DOE/JPL-1060-67 (DE84008501)

NASA-CR-173464-NAS 1-26:173464 1984 0013943

PUBLICATIONS OF THE JPL SOLAR THERMAL SYSTEMS PROJECT 1976 TO 1983

Compiled by V. Gray C. Marsh P. Panda

January 1, 1984

Work Performed Under Contract No. AC04-76DR00789

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

LIBRARY COPY

JUH 2 8 1984

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

Technical Information Center Office of Scientific and Technical Information United States Department of Energy

Energy

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

Price: Printed Copy A04 Microfiche A01

Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issues of the following publications, which are generally available in most libraries: *Energy Research Abstracts* (*ERA*); Government Reports Announcements and Index (*GRA* and I); Scientific and Technical Abstract Reports (STAR); and publication NTIS-PR-360 available from NTIS at the above address.

ENTER:D 84N22011

DISPLAY 84N22011/2

84N22011** ISSUE 12 PAGE 1842 CATEGORY 44 RPT#: NASA-CR-173464 D0E/JPL-1060/67 JPL-5105-131 JPL-PUB-84-1 NAS 1.2C:173464 84/01/01 63 PAGES UNCLASSIFIED DOCUMENT

UTIL: Publications of the JPL Solar Thermal Power Systems Project, 1976 to 1983 HUTH: A/GRAY, V.; B/MARSH, C.; C/PANDA, P. PAT: A/comp.; B/comp.; C/comp. CORP: Jet Propulsion Lab., California Inst. of Tech., Pasadena. AVAIL.NTIS SAP: HC A04/MF A01

Sponsored in part by DOE

- MINS: / CUNTRACTS/ DUCUMENTS/ ENERGY TECHNOLOGY/ JET PROPULSION/ REPORTS ABA: E.A.K.
- HBS: The bibliographical listings in this publication are documentation products associated with the solar thermal power system project carried out by the Jet Propulsion Laboratory from 1976 to 1983. Documents listed are categorized as conference and journal papers, JPL external reports, JPL internal reports, or contractor reports. Alphabetical listings by title were used in the bibliography itself to facilitate location of the document by subject. Two indexes are included for ease of reference: one, an author index; the other, a topical index.

Publications of the JPL Solar Thermal Power Systems Project 1976 to 1983

Compiled by: V. Gray C. Marsh P. Panda

January 1, 1984

Prepared for

U.S. Department of Energy Through an Agreement with National Aeronautics and Space Administration

by

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

JPL Publication 84-1

N84-22011#

ABSTRACT

The bibliographical listings in this publication are documentation products associated with the Solar Thermal Power Systems Project carried out by the Jet Propulsion Laboratory from 1976 to 1983.

Documents listed herein are categorized as conference and journal papers, JPL external reports, JPL internal reports, or contractor reports (i.e., deliverable documents produced under contract to JPL). Alphabetical listings by title were used in the bibliography itself to facilitate location of the document by subject. Two indexes are included for ease of reference: one, an author index; the other, a topical index.

ACKNOWLEDGMENT

The Solar Thermal Power Systems Project Office and Leuann Burrus of the Solar Data Library provided valuable assistance in locating documents for this bibliography. Appreciation is also expressed to Leonard Jaffe who prepared the Topical Index and to Justine Weiher and Arlene Rush of the JPL Document Review Group who helped prepare the Contractor Report Section.

This report was compiled by the Jet Propulsion Laboratory, California Institute of Technology, for the U.S. Department of Energy Solar Thermal Division Technical Program Integrator at Sandia National Laboratories-Livermore through an agreement with the National Aeronautics and Space Administration (NASA Task RE-152, Amendment 342, Change 4; SNL(L)/DOE/NASA Interagency Agreement No. 92-9458).

CONTENTS

I.	INTRODUCTION	1-1
II.	CONFERENCE AND JOURNAL PAPERS	2-1
III.	EXTERNAL DOCUMENTS	3-1
IV.	INTERNAL DOCUMENTS	4-1
v.	CONTRACTOR REPORTS	5-1
VI.	AUTHOR INDEX	6-1
VII.	TOPICAL INDEX	7-1

SECTION I

INTRODUCTION

In 1976 the Jet Propulsion Laboratory (JPL) was given responsibility for solar thermal parabolic dish technology development by the Energy Research and Development Administration (predecessor agency to the current U.S. Department of Energy). Initial comparative assessment studies conducted by the JPL Solar Thermal Power Systems (TPS) Project showed that, in addition to central receivers, distributed receivers, such as dishes having power conversion units at their focal points, had potential for cost-effective production of electricity.

This Bibliography of JPL-related efforts in solar thermal parabolic dish/dish-electric technology development is a comprehensive list of reports published by JPL or its contractors during the time period from 1976 through 1983. It was assembled to help facilitate an orderly transition of work on this technology from JPL to Sandia National Laboratories-Albuquerque (SNLA) during 1984. Compilation of the listings was made through reference to records kept by the TPS Project and the JPL library and through a survey of documents used as sources for TPS work. Material was also contributed by individuals who had been involved in the TPS Project during the eight-year period.

An objective in assembling the Bibliography was to include those publications deemed most central to the work of the project and those for which complete reference background is available. Not included are status reports which were prepared periodically for specific events and would be less useful from a technological perspective. The Bibliography, which covers the full range of the TPS effort from the standpoints of time, subject matter, and participants, is divided into six parts:

- (1) Conference and Journal Papers
- (2) External Reports
- (3) Internal Reports
- (4) Contractor Reports
- (5) Author Index
- (6) Topical Index

Papers in the first four areas are arranged alphabetically by title to aid in identification of subject material. The Topical Index provides more specific guidance for locating a particular area in which the TPS Project was involved. The majority of the publications are included in a library of JPL documents managed by the DOE Solar Thermal Division's Technical Program Integrator's Office at Sandia National Laboratories in Livermore, California. Copies of external publications listed can be obtained from the National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield, Virginia 22161.

An update of this Bibliography, which will include TPS reports and papers published during 1984, is planned for issuance before the end of the calendar year.

SECTION II

CONFERENCE AND JOURNAL PAPERS

- Advanced Development Fuels, K. Ramohalli, Parabolic Dish Solar Thermal Annual Program Review, Pasadena, California, January 1981.
- Advanced Receiver Technology, A.A. Kudirka, Fourth DOE Advanced Solar Thermal Technology Semiannual Review, Phoenix, Arizona, December 1979.
- Advanced Solar Thermal Receiver Technology, A.A. Kudirka and L.P. Leibowitz, American Institute of Aeronautics and Astronautics Aerospace Sciences Meeting, Pasadena, California, January 1980.
- <u>Advanced Solar Thermal Technology for Process Applications</u>, L. Leibowitz,
 E. Hanseth, and T. Liu, American Institute of Chemical Engineers Winter Meeting, Orlando, Florida, March 1982.
- Advanced Solar Thermal Technology: Potential and Progress, L.P. Leibowitz and E. Hanseth, 14th Intersociety Energy Conversion Engineering Conference, Boston, Massachusetts, August 1979.
- Aging Characteristics of Glass Mirrors for Solar Thermal Power Applications, F. Bouquet, American Physical Society, Youngstown, Ohio, May 1980; "Journal of Non-Crystalline Solids," Vol. 40, 1980; Fifth University Conference on Glass Science, Rensselear Polytechnic Institute, Troy, New York, August 1979.
- A Graphical Method for the Prediction of Annual Performance of Solar <u>Collectors</u>, M.K. Selcuk, J.M. Bowyer, and S.A. Bluhm, International Solar <u>Energy Society Solar World Congress</u>, Perth, Western Australia, August 1983.
- A Nomogram for Determining Efficiency and Useful Heat of a Parabolic Dish, M.K. Selcuk, International Solar Energy Society Solar World Forum, Brighton, England, August 1981.
- Application of a Reversible Chemical Reaction System to Solar Thermal Power Plants, E. Hanseth, Y. Won, and L. Leibowitz, Second American Society of Mechanical Engineers Solar Energy Conference, San Francisco, California, August 1980.
- A Simulation Exercise of a Cavity-Type Solar Receiver Using the JPL-HEAP <u>Program</u>, F. Lansing, 14th Intersociety Energy Conversion Engineering Conference, Boston, Massachusetts, August 1979.
- Assessment of Ceramic Technology for Solar Thermal Energy Systems, M. Adams, American Ceramics Society, Cocoa Beach, Florida, March 1982.
- Barriers and Incentives to the Innovation of Small Solar Thermal Electric
 Power Systems: A Commercialization Perspective for R&D Management,
 R. Barbieri and T. Kuehn, International Solar Energy Society American
 Section Annual Meeting, Denver, Colorado, August 1978.

- Benefits of Absorber Coatings for Solar Thermal Receivers, M.A. Adams, Thermal Power Systems Workshop on Elective Absorber Coatings, Golden, Colorado, December 1977.
- Ceramic Technology for Solar Thermal Receivers, A.A. Kudirka and R.H. Smoak, American Society of Mechanical Engineers Winter Annual Meeting, Washington D.C., November 1981; "Journal of Solar Energy Engineering," Vol. 105, February 1983.
- Characterization of Point-Focusing Test Bed Concentrators at JPL, D. Starkey, Parabolic Dish Solar Thermal Power Annual Program Review, Pasadena, California, January 1981.
- Comparative Evaluation of Distributed-Collector Solar Thermal Electric Power <u>Plants</u>, T. Fujita, N. Gabalawi, R. Caputo, and G. Herrera, 13th Intersociety Energy Conversion Engineering Conference, San Diego, California, August 1978.
- Comparative Study of Solar Optics for Paraboloidal Concentrators, L. Wen, L. Huang, P. Poon, and W. Carley, American Society of Mechanical Engineers Winter Annual Meeting, New York, New York, December 1979; "Journal of Solar Energy Engineering," Vol. 102, November 1980.
- Comparison of Advanced Engines for Parabolic Dish Solar Thermal Power Plants, T. Fujita, J. Bowyer, and B. Gajanana, 15th Intersociety Energy Conversion Engineering Conference, Seattle, Washington, August 1980.
- Comparison of Advanced Thermal and Electrical Storage for Parabolic Dish Solar Thermal Power Systems, T. Fujita, G.C. Birur, J.M. Schredder, J.M. Bowyer, and H.I. Awaya, 17th Intersociety Energy Conversion Engineering Conference, Los Angeles, California, August 1982.
- Comparison of Electrochemical and Thermal Storage for Hybrid Parabolic Dish Solar Power Plants, H.L. Steele and L. Wen, American Society of Mechanical Engineers Winter Annual Meeting, Washington D.C., November 1981.
- Comparison of Parabolic Dish Systems with Other Solar Technologies, V.C. Truscello, International Solar Energy Society American Section, Philadelphia, Pennsylvania, May 1981.
- <u>Configuration Selection Study for Isolated Loads Using Parabolic Dish Modules</u>,
 W. Revere, J. Bowyer, T. Fujita, and H.I. Awaya, Second Annual American Institute of Aeronautics and Astronautics Terrestrial Energy Systems Conference, Colorado Springs, Colorado, December 1981.
- Cost Estimating Brayton and Stirling Engines, H.R. Fortgang, First DOE Distributed Receiver Semiannual Review, Lubbock, Texas, January 1980.
- Cost Goals, J. Hoag, Parabolic Dish Solar Thermal Power Annual Program Review, Pasadena, California, January 1981.
- Costing the Omnium-G System 7500, H.R. Fortgang, First DOE Distributed Receiver Semiannual Review, Lubbock, Texas, January 1980.

- Dish Brayton Solar Thermal Power Systems, T. Fujita, Fourth DOE Advanced Solar Thermal Technology Semiannual Review, Phoenix, Arizona, December 1979.
- Dish Concentrators for Solar Thermal Energy, L.D. Jaffe, "Journal of Energy," Vol. 7, No. 4, July-August 1983.
- Dish Concentrators for Solar Thermal Energy: Status and Technology <u>Development</u>, L.D. Jaffe, American Institute of Aeronautics and Astronautics, Second Terrestrial Energy Systems Conference, Colorado Springs, Colorado, December 1981.
- Dish-Mounted Latent Heat Buffer Storage, R. Manvi, U.S. Department of Energy STOR Annual Meeting, Washington, D.C., October 1980.
- Dish-Stirling System Development, J. Stearns, Fourth Semiannual Conference -Advanced Solar Thermal Program, Phoenix, Arizona, December 1979.
- Dispersed Solar Electric Power: A Small Power System Program, R.R. Ferber, A.T. Marriott, and V.C. Truscello, International Solar Energy Society, Denver, Colorado, August 1978.
- Dispersed Solar Thermal Generation Employing Parabolic Dish-Electric Transport with Field Modulated Generator Systems, R. Ramakumar and K. Bahrami, International Solar Energy Society American Section Solar Jubilee, Phoenix, Arizona, June 1980; "Solar Energy," Vol. 27, 1981.
- Dynamics and Control of Stirling Engines in a 15-kWe Solar Electric Generation <u>Concept</u>, R.L. Das and K.A. Bahrami, 14th Intersociety Energy Conversion Engineering Conference, Boston, Massachusetts, August 1979; American Chemical Society, 1979.
- Economic Aspects of Solar Thermal Electric Power Systems, S.A. Bluhm, R.R. Ferber, and L.G. Mayo, International Solar Energy Society American Section Annual Meeting, Atlanta, Georgia, June 1979.
- Economic Goals for Solar Thermal Electric Applications, C. Davis and R. Gurfield, International Solar Energy Society American Section Annual Meeting, Denver, Colorado, August 1978.
- Economic Goals for Solar Thermal Electric R&D, R. Gurfield and C. Davis, Commercialization of Solar and Conservation Technology Meeting, Coral Gables, Florida, December 1978.
- Effects of Ownership Alternatives on Life Cycle Costs of Small Power Systems, R.B. Davis, Association of Energy Engineers, San Francisco, California, March 1979.
- Effects of Pointing Errors on Receiver Performance for Parabolic Dish Solar Concentrators, R.O. Hughes, 13th Intersociety Energy Conversion Engineering Conference, San Diego, California, August 1978.
- Effects of Surface Optical Characteristics on Point-Focusing Solar Collectors, L. Wen and R. Caputo, Selective Absorber Coating Workshop, Golden, Colorado, December 1977.

- Effects of Thermal Buffer Storage Performance on Parabolic Dish Solar Power Systems, Y.C. Wu, Third International Conference on Alternate Energy Sources, Miami Beach, Florida, December 1980; "Alternative Energy Sources III," Vol. 3, Solar Energy 3, 1983.
- Effects of Tracking Errors on the Performance of Point Focusing Solar Collectors, R.O. Hughes, "Solar Energy," Vol. 24, July 1979.
- Efficiency Degradation Due to Tracking Errors for Point-Focusing Solar <u>Collectors</u>, R.O. Hughes, American Society of Mechanical Engineers Winter Annual Meeting, San Francisco, California, December 1978.
- Environmental Responses of Solar Reflective Surfaces, F.L. Bouquet, Paper 428-10, 27th Annual SPIE Conference, San Diego, California, August 1983.
- Evaluation of Solar Reflective Surfaces for Dish Concentrators, F. Bouquet, 17th Intersociety Energy Conversion Engineering Conference, Los Angeles, California, August 1982.
- Evaluation of Solar Thermal Power Plants Using Economics and Performance Simulation, N. El Gabalawi, International Symposium - Workshop on Solar Energy, Cairo, Egypt, June 1978.
- Experimental Simulation of Latent Heat Thermal Energy Storage and Heat Pipe
 Thermal Transport for Dish Concentrator Solar Receivers, R. Narayanan,
 W.F. Zimmerman, and P.T.Y. Poon, American Society of Mechanical Engineers
 Winter Annual Meeting, Washington, D.C., November 1981.
- General Sensitivity Analysis of Solar Thermal Electric Power Systems,
 F.L. Lansing, 14th Intersociety Energy Conversion Engineering Conference, Boston, Massachusetts, August 1979.
- Heat and Electricity from the Sun Using Parabolic Dish Collector Systems,
 V.C. Truscello and A. N. Williams, Solar Energy Industries Association Solar
 Power Generation Conference, San Jose, California, August 1979.
- Heat Engine Development for Solar Thermal Power Systems, H. Pham, American Society of Mechanical Engineers/DOE Solar Simulation and Operation Results Conference, Reno, Nevada, May 1981.
- Heat Engine Requirements for Advanced Solar Thermal Power Systems, L.D. Jaffe and H.Q. Pham, January 1981.
- Heat Transfer from Combustion Gases to a Single Row of Closely-Spaced Tubes in a Swirl Crossflow Stirling Engine Heater, C.P. Bankston and L. Back, American Society of Mechanical Engineers, "Journal of Heat Transfer," Vol. 104, February 1982.
- High Performance Solar Stirling System, J. Stearns and R. Haglund, American Institute of Aeronautics and Astronautics Second Terrestrial Energy Systems Conference, Colorado Springs, Colorado, December 1981.

- High Temperature Heat Storage in Solids, R.H Turner, International Solar Energy Society, American Section Annual Meeting, Denver, Colorado, August 1978.
- High Temperature Latent Heat Thermal Buffer Storage, D. Young, Annual Thermal Energy Storage Program Review, Tysons Corner, Virginia, December 1979.
- High Temperature Solar Thermal Technology, L.P. Leibowitz and M. Peelgren, American Society of Mechanical Engineers 1980 Winter Annual Meeting, Chicago, Illinois, November 1980.
- Impact of the Federal Energy Tax Credit on the Solar Thermal Industry and Government Revenue, H. Habib-agahi, Fourth Parabolic Dish Solar Thermal Power Program Review, Pasadena, California, December 1982.
- Industrial Application Experiment Series, S.A. Bluhm, First DOE Distributed Receiver Semiannual Review, Lubbock, Texas, January 1980; Parabolic Dish Solar Thermal Power Annual Program Review, Pasadena, California, January 1981.
- Initial Test Bed Concentrator Characterization, D.J. Starkey, First DOE Distributed Receiver Semiannual Review, Lubbock, Texas, January 1980.
- JPL Small Power Systems Applications Project, R.R. Ferber, A.T. Marriott, and V.C. Truscello, 13th Intersociety Energy Conversion Engineering Conference, San Diego, California, August 1978.
- JPL's Parabolic Dish Test Site, T. Hagen, First Distributed Receiver Semiannual Review, Lubbock, Texas, January 1980.
- Low-Cost Thermal Transport Piping Networks for Solar Industrial Process Heat <u>Applications</u>, J. Biddle, W. Revere, and T. Fujita, Solar Industrial Process Heat Conference, Houston, Texas, December 1980.
- Market Assessment Overview, H. Habib-agahi, Parabolic Dish Solar Thermal Power Annual Program Review, Pasadena, California, January 1981.
- Measurements of Coefficients of Thermal Expansion for High Temperature Polymers, F. Bouquet, W. Edmiston, and W. Rose, American Physical Society Meeting, Youngstown, Ohio, May 1979.
- Mixtures of Alkali or Alkaline Earth Metals and Their Halides for High <u>Temperature Thermal Energy Storage in Solar Thermal Systems</u>, K. Chen and R. Manvi, American Society of Mechanical Engineers Winter Annual Meeting, Chicago, Illinois, November 1980.
- Omnium-G Concentrator Test Results, J. D. Patzold, First DOE Distributed Receiver Semiannual Review, Lubbock, Texas, January 1980.
- Optical Analysis of Cassegrainian Concentrator Systems, P. Poon, G. Schrenk, S. Higgins, and A. Bass, International Solar Energy Society American Section Annual Meeting, Atlanta, Georgia, June 1979.

- Optical Performance of a Fresnel-Type Concentrator with Truncated Paraboloidal Facets, P. Poon and S. Higgins, Second International Helioscience Institute Conference on Alternate Energy, Palm Springs, California, April 1978.
- Optical Performance of Several Point-Focusing Solar Concentrators, P. Poon and S. Higgins, American Institute of Chemical Engineers, 86th National Meeting, Houston, Texas, April 1979.
- Optimal Control of Sun Tracking Solar Concentrators, R.O. Hughes, International Solar Energy Society American Section Annual Meeting, Denver, Colorado, August 1978.
- Parabolic Dish Collectors: A Solar Option, V.C. Truscello, "Sunworld," Vol. 5, No. 3, 1981.
- Parabolic Dish Solar Collectors for Industrial Process Heat Applications, L.P. Leibowitz and T.M. Liu, DOE Solar Industrial Process Heat Conference, Houston, Texas, December 1980.
- Parabolic Dish Systems at Work: Applying the Concepts, A.T. Marriott, "Sunworld," Vol. 5, No. 3, 1981.
- Parabolic Dish Technology, V.C. Truscello and A.N. Williams, National Conference on Renewable Energy Technologies, Honolulu, Hawaii, December 1980.
- Parabolic Dish System Development, A.T. Marriott, P.I. Moynihan, and L.P. Leibowitz, Solar Thermal Energy Systems Research and Advanced Development Program Review Meeting, April 1981.
- Parabolic Dish Technology for Industrial Process Heat Applications, J.W. Lucas, Solar Industrial Heat Conference, Oakland, California, November 1979.
- Parabolic Dish Test Site, D.L. Ross, Fourth DOE Semiannual Advanced Solar Thermal Techology Program Conference, Phoenix, Arizona, December 1979.
- Performance and Costs of Parabolic Dish Solar Thermal Systems for Selected <u>Process Applications</u>, J. Biddle, T. Fujita, T. Kuo, and W. Revere, American Institute of Chemical Engineers Winter Annual Meeting, Orlando, Florida, March 1982.
- Performance and Economic Risk Evaluation of Dispersed Solar Thermal Power Systems by Monte Carlo Simulation, R. Manvi and T. Fujita, 13th Intersociety Energy Conversion Engineering Conference, San Diego, California, August 1978.
- Performance Characteristics of Point-Focusing Distributed Receiver Solar Brayton Systems, N. El Gabalawi, American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, Pasadena, California, January 1980.
- Pipeline from Ocean to Desert to Provide Cooling for Solar Power Plant <u>Complex</u>, R.H. Turner, International Solar Energy Society American Section Annual Meeting, Denver, Colorado, August 1978.

- Point Focusing Dishes, J.W. Lucas, DOE Advanced Technology Semiannual Review, Long Beach, California, June 1979.
- Potential Benefits from a Successful Solar Thermal Program, K. Terasawa and E.S. Davis, Parabolic Dish Solar Thermal Power Annual Program Review, Atlanta, Georgia, December 1981.
- Power Converters for Parabolic Dishes, V.C. Truscello and A.N. Williams, International Solar Energy Society Annual Meeting, Philadelphia, Pennsylvania, May 1981.
- Power from Parabolic Dishes: Progress and Prospects, V.C. Truscello and A.N. Williams, November 1980.
- Power Processing and Control Requirements of Dispersed Solar Thermal Electric Generation Systems, R.L. Das, 15th International Energy Conversion Engineering Conference, Seattle, Washington, August 1980.
- Power Processing, Power Management, and Utility Interface for Advanced Dispersed Solar Thermal Systems, K. Bahrami, S. Krauthamer, and R. Das, Advanced Solar Thermal Power Systems Conference, Denver, Colorado, November 1978.
- Preliminary Results from a Test Array of 3X CPC Collectors in a School Heating
 <u>Application</u>, C. Stein, M. Collares-Perevia, J. O'Gallagher, A. Rahe,
 H. Simmons, L. Wharton, R. Winston, and W. Zitek, International Solar Energy
 Society American Section Annual Meeting, Denver, Colorado, October 1977.
- Progress in Point-Focusing Solar Concentrator Development at JPL, W.J. Carley, International Solar Energy Society American Section Solar Jubilee, Phoenix, Arizona, June 1980.
- Projected Techno-Economic Improvements for Advanced Solar Thermal Power Plants, T. Fujita, R. Manvi, and E.J. Roschke, 14th Intersociety Energy Conversion Engineering Conference, Boston, Massachusetts, August 1979.
- <u>R&D Targets for Advanced Solar Thermal Power Systems</u>, L. Leibowitz and M. Costello, International Solar Energy American Section Annual Meeting, Denver, Colorado, August 1978.
- Reflectance of Indium Mirrors for Solar Energy Applications, F.L. Bouquet, 1981 Spring Meeting of the American Physical Society Ohio Section, Granville, Ohio, May 1981.
- Secondary and Compound Concentrators for Distributed Point-Focusing Solar <u>Thermal Power Systems</u>, L.D. Jaffe and P.T. Poon, International Solar Energy Society, Brighton, England, August 1981.
- Selection and Development of Small Solar Thermal Power Applications, S.A. Bluhm, T.J. Kuehn, and R.M. Gurfield, American Institute of Aeronautics and Astronautics Conference on Terrestrial Energy Systems, Orlando, Florida, June 1979.

- Site Participation in the Small Community Experiment, H. Holbeck and M. Fellows, Dish Solar Thermal Power Annual Program Review, Pasadena, California, January 1981.
- Sites for Experimental Solar Thermal Systems, H. Holbeck, Small Power Systems Solar Electric Workshop, Aspen, Colorado, October 1977.
- Siting Solar Thermal Power Experiments, H. Holbeck, First DOE Distributed Receiver Semiannual Review, Lubbock, Texas, January 1980.
- Small Power Systems Applications, A. Marriott, Small Power Systems Solar Electric Workshop, Aspen, Colorado, October 1977.
- Small Power Systems Applications Project, R.R. Ferber, A.T. Marriott, and
 V.C. Truscello, American Institute of Chemical Engineers 86th National
 Meeting, Houston, Texas, April 1979; Fourth Annual Los Angeles Energy
 Symposium, Los Angeles, California, May 1978.
- Small Solar Thermal Power Systems, R.R. Ferber, A.T. Marriott, and V.C. Truscello, Clean Air Research Institute Symposium, Commercialization of Solar and Conservation Technology, Miami, Florida, December 1978.
- Small Solar Thermal Power Systems for Dispersed Siting, R.R. Ferber, American Public Power Association Annual Engineering and Operations Workshop, San Francisco, March 1978.
- Solar Brayton Systems Transient Performance, N. El Gabalawi, American Society of Mechanical Engineers, San Francisco, California, August 1980.
- Solar Concentrator Panel and Gore Testing in the JPL 25 Foot Space Simulator, E.W. Dennison and M.J. Argoud, American Institute of Aeronautics and Astronautics Second Terrestrial Energy Systems Conference, Colorado Springs Colorado, December 1981.
- Solar Electric Power from Parabolic Dishes, A.T. Marriott, International Solar Energy Society Solar World Congress, Perth, Western Australia, August 1983.
- Solar Energy Market Penetration Analysis: A Review and Critique, E.H. Warren, Jr., Institute of Management Sciences/Operations Research Society of America Meeting, New Orleans, Louisiana, May 1979.
- Solar Energy Market Penetration Models: Science or Number Mysticism, E.H. Warren, Jr., "Technological Forecasting and Social Change," 1980.
- Solar Parabolic Dish Thermal Power Systems Technology and Applications, J.W. Lucas and A.T. Marriott, 14th Intersociety Energy Conversion Engineering Conference, Boston, Massachusetts, August 1979.
- Solar Receiver Performance of a Point-Focusing Collector System, Y.C. Wu and L.C. Wen, American Society of Mechanical Engineers Winter Annual Meeting, San Francisco, California, December 1978.

- Solar Stirling System Development, J.W. Stearns, E.Y. Chow, P.T. Poon, Y.S. Won, and R. Das, American Institute of Aeronautics and Astronautics Conference on Terrestrial Energy Systems, Orlando, Florida, June 1979.
- Solar Tests of Materials for Protection from Walk-Off Damage, L. Jaffe, Fourth Parabolic Dish Solar Thermal Power Program Review, Pasadena, California, December 1981.
- Solar Thermal Power Plants in Small Utilities: An Economic Impact Analysis, S.A. Bluhm, R.R. Ferber, and L.G. Mayo, 14th Intersociety Energy Conversion Engineering Conference, Boston, Massachusetts, August 1979.
- Solar Thermal Power Point-Focusing Distributed Receiver (PFDR) Technology: A <u>Project Description and Progress Report</u>, C.K. Stein and E.J. Roschke, International Solar Energy Society American Section Solar Jubilee, Phoenix, Arizona, June 1980.
- Solar Thermal Power Systems Point-Focusing Distributed Receiver (PFDR) <u>Technology: A Project Description</u>, J.W. Lucas and E.J. Roschke, American Institute of Aeronautics and Astronautics Conference on Solar Energy, Phoenix, Arizona, November 1978.
- Solar Thermal Power Systems Point-Focusing Thermal and Electric Applications <u>Project: A Progress Report</u>, A.T. Marriott, International Solar Energy Society American Section Annual Meeting, Atlanta, Georgia, June 1979.
- Solar Thermal Technology: Potential Impacts on Environmental Quality and <u>Petroleum Imports</u>, W. Gates, Fourth Parabolic Dish Solar Thermal Power <u>Program Review</u>, Pasadena, California, December 1981.
- Solar Tracking and Control Considerations, R.O. Hughes, Second International Helioscience Institute Conference on Alternate Energy, Palm Springs, California, April 1978.
- Status of the Parabolic Dish Concentrator, V.C. Truscello, SOLERAS International Workshop on Solar Thermal Collectors, Lakewood, Colorado, April 1983.
- Stirling Engine Applications to Solar Thermal Electric Generation, J. Stearns and R. Haglund, Institute of Mechanical Engineers Conference on Stirling Engines, Reading, England, March 1982.
- Systems Approach to Walk-Off Problems for Dish-Type Solar Thermal Power Systems, L. Jaffe, et al, 18th Intersociety Energy Conversion Engineering Conference, Orlando, Florida, August 21-26, 1983.
- Technologies for Small Power Systems Applications, R.R. Ferber, Small Power Systems Solar Electric Workshop, Aspen, Colorado, October 1977.
- Test Bed Concentrator Mirrors, M. Argoud, First DOE Distributed Receiver Semiannual Review, Lubbock, Texas, January 1980.

- The Application of Simulation Modeling to the Cost and Performance Ranking of Solar Thermal Power Plants, L. Rosenberg, Second Annual Systems Simulation and Economics Analysis Conference, San Diego, California, January 1980; L. Rosenberg, et al, American Society of Mechanical Engineers, "Solar Engineering," April 1981.
- The Effect of Urban Air Pollution on the Design and Performance of Solar <u>Energy Systems</u>, R.B. Gammon, J.R. Huning, M.S. Reid, and J.H. Smith, International Solar Energy Society Australian/New Zealand Section, Melbourne, Australia, November 1980; Third Miami International Conference on Alternate Energy, Miami, Florida, December 1980.
- The Effects of Regional Insolation Differences Upon Advanced Solar Thermal Electric Power Plant Performance and Energy Costs, A. Latta, J. Bowyer, and T. Fujita, American Society of Mechanical Engineers Winter Annual Meeting, New York, New York, December 1979; "Journal of Solar Energy Engineering," Vol. 103, August 1981.
- The Effects of Soiling and Cleanability on Solar Reflectors, W.F. Carroll, Fourth DOE Advanced Solar Thermal Technology Semiannual Review, Phoenix, Arizona, December 1979.
- The Jay Carter Enterprises, Inc. Steam Engine, B. Nesmith, Parabolic Dish Solar Thermal Power Annual Program Review, Pasadena, California, January 1981.
- The JPL Flux Mapper, W.A. Owen, First DOE Distributed Receiver Semiannual Review, Lubbock, Texas, January 1980.
- The JPL Isolated Application Experiment Series, R.R. Levin, First DOE Distributed Receiver Semiannual Review, Lubbock, Texas, January 1980; Parabolic Dish Solar Thermal Power Annual Program Review, Pasadena, California, January 1981.
- The JPL Parabolic Dish Project, V.C. Truscello and A.N. Williams, Fifth Intersociety Energy Conversion Engineering Conference, Seattle, Washington, August 1980.
- The Parabolic Concentrating Collector, V.C. Truscello, Solar Thermal Concentrating Collector Technology Symposium, Golden, Colorado, June 1978.
- Thermal and Optical Considerations of the Dish-Stirling Electric Generation <u>System</u>, P.T. Poon and S.N. Higgins, Third International Conference on Alternate Energy Sources, Miami Beach, Florida, December 1980.
- Thermal Buffering of Receivers for Parabolic Dish Solar Thermal Power Plants, R. Manvi, T. Fujita, and C. Marcus, 15th Intersociety Energy Conversion Engineering Conference, Seattle, Washington, August 1980; J. Energy, Vol. 5, No. 6, p 381, November-December 1981.
- Thermal Optical Surface Properties and High Temperature Solar Energy <u>Conversion</u>, L. Wen, Second American Institute of Aeronautics and Astronautics/American Society of Mechanical Engineers Thermophysics and Heat Transfer Conference, Palo Alto, California, May 1978.

- <u>Thermal Performance Trade-Offs for Point-Focusing Solar Collectors</u>, L. Wen, 13th Intersociety Energy Conversion Engineering Conference, San Diego, California, August 1978.
- Thermal Response of Solar Receiver Aperture Plates During Sun Walk-Off, L. Wen and E.J. Roschke, American Institute of Aeronautics and Astronautics/ American Society of Mechanical Engineers Fluids, Plasma, and Thermophysical Heat Transfer Conference, St. Louis, Missouri, June 1982.
- Thermal Storage Requirements for Parabolic Dish Solar Power Plants, L. Wen and H. Steele, American Society of Mechanical Engineers Winter Annual Meeting, Chicago, Illinois, November 1980.
- Thermodynamics of Thermochemical Cycles Based on the Decomposition of Sulfuric Acid, C. England, American Institute of Chemical Engineers, Philadelphia, Pennsylvania, June 1980.
- The Small Community Experiment (SCSE), T. Kiceniuk, Parabolic Dish Solar Thermal Annual Power Review, Pasadena, California, January 1981.
- The Small Community Solar Power Program, V.C. Truscello, A.N. Williams, A.T. Marriott, and J. Weisiger, August 1980.
- The Small Community Solar Thermal Power Experiment, A.T. Marriott and T. Kiceniuk, International Solar Energy Society American Section Solar Jubilee, Phoenix, Arizona, June 1980; Parabolic Dish Solar Thermal Power Annual Program Review, Atlanta, Georgia, December 1981.
- The Sun Tracking Control of Solar Collectors Using High-Performance Step Motors, R.O. Hughes, Energy Research and Development Administration (Now DOE) Conference on Concentrating Solar Collectors, Atlanta, Georgia, September 1977.
- Thickness Measurements of Ultra-Thin Films, F.L. Bouquet and W.F. Carroll, Paper No. D10, Bulletin of the American Physical Society, Joint Spring 1979 Meeting, Youngstown, Ohio, May 1979.
- Turbine Sizing of a Solar Thermal Power Plant, R. Manvi and T. Fujita, 14th Intersociety Energy Conversion Engineering Conference, Boston, Massachusetts, August 1979.
- Urban Air Pollution and Its Effect on the Design and Performance of Solar <u>Energy Systems</u>, J.H. Smith, J.R. Huning, M.S. Reid, and R.B. Gammon, Third Miami International Conference of Alternative Energy, Miami, Florida, December 1980; International Solar Energy Society, Melbourne, Australia, November 1980; "Alternative Energy Sources III," Vol. 1, Solar Energy 1, Hemisphere Publishing, New York, New York, 1983.
- Urban Air Pollution and Solar Energy, R.B. Gammon, J.R. Huning, M.S. Reid, and J.H. Smith, "The International Journal of Ambient Energy," Vol. 2, No. 4, October 1981.
- Use of Ceramics in Point-Focus Solar Receivers, R.H. Smoak and A.A. Kudirka, American Institute of Aeronautics and Astronautics Second Terrestrial Energy Systems Conference, Colorado Springs, Colorado, December 1981.

- Utility Planning and the Commercialization of Solar Thermal Electric Technology, Small Power Systems Solar Electric Workshop, Aspen, Colorado, October 1977.
- UV Transmission, Visible Reflectance, and Mechanical Properties of Commercial Solar Mirrors, F. Bouquet, T. Hasegawa, and E. Cleland, Second Solar Reflective Materials Workshop, San Francisco, California, February 1980.

SECTION III

EXTERNAL DOCUMENTS

- A Comparative Assessment of Solar Thermal Electric Power Plants in the <u>1-10 MWe Range</u>, L.S. Rosenberg, W.R. Revere, June 1981, DOE/JPL-1060-21, JPL Publication 81-53.
- A Preliminary Assessment of Small Steam Rankine and Brayton Point-Focusing Solar Modules, E.J. Roschke, et al, March 1, 1979, DOE/JPL-1060-16, JPL Publication 79-21.
- A Review of the Salt-Gradient Solar Pond Technology, E.I.H. Lin, January 30, 1982, DOE/SF-11552-1, JPL Publication 81-116.
- A Standard Description and Costing Methodology for the Balance-of-Plant Items of a Solar Thermal Electric Power Plant, January 1983, DOE/JPL-1060-59, JPL Publication 83-4.
- A Survey of Manufacturers of Solar Thermal Energy Systems, N. Levine, M. Slonski, August 1982, DOE/JPL-1060-56, JPL Publication 82-94.
- Advanced Subsystems Development, Second Semiannual Progress Report, November 15, 1978, DOE/JPL-1060-6, JPL Publication 79-24.
- Advanced Subsystems Development, Third Semiannual Progress Report, August 15, 1979, DOE/JPL-1060-20, JPL Publication 79-107.
- An Initial Comparative Assessment of Orbital and Terrestrial Central Power Systems, R. Caputo, March 1977, JPL Publication 900-780.
- Annual Technical Report, FY 1980, May 15, 1981, DOE/JPL-1060-45, JPL Publication 81-39.
- Annual Technical Report, FY 1981, March 15, 1982, DOE/JPL-1060-51, JPL Publication 82-22.
- Annual Technical Report Point Focusing Distributed Receiver Technology, FY 1978, Vol. I - Summary, Vol. II - Detailed Report, March 15, 1979, DOE/JPL-1060-7, JPL Publication 79-1.
- Annual Technical Report Point Focusing Distributed Receiver Technology, <u>FY 1979, Vol. I - Executive Summary, Vol. II - Detailed Report</u>, January 15, 1980, DOE/JPL-1060-30, JPL Publication 79-112.
- Annual Technical Report Point Focusing Thermal and Electric Applications, <u>FY 1979, Vol. I - Executive Summary, Vol. II - Detailed Report</u>, January 15, 1980, DOE/JPL-1060-31, JPL Publication 79-118.

- Annual Technical Report Small Power Systems Applications, FY 1978, Vol. I - Executive Summary, Vol. II - Detailed Report, January 15, 1979, DOE/JPL-1060-9, JPL Publication 79-43.
- Application of Field-Modulated Generator Systems to Dispersed Solar Thermal Electric Generation, R. Ramakumar, K. Bahrami, August 15, 1979, DOE/JPL-1060-25, JPL Publication 79-83.
- Cost and Price Estimate of Brayton and Stirling Engines in Selected Production Volumes, H.R. Fortgang, H.F. Mayers, May 31, 1980, DOE/JPL-1060-35, JPL Publication 80-42.
- Cost/Performance of Solar Reflective Surfaces for Parabolic Dish Concentrators, F. Bouquet, July 15, 1980, DOE/JPL-1060-40, JPL Publication 81-2.
- Criteria for Evaluation of Reflective Surfaces for Parabolic Dish <u>Concentrators</u>, F. Bouquet, July 15, 1980, DOE/JPL-1060-39, JPL <u>Publication 80-81</u>.
- Decision Analysis for Evaluating and Ranking Small Solar Thermal Power System Technologies, Vol. I - A Brief Introduction to Multi-Attribute Decision Analysis, Vol. II - The Criteria and Methodology for Evaluation and Ranking, A. Feinberg, June 1, 1978, DOE/JPL-1060-15, JPL Publication 79-12.
- Dish Concentrators for Solar Thermal Energy: Status and Technology <u>Development</u>, L.D. Jaffe, January 1, 1982, DOE/JPL-1060-48, JPL Publication 81-43.
- Dish Stirling Solar Receiver Combustor Test Program, C.P. Bankston, L.H. Back, August 15, 1981, DOE/JPL-1060-41, JPL Publication 81-23.
- Effects of Regional Insolation Differences Upon Advanced Solar Thermal Electric Power Plant Performance and Energy Costs (The), A.F. Latta, et al, February 1, 1980, DOE/JPL-1060-17 Rev. 1, JPL Publication 79-39.
- Electrochemical Energy Storage Systems for Solar Thermal Applications, S. Krauthamer, H. Frank, March 1, 1980, DOE/JPL-1060-30 Rev. 1, JPL Publication 79-95.
- Evaluation of Cellular Glasses for Solar Mirror Panel Applications, M. Giovan, M. Adams, June 15, 1979, DOE/JPL-1060-24, JPL Publication 79-61.
- Evaluation of the Effects of a Freeze/Thaw Environment on Cellular Glass, P. Frickland, et al, August 15, 1981, DOE/JPL-1060-44, JPL Publication 81-29.
- Focus on Solar Technology A Review of Advanced Solar Thermal Power Systems, Meeting Abstracts, November 17, 1978, DOE/JPL-1060-78/5.

Fracture Mechanics of Cellular Glass, J.G. Zwissler, M.A. Adams, DOE/JPL-1060-42, JPL Publication 81-16.

- HEAP: Heat Energy Analysis Program, A Computer Model Simulating Solar Receivers, F.L. Lansing, January 15, 1979, DOE/JPL-1060-13, JPL Publication 79-3.
- Irrigation Market for Solar Thermal Parabolic Dish Systems, H. Habib-agahi, S.C. Jones, September 1, 1981, DOE/JPL-1060-49, JPL Publication 81-85.
- Optimization of Dish Solar Collectors With and Without Secondary Concentrators, L.D. Jaffe, May 15, 1982, DOE/JPL-1060-57, JPL Publication 82-103.
- Parabolic Concentrating Collector A Tutorial, V.C. Truscello, June 15, 1978, DOE/JPL-1060-79/1, JPL Publication 79-7.
- Parabolic Dish Project Newsletter, Vol. 1, Nos. 1-7, September 1980 December 1982, JPL Publication 410-1.
- Parabolic Dish Solar Thermal Power Annual Program Review Proceedings, December 8-10, 1981, July 15, 1982, DOE/JPL-1060-52, JPL Publication 82-66.
- Parabolic Dish Solar Thermal Power Annual Program Review Proceedings, May 1, 1981, DOE/JPL-1060-46, JPL Publication 81-44.
- PDTS Highlights, Vol. 1, Nos. 1 and 2; Vol. 2, Nos. 1 and 2, July 1981 -April 1982, JPL Publication 410-4.
- Performance Prediction Evaluation of Ceramic Materials in Point-Focusing Solar Receivers, J. Ewing, J. Zwissler, June 1, 1979, DOE/JPL-1060-23, JPL Publication 79-58.
- Proceedings Fourth Parabolic Dish Solar Thermal Power Program Review, February 1, 1983, DOE/JPL-1060-58, JPL Publication 83-2.
- Proceedings of the First Semiannual Distributed Receiver Systems Program Review, April 15, 1980, DOE/JPL-1060-33, JPL Publication 80-10.
- Proceedings of Small Power Systems Solar Electric Workshop, February 1978, DOE/JPL-1060-78/1, JPL Publication 78-10.
- Regional Applicability and Potential of Salt-Gradient Solar Ponds in the United States, Vol. I - Executive Summary, Vol. II - Detailed Report, E.I.H. Lin, et al, March 15, 1982, DOE/JPL-1060-50, JPL Publication 82-10.
- Salton Sea Project Phase I, Final Report, M.L. Peelgren, January 15, 1982, DOE/JPL-1060-44, JPL Publication 81-108.
- Secondary and Compound Concentrators for Parabolic Dish Solar Thermal Power Systems, L.D. Jaffe, P.T. Poon, April 15, 1981, DOE/JPL-1060-43, JPL Publication 81-27.
- Solar Parabolic Dish Annual Technology Evaluation Report FY 1982, September 15, 1983, DOE/JPL-1060-63, JPL Publication 83-73.

- Solar Pond Power Plant Feasibility Study for Davis, California, Y.C. Wu, et al, February 15, 1982, JPL Publication 82-16.
- Solar Tests of Aperture Plate Materials for Solar Thermal Dish Collectors, L.D. Jaffe, August 15, 1983, DOE/JPL-1060-62, JPL Publication 83-68.
- Solar Thermal Technologies Benefits Assessment: Objectives, Methodologies, and Results for 1981, W.R. Gates, July 1982, DOE/JPL-1060-55, JPL Publication 82-70.
- Solar Thermal Technology Annual Technical Progress Report FY 1981, Vol. I - Executive Summary, Vol. II - Technical, June 1982, DOE/JPL-1060-53, JPL Publication 82-60.
- Solar Thermal Technology Annual Evaluation Report FY 1982, Vol. I Executive Summary, Vol. II - Technical, July 1983, DOE/JPL-1060-61, JPL Publication 83-60.
- Solar Thermal Technology Development: Estimated Market Size and Energy Cost Savings, Vol. I - Executive Summary, Vol. II - Assumptions, Methodology, and Results, W.R. Gates, February 1983, DOE/JPL-1060-60, JPL Publication 83-14.
- Siting Issues for Solar Thermal Power Plants with Small Community <u>Applications</u>, H.J. Holbeck, S.J. Ireland, July 20, 1978, DOE/JPL-1060-78/2, JPL Publication 78-75, and Rev. 1, February 1, 1979.
- Status of JPL's Experience with Thin 7809 Glass for Solar Energy Applications, <u>Report No. 1</u>, F.L. Bouquet, October 1, 1980, DOE/JPL-1060-37 Rev. A, JPL <u>Publication 80-96</u>.
- Techno-Economic Projections for Advanced Small Solar Thermal Electric Power <u>Plants to Years 1990-2000</u>, T. Fujita, et al, November 15, 1978, <u>DOE/JPL-1060-4</u>, JPL Publication 79-25.
- Testing with High-Intensity Radiant Energy, (Brochure), 1982, JPL Publication 400-154.
- The Solar Thermal Report, March 1981 to September 1982, 5106-10/1 to 5106-10/13.
- The SYSGEN User Package, C.R. Carlson, March 15, 1981, DOE/JPL-1060-47, JPL Publication 81-47.
- Thermal Storage Applications Workshop, Vol. I Plenary Session Analysis, Vol. II - Contributed Papers, February 15, 1979, DOE/JPL-1060-12, JPL Publication 79-8.

SECTION IV

INTERNAL DOCUMENTS

- A Modularized Computer Simulation Program for Solar Thermal Power Plants, N. El Gabalawi, et al, July 1978, 5102-80.
- Advanced Solar Thermal Technology: Potential and Progress, L. Leibowitz, E. Hanseth, April 15, 1979, 5102-121.
- Advanced Technology Development Semiannual Progress Report, June 1978, 5102-67.
- Aging Characteristics of Mirrors for Solar Energy Application, F.L. Bouquet, April 1, 1979, 5102-116.
- Analytical Foundations/Computer Model for Dish-Brayton Power System, D.P. Maynard, B.C. Gajanana, September 1980, 5105-9.
- An Overview of Power Plant Options for the First Small Power System Experiment: Engineering Experiment Number 1, November 9, 1978, 5103-38.
- A Survey of Solar Thermal Energy Systems Manufacturers, Summary Results, N. Levine, October 1981, 5106-13.
- Assessment of Ceramic Technology For Solar Thermal Energy Systems, March 15, 1982, 5105-104.
- Assessment and Planning for the Commercialization of Small Solar Thermal Electric Power Systems, T.J. Kuehn, November 15, 1977, 5103-8.
- Average Daily and Annual Direct Normal Insolation Estimates for the United States, J.H. Smith, August 15, 1980, 5105-42.
- Brief Review of Increasing Geometric Concentration Ratio Vs. Improving Receiver Surface Characteristics, A. Wen, R. Caputo, January 24, 1978, 5102-63.
- Ceramic Technology for Solar Thermal Receivers, A. Kudirka, R. Smoak, September 1, 1982, 5105-120.
- Chemical Energy Storage Systems Screening and Preliminary Selection, S.H. Kalfayan, H.E. Marsh, August 1980, 5105-40.
- Comparison of Advanced Thermal and Electrical Storage for Parabolic Dish Solar Thermal Power Systems, T. Fujita, et al, June 1, 1982, 5105-106.
- Computer Model for Pricing of Thermal Power Systems Engines for Annual Production of 25,000 through 400,000 Units, H.R. Fortgang, J. Glyman, March 3, 1982, 5106-18.

- Conference on Solar Ponds: The Salt Gradient Concept for Thermal and Electric Energy, May 15, 1981, 5105-86.
- Configuration Selection Study for Isolated Loads Using Parabolic Dish Modules, W.R. Revere, et al, March 15, 1982, 5105-103.
- Cost Analysis of the Omnium-G System 7500 in Selected Annual Production, C.A. Blake, May 1980, 5105-23.
- Costs and Considerations in Site Preparation for Solar Thermal Power Plants: A Preliminary Study, T. Kiceniuk, April 15, 1979, 5103-59.
- Demonstration of Multi-Attribute Decision Analysis Applied to Small Solar Thermal Electric Power Plants, R.F. Miles, April 2, 1982, 5105-102.
- Design, Cost, and Performance Comparison of Several Solar Thermal Systems for Process Heat: A Critique, J.R. Biddle, April 1, 1982, 5105-105.
- Dish PRDA: Engineering Experiments Selection, S.A. Bluhm, September 1980, 5105-46.
- Display Posters for Workshop for Potential Military and Civilian Users of Small Solar Thermal Electric Power Technologies, September 14, 1979, 5103-78.
- Documentation of Solar Thermal Power Systems Tests, June 4, 1982, 5105-107.
- Economic Cost Goals for Parabolic Dish Systems: Electric Applications, H. Habib-agahi, March 1980, 5105-21.
- Economic Feasibility of Small Solar Thermal Power Systems, T.J. Kuehn, December 7, 1978, 5103-40.
- Economic Value of Small Solar Thermal Electric Power Systems, S.A. Bluhm, April 1979, 5103-60.
- Electric Energy Costs of Southwestern U.S. Utilities to the Year 2000, R. Gurfield, C. Davis, April 15, 1979, 5103-62.
- Energy for California Water Systems Applications Study, C. Davis, R. Gurfield, April 30, 1979, 5103-27.
- Energy Price and Consumption Forecast and Its Application to Solar Energy, K.R. Ugone, T.J. Kuehn, June 1, 1979, 5103-68.
- Evaluation of Sanders Associates Solar Receiver Concept, Y.S. Won, August 1978, 5102-87.

*

Evaluation of Solar Reflective Surfaces, F.L. Bouquet, June 15, 1982, 5105-115.

*Copy not available

Glass for Solar Concentrator Applications, F.L. Bouquet, April 1, 1979, 5102-105.

*

- Heat and Electricity from the Sun Using Parabolic Dish Collector Systems, V.C. Truscello, August 9, 1979, 5105-2.
- Industrial Process Heat Technology Meeting, J.C. Becker, September 20, 1979, 5102-137.
- Initial Comparative Assessment of Orbital and Terrestrial Central Power Systems, (Presentation), R.S. Caputo, April 21, 1977, 5102-5.
- Manufacturing Cost Estimate of a Ceramic Receiver in Selected Production Volumes, H.R. Fortgang, January 5, 1982, 5106-17.
- Manufacturing Cost Estimate of an Organic Rankine Receiver in Selected Production Volumes, V. Edwards, et al, February 12, 1982, 5106-16.
- Materials Test Module (MTM): A Conceptual Design for High-Temperature Solar Materials Evaluation and Development, R.R. Hale, April 15, 1981, 5105-82.
- Methodology to Establish Goals for ERDA Solar Thermal Technology Development Programs, R.S. Caputo, June 21, 1977, 5102-40.
- NASA ESD Solar Thermal Project Review, Vol. I Organic Rankine Module <u>Development, Vol. II - Field Experiments</u>, A.T. Marriott, January 22, 1981, 5105-70.
- NASA ESD Solar Thermal Project Review Parabolic Dish Goals, E.S. Davis, January 22, 1981, 5105-72.
- Parabolic Dish Market Assessment First Interim Report, S.A. Bluhm, July 1980, 5105-37.
- Parabolic Dish Program: The 1980 Multi-Year Plan Preliminary, May 12, 1980, 5105-4 Rev. A.
- Performance and Costs of Parabolic Dish Solar Thermal Systems for Selected Process Applications, J. Biddle, et al, June 15, 1982, 5105-114.
- Perspectives on the Dispersed Application of Solar Thermal Energy Technology, Vol. II - Working Papers on Technological Economic and Solar Resources Issues, Vol. III - Working Papers on Commercialization and Industrialization, T.J. Kuehn, et al, April 15, 1979, 5103-56.
- Point Focusing Distributed Receiver R&D Test Facility, March 31, 1977, TR/TPS D/C 008, 7A000(SE).

*Copy not available

- Presentation of Solar Thermal Power Systems Project Energy Options for Industrial Users and Suppliers, J.W. Lucas, April 19, 1979, 5104-48.
- Presentation to Solar Thermal Energy Division of the Solar Energy Industries Association (SEIA), J.W. Lucas, A.T. Marriott, September 18, 1980, 5105-47.
- Presentation to Workshop on Modeling Solar Decentralized and Total Energy Systems, December 9, 1977, 5103-10.
- Procedure for Solar Thermal Power Systems Problem/Failure Reporting at the Parabolic Dish Test Site, R.W. Vincent, December 15, 1980, 5105-64.
- Projection of Distributed-Collector Solar Thermal Electric Power Plant Economics to 1990-2000, June 21, 1977, 5102-39.
- Regional Analysis of Solar Thermal Electric and Conventional Power Plants, H. Habib-agahi, J.H. Smith, January 1981, 5105-69, Vol. I.
- Regulations Applicable to Solar Thermal Power Plants: Interim Report, S. Ireland, March 15, 1979, 5103-55.
- Review of Arkansas Electric Cooperative Corporation Proposal for a Solar Electric Dispersed System Power Plant, H. Bank, January 5, 1977, 5102-17.
- Review of Brevard Community College Proposal for a Solar Hybrid Total Energy * System, May 31, 1977, 1060-89.
- Review of City of Mankato Proposal for a Solar Heated, Cooled and Lighted <u>Central Business District Shopping Complex for the City of Mankato</u>, <u>Mississippi</u>, May 31, 1977, 1060-84.
- Review of Distributed Solar Collectors for Electric Power Generation, March 2, 1977, TR/TPS D/C 006, 7A000(SE).
- Review of Mississippi State University Proposal for a Methodology Development for Institutional-Scale Solar Total Energy Systems Design, August 12, 1977, 1060-91.
- Review of New Mexico Solar Power Inc. Proposals for a Solar Thermal Electric Power Plant in Hobbs, New Mexico, May 31, 1977, 1060-85.
- Review of the Projected Costs Used in the Regional Assessment Study of Solar <u>Electric Technologies by Science Application Inc.</u>, B.C. Gajanana, June 1981, 5106-5
- <u>Small Community Solar Thermal Power Experiment (The)</u>, A.T. Marriott, T. Kiceniuk, January 1981, 5105-52 Rev. A.

*Copy not available

- Small Solar Thermal Power System Market Overview, C. Davis, R. Gurfield, April 30, 1979, 5103-61.
- Solar/Fossil Hybrid Systems Program Plan for Retrofit and New Hybrid Configurations, H.S. Bloomfield, March 1978, 5102-66.
- Solar Ponds for Power Generation, J. Biddle, September 1, 1979, 5102-100.

*

- Solar Receiver Performance in the Temperature Range of 300 to 1300 C, Y.C. Wu, L.C. Wen, October 1, 1978, 5102-82.
- Solution Mining of Searles Lake Evaporites Using Solar Ponds, J. Giulianelli, et al, July 1981, 5105-58.
- Subsystem Technology and Cost Targets, J.W. Lucas, January 22, 1981, 5105-71.
- Systems Approach to Walk-Off Problems for Dish-Type Solar Thermal Power Systems, L.D. Jaffe, et al, July 15, 1982, 5105-119; and August 21, 1981, 5105-97.
- Systems Requirements for Experimental Multi-Module Solar Thermal Power Plant, March 9, 1983, 5105-124.
- Systems Requirements for Power Plant Small Community Solar Thermal Power Experiment 1, March 9, 1983, 5105-96 Rev. A.
- Systems Requirements for Power Plant Small Community Solar Thermal Power Experiment 2, March 9, 1983, 5105-123.
- Systems Requirements for the Brayton Cycle Solar Parabolic Dish Module, March 7, 1983, 5105-108.
- Test Plan, Materials for Passive Protection from Walk-Off, June 5, 1982, 5105-112.
- Thermal Power Systems Small Power Systems Projects, September 15, 1977, 5103-2.
- Thermal Response of Solar Receiver Aperture Plates During Sun Walk-Off, L. Wen, E.J. Roschke, March, 15, 1982, 5106-19.
- Thermal Storage Applications Workshop, Volume I Plenary Session Analysis, Volume II - Contributed Papers, February 15, 1978, 5102-78
- Thermal Storage Role Within a Solar Thermal-Electric Power Plant, R. Caputo, June 10, 1977, 5102-36.
- Third Semiannual Advanced Technology Meeting: A Review of Advanced Solar Thermal Power Systems - Display Posters, June 21, 1979, 5102-127.

Third Semiannual Advanced Technology Meeting: A Review of Advanced Solar Thermal Power Systems - Meeting Abstracts, June 21, 1979, 5102-129.

User's Manual for the U.S. Department of Energy Parabolic Dish Test Site, November 30, 1979, 5104-59.

SECTION V

CONTRACTOR REPORTS

- Acurex Corporation, Advanced Solar Concentrator: Preliminary and Detailed Design, (Contract No. 955477, JPL Report Nos. 9950-518 & 532: Executive Summary; 9950-428: Final Report), Mountain View, California, March 1981.
- Acurex Corporation, Low-Cost Point-Focus Solar Concentrator, Phase I Final <u>Report</u>, (Contract No. 955208, JPL Report No. 9950-273), Mountain View, California, March 16, 1979.
- Arthur D. Little, Inc., <u>Study of Mass Production and Industrialization of</u> <u>Small Solar Thermal Electric Power Systems</u>, (Contract No. 955286, JPL Internal Report 9960-75), Cambridge, Massachusetts, December 1979.
- BDM Corporation (The), Workshop for Potential Military and Civil Users of Small Solar Thermal Electric Power Technologies, 2 Volumes, (Contract No. 955354, JPL Report No. 9950-447), McLean, Virginia, September 11-14, 1979.
- Boeing Engineering & Construction Company, <u>Air Brayton Solar Receiver Phase I</u>, (Contract No. 955119, JPL Report No. 9950), Seattle, Washington, January 5, 1979.
- Boeing Engineering & Construction Company, <u>A Conceptual Design Study of Point</u> Focusing Thin-Film Solar Concentrators, Final Report, (Contract No. 955804, JPL Report No. 9950-625), Seattle, Washington, November 11, 1981.
- Burns & McDonnell Engineering Company, <u>Assessment of the Potential of Solar</u> <u>Thermal Small Power Systems in Small Utilities, Final Report, P. Steitz,</u> et al, Report No. 78-008-4-000, DOE/JPL-1060-14, (Contract No. 954971), Kansas City, Missouri, November 1978.
- Fairchild/Stratos Division, <u>Dish Stirling Solar Receiver Program</u>, Final Report, (Contract No. 955400, JPL Report No. 9950-473), December 15, 1980.
- Ford Aerospace & Communications Corporation, <u>Phase I of the First (Solar) Small</u> <u>Power System Experiment (Experimental System No. 1), Final Report, 3 Volumes,</u> (Contract No. 955115, JPL Report Nos. 9950-181, 182, 183), Newport Beach, California, May 5, 1979.
- Ford Aerospace & Communications Corporation, Parabolic Dish Technology for Industrial Process Heat Application, Final Report for Task 12 of the Small Community Solar Thermal Power Experiment, (Contract No. 955637, JPL Report No. 9950-663), Newport Beach, California, April 9, 1981.

*JPL internal report only.

- Foster-Miller Associates, Inc., <u>15 kWe (Nominal) Solar Thermal Electric Power</u> <u>Conversion Concept Definition Study - Steam Rankine Reheat Reciprocator</u> <u>System, Final Report</u>, DOE/NASA/0062-79/1, NASA CR-159590, (LeRC Contract No. DEN3-62), Waltham, Massachusetts, June 1979.
- Garrett AiResearch Manufacturing Company, <u>Air Brayton Solar Receiver Phase II</u>, L.E. De Anda, (Contract No. 955136, JPL Report No. 9950-6), Torrance, California, December 10, 1981.
- Garrett AiResearch Manufacturing Company, <u>A High-Temperature Ceramic Heat</u> <u>Exchanger Element for a Solar Thermal Receiver</u>, H.J. Strumpf, et al, (Contract No. 955875, JPL Report No. 9950-794), Torrance, California, March 23, 1982.
- Garrett AiResearch Manufacturing Company, Buffer Thermal Energy Storage for an Air Brayton Solar Engine, H.J. Strumpf, et al, (Contract No. 955136, JPL Report No. 9950-635), Torrance, California, August 31, 1981.
- Garrett AiResearch Manufacturing Company of Arizona, <u>Concept Definition Study</u> of Small Brayton Cycle Engines for Dispersed Solar <u>Electric Power Systems</u>, <u>Final Report</u>, DOE/NASA/0069-79/1, NASA CR-159592, (LeRC Contract No. DEN3-69), Phoenix, Arizona, January 1980.
- General Electric Company, <u>Storage Requirement Definition Study</u>, Final Report for Task 10, (Contract No. 955388, JPL Report No. 9950-472), Cincinnati, Ohio, December 15, 1980.
- General Electric Company, Phase I of the First Small Power System Experiment (Engineering Experiment No. 1), Final Technical Report, (Contract No. 955116, JPL Report No. 9950-184), Schenectady, New York, May 1979.
- General Electric Company, <u>A Conceptual Design Study of a High Temperature Solar</u> <u>Thermal Receiver, Final Report, C.S. Robertson, et al, Report No. GEAEP-66,</u> (Contract No. 955455, JPL Report No. 9950-483), Cincinnati, Ohio, January 4, 1980.
- General Electric Company, Conceptual Design Study of a High Temperature Solar <u>Thermal Receiver, Final Report (Added Tasks 6 and 7)</u>, C.S. Robertson, et al, <u>Report No. AED-EQ-48</u>, (Contract No. 955455, JPL Report No. 9950-483), Cincinnati, Ohio, November 7, 1980.
- General Electric Company, Conceptual Design Study on the Application of Liquid <u>Metal Heat Transfer Technology to the Solar Thermal Power Plant</u>, <u>DOE/JPL-1060-28</u>, (Contract No. 955018, JPL Report No. 9950-226), Cincinnati, Ohio, September 25, 1979.
- General Electric Company, Easy Fluid Wicking Tests Related to Solar Receiver Heat Pipes, Topical Report, DOE/JPL-1060-26, (Contract No. 955018), Cincinnati, Ohio, September 25, 1979.

- General Electric Company, <u>Heat Pipe Design Confirmation Testing, Topical</u> <u>Report</u>, DOE/JPL-1060-27, (Contract No. 955018), Cincinnati, Ohio, September 25, 1979.
- General Electric Company, Low Cost Point Focus Solar Concentrator Phase I, <u>Preliminary Design, Final Study Review</u>, (Contract No. 955210, JPL Report No. 9950-273), March 16, 1979.
- Jay Carter Enterprises, <u>15 kWe (Nominal) Solar Thermal-Electric Power</u> Conversion Concept Definition Study -- Steam Rankine Reciprocator System, <u>Final Report</u>, DOE/NASA/0063-79/1, NASA CR-159591, (LeRC Contract No. <u>DEN3-63</u>), Burkburnett, Texas, June 1979.
- McDonnell Douglas Astronautics Company, <u>Phase I of the First Small Power System</u> <u>Experiment (Engineering Experiment No. 1), Final Technical Report, 5 Volumes,</u> <u>Report No. MDC G7833, (Contract No. 955117, JPL Report Nos. 9950-185, 186,</u> 187, 188, 189), Huntington Beach, California, May 1979.
- Mechanical Technology Incorporated, <u>Design Study of a 15 kW Free-Piston</u> <u>Stirling Engine-Linear Alternator for Dispersed Solar Electric Power</u> <u>Systems</u>, DOE/NASA/0056-79/1, NASA CR-159587, (LeRC Contract DEN3-56), August 1979.
- Pioneer Engineering and Manufacturing Company, <u>Cost Analysis of an Air Brayton</u> Receiver for a Solar Thermal Electric Power System in Selected Annual <u>Production Volumes, Final Report</u>, (Contract No. 955791, JPL Report No. 9950-829), Warren, Michigan, December 18, 1981.
- Pioneer Engineering and Manufacturing Company, <u>Manufacturing Cost Analysis of</u> <u>a Parabolic Dish Concentrator (General Electric Design) for Solar Thermal</u> <u>Electric Power Systems in Selected Production Volumes, Final Report,</u> (Contract No. 955931, JPL Report No. 9950-757), Warren, Michigan, December 11, 1981.
- Sanders Associates, Inc., <u>Phase I Final Report for the Development of an Air</u> <u>Brayton Solar Receiver</u>, (Contract No. 955120, JPL Report No. 9950-351), Nashua, New Hampshire, April 1980.
- Sanders Associates, Inc., <u>High Temperature Solar Receiver Final Report for the</u> <u>Period 7 June 1979 - 7 April 1981</u>, (Contract No. 955454, JPL Report No. 9950-529), Nashua, New Hampshire, April 1981.
- Sundstrand Corporation, <u>15 kWe (Nominal) Solar Thermal Electric Power</u> Conversion Concept Definition Study -- Steam Rankine Turbine Systems, Final <u>Report</u>, DOE/NASA/0061-79/1, NASA CR-159589, (LeRC Contract No. DEN3-61), Rockford, Illinois, October 1979.
- United Stirling (Sweden), Design Study of a Kinematic Stirling Engine for Dispersed Solar Electric Power Systems, DOE/NASA/0056-79/2, NASA CR-159588, (LeRC Contract DEN3-56), 1980.

SECTION VI

AUTHOR INDEX

Authors listed alphabetically are followed by titles that are also alphabetized. Each title is followed by a letter in parentheses that refers to the section in which the complete bibliographical information is contained. (C/J = Conference and Journal Papers, Section II; E = ExternalDocuments, Section III; and I = Internal Documents, Section IV.)

Adams, M.A., Assessment of Ceramic Technology for Solar Thermal Energy Systems, (C/J).

Benefits of Absorber Coatings for Solar Thermal Receivers, (C/J).

Evaluation of Cellular Glasses for Solar Mirror Panel Applications, (E).

Fracture Mechanics of Cellular Glass, (E).

21

ç

Argoud, M., Test Bed Concentrator Mirrors, (C/J).

Awaya, H.I., Comparison of Advanced Thermal and Electric Storage for Parabolic Dish Solar Thermal Power Systems, (C/J).

Configuration Selection Study for Isolated Loads Using Parabolic Dish Modules, (C/J).

Back, L.H., Dish Stirling Solar Receiver Combustor Test Program (E).

Heat Transfer from Combustion Gases to a Single Row of Closely-Spaced Tubes in a Swirl Crossflow Stirling Engine Heater, (C/J).

Bahrami, K.A., <u>Application of Field-Modulated Generator Systems to Dispersed</u> Solar Thermal Electric Generation, (E).

Dispersed Solar Thermal Generation Employing Parabolic Dish-Electric Transport with Field Modulated Generator Systems, (C/J).

Dynamics and Control of Stirling Engines in a 15-kWe Solar Electric Generation Concept, (C/J).

Power Processing, Power Management, and Utility Interface for Advanced Dispersed Solar Thermal Systems, (C/J).

Bank, H., <u>Review of Arkansas Electric Cooperative Corporation Proposal for a</u> Solar Electric Dispersed System Power Plant, (I).

Bankston, C.P., Dish Stirling Solar Receiver Combustor Test Program, (E).

Heat Transfer from Combustion Gases to a Single Row of Closely-Spaced Tubes in a Swirl Crossflow Stirling Engine Heater, (C/J).

Barbieri, R., <u>Barriers and Incentives to the Innovation of Small Solar Thermal</u> <u>Electric Power Systems: A Commercialization Perspective for R&D</u> Management, (C/J).

Bass, A., Optical Analysis of Cassegrainian Concentrator Systems, (C/J).

Becker, J.C., Industrial Process Heat Technology Meeting, (I).

Biddle, J.R., Design, Cost, and Performance Comparison of Several Solar Thermal Systems for Process Heat: A Critique, (I).

Low-Cost Thermal Transport Piping Networks for Solar Industrial Process Heat Applications, (C/J).

Solar Ponds for Power Generation, (I).

Performance and Costs of Parabolic Dish Solar Thermal Systems for Selected Process Applications, (C/J), (I).

- Birur, G.C., <u>Comparison of Advanced Thermal and Electric Storage for Parabolic</u> <u>Dish Solar Thermal Power Systems</u>, (C/J).
- Blake, C.A., <u>Cost Analysis of the Omnium-G System 7500 in Selected Annual</u> <u>Production</u>, (I).
- Bloomfield, H.S., <u>Solar/Fossil Hybrid Systems Program Plan for Retrofit and</u> New Hybrid Configurations, (I).
- Bluhm, S.A., <u>A Graphical Method for the Prediction of Annual Performance of</u> Solar Collectors, (C/J).

Dish PRDA: Engineering Experiments Selection, (I).

Economic Aspects of Solar Thermal Electric Power Generation in Small Utilities, (C/J). Economic Value of Small Solar Thermal Electric Power Systems, (I).

Industrial Application Experiment Series, (C/J).

Parabolic Dish Market Assessment First Interim Report, (I).

Selection and Development of Small Solar Thermal Power Applications, (C/J).

Solar Thermal Power Plants in Small Utilities: An Economic Impact Analysis, (C/J).

Bouquet, F.L., <u>Aging Characteristics of Glass Mirrors for Solar Thermal Power</u> <u>Applications</u>, (C/J), (I).

<u>Cost/Performance of Solar Reflective Surfaces for Parabolic Dish</u> <u>Concentrators</u>, (E).

Criteria for Evaluation of Reflective Surfaces for Parabolic Dish Concentrators, (E).

Evaluation of Solar Reflective Surfaces for Dish Concentrators, (C/J).

Evaluation of Solar Reflective Surfaces, (I).

Glass for Solar Concentrator Applications, (I).

Measurements of Coefficients of Thermal Expansion for High Temperature Polymers, (C/J).

Status of JPL's Experience with Thin 7809 Glass for Solar Energy Applications, Report No. 1, (E).

UV Transmission, Visible Reflectance, and Mechanical Properties of Commercial Solar Mirrors, (C/J).

Bowyer, J.M., <u>A Graphical Method for the Prediction of Annual Performance of</u> Solar Collectors, (C/J).

The Effects of Regional Insolation Differences Upon Advanced Solar Thermal Electric Power Plant Performance and Energy Costs, (C/J), (E).

Comparison of Advanced Engines for Parabolic Dish Solar Thermal Power Plants, (C/J).

Comparison of Advanced Thermal and Electric Storage for Parabolic Dish Solar Thermal Power Systems, (C/J).

Configuration Selection Study for Isolated Loads Using Parabolic Dish Modules, (C/J). Caputo, R., <u>An Initial Comparative Assessment of Orbital and Terrestrial</u> Central Power Systems, (I-Presentation), (E).

Brief Review of Increasing Geometric Concentration Ratio Vs. Improving Receiver Surface Characteristics, (I).

Effects of Surface Optical Characteristics on Point-Focusing Solar Collectors, (C/J).

Methodology to Establish Goals for ERDA Solar Thermal Technology Development Programs, (I).

Thermal Storage Role Within a Solar Thermal-Electric Power Plant, (I).

Carley, W.J., <u>Comparative Study of Solar Optics for Paraboloidal</u> <u>Concentrators</u>, (C/J).

Progress in Point-Focusing Solar Concentrator Development at JPL, (C/J).

Carlson, C.R., The SYSGEN User Package, (E).

- Carroll, W.F., The Effects of Soiling and Cleanability on Solar Reflectors, (C/J).
- Chen, K., Mixtures of Alkali or Alkaline Earth Metals and Their Halides for High Temperature Thermal Energy Storage in Solar Thermal Systems, (C/J).

Chow, E.Y., Solar Stirling System Development, (C/J).

Collares-Perevia, M., <u>Preliminary Results from a Test Array of 3X CPC</u> Collectors in a School Heating Application, (C/J).

Costello, M., R&D Targets for Advanced Solar Thermal Power Systems, (C/J).

Das, R.L., <u>Dynamics and Control of Stirling Engines in a 15-kWe Solar Electric</u> Generation Concept, (C/J).

Power Processing and Control Requirements of Dispersed Solar Thermal Electric Generation Systems, (C/J).

Power Processing, Power Management, and Utility Interface for Advanced Dispersed Solar Thermal Systems, (C/J).

Solar Stirling System Development, (C/J).

- Davis, E.S., <u>NASA ESD Solar Thermal Project Review Parabolic Dish Goals</u>, (I). Potential Benefits from a Successful Solar Thermal Program, (C/J).
- Davis, C., <u>Economic Goals for Solar Thermal Electric Applications</u>, (C/J).
 <u>Economic Goals for Solar Thermal Electric R&D</u>, (C/J).
 <u>Electric Energy Costs of Southwestern U.S. Utilities to the Year 2000</u>, (I).
 <u>Small Solar Thermal Power System Market Overview</u>, (I).
 Energy for California Water Systems Applications Study, (I).
- Davis, R.B., Effects of Ownership Alternatives on Life Cycle Costs of Small Power Systems, (C/J).
- Edmiston, W., <u>Measurements of Coefficients of Thermal Expansion for High</u> Temperature Polymers, (C/J).
- Edwards, V., <u>Manufacturing Cost Estimate of an Organic Rankine Receiver in</u> <u>Selected Production Volumes</u>, (I).
- El Gabalawi, N., <u>A Modularized Computer Simulation Program for Solar Thermal</u> Power Plants, (I).

Comparative Evaluation of Distributed-Collector Solar Thermal Electric Power Plants, (C/J).

Evaluation of Solar Thermal Power Plants Using Economics and Performance Simulation, (C/J).

Performance Characteristics of Point-Focusing Distributed Receiver Solar Brayton Systems, (C/J).

Solar Brayton Systems Transient Performance, (C/J).

- England, C., <u>Thermodynamics of Solar Thermochemical Cycles Based on the</u> Decomposition of Sulfuric Acid, (C/J).
- Ewing, J., <u>Performance Prediction Evaluation of Ceramic Materials in</u> <u>Point-Focusing Solar Receivers</u>, (E).
- Feinberg, A., Decision Analysis for Evaluating and Ranking Small Solar Thermal Power System Technologies, Vol. I - A Brief Introduction to Multi-Attribute Decision Analysis, Vol.II - The Criteria and Methodology for Evaluation and Ranking, (E).

Fellows, M., Site Participation in the Small Community Experiment, (C/J).

Ferber, R.R., <u>Dispersed Solar Electric Power: A Small Power System Program</u>, (C/J).

Economic Aspects of Solar Thermal Electric Power Generation in Small Utilities, (C/J).

JPL Small Power Systems Applications Project, (C/J).

Small Power Systems Applications Project, (C/J).

Small Solar Thermal Power Systems, (C/J).

Solar Thermal Power Plants in Small Utilities: An Economic Impact Analysis, (C/J).

Technologies for Small Power Systems Applications, (C/J).

Fortgang, H.R., Computer Model for Pricing of Thermal Power Systems Engines for Annual Production of 25,000 through 400,000 Units, (I).

Cost and Price Estimate of Brayton and Stirling Engines in Selected Production Volumes, (E).

Cost Estimating Brayton and Stirling Engines, (C/J).

Costing the Omnium-G System 7500, (C/J).

Manufacturing Cost Estimate of a Ceramic Receiver in Selected Production Volumes, (I).

Frank, H., <u>Electrochemical Energy Storage Systems for Solar Thermal</u> <u>Applications</u>, (E).

- Frickland, P., <u>Evaluation of the Effects of a Freeze/Thaw Environment on</u> <u>Cellular Glass</u>, (E).
- Fujita, T., <u>Comparison of Advanced Engines for Parabolic Dish Solar Thermal</u> <u>Power Plants</u>, (C/J).

Comparison of Advanced Thermal and Electrical Storage for Parabolic Dish Solar Thermal Power Systems, (C/J), (I).

Configuration Selection Study for Isolated Loads Using Parabolic Dish Modules, (C/J).

Dish Brayton Solar Thermal Power Systems, (C/J).

Low-Cost Thermal Transport Piping Networks for Solar Industrial Process Heat Applications, (C/J).

Performance and Costs of Parabolic Dish Solar Thermal Systems for Selected Process Applications, (C/J).

Performance and Economic Risk Evaluation of Dispersed Solar Thermal Power Systems by Monte Carlo Simulation, (C/J).

Projected Techno-Economic Improvements for Advanced Solar Thermal Power Plants, (C/J).

Techno-Economic Projections for Advanced Small Solar Thermal Electric Power Plants to Years 1990-2000, (E).

The Effects of Regional Insolation Differences Upon Advanced Solar Thermal Electric Power Plant Performance and Energy Costs, (C/J).

Thermal Buffering of Receivers for Parabolic Dish Solar Thermal Power Plants, (C/J).

Turbine Sizing of a Solar Thermal Power Plant, (C/J).

Gajanana, B.C., <u>Analytical Foundations/Computer Model for Dish - Brayton Power</u> System, (I).

Comparison of Advanced Engines for Parabolic Dish Solar Thermal Power Plants, (C/J).

Review of the Projected Costs Used in the Regional Assessment Study of Solar Electric Technologies by Science Application Inc., (I).

Gammon, R.B., <u>The Effect of Urban Air Pollution on the Design and Performance</u> of Solar Energy Systems, (C/J).

Urban Air Pollution and Its Effects on the Design and Performance of Solar Energy Systems, (C/J).

Gates, W.R., <u>Solar Thermal Technologies Benefits Assessment</u>: <u>Objectives</u>, <u>Methodologies</u>, and <u>Results</u> for 1981, (E).

Solar Thermal Technology Development: Estimated Market Size and Energy Cost Savings, Vol. I - Executive Summary, Vol. II - Assumptions, Methodology, and Results, (E).

Solar Thermal Technology: Potential Impacts on Environmental Quality and Petroleum Imports, (C/J).

Giovan, M., <u>Evaluation of Cellular Glasses for Solar Mirror Panel</u> Applications, (E).

÷

- Giulianelli, J., Solution Mining of Searles Lake Evaporites Using Solar Ponds, (1).
- Glyman, J., Computer Model for Pricing of Thermal Power Systems Engines for Annual Production of 25,000 through 400,000 Units, (I).
- Gurfield, R.M., <u>Economic Goals for Solar Thermal Electric Applications</u>, (C/J). Economic Goals for Solar Thermal Electric R&D, (C/J).

Electric Energy Costs of Southwestern U.S. Utilities to the Year 2000, (I).

Energy for California Water Systems Applications Study, (I)

Small Solar Thermal Power System Market Overview, (1).

Selection and Development of Small Solar Thermal Power Applications, (C/J).

Habib-agahi, H., <u>Economic Cost Goals for Parabolic Dish Systems - Electric</u> <u>Applications</u>, (I).

Impact of the Federal Energy Tax Credit on the Solar Thermal Industry and Government Revenue, (C/J).

Irrigation Market for Solar Thermal Parabolic Dish Systems, (E).

Market Assessment Overview, (C/J).

Regional Analysis of Solar Thermal Electric and Conventional Power Plants, (I).

Hagen, T., JPL's Parabolic Dish Test Site, (C/J).

Haglund, R., High Performance Solar Stirling Systems, (C/J).

Stirling Engine Applications to Solar Thermal Electric Generation, (C/J).

Hale, R.R., <u>Materials Test Module (MTM)</u>: A Conceptual Design for High-Temperature Solar Material Evaluation and Development, (I). Hanseth, E., Advanced Solar Thermal Technology for Process Applications, (C/J).

Advanced Solar Thermal Technology: Potential and Progress, (C/J), (I).

Application of a Reversible Chemical Reaction System to Solar Thermal Power Plants, (C/J).

- Herrera, G., <u>Comparative Evaluation of Distributed-Collector Solar Thermal</u> <u>Electric Power Plants</u>, (C/J).
- Higgins, S., Optical Analysis of Cassegrainian Concentrator Systems, (C/J). Optical Performance of a Fresnel-Type Concentrator with Truncated Paraboloidal Facets, (C/J).

Optical Performance of Several Point-Focusing Solar Concentrators, (C/J).

- Hill, G., <u>A Modularized Computer Simulation Program for Solar Thermal Power</u> <u>Plants</u>, (I).
- Hoag, J., Cost Goals, (C/J).
- Holbeck, H.J., Site Participation in the Small Community Experiment, (C/J).

Sites for Experimental Solar Thermal Systems, (C/J).

Siting Issues for Solar Thermal Power Plants with Small Community Application, (E).

Siting Solar Thermal Power Experiments, (C/J). (E).

- Huang, L., <u>Comparative Study of Solar Optics for Paraboloidal Concentrators</u>, (C/J).
- Hughes, R.O., Effects of Pointing Errors on Receiver Performance for Parabolic Dish Solar Concentrators, (C/J).

Efficiency Degradation Due to Tracking Errors for Point-Focusing Solar Collectors, (C/J).

Optimal Control of Sun Tracking Solar Concentrators, (C/J).

Solar Tracking and Control Considerations, (C/J).

The Sun Tracking Control of Solar Collectors Using High-Performance Step Motors, (C/J). Huning, J.R., The Effect of Urban Air Pollution on the Design and Performance of Solar Energy Systems, (C/J).

Urban Air Pollution and Its Effects on the Design and Performance of Solar Energy Systems, (C/J).

Ireland, S.J., <u>Regulations Applicable to Solar Thermal Power Plants: Interim</u> Report, (I).

Siting Issues for Solar Thermal Power Plants with Small Community Applications, (E).

Jaffe, L.D., Dish Concentrators for Solar Thermal Energy: Status and Technology Development, (C/J), (E).

Optimization of Dish Solar Collectors With and Without Secondary Concentrators, (E).

Secondary and Compound Concentrators for Parabolic Dish Solar Thermal Power Systems, (C/J), (E).

Solar Tests of Aperture Plate Materials for Solar Thermal Dish Collectors, (E).

Solar Tests of Materials for Protection from Walk-Off Damage, (C/J).

Systems Approach to Walk-Off Problems for Dish-Type Solar Thermal Power Systems, (C/J), (I).

Jones, S.C., Irrigation Market for Solar Thermal Parabolic Dish Systems, (I).

- Kalfayan, S.H., Chemical Energy Storage Systems Screening and Preliminary Selection, (I).
- Kiceniuk, T., Costs and Considerations in Site Preparation for Solar Thermal Power Plants: A Preliminary Study, (I).

Small Community Solar Thermal Power Experiment, (I).

The Small Community Solar Thermal Power Experiment, (C/J).

The Small Community Experiment (SCSE), (C/J).

Krauthamer, S., <u>Electrochemical Energy Storage Systems for Solar Thermal</u> <u>Applications</u>, (E).

Power Processing, Power Management, and Utility Interface for Advanced Dispersed Solar Thermal Systems, (C/J). Kudirka, A.A., Advanced Receiver Technology, (C/J).

Advanced Solar Thermal Receiver Technology, (C/J).

Ceramic Technology for Solar Thermal Receivers, (C/J), (I).

Use of Ceramics in the Point-Focus Solar Receiver, (C/J).

Kuehn, T.J., Assessment and Planning for the Commercialization of Small Solar Thermal Electric Power Systems, (I).

Barriers and Incentives to the Innovation of Small Solar Thermal Electric Power Systems: A Commercialization Perspective for R&D Management, (C/J).

Economic Feasibility of Small Solar Thermal Power Systems, (I)

Energy Price and Consumption Forecast and Its Application to Solar Energy, (I).

Perspectives on the Dispersed Application of Solar Thermal Energy Technology, Vol. II - Working Papers on Technological Economic and Solar Resources Issues, Vol. III - Working Papers on Commercialization and Industrialization, (I).

Selection and Development of Small Solar Thermal Power Applications, (C/J).

- Kuo, T., <u>Performance and Costs of Parabolic Dish Solar Thermal Systems for</u> <u>Selected Process Applications</u>, (C/J).
- Lansing, F.L., A Simulation Exercise of a Cavity-Type Solar Receiver Using the JPL-HEAP Program, (C/J).

General Sensitivity Analysis of Solar Thermal Electric Power Systems, (C/J).

HEAP-Heat Energy Analysis Program - A Computer Model Simulating Solar Receivers, (E).

Latta, A., The Effects of Regional Insolation Differences Upon Advanced Solar Thermal Electric Power Plant Performance and Energy Costs, (C/J), (E).

Leibowitz, L.P., Advanced Solar Thermal Receiver Technology, (C/J).

Advanced Solar Thermal Technology for Process Applications, (C/J).

Advanced Solar Thermal Technology - Potential and Progress, (C/J), (I).

Application of a Reversible Chemical Reaction System to Solar Thermal Power Plants, (C/J). High Temperature Solar Thermal Technology, (C/J).

Parabolic Dish Solar Collectors for Industrial Process Heat, (C/J).

R&D Targets for Advanced Solar Thermal Power Systems, (C/J).

Levin, R.R., The JPL Isolated Application Experiment Series, (C/J).

- Levine, N., <u>A Survey of Manufacturers of Solar Thermal Energy Systems</u>, (E). <u>A Survey of Solar Thermal Energy Systems Manufacturers, Summary Results</u>, (I).
- Lin, E.I.H., A Review of the Salt-Gradient Solar Pond Technology, (E).

Regional Applicability and Potential of Salt-Gradient Solar Ponds in the United States, Vol. I - Executive Summary, Vol. II - Detailed Report, (E).

Liu, T.M., <u>Advanced Solar Thermal Technology for Process Applications</u>, (C/J). <u>Ceramic Technology for Solar Thermal Receivers</u>, (I).

Parabolic Dish Solar Collectors for Industrial Process Heat, (C/J).

Lucas, J.W., Parabolic Dish Technology for Industrial Process Heat Applications, (C/J).

Point Focusing Dishes, (C/J).

Presentation of Solar Thermal Power Systems Project - Energy Options for Industrial Users and Suppliers, (I).

Presentation to Solar Thermal Energy Division of the Solar Energy Industries Association (SEIA), (1).

Solar Parabolic Dish Thermal Power Systems Technology and Applications, (C/J).

Solar Thermal Power Systems Point-Focusing Distributed Receiver (PFDR) Technology: A Project Description, (C/J).

Subsystem Technology and Cost Targets, (I).

Manvi, R., Mixtures of Alkali or Alkaline Earth Metals and Their Halides for High Temperature Thermal Energy Storage in Solar Thermal Systems, (C/J).

Performance and Economic Risk Evaluation of Dispersed Solar Thermal Power Systems by Monte Carlo Simulation, (C/J).

Projected Techno-Economic Improvements for Advanced Solar Thermal Power Plants, (C/J).

Thermal Buffering of Receivers for Parabolic Dish Solar Thermal Power Plants, (C/J).

Turbine Sizing of a Solar Thermal Power Plant, (C/J).

- Marcus, C., <u>Thermal Buffering of Receivers for Parabolic Dish Solar Thermal</u> Power Plants, (C/J).
- Marriott, A.T., <u>Dispersed Solar Electric Power: A Small Power System Program</u>, (C/J).

NASA ESD Solar Thermal Project Review, Vol. I - Organic Rankine Module Development, Vol. II - Field Experiments, (I).

Parabolic Dish Systems at Work: Applying the Concepts, (C/J).

JPL Small Power Systems Applications Project, (C/J).

Small Community Solar Thermal Power Experiment, (I).

Small Power Systems Applications, (C/J).

Small Power Systems Applications Project, (C/J).

Small Solar Thermal Power Systems, (C/J).

Solar Electric Power from Parabolic Dishes, (C/J).

Solar Parabolic Dish Thermal Power Systems Technology and Applications, (C/J).

Solar Thermal Power Systems Point-Focusing Thermal and Electric Applications Project: A Progress Report, (C/J).

The Small Community Solar Thermal Power Experiment, (C/J).

Marsh, H.E., Chemical Energy Storage Systems Screening and Preliminary Selection, (I).

- Mayers, H.F., <u>Cost and Price Estimate of Brayton and Stirling Engines in</u> <u>Selected Production Volumes</u>, (E).
- Maynard, D.P., <u>Analytical Foundations/Computer Model for Dish-Brayton Power</u> System, (I).
- Mayo, L.G., <u>Economic Aspects of Solar Thermal Electric Power Generation in</u> <u>Small Utilities</u>, (C/J).

Solar Thermal Power Plants in Small Utilities: An Economic Impact Analysis, (C/J).

Miles, R.F., <u>Demonstration of Multi-Attribute Decision Analysis Applied to</u> <u>Small Solar Thermal Electric Power Plants</u>, (I).

Nesmith, B., The Jay Carter Enterprises, Inc. Steam Engine, (C/J).

- O'Gallagher, J., <u>Preliminary Results from a Test Array of 3X CPC Collectors in</u> <u>a School Heating Application</u>, (C/J).
- Owen, W.A., The JPL Flux Mapper, (C/J).
- Patzold, J.D., Omnium-G Concentrator Test Results, (C/J).

Peelgren, M.L., High Temperature Solar Thermal Technology, (C/J).

Salton Sea Project Phase 1, Final Report, (E).

Pham, H., Heat Engine Development for Solar Thermal Power Systems, (C/J).

Poon, P., Comparative Study of Solar Optics for Paraboloidal Concentrators, (C/J).

Optical Analysis of Cassegrainian Concentrator Systems, (C/J).

Optical Performance of a Fresnel-Type Concentrator with Truncated Paraboloidal Facets, (C/J).

Optical Performance of Several Point-Focusing Solar Concentrators, (C/J).

Secondary and Compound Concentrators for Parabolic Dish Solar Thermal Power Systems, (E). Secondary and Compound Concentrators for Distributed Point-Focusing Solar Thermal Power Systems, (C/J).

Solar Stirling System Development, (C/J).

Thermal and Optical Considerations of the Dish-Stirling Electric Generation System, (C/J).

- Rahe, A., <u>Preliminary Results from a Test Array of 3X CPC Collectors in a</u> School Heating Application, (C/J).
- Ramakumar, R., <u>Application of Field-Modulated Generator Systems to Dispersed</u> Solar Thermal Electric Generation, (E).

Dispersed Solar Thermal Generation Employing Parabolic Dish-Electric Transport with Field Modulated Generator Systems, (C/J).

Ramohalli, K., Advanced Development - Fuels, (C/J).

Reid, M.S., <u>The Effect of Urban Air Pollution on the Design and Performance of</u> Solar Energy Systems, (C/J).

Urban Air Pollution and Its Effects on the Design and Performance of Solar Energy Systems, (C/J).

Revere, W.R., <u>A Comparative Assessment of Solar Thermal Electric Power Plants</u> in the 1-10 MWe Range, (E).

Configuration Selection Study for Isolated Loads Using Parabolic Dish Modules, (C/J), (I).

Low-Cost Thermal Transport Piping Networks for Solar Industrial Process Heat Applications, (C/J).

Performance and Costs of Parabolic Dish Solar Thermal Systems for Selected Process Applications, (C/J).

Roschke, E.J., <u>A Preliminary Assessment of Small Steam Rankine and Brayton</u> Point-Focusing Solar Modules, (E).

Projected Techno-Economic Improvements for Advanced Solar Thermal Power Plants, (C/J).

Solar Thermal Power Point-Focusing Distributed Receiver (PFDR) Technology: A Project Description and Progress Report, (C/J). Solar Thermal Power Systems Point-Focusing Distributed Receiver (PFDR) Technology: A Project Description, (C/J).

Thermal Response of Solar Receiver Aperture Plates During Sun Walk-Off, (C/J), (I).

Rose, W., <u>Measurements of Coefficients of Thermal Expansion for High</u> Temperature Polymers, (C/J).

Rosenberg, L.S., <u>A Comparative Assessment of Solar Thermal Electric Power</u> Plants in the 1-10 MWe Range, (E).

The Application of Simulation Modeling to the Cost and Performance Ranking of Solar Thermal Power Plants, (C/J).

Ross, D.L., Parabolic Dish Test Site, (C/J).

Schredder, J.M., <u>Comparison of Advanced Thermal and Electric Storage for</u> <u>Parabolic Dish Solar Thermal Power Systems</u>, (C/J).

Schrenk, G., Optical Analysis of Cassegrainian Concentrator Systems, (C/J).

Selcuk, M.K., <u>A Graphical Method for the Prediction of Annual Performance of</u> Solar Collectors, (C/J).

A Nomogram for Parabolic Dish Solar Concentrator Efficiency Determination, (C/J).

- Simmons, H., <u>Preliminary Results from a Test Array of 3X CPC Collectors in a</u> <u>School Heating Application</u>, (C/J).
- Slonski, M., A Survey of Manufacturers of Solar Thermal Energy Systems, (E).
- Smith, J.H., <u>Average Daily and Annual Direct Normal Insolation Estimates for</u> the United States, (I).

Regional Analysis of Solar Thermal Electric and Conventional Power Plants, (1).

The Effect of Urban Air Pollution on the Design and Performance of Solar Energy Systems, (C/J).

Urban Air Pollution and Its Effects on the Design and Performance of Solar Energy Systems, (C/J). Smoak, R., Ceramic Technology for Solar Thermal Receivers, (C/J), (I).

Use of Ceramics in the Point-Focus Solar Receiver, (C/J).

Starkey, D.J., <u>Characterization of Point-Focusing Test Bed Concentrators at</u> <u>JPL</u>, (C/J).

Initial Test Bed Concentrator Characterization, (C/J).

Stearns, J.W., Dish-Stirling System Development, (C/J).

High Performance Solar Stirling Systems, (C/J).

Solar Stirling System Development, (C/J).

Stirling Engine Applications to Solar Thermal Electric Generation, (C/J).

- Steele, H.L., <u>Comparison of Electrochemical and Thermal Storage for Hybrid</u> <u>Parabolic Dish Solar Power Plants</u>, (C/J).
- Stein, C.K., <u>Preliminary Results from a Test Array of 3X CPC Collectors in a</u> School Heating Application, (C/J).

Solar Thermal Power Point-Focusing Distributed Receiver (PFDR) Technology: A Project Description and Progress Report, (C/J).

Terasawa, K., Potential Benefits from a Successful Solar Thermal Program, (C/J).

UV Transmission, Visible Reflectance, and Mechanical Properties of Commercial Solar Mirrors, (C/J).

Truscello, V.C., <u>Comparison of Parabolic Dish Systems with Other Solar</u> <u>Technologies</u>, (C/J).

Dispersed Solar Electric Power: A Small Power System Program, (C/J).

Heat and Electricity from the Sun Using Parabolic Dish Collector Systems, (C/J).

JPL Small Power Systems Applications Project, (C/J).

Parabolic Concentrating Collector - A Tutorial, (E).

Parabolic Dish Collectors - A Solar Option, (C/J).

Parabolic Dish Technology, (C/J).

Power Converters for Parabolic Dishes, (C/J).

Small Power Systems Applications Project, (C/J).

Small Solar Thermal Power Systems, (C/J).

Status of the Parabolic Dish Concentrator, (C/J).

The JPL Parabolic Dish Project, (C/J).

The Parabolic Concentrating Collector, (C/J).

Turner, R.H., High Temperature Heat Storage in Solids, (C/J).

Pipeline from Ocean to Desert to Provide Cooling for Solar Power Plant Complex, (C/J).

- Ugone, K.R., Energy Price and Consumption Forecast and Its Application to Solar Energy, (I).
- Vincent, R.W., <u>Procedure for Solar Thermal Power Systems Problem/Failure</u> <u>Reporting at the Parabolic Dish Test Site</u>, (I).
- Warren, E.H., <u>Solar Energy Market Penetration Analysis: A Review and</u> Critique, (C/J).

Solar Energy Market Penetration Models: Science or Number Mysticism, (C/J).

Wen, L.C., Brief Review of Increasing Geometric Concentration Ratio Vs. Improving Receiver Surface Characteristics, (I).

Comparative Study of Solar Optics for Paraboloidal Concentrators, (C/J).

Comparison of Electrochemical and Thermal Storage for Hybrid Parabolic Dish Solar Power Plants, (C/J).

Effects of Surface Optical Characteristics on Point-Focusing Solar Collectors, (C/J).

Solar Receiver Performance in the Temperature Range of 300 to 1300°C, (I).

Solar Receiver Performance of a Point-Focusing Collector System, (C/J).

Thermal Performance Trade-Offs for Point-Focusing Solar Collectors, (C/J).

Thermal Optical Surface Properties and High Temperature Solar Energy Conversion, (C/J).

Thermal Response of Solar Receiver Aperture Plates During Sun Walk-Off, (C/J), (I).

- Wharton, L., <u>Preliminary Results from a Test Array of 3X CPC Collectors in a</u> School Heating Application, (C/J).
- Williams, A.N., <u>Heat and Electricity from the Sun Using Parabolic Dish</u> Collector Systems, (C/J).

Parabolic Dish Technology, (C/J).

Power Converters for Parabolic Dishes, (C/J).

The JPL Parabolic Dish Program, (C/J).

- Winston, R., Preliminary Results from a Test Array of 3X CPC Collectors in a School Heating Application, (C/J).
- Won, Y.S., <u>Application a Reversible Chemical Reaction System to Solar Thermal</u> Power Plants, (C/J).

Evaluation of Sanders Associates Solar Receiver Concept, (I).

Wu, Y.C., Effects of Thermal Buffer Storage Performance on Parabolic Dish Solar Power Systems, (C/J).

Solar Pond Power Plant Feasibility Study for Davis, California, (E). Solar Receiver Performance in the Temperature Range of 300 to 1300[°]C, (I). Solar Receiver Performance of a Point-Focusing Collector System, (C/J).

Young, D., High Temperature Latent Heat Thermal Buffer Storage, (C/J).

Zitek, W., Preliminary Results from a Test Array of 3X CPC Collectors in a School Heating Application, (C/J).

Zwissler, J., Fracture Mechanics of Cellular Glass, (E).

Performance Prediction Evaluation of Ceramic Materials in Point-Focusing Solar Receivers, (C/J).

SECTION VII

TOPICAL INDEX

Documents are listed alphabetically under topics and subtopics and are identified by the first words of the title, the publication category (C/J = Conference or Journal Paper, E = External Document, I = Internal Document, andC = Contractor Report), and by the page on which they appear in theBibliography.

Applications

Annual Technical Report - Point Focusing Thermal, (E), p 3-1. Annual Technical Report - Small, (E), p 3-2. BDM, Workshop, (C) p 5-1. Burns & McDonnell, Assessment, (C) p 5-1. Energy for California, (I), p 4-2. Industrial, (C/J), p 2-5. Parabolic Dish Systems, C/J), p 2-6. Potential, (C/J), p 2-7. Selection, (C/J), p 2-7. Siting, (E), p 3-4. Small Power Systems Applications, (C/J), p 2-8. Solar Parabolic, (C/J), p 2-8.

Balance of Plant

<u>A Standard</u>, (E), p 3-1.

Chemical Applications

Advanced Solar Thermal Technology, (C/J), p 2-1. Performance and Costs, (I), p 4-3.

Collectors

Brief Review, (I), p 4-1. Optimization, (E), p 3-3. Parabolic Concentrating, (E), p 3-3. Parabolic Dish Collectors, (C/J), p 2-6. Parabolic Dish Solar, (C/J), p 2-6. Review of Distributed, (I), p 4-4. Thermal and Optical, (C/J), p 2-10. Thermal Optical Surface, (C/J), p 2-10. Line-Focusing

Preliminary, (C/J), p 2-7.

Point-Focusing

The Parabolic, (C/J), p 2-10

Commercialization (See also Markets)

Arthur D. Little, <u>Study</u>, (C), p 5-1. <u>Assessment and Planning</u>, (I), p 4-1. <u>Barriers</u>, (C/J), p 2-1. <u>Demonstration</u>, (I), p 4-2. <u>Effects of Ownership</u>, (C/J), p 2-3. <u>Perspectives</u>, (I), p 4-3. <u>Regulations</u>, (I), p 4-4. <u>Solar Thermal Technologies Benefits</u>, (E), p 3-4. <u>Utility</u>, (C/J), p 2-12.

Concentrators

```
Acurex, Advanced, (C), p 5-1.
Acurex, Low-Cost, (C), p 5-1.
Boeing, A Conceptual, (C), p 5-1.
Dish Concentrators, (E), p 3-2.
Dish Concentrators for Solar Thermal Energy, (C/J), p 2-3.
Dish Concentrators for Solar Thermal Energy: Status, (C/J), p 2-3.
General Electric, Low Cost, (C), p 5-3.
Omnium-G, (C/J), p 2-5.
Optimization, (E), p 3-3.
Pioneer, Manufacturing, (C), p 5-3.
Point Focusing, (C/J), p 2-7.
Progress, (C/J), p 2-7.
Secondary, (C/J), p 2-7.
Secondary, (E), p 3-3.
Status, (C/J), p 2-9.
The Effects of Soiling, (C/J), p 2-10.
```

Control

Effects of Pointing, (C/J), p 2-3. Effects of Tracking, (C/J), p 2-4. Efficiency, (C/J), p 2-4. Optimal, (C/J), p 2-6. Power Processing and Control, (C/J), p 2-7. Solar Tracking, (C/J), p 2-9. The Sun Tracking, (C/J), p 2-11. Cost

```
Configuration, (C/J), p 2-2.

Configuration, (I), p 4-2.

Cost Goals, (C/J), p 2-2.

Design, (I), p 4-2.

Evaluation of Solar Thermal, (C/J), p 2-4.

Methodology, (I), p 4-3.

NASA ESD Solar Thermal Project Review - Parabolic, (I), p 4-3.

Performance and Costs, (C/J), p 2-6

Performance and Costs, (I), p 4-3.

Performance and Economic, (C/J), p 2-6.

R&D Targets, (C/J), p 2-7.

Regional, (I), p 4-4.

Review of the Projected, (I), p 4-4.

Subsystem, (I), p 4-5.

The Application, (C/J), p 2-10.
```

Of Output

Economic Goals for Solar Thermal Electric Applications, (C/J), p 2-3. Economic Goals for Solar Thermal Electric R&D, (C/J), p 2-3. Effects of Regional, (E), p 3-2. Electric, (I), p 4-2. Energy Price, (I), p 4-2 Solar Thermal Technology Development, (E), p 3-4. The Effects of Regional, (C/J), p 2-10.

Of Production

<u>A Standard</u>, (E), p 3-1. <u>Computer</u>, (I), p 4-1. <u>Cost Analysis</u>, (I), p 4-2. <u>Cost and Considerations</u>, (I), p 4-2. <u>Cost and Price</u>, (E), p 3-2. <u>Cost Estimating</u>, (C/J), p 2-2. <u>Costing</u>, (C/J), p 2-2. <u>Manufacturing Cost Estimate of a Ceramic</u>, (I), p 4-3. <u>Manufacturing Cost Estimate of an Organic</u>, (I), p 4-3. Pioneer, <u>Cost Analysis</u>, (C), p 5-3. Pioneer, <u>Manufacturing</u>, (C), p 5-3.

Economics

Economic Aspects, (C/J), p 2-3. Economic Cost, (I), p 4-2. Economic Feasibility, (I), p 4-2. Economic Value, (I), p 4-2. Impact, (C/J), p 2-5.

```
Perspectives, (I), p 4-3.

<u>Projected</u>, (C/J), p 2-7.

<u>Projection</u>, (I), p 4-4.

<u>Solar Thermal Power Plants</u>, (C/J), p 2-9.

<u>Solar Thermal Technologies Benefits</u>, (E), p 3-4.

<u>Techno-Economic</u>, (E), p 3-4.
```

Engines

An Overview, (I), p 4-1. <u>Comparison of Advanced Engines</u>, (C/J), p 2-2. <u>Computer</u>, (I), p 4-1. <u>Heat Engine Development</u>, (C/J), p 2-4. <u>Heat Engine Requirements</u>, (C/J), p 2-4. <u>Power Converters</u>, (C/J), p 2-7. <u>Turbine Sizing</u>, (C/J), p 2-11.

Brayton

```
Cost and Price, (E), p 3-2.
Garrett, Concept, (C), p 5-2.
```

Rankine, Steam

Foster-Miller, 15 kWe, (C), p 5-2. Jay Carter, 15 kWe, (C), p 5-3. The Jay Carter, (C/J), p 2-10. Sundstrand, 15 kWe, (C), p 5-3.

Stirling

```
Cost and Price, (E), p 3-2.

Dish Stirling, (E), p 3-2.

Dynamics, (C/J), p 2-3.

Heat Transfer, (C/J), p 2-4.

High Performance, (C/J), p 2-4.

Mechanical Technology, Design, (C), p 5-3.

Stirling, (C/J), p 2-9.

United Stirling, Design, (C), p 5-3.
```

Environment

Effects of

```
Environmental, (C/J), p 2-4.

<u>The Effect of Urban</u>, (C/J), p 2-10.

<u>Solar Thermal Technology</u>, (C/J), p 2-9.
```

Urban Air Pollution and Its Effect, (C/J), p 2-11. Urban Air Pollution and Solar, (C/J), p 2-12.

Effects on

Solar Thermal Technology, (C/J), p 2-9.

Experiments

Isolated Loads

The JPL Isolated, (C/J), p 2-10. Dish PRDA, (I), P 4-2.

Small Community

McDonnell Douglas, <u>Phase I</u>, (C), p 5-3. <u>NASA ESD Solar Thermal Project Review, Vol. II</u>, (I), p 4-3. <u>Site Participation</u>, (C/J), p 2-8. <u>Siting</u>, (C/J), p 2-8. <u>Siting</u>, (E), p 3-4. <u>Small Community Solar</u>, (I), p 4-4. <u>Systems Requirements Experiment 1</u>, (I), p 4-5. <u>Systems Requirements for Experiment 2</u>, (I), p 4-5. <u>Systems Requirements for Experiment 1</u>, (I), p 4-5. <u>The Small Community Experiment</u>, (C/J), p 2-11. The Small Community Solar, (C/J), p 2-11.

Fuel Production

Advanced Development, (C/J), p 2-1.

Generators

Dispersed Solar Thermal, (C/J), p 2-3. Application, (E), p 3-2.

Insolation

Average, (I), p 4-1. Perspectives, (I), p 4-3. Manufacturing

```
Arthur D. Little, Study, (C), p 5-1.

<u>A Survey</u>, (E), p 3-1.

<u>A Survey</u>, (I), p 4-1.
```

Materials

```
Aging, (C/J), p 2-1.
Aging, (I), p 4-1.
Assessment, (C/J), p 2-1.
Assessment of Ceramic, (I), p 4-1.
Benefits, (C/J), p 2-2.
Ceramic, (C/J), p. 2-2.
Ceramic, (I), p 4-1.
Cost/Performance, (E), p 3-2.
Criteria, (E), p 3-2.
Evaluation of Cellular, (E), p 3-2.
Evaluation of Solar, (I), p 4-2.
Evaluation of Solar Reflective, (C/J), p 2-4.
Evaluation of the Effects, (E), p 3-2.
Fracture Mechanics, (E), p 3-2.
Glass, (I), p 4-2.
Measurements, (C/J), p 2-5.
Mixtures, (C/J), p 2-5.
Performance, (E), p 3-3.
Reflectance, (C/J), p 2-7.
Solar Tests, (C/J), p 2-9.
Solar Tests, (E), p 3-3.
Status, (E), p 3-4.
The Effects of Soiling, (C/J), p 2-10.
Thermal Response, (C/J), p 2-11.
Thickness, (C/J), p 2-11.
Use of Ceramics, (C/J), p 2-11.
UV Transmission, (C/J), p 2-12.
```

Markets (See also Commercialization)

Irrigation, (E), p 3-3. <u>Market</u>, (C/J), p 2-5. <u>Parabolic Dish Market</u>, (I), p 4-3. <u>Small Community Solar</u>, (I), p 4-4. <u>Solar Energy Market Penetration Analysis</u>, (C/J), p 2-8. <u>Solar Energy Market Penetration Models</u>, (C/J), p 2-8. <u>Solar Thermal Technology Development</u>, (E), p 3-4. <u>Utility</u>, (C/J), p 2-12. Optics

Comparative Study, (C/J), p 2-2. Effects of Surface, (C/J), p 2-4. Optical Analysis, (C/J), p 2-6. Optical Performance of a Fresnel, (C/J), p 2-6. Optical Performance of Several, (C/J), p 2-6. Solar Concentrator, (C/J), p 2-8. Test Bed, (C/J), p 2-9. Thermal and Optical, (C/J), p 2-10. Thermal Optical, (C/J), p 2-10.

Performance

```
A Graphical, (C/J), p 2-1.
A Modularized Computer, (I), p 4-1.
A Nomogram, (C/J), p 2-1.
A Simulation, (C/J), p 2-1.
Analytical Foundations, (I), p 4-1.
Brief Review, (I), p 4-1.
Configuration, (C/J), p 2-2.
Configuration, (I), p 4-2.
Design, Cost, (I), p 4-2.
Effects, (E), p 3-2.
Evaluation of Solar Thermal, (C/J), p 2-4.
General, (C/J), p 2-4.
HEAP, (E), p 3-3.
Performance, (I), p 4-3.
Performance and Costs, (C/J), p 2-6.
Performance and Economic, (C/J), p 2-6.
Performance Characteristics, (C/J), p 2-6.
Presentation to Workshop, (I), p 4-4.
Solar Brayton, (C/J), p 2-8.
Solar Receiver, (C/J), p 2-8.
The Application, (C/J), p 2-10.
The Effects of Regional, (C/J), p 2-10.
The SYSGEN, (E), p 3-4.
Thermal and Optical, (C/J), p 2-10.
Thermal Performance, (C/J), p 2-11.
```

Piping

Low-Cost, (C/J), p 2-5.

Plant Design

```
Configuration, (C/J), p 2-2.
Configuration, (I), p 4-2.
Review of Arkansas, (I), p 4-4.
```

```
Review of Brevard, (I), p 4-4.

<u>Review of City</u>, (I), p 4-4.

<u>Review of Mississippi</u>, (I), p 4-4.

<u>Review of New Mexico</u>, (I), p 4-4.
```

Ponds

```
<u>A Review</u>, (E), p 3-1.

<u>Conference</u>, (I), p 4-2.

<u>Regional</u>, (E), p 3-3.

<u>Salton Sea</u>, (E), p 3-3.

<u>Solar Pond</u>, (E), p 3-3.

<u>Solar Ponds</u>, (I), p 4-4.

<u>Solution</u>, (I), p 4-5.
```

Power Processing

Power Processing and Control, (C/J), p 2-7. Power Processing, Power Management, (C/J), p 2-7.

Process Heat

Design, Cost, (I), p 4-2. Ford, Parabolic, (C), p 5-1. <u>Industrial</u>, (I), p 4-3. <u>Parabolic Dish Solar</u>, (C/J), p 2-6. Parabolic Dish Technology for Industrial, (C/J), p 2-6.

Program and Project

```
Annual Technical Report, (E), p 3-2.
Annual Technical Report, FY 1980, (E), p 3-1.
Annual Technical Report, FY 1981, (E), p 3-1.
Annual Technical Report - Point Focusing, FY 1978, (E), p 3-1.
Annual Technical Report - Point Focusing Distributed, (E), p 3-1
Annual Technical Report - Point Focusing Thermal, (E), p 3-1.
Dispersed Solar Electric, (C/J), p 2-3.
Display Posters, (I), p 4-2.
JPL Small, (C/J), p 2-5.
Parabolic Dish Project, (E), p 3-3.
Parabolic Dish Program, (I), p 4-3.
Parabolic Dish Solar Thermal Power Annual Program Review Proceedings,
  December 1981, (E), p 3-3.
Parabolic Dish Solar Thermal Power Annual Program Review Proceedings,
  <u>May 1981</u>, (E), p 3-3.
PDTS, (E), p 3-3.
Presentation of Solar, (I), p 4-4.
Presentation to Solar, (I), p 4-4.
```

```
Proceedings Fourth, (E), p 3-3.
Proceedings of Small, (E), p 3-3.
Proceedings of the First, (E), p 3-3.
Solar/Fossil, (I), p 4-4.
Solar Thermal Technology Annual Technical, (E), p 3-4.
Solar Thermal Technology Annual Evaluation, (E), p 3-4.
Small Power Systems Applications Project, (C/J), p 2-8.
Solar Thermal Power Systems Point-Focusing Distributed Receiver (PFDR)
  Technology: A Progress, (C/J), p 2-9.
Solar Thermal Power Systems Point-Focusing Distributed Receiver (PFDR)
  Technology: A Project, (C/J), p 2-9.
The JPL Parabolic, (C/J), p 2-10.
The Solar, (E), p 3-4.
The Small Community Solar Power, (C/J), p 2-11.
Thermal Power, (I), p 4-5.
Third Semiannual Advanced Technology Meeting - Display Posters, (I), p 4-5.
Third Semiannual Advanced Technology Meeting - Abstracts, (I), p 4-5.
```

Receivers

```
Advanced Receiver, (C/J), p 2-1.
Advanced Solar Thermal Receiver, (C/J), p 2-1.
A Simulation, (C/J), p 2-1.
Boeing, Air Brayton, (C), p 5-1.
Dish Stirling, (E), p 3-2.
Evaluation, (I), p 4-2.
Fairchild, Dish, (C), p 5-1.
Garrett, <u>Air Brayton</u>, (C), p 5-2.
Garrett, A High-Temperature, (C), p 5-2.
General Electric, <u>A Conceptual</u>, (C), p 5-2.
General Electric, Conceptual Design Study of a High Temperature, (C), p 5-2.
General Electric, Easy, (C), p 5-2.
General Electric, Heat, (C), p 5-3.
HEAP, (E), p 3-3.
Manufacturing Cost Estimate of a Ceramic, (I), p 4-3.
Manufacturing Cost Estimate of an Organic, (I), p 4-3.
Pioneer, <u>Cost Analysis</u>, (C), p 5-3.
Sanders, High Temperature, (C), p 5-3.
Sanders, Phase I, (C), p 5-3.
Solar Receiver, (I), p 4-4.
Solar Receiver, (C/J), p 2-8.
Solar Thermal Power Point-Focusing Distributed Receiver (PFDR)
  Technology: A Project Description, (C/J), p 2-9.
Systems Approach, (I), p 4-5.
Systems Approach, (C/J), p 2-9.
Thermal Response, (C/J), p 2-11.
Thermal Response, (1), p 4-5.
```

Research and Development

R&D Targets, (C/J), p 2-7.

Storage

```
Application, (C/J), p 2-1.
Chemical Energy, (I), p 4-1.
Comparison of Advanced, (C/J), p 2-2.
Comparison of Advanced, (I), p 4-1.
Comparison of Electrochemical, (C/J), p 2-2.
Dish-Mounted, (C/J), p 2-3.
Effects of Thermal, (C/J), p 2-4.
Electrochemical, (E), p 3-2.
Experimental, (C/J), p 2-4.
Garrett, Buffer, (C), p 5-2.
General Electric, Storage, (C), p 5-2.
High Temperature Heat, (C/J), p 2-5.
High Temperature Latent, (C/J), p 2-5.
Thermal, (E), p 3-4.
Thermal Buffering, (C/J), p 2-10.
Thermal Storage, (C/J), p 2-11.
Thermal Storage Applications, (I), p 4-5.
Thermal Storage Role, (I), p 4-5.
```

Systems

Brayton

A Preliminary, (E), p 3-1. <u>Analytical Foundations</u>, (I), p 4-1. <u>Dish Brayton</u>, (C/J), p 2-3. <u>Systems Requirements for the Brayton</u>, (I), p 4-5.

Comparison

```
A Comparative, (E), p 3-1.

<u>Comparative Evaluation</u>, (C/J), p 2-2.

<u>Comparison of Parabolic</u>, (C/J), p 2-2.

<u>Decision</u>, (E), p 3-2.

<u>Design</u>, <u>Cost</u>, (I), p 4-2.

<u>Initial</u>, (E), p 3-1.

<u>Initial</u>, (I-Presentation), p 4-3.

<u>Regional</u>, (I), p 4-4.
```

General

```
Focus, (E), p 3-2.

<u>Heat</u>, (C/J), p 2-4.

<u>Heat</u>, (I), p 4-3.

<u>Parabolic Dish System</u>, (C/J), p 2-6.

<u>Power from</u>, (C/J), p 2-7.
```

Small Solar Thermal Power Systems, (C/J), p 2-8. Small Solar Thermal Power Systems for Dispersed, (C/J), p 2-8. Solar Electric Power, (C/J), p 2-8. Technologies, (C/J), p 2-9.

Rankine, Organic

NASA ESD, (I), p 4-3.

Rankine, Steam

A Preliminary, (E), p 3-1.

Stirling

Dish Stirling, (C/J), p 2-3. Solar Stirling, (C/J), p 2-9. Thermal and Optical, (C/J), p 2-10.

Technology

```
Advanced Solar Thermal Development, (I), p 4-1.
Advanced Solar Thermal Technology, (I), p 4-1.
Advanced Solar Thermal Technology: Potential, (C/J), p 2-1.
Advanced Subsystems Development, Second, (E), p 3-1.
Advanced Subsystems Development, Third, (E), p 3-1.
Annual Technical Report, FY 1978, (E), p 3-1.
Annual Technical Report, FY 1979, (E), p 3-1.
Focus, (E), p 3-2.
High Temperature Solar, (C/J), p 2-5.
Parabolic Dish Technology, (C/J), p 2-6.
Parabolic Dish Technology for Industrial, (C/J), p 2-6.
Perspectives, (I), p 4-3.
Projected, (C/J), p 2-7.
Solar Parabolic, (C/J), p 2-8.
Solar Parabolic, (E), p 3-3.
Subsystem, (I), p 4-5.
Techno-Economic, (E), p 3-4.
```

Testing

Characterization, (C/J), p 2-2. Documentation, (I), p 4-2. Initial, (C/J), p 2-5. JPL's Parabolic, (C/J), p 2-5. Materials, (I), p 4-3. Parabolic Dish Test, (C/J), p 2-6. Point Focusing, (I), p 4-3. Procedure, (I), p 4-4. Solar Concentrator, (C/J), p 2-8. Solar Tests, (C/J), p 2-9. Solar Tests, (E), p 3-3. Test Plan, (I), p 4-5. Testing, (E), p 3-4. The JPL Flux, (C/J), p 2-10. Thickness, (C/J), p 2-11. User's, (I), p 4-5.

Transport of Energy

Application, (C/J), p 2-1. Dispersed Solar Thermal, (C/J), p 2-3. Experimental, (C/J), p 2-4. General Electric, Conceptual Design Study on the Application, (C), p 5-2. General Electric, Easy, (C), p 5-2. General Electric, Heat, (C), p 5-3. Pipeline, (C/J), p 2-6. Thermodynamics, (C/J), p 2-11.

Utility Interface

Power Processing, Power Management, (C/J), p 2-7.

.

UNITED STATES DEPARTMENT OF ENERGY P.O. BOX 62 OAK RIDGE, TENNESSEE 37830 OFFICIAL BUSINESS PENALTY FOR PRIVATE USE: \$300

ونير

و

POSTAGE AND FEES PAID UNITED STATES DEPARTMENT OF ENERGY

\$ 2.2

1

528 FS- 1 NATIONAL AERONAUTICS AND SPACE ADM ATTN LIBRARY LANGLEY RESEARCH CENTER HAMPTON, VA 23665