 

35 days. The simulated hourly tidal levels of the last 30 days were used for 

comparison with predicted tides at tidal gauge stations around Chesapeake Bay area 

from NOAA CO-OPS dataset (Table. 3-1 ). Chesapeake Bay has the tidal 

http://wwz.ifremer.fr/iowaga
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characteristics of a reflected, dampened Kelvin wave, with a larger tidal range along 

the Eastern Shore than along the Western Shore (Hicks, 1964; Carter and Pritchard, 

1988; Zhong and Li, 2006; Guo and Vaile-Levinson, 2007). The mean tidal range 

decreases from 0.9 m at the Bay's entrance to a minimum of 0.27 m from Plum Point 

to Annapolis, MD, and then increases to 0.55 m at Havre de Grace, MD, near the 

head of the Bay. The model tidal calibration run reproduced these characteristics 

properly. Harmonic analysis results for four major tidal constituents (M2, 82, N2, and 

K1) are shown in Tables 3-3 and 3-4. The model results have a high correlation and 

low error compared with observations. The dominant M2 constituent has an ARE 

value of 4.1% and a RMSE value of 1.6 em. These results indicate that the simulation 

of tide by the SELFE model is overall satisfactory around the Chesapeake Bay region. 

The fully coupled model runs 24 times faster than real time on 48 CPUs of 

NASA's Pleiades cluster in this case. In order to ascertain the effects from the waves, 

SELFE alone is run to simulate the storm surge without the wave effects. In addition, 

in order to elucidate the issues associated with the coupled 3D wave-current model, 

we conducted simulations with both 2D and 3D SELFE, with and without wave 

effects. 

One of the major differences between 2D and 3D SELFE lies in the different 

bottom drag formulations used. In SELFE, we applied the quadratic stress at the 

bottom boundary and assumed a logarithmic bottom boundary layer in 3D mode. 

After the calibration for modeled tides, the initial distribution of the bottom roughness 

height is chosen as I mm outside the Chesapeake Bay and 0.1 mm inside for 3D 
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mode; the modified Grant and Madsen formulation (Section 2.4.3) is then used to 

dynamically adjust the wave-enhanced bottom friction. For the 2D mode, we used a 

fixed uniform Manning coefficient of 0.025, and the modified Grant and Madsen 

formulation is not applied therein. 

The modeled wave characteristics (significant wave height, Hs; peak wave 

period, Tp; mean wave period, Tm02) are found to be similar with the 2D and 3D 

modes and both ofthem compare well with the NDBC buoy data (Fig. 3-21), except 

at Buoys 41008 and 44008. Note that since Buoys 41 008 and 44008 are very close to 

the open boundary, the results there mainly reflect the boundary condition from 

WWIII. Overall, the modeled wave results indicate that the coupled model adequately 

simulated the wave characteristics during Hurricane Isabel around the Chesapeake 

Bay region. 

The upper Bay is also affected by other types of wave dynamics, such as 

limited fetch, and is more sensitive to the atmospheric forcing such as local wind 

stress. Therefore, here we only focus on the lower Bay region. The modeled surge 

tides, as predicted by the 2D modes with and without waves, are shown in Fig. 3-22 

at lower Bay stations. The wave effects, mostly due to the radiation stress (note this is 

for 2D case), account for up to a 20-cm increase in the total water set-up, which leads 

to a reduction of the average errors from 5.6% to 3.8% for the calculated surge 

heights. Overall, for the 2D mode, wave set-up accounts for to 5% of the observed 

peak surge elevation inside the Chesapeake Bay. 
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On the other hand, the addition of the 3D effects leads to some very 

interesting results. Without the waves (i.e., with SELFE alone), the addition of the 

vertical dimension from 2D to 3D SELFE generally results in a higher surge (Fig. 3-

23; green circle- 2D without wave; green line- 3D without wave) due to the more 

accurate Ekman dynamics (e.g., Ekman Spiral) included in the 3D mode; similar 

results have also been obtained for Hurricane Ike in the Gulf of Mexico as well as 

many other tropical and extratropical storms (SURA test bed project, 2011). The 3D 

results slightly over-predicted the surge peaks at all stations in the lower Bay region 

(Fig. 3-23). Adding the full wave effects into the 3D model (including wave-induced 

radiation stress, wave-induced surface stress, and wave-enhanced bottom stress), 

however, decreases the simulated water level (Fig. 3-23 (blue line)), which is contrary 

to the 2D results we have presented above. This is because, inside the Bay, the wave­

enhanced bottom friction effects (calculated from the modified GM79 formulation; 

Chapter 2.4.3) play a dominant role in our simulation. Indeed, with the GM79 

formulation removed, the waves would have induced a higher surge peak (Fig. 3-23 

(black line}), most of which is attributed to the radiation stress. The apparent bottom 

roughness ( z0b) estimated by the GM79 formulation shows more than an order of 

magnitude increase from the initial 0.1 mm to several centimeters. The net set-down 

in the 3D mode with and without waves has fortuitously reduced the errors from 8.2% 

to 6.1% due to the initial overprediction. It is also interesting to note that the 2D and 

3D results with wave effects added are generally close to each other, although the 
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surge peaks from the 3D mode are slightly higher at Gloucester Pt. and Sewells Point 

(Fig. 3-23 (blue diamond- 2D with wave; blue line- 3D with wave)). 

As explained in Wolf (2009), many different (and sometimes opposing) 

physical processes are at play in 3D, some of which are still under active research; e.g. 

wave-induced surface stress and turbulence and wave bottom friction (in shallow 

waters), and depth and current refraction of waves by surge water levels and currents. 

The results we have shown here further highlight the need to close the knowledge gap 

between the simple 2D and more "complete" (and presumably better) 3D wave­

current interaction models. It is our hope that the preliminary 3D results presented 

here will be further validated and improved after a more consistent framework, such 

as that proposed in Ardhuin et al. (2008), is implemented in our coupled model. At 

the moment, various components of the physical formulation in the model for 

radiation stress, surface stress and turbulence, and wave bottom boundary layers are 

not entirely consistent as explained in Bennis and Ardhuin (2011). While other 

theoretical frameworks have been proposed in the community (e.g., Uchiyama et al., 

2010), currently lacking is a comprehensive suite oftests to assess the skill of the 3D 

models under complicated conditions that include all known mechanisms. We are in 

the process of carrying out such analyses and the results will be presented in the near 

future. 

Sheng et al. (20 1 0) also studied the same event using a wave-current coupled 

model (CH3D-SSMS, with the current model being 3D), and showed that the addition 

of the wave effects has led to a higher (and more accurate) surge. Their conclusion is 
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consistent with our 20 results, but not with the 30 results, where we have found a 

reduction of surge heights when the wave effects are added. The main differences 

between our and their 30 coupled model include: (1) they used a lookup table for 

wave-induced bottom stress; (2) the underlying wave and current models used in their 

paper are based on structured grid, thus having limited ability to resolve the detailed 

features, especially tributaries, in the Chesapeake Bay that are important for wave 

propagation; (3) the grid domain used in their study did not include the mid-Atlantic 

Bight; however, it has been proven that surge caused by Isabel was contributed by 

both remote and local wind forcings and, thus, a large model domain is a necessity for 

predicting storm surge accurately inside the Chesapeake Bay (Shen et al., 2006a). 

Further research is warranted on this once a self-consistent 30 framework (e.g., 

Ardhuin et al., 2008) is implemented in the model. 

3.3.2 Hurricane Ivan (2004) in the Gulf of Mexico 

Hurricane Ivan, attaining Saffir-Simpson Scale Category 5 status in the 

Caribbean Sea on 12 September 2004, entered the Gulf of Mexico and weakened to a 

Category 4 hurricane on 14 September 2004. It then weakened further before making 

landfall at the border between Alabama and Florida (Fig. 3-24) as a Category 3 

hurricane on 16 September 2004 (Weisberg and Zheng, 2008). Hurricane Ivan 

produced severe storm surges of about 2.4 m around Dauphin Island and 2.1 m within 

Mobile Bay. Coupled with large waves (Wang et al., 2005), Ivan caused extensive 

damage to coastal and inland structures, highways and bridge systems, and forests 
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(Hagy et al., 2006; Sallenger et al., 2006), making it one of the most destructive 

hurricanes ever to hit the Alabama and Florida area. Hurricane Ivan caused an 

estimated $18 billion 2004 USD ($22.1 billion 2012 USD) in damages to the United 

States, making it the fifth costliest hurricane ever to strike the States. Our main focus 

of this test is to examine the significance of wave-current interaction on storm surge 

under strong current conditions in very shallow water regions. 

As an illustration of model performance and to corroborate the findings from 

the results of Hurricane Isabel, we have run our coupled model on a super-regional 

grid covering the entire Gulf of Mexico, the U.S. East Coast, and the Caribbean Sea 

with 600K nodes and 31 vertical levels in order to simulate Hurricane Ivan (2004) in 

the Gulf of Mexico. The mesh resolves the northern part of the Gulf of Mexico with 

element edge lengths as fine as 100 m (Fig. 3-25). The model setup basically was 

similar to that for the Isabel 3D case (see Section 3.3 .1 ). 

Before the Ivan storm surge simulation, the simulation oftides along the U.S. 

East and Gulf Coasts was carried out to verify the SELFE model by using this super­

regional grid. The model was forced by 7 main tidal constituents at its open boundary, 

namely O~t K1, QJ. M2, N2, S2 and K2. Earth tidal potential of each tidal constituent 

was also applied to interior cells of the model domain. The simulation oftide using a 

time step of 50 sec started from 9/1/2004 UTC and lasted for 30 days. The simulated 

hourly tidal levels of the last 25 days were used for comparison with predicted tides at 

22 tidal gauge stations around the Gulf of Mexico and the other 10 stations along the 

U.S. East Coast from the NOAA CO-OPS dataset (Fig. 3-26a and Fig. 3-26b). 
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Tables 3-5 and 3-6 show the correlation coefficients between computed and 

NOAA-predicted tides during the period from 9/6/2004 to 9/30/2004 in the Gulf of 

Mexico and along the East Coast, respectively. It can be seen that the model 

adequately simulated tidal elevation around the Gulf of Mexico with correlation 

coefficients (R2
) ranging from 0.63 to 0.94 except at Cypremort Point, LA and New 

Canal Station, LA (Table 3-5) because the resolution is insufficient on the south shore 

of the Lake Pontchartrain (Dietrich et al., 201 0). The simulated tides along the East 

Coast match the predicted tides very well with correlation coefficients greater than 

0.88 (Table 3-6). These results indicate that the simulation of tide by the SELFE 

model using this super-regional grid is overall satisfactory along the U.S. East Coast 

and in the Gulf of Mexico. 

For the validation of the wave model during Hurricane Ivan, the time series of 

the hindcast results at NDBC buoys (Fig. 3-27) are shown for the significant wave 

height (Fig. 3-28) and for the peak period (Fig. 3-29); the model-data comparisons are 

reasonable and generally better than those for Isabel. For the effect of wave-induced 

set-up, we focused our analysis on the station of Dauphin Island (Fig. 3-30) for the 

sake of brevity; a similar comparison was also conducted by Roland et al. (2009) 

using the coupled 2D wave-current model SHYFEM-WWM II. The model results for 

the water level elevation during Hurricane Ivan clearly show similar behavior patterns 

to those for Isabel. Without the effect of wave-enhanced bottom stress, the coupled 

model overpredicted the forerunner (Fig. 3-30 (blue solid line)); adding the wave 

boundary layer based on the GM79 formulation leads to a net reduction of the surge 
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peak and a better forerunner. It is interesting to note that the results from the fully 

coupled model (including wave-induced radiation stress, wave-induced surface stress, 

and wave-enhanced bottom stress) are close to those from SELFE alone, with the 

latter being slightly more accurate during the period of surge peak. Again, we expect 

further improvement to the fully 3D coupled model once a consistent 3D framework 

is implemented therein. 

3.4 Efficiency of the coupled model 

As we mentioned before, the key issues of operational storm surge forecast 

are the efficiency and scalability of the model. We conducted several benchmark tests 

to evaluate the efficiency of our coupled model and the results are presented in this 

section. 

The parallel performance of our coupled model was evaluated on ECMWF's 

high-performance cluster (CIA/B). The scaling on the 600k mesh we used for the 

Hurricane Ivan case was good up to 32 compute nodes (with 64 cores on each node; 

2048 cores altogether), on IBM Power 6 architecture with 50% hyper-threads (Fig. 3-

31 ). Note that the definition of speed-up was relative to a run using 2 compute nodes 

(128 cores) without hyper-threading. The run was made with a coupling time step of 

180 sec for which the peak performance on 2048 hyper-threading cores was 

approximately II 0 times faster than real-time using I6 sub-iterations for the explicit 

scheme used in WWM II in order to fulfill the stability conditions. It can be seen that 

the domain decomposition technique leads to linear scaling behavior for the WWM II 



75 

up to 2048 cores. For SELFE alone, the scaling is also linear but with a somewhat 

smaller slope. The uses of hyper-threading resulted in a jump with respect to the 

efficiency in WWM II as well as the coupled model. This is due to the fact that the 

network traffic was reduced by a factor of 2, clearly indicating the efficiency of the 

implementation on hyper-threading platforms. 

In the SURA test bed project, we also conducted benchmark runs on 

NSF!feragrid's Ranger cluster by using the same setups to compare the efficiency 

between three models: ADCIRC, FVCOM, and SELFE. The results of the timing test 

are listed in Table 3-7. It should be noted that, in these three models, SELFE is the 

only one using a semi-implicit scheme, which means we can use a much larger time 

step compared with ADCIRC and FVCOM. As shown in Table 3-7, the total wall­

clock time of a 1 0-day run for SELFE is only 107 mins when using 512 

computational cores on Ranger. On the contrary, it took 266 mins for FVCOM and 

378 mins for ADCIRC, almost 4 times slower than SELFE, to finish the timing test 

run. Moreover, the maximum performance of SELFE can be reached when using 256 

computational cores (95 mins, not listed here). This result indicates that the 

performance of the SELFE model is sufficient for forecasts of large storms and only 

requires a reasonable computational power that is less than that of the other two 

models. 
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3.5 Conclusions 

The coupled model we presented in Chapter 2 has been demonstrated to be 

accurate and robust, in addition to being efficient, through a series of stringent tests 

consisting of two analytical solutions, three laboratory experiments, and two cross­

scale field tests. In addition to the tests presented in this chapter, we have also 

successfully applied our coupled model to other field scale tests, included in the 

context of the on-going IOOS-sponsored super-regional test bed for storm surge 

inundation (see details in Chapter 4 and 5), as well as forecasting the recent Hurricane 

Irene (20 11 ). 

Our results for the 3D wave-current coupled model also highlight the need to 

further understand the delicate inter-play of different and often opposing physical 

processes included in such complex nonlinear models, as the end results are not 

always easy to interpret. A consistent physical formulation for the wave-current 

interaction, such as that shown in Ardhuin et al. (2008), will help radiate more light 

on the explanation on the 3D results presented in this chapter. 

Since the efficiency of our wave-current coupled model is good and only 

requires little computational resource, we advocate the use of wave-current coupled 

models in all scientific and engineering studies, especially the regions inside the surf 

zone. Neglecting the wave-current interactions is an assumption that can hardly be 

justified in wave-dominated coasts and downstream portions of estuaries. 
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Table 3-1 Station information and availability of observations during Hurricane Isabel 

used in this study. 

Station ID Station Name Coordinates (degree) Observations* 
Latitude (N) Longitude (W) Water Level Winds Waves 

NOAA 
8570283 Ocean City Inlet, MD 38.328 75.092 X 
8571892 Cambmge, MD 38.573 76.068 X X 
8573364 To !chester Beach, MD 39.213 76.245 X X 
8574680 Baltimore, MD 38.267 76.578 X 
8575512 Annapolis, MD 38.983 76.48 X 
8577330 Solomons Island, MD 38.3 76.452 X 
8594900 Washington, DC 37.873 77.022 X 
8632200 K"topeke Beach, VA 37.167 75.988 X X 
8635150 Colonial Beach, VA 38.252 76.96 X 
8635750 Lewisetta, VA 37.987 76.463 X X 
8636580 Windmill Point, VA 37.615 76.29 X 
8637624 Gloucester Point, VA 37.247 76.5 X 
8638610 Sewells Poilt, VA 36.947 76.33 X X 
8638863 Chesapeake Bay BT, VA 36.967 76.113 X X 
8639348 Money Point, VA 36.778 76.302 X X 
8651370 Duck Pier, NC 36.183 75.747 X X 

NDBC X X 
44004 38.484 70.433 X X 
44008 40.502 69.247 X X 
44009 38.464 74.702 X X 
44017 40.692 72.048 X X 
44025 40.25 73.166 X X 
41001 34.7 72.73 X X 
41002 32.382 75.415 X X 
41008 31.4 80.87 X X 
41025 35.01 75.4 X X 

CHLV2 36.91 75.71 X X 
VIMS X X 

GP Gloucester Point, VA 37.247 76.5 X X 
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Table 3-2 Principal tidal constituents with periods (hours), tidal potential constants 

(m), and associated effective earth elasticity factors. 

Species,j n Constituent Tjn (b) qn(m) a jn 

l l K1 23.934470 0.141565 0.736 

2 01 25.819342 0.100514 0.695 

3 Ql 26.868357 0.019256 0.695 

2 1 M2 12.420601 0.242334 0.693 

2 s2 12.000000 0.112841 0.693 

3 N2 12.658348 0.046398 0.693 

4 K2 11.967235 0.030704 0.693 
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Table 3-3 Comparison of observed and predicted mean tidal amplitudes at II selected 

tidal gauge stations. 

Stations M2 52 N2 K1 

OBS PRE OBS PRE OBS PRE OBS PRE 

{unit: m) 

CBBT 0.38 0.37 0.07 0.09 0.09 0.09 0.06 0.07 

Kiptopeke 0.38 0.37 0.07 0.08 0.08 0.08 0.06 0.07 

Gloucester Point 0.35 0.31 0.07 0.07 0.07 0.07 0.05 0.05 

Windmill Point 0.17 0.16 0.03 0.04 0.04 0.04 0.03 0.03 
lewisetta 0.18 0.18 0.03 0.04 0.04 0.04 0.02 0.03 

Solomon's Island 0.16 0.17 0.02 0.03 0.03 0.04 0.03 0.04 
Cambridge 0.23 0.22 0.03 0.04 0.04 0.05 0.05 0.05 

Annapolis 0.13 0.12 0.02 0.02 0.03 0.03 0.06 0.06 

Baltimore 0.16 0.17 0.02 0.02 0.04 0.04 0.07 0.07 
Tolchester Beach 0.17 0.19 0.03 0.04 0.04 0.04 0.07 0.07 
ARE*{%) 4.1 22.6 5.8 11.7 
RMSE • (m) 0.016 0.01 0.005 0.006 

* ARE: mean absolute relative error; RMSE: root-mean-square error. Definitions of 
these statistical skill assessments can be found in Appendix A. 
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Table 3-4 Comparison of observed and predicted mean tidal phases at 11 tidal gauge 

stations. 

Stations M2 52 N2 K1 

OBS PRE OBS PRE OBS PRE OBS 

(unit: degrees) 

CBBT 235.3 235.3 255.9 255.9 218.1 218.1 109.1 
Kiptopeke 247.9 251.7 270.8 271.7 229.2 234.6 119.3 

Gloucester Point 268.3 267 288.7 287.8 250.9 249.2 125.6 

Windmill Point 317.3 326.6 334 344.7 297.2 309.8 148.7 

Lewisetta 33.8 30.6 54.7 54.3 7.6 11.1 205 

Solomon's Island 54.2 47.9 70.5 74.3 32.4 27.8 243.7 

Cambridge 114.7 91.6 139 120.2 94 72.1 269.4 

Annapolis 147.2 133.1 175 157.7 126 115 283.3 

Baltimore 193.9 191.2 213.4 216.8 173.4 170.5 296.6 
Tolchester Beach 202.7 194.4 227.4 222 176 173 287.9 
ARE*(%) 6.1 3.7 10.3 
RMSE * (deg) 9.8 9.1 9.2 

* ARE: mean absolute relative error; RMSE: root-mean-square error. Definitions of 
these statistical skill assessments can be found in Appendix A. 
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Table 3-5 Locations of NOAA stations around Gulf of Mexico used in the Hurricane 

Ivan case and the statistical analysis for the comparisons between modeled and 

NOAA predicted tide. 

Location Longitude Latitude Grid Node Correlation Coetf'JCient 
City, State DecDeg DecDeg # Manning Coefficient= 0.025 

1 Calcasieu Pass LA -93.3429 29.7682 539669 0.91 
2 Lake Charles LA -93.2217 30.2236 1207579 0.76 
3 Freshwater Canal Locks LA -92.3050 29.5550 746226 0.94 
4 Cvpremort Point. LA -91.8800 29.7134 892292 0.30 
5 Lawma. Amerada Pass LA -91.3381 29.4496 768264 0.79 
6 Port Fourchon, LA -90.2091 29.1122 525506 0.88 
7 New Canal Station LA -90.1134 30.0272 1144526 0.26 
8 Grand Isle, LA -89.9545 29.2676 441647 0.93 
9 Shell Beach LA -89.6733 29.8681 668799 0.63 

10 Pilots Station East, LA -89.4074 28.9319 258357 0.93 
It Bay Waveland Yacht Club MS -89.3258 30.3264 420372 0.91 
12 Gulfport Harbor MS -89.0817 30.3600 334930 0.93 
13 Pascagoula NOM Lab, MS -88.5630 30.3679 243627 0.83 
14 Dock E Port ofPascaaoula. MS -88.5054 30.3477 240773 0.91 
15 Dauphin Island Hydro AL -88.0603 30.2485 214500 0.91 
16 Panama City, FL -85.7113 30.0972 214538 0.79 
17 iApaiachicola, FL -84.9773 29.7136 217994 0.73 
18 Cedar Key, FL -83.0317 29.1350 230412 0.93 
19 Clearwater Beach, FL -82.8317 27.9783 209986 0.94 
20 Naples FL -81.8239 26.1434 207293 0.93 
21 Key West FL -81.8259 24.5573 190261 0.83 
22 Vaca Key, FL -81.1210 24.7294 178258 0.70 
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Table 3-6 Locations of NOAA stations along East Coast used in the Hurricane Ivan 

case and the statistical analysis for the comparisons between modeled and NOAA 

predicted tide. 

Location Lonl!itude Latitude Grid Node Correlation CoeffiCient 
City, State Dec Deg DecDeg # Manning Coefficient= 0.025 

I Trident Pier, FL -80.5917 28.4150 131814 0.98 
2 Fort Pulask~ GA -80.9017 30.2236 138966 0.90 
3 Charleston, SC -79.9250 32.7817 121966 0.88 
4 Springmaid Pier, SC -78.9183 33.6550 119577 0.98 
5 Wrightsville Beach, NC -78.7867 34.2133 119591 0.99 
6 Duck,NC -75.7467 36.1833 90909 0.98 
7 CBBT, VA -76.1133 36.9667 115943 0.99 
8 Atlantic City, NJ -74.4183 39.3550 92348 0.99 
9 Sandy Hook, NJ -74.0083 40.4667 106079 0.99 

10 Newport, RI -71.3267 41.5050 81699 0.96 
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Table 3-7 Results ofTiming tests for the model efficiency ofthree models: ADCIRC, 

FVCOM, and SELFE. 

MODEL RuniD dt(sec) Cores Simulation Da~s Wall Time {min) 
ADCIRC timing test 1 512 10 378 
FVCOM timing test 1.2 512 10 266 
SELFE timing test 120 512 10 107 
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Figure 3-4 Top view of the grid domain used in the Longuet-Higgins and Stewart 
wave set-up test. 
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Figure 3-5 Convergence to steady state for elevation at x=0.38m (h=0.038m). 
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Figure 3-7 Sketch of Boers ( 1996) laboratory set~ up. 
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Figure 3-8 Wave boundary conditions for Boers (1996) laboratory set-up. 
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Figure 3-11 (a) Topography ofHISWA Experiment ofDingemans (L51 test); (b) 
Top view ofthe grid domain used in L51 test. 
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Figure 3-12 Comparison of wave-induced surface currents from (a) laboratory data; 
(b) model results; (c) absolute errors ((b)-(a)). 
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Figure 3-15 Convergence history of elevation along the 5 measurement locations (see 
Fig. 3-14). 
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Figure 3-16 Measured (dashed) and computed wave spectra (solid) at the given 
locations (see Fig. 3-14) in a logarithmic scale. 
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Figure 3-17 Track of Hurricane Isabel (from www.erh.noaa.gov). 

http://www.erh.noaa.gov
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Figure 3-18 (a) Bathymetry in the whole computational domain, and (b) zoom-in of 

the Chesapeake Bay area with the computational mesh. 
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Figure 3-19 (a) Locations of the wave buoys, and (b) tidal gauges inside the 
Chesapeake Bay area. 
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Figure 3-20 Comparison between modeled and measured wind at Chesapeake Bay 

Light buoy (CHL V2, Fig. 3-19). 
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Figure 3-26 (a) Model domain with bathymetry (m) and locations of 22 NOAA tidal 
gauge stations around Gulf of Mexico and (b) 1 0 NOAA tidal gauge stations (red 
under line) along East Coast we use to compare with model results. 
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CHAPTER IV. The effect of bottom boundary layer dynamics on the forerunner 

simulation during 2008 Hurricane Ike in the Gulf of Mexico 

4.1 Introduction 

Western Louisiana and northern Texas (LATEX) Coasts are constantly under 

a threat by tropical storms (e.g., hurricanes) because of their geographic locations 

along the northern Gulf of Mexico (Fig. 4-1 b). Wind-driven coastal surge from these 

hurricanes was the most important contributor to total water level, associated with 

coastal flooding (Bunya et al., 2010). The primary storm surge caused by local wind 

stress will peak around the time of landfall, with the largest surge found to the right 

side ofthe hurricane track in the northern hemisphere (Kennedy et al., 2011). 

Along the U.S. East and Gulf Coasts, smaller increases in surface water level 

have been found up to several days before a hurricane makes landfall. This so-called 

forerunner is well-known in the Gulf of Mexico but, in the past, oceanographers and 

coastal engineers usually ignore this phenomenon due to the relatively smaller 

amplitude (< I m) compared with the primary surge (Bunpapong et al., 1985). 

However, recently larger forerunners (1-1.5 m) were reported during Hurricane 

Dennis (2005) and Hurricane Ike (2008) while the centers of the storms were still far 

from the Gulf Coasts and winds were relatively weak and shore-parallel (Morey et al., 

2006; Kennedy et al., 2011 ). 
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The time series of the water level anomaly (observed water surface level 

minus predicted tide) collected from NOAA tidal stations for the 2008 Hurricane Ike 

are shown in Fig. 4-2 (locations are shown in Fig. 4-1b). The water level anomaly, 

with a maximum of 4 m at the tidal gauges shown, was largest on the right side of the 

landfall (Station 8770570, Sabine Pass North). The peaks of the water level anomaly 

occurred as Hurricane Ike approached the LATEX Coasts, and the surge at landfall 

thus fits well with prevailing descriptions of storm surge being forced by local wind 

stress (usually dominant along the cross-shelf direction when the hurricane is close to 

the shoreline; Fig. 4-3). Based on the observations (Fig. 4-2), large forerunners were 

also found one day before landfall. Winds at these times were parallel to the shore 

and relatively weak (Fig. 4-3); this local wind did not play an important role in 

contributing to these large forerunners. Potential explanations of the forerunners' 

existence include wave set-up, large scale seiching modes, and Ekman set-up 

(Kennedy et al., 20 11 ). It has been demonstrated that the large forerunner observed 

during Hurricane Ike occurred as a result of first Ekman set-up due to the shore-

parallel wind along the broad LATEX shelf and then reached the geostrophic balance 

due to the slow-moving speed of Hurricane Ike. Based on Kennedy et al. (2011), this 

forerunner surge, due to an approximately geostrophic balance between Coriolis force 

acting on the along-shelf current and the across-shelf pressure gradient (e.g., Freeman 

et al., 1957; see schematic explanation in Fig. 4-4), can be calculated from simplified 

across-shelf steady-state momentum equations as: 

AT/c = {U 
Ay g 

(4.1) 
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where Tic is the across-shelf Ekman set-up, y increases along a transect toward the 

shoreline, f is the Corio lis parameter, g is gravitational acceleration, and U is the 

depth-averaged along-shelf velocity. Thus, a large Ekman set-up will be forced by 

strong shore-parallel winds generating rapid along-shelf currents over a broad shelf; 

for example, a depth-averaged current of I m/s at 30 degrees north latitude would 

force an Ekman set-up of 1.5 m on a 200-km-wide continental shelf. This number is 

close to the observed water level anomaly during the forerunner period (Fig. 4-2b ). It 

should be noted that actually Eq. (4.1) is a classical geostrophic equation since it 

shows the balance between the Coriolis force and the cross-shore pressure gradient 

and the classical theory of Ekman dynamics should include frictional forces (Ekman, 

1905). Theoretically, if the water depth exceeds the Ekman depth then, under steady­

state conditions, the bottom and surface Ekman layers will be generated by a wind 

stress on the ocean surface and a geostrophic interior will occur between bottom and 

surface Ekman layers. Based on Ekman (1905), in this study we defined the Ekman 

set-up as a balance between frictional forces, Coriolis forces, and the cross-shore 

pressure gradient. 

We followed the procedure presented in Kennedy et al. (2011) by using our 

wave-current coupled model and conducted similar numerical experiments: with and 

without Coriolis forcing and attained very similar results (Fig. 4-4 and Fig. 4-5). Fig. 

4-4 shows that, one day before landfall, there would have been essentially no 

forerunner in the absence of Coriolis forcing. It should be noted that, although the 

agreement shown in Fig. 4-4 is reasonable, it is not perfect, with simulations under-
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estimating the magnitude of the forerunner. One possible explanation pointed out in 

Kennedy et al. (2011) is due to the poorly known bottom friction coefficients. Based 

on Eq. (4.1), Ekman set-up is heavily dependent on the magnitude of along-shore 

current, which is very sensitive to the bottom boundary, especially the drag 

coefficient in the inner-shelf or shallow water regions. They found that agreement can 

be improved by decreasing the bottom drag coefficient, which they believe is 

consistent with the smooth and muddy bottom inside the LATEX shelf. However, this 

kind of explanation is only appropriate for the forerunner stage, because reducing the 

bottom drag coefficient in the model tends to cause an overprediction of the surge 

during the primary surge stage (Fig. 4-5). This implies that the bottom drag 

coefficient, usually determined by the bottom sediment grain size in the near-bed, 

actually varies with time in the natural world. 

Typically, the bottom drag coefficients are determined during the calibration 

of models, through the comparisons of computed and observed tidal currents. In most 

cases, bottom drag coefficients are specified by constant bottom roughness and the 

bottom stresses are described using the log-profile of the wall. However, it has been 

known that a number of dynamics have significant effects on bottom boundary layer 

(BBL). Previous works (Grant and Madsen, 1979; Grant et al., 1984; Glenn and 

Grant, 1987; Styles and Glenn, 2000; Zhang et al., 2004) indicate that the presence of 

surface waves over rough bottoms significantly increases the bottom friction. In 

addition, due to the increased bottom friction, the thickness of the bottom boundary 

layer is considerably larger than previously estimated (Grant and Madsen, 1986). 
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Thus, during a strong wind wave condition (for example, in a storm), the majority of 

the water column over the shelf is frictionally dominated. 

Although the effects of wave-current interactions are accepted as being 

important to the BBL dynamics on shelf, there are other processes that are known as 

being important to shelfBBL dynamics, especially the bottom drag coefficient (or the 

thickness of the BBL). One important process is density stratification in the water 

column. It is well-known that the water column on the continental shelf region 

generally exhibits vertical density gradients associated with gradients in temperature, 

salinity (fair weather conditions), and suspended sediment (extreme weather 

conditions, e.g., tropical storms). Under a stable stratification, vertical mixing is 

dampened, since shear production of turbulence is partially suppressed by work 

against buoyancy forces. As a result, the diffusion of momentum and mass within the 

boundary layer is reduced. In this case, the BBL is reduced in thickness, the boundary 

shear stress is decreased, and the veering angle is increased (Grant and Madsen, 

1986). In this study, we are focusing on the density stratification produced by 

suspended sediment because the upper layer of the water column should be well­

mixed under the strong wind condition. For example, along the Louisiana Coast, for a 

cold-front passage sampled in 2001, a well-mixed water column in terms of salinity 

and temperature during pre-front conditions has been found; at the same time, high­

concentration sediment suspensions during storm conditions significantly enhance the 

stratification in the lower part of the water column (Fig. 4-6). In addition, cross-shelf 

wave attenuation on the shallow shelf was observed, and was greatest during storm 
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events coinciding with the times of fonnation of near-bottom high-concentration 

sediment suspensions (Kineke et al., 2006). Sediment-induced stratification is 

important to the bottom boundary dynamics on wind-driven shelves and may have 

significant impacts on forerunner and stonn surge prediction. 

The pioneering works of the effects of suspended sediment stratification on 

the oceanic BBL have been done by Smith and McLean (1977a, b) and Adams and 

Weatherly (1981 ). The latter authors developed a near-bottom quasi-steady flow 

model for a BBL subject to suspended sediment-induced stratification. These models 

couple the conservation of mass and momentum through the effect of the mass field 

on the vertical mixing of momentum. Near the boundary, an alternative to the 

Richardson number is the non-dimensional stability parameter z/L. Here L is the 

3 

Monin-Obukov length ( L = - pu. < p'w' >, where p' and w' are the fluctuating 
g 

density and turbulence vertical velocity, respectively). This dimensional stability 

parameter expresses the ratio of turbulence kinetic energy dissipated by buoyancy 

forces to that produced by mean shear in the vicinity of the boundary where the 

production is equal to u;jKZ. The introduction of this stability parameter allows a 

useful analogy between log-linear atmospheric models of stably stratified shear flows 

in the surface layer and suspended sediment stratification in the ocean. Thus, the 

effect of the suspended sediment-induced stratification on the velocity profile in the 

boundary layer is similar to the results from atmospheric models for stratification due 

to surface heating (Grant and Madsen, 1986). Model results indicate that the BBL 

response to a gradient of suspended sediment concentration is to reduce turbulence 
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kinetic energy, and bottom stress is reduced approximately 45% (Adams and 

Weatherly, 1981). Later Wang (2002) and Byun and Wang (2005) considered the 

effects oftidally induced suspended sediment stratification in the BBL and the effects 

on sediment transport, respectively. 

Existing formulations of mud-induced wave dissipation are based on the 

assumption that mud-induced wave dissipation is important only for long wave (low­

frequency waves; shallow water waves), which reach deep enough into the water 

column. Bottom sedimentary fabric should have negligible effects on short waves 

(e.g. wind waves), which interact weakly with the bottom. However, Sheremet and 

Stone (2003) found significant short wave dissipation in the muddy Louisiana inner 

shelf. Strong bottom sediment reworking during a storm event suggests that this 

effect (dampening of short wave) is related to sediment resuspension processes. In 

fact, in the case of a strong wind condition (e.g., a tropical storm), the effect of the 

sediment-induced stratification on the flow is strongly tied to the wind waves. For the 

suspended sediment-induced stratification, the wave effects are extremely important 

since the large bottom shear stresses are associated with the waves. As a result, large 

amounts of sediment are suspended and may induce strong stratification (Grant and 

Madsen, 1987). Observation data show that wave and current activity resuspended 

large quantities of sediment, and caused a lutocline located at about 1 m above the 

bottom on the muddy Louisiana inner shelf during Hurricane Claudette (Sheremet et 

al., 2005). A lutocline is a sediment-induced pycnocline (Kirby and Parker, 1977). 

Recent studies show that the sediment-induced stratification is important for the 
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kinetic energy balance throughout the water column (Safak et al., 20 I 0). They did 

model-observation comparisons and the model results suggested that sediment­

induced stratification effects are on the same order of magnitude as turbulent 

dissipation, and thus play a significant role in the turbulence kinetic energy balance 

within the tidal (current) boundary layer. All these works imply that the BBL 

dynamics could be strongly affected by the sediment-induced stratification during 

extreme weather events. 

Despite the fact that there are plenty of model studies about the effects of 

suspended sediment stratification on a BBL in the shelf regions, published models 

have not considered sediment-induced stratification on storm surge simulations. With 

the numerical model, we can evaluate the contributions of BBL sediment 

stratification on storm surge during storm weather conditions. The objective in this 

study is to develop a numerical model with coupled current-wave-sediment transport­

BBL processes to investigate the effects of sediment-induced stratification on the 

forerunner during Hurricane Ike in the Gulf of Mexico. This chapter is constructed as 

follows: A brief description of the current and wave model is presented (details can 

be found in Chapter 2) and the details of the sediment transport model and bottom 

boundary layer sub-model are described in Section 4.2. Section 4.3 provides a 

description of the numerical experiments setup; the validation of current-wave­

sediment transport-BBL model and ideal test cases are also shown in this section. 

Section 4.4 presents the model results as well as the discussions of the sediment-
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induced stratification effects on the BBL. A practical approach is described in Section 

4.5. The summary and conclusions of this study are provided in Section 4.6. 

4.2 Model description 

In this study, we have built a storm surge modeling system that couples the 

state-of-the-art circulation model SELFE (Zhang and Baptista, 2008), wave model 

WWM II (Roland, 2009), and sediment transport-BBL model (Warner et al., 2008). A 

detailed description of our 3D wave-current model, including governing equations as 

well as the coupling procedure, can be found in Chapter 2. In this section we focus on 

the descriptions of algorithms for sediment transport and the BBL we implemented in 

our coupled model SELFE-WWM II. 

4.2.1 Sediment transport model 

In order to consider the effect of sediment-induced stratification, the model 

should have the capability to represent suspended-sediment transport in the water 

column. To simplify the problem, in this study we consider only single-sized non-

cohesive sediment with a constant settling velocity w • . The three-dimensional 

equation describing the scalar transport is given by: 

ac a a a a 
- +- (uC) + - ( vC) +-( wC) =- (K h C) + C source at ax ay az az (4.2) 

where C represents a tracer quanity (here C is suspended sediment). We know that 

temperature, salinity, and sediment suspended in the water column are transported by 
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solving the advection-diffusion equation. However, for suspended sediment, an 

additional source/sink term is needed (last term on the right-hand side of Eq. (4.2)) 

for vertical settling and exchange with the seabed as: 

Csource = - m;~c + E (4.3) 

Where w, is the vertical-settling velocity (positive upwards); E is the erosional flux. 

The erosion source term in Eq. (4.3) is parameterized following Ariathurai and 

Arulanandan ( 1978) as: 

(4.4) 

where Eo is the bed erodibility constant (kg m-2s-1
); tP is the porosity (volume of 

voids/total volume); rc. is the bottom critical erosion stress; r,1 is the total skin 

friction bottom stress (maximum combined wave+current). There is considerable 

uncertainty involved with the choice ofE0 in Eq. (4.4). Since we are only interested in 

a qualitative description of the BBL effect on the forerunner simulation, the exact 

values in suspended sediment concentration is not our major concern. We therefore 

set Eo to a constant 5x104 kgm-2s-1
• This value is the default for non-cohesive 

sediment used by Community Sediment Model m ROMS 

(https://www.myroms.org/wiki/index.php/sediment.in). A constant Eo assumes that 

there is an unlimited suspended-sediment bed load for erosion. 

https://www.mvroms.org/wiki/index.php/sediment.in
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The density of clear seawater usually is determined by the equation of state. 

When considering the effects of suspended sediment on the density field, the equation 

of state for seawater density becomes: 

c 
P = Pwa/er +-(ps- Pwaler) 

Ps 
(4.5) 

where pis clear seawater density and Psis sediment density. Eq. (4.5) allows the 

model to simulate processes where sediment density influences hydrodynamics (e.g., 

sediment-induced stratification). 

4.2.2 Bottom stress calculations for sediment transport 

It is known that the treatment of the BBL is important for the circulation 

model solution because it determines the stress exerted on the flow by the bottom, 

which enters the Reynolds-averaged Navier-Stokes equations as a boundary 

conditions for momentum in the x- andy-directions: 

(4.6) 

Determination of the BBL is even more important for the sediment-transport 

formulations because bottom stress determines the suspension rate for the suspended 

sediment (Eq. (4.4)). 

Similar to Warner et al. (2008), in this study we implement two methods for 

representing BBL processes: (1) simple drag coefficient expressions and (2) more 

complex formulations that represent the interactions of wave and currents over a sea 

bed. The drag-coefficient method implements a formulation for a logarithmic profile. 
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The logarithmic formulation assumes that flow in the BBL has the classic vertical 

logarithmic profile. Conceptually, the BBL can be viewed as a two-layered system: 

an inner layer with strong velocity shear close to the bottom and an outer layer 

making up the remainder of the boundary layer. In the overlap region, the velocity 

profile is logarithmic for a neutrally stable boundary layer that can be defined by a 

friction velocity and bottom roughness length as: 

(4.7) 

where speed U = .Ju2 +v2 
, zb is the thickness of the bottom cell, z0 is a constant 

(but possibly spatially varying) bottom roughness height (m), K = 0.4 is the von 

Karman constant, and U• is the friction velocity defined as u. = Jrb / p0 . Bottom 

stresses based on the logarithmic profile assumption are calculated as: 

rbx =K2uU/In2(zb) 
Zo 

(4.8) 

(4.9) 

The advantage of the simple drag-coefficient method for the bottom stress 

calculation is that the velocity and the vertical elevation of that velocity are used in 

Eqs. (4.8) and (4.9). Since the vertical elevation of the velocity in the bottom 

computational cell will change spatially and temporally, the inclusion of the elevation 

provides a more consistent formulation. 
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A more complex routine is required to simulate BBL processes in the presence 

of waves and currents. The short (a few sec) oscillatory share of wave-induced 

motions in a thin (a few em) wave-boundary layer will produce turbulence and 

generate large instanteous shear stresses. The turbulence enhances momentum 

transfer, effectively increasing the coupling between the flow and the bottom and 

increasing the frictional drag exerted on the mean flow, averaged over many wave 

periods. The large instantaneous shear stresses usually dominate sediment 

resuspension. Resuspended sediments can cause sediment-induced stratification and 

significantly change the effective viscosity of the fluid. 

The BBL parameterization implemented in the sediment-transport model is 

based on Grant and Madsen (1979) and Madsen (1994). This parameterization 

requires inputs of velocities u and v above the bottom cell, representative wave­

orbital velocity amplitude Ub, wave period T, and wave propagation direction e 

(degrees, in nautical convention). The wave information is provided by the wave 

model WWM II. Additionally, the BBL model requires bottom sediment 

characteristics (median grain diameter 0 50, sediment density p5, and settling velocity 

wJ; Bed stresses associated with mean current above the wave-boundary layer rc, the 

pure wave motion rw, and the maximum vector sum of the two !we from the previous 

time step are used as initial estimates for the next time step. The detailed procedure 

for BBL calculations in the BBL model can be found in Warner et al. (2008). The 

final step in the BBL calculations is to estimate the skin friction bottom stress that is 

used to determine sediment resuspension in Eq. (4.4). 
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In summary, the more advanced BBL routine for sediment transport model 

calculates current and wave-boundary bottom stresses under the combined influence 

of wave and currents. These stresses directly influence flow near the bottom and act 

as agents for sediment resuspension. The comparisons of different methods for 

bottom shear calculations are conducted and discussed in a later section. 

4.2.3 Modified bottom boundary conditions for sediment stratification 

It has been recognized that the stratification induced either by sediment or 

other variables (e.g., water temperature) can lead to a significant change in BBL 

dynamics (Adams and Weatherly, 1981; Grant and Madsen, 1986; Soulsby and 

Wainwright, 1987; Wang, 2002; Byun and Wang, 2005; Taylor and Sarkar, 2008). In 

order to consider the effect of sediment stratification, the bottom boundary conditions 

of SELFE presented in Section 2.2.2 need to be modified. The velocity profile for a 

stably stratified logarithmic boundary layer is given by (Adams and Weatherly, 

1981): 

(4.10) 

Where A is the empirical constant and can be provided from laboratory experiments. 

In this study we adopt A=5.5, which is equivalent to the value used by Adams and 

Weatherly (1981), Wang (2002), and Byun and Wang (2005). Rr, the flux Richarsdon 

number, referenced as an index for the vertical density, is expressed by: 

R =-pb=KhR 
I p I 

s v 
( 4.11) 
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where Pb and P s are the buoyant production and the shear production of turbulent 

kinetic energy, respectively; Kh is the vertical eddy diffusivity (m2s-1
); v is the 

vertical eddy viscosity (m2s-1
); Ri is the gradient Richarsdon number. These terms can 

be presented by: 

(4.12) 

where N2 is the buoyancy frequency squared including the contribution of the 

sediment-induced stratification. SELFE adapts the Generic Length Scale (GLS) 

turbulence closure through the General Ocean Turbulence Model (GOTM) suggested 

by Umlauf and Burchard (2003; 2005), taking the advantages from most of the level 

2.5 closure schemes (k-E (Rodi, 1984); k-<0 (Wilcox, 1998); Mellor and Yam ada, 

1982). Detailed descriptions can be found in Section 2.2.3. The k--~:: turbulence 

scheme was used to calculate vertical eddy viscosity and vertical diffusivity. The 

critical flux Richardson number Rrc =0.21 that was chosen to represent the turbulence 

is completely suppressed by the stratification (slippery BBL). 

In real-world observations, current velocity profiles are used to estimate shear 

velocities, u*, and roughness lengths, Zo (e.g., Eq. (4.7)). The effects of strong density 

stratification due to near-bed suspended sediment on the estimates of u * are 

significant (Cacchione et al., 1995) and reduced bottom drag has been observed under 

this condition (King and Wolanski, 1996; Dyer et al., 2004). Substituting Eq. (4.10) 
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into Eq. (2.9) and Eq. (2.1 0), the bottom drag coefficient in a sediment-induced 

stratification BBL can be given by: 

(4.13) 

where z0b can be equal to z0 (without the effect of wave-current interaction in the 

(

£ J-~IT.Ii(Crrwl 
BBL) or z0b = 8wc ~c (with the effect of the wave-current interaction in 

the BBL). Note that the Rr used in Eq. (4.13) is the value calculated at the bottom 

computational cell. 

In Eq. ( 4.13 ), the bottom drag coefficient is reduced by the stratification 

induced by suspended sediment near the bed. In SELFE, Eq. (4.13) is adopted to 

compute the bottom drag coefficient and bottom friction stress (Eq. (2.9) and Eq. 

(2.10)) for the density-stratification BBL case. In a well-mixed BBL case (when 

RFO), Eq. (4.13) reverts to the traditional form ofEq. (2.10). 

4.2.4 Modified surface boundary conditions for wave-enhanced wind stress 

In Chapter 2 we presented the default option of the wind drag coefficient in 

SELFE as a function ofthe wind speed at a 10-m elevation (Pond and Pickard, 1998). 

However, it is well-known that, in reality, the drag coefficient is not only a function 

of wind speed, but also depends on the stage and motion of the waves (e.g., Donelan 

et al., 1993). When considering the effects of wave-current interaction, there are two 

options for the calculation of wave-enhanced surface stress in our coupled model. The 
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first one is based on the actual sea state (wave age) using the theory of Janssen 

(1991). The second one is based on the motion of the waves. For example, in regions 

where the winds and waves are moving in the same direction, wind drag coefficient 

will be relatively small. However, in regions where the winds are blowing opposite to 

the direction of wave propagation, the wind drag coefficient will be larger due to the 

additional roughness ofthe sea surface (Dietrich et al., 2011b). The sector-based wind 

drag coefficients we used in this study are based on recent research (Powell, 2006; 

Dietrich et al., 2011 b). Fig. 4-7 shows the variability in the wind drag coefficient 

based on the storm sectors. In this study, we choose the sector-based wind drag 

coefficient as the default for all simulations we present later. 

4.3 Validation and setup of coupled wave, current, and sediment-transport-BBL 

model 

4.3.1 Model domain and grid 

The model domain we used in this study is based on Xu et al. (2010) and 

shown in Fig. 4-la. This domain encompasses the U.S. East Coast, a portion of the 

Northern Atlantic Ocean, the Gulf of Mexico, and the Caribbean Sea. The model grid, 

with 57,344 nodes, 163,786 edges, and 106,389 elements, extends from -98 ow to -60 

0 W in longitude and from 41 DN to 8 DN in latitude. Resolutions of grid cells range 

from 50 m near the coast to 29 km along the open ocean. In the open ocean, model 

topography was interpolated from the ETOPOl global relief dataset from NOAA 
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(resolution is about I-minute. Model topography in coastal regions was interpolated 

from the U.S. coastal relief dataset with a 3-second resolution from NOAA 

(http://ngdc.noaa.gov/mgg!bathymetryD. Both relief datasets are referenced to mean 

sealevel. 

It should be noted that water levels are increased at the beginning of the storm 

tide simulation to account for the vertical datum and the intra-annual mean sea 

surface variability of the Gulf of Mexico. The computed water levels in SELFE are 

relative to local mean sea level, and they are adjusted to the North American Vertical 

Datum of I988 updated to the 2004.65 epoch, NAVD88 (2004.65), by adding O.I25 

m (Bunya et al., 20IO; SURA test bed project, 20II). A further adjustment is required 

because ofthe intra-annual fluctuation in sea level due to the thermal expansion of the 

Gulf and other processes (Dietrich et al., 20I1c). In this study, based on long-term 

observations at Dauphin Island, Mississippi, and Grand Isle and Eugene Island, 

Louisiana, a steric increase of 0.151 m in the averaged water levels in September was 

found (SURA test bed project, 20 II). Thus, the combined increase in water levels for 

Hurricane Ike is 0.125 m + O.I5I m = 0.276 m. 

4.3.2 Circulation model validation- 3D Ekman motion 

It has been demonstrated that the Ekman dynamic is an important process that 

drives the water exchanged between very near-shore regions and the outer continental 

shelf during a storm surge event (Shen, 2009; Kennedy et al., 2011 ). Moreover, it is a 

known fact that the Ekman dynamic is a kind of three-dimensional process (e.g., the 

http://ngdc.noaa.gov/mgg/bathvmetrvA
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Ekman spiral), so theoretically the 3D model should resolve the Ekman layer more 

accurately and can simulate the Ekman transport more realistically than the 2D model. 

The validation of our current model SELFE, based on the comparisons between 

model results and analytical solutions of 3D Ekman motion, is presented in this 

section. 

Away from the equator, a steady wind blowing over an ocean leads to ocean 

velocities that are not parallel to the direction of the wind. Ekman motion (Ekman-

layer dynamics) is used to describe this expected behavior, under the following 

assumptions: a) steady wind (tx and tY), blowing over an infinitely deep, flat-bottom, 

and wide ocean, with constant density, and b) motion based on the balance of friction 

(e.g., wind stress and vertical eddy diffusivity) and Coriolis force. By these 

assumptions, we can obtain the following equations and boundary conditions in the 

surface Ekman layer: 

(4.14) 

(4.15) 

ou ov 
Surface (z = 0): PJ.I. az = Tx, PJ.I. oz = rY (4.16) 

Bottom (z = - oo ): u=O, v=O (4.17) 

Assuming p and Jl are constant, the analytical solution to this problem is: 

.fi z/d [ x (z x) y . (z 1r)] u = - e r cos --- - r sm ---
pfd d 4 d 4 

(4.18) 

v = ..{2 ezfd [rx sin (!.- ~) + rY cos(!.-~)] 
pfd d 4 d 4 

(4.19) 
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Eqs. (4.18) and (4.19) show that the surface current flows at 45° to the right 

(left) of the wind direction in the northern (southern) hemisphere, and the deviation 

increases over depth in a spiral pattern known as the Ekman spiral. 

Eqs. ( 4.18) and ( 4.19) are the analytical solutions for steady-state Ekman 

motion in the ocean. However, it should be noted that, in the real world, speed and 

direction of the wind changes continuously so the analytical solutions of unsteady 

Ekman dynamics were further built (e.g. Lewis and Belcher, 2004). First, consider the 

time-dependent Ekman equation for the wind-driven ocean currents: 

(4.20) 

where U(z, t)=U+iV is the complex horizontal velocity for the wind-driven (Ekman) 

components in the x-y plane. Analytical solutions to Eq. (4.20) can be obtained 

subject to the appropriate boundary and initial conditions. The ocean is assumed to be 

initially at rest (i.e., U = 0, t S 0). Then, for time t > 0, we apply a constant wind 

stress to the ocean surface and the surface boundary condition becomes: 

(4.21) 

Although there are different ways to specify the bottom boundary condition, a no-slip 

boundary condition, U = 0, at z = - H was applied as the lower boundary condition 

to solve Eq. (4.20). 

By applying a Laplace transform, the general solution of Eq. (4.20) can be 

given by the inverse Laplace transform (e.g. Abramowitz and Stegun, 1972; Lewis 

and Belcher, 2004): 
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1 J.c+ioo t U(z, t) = -. . e5 U(z, s)ds, c ~ 0. 
27n c-100 

(4.22) 

Detailed derivations for Eq. ( 4.22) can be found in the Appendices in Lewis and 

Belcher (2004). Considering a case when eddy viscosity is constant ( J1. = constant) 

and a finite depth -H with the no-slip boundary condition, one can get an analytical 

solution for the time-dependent Ekman current velocities in finite-depth water: 

(4.23) 

where d = J2J1./f is the depth scale of the Ekman layer, an= (n + 1/2)2 rr 2J1./H 2
, 

kn = (n + 1/2)rr/H, and Uc = T5 /pJ2fJ1. is the scale for the surface velocity, 

which equals to the surface velocity given by the classic Ekman theory (steady-state, 

constant eddy viscosity, infinite water depth, and constant wind); The first term in the 

square brackets is the steady-state current for Ekman flow in finite depth and the 

second term is the transient. At short times, when ft « 1, Eq. (4.23) simplifies to the 

non-rotating solution, with momentum diffused downwards to generate a 

unidirectional current. At later times, when ft » 1, the Coriolis force deflects the 

current southwards. Qin (2011) developed a 1-D vertical numerical model to calculate 

the time-dependent Ekman current velocity in finite-depth water and good agreements 

were found between numerical simulations and analytical solutions, which verified 

that Eq. (4.23) could be useful to study the transient motions of Ekman layers as well 

as their effects on ocean circulation. 
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The wind-driven horizontal transport in the surface Ekman layer has 

components given by: 

fo 1 
U = udz =-rY 

-co pf 
(4.24) 

f
o -1 

V = vdz =-Tx 
-co pf 

(4.25) 

Eqs. (4.24) and (4.25) show that the wind-driven transport in the surface 

Ekman layer (Ekman transport) is oriented perpendicularly to the wind stress. 

Although the preceding mathematical model of surface Ekman layer is highly 

idealized, it is useful to test the accuracy of the circulation model. Here we consider a 

rectangular (IOOx100 km2
), flat-bottom (50-m depth) ocean, and apply a steady, 

uniform south wind (15 m s-1
). The latitude is roughly at 45"N, which translates to a 

Corio lis parameter of 10-4 rad/s. In the vertical, we use I 01 uniform pure S layers. 

Vertical eddy viscosity is uniform over depth (10-4m2 s-1
) as well as the density of 

water (p=lOOO kg m-3
). Uniform water level (MSL) is imposed at all open boundaries. 

We also turn off advection, horizontal diffusion, and bottom friction in order to get 

"pure" model results to compare with analytical solutions. 

Fig. 4-8 and Fig. 4-9 show that the model results (blue line) match the 

analytical solutions (red line) closely (except for the velocities near the bottom due to 

the bottom boundary conditions as shown in Fig. 4-9). The speed of the surface 

current is approximately 1% ofthe wind magnitude, and decreases exponentially with 

depth. The surface current flows are almost 45Q to the right of the wind direction, and 

the deviation increases over depth in a spiral pattern. 
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Notice that one important element related to this study is neglected from the 

Ekman-layer formulations we described above: the presence of vertical density 

stratification. The gradual change of density with height hinders vertical movements, 

thereby reducing vertical mixing of momentum by turbulence; it also allows the 

motions at separate levels to act less coherently and to generate internal gravity 

waves. As a consequence, stratification reduces the thickness of the Ekman layer and 

increases the veering angles of the velocity with height (e.g., Adams and Weatherly, 

1981 ). The Ekman dynamic, in terms of total transport across the shelf, may be 

significantly affected by the strong stratification in the water column. We will 

present an additional test case for the effects of density stratification on cross-shelf 

Ekman transport as well as Ekman set-up in a later section. 

4.3.3 Tidal validation during Hurricane Ike in the Gulf of Mexico 

The tides are relatively weak in the Gulf of Mexico, with mixed diurnal and 

semidiurnal tides on the Florida shelf up to Apalachicola, Florida; diurnal tides are 

the dominant components between Panama City Beach, Florida and Port Fourchon, 

Louisiana; and mixed tides again start from Point au Fer Island, Louisiana to Port 

Isabel, Texas. Overall, the tidal amplitudes of the dominant constituents in the Gulf of 

Mexico are less than 0.2 -0.4 m (Bunya, 201 0). 

The tidal simulation is carried out to verify the long wave propagation in our 

model domain. The SELFE open boundary is forced by 8 tidal constituents, namely 

M2, K2, N2, S2, K1, o~. P1 and Q1. These tidal constituents are obtained from the 
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ADCIRC 2DDI tidal database (Mukai et al., 2002). The earth tidal potential of each 

tidal constituent was also applied to interior cells of the model domain. The 

simulation of tide using a time step of 90 sec started at 5/19/2008 0000 UTC and 

ended at 9/01/2008 0000 UTC, a total of 105 days with the first 30 days for spin-up. 

The reason for a 1 05-day run is in order to remove the effect of the inertia wave on 

the diurnal tide in the Gulf of Mexico. The model results from the last 75 days are 

used for the comparison and the harmonic decomposition is conducted using "T-tide" 

with a 38-constituent decomposition. 

The harmonic analysis of computed 30-min tidal levels during the last 75 days 

of the simulation at 58 NOAA CO-OPS tidal gauge stations that cover the state of 

Florida (FL), Alabama (AL), Mississippi (MS), Louisiana (LA), and Texas (TX), is 

conducted to compare simulated amplitudes and phases of six major harmonic 

constituents (M2, S2, N2, K1. ~. and 0 1) with those in the NOAA data-set (Fig. 4-10 

and Fig. 4-11 ). In order to quantify the comparison, six statistics considered in this 

study are as follows: (a) R2, which indicates the correlation between the modeled and 

the observed data squared; (b) Slope of the best fitting line y = mx through the 

modeled and observed data; (c) Standard deviation, cr, which shows how much 

variation of modeled data exists from the observed data; (d) Average error, E , 

between the observed and modeled data, 

I N 
e =-~)obs; -mod,); 

N ,:. 
(4.26) 



(e) Average absolute error, IE!, between the observed and modeled data, 

) N 

e=-:L!obs; -mod,!; 
N i=l 
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(4.27) 

(f) Normalized root-mean-square error, E, between the observed and modeled data, 

E = [t.(o~, -mod.}' llt2 

:Lobs,2 

1=1 

(4.28) 

The R2 values of semi diurnal tides such as M2 and S2 along the Gulf Coast are 

greater than 0.80 for both amplitudes and phases except for the N2 tide (R2=0.72 for 

amplitude and 0.61 for phase). The average absolute difference of semidiumal tide 

amplitudes are less than 0.02 m and the average difference of phases are 1 o- 35°. The 

R2 values of diurnal tide amplitudes such as the K 1 and 0 1 constituents are relatively 

worse than those for semi diurnal tides: the correlation coefficients of modeled diurnal 

tides are around 0.40 for amplitude, but the phase results are relatively better 

(R2=0.75). Table 4-1 lists the statistics for the five groups of NOAA stations based on 

the five different States. Again the R2 values are greater than 0.78, indicating good 

matches between model prediction and observation, with the exception of amplitudes 

and phases along the Texas Coast, which the coarse-resolution grid is not fully able to 

resolve. These results indicate that the simulation of tide by SELFE is overall 

satisfactory in the Gulf of Mexico. It should be noted that, in the SURA test bed 

project for coastal inundation, we also conduct an inter-model tidal comparison 

between three different unstructured-grid models with the same tidal forcing and 
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model setup (Fig. 4-12). All three models (ADCIRC, FVCOM, and SELFE) perform 

about the same for both amplitude and phase. This implies that, if we would like to 

improve model skill for tidal simulation, it is essential to improve the mesh resolution 

in the coastal regions such as bays, channels, inlets, and estuaries. 

4.3.4 Atmospheric and wave forcing 

Wind forcing for Hurricane Ike was taken from a H*Wind post-storm 

reconstruction (Powell et al., 1998) and blended with large-scale winds using the 

Interactive Objective Kinematic Analysis (IOKA) system (Cox et al., 1995). The 

resulting wind fields combine all available wind observations into a common marine 

framework at a l 0-m height. Winds fields are interpolated to 15-min intervals, 

starting at 1215 UTC 5 September 2008 (approximately 7.8 days before landfall 

(0700 UTC, 13 September)) and ending at 1200 UTC 15 September 2008. The spatial 

resolution ofthe wind field is 0.02°. 

Wind and wave data collected during Hurricane Ike at 10 NDBC buoys 

(locations are shown in Fig. 4-13) are used to validate the wind field used in the 

model and modeled wave results. It should be noted that the NDBC data were 

assimilated into the wind field we used, but many other sources of data also 

influenced it. Comparisons between measured and simulated wind at buoys close to 

the storm track are shown in Fig. 4-14. The simulated winds compare quite well with 

the measured winds at these locations; these results indicate the model winds should 

represent the realistic wind fields appropriately. 
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Wave conditions along the open boundary of WWM II are provided by 

WAVEWATCH-111. WAVEWATCH-III, also known as WW3 (Tolman, 1999), is a 

third-generation wave model developed at NOAA/NVEP based on the W AM model 

(The Wamdi Group, 1988; Komen et al., 1994). Our wave model open boundary is 

forced by WW3 results such as significant wave height, peak frequency, zero down 

crossing frequency, mean wave direction, and mean directional spreading. 

4.3.5 Wave model validation 

At the same 10 NDBC buoys (shown in Fig. 4-13), significant wave heights, 

peak wave periods, mean wave periods (Tm02), and peak wave direction (in nautical 

coordinates) are used to validate our wave model as shown in Fig. 4-15. WWM II 

matches the timing and magnitude of significant wave heights, and the simulated 

peak wave period agrees very well with observations at the selected buoys. The 

modeled mean wave periods catch the transitions from wind sea to swell sea, and 

match observations at most of the selected stations, except the stations in the shallow 

water regions, which probably are not well-resolved in the mesh. The WWM II model 

also accurately modeled the peak wave direction during Hurricane Ike periods. 

Overall, the computed wave results match the qualitative behavior of Hurricane Ike, 

and their values lie within the scatter of the observations. 

4.3.6 Sediment-transport model validation -steady uniform open-channel flow 

Warner et al. (2008) provided a benchmark test for exercising the model's 

ability to simulate vertical profiles of suspended sediment concentrations. The 
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simulation represents suspended sediment transport for steady horizontally uniform 

flow in a straight rectangular channel. The description of the model domain and the 

open boundary condition can be found in their paper; setups of model parameters for 

this test case are listed in Table 4-2. The comparisons between modeled results with 

the k-e turbulence closure model and analytical solutions (model run with parabolic 

profile of viscosity and the eddy diffusivity is determined from the turbulent Prandtl 

number (Pr; ratio of eddy viscosity/eddy diffusivity)) are shown in Fig. 4-16. The 

model results, in terms of the vertical profile of velocity, diffusivity, and suspended 

sediment concentration, compared well with the analytical solutions. This test case 

gives us the confidence that the behavior of the sediment-transport model we have 

built for this study should be reasonable. 

4.3.7 Sediment model parameters used for the Hurricane Ike case 

At most locations in the inner and middle LATEX shelf, the sediment 

contained more than 80% mud except at the sandy Trinity and Ship Shoals (20-30% 

mud) between the 5- and 10-m isobaths south of Atchafalaya Bay (Xu et al., 2011 ). In 

this study, we assume that initially the seabed is covered by smooth mud for which 

the median sediment size (SDso) is chosen as 0.01 mm. Given the fact that the seabed 

was mainly consolidated mud where water depths exceed 300 m in the Gulf of 

Mexico, we turn off the erosion when h > 300 m in order to simplify the sediment 

transport calculations and to avoid unrealistically high erosion. This is appropriately 

given (a) for storm surge study, we usually focus on the inner shelf regions (h < 100 
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m); and (b) sediment movement by wave resuspension in deep water only occurs 

once every 5 to 20 years (Curray, 1960). 

The sediment-transport model described in Section 4.2.1 involves parameters 

of the sediment density p s , porosity~ , settling velocity w s and the critical stress Tee , 

for erosion. Sediment density was set to be 2650 kg!m3 and porosity was chosen as 

0.8 based on measurements by Draut et al. (2005) and Allison et al. (2007). Sediment 

transport calculations are extremely sensitive to the settling velocities and it is well­

known that settling velocity should not be constant in the real world. For example, 

flocculation critically impacts settling velocity and sediment transport near river­

dominated muddy deltas (Geyer et al., 2004); however, there are few in-situ 

measurements of floc-settling velocity on the LATEX shelf. We therefore chose a 

typical value of ws as 1 mm s-1 (Xu et al., 2011). Critical shear stress Tee was held 

constant (0.11 pa), a value derived by Wright et al. (1997) for the Louisiana inner 

continental shelf. The important parameters for the sediment transport model used in 

this study are listed in Table 4-3. 

4.3.8 Experimental setup 

Several numerical experiments for storm simulation were conducted and the 

setups are listed in Table 4-4. All numerical experiments were forced by the 8 tidal 

constituents, namely M2, K2, N2, S2, K~, 0~, Pt and Q1, at the open boundary. In 

addition, the earth tidal potential of each tidal constituent was also applied to interior 

cells of the model domain. Since the open boundary in our model domain is far away 
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from the Gulf Coast and storm surge is often relatively small at the open ocean, it is 

assumed that there is no storm surge at the model open boundary during the initial 

stage. The numerical experiments were conducted from 8119/2008 0000 UTC to 

9/8/2008 0000 UTC to spin-up the model. After this initializing phase, the model was 

further integrated for 8 days starting from 9/8/2008 0000 UTC to 9/16/2008 0000 

UTC with atmospheric forcing (both wind and pressure fields). 

Numerical simulations of vertical suspended sediment profiles are sensitive to 

the number and placement of vertical grid levels. As the number of vertical grid 

levels increases towards the bottom, the gradient of suspended sediment near the 

seabed can be better resolved. In this study, twenty layers with vertical stretching 

parameters (9r= 3 and eb= 1 in SELFE) in a pure s-coordinate were used to provide 

increased resolution near the seabed. 

The first experiment was used for the validation of storm tide simulation, 

which can be seen as the "base case". Typically, storm surge is mainly driven by an 

atmospheric pressure drop and the strong wind field induced by a hurricane. Based on 

that, we only consider the effects of atmospheric forcing in Experiment 1. 

Experiment 2 was designed to examine the effects of the wave-current 

interaction on the storm surge simulation. This experiment consists of two model 

runs. In the first run (Exp. 2a}, we only consider radiation stress and the BBL was not 

affected by wave-current interaction. In the second run (Exp. 2b ), both radiation 

stress and wave-current bottom stress calculated from the modified GM model (see 

Section 2.4.3) were included. 
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Experiment 3 is similar to Experiment 1, except that the sediment-stratified 

BBL is added. This run is used to test the effect of sediment stratification on BBL 

through Eq. (4.13) for storm surge simulation. The density in the water column now 

is affected by the suspended sediment, according to Eq. (4.5). The simple drag­

coefficient method for the bottom stress calculation in the sediment-transport model 

presented in Section 4.2.2 is used since, in this case, we do not consider wave effects. 

Finally, Experiment 4, including all the effects (radiation stress, wave-current 

bottom stress, and sediment-induced stratification), was conducted to test the 

combined effects on storm surge simulation and the BBL response. The major 

difference between Experiments 3 and 4 is now that the wave-enhanced bottom stress 

is considered in both SELFE and the sediment-transport models, which should be 

extremely important for the distribution of suspended sediment as well as the BBL 

properties because, according to Eq. (4.4), erosion flux of bed sediment is very 

sensitive to the evolutions of bottom shear stress. 

4.4 Results and discussion 

4.4.1 Experiment 1: storm tide simulation (base case) 

We compared SELFE-computed water levels against the NOAA CO-OPS­

measured time histories and results are shown in Fig. 4-17. Modeled water levels at 

Shell Beach (8761305) along the east side of the Hurricane Ike track showed good 

agreement with measured values in terms of timing and hydrograph features. The 
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computed water levels at Pilots Station East (8760922) are underestimated from 

9/10/2008 to 9/14/2008. This discrepancy, which is almost consistent in time, implies 

that there may be a discrepancy in datum levels. Modeled and measured data at Grand 

Isle (8761724) are well-matched. The difference of the maximum water level is 

approximately 0.30 m. The comparison at Lawma Amerda Pass (8764227) indicates 

that the model is underpredicting the peak of the forerunner by 0.62 m. Model results 

at Fresh Water Canal Locks (8766072) show that the model captures the hydrograph 

features, but tends to underpredict the forerunner. The surge peaks are well-matched 

at both Calcasieu Pass (8768094) and Sabine Pass North (8770570), but model results 

indicate that the forerunner and post-runner cannot be captured well in this run. The 

comparison at Galveston Pleasure Pier (877151 0) indicates that the modeled storm 

tides are well-represented in the region that Hurricane Ike made landfall; the surge 

peak is overpredicted by about 0.60 m, and the forerunner is underpredicted by about 

0.82 m. Notice that the forerunner surge during Hurricane Ike was as important as the 

primary surge because it caused early flooding of coastal regions, and contributed 

significantly to the total water level subsequently during the primary surge. 

Dangerous forerunners that occurred on wide, shallow shelves need to be considered 

for the future storm surge forecasting; therefore, it is valuable to study different 

effects on the forerunner in order to improve the model performance. Finally, the 

measured and simulated water levels at USGS Freeport (8772447) and Corpus Christi 

(8775870) are well-matched in terms of the hydrograph features. The difference 

between model and observation at these two stations may be attributed to the 
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insufficient grid resolution along the Texas Coast (USGS Freeport is located near the 

inlet and Corpus Christi is located outside the barrier island). The comparison of 

computed and observed time series of storm tides at 10 stations indicates that our 

model adequately simulated the major features of storm tides during Hurricane Ike. 

4.4.2 Experiment 2: effects of wave-current interaction on storm surge simulation 

In regions with a wide and shallow continental shelf (e.g., LATEX Coasts), a 

traveling external surge may combine with tide, the locally generated surge, and 

waves under storm events and there can be a significant interaction between the 

current and waves. Wave properties such as wave height along the coast are highly 

controlled by water depth, so the effect of tides and surges on wave action must be 

included. On the other hand, waves contribute to the total water level by means of 

wave set-up through radiation stresses (Wolf, 2009). These processes are already 

well-understood and considered in many storm surge investigations (e.g. Bunya et al., 

2010; Sheng et al., 2010; Kennedy et al., 2011). However, other interactions between 

currents and waves include the processes of surface wave-induced stress in which 

wave age affects the sea surface roughness and bottom wave-enhanced friction is also 

important, but the details of these processes are still not well-understood. In 

Experiment 2, two cases were conducted to evaluate the contributions of radiation 

stress (Fig. 4-18 (blue solid line)) and wave-enhanced bottom friction + radiation 

stress (Fig. 4-18 (green solid line)) over the entire period of storm surge. These results 
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were compared against the base case (Exp. 1, Fig. 4-18 (black solid line)) that did not 

include current-wave interaction. 

Experiment 2a (blue solid line in Fig. 4-18) shows that including the wave 

radiation stress slightly increases the entire storm surge by 5 - 15% at the ten stations 

located along the LATEX Coast. This can be explained by the fact that the onshore 

component of wave radiation stress gradients, which produces a wave set-up that can 

contribute to the total water level. However, the modeled results with and without 

wave set-up (contributed by the wave-induced radiation stress) for forerunners (24 

hours before Ike made landfall) showed only small differences at most of the stations 

in the Gulf of Mexico (Fig. 4-18). This finding is consistent with Kennedy et al. 

(20 11 ). Fig. 4-19 shows the effects of wave radiation stress on the maximum 

computed water level for Hurricane Ike. The figure shows the difference between 

Exp. 2a (including wave radiation stress) and Exp. 1 (without wave effects). The 

largest differences (- 0.2 m) are located in the regions where rapid wave 

transformation occurs through depth-limited wave-breaking, such as Atchafalaya Bay 

and Mississippi Delta. The weak contribution of wave set-up along the LATEX Coast 

(0.05 - 0.1 m) can be explained by the relatively broader continental shelf (compared 

with the Mississippi Delta) and expansive wetlands. The wave-induced set-up would 

be larger and more focused if the shelves were narrower or if the near-shore region 

had a steeper slope. 

Model results of Experiment 2b (green solid line in Fig. 4-18) show that, 

when including both radiation stress and wave-enhanced bottom friction, the storm 
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surges are significantly underpredicted by 5-20% at the NOAA stations during 

Hurricane Ike. The modeled results indicate that the influence of the wave-enhanced 

bottom stress on the storm surge simulation is even more important than the wave set­

up through wave radiation stress. Fig. 4-20 shows the effect of waves as the 

difference between the maximum water levels from Exp. 2b (full current-wave 

interaction) and Exp. I (base case). The largest differences (- -0.2 m) are located 

along the LATEX Coast, and modest decreases (- -0.05 m) occur near the 50-m 

isobath. This pattern can be explained as follows: near the oceanic bottom, there exist 

enhanced levels of turbulence due to wind-wave activities and the short-period 

oscillatory nature of wave orbital velocity leads to a thin wave boundary layer above 

the seabed in the near-shore regions. The high shear velocity within the wave BBL 

produces higher levels of turbulence intensities. The strong turbulence intensities 

within the wave BBL result in larger bottom shear stresses and have a stronger impact 

in the near-shore region than in deep water (Grant and Madsen, 1979; Grant et al., 

1984; Grant and Madsen, 1986; Zhang et al., 2004 ). 

4.4.3 Experiments 3 and 4: effects of sediment-induced stratification on the 

forerunner 

Based on the conclusions of Experiment 2 presented above, it is clear now 

that, although the breaking wave plays an important role, particularly near the 

shoreline, this breaking wave is not the major process to explain why the model tends 

to underestimate the large forerunner during Hurricane Ike. In this section, our 
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hypothesis of the effects of sediment-induced stratification on the forerunner and the 

BBL response will be investigated using Experiments 3 and 4. 

The water levels simulated by Experiment 3 show the significant effect of 

sediment-induced stratification on the forerunner (Fig. 4-21 ). The modeled 

forerunners increased about 30% (compared with the base case) when considering the 

effect of sediment stratification on the bottom friction (Eq. (4.13)). Fig. 4-22 shows 

the difference between the maximum envelope of water during Ike obtained by Exp. 3 

(considering the effect of sediment stratification on bottom friction) and Exp. 1 (base 

case) simulations. The larger differences {> 0.6 m) are located near the western 

Louisiana Coast where water depth is shallower than 40 m. As we mentioned before, 

bottom friction plays an important role in shallow water regions; the increase of 

sediment stratification as well as Richardson number in the near-bottom water 

column (Fig. 4-25 (blue dot)) decreases the bottom friction coefficient. In a strongly 

stratified BBL, where the Richardson number is large, bottom friction decreases with 

the increase of alongshore current velocity (Fig. 4-26}, suggesting that the Ekman set­

up in a stratified environment becomes larger than in a clearly well-mixed water case. 

However, the water levels during the primary surge are overestimated in Exp. 3 

around the areas where Ike made landfall. Potential explanations for that include the 

constant value of settling velocity used in the model, treatment of sediment class 

(only one class in the present model), and wave-current interaction over the seabed. 

The first two are poorly understood along the LATEX Coast and uncertainties will be 

increased for the calculation of sediment transport. The third one, interaction of 
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waves and currents over the seabed, is a key material for the determination of the 

bottom shear stress as well as the calculation of sediment transport because bottom 

stresses determine the resuspension rate for suspended sediment; a large amount of 

sediments are resuspended due to strong bottom stresses caused by wave-current 

interactions and, therefore, generate strong gradients close to the boundary. 

According to Experiment 2b, bottom shear stresses are highly affected by wave­

current interactions. Also, recent studies indicate that the effect of bottom sediment­

induced stratification is a function of the normalized near-bed wave orbital velocity 

(Conley et al., 2008). Based on all this information, including the interactions of wave 

and currents in the BBL for suspended sediment simulation is the most viable 

procedure to fix the over-shooting of the primary surge in Experiment 3 and improve 

the entire storm surge simulation of Hurricane Ike. 

Results of Experiment 4 (including full wave-current interactions and effects 

of sediment stratification on bottom friction) are shown in Fig. 4-23. At most stations 

along the LATEX Coast, the modeled forerunner also matches well with measured 

data, and the over-shooting of the primary surge almost vanishes with the wave­

current BBL dynamics. Fig. 4-24 shows the differences between the maximum 

envelope of water during Ike obtained by Exp. 4 (including full wave-current 

interaction and the effect of sediment-induced stratification) and Exp. I. The 

distribution of Fig. 4-24 is similar to that of Fig. 4-22, except the difference is slightly 

larger along the West Louisiana Coast. The vertical profiles of suspended sediment 

simulated by the model at the location 30 km from Station 8771510 (see Fig. 4-lb, 
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green dot) for the period of 9/12/2008 0000 UTC to 9/14/2008 OOOOUTC (including 

forerunner, primary surge, and post-runner) are shown in Fig. 4-25. It is notable that 

an increase (decrease) of combined stress due to waves and currents (Fig. 4-27) 

increases (decreases) the bottom sediment concentration (Fig. 4-25) as well as the 

intensity of stratification, which is represented by the flux Richardson number Rr 

(Fig. 4-26). Fig. 4-27a and Fig. 4-27b show that the variation of combined stress due 

to waves and current is highly correlated with bottom orbital velocity. The vertical 

distribution of sediment concentration and the flux Richardson number Rr (Fig. 4-25 

a-e, (blue dot); Fig. 4-26) indicate that a strong sediment-induced stratification occurs 

due to larger twc during the forerunner stage (Fig. 4-27a). Sediment-induced 

stratification vanishes due to the increase of 'twc in the stage of primary surge. On the 

contrary, without considering the effect of wave-current interaction on the calculation 

of bottom shear stress, the sediment erosion was based on a simple drag formulation 

(see Section 4.2.2) and the strong gradient of suspended sediment always existed at 

the bottom of the water column (Fig. 4-25 a-i (blue dot)) in both stages. Fig. 4-28 

shows the snap-shot of vertical profiles of eddy diffusivity at 1200 UTC 09/12/2008 

during the forerunner stage. The profiles show that a sediment-induced stratification 

reduced the maximum value of the eddy diffusivity by about 63%. The dampening of 

turbulence (i.e., a reduction in eddy diffusivity) results in the diffusion of momentum 

and the bottom friction is reduced compared with the well-mixed case (King and 

Wolanski, 1996). The new bottom shear stress that considered the effects of 

sediment-induced stratification for current model, 'tc_mod (tc_exptJ and 'tc_exp14), is shown 
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in Fig. 4-27a. The magnitude of tc_expt4 is slightly smaller than that of the 'tc_expt3 by 

42% during the period of the forerunner, and then increases by 40% in the primary 

surge stage. This can explain why the over-shooting of the primary surge vanishes in 

Experiment 4 and the agreement of the forerunner is still good. It is also interesting to 

note that, in Fig. 4-26, after day 4. 7, the maximum value of the flux Richardson 

number occurred in the middle layer of the water column. The presence of density 

stratification in the middle layer can also be expected to reduce the turbulence 

production and yield larger velocity (Fig. 4-29) in the middle layer compared with the 

well-mixed case (Dyer, 1986). Although there are no measured data to verify our 

model results, there are several previous studies that could support our finding: e.g. 

Sherwood et al. (2006) did field measurements under wave-dominated conditions and 

found that the log-profile method (adopted by developers of most ocean models) 

tends to overestimate shear velocity during strong stratification cases. This is 

consistent with our finding: the strong sediment-induced stratification during the 

forerunner causes the original log-profile method to overestimate bottom stress 

associated with the underprediction of the magnitude of the forerunner; agreement 

can be improved by considering the effects of stratification on the BBL. 

From Eq. (4.1), the magnitude of the Ekman set-up is dependent on along­

shore current, which is itself sensitive to bottom friction in shallow water regions. In 

Experiment 4, when including full wave-current interaction and the effects of 

sediment stratification on the BBL, the bottom friction is reduced, so the magnitude 

of the along-shore current is increased as well as cross-shore Ekman set-up during the 
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Hurricane Ike forerunner. On the other hand, based on BBL theory (e.g., Adams and 

Weatherly, 1981), the veering angle of the current vector is enhanced due to 

suspended sediment stratification (Fig. 4-29), and it may significantly increase the 

total water cross-shelf transport and contribute to the forerunner. Thus, in order to 

examine which dynamic dominates the magnitude of forerunner (Ekman set-up), we 

further calculate the mean of depth-averaged velocity in the LATEX inner-shelf (the 

region inside the 50-m isobath) during the Ike forerunner period (9/12/2008 0000 

UTC - 9/13/2008 0000 UTC). The mean of depth-averaged velocity for each test, as 

well as the wind, are shown in Fig. 4-30. Although the vertical profiles of velocity 

vectors (Fig. 4-29) show a small increase in the turning angle (less than 4°), the 

directions of mean depth-averaged velocities are still parallel to the shoreline and are 

close to each other. However, the magnitude of the along-shore current is quite 

different in each test. We then calculate the ideal Ekman set-up under the geostrophic 

balance based on Eq. (4.1) by using the modeled depth-averaged velocities from each 

case. Table 4-5 shows the results of an ideal forerunner based on the simplified 

across-shelf steady-state momentum equation (Eq. (4.1)) from each test. From the 

case including full wave-current interaction and sediment stratification (Exp. 4), we 

attained a set-up of 1.4 m on a 200-km-wide continental shelf. This value is very 

close to the observed water level anomaly during the Ike forerunner. These results 

indicate that, by including both wave-current interaction and sediment stratification, 

the magnitude of the along-shore current can be increased as well as the cross-shore 

sea surface set-up by 30% due to the decreasing of bottom shear stress and, hence, 
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yield better results for the forerunner simulation. Overall, Experiment 4 demonstrates 

the importance of wave-current coupling as well as the effects of sediment-induced 

stratification on the simulation of the dangerous forerunner. 

Eq. ( 4.1) can be good to explain the formation of forerunner surge under 

steady-state. However, in the real world, the magnitude and direction of wind are 

changed with time so we should include the time variable in Eq. (4.1). Suppose a 

broad continental shelf with constant water depth D, and a uniform wind stress ts is 

blown alongshore at the surface of sea from t=O, and the bottom stress is tb. In the 

absence of any changes with the alongshore direction, and in the vicinity of the coast 

where the condition of no cross-boundary flow (v=O) applies, then the typical 

momentum balance of the quasi-steady geostrophic component of arising sea level 

near the coast can be simplified as: 

-1 (iJP) fu=-­p iJy 

where F = T5 - Tb (4.29) 

(4.30) 

Note that in Eq. (4.29) we neglect the Coriolis force because we assume the effect of 

Coriolis force is relatively small in the shallow water region under strong wind 

conditions although in Section 4.3.2 we have introduced the analytical solutions of 

unsteady Ekman dynamics. Integrating Eqs (4.29) and (4.30) from -D to surface, 

assuming u is constant with depth, and substituting Pz = PA- pg(z- TJ) for:;. then: 

( 4.31) 



fu = -g (!;) 

which leads directly to: 

Ft 
u=­

pD 

il77 = -{u 
ily g 
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(4.32) 

(4.33) 

(4.34) 

Eq. (4.33) shows that the magnitude of alongshore current depends on the duration of 

wind. In particular, this current will eventually be limited by bottom friction 

( F = T5 - Tb ). Eq. (4.34) shows that a cross-shore sea surface set-up is in 

geostrophic balance with the alongshore current u with sufficient time. This set of 

equations (Eqs. (4.33) and (4.34)) can be used to describe the unique forerunner that 

occurred during Ike with time variation. Based on the observation (Fig. 4-2}, the 

duration of shore-parallel wind is 1 day and the average magnitude of the wind is 15 

m/s during the forerunner period. If we neglect the effect of the bottom shear stress 

term in Eq. (4.29) and assume a constant water depth 0=30 m in the LATEX shelf, 

then the magnitude of the alongshore current is 0.95 m/s and we can attain a sea 

surface set-up of 1.42 m on a 200-km-wide continental shelf. Overall, we can 

conclude that the large forerunner that occurred during Hurricane Ike along the 

LATEX shelf was due to (a) the long duration of shore-parallel wind (at least 1 day 

with the magnitude around 10-15 m/s) blowing along the broad continental shelf 

(200-km-wide in this case) generated cross-shore Ekman set-up and contributed to the 

forerunner surge; (b) this forerunner surge reached a geostrophic balance between the 
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Corio lis force acting on the along-shelf current and the across-shelf pressure gradient 

due to the sufficiently slow speed of Hurricane Ike. 

4.5 Practical approach 

Although a three-dimensional current model coupled with wave, sediment­

transport, and BBL sub-models including the effects of sediment-induced 

stratification can significantly improve model performance for the simulation of the 

Ike forerunner, too much computing resource is required to run a fully coupled model 

for storm surge simulation. It is fine for a hindcasting study since we are interested in 

the formation of the large forerunner as well as dominant mechanisms, but for the 

real-time forecasting, the efficiency of the model (i.e., its execution speed) is as 

important as accuracy. For example, the NHC (National Hurricane Center) produces a 

hurricane advisory every 3-6 hours during a tropical storm event, and when decision 

makers have a new hurricane advisory in hand, they would like to know the 

associated storm surge as well as the inundation, - immediately, if possible. In this 

section, a practical approach is presented to simplify the sophisticated model we 

described above. The simplified model is very efficient, and moreover it is still 

reasonable to represent the large forerunner in the Gulf of Mexico. 

Fig. 4-27 shows that the varying of combined stress due to waves and currents 

is highly relative with bottom orbital velocity. Conley et al. (2008) indicated that the 

stratification effect is given as a function of the normalized orbital velocity. In their 

study, the parameter t:.c is defined to quantify the effects of stratification: 
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(4.35) 

Where Cos (CNs) represents the sediment load integrated from the bed to 1 m above it 

for the simulations including (excluding) the sediment effect on seawater density. 

This parameter has the quality that it asymptotes to 1 as stratification becomes 

important and tends towards zero as the importance of stratification subsides. A 

similar approach is conducted to analyze our model results from Exp. 4, except we 

used the more common parameter, flux Richardson number Rr , instead of the self-

defined llc, to represent the effect of density stratification. Despite the large scatter, it 

is relatively clear that the effects of stratification are a function of the normalized 

orbital velocity (Fig. 4-31). This is a very important relationship since a simplified 

stratification parameter, as a function of orbital velocity, can be derived directly from 

the 3D wave-current coupled model. This derivation can be done instead of running 

the real sediment-transport model, since it is too expensive to conduct a 3D fully 

coupled wave, current, and sediment-transport model with a grid of over a million 

nodes for real-time storm surge forecasting. 

In Fig. 4-31, basically the stratification parameter as a function of normalized 

orbital velocity can be separated into three regions and described independently: 

normalized orbital velocity below 300, normalized orbital velocity between 300 and 

800, and normalized orbital velocity larger than 800. For the mid-range of normalized 

orbital velocity (300-800), the model results in the inner-shelf region from Exp. 4 

indicate a good linear relationship (R2=0.55) between normalized orbital velocity and 
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sediment-induced stratification. Since the critical flux Richardson number Rrc =0.21 

was chosen to represent the condition for which turbulence was completely 

suppressed by stratification (slippery BBL), the sediment-induced stratification met 

this maximum criterion when normalized orbital velocity is larger than 800. For 

weakly normalized orbital velocity(< 300), there is no sufficient energy to resuspend 

sediment in the water column and therefore there is little stratification potential. 

Given the understanding of the above relation, a simple index of density 

stratification as a function of normalized orbital velocity can be generated without 

running the sediment-transport model in the Gulf of Mexico. In the 3D wave-current 

coupled model, the flux Richarsdon number Rr can be obtained by: 

R1 == 0.0 if u b < 300 (4.36) 
Ws 

Rt == 0.0004 (::)- 0.126 if 300 s !!...!!. s 800 (4.37) 
Ws 

Rt == Rtc if!!...!> 800. (4.38) 
Ws 

This approach was adopted in the inner-LATEX shelf region (inside the 50-m 

isobath) to consider the effects of sediment-induced stratification on the BBL without 

running the real 3D sediment-transport model. Using the practical approach in the 3D 

wave-current coupled model and the cap for maximum and minimum bottom drag 

coefficient in the inner-LATEX area, the simulated water levels along the LATEX 

Coast in the northern Gulf of Mexico during Hurricane Ike were generally close to the 

results we attained from Exp. 4. Fig. 4-32 shows examples ofthe modeled water level 

along the LATEX Coast. Black solid lines represented the base case (without wave 
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and the effects of sediment-induced stratification); blue solid lines are the results 

obtained by Exp. 4 (full wave-current interaction and effects of sediment-induced 

stratification); the green solid lines are the results obtained by employing the practical 

approach. Basically the modeled forerunners based on the practical approach 

compared well with observed data and the patterns are similar to the results calculated 

by Exp. 4, whereas the results from the base case indicate the magnitude of 

forerunners is underestimated by about 30%. It is evident that, along the LATEX 

shelf, the under-prediction of the water level during the Ike forerunner was due to the 

overestimation of the bottom drag coefficient, which could be significantly revised by 

accounting for the effects of sediment-induced stratification on the BBL. Once the 

effects of sediment-induced stratification were considered through the simple 

practical approach we described above, the prediction skill for the water level became 

much improved in the LATEX regions during Hurricane Ike in 2008. The simple 

practical approach met our goal, and certainly proved our hypothesis: BBL dynamics 

are also important for the storm surge simulation. Note that the discrepancy between 

the practical approach and Exp. 4 (Fig. 4-32; green line and blue line) could be 

explained by the poor assumption in the third relationship we adopted (Eq. (4.38)) 

because the water column was not always stratified (R1 = R1c) when!!...!> 800 (Fig. 
Ws 

4-31 ). This can be further improved by using more appropriate assumptions during 

the largely normalized orbital velocity. 
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4.6 Conclusions 

A new three-dimensional storm surge modeling system coupling the 

unstructured grid current model SELFE (Zhang and Baptista, 2008), the wave model 

WWM II (Roland, 2009), and the sediment-transport model was developed to study 

the sediment resuspension effects and the BBL dynamics on the hindcast of the Ike 

forerunner in the Gulf of Mexico. A stability function to the bottom drag coefficient 

Cd is introduced to the bottom boundary condition in SELFE in order to consider the 

effects of sediment-induced stratification on the BBL. 

The modeling system was implemented to the super-regional domain covering 

the entire U.S. East Coast, a portion of the Northern Atlantic Ocean, the Gulf of 

Mexico, and the Caribbean Sea and resulted in reasonable tidal and wave predictions 

in the northern Gulf of Mexico. When only considering atmospheric forcing, the 

primary surges associated with Ike are well-predicted along the LATEX Coast, but 

the model tended to underestimate large forerunners by 30%. Numerical experiments 

were then performed to screen the response of the forerunner development by 

different physical dynamics, such as the wave-current interaction or the effects of 

sediment-induced stratification on the BBL. 

Breaking wave set-up through gradients of radiation stresses slightly 

contributes to the entire storm surge by I 0%, and the total water levels were fully 

underpredicted with the combination of wave-induced radiation stress and wave­

enhanced bottom shear stress. When the seawater density and the sediment 

concentration were coupled, the effect of sediment-induced stratification reduced the 
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magnitude of bottom shear stress as well as the thickness of the BBL. The modeled 

results that only consider the effects of sediment-induced stratification on BBL 

matched the Ike forerunner pretty well, but over-shooting occurred in the primary 

surge stage. Combining the effects of the full wave-current interaction and sediment­

induced stratification produced the best model results. The sediments resuspended 

during the forerunner by the combined bottom stress due to waves and currents were 

only distributed in the near bottom with a thickness of a few meters. The thickness of 

the BBL and bottom friction was reduced by the establishment of a lutocline above 

the BBL due to the strong vertical gradients of sediment concentrations. On the other 

hand, the lutocline vanished and a well-mixed distribution of suspended sediment 

manifested during the primary surge stage (Fig. 4-33). As the stratification varied 

from the forerunner to the primary surge, the bottom friction variability was also 

predicted. The model therefore matched the forerunner without over-shooting during 

the primary surge. Note that the variability of the bottom drag coefficient Cd was not 

only a hypothesis, but has been observed in the field (e.g., Cheng et al., 1999). When 

the effects of sediment-induced stratification were properly represented by the flux 

Richardson number, Rr, then a positive linear relationship was displayed with wave 

orbital velocity normalized by settling velocity. The dependence of stratification on 

normalized orbital velocity was useful for simplifying the sophisticated modeling 

system. A practical approach was adopted in the 3D wave-current coupled model 

based on the relationship between normalized orbital velocity and sediment-induced 

stratification. By implementing the simple practical approach over the inner-LATEX 
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area, the predictions ofthe total water level were generally reasonable compared with 

measured data and results from the fully 3D wave-current-sediment-transport coupled 

model. Another interesting phenomenon in Fig. 4-33 is that, after the primary surge, 

our model did not simulate the response of water level correctly during the relaxation 

period (ADCIRC and FVCOM also have this same problem). During the relaxation 

period, the winds were relatively weak and all the other forces (e.g., baroclinic force 

due to water temperature or salinity, see Fig. 4-34, Bhagat (2009)) merge together and 

play important roles. Baroclinic adjustment can cause dramatically different results of 

water level during the relaxation period and should be further considered in the future 

study. 

Finally, it should be stressed that the model simulation of sediment 

distribution and the BBL properties in this study are tentative without direct data­

model comparison. Our results suggest that future field investigations should 

incorporate an effort to monitor water column and near-bed suspended sediment, in 

addition to detailed near-bed hydrodynamic measurements, in order to further 

understand the effects of sediment-induced stratification on BBL dynamics during 

storm events. 
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Table 4-1 Statistic Comparisons of tidal amplitudes (in meters) and phases (in 

degrees) derived from harmonic analysis of simulated and NOAA predicted tidal 

levels (groups of stations based on different States). 

Rl Slope 0' € lEI E 
State Amplitudes 

FL 0.96529 1.080842 0.017343 -0.00823 0.011772 0.171634 
AL 0.978793 1.063326 0.009433 -0.00458 0.008038 0.132745 
MS 0.971922 1.053031 0.01071 -0.00394 0.00808 0.145613 
LA 0.776199 0.983094 0.024416 0.00103 0.014284 0.407122 
TX 0.481198 0.760318 0.034025 0.006584 0.021866 0.621271 

State Phases 
FL 0.984236 0.961944 14.05314 5.825491 10.45416 0.08992 
AL 0.466504 0.604691 75.70788 40.43465 67.58089 0.513484 
MS 0.777539 0.813544 38.15308 22.64761 32.03011 0.309974 
LA 0.779643 0.940086 55.70728 -1.76981 34.26291 0.326018 
TX 0.670961 0.874074 63.73142 10.97739 46.13566 0.408912 
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Table 4-2 Model parameters for sediment transport model validation - open channel 
flow case. 

Model parameter 
Length, width, depth 
Bottom roughness 
Time step 
Simulation steps 
Settling velocity 
Erosion rate 
Critical stress 
Porosity 
Inflow/ outflow boundary 
condition 

Variable 
Xsize, Y size, depth 
Zo 
dt 
Ntimes 
Ws 
Eo 
'tee 

cp 
u 

Value 
10000, 100, 10m 
0.0053 m 
30 s 
1440 
1.0 mm s-1 

Sxlo-s kg m-2s-1 

0.05 N m-2 

0.9 
1m s-1 
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Table 4-3 Model parameters for sediment transport model for storm surge cases. 

Parameter Unit Value 
SDso mm 0.01 
Eo kg m"2s·' Sxl0-4 

Ps Kgm·3 2650 
tee Pa 0.11 
Zo m 0.001 
Ws mms·' I 

0.8 
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Table 4-4 Setup of numerical experiments. 

Exp. tide wind pressure Radiation Wave-enhanced Density 
stress bottom stress effects 

on on on off off off 
2a on on on on off off 
2b on on on on on off 
3 on on on off off on 
4 on on on on on on 
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Table 4-5 Mean of depth-averaged velocity in the inner-LATEX shelf and results of 

ideal Ekman set-up based on Eq. ( 4.1) from each numerical experiment. 

u v mag. (m/s) 1)_c(m) 

Exp.1 -0.66 -0.10 0.66 1.0 

Exp. 2a -0.67 -0.1 0.67 l.O 

Exp.2b -0.50 -0.07 0.50 0.7 

Exp.J -0.93 -0.14 0.94 1.4 

Exp.4 -0.90 -0.14 0.91 1.4 
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(b) 
Water Level Stations along LATEX Coast 

Figure 4-l (a) Model domain used in this study with bathymetry (m), and (b) Bathymetry of LATEX shelf, with tracks of Hurricane 

Ike (black curve). Black squares represent the locations of NOAA tidal stations used for the model validation. Green dot is 30 km 

from Station 877151 0 and is used for the description of model vertical profile. 
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(b) Observed wind and Water Level Anomaly 
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Figure 4-2 (a) Time series of water level anomaly during Hurricane Ike at ten NOAA 

stations (observed water surface minus predicted tide). The black dashed line 

represents the date of landfall and the red dashed line represents 24 hours before 

landfaJI, and (b) Water level anomaly during Hurricane Ike along the LATEX Coast 

(observed water surface minus predicted tide). The black dashed line represents the 

date of landfaJI and the red dashed line represents 24 hours before landfall. 
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(b) 
2008109/13 07:00 UTC 

Figure 4-3 Data assimilated wind field (a) at 12 hours before Hurricane Ike's 

landfall; (b) at time that Ike made landfall. The 50-m depth contour is given by the 

white line. 
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Figure 4-4 Time series of measured (red dots) and computed water level with (black) 

and without (blue) Corio lis forcing at Station Galveston Pleasure Pier (877151 0). 
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Figure 4-5 Time series of measured (black) and computed water level with (red), 

without (blue) Coriolis forcing, and increased bottom friction (green) at Lawma, 

Gauge Y (High Island), Manchester Houston, and Gauge S (Locations are shown in 

map). Note that these results are presented by Kennedy et al. (20 11 ). 
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Figure 4-6 Location map and wind and water-column conditions during the passage 

of a cold front along the Louisiana Coast, March 7-10, 2001. (a) Wind velocity 

vectors represent a 1 0-min average of continuous shipboard meteorological data and 

are plotted in the meteorological convention with vectors pointing in the direction 

wind is coming from; (b) SSC; (c) salinity; (d) temperature. Note that these results are 

presented by Kineke et al. (2006). 
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Figure 4-7 Schematics of the azimuthal wind drag, showing (left) extents of sectors 

in relation to direction of storm movement, and (right) wind drag coefficient 

variability by storm sector. (This figure was re-plotted from Dietrich et al., 2011 b). 
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Figure 4-8 Ekman motion test case- Magnitude (a) and direction (b) of velocity in 

the first 3m. The analytical solution is shown with red line, while the model results 

are shown with blue lines. 



186 

Surface Ekman Spiral 
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Figure 4-9 Ekman motion test case- The velocity spiral in the surface Ekman layer. 

The analytical solution is shown with a red line, while the model results are shown 

with a blue line. 
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Figure 4-10 Comparison of amplitudes as measured by NOAA and predicted by SELFE. Each figure represents each tidal constituent. 

The over- or under-predicted results are shown by color. 
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Figure 4-11 Comparison of phases as measured by NOAA and predicted by SELFE. Each figure represents each tidal constituent. The 

over- or under-predicted results are shown by color. 
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Statistics Comparison for Phase 
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Figure 4-12 Inter-model tidal comparison between four different unstructured-grid models with 

same tidal forcing and model setup. 
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Figure 4-13 Locations of the NDBC buoys used for the validations of predicted wind and waves in the Gulf of Mexico during 

Hurricane Ike. 
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Figure 4-14 Wind components (a) u directions; and (b) v directions during Hurricane Ike at 10 NDBC buoys. The measured data are 

shown with red lines, while the predicted results are shown with blue lines. 
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closure options of analytical parabolic expression and k-s. Simulations used 21 vertical stretched levels. 
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Figure 4-17 Time series of modeled (Exp. 1, base case, blue line) and observed (red 

dots) storm tides for 10 stations in the LATEX shelf. The black dashed line represents 

the date of landfall and the red dashed line represents 24 hours before landfall. The 

unit of storm tide is in meters. 
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Figure 4-18 Comparisons between Exp. 2a (blue line), Exp. 2b (green line), Exp. 1 

(black line) and observed (red dots) storm tides for 10 stations in the LATEX shelf. 

The black dashed line represents the date of landfall and the red dashed line 

represents 24 hours before landfall. The unit of storm tide is in meters. 
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Figure 4-19 Effect of wave set-up through radiation stress on the maximum water 

levels (m) during Hurricane Ike. The white line indicates the 50-m isobath line. 
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stress on the maximum water levels (m) during Hurricane Ike. The white line 

indicates the 50-m isobath line. 
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Figure 4-21 Comparisons between Exp. 2a (blue line), Exp. 3 (green line), Exp. I 

(black line) and observed (red dots) storm tides for I 0 stations in the LATEX shelf. 

The unit of storm tide is in meters. The black dashed line represents the date of 

landfall and the red dashed line represents 24 hours before landfall. 
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Figure 4-22 Difference between the maximum envelope of water during Ike obtained 

by Exp. 3 (considering the effect of sediment stratification on bottom friction) and 

Exp. I (base case) simulations. 
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Figure 4-23 Comparisons between Exp. 3 (blue line), Exp. 4 (green line), Exp. 1 

(black line) and observed (red dots) storm tides for I 0 stations in the LATEX shelf. 

The unit of storm tide is in meters. The black dashed line represents the date of 

landfa11 and the red dashed line represents 24 hours before landfall. 
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Figure 4-24 Difference between the maximum envelope of water during Ike obtained 

by Exp. 4 (considering the full wave-current interaction and effect of sediment 

stratification on bottom friction) and Exp. 1 (base case) simulations. 
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Figure 4-25 Sediment vertical distribution (location is shown in Fig. 4-1 b, green dot) in the water column for the period from 0000 

UTC 9/12/2008 to 0000 UTC 9/14/2008 (including forerunner, primary surge, and post-runner). The sediment concentration was 

predicted by Exp. 3 (red dot) and Exp. 4 (blue cross), respectively. Notice that the concentration predicted by Exp. 3 is multiplied by 

10 for visualization. 
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Figure 4-26 (a) Time series of the flux Richardson number Rr in the water column 

(Eq. (4.11)), at the location 30 km from Station 8771510 (see Fig. 4-lb, green dot) 

during the period from 0000 UTC 9/11/2008 to 1200 UTC 9/14/2008. 
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Figure 4-27 (a) Time series of bottom stress due to current alone (red line) without 

stability function (Eq. (4.13)), combined bottom stress due to waves and current (blue 

line), and bottom stress due to current alone (green line) with stability function. Note 

that the green and red lines represent the stresses that were used in current model and 

the blue line represents the combined stress used in the sediment transport model; (b) 

Time series of wave orbital velocity at the location 30 km from Station 8771510 (see 

Fig. 4-lb, green dot) during the period from 0000 UTC 9/12/2008 to 0000 UTC 

9/14/2008. 
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Figure 4-28 Profiles of eddy diffusivity for the suspended-sediment-stratified BBL 

(Exp. 4, red line) and for the neutrally stratified BBL (Exp. 1, black line) at the 

location 10 km from Station 8771510 (see Fig. 4-1b, green dot) during Ike forerunner 

stage (Note that this plot represents a snap-shot at 12:00 UTC, 9/12/2008). 
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Figure 4-30 Mean of depth-averaged horizontal velocity in the LATEX inner shelf 
during Ike forerunner period from each case. 
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Figure 4-31 Plots of the sediment-induced stratification (Exp. 4, during the period 

from 0000 UTC 9/12/2008 to 0000 UTC 9/14/2008) as represented by flux 

Richardson number Rr as a function of normalized orbital velocity. Black line is the 

best fit of the data. 
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Figure 4-32 Comparisons between Exp. 4 (blue line), practical approach (green line), 

Exp. 1 (black line) and observed (red dots) storm tides for 5 stations along the 

LATEX shelf. The unit of storm tide is in meters. The black dashed line indicates the 

date of landfall and the red dashed line indicates 24 hours before landfall. 
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Figure 4-33 Schematic of the two stages of the storm surge induced by Ike: (a) in the 

first stage, the forerunner surge was generated by the combination of Ekman set-up 

and BBL dynamics; (b) at the primary surge stage, the surge was mainly driven by the 

onshore directed winds (local wind effects). 
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Figure 4-34 Sea surface temperature (SST) during Hurricane Ike: (a) 7 hours before 

landfall; (b) 17 hours after landfall; (c) 41 hours after landfall. These plots were 

generated by Bhagat (2009) using GOES-SST data. 
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CHAPTER V. The effects of wave-current interactions on coastal flooding in Scituate 

Harbor during the April2007 Nor' easter 

5.1 Introduction 

There is no doubt that wind waves can have major effects on storm surges, 

and coastal currents in the ocean. In previous studies (e.g., Roland et al., 2012; see 

details in Chapter 2 and Chapter 3), the effects of wave-induced surface and bottom 

stress as well as wave set-up through radiation stress were introduced simultaneously 

in the dynamic coupling between waves and currents. Their study pointed out the 

need to consider fully wave-current interactions in a 3D ocean circulation model to 

study the complicated physical processes in the coastal regions and further improve 

the prediction skill for storm surge simulation. 

In this chapter, a high-resolution, coupled SELFE-WWM II was applied in the 

Scituate Harbor, which is a small coast basin in the Gulf of Maine, to study the wave­

current interaction and its effect on inundation during nor'easter events. Since 

SELFE-WWM II has a robust wetting-and-drying capability that allows us to 

simulate coastal inundation, it is in our interest to investigate the effects of the wave­

current interaction and its effect on inundation in Scituate Harbor during the April 

2007 Nor' easter. Section 5.2 provides brief descriptions of the April 2007 Nor' easter 

as well as the study location. Section 5.3 introduces the model setups and the 

numerical experiments performed. Section 5.4 describes the model validations and 
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results of experiments. The effects of the wave-current interaction on coastal 

inundation are presented in Section 5.5, followed by conclusions in Section 5.6. 

5.2 Extratropical storm in the Gulf of Maine-April 2007 Nor'easter 

A nor'easter is a large scale extratropical storm that occurs mostly along the 

East Coast of the United States. Due to its longer duration and larger spatial scale 

than those features of a tropical storm (e.g., hurricanes) a nor' easter can cause severe 

flooding in the coastal areas by bringing strong wind and heavy precipitation within a 

short period of time. 

The April Nor' easter of2007 (a.k.a., the Patriot's Day Storm) was a nor' easter 

that affected mainly the eastern parts of North America from April 15 to April 17, 

2007. The Patriot's Day Storm will long be remembered not only for its devastating 

power, but also for its abnormally high spring tide plus a storm surge of nearly 0.9 

meters that combined to produce a high tide of 4 meters. Observed wave heights 

reached nearly I 0 meters in the Gulf of Maine during the April 2007 Nor' easter (Fig. 

5-l; data are from GoMOOS buoys and NWS Gray, ME). The 3D wave-current fully 

coupled model we presented in the previous chapters can be used to simulate the 

abnormally high water level in the Gulf of Maine during the Patriot's Day Storm. 

In the IOOS/SURA super-regional coastal modeling testbed project (SURA 

test bed project, 2011 ), one objective for the coastal storm surge and inundation team 

is to evaluate the effects of wave-current interactions on the model simulation of 

extratropical storm-induced inundation along the northeast coast of the U.S. Scituate, 
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MA (Fig. 5-2) was chosen as the extratropical testbed site for the SURA inundation 

project. The reasons are as follows: (a) the outer coast and harbor of Scituate 

experience severe flooding during strong nor'easter events; (b) the Taunton NWS 

(MA) Weather Forecast Office already had selected Scituate as a pilot site for the 

Northeast Coastal Ocean Forecast System (NECOFS, Fig. 5-3) development group to 

demonstrate an "end-to-end" inundation forecast system; and (c) with JOOS 

Northeast Regional Association of Coastal Ocean Observing Systems (NERACOOS) 

support, a high-resolution Scituate FVCOM inundation grid was developed and 

nested within the NECOFS regional GOM3 model system (Fig. 5-4; SURA test bed 

project final report, 2012). The benefit of this is that the high-resolution Scituate 

FVCOM inundation grid can be used as the common grid for the inter-model 

comparison as well as for the study of effects of wave-current interactions on 

inundation, and the lateral boundary conditions can be provided directly by NECOFS. 

5.3 Model setup and experiments 

5.3.1 Model setup 

In this study, the 30 coupled wave-current modeling system (see details in 

Chapter 2) is configured for Scituate Harbor and its adjacent area. As mentioned 

above, in order to resolve the hydrodynamics and more complicated topography of 

the relatively small harbor and its surrounding water, a high-resolution Scituate grid 

for inundation simulation (Fig. 5-4b) nested within the large GoM (Gulf of Maine) 
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regional grid was employed for this study. The Scituate domain (Fig. 5-4b), resolving 

more detailed geographic features in and around Scituate Harbor, has 5,620 nodes and 

11,153 elements with a horizontal resolution between 10m to 1000 m. As we are 

heavily interested in investigating the effects of wave-current interactions on 

inundation simulation, our coupled model was only used in the high-resolution 

Scituate domain. In other words, we did not use our coupled model in the large GoM 

domain. The large domain runs were conducted by the University of Massachusetts­

Dartmouth (hereafter UMass Dartmouth/WHOI group) in the SURA testbed project, 

which provided lateral open boundary conditions such as water level, horizontal 

velocity, significant wave height, peak wave period, and peak wave direction to drive 

the high-resolution Scituate domain. 

The Patriot's Day Storm impacted the northeastern region of the U.S. from 

April 15 to April 17, 2007. Time series of wind speed (WS), wind direction (WD), 

wave height (WH), dominant wave period (WP), surface, surface air pressure (BP, 

and air (blue) and water (red) temperature for the period April 10-21, 2007 are shown 

in Fig. 5-5 (data are recorded on the NDBC buoy 44013, and its location can be found 

in Fig. 5-7). Based on these records, the simulation period was started at 00:00 UTC, 

I April for model spin-up and completed at 00:00 UTC May 1 2007. The wind field 

used to drive our coupled model was a wind field from GoM-WRF (the 

meteorological model of NECOFS). The horizontal resolution for GoM-WRF is 9 

km. In this study, eleven layers in a pure s-coordinate were used for the vertical grid 

domain and a time step of 30 sec was used for both the current and wave model. 
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5.3.2 Numerical experiments 

In order to investigate the effects of wind waves on coastal inundations, two 

experiments are conducted in this study. The storm surge and inundation model run 

without wave-current interaction is referred to as Case A (base case). The experiment 

considering breaking wave set-up through radiation stress is referred to as Case B. A 

minimum water depth of 1 em was set for the wetting/drying scheme. 

5.4 Validations and results of experiments 

5.4.1 Tidal validation in Scituate domain 

Before running the storm surge and inundation simulation, a tidal simulation 

during May 2010 was conducted to verify the long wave propagation in the Scituate 

domain. The reason that May 2010 was selected for the tidal calibration was because 

a new water level gauge was installed inside Scituate Harbor (Fig. 5-6, Station F) and 

the water level data are available from this station. SELFE used the water level as 

well as flux time series provided by the large GoM domain as the forcing boundary 

condition for the Scituate domain. The simulation of tide using a time step of 30 sec 

that started from 5/1/201 0 0000 UTC and ended at 5/31/2010 0000 UTC, a total of 30 

days. The results of the modeled water level were used for the model-data comparison 

using "T-tide", a public domain software for conducting tidal harmonic analysis 

(Pawlowicz, et al., 2002). 
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Five major harmonic constituents (M2, N2, S2, 0~, and K1) were used for tidal 

comparison between simulated and measured amplitudes and phases at the tidal 

gauge inside Scituate Harbor (Fig. 5-6). The results are shown in Table 5-1. The 

difference between modeled and measured amplitudes is generally smaller than 3 em, 

except for the M2 tidal constituent (8.5 em). For phase, the difference is also small(< 

5°), except for the S2 tidal constituent ( 11.87°). Harmonic decomposition of the model 

elevation output showed that our model has strong prediction skills in both amplitude 

and phase for the major diurnal and semi-diurnal tidal constituents, indicating that the 

simulation of tide by SELFE is overall satisfactory in the Scituate domain. Note that 

this tidal comparison was conducted by the UMass Dartmouth!WHOI group in SURA 

testbed coastal storm surge and inundation team (UMass Dartmouth/WHOI group, 

2012). 

5.4.2 Wave model validation in the Gulf of Maine 

Although we did not run the large GoM application for storm surge and 

inundation simulation, a "wave-only" run was conducted in the GoM domain in order 

to evaluate our wave model WWM II because all known wave observational data are 

located outside of Scituate Harbor. Totals of 36 direction and 36 frequency bins, with 

the cut-off frequencies being 0.03 Hz to I Hz were used in this run. Also, data records 

from a total of 22 NDBC buoys (shown in Fig. 5-7) in the GoM were selected for 

model-data comparison. Wave characteristics such as significant wave heights, peak 

wave periods, mean wave periods (Tm02), and dominant wave direction (in nautical 
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coordinates) are used to validate our wave model (Fig. 5-8). The WWM II wave 

model matches the timing and magnitude of significant wave heights, and the 

simulated peak wave periods agree well with the observations at the selected buoys. 

The modeled mean wave periods catch the transitions from wind sea to swell sea, and 

match the observation at most of the selected stations. The WWM II wave model also 

accurately modeled the dominant wave direction during the April Nor' easter 2007. In 

general, the comparisons indicate that modeled predictions of significant wave height, 

peak wave period, mean wave period, and peak wave direction are well simulated at 

selected buoys. 

5.5 The wave-current interaction and its effect on inundation 

In this section, the effect of wave-current interaction on coastal inundation is 

analyzed from a set of numerical experiments: Case A and Case B, as described 

above. 

It should be noted that, due to the lack of observed data in Scituate Harbor, we 

are not able to offer a complete and comprehensive model-data comparison in this 

study. Instead of the model-data comparison, an inter-model comparison was 

conducted to assess the qualitative accuracy our model results (UMass Dartmouth, 

2012). More specifically, for each numerical experiment, surface water responses as 

well as depth-averaged velocities were compared between SELFE-WWM II and 

FVCOM-SW AVE at nine locations inside Scituate Harbor (Fig. 5-6) during the 2007 

storm event to make sure our simulations were reasonable. The inter-model 



228 

comparisons at nine locations in Scituate for Case A (without the effect of surface 

waves) and Case B (with the effect of surface waves) are shown in Fig. 5-9 and Fig. 

5-l 0, respectively. 

In the case ofthe April Nor'easter 2007 without the wave-current interaction 

(Case A}, FVCOM and SELFE predict nearly identical water surface responses 

throughout most of the Scituate model domain and specifically at nine designated 

model comparison locations (Fig. 5-9). Depth-averaged velocities at eight of nine 

stations are consistent between FVCOM and SELFE although they are more variable 

than surface water levels. At Station B, the depth-averaged velocity obtained by 

SELFE (red color) is much larger than the FVCOM prediction (blue color). The 

reasons for this variability are: (a) the two models compute velocity at different grid 

cell element positions (i.e., FVCOM -element centers; SELFE-element faces) and (b) 

the two models have different numerical approaches for their wetting/drying schemes. 

In general, SELFE and FVCOM present similar patterns of storm and inundation 

simulation without wave-current interaction in the Scituate domain. 

5.5 .1 The wind wave effect on coastal currents 

In the case of the 2007 storm, when with wave-current interaction is included 

in the model runs (Case B), FVCOM-SWAVE and SELFE-WWM II predict similar 

water levels and inundation at all nine designated comparison stations and generally 

throughout the Scituate domain. In this case, again no significant differences occur in 

the inter-model comparison for depth-averaged velocities at the selected stations. 
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However, larger differences were observed between the modeled velocities with and 

without wave-current interaction (Fig. 5-9 and Fig. 5-1 0) due to the development of 

relatively small scale velocity features through wave effects such as eddies, 

recirculation zones, and areas of significant lateral shear (Fig. 5-11 ). 

5.5.2 The wind wave effect on transport through the Harbor mouth 

Wave-current interaction generates additional water transport into the Scituate 

Harbor and changes the magnitude and direction of velocity in near-shore regions 

(Fig. 5-11; Fig. 5-12, section B). Although the modeled surface water levels are just 

slightly increased (less than 3%) in and around Scituate, the patterns of flooding areas 

are changed significantly inside the Scituate Harbor, especially in the northern basin 

(Fig. 5-13). 

5.5.3 The wind wave effect on coastal inundation 

As we mentioned above, the case without wave-current interaction predicts no 

inundation at the inland Station H while the case with wave-current interaction does 

have coastal inundation due to the enhanced vorticity of the eddy near the entrance 

and an additional water transport entering this area (Fig. 5-10, Station H; Fig. 5-14, 

and Fig. 5-15). High water marks for the Patriot's Day (April 2007) Storm suggest 

that the area around Station H was inundated, but unfortunately, there are no data to 

provide a time history or actual water levels in this area to verify our inundation 

simulation. The flooding areas were increased about 5% when considering wind wave 

effects (Table 5-2). These results show that including the wave-current interaction can 
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affect inundation predictions in near-shore and shallow water regions, even though 

there are no large differences in the surface water level. Note that in this study we 

only considered the effect of wave-induced radiation stress on inundation simulation. 

However, recent studies point out that other effects, such as wave-enhanced surface 

and bottom stresses by waves, also play significant roles for inundation simulation 

(e.g., Xie et al., 2008). Their effects should be accounted for during future studies to 

improve inundation prediction. 

5.5.4 Mechanism analysis 

Based on our model results above, we can summarize that while the mean 

water level remained the same inside the Harbor when considering wind wave effects, 

the total inundation areas were increased. This phenomenon can be explained by 

invoking the vertically integrated fully coupled wave-current continuity and 

momentum equations (McWilliams and Uchiyama, 2008): 

OT/ + V . U = - olj - V • rst 
at at 

f)+ Sk 
pa 

St - IAI211 

T - 4ksinh2[H] cosh[2Z]k 

H = k(h + 1J + ~) 

Z = k(z +h) 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 
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where k and 0' are wavenumber vector and angular frequency of primary waves, rst 

and~ are Stokes transport and quasi-static sea-level referred to as wave set-p, Sis a 

non-conservative dissipation during wave-breaking, and 'tb and t 5 are the bottom and 

surface stress terms. Although we do not consider vortex-force representation 

explicitly in our model framework, it has been proved that radiation stress can be 

represented by the vortex force plus the Bernoulli's effect (Garrett, 1976). The vortex 

force signifies the interaction between the vortices ofthe flow and the Stokes drift. In 

our case, wind waves generated by the nor' easter affect the coastal current through 

the wave-induced vortex force (second right-side term in Eq. (5.2)) and enhanced 

eddies in the Harbor mouth (Fig. 5-11 ). Due to the increase of magnitude as well as 

the directional change on coastal current through the vortex force, the total water 

transport across the Harbor mouth increased (Fig. 5-12). The additional water 

transport caused by the wind wave should be contributed by the wave set-up (first 

right-side term in Eq. ( 5.1)) and the gradient of Stokes transport (second term on the 

right side in Eq. (5.1)). We assume that the gradient of Stoke transport should be 

relatively small inside the Harbor (first right-side term in Eq. (5.2)) because it is 

proportional to the square of the wave amplitude (Eq. (5.3)). The wave set-up, 

however, is compensated by the extension of the flooding areas in the shallow regions 

(Fig. 5-14; Fig. 5-15). This is why the flooding areas were increased while the mean 

water level did not change too much inside the Harbor when wind waves were 

included. 
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5.6 Conclusions 

Based on SELFE-WWM II results, the inclusion of wave-current interaction 

in the models substantially strengthened and changed the direction of the velocity 

field in the coastal region outside of Scituate Harbor. As a result, the total transport 

through the entrance to Scituate Harbor also increased. The effect of wave-induced 

radiation stress generated additional water transport into Scituate Harbor and 

enhanced small scale eddy features within the harbor. While these do not translate to 

significant differences in mean water level inside the Scituate Harbor, it was shown 

that the total inundation areas were increased, as were the inundation frequencies in 

the southern and northern basins. 

It should be noted that, in the northern basin of Scituate Harbor, the "Splash­

over" - water driven by onshore winds and waves over the coastal sea walls, was a 

major contributor for flooding during the December 2010 Nor'easter (Beardsley et 

al., 2011). To the best knowledge of the author, so far this kind of process is not 

included in any of the wave-current coupled models. Further studies are needed in 

order to improve the model skill of inundation prediction. 
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Table 5-1 Scituate tide amplitude comparison (5/1/2010 to 5/3112010). 

OBS SELFE Diff 
(m) (m) (m) 

M2 1.324 1.239 -0.085 

N2 0.249 0.28 0.031 

s2 0.166 0.19 0.024 

01 0.119 0.109 0.01 

K1 0.136 0.128 0.008 

Scituate tide phase comparison (5/112010 to 5/31/2010). 

OBS SELFE Diff 
(deg) (deg) (deg) 

M2 103.46 101.97 -1.49 

N2 68.62 69.87 1.25 

s2 141.30 153.17 11.87 

01 187.13 183.59 -3.54 

K1 198.77 193.93 -4.84 
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Table 5-2 The comparison of flooding areas inside Scituate at 04:00 UTC 4/ I 8/2007. 

Inundated Areas (m2
) 

Without wave 103797.2 
With wave 108753.7 
Diff(with wave-without wave} 4956.5 
Diff(%) 5 
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Figure 5-l (a) Locations of GoMOOS buoys (red point) in Gulf of Maine. (b) 

Observed wave heights from GoMOOS buoys at the (I) GoMOOS AOI -

Massachusetts Bay and (2) GoMOOS BOI -Western Maine Shelf, for the period of 

the 2007 Patriot's Day Nor' easter. 
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Figure 5-2 The test site for this study: Scituate, Massachusetts. 
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Figure 5-3 Schematic diagram showing the components for Northeast Coastal Ocean 

Forecast System (NECOFS). More details can be found in 

http://fvcom.smast.umassd.edu/research projects/NECOFS/index.html. This figure 

was provided by UMass Dartmouth!WHOI group in SURA testbed (group members 

include R. Beardsley in WHOI, and C. Chen, Q. Xu, J. Qi, and H. Lin in UMass­

Dartmouth). 



238 

(a) 

(b) 

Figure 5-4 (a) Nested, Scituate inundation grid (left) and the GoM regional FVCOM 

grid (right). The larger area model is used to drive the high-resolution Scituate 

inundation model in SURA test bed project (Figures are from SURA Semi-Annual 

Progress report of Super-Regional Modeling testbed); (b) zoom in to the high­

resolution Scituate inundation grid. 
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Figure 5-5 Time series of wind speed (WS), wind direction (WD), wave height 

(WH), dominant wave period (WP), surface, surface air pressure (BP, and air (blue) 

and water (red) temperature for the period April 10-21, 2007 (data are recorded on the 

NDBC buoy 44013, location can be found in Fig. 5-7). 
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Figure S-6 Locations chosen for model data comparison (Station 

F) and inter-model comparison (Station A, B, C, D, E, G, H, and I) inside Scituate 

Harbor during April Nor'easter 2007. Time sequence of volumetric transport (m3s-1
) 

at three transects (red solid line) is calculated to study the effects of wave-current 

interaction on inundation. 
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Figure 5-7 Locations of the NDBC buoys used for the validations of predicted wave 

in the Gulf of Maine during April Nor' easter 2007. 
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Figure 5-8 Modeled wave characteristics during April Nor' easter at 22 NDBC buoys. (a) Significant wave height (m); (b) peak wave period 

(sec); (c) mean wave period (sec); (d) peak wave direction. 
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Figure 5-9 Time series of surface water level and depth-averaged velocity at nine locations 
inside Scituate Harbor (Fig. 5-6). Red color and blue color represent simulated results 
without wind wave effect from SELFE and FVCOM, respectively. 
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Figure 5-10 Time series of surface water level and depth-averaged velocity at nine locations 

inside Scituate Harbor (Fig. 5-6). Red color and blue color represent simulated results with 

wind wave effect from SELFE and FVCOM, respectively. 
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Figure S-11 Computed water level and depth-averaged current field (left: without wave 

effect; right: with wave effect) at 04:00 UTC 4/18/2007. 
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Figure 5-12 Time series of water transport at transect A, B, and C (Fig. 5-6). Red line and 

blue line represent calculated results without and with the wind wave effect, respectively. 
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Figure 5-13 Computed water level (a) without wave effect, and (b) with wave effect on 

04:00 UTC 4/18/2007. Black and blue circles represent the inundated areas that are 

influenced by wave-current interaction. 
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Figure S-14 Simulated flooding areas inside Scituate Harbor (with and without the wind 

wave effect) on 04:00 UTC 4/18/2007. The blue shade represents the flooding areas and the 

red shade represents the drying areas. 
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Figure S-lS The difference of flooding areas between with wave and without wave effects 

on 04:00 UTC 4/18/2007. The blue shade represents the areas that are flooded in both cases; 

the red shade represents the drying areas in both cases; the black shade represents increased 

flooding and gray shade represents reduced flooding due to the wave effects. 
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CHAPTER VI. Summary and Conclusion 

A fully coupled wave-current interaction model based on a 3D hydrodynamic model 

(SELFE) and the spectral wave model (WWM II) has been developed in this study. Both 

models were implemented on unstructured grids with parallel computing capability, which 

makes the coupled model effective in multi-scale applications without grid nesting. 

The two models are tightly coupled with the same domain decomposition but with 

different time-stepping schemes to ensure maximum efficiency and flexibility. Three major 

effects of wave-current interaction are considered in the coupled model: (1) wave-induced 

radiation stress; (2) wave-enhanced surface stress as well as mixing due to the surface wave­

breaking; and (3) wave-enhanced bottom shear stress. The wave-current coupled model has 

been demonstrated to be accurate, robust, and also efficient through a series of stringent tests 

consisting of two analytical solutions, three laboratory experiments, and several river-to­

ocean scale field tests. The inclusion of the wave-current interaction mechanism enables the 

storm surge model to function more accurately and thus to predict surface water responses 

including the coastal flooding more realistically during tropical and extra-tropical storm 

events. 

Hurricane Ike made landfall in the Gulf of Mexico in 2008 and caused devastating 

damages around the Galveston Bay. A large forerunner contributed significantly to the total 
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water level during the ensuing primary surge when the hurricane approached the coastline. 

Numerical model results indicate that the forerunner occurs as a result of Ekman set-up along 

the broad continental shelf by the shore-parallel wind field. Moreover, it was found that the 

cross-shore Ekman set-up is highly sensitive to the selection of the bottom drag coefficient. 

Most storm surge simulation studies focus on the effects of surface wind stress. 

However, it has been found that, in the inner shelf regions, the conditions of the BBL also 

have significant changes during storm events and should not be neglected. Given the fact that 

the Gulf of Mexico is known to be rich in fluid mud, and near-bed flows generally are weak 

under fair-weather conditions, the suspended sediment-induced density stratification is likely 

to be ubiquitously present at the BBL during storm events. A sediment-transport model and 

wave-current BBL sub-model including the sediment-induced stratification effect were 

developed and coupled to the unstructured grid wave-current model for simulating the 

forerunner during Hurricane Ike. The model results demonstrate that BBL dynamics have 

significant effects on the cross-shelf Ekman set-up. 

Our experiences with the 3D wave-current coupled model in the Chesapeake Bay and 

the Gulf of Mexico highlighted the need of the post-analysis on the model results in order to 

understand the complicated coupling mechanisms since the end results are not always easy to 

interpret. Consistent physical formulations for the wave-current interactions, such as those in 

Ardhuin et al. (2008), should be adopted in the coupled model, which can provide a more 

systematic investigation to the effects of wave-current interaction on storm surge and 

inundation simulation. 
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In this dissertation, the effects of wave-current interaction on inundation simulation in 

the small coastal basin were also conducted in the Scituate domain. The results indicated that 

wave-current interaction effects should be taken into account not only for storm surge 

prediction, but also, very importantly, for inundation simulation. 

The major findings and conclusions of this dissertation can be summarized as 

follows: 

I. A 30 unstructured storm surge and inundation modeling system, coupling the 

unstructured grid current model SELFE and the wave model WWM II, has been 

developed and successfully applied for storm surge and inundation simulations in the 

Chesapeake Bay, the Gulf of Mexico, and Scituate Harbor in the Gulf of Maine. 

2. It was demonstrated that the storm surge caused by Hurricane Ike can be separated 

into two stages: (a) forerunner surge induced by the Ekman set-up under geostrophic 

balance; and (b) primary surge induced by the local on-shore winds. 

3. The comparison of predictions from the Ekman dynamics-induced forerunner 

simulation with measured data is good; however, the model tends to underpredict the 

magnitude of the Hurricane Ike forerunner by 40% unless the bottom friction is 

reduced by one order of magnitude. 

4. In order to study the effects of BBL dynamics on forerunner surge, we further built a 

sediment-transport model and coupled this model with the wave-current model. A 

stability function was introduced to the bottom friction to consider the effects of 

sediment-induced stratification on the BBL. It was shown that including both wave­

current interaction and sediment-induced stratification can increase the magnitude of 
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alongshore current as well as the cross-shelf Ekman set-up by 30% and, hence, yield 

better results for forerunner simulation. 

5. A practical approach was adopted in the 3D wave-current coupled model based on the 

relationship between normalized orbital velocity and sediment-induced stratification. 

By implementing the simple practical approach over the inner-LATEX area, the 

predictions of total water level were generally reasonable compared with measured 

data and results from the fully 3D wave-current-sediment-transport coupled model. 

6. Including wave-current interaction in the models substantially strengthens and 

changes the direction of the velocity field in the Scituate Harbor and surrounding 

areas. The effect of wave-induced radiation stress generates additional flux into 

Scituate Harbor and enhanced small scale velocity features within the Harbor. While 

these do not translate to large differences in surface water level inside the Scituate 

Harbor, they do influence the inundation simulations of areas in the southern and 

northern basins. 

The wave-current coupled model developed in this study showed great potential and 

capability to be established as a real-time forecast system in the future. Given the complexity 

of the processes and tasks at hands, there are, however, still many challenges that lie ahead. 

First, even though the coupled model has generated satisfying wave, storm surge, and 

inundations for several multi-scales field tests, more tests should be conducted to validate the 

capability of the coupled model. Second, a "self-consistent" framework for various physical 

formulations of wave-current interactions should be implemented in our coupled model to 

further investigate and improve our 3D model results. Thirdly, the effects of wave-enhanced 
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surface and bottom stresses should be considered for further improvements of inundation 

prediction in the future. Last but not least, the effect of sediment-induced stratification on the 

BBL in the Gulf of Mexico needs to be further investigated for better storm surge prediction. 

Moreover, the effect of morphological changes should also be considered in the future study. 
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APPENDICES 

Appendix A Definition of statistical measures for error analysis 

The following statistical measures have been calculated to evaluate the skill of the SELFE-

WWM II model in tide, storm surge simulation in this study. 

Here, x represents the time series data, x is its time mean, while subscripts "mod' and "obs" 

denote the model results and observations, respectively. 

1. The root-mean-square error is defined as 

N 1/2 

RMSE = {~ ~(x=d -x •• ,)'} 

2. The mean absolute relative error (ARE) is defined as 

3. The correlation coefficient (r) is defined as 

Lf'.:1(Xmod- Xmod)(Xobs- Xobs) 
r=~~----------~~~--------~~ r~N ( - )2 ~N ( - )2)1/2 I.L.i=1 Xmod - Xmod .£.oi=1 Xobs - Xobs 
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Appendix B Definition of wave characteristics used for model-data comparison 

I. Significant wave height, Hmo: Significant wave height, Hmo, can be estimated from 

the variance of a wave elevation record assuming that the non-directional spectrum is 

narrow. The variance can be calculated directly from the record or by integration of 

the spectrum as a function of frequency. Using the latter approach, Hmo is given by 

where mo is the zero moment of non-directional spectrum and defined as 

Nb 

mr =I CfnYC11Cfn) ~fn, r=O 
n-1 

where ~fn is the spectrum frequency band width, fn is frequency, C11 is non-

directional-spectral density, and Nb is the number of frequency bands in the spectrum. 

During analysis, pressure spectra are converted to equivalent sea surface (elevation) 

spectra so that these calculations can be made. Due to the narrow spectrum 

assumption, Hmo is usually slightly larger than significant wave height, H 113, 

calculated by zero-crossing analysis. 

2. Zero-crossing wave period: Zero-crossing wave period is the average of the wave 

periods that occur in a wave height time-series record where a wave period is defined 

as the time interval between consecutive crossings in the same direction of mean sea 

level during a wave measurement time period. It is also statistically the same as 

dividing the measurement time period by the number of waves. An estimate of zero-

crossing wave period can be computed from a non-directional spectrum. This 
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estimate is statically the same as averaging all wave periods that occurred in the wave 

record. NDBC calculates zero-crossing wave period from the following equation: 

3. Peak wave period: peak, or dominant, wave period is the wave period corresponding 

to the center frequency of the frequency band with the maximum non-directional 

spectral density. Peak wave period is also called the period of maximum wave 

energy. 



269 

LITERATURE CITED 

Abgrall, R. (2006): "Residual distribution schemes: Current status and future trends". Computers & 

Fluids, 3 5(7), 641-669. 

Abramowitz, M., and I. A. Stegun (1972): "Handbook ofMathematical Functions". Dover, New 

York, 1045 pp. 

Adams, C. E., Jr., and G. L. Weatherly (1981 ): "Some Effects of Suspended Sediment Stratification 

on an Oceanic Bottom Boundary Layer". J. Geophys. Res., 86(C5), 4161-4172. 

Allison, M.A., T. S. Bianchi, B. A. McKee, and T. P. Sampere (2007): "Carbon burial on river­

dominated continental shelves: impact of historical changes in sediment loading adjacent to 

the Mississippi River". Geophysical Research Letter, 34 (L01606), 

doi: I 0.1 029/2006GL028362. 

Andrews, D. G., and M. E. Mcintyre (1978a): "On wave-action and its relatives". J. Fluid Mech., 89, 

64 7-664. Corrigendum Vol 95, pp. 796; also Vol. 106, pp.331. 

Andrews, D. G., and M.E. Mcintyre (1978b): "An exact theory of nonlinear waves on a Lagrangian­

mean flow". J. Fluid Mech., 89, 609-646. 

Ardhuin, F., and A. D. Jenkins (2006): "On the Interaction of Surface Waves and Upper Ocean 

Turbulence". J. Phys. Oceanography, 36,551-557. 



270 

Ardhuin, F., N. Rascle, and K. A. Belibassakis (2008): "Explicit wave-averaged primitive equations 

using a generalized Lagrangian mean". Ocean Modelling, 20(1), 35-60. 

Ardhuin, F., L. Marie, N. Rascle, P. Forget, and A. Roland (2009): "Observation and Estimation of 

Lagrangian, Stokes, and Eulerian Currents Induced by Wind and Waves at the Sea 

Surface". Journal of Physical Oceanography, 39(11), 2820-2838. 

Ardhuin, F., E. Rogers, A. V. Babanin, J.F. Filipot, R. Magne, A. Roland, A.V. Westhuysen, P. 

Queffeulou, J. M. Lefevre, L. Aouf, and F. Collard (2010): "Semiempirical Dissipation 

Source Functions for Ocean Waves. Part 1: Definition, Calibration, and Validation". 

Journal of Physical Oceanography, 40(9), 1917-1941. 

Ardhuin, F., et al. (2012): "Semi-empirical dissipation source functions for ocean waves: Part II, 

evaluation in conditions with strong currents, and general validation of wave models in 

currents". Submitted to Journal of Physical Oceanography. 

Ardhuin, F. and A. Roland (2012): "Coastal wave reflection, directional spread, and seismo-acoustic 

noise sources". Submitted to J. Geophys. Res (this issue). 

Ariathurai, C.R., and K. Arulanandan (1978): "Erosion rates of cohesive soils". Journal of 

Hydraulics Division, I 04 (2), 279-282. 

Azevedo, A., A. Oliveira, A. B. Fortunato, and X. Bertin (2009): "Application of an Eulerian­

Lagrangian oil spill modeling system to the Prestige accident: trajactory analysis". J. 

Coastal Res., SI 56, 777-781. 



Babanin, A. (2011): "Breaking and dissipation of ocean surface waves". Cambridge University 

Press., 463 pp. 

Battjes, J. A. (1972): "Radiation stresses in short-crested gravity waves". J. Mar. Res., 30, 56-64. 

Battjes, J. A. (1974): "Computation ofSet-Up, Longshore Currents, Run-Up, and Overtopping Due 

to Wind-Generated Waves". Report 74-2, Committee on Hydraulics, Department of Civil 

Engineering, Delft University of Technology, The Netherlands. 

Battjes, J. A., and J. Janssen (1978): "Energy loss and set-up due to breaking of random waves". 

271 

Paper presented at Proceedings ofthe 16th international conference on coastal engineering. 

Beardsley, R., C. Chen, Q. Xu, J. Qi, and H. Lin (20 11 ): "Extratropical Storm-Induced Coastal 

Inundation: Scituate, MA. Inundation TestBed Workshop". North Carolina University, 

March 7-8, 2011. 

Bennis, A. C., and F. Ardhuin (2011): "Comments on "The Depth-Dependent Current and Wave 

Interaction Equations: A Revision". Journal of Physical Oceanography, 41 ( 1 0), 2008-2012. 

Bennis, A. C., F. Ardhuin, and F. Dumas (2011): "On the coupling of wave and three-dimensional 

circulation models: Choice of theoretical framework, practical implementation and 

adiabatic tests". Ocean Modelling, 40(3-4), 260-272. 

Bernier, N. B., and K. R. Thompson (2006): "Predicting the frequency of storm surges and extreme 

sea levels in the northwest Atlantic". J. Geophys. Res., 111(C10), C10009. 



272 

Bertin, X., A. Oliveira, and A. B. Fortunato (2009): "Simulating morphodynamics with unstructured 

grids: Description and validation of a modeling system for coastal applications". Ocean 

Modelling, 28(1-3), 75-87. 

Bertin, X., N. Bruneau, J. F. Breilh, A. B. Fortunato, and M. Karpytchev (2012): "Importance of 

wave age and resonance in storm surges: The case Xynthia, Bay of Biscay". Ocean 

Modelling, 42(0), 16-30. 

Bhagat, R. (2009): "Cold Wakes of Hurricanes in the Gulf of Mexico". Research report written 

under the supervision of Professor Robert Leben, Niwot High School, 18 pp. 

Bidlot, J.R., J. H. Damian, A. W. Paul, L. Roop, and S.C. Hsuan (2002): "lntercomparison ofthe 

Performance of Operational Ocean Wave Forecasting Systems with Buoy Data". Wea. 

Forecasting, 17,287-310. 

Blain, C. A., J. J. Westerink, and R. A. Luettich, Jr. (1994): "The influence of domain size on the 

response characteristics of a hurricane storm surge model". J. Geophys. Res., 99(C9), 

18467-18479. 

Blumberg, A. F., and G. L. Mellor (1987): "A description of a three-dimensional coastal ocean 

circulation model". InN. Heaps (ed.), Three-Dimensional Coastal Ocean Circulation 

Models, American Geophysical Union, Washington, D.C., 4:1-16. 



273 

Boers, M. (1996): ''Simulation of a surfzone with a barred beach; Report 1: wave heights and wave 

breaking, Communications on hydraulic and geotechnical engineering". Delft University of 

Technology, ISSN 0169-6548. 

Booij, N., R. C. Ris, and L. H. Holthuijsen (1999): "A third-generation wave model for coastal 

regions 1. Model description and validation" . .!. Geophys. Res., 104(C4), 7649-7666. 

Bretherton, F. P., and C. J. R. Garrett (1969): "Wavetrains in Inhomogeneous Moving Media". 

Proceedings of the Royal Society of London. Series A, Mathematical and Physical 

Sciences, 302( 14 71 ), 529-554. 

Brovchenko 1., V. Maderich, and K. Terletska (2011): "Numerical simulations of 3D structure of 

currents in the region of deep canyons on the east coast of the Black Sea". International 

Journal for Computational Civil and Structural Engineering, 7 (2): 47-53. 

Bruneau, N., A. B. Fortunato, G. Dodet, P. Freire, A. Oliveira, and X. Bertin (2011): "Future 

evolution of a tidal inlet due to changes in wave climate, Sea level and lagoon morphology 

(6bidos lagoon, Portugal)". Continental Shelf Research, 31(18), 1915-1930. 

Bunpapong, M., R. 0. Reid, and R.E. Whitaker (1985): "an investigation ofhurricane-induced 

forerunner surge in the GulfofMexico". Rep. CERC-85-5, 201 pp., Coastal Eng. Res. 

Cent., Vicksburg, Miss. 



Bunya, S., J. C. Dietrich, J. J. Westerink, B. A. Ebersole, J. M. Smith, J. H. Atkinson, R. Jensen, D. 

T. Resio, R. A. Luettich, C. Dawson, V. J. Cardone, A. T. Cox, M.D. Powell, and H. J. 

Westerink (2010): "A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, 

and Storm Surge Model for Southern Louisiana and Mississippi. Part 1: Model 

Development and Validation". Monthly Weather Review, 138(2), 345-377. 

274 

Bur Ia, M., A. M. Baptista, Y. Zhang, and S. Frolov (20 1 0): "Seasonal and interannual variability of 

the Columbia River plume: A perspective enabled by multiyear simulation databases". J 

Geophys. Res., 115, COOB 16. 

Byun, D.S. and X. H. Wang (2005): "The effect of sediment stratification on tidal dynamics and 

sediment transport patterns". J Geophysical Res. II O:C030 11. 

Cacchione, D. A., D. E. Drake, R. W. Kayen, R. W. Sternberg, G. C. Kineke, and G. B. Tate (1995): 

"Measurements in the bottom boundary layer on the Amazon subaqueous delta". Marine 

Geology, 125(3-4), 235-257. 

Canuto, V.M., A. Howard, Y. Cheng, and M.S. Dubovikov (2001): "Ocean turbulence I: one-point 

closure model. Momentum and heat vertical diffusivities". Journal of Physical 

Oceanography,31, 1413-1426. 

Carter, H.H., and D.W. Pritchard (1988): "Oceanography ofChesapeake Bay". In: Kjerfe, B. (Ed.), 

Hydrodynamics of Estuaries: Dynamics ofPartially Mixed Estuaries, vol. I. CRC Press, 

Boca Raton, FL, pp. 1-16. 



275 

Casulli, V., and R.V. Walters (2000): "An unstructured grid, three-dimensional model based on the 

shallow water equations. International Journal for Numerical Methods in Fluids, 32, 331-

348. 

Cheng, R. T., C.-H. Ling, J. W. Gartner, and P. F. Wang (1999): "Estimates ofbottom roughness 

length and bottom shear stress in South San Francisco Bay". California, J Geophys. Res., 

104(C4), 7715-7728. 

Cho, K. (2009): "A numerical modeling study on barotropic and baroclinic responses of the 

Chesapeake Bay to hurricane events". PhD Dissertation, Virginia Institute of Marine 

Science, College of William and Mary. 

Cho, K.-H., H. V. Wang, J. Shen, A. V. Levinson, and Y.-C. Teng (2012): "a modeling study on the 

response of Chesapeake Bay to hurricane events of Floyd and Isabel". Ocean Modelling, 

49-50, 22-46. 

Comblen, R., S. Legrand, E. Deleersnijder, and V. Legat (2009): "A finite element method for 

solving the shallow water equations on the sphere". Ocean Modelling, 28(1-3), 12-23. 

Conley, D. C., S. Falchetti, I. P. Lohmann, and M. Brocchini (2008): "The effects of flow 

stratification by non-cohesive sediment on transport in high-energy wave-driven flows". 

Journal of Fluid Mechanics, 610,43-67. 



Cox, A. T., J. A. Greenwood, V. J. Cardone, and V. R. Swail (1995): "An interactive objective 

kinematic analysis system". Proc. Fourth Int. Workshop on Wave Hindcasting and 

Forecasting, Banff, AB, Canada, Atmospheric Environment Service, I 09-118. 

276 

Craig, P. D., and M. L. Banner (1994): "Modeling Wave-Enhanced Turbulence in the Ocean Surface 

Layer". Journal of Physical Oceanography, 24(12), 2546-2559. 

Craik, A. D. D., and S. Leibovich (1976): "A rational model for Langmuir circulations". Journal of 

Fluid Mech., 73:401-426. 

Curray, J.R., (1960): "Sediments and history of the Holocene transgression Continental Shelf, 

Northwest Gulf of Mexico". Recent Sediments Northwest Gulf of Mexico, American 

Association ofPetroleum Geologists Bulletin, Tulsa, OK, pp. 221-226. 

Dietrich, J. C., S. Bunya, J. J. Westerink, B. A. Edersole, J. M. Smith, J. H. Atkinson, R. Jensen, D. 

T. Resio, R. A. Luettich, C. Dawson, V. J. Cardone, A. T. Cox, M.D. Powell, H. J. 

Westerink, and H. J. Roberts (2010): "A High-Resolution Coupled Riverine Flow, Tide, 

Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and Mississippi. Part II: 

Synoptic Description and Analysis of Hurricanes Katrina and Rita". Monthly Weather 

Review, 138(2), 378-404. 

Dietrich, J. C., M. Zijlema, J. J. Westerink, L. H. Holthuijsen, C. Dawson, R. A. Luettich Jr, R. E. 

Jensen, J. M. Smith, G. S. Stelling, and G. W. Stone (2011a): "Modeling hurricane waves 

and storm surge using integrally-coupled, scalable computations". Coastal Engineering, 

58(1), 45-65. 



277 

Dietrich, J. C., J. J. Westerink, A. B. Kennedy, J. M. Smith, R. E. Jensen, M. Zijlema, L. H. 

Holthuijsen, C. Dawson, R. A. Luettich Jr., M.D. Powell, V. J. Cardone, A. T. Cox, G. W. 

Stone, H. Pourtaheri, M. E. Hope, S. Tanaka, L. G. Westerink, H. J. Westerink, and Z. 

Cobell (2011b): "Hurricane Gustav (2008): "Waves and Storm Surge: Hindcast, Synoptic 

Analysis, and Validation in Southern Louisiana". Monthly Weather Review, 139(8), 2488-

2522. 

Dingemans, M. W. ( 1987): "Verification of numerical wave propagation models with laboratory 

measurements; HISWA verification in the directional wave basin". Delft Hydraulics, 

Report H228, 400 pp. 

Dingemans, M. W. (1998): "A review ofthe physical formulations in SWAN". Delft Hydraulics, 

Report No. H3306 .. 

Donelan, M.A., F. W. Dobson, S.D. Smith, and R. J. Anderson (1993): "On the dependence of sea­

surface roughness on wave development". J. Phys. Oceanogr., 23, 2143-2149, 

doi:l0.1175/1520-0485(1993)023 <2143:0TOOSS>2.0.C0;2 

Draut, A. E., G. C. Kineke, D. W. Velasco, M.A. Allison, and R. J. Prime (2005): "Influence ofthe 

Atchafalaya River on recent evolution of the chenier-plain inner continental shelf, northern 

GulfofMexico". Continental Shelf Research, 25(1), 91-112. 

Dyer, K. R. (1986): "Coastal and Estuarine Sediment dynamics". Chichester: John Wiley, 342 pp. 



278 

Dyer, K. R., M. C. Christie, and A. J. Manning (2004): "The effects of suspended sediment on 

turbulence within an estuarine turbidity maximum". Estuarine, Coastal and ShelfScience, 

59(2}, 237-248. 

Eldeberky, Y. (1996): "Nonlinear Transformation ofWave Spectra in the Nearshore Zone". 

Ph.D. Thesis, TU-Deft, The Netherlands. 

Ekman, V. W. (1905): "On the influence ofthe earth's rotation on ocean currents". 

Arch. Math. Astron. Phys., 2, 1-52. 

Emanuel, K., R. Sundararajan, and J. Williams (2008): "Hurricanes and Global Warming: Results 

from Downscaling IPCC AR4 Simulations". Bulletin of the American Meteorological 

Society, 89(3), 347-367. 

Ferrario, C., G. Umgiesser, A. Cucco, T.-W. Hsu, A. Roland, and C. L. Amos (2008): "Development 

and validation of a finite element morphological model for shallow water basins". Coastal 

Engineering, 55(9}, 716-731. 

Filipot, J.-F., F. Ardhuin, and A. V. Babanin (2010): "A unified deep-to-shallow water wave­

breaking probability parameterization". J. Geophys. Res., 115(C4), C04022. 

Flather, R.A., R. Proctor, and J. Wolf(l991): "Oceanographic forecast models". Computer 

Modeling in the Environmental Sciences, D.G. Farner and M.J. Rycroft (Eds.), Oxford. 

U.K., 15-30. 



Freeman, J. C., L. Baer, and C. H. Hung (1957): "The bathystrophic storm tide", J. Mar. Res., 16, 

12-23. 

Friedrichs, C. T., L. D. Wright, D. A. Hepworth, and S. C. Kim (2000): "Bottom-boundary-layer 

processes associated with fine sediment accumulation in coastal seas and bays". 

Continental Shelf Research, 20(7), 807-841. 

Fringer, O.B., M. Gerritsen, and R. L. Street (2006): "An unstructured-grid, finite-volume, 

nonhydrostatic, parallel coastal ocean simulator". Ocean Modelling, 139, 173. 

Funakoshi, Y., S.C. Hagen, and P. Bacopoulos (2008): "Coupling of Hydrodynamic and Wave 

Models: Case Study for Hurricane Floyd (1999) Hindcast". Journal of Waterway, Port, 

Coastal, and Ocean Engineering, 134(6), 321-335. 

Galperin, B., L.H. Kantha, S. Hassid, and A. Rosati (1988): "A quasi-equilibrium turbulent energy 

model for geophysical flows". Journal of Atmospheric Science, 45, 55-62. 

279 

Ganju, N. K., and C. R. Sherwood (2010): "Effect of roughness formulation on the performance of a 

coupled wave, hydrodynamic, and sediment transport model". Ocean Modelling, 33(3-4), 

299-313. 

Gao, J. (2011): "A Numerical Modeling Study of Storm Surge and Inundation in the Chesapeake 

Bay during the November 2009 Nor' easter". MS Thesis, Virginia Institute of Marine 

Science, College of William and Mary. 



Garrett, C., (1976): "Generation of Langmuir circulations by surface waves -A feedback 

mechanism". J. Mar. Res., 34, 116-130. 

Geyer, W. R., P. S. Hill, and G. C. Kineke (2004): "The transport, transformation and dispersal of 

sediment by buoyant coastal flows". Continental Shelf Research, 24(7-8), 927-949. 

Glahn, B., A. Taylor, N. Kurkowski, and W. Shaffer (2009): "The role of the SLOSH model in 

national weather service storm surge forecasting". National Weather Digest, 33(1), 3-14. 

Glenn, S.M., and W. D. Grant (1987): "A Suspended Sediment Stratification Correction for 

Combined Wave and Current Flows". J. Geophys. Res., 92(C8), 8244-8264. 

280 

Gong, W., J. Shen, and W. G. Reay (2007): "The hydrodynamic response ofthe York River estuary 

to Tropical Cyclone Isabel, 2003". Estuarine, Coastal and ShelfScience, 73(3-4), 695-710. 

Gong, W., J. Shen, K. H. Cho, and H. V. Wang (2009): "A numerical model study ofbarotropic 

subtidal water exchange between estuary and subestuaries (tributaries) in the Chesapeake 

Bay during northeaster events". Ocean Modelling, 26(3-4), 170-189. 

Gottlieb, S., and C.-W. Shu (1998): "Total Variation Diminishing {R}unge-{K}utta Schemes". 

Mathematics of Computation, 67, 73-85. 

Grant, W. D., and 0. S. Madsen (1979): "Combined Wave and Current Interaction With a Rough 

Bottom". J. Geophys. Res., 84(C4), 1797-1808. 



281 

Grant, W. D., and 0. S. Madsen (1986): "THE CONTINENTAL-SHELF BOTTOM BOUNDARY­

LAYER", Annual Review of Fluid Mechanics, 18, 265-305. 

Grant, W. D., A. J. Williams, and S.M. Glenn (1984): "Bottom Stress Estimates and their Prediction 

on the Northern California Continental Shelf during CODE-I: The Importance of Wave­

Current Interaction". Journal of Physical Oceanography, 14(3), 506-527. 

Group, T. W. (1988): "The WAM Model-A Third Generation Ocean Wave Prediction Model". 

Journal of Physical Oceanography, 18(12), 1775-1810. 

Guo, X., and A. Vaile-Levinson (2007): "Tidal effects on estuarine circulation in Chesapeake Bay". 

Continental Shelf Research 27, 20-42. 

Hagy, J.D., J. C. Lehrter, and M. C. Murrell (2006): "Effects of Hurricane Ivan on water quality in 

Pensacola Bay, Florida". Estuaries Coasts 29, 919-925. 

Harris, D. L. (1963): "Characteristics of the Hurricane storm surge". Technical Paper No. 48, U.S. 

Weather Bureau. 

Hasselman, K., T. P. Barnett, E. Bouws, D. E. Carlson, and P. Hasselmann (1973): "Measurements 

of wind-wave growth and swell decay during the Joint North Sea Wave Project 

(JONSWAP)". Deutsche Hydrographische Zeitschrift, 8(12). 

Hassel mann, K. ( 1962): "On the non-linear energy transfer in a gravity-wave spectrum Part 1. 

General theory". Journal of Fluid Mechanics, 12(04), 481-500. 



282 

Hasselmann, S., and K. Hasselmann (1985): "Computations and Parameterizations ofthe Nonlinear 

Energy Transfer in a Gravity-Wave Spectrum. Part 1: A New Method for Efficient 

Computations ofthe Exact Nonlinear Transfer Integral". Journal of Physical 

Oceanography, 15(11), 1369-1377. 

Hasselmann, S., K. Hasselmann, J. H. Allender, and T. P. Barnett (1985): "Computations and 

Parameterizations of the Nonlinear Energy Transfer in a Gravity-Wave Specturm. Part II: 

Parameterizations of the Nonlinear Energy Transfer for Application in Wave Models". 

Journal of Physical Oceanography, 15(11), 1378-1391. 

Hersbach, H., and P. A. E. M. Janssen (1999): "Improvement ofthe Short-Fetch Behavior in the 

Wave Ocean Model (WAM)". Journal of Atmospheric and Oceanic Technology, 16(7), 

884-892. 

Hicks, S.D. (1964): "Tidal wave characteristics of Chesapeake Bay". Chesapeake Science, 5, 103-

113. 

Holthuijsen, L. H., A. Herman, and N. Booij (2003): "Phase-decoupled refraction-diffraction for 

spectral wave models". Coastal Engineering, 49(4), 291-305. 

Hsu, T.-W., S.-H. Ou, and J.-M. Liau (2005): "Hindcasting nearshore wind waves using a FEM code 

for SWAN". Coastal Engineering, 52(2), 177-195. 

Janssen, P. (1989): "Wave-Induced Stress and the Drag of Air Flow over Sea Waves". Journal of 

Physical Oceanography, 19(6), 745-754. 



283 

Janssen, P. (1991): "Quasi-linear Theory of Wind-Wave Generation Applied to Wave Forecasting". 

Journal of Physical Oceanography, 21(11), 1631-1642. 

Janssen, P. A. E. M. (2001): "Reply". Journal of Physical Oceanography, 31(8), 2537 

Janssen, P. (2004): "The interaction of ocean waves and wind". Cambridge University Press, 

Cambridge, 300 pp. 

Janssen, P.A.E.M. (2010): "Ocean wave effects on the daily cycle in STT'', ECMWF, Technical 

Memorandum. 

Janssen. P.A.E.M. (2011): "Ocean wave effects on the daily cycle in SIT". Technical 

Memoranda, ECMWF, No.: 634. 

Jelesnianski, C.P., J. Chen, and W.A. Shaffer (1992): "SLOSH: sea, lake, and overland surges from 

hurricane". National Weather Service, Silver Springs, MD. 

Johnson, H. K., J. H0jstrup, H. J. Vested, and S. E. Larsen (1998): "On the Dependence of Sea 

Surface Roughness on Wind Waves". Journal of Physical Oceanography, 28(9), 1702-

1716. 

Jonsson, I. G. (1993): "Wave current interactions, in The Sea". Ocean Eng. Sci.Ser., vol. 9, part A, 

edited by B. Le Mehaute and D. M. Hanes, pp.65-70, John Wiley, New York. 

Kantha, L.H., and C.A. Clayson (1994): "An improved mixed layer model for geophysical 

applications". Journal of Geophysical Research, 99(25), 235-266. 



Keller, J. B. ( 1958): "Surface waves on water of non-uniform depth". Journal of Fluid Mechanics, 

4(06), 607-614. 

284 

Kennedy, A. B., U. Gravois, B. C. Zachry, J. J. Westerink, M. E. Hope, J. C. Dietrich, M.D. Powell, 

A. T. Cox, R. A. Luettich, Jr., and R. G. Dean (2011): "Origin ofthe Hurricane Ike 

forerunner surge". Geophys. Res. Lett., 38(8), L08608. 

Kineke, G. C., E.E. Higgins, K. Hart, and D. Velasco (2006): "Fine-sediment transport associated 

with cold-front passages on the shallow shelf'. Gulf of Mexico, Continental Shelf Research, 

26, 2073-2091. 

Kim, K. 0., T. Yamashita, and B. H. Choi (2008): "Coupled process-based cyclone surge simulation 

for the Bay of Bengal". Ocean Modelling, 25(3-4), 132-143. 

King, B., and E. Wolanski (1996): "Bottom friction reduction in turbid estuaries, in Mixing in 

Estuaries and Coastal Seas". Coastal Estuarine Stud., vo1.50, edited by C. Pattiaratchi, pp. 

325-337, AGU, Washington, D.C. 

Kirby, R., and W. R. Parker (1977): "The physical characteristics and environmental significance 

fine sediment suspensions in estuaries". Estuaries, geophysics and the environment, 

National Research Council, National Academy Press, Washington, D.C., 110-120. 

Kohut, J. T., S.M. Glenn, and J.D. Paduan (2006): "Inner shelf response to Tropical Storm Floyd". 

J. Geophys. Res., 111(C9), C09S91. 



Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen 

(1994): "Dynamics and ModeHing of Ocean Waves". Cambridge Univ. Press, New York, 

532 pp. 

Kumar, N., G. Voulgaris, and J. C. Warner (2011): "Implementation and modification of a three­

dimensional radiation stress formulation for surf zone and rip-current applications". 

Coastal Engineering, 58(12), 1097-1117. 

Lai, R. J., S. R. Long, and N. E. Huang (1989): "Laboratory Studies of Wave-Current Interaction: 

Kinematics ofthe Strong Interaction". J Geophys. Res., 94(C11), 16201-16214. 

285 

Lane, E. M., J. M. Restrepo, and J. C. McWilliams (2007): "Wave-current interaction: A comparison 

of radiation-stress and vortex force representation". J Phys. Oceanography., 37, 1122-

1141. 

Lavrenov, LV. (2004): "Weak turbulent fluxes estimation in surface water wave spectrum". 8th 

International Workshop on Wave Hindcasting and Forecasting, North Shore, Oahu, Hawaii. 

Le Provost, C., F. Lyard, J. M. Mo1ines, M. L. Genco, and F. Rabilloud (1998): "A hydrodynamic 

ocean tide model improved by assimilating a satellite altimeter-derived data set". J 

Geophys. Res., 103(C3), 5513-5529. 

LeRoux, D. Y., C. A. Lin, and A. Staniforth (1997): "An accurate interpolating scheme for semi­

Lagrangian advection on an unstructured mesh for ocean modeling". Tell us A, 49( 1 ), 119-

138. 



286 

Leonard, B. P. ( 1991 ): "The ultimate conservative difference scheme applied to unsteady one­

dimensional advection". Computer Methods in Applied Mechanics and Engineering, 88( 1 ), 

17-74. 

Lewis, D. M., and S. E. Belcher (2004): "Time-dependent, coupled, Ekman boundary layer solutions 

incorporating Stokes drift". Dynamics of atmospheres and oceans, 37, 313-351. 

Li, M., L. Zhong, W. C. Boicourt, S. Zhang, and D.-L. Zhang (2006): "Hurricane-induced storm 

surges, currents and destratification in a semi-enclosed bay". Geophys. Res. Lett., 33(2), 

L02604. 

Liau, J.-M., A. Roland, T.-W. Hsu, S.-H. Ou, and Y.-T. Li (2011): "Wave refraction-diffraction 

effect in the wind wave model WWM". Coastal Engineering, 58(5), 429-443. 

Liu, W.-C., W.-B. Chen, J.-T. Kuo, and C. Wu (2008): "Numerical determination of residence time 

and age in a partially mixed estuary using three-dimensional hydrodynamic model". 

Continental Shelf Research, 28(8), 1068-1088. 

Longuet-Higgins, M. S., and R. W. Stewart (1962): "Radiation stress and mass transport in gravity 

waves, with application to "surfbeats'"'. Journal of Fluid Mechanics, 13(04), 481-504. 

Longuet-Higgins, M. S., and R. W. Stewart (1964): "Radiation stresses in water waves; a physical 

discussion, with applications". Deep Sea Research and Oceanographic Abstracts, 11(4), 

529-562. 



287 

Luettich, R. A., J. C. Muccino, and M.G. G. Foreman (2002): "Considerations in the Calculation of 

Vertical Velocity in Three-Dimensional Circulation Models". Journal of Atmospheric and 

Oceanic Technology, 19( 12), 2063-2076. 

Madsen, O.S. (1994): "Spectral wave-current bottom boundary layer flows". In: Coastal 

Engineering 1994. Proceedings ofthe 24th International Conference on Coastal 

Engineering Research Council, Kobe, Japan, pp. 384-398. 

Mastenbroek, C., G. Burgers, and P. Janssen (1993): "The dynamical coupling of a wave model and 

a storm surge model through the atmospheric boundary layer". J. Phys. Oceanogr. 23, 

1856-1867. 

Mathisen, P. P., and 0. S. Madsen (1996): "Waves and currents over a fixed rippled bed 2. Bottom 

and apparent roughness experienced by currents in the presence of waves". J. Geophys. 

Res., 101(C7), 16543-16550. 

Mathisen, P. P., and 0. S. Madsen (1999): "Waves and currents over a fixed rippled bed 3. Bottom 

and apparent roughness for spectral waves and currents". J. Geophys. Res., 104(C8), 

18447-18461. 

McWilliams, J. C., J. M. Restrepo, and E. M. Lane (2004). "An asymptotic theory for the interaction 

of waves and currents in coastal waters". Journal of Fluid Mechanics, 511, 135-178. 



McWilliams, J. C., andY. Uchiyama (2008): "The effects of surface Gravity Waves on Coastal 

Currents: Implementation, Phenomenological Exploration, and Realistic Simulation with 

ROSs". ONR report, 12 pp. 

Mellor, G.L., and T. Yamada, (1982): "Development of a turbulence closure model for geophysical 

fluid problems". Reviews in Geophysics, 20, 851-875. 

Mellor, G. (2003): "The Three-Dimensional Current and Surface Wave Equations". J. Phys. 

Oceanography, 33(9), 1978-1989. 

Mellor, G. (2005): "Some consequences of the three-dimensional current and surface wave 

equations". J. Phys. Oceanography, 35,2291-2298 

288 

Mellor, G. L. (2008): "The Depth-Dependent Current and Wave Interaction Equations: A Revision". 

Journal of Physical Oceanography, 38(11), 2587-2596. 

Mellor, G. (2011a): "Reply". Journal of Physical Oceanography, 41(10), 2013-2015. 

Mellor, G. (201lb): "Wave radiation stress". Ocean Dynamics, 61(5), 563-568. 

Mingxiao, X. (2011): "Establishment, validation and discussions of a three dimensional wave­

induced current model". Ocean Modelling, 38(3-4), 230-243. 

Morey, S. L., S. Baig, M.A. Bourassa, D. S. Dukhovskoy, and J. J. O'Brien (2006): "Remote forcing 

contribution to storm-induced sea level rise during Hurricane Dennis". Geophys. Res. Lett., 

33(19), Ll9603. 



Mukai, A., J. J. Westerink, R. Luettich, and D. Mark (2002): "East coast 2001: A tidal constituent 

database for the Western North Atlantic, Gulf of Mexico, and Caribbean Sea". Tech. Rep. 

ERDC/CHL TR-02-24, U.S. Army Corps of Engineers, 201 pp. 

National Hurricane Center, National Weather Service (2009). 

http://www .nhc.noaa.gov /aboutgloss.shtml 

Nicholson, J., I. Broker, J. A. Roelvink, D. Price, J. M. Tanguy, and L. Moreno (1997): 

289 

"Intercomparison of coastal area morphodynamic models". Coastal Engineering, 31 ( 1-4 ), 

97-123. 

NTHMP (2011): "NTHMP MMS Tsunami Inundation Model Validation Workshop". Galveston, 

April 2011. NOAA internal report (in press). 

Pawlowicz, R., B. Beardsley, and S. Lentz (2002): "Classical tidal harmonic analysis including error 

estimates in MA TLAB using T_TIDE". Computers Geosciences, 28, 929-937. 

Peregrine, D. H., and I. G. Jonsson (1983): "Interaction of waves and currents". US army corps of 

engineers miscellaneous reports, MR83-6. 

Phillips, 0. M. (1977): "The Dynamics ofthe Upper Ocean". Cambridge Univ. Press, New York, 

336 pp. 

Pond, S., and G.L. Pickard (1998): "Introductory Dynamical Oceanography". Butterworkth­

Heinmann, 349 pp. 



290 

Pore, N. A. (1960): "Chesapeake Bay hurricane surges". Chesapeake Science, I, 178-186. 

Pore, N. A. (1965): "Chesapeake Bay extratropical storm surges". Chesapeake Science, 6, 172-182. 

Powell, M.D., S. H. Houston, and T. A. Reinhold (1996): "Hurricane Andrew's landfall in South 

Florida Part {I}: Standardizing measurements for documentation of surface wind fields". 

Weather and Forecasting, 11, 304-328. 

Powell, M.D., S. H. Houston, L. Amat, and N. Morrisseau-Leroy (1998): "The HRD real-time 

hurricane wind analysis system". J. Wind Eng. Ind. Aerodyn., 77-78, 53-64 .. 

Powell, M. D. (2006): "Drag coefficient distribution and wind speed dependence in tropical 

cyclones". Final report to the NOAA Joint Hurricane Testbed (JHT) Program, 26 pp. 

Qi, J., C. Chen, R. Beardsley, W. Perrie, G. Cowles, and Z. Lai (2009): "An Unstructured-Grid 

Finite-Volume Surface Wave Model ({FVCOM-SWAVE}): Implementation, Validations 

and Applications". Ocean Modelling, 28, 153-166. 

Qin, Q. (2011): "Personal communication". Graduate student, Virginia Institute of Marine Science, 

Gloucester Pt., VA. 2011-2012. 

Reid, R. 0. (1990): "Water level changes". Handbook of Coastal and Ocean Engineering. Gulf 

Publishing, Houston, TX. 

Rego, J. L., and C. Li (20 I Ob ): "Nonlinear terms in storm surge predictions: Effect of tide and shelf 

geometry with case study from Hurricane Rita", J Geophys. Res., 115(C6), C06020. 



291 

Ris, R., L.H. Holthuijsen, J. M. Smith, N. Booij, and A.R. van Dongeren (2002): "The ONR test bed 

for Coastal and Oceanic Wave Models, 2Efh Int. Conf Coastal Eng., ASCE, Cardiff:380-

391. 

Rodi, W. ( 1984 ): "Turbulence models and their applications in hydraulics: a state of the art review". 

Delft, The Netherlands, International Association for Hydraulics Research .. 

Rodrigues, M., A. Oliveira, H. Queiroga, A.B. Fortunato, Y.-L. Zhang (2009): "Three-dimensional 

modeling of the lower trophic levels in the Ria de Aveiro (Portugal)". Ecological 

Modelling, 220(9-10),1274-1290. 

Roe, P. L. (1982): "Numerical modelling ofshockwaves and other discontinuities". In Numerical 

Methods in Aeronautical Fluid Dynamics, ed. P. L. Roe, pp. 21 1-43. London: Academic. 

Roland, A. (2009): "Development ofWWM II- Spectral wave modeling on unstructured meshes". 

PhD Thesis, Darmstadt University of Technology, Institute for Hydraulic Engineering and 

Water Resources Management, Darmstadt, Germany. 

Roland, A., A. Cucco, C. Ferrarin, T.-W. Hsu, J.-M. Liau, S.-H. Ou, G. Umgiesser, and U. Zanke 

(2009): "On the development and verification of a 2-D coupled wave-current model on 

unstructured meshes". Journal of Marine Systems, 78, Supplement(O), S244-S254. 

Roland, A., Y. Zhang, H. V. Wang, Y. Meng, Y.-C. Teng, V. Maderich, I. Brovchenko, M. Dutour, 

and U. Zanke (2012): "A fully coupled 3D wave-current interaction model on unstructured 

grids (submitted)". 



Safak, I., A. Sheremet, M.A. Allison, and T.-J. Hsu (2010): "Bottom turbulence on the muddy 

Atchafalaya Shelf, Louisiana". USA, J Geophys. Res., 115(C12), C12019. 

Sallenger, A. H., H. F. Stockdon, L. Fauver, M. Hansen, D. Thompson, C. W. Wright, and J. 

Lillycrop (2006): "Hurricane 2004: An overview of their characteristics and coastal 

change". Estuaries Coasts, 29, 880-888. 

Shapiro, R. (1970): "Smoothing, filtering, and boundary effects". Rev. Geophys., 8(2), 359-387. 

Shen, J ., and W. Gong (2009): "Influence of model domain size, wind directions and Ekman 

transport on storm surge development inside the Chesapeake Bay: A case study of 

extratropical cyclone Ernesto, 2006". Journal of Marine Systems, 75( 1-2), 198-215. 

Shen, J., W. Gong, and H. V. Wang (2006a): "Water level response to 1999 Hurricane Floyd in the 

Chesapeake Bay". Continental Shelf Research, 26( 19), 2484-2502. 

Shen, J., H. Wang, M. Sisson, and W. Gong (2006b), Storm tide simulation in the Chesapeake Bay 

using an unstructured grid model, Estuarine, Coastal and ShelfScience, 68(1-2), 1-16. 

Shen, T. (2009): "Development of a Storm Surge Model Using a High-Resolution Unstructured 

Grid". MS Thesis, Virginia Institute of Marine Science, College of William and Mary. 

Sheng, Y. P., and T. Liu (2011): "Three-dimensional simulation ofwave-induced circulation: 

Comparison of three radiation stress formulations". J Geophys. Res., 116(C5), C05021. 

292 



293 

Sheng, Y. P., V. Alymov, and V. A. Paramygin (2010): "Simulation of storm surge, wave, currents, 

and inundation in the Outer Banks and Chesapeake Bay during Hurricane Isabel in 2003: 

The importance ofwaves", J. Geophys. Res., 115(C4), C04008. 

Sheremet, A., and G.W. Stone (2003): "Observations of nearshore wave dissipation over muddy sea 

beds". J. Geophys. Res., 108(C11), 3357, doi:l0.1029/2003JC001885. 

Sheremet, A., A. J. Mehta, B. Liu, and G. W. Stone (2005): "Wave-sediment interaction on a muddy 

inner shelf during Hurricane Claudette". Estuarine, Coastal and Shelf Science, 63(1-2), 

225-233. 

Sherwood, C. R., J. R. Lacy, and G. Voulgaris (2006): "Shear velocity estimates on the inner shelf 

offGrays Harbor, Washington, USA". Continental Shelf Research, 26(17-18), 1995-2018. 

Shyu, J.-H., and 0. M. Phillips (1990): "The blockage of gravity and capillary waves by longer 

waves and currents". Journal of Fluid Mechanics, 217, 115-141. 

Smith, J.D. and S. R. McLean (1977a): "Spatially averaged flow over a wave surface". Journal of 

Geophysical Research, 82, 1735-46. 

Smith, J.D. and S. R. McLean (1977b): "Boundary layer adjustments to bottom topography and 

suspended sediment". In Bottom Turbulence, ed. J. C. J. Nihoul, pp. 123-51. New York: 

Elsevier. 

Smith, S.D. (1980): "Wind stress and heat flux over the ocean in gale force winds". Journal of 

Physical Oceanography, 10, 709-726. 



Soulsby, R. L., and B. L. S. A. Wainwright (1987): "The bottom boundary layer of shelf seas, in 

Physical Oceanography of Coastal and Shelf Seas". Oceanogr. Ser., vol. 35, edited by B. 

Johns, pp. 189-266, Elsevier, New York. 

Stewart, S. R. (2005): "Tropical Cyclone Report, Hurricane Ivan 2-24 September 2004". National 

Oceanic and Atmospheric Administration, National Hurricane Center, Tropical Prediction 

Center, Miami, Florida. 

Styles, R., and S. M. Glenn (2000): "Modeling stratified wave and current bottom boundary layers 

on the continental shelf'. J Geophys. Res., 105(C10), 24119-24139. 

SURA Test bed (2011), http://testbed.sura.org/. 

Taylor, J. R., and S. Sarkar (2008): "Stratification effects in a bottom Ekman layer". J Phys. 

Oceanography,38,2535-2555. 

Teng, Y. C., H.W. Wang, and Z. Wang (2012): "The development of an Unstructured Grid, three 

dimensional Integrated Model (SELFE-WQM) for the water quality and Plankton 

Dynamics in the Maryland Coastal Bay". In prep .. 

294 

Titov, V.V., and C. E. Synolakis (1995): "Modeling ofbreaking and non-breaking long-wave 

evolution and runup using VTCS-2". J. Waterway, Ports, Coastal and Ocean Engin. 121(6), 

308-316. 

http://testbed.sura.org/


295 

Toledo, Y., T.-W. Hsu, and A. Roland (2012): "Extended time dependent mild-slope and wave-

action equations for wave bottom and wave-current interactions". Proc. Roy. Soc. Lond.A, 

468, 184--205, doi:10.1098/rspa.2011.037. 

Tolman, H. L. (1992): "Effects ofNumerics on the Physics in a Third-Generation Wind-Wave 
• 

Model". Journal of Physical Oceanography, 22( I 0), 1095-1111. 

Tolman, H. L. ( 1999), User manual and system documentation of W A YEW ATCH-III version 1.18, 

OMB Tech. Note 167, Nat!. Cent. for Environ.Predict., Washington, D. C. 

Uchiyama, Y., J. C. McWilliams, and A. F. Shchepetkin (2010): "Wave--current interaction in an 

oceanic circulation model with a vortex-force formalism: Application to the surf zone". 

Ocean Modelling, 34(1-2), 16-35. 

UMass Dartmouth/WHO! group (2012): "Inter-model comparison experiments for 2005 and 2007 

extratropical storm events in Scituate, Massachusetts". Plan to be submitted to JGR. 

Umgiesser, G., D. M. Canu, A. Cucco, and C. Solidoro (2004): "A finite element model for the 

Venice Lagoon. Development, set up, calibration and validation". Journal of Marine 

Systems, 51(1-4), 123-145. 

Umlauf, L., and H. Burchard (2003): "A generic length-scale equation for geophysical turbulence 

models". Journal of Marine Research, 61, 235-265. 

Umlauf, L., and H. Burchard (2005): "Second-order turbulence closure models for geophysical 

boundary layers. A review of recent work". Continental Shelf Research, 25, 795-827. 



296 

United States Congress (2006): "A failure of initiative: final report of the select bipartisan committee 

to investigate the preparation for and response to Hurricane Katrina". Government Printing 

Office, Washington, DC. 

Vaile-Levinson, A., K.-C. Wong, and K. T. Bosley (2002): "Response ofthe lower Chesapeake Bay 

to forcing from Hurricane Floyd". Continental Shelf Research, 22(11-13), 1715-1729. 

Van Vledder, G.Ph. (2006). The WRT method for the computation of non-linear four-wave 

interactions in discrete spectral wave models. Coastal Engineering, 53, 223-242. 

The Wamdi Group (1988): "TheW AM model-A third generation ocean wave prediction model". J. 

Phys. Oceanography, 18, 1775- 1810. 

Wang, D. W., D. A. Mitchell, W. J. Teague, E. Jarosz, and M. S. Hulbert (2005): "Extreme waves 

under hurricane Ivan". Science, 309, 896. 

Wang, X. H. (2002): "Tide-induced sediment resuspension and the bottom boundary layer in an 

idealized estuary with a muddy bed". J. Phys. Oceanography., 32(11), 3113-3131. 

Warner, J. C., B. Armstrong, R. He, and J. B. Zambon (2010): "Development of a Coupled Ocean­

Atmosphere-Wave-Sediment Transport (COAWST) Modeling System". Ocean Modelling, 

35(3), 230-244. 

Warner, J. C., C. R. Sherwood, R. P. Signell, C. K. Harris, and H. G. Arango (2008): "Development 

of a three-dimensional, regional, coupled wave, current, and sediment-transport model". 

Computers & Geosciences, 34(10), 1284-1306. 



297 

Weisberg, R., and L. Zheng (2006): "Hurricane stonn surge simulations for Tampa Bay". Estuaries 

and Coasts, 29(6), 899-913. 

Weisberg, R. H., and L. Zheng (2008): "Hurricane stonn surge simulations comparing three­

dimensional with two-dimensional fonnulations based on an Ivan-like storm over the 

Tampa Bay". Florida region, J Geophys. Res., 113(C12), C12001. 

Westerink, J.J., R.A. Luettich, and J. Muccino (1994): "Modeling tides in the western North Atlantic 

using unstructured graded grids". Tel/us, 46A, 178-199. 

Wilcox, D.C. ( 1998): "Reassessment of scale detennining equation for advance turbulence models". 

AIAA Journal, 26, 1299-1310. 

Wolf, J. (2009): "Coastal flooding: impacts of coupled wave-surge-tide models". Nat. Hazards, 49, 

241-260. 

Wright, L. D., C. R. Sherwood, and R. W. Sternberg (1997): "Field measurements offairweather 

bottom boundary layer processes and sediment suspension on the Louisiana inner 

continental shelf'. Marine Geology, 140(3-4), 329-345. 

Xia, H., Z. Xia, and L. Zhu (2004): "Vertical variation in radiation stress and wave-induced current". 

Coastal Engineering, 51(4), 309-321. 

Xie, L., K. Wu, L. Pietrafesa, and C. Zhang (2001): "A numerical study ofwave-current interaction 

through surface and bottom stresses: Wind-driven circulation in the SouthAtlantic Bight 

under unifonn winds". J Geophys. Res., 106(C8), 16841-16855. 



Xie, L., H. Liu, and M. Peng (2008): "The effect of wave-current interactions on the storm surge 

and inundation in Charleston Harbor during Hurricane Hugo 1989". Ocean Modelling, 

20(3), 252-269. 

298 

Xu, H., K. Zhang, J. Shen, andY. Li (2010): "Storm surge simulation along the U.S. East and Gulf 

Coasts using a multi-scale numerical model approach". Ocean Dynamics, 60(6), 1597-1619. 

Xu, K., C. K. Harris, R. D. Hetland, and J. M. Kaihatu (2011): "Dispersal ofMississippi and 

Atchafalaya sediment on the Texas-Louisiana shelf: Model estimates for the year 1993". 

Continental Shelf Research, 31 (15), 1558-1575. 

Y anenko, N. N. { 1971 ), The method of fractional steps. Springer-Verlag. 

Zeng, X., M. Zhao, and R. E. Dickinson (1998): "lntercomparison of Bulk Aerodynamic Algorithms 

for the Computation of Sea Surface Fluxes Using TOGA COARE and TAO Data". Journal 

ofC/imate, 11{10), 2628-2644. 

Zhang, H., 0. S. Madsen, S. A. Sannasiraj, and E. Soon Chan (2004): "Hydrodynamic model with 

wave-current interaction in coastal regions". Estuarine, Coastal and ShelfScience, 61(2), 

317-324. 

Zhang, K., C. Xiao, and J. Shen (2008): "Comparison of the CEST and SLOSH Models for Storm 

Surge Flooding". Journal of Coastal Research, 489-499. 

Zhang, Y., and A.M. Baptista (2008a): "SELFE: A semi-implicit Eulerian-Lagrangian finite­

element model for cross-scale ocean circulation". Ocean Modelling, 21(3-4), 71-96. 



Zhang, Y., and A.M. Baptista (2008b): "An efficient and robust tsunami model on unstructured 

grids. Part 1: Inundation benchmarks". Pure Appl. Geophys. 165, 2229-2248. 

Zhang, Y., A.M. Baptista, and E. P. Myers (2004): "A cross-scale model for 3D baroclinic 

circulation in estuary-plume-shelf systems: I. Formulation and skill assessment". 

Continental Shelf Research, 24(18), 2187-2214. 

Zhang, Y. J., R. C. Witter, and G. R. Priest (2011): "Tsunami-tide interaction in 1964 Prince 

William Sound tsunami". Ocean Modelling, 40(3-4), 246-259. 

Zhong, L., and M. Li (2006): "Tidal energy fluxes and dissipation in the Chesapeake Bay". 

Continental Shelf Research, 26, 752-770. 

Zhong, L., M. Li, and D.-L. Zhang (2010): "How do uncertainties in hurricane model forecasts 

affect storm surge predictions in a semi-enclosed bay?". Estuarine, Coastal and Shelf 

Science, 90(2 ), 61-72. 

Zijlema, M. (2010): "Computation ofwind-wave spectra in coastal waters with SWAN on 

unstructured grids". Coastal Engineering, 57(3), 267-277. 

299 



300 

VITA 

Yi-Cheng Teng 

Born in Taipei, Republic of China (Taiwan), on the 20th ofDecember 1981. Received 

B.S. in Civil Engineering from National Taiwan Ocean University in 2004. Earned M.S. in 

Hydrological and Oceanic Sciences from National Central University in 2006. Entered Ph.D. 

program ofthe College of William and Mary, School of Marine Science in Fall of2008. 


	Developing an Unstructured Grid, Coupled Storm Surge, Wind Wave and Inundation Model for Super-regional Applications
	Recommended Citation

	tmp.1539716419.pdf.1jdor

