7,087 research outputs found

    Dense suspension of solid particles as a new heat transfer fluid for concentrated solar thermal plants: on-sun proof of concept

    Get PDF
    This paper demonstrates the capacity of dense suspensions of solid particles to transfer concentrated solar power from a tubular receiver to an energy conversion process by acting as a heat transfer fluid. Contrary to a circulating fluidized bed, the dense suspension of particles’ flows operates at low gas velocity and large solid fraction. A single-tube solar receiver was tested with 64 µm mean diameter silicon carbide particles for solar flux densities in the range 200–250 kW/m2, resulting in a solid particle temperature increase ranging between 50 °C and 150 °C. The mean wall-to-suspension heat transfer coefficient was calculated from experimental data. It is very sensitive to the particle volume fraction of the suspension, which was varied from 26 to 35%, and to the mean particle velocity. Heat transfer coefficients ranging from 140 W/m2 K to 500 W/m2 K have been obtained, thus corresponding to a 400 W/m2 K mean value for standard operating conditions (high solid fraction) at low temperature. A higher heat transfer coefficient may be expected at high temperatures because the wall-to-suspension heat transfer coefficient increases drastically with temperature. The suspension has a heat capacity similar to a liquid heat transfer fluid, with no temperature limitation but the working temperature limit of the receiver tube. Suspension temperatures of up to 750 °C are expected for metallic tubes, thus opening new opportunities for high efficiency thermodynamic cycles such as supercritical steam and supercritical carbon dioxide

    Publications of the JPL Solar Thermal Power Systems Project, 1976 to 1983

    Get PDF
    The bibliographical listings in this publication are documentation products associated with the solar thermal power system project carried out by the Jet Propulsion Laboratory from 1976 to 1983. Documents listed are categorized as conference and journal papers, JPL external reports, JPL internal reports, or contractor reports. Alphabetical listings by title were used in the bibliography itself to facilitate location of the document by subject. Two indexes are included for ease of reference: one, an author index; the other, a topical index

    Publications of the JPL Solar Thermal Power Systems Project 1976 Through 1985

    Get PDF
    Bibliographical listings are documentation products associated with the Solar Thermal Power Systems Project carried out by the Jet Propulsion Laboratory from 1976 to 1986. Documents are categorized as conference and journal papers, JPL external reports, JPL internal reports, or contractor reports (i.e., deliverable documents produced under contract to JPL). Alphabetical listings by titles are used in the bibliography itself to facilitate location of the document by subject. Two indexes are included for ease of reference; an author index; and a topical index

    A New Methodology for Building-Up a Robust Model for Heliostat Field Flux Characterization

    Get PDF
    The heliostat field of solar central receiver systems (SCRS) is formed by hundreds, even thousands, of working heliostats. Their adequate configuration and control define a currently active research line. For instance, automatic aiming methodologies of existing heliostat fields are being widely studied. In general, control techniques require a model of the system to be controlled in order to obtain an estimation of its states. However, this kind of information may not be available or may be hard to obtain for every plant to be studied. In this work, an innovative methodology for data-based analytical heliostat field characterization is proposed and described. It formalizes the way in which the behavior of a whole field can be derived from the study of its more descriptive parts. By successfully applying this procedure, the instantaneous behavior of a field could be expressed by a reduced set of expressions that can be seen as a field descriptor. It is not intended to replace real experimentation but to enhance researchers’ autonomy to build their own reliable and portable synthetic datasets at preliminary stages of their work. The methodology proposed in this paper is successfully applied to a virtual field. Only 30 heliostats out of 541 were studied to characterize the whole field. For the validation set, the average difference in power between the flux maps directly fitted from the measured information and the estimated ones is only of 0.67% (just 0.10946 kW/m2 of root-mean-square error, on average, between them). According to these results, a consistent field descriptor can be built by applying the proposed methodology, which is hence ready for use

    Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants

    Get PDF
    The aim of this study is to perform a review of the state-of-the-art of the reactors available in the literature, which are used for solid-gas reactions or thermal decomposition processes around 1000 ºC that could be further implemented for thermochemical energy storage in CSP (concentrated solar power) plants, specifically for SPT (solar power tower) technology. Both direct and indirect systems can be implemented, with direct and closed systems being the most studied ones. Among direct and closed systems, the most used configuration is the stacked bed reactor, with the fixed bed reactor being the most frequent option. Out of all of the reactors studied, almost 70% are used for solid-gas chemical reactions. Few data are available regarding solar efficiency in most of the processes, and the available information indicates relatively low values. Chemical reaction efficiencies show better values, especially in the case of a fluidized bed reactor for solid-gas chemical reactions, and fixed bed and rotary reactors for thermal decompositions.The work is partially funded by the Spanish government (ENE2015-64117-C5-1-R (MINECO/FEDER) and ENE2015-64117-C5-2-R (MINECO/FEDER)). The authors would like to thank the Catalan Government for the quality accreditation given to their research groups GREA (2017 SGR 1537) and DIOPMA (2017 SGR 118). GREA and DIOPMA are certified agents TECNIO in the category of technology developers from the Government of Catalonia. Dr. Aran Solé would like to thank Ministerio de Economía y Competitividad de España for Grant Juan de la Cierva, FJCI-2015-25741

    Solar Thermal Plants Integration in Smart Grids

    Get PDF
    Solar energy penetration has been increasingly growing in recent years. Since solar energy is intermittent its integration in existing grids is difficult. This paper deals with the optimal integration of solar power plants in grids. The paper proposes a modification of energy hubs which allows to solve the optimization problem with a mixed integer programming algorithm in a distributed way. An introductory simulation study case is givenMinisterio de Educación DPI2008-05818Junta de Andalucía P07-TEP-02720Comisión Europea HD-MP

    Solar thermal technology evaluation, fiscal year 1982. Volume 1: Executive summary

    Get PDF
    Three primary solar concepts the central receiver, parabolic dish, and parabolic trough are investigated. To a lesser extent, the hemispherical bowl and salt-gradient solar pond are also being studied. Each technology is described

    Influence of the geographical parameters on the performance of hybrid solar gas turbine

    Get PDF
    This study aims to investigate the influence of the geographical and climate parameters on the performance of the hybrid solar gas turbine with a pressurized air receiver. A number of sites located in South America (Chile, Bolivia, and Peru) and North Africa (Algeria and Libya) are considered. The geometric design parameters of the solar receiver and the tower are calculated using an in-house code. The layout and the optical performance of the heliostat field are carried out using SolarPILOT software. The simulation of the complete hybrid solar gas turbine is carried out using TRNSYS software. A 50 MWe hybrid solar gas turbine is chosen in this study. Results show that a hybrid solar gas turbine installed in North Africa performs better than that installed in South America. This is mainly due to the optical performance of the heliostat field, which are better in North Africa are than in South America. The highest annual optical efficiency of a solar field is observed at Bechar (Algeria) 56.8% while the lowest annual efficiency is observed at Antofagasta (Chile) 48.1%. The solar-to-electric efficiency at Atacama Desert is lower than in the Sahara Desert. Indeed, in Atacama region, the solar-to-electric efficiency varies from 17% at Antofagasta to about 18% in Arequipa while it is above 19% at Sabha and Bechar

    Thermo-economic and sensitivity analysis of a central tower hybrid Brayton solar power plant

    Get PDF
    [EN]A hybrid central tower thermo-solar plant working with a gas turbine is simulated by means of an in-house developed model and software. The model considers the integration of all plant subsystems. The calculation of the heliostat solar field efficiency includes the main losses factors as blocking, shadowing, attenuation, interception, and cosine effect. The simulation considers a Brayton cycle for the power unit with irreversibilities in the compressor and turbine, and pressure drops in the heat absorption and extraction processes. A combustion chamber burning natural gas ensures an approximately constant power output. The model is flexible and precise. At the same time it is fast enough to perform sensitivity studies on the efficiency of any subsystem and the overall plant. Thus, it allows for performing a thermo-economic analysis of the plant checking the influence of the main plant design parameters. The focal objective is to analyze the importance on the levelized cost of electricity (LCoE) of the key plant design parameters. The direct influence of parameters from the heliostat field and receiver (as tower height, distance to the first row of heliostats, heliostats size, receiver size and heat losses, etc.) on final LCoE is surveyed. Similarly, parameters from the turbine as pressure ratio, turbine inlet temperature, influence of recuperation and others, are also analyzed. The dimensions of the plant are taken from SOLUGAS prototype near Seville, Spain, although another location with quite different solar conditions in Spain is also considered. LCoE values predicted are about 158 USD/MWh. The analysis concludes that among several parameters surveyed, two of them are key in LCoE predicted values: turbine inlet temperature and solar receiver aperture size.Junta de Castilla y León of Spain (project SA017P17
    corecore