231 research outputs found

    Iterative beam search algorithms for the permutation flowshop

    Full text link
    We study an iterative beam search algorithm for the permutation flowshop (makespan and flowtime minimization). This algorithm combines branching strategies inspired by recent branch-and-bounds and a guidance strategy inspired by the LR heuristic. It obtains competitive results, reports many new-best-so-far solutions on the VFR benchmark (makespan minimization) and the Taillard benchmark (flowtime minimization) without using any NEH-based branching or iterative-greedy strategy. The source code is available at: https://gitlab.com/librallu/cats-pfsp

    Iterated-greedy-based algorithms with beam search initialization for the permutation flowshop to minimize total tardiness

    Get PDF
    The permutation flow shop scheduling problem is one of the most studied operations research related problems. Literally, hundreds of exact and approximate algorithms have been proposed to optimise several objective functions. In this paper we address the total tardiness criterion, which is aimed towards the satisfaction of customers in a make-to-order scenario. Although several approximate algorithms have been proposed for this problem in the literature, recent contributions for related problems suggest that there is room for improving the current available algorithms. Thus, our contribution is twofold: First, we propose a fast beam-search-based constructive heuristic that estimates the quality of partial sequences without a complete evaluation of their objective function. Second, using this constructive heuristic as initial solution, eight variations of an iterated-greedy-based algorithm are proposed. A comprehensive computational evaluation is performed to establish the efficiency of our proposals against the existing heuristics and metaheuristics for the problem.Ministerio de Ciencia e Innovación DPI2013-44461-PMinisterio de Ciencia e Innovación DPI2016-80750-

    An efficient discrete artificial bee colony algorithm for the blocking flow shop problem with total flowtime minimization

    Get PDF
    This paper presents a high performing Discrete Artificial Bee Colony algorithm for the blocking flow shop problem with flow time criterion. To develop the proposed algorithm, we considered four strategies for the food source phase and two strategies for each of the three remaining phases (employed bees, onlookers and scouts). One of the strategies tested in the food source phase and one implemented in the employed bees phase are new. Both have been proved to be very effective for the problem at hand. The initialization scheme named HPF2(¿, µ) in particular, which is used to construct the initial food sources, is shown in the computational evaluation to be one of the main procedures that allow the DABC_RCT to obtain good solutions for this problem. To find the best configuration of the algorithm, we used design of experiments (DOE). This technique has been used extensively in the literature to calibrate the parameters of the algorithms but not to select its configuration. Comparing it with other algorithms proposed for this problem in the literature demonstrates the effectiveness and superiority of the DABC_RCTPeer ReviewedPostprint (author’s final draft

    A Multi-Restart Iterated Local Search Algorithm for the Permutation Flow Shop Problem Minimizing Total Flow Time

    Get PDF
    A variety of metaheuristics have been developed to solve the permutation flow shop problem minimizing total flow time. Iterated local search (ILS) is a simple but powerful metaheuristic used to solve this problem. Fundamentally, ILS is a procedure that needs to be restarted from another solution when it is trapped in a local optimum. A new solution is often generated by only slightly perturbing the best known solution, narrowing the search space and leading to a stagnant state. In this paper, a strategy is proposed to allow the restart solution to be generated from a group of solutions drawn from local optima. This allows an extension of the search space, while maintaining the quality of the restart solution. A multi-restart ILS (MRSILS) is proposed, with the performance evaluated on a set of benchmark instances and compared with six state of the art metaheuristics. The results show that the easily implementable MRSILS is significantly better than five of the other metaheuristics and comparable to or slightly better than the remaining one. © 2012 Elsevier Ltd. All rights reserved

    Overview on: sequencing in mixed model flowshop production line with static and dynamic context

    Get PDF
    In the present work a literature overview was given on solution techniques considering basic as well as more advanced and consequently more complex arrangements of mixed model flowshops. We first analyzed the occurrence of setup time/cost; existing solution techniques are mainly focused on permutation sequences. Thereafter we discussed objectives resulting in the introduction of variety of methods allowing resequencing of jobs within the line. The possibility of resequencing within the line ranges from 1) offline or intermittent buffers, 2) parallel stations, namely flexible, hybrid or compound flowshops, 3) merging and splitting of parallel lines, 4) re-entrant flowshops, to 5) change job attributes without physically interchanging the position. In continuation the differences in the consideration of static and dynamic demand was studied. Also intermittent setups are possible, depending on the horizon and including the possibility of resequencing, four problem cases were highlighted: static, semi dynamic, nearly dynamic and dynamic case. Finally a general overview was given on existing solution methods, including exact and approximation methods. The approximation methods are furthermore divided in two cases, know as heuristics and methaheuristic

    AN EFFICIENT HEURISTIC TO BALANCE TRADE-OFFS BETWEEN UTILIZATION AND PATIENT FLOWTIME IN OPERATING ROOM MANAGEMENT

    Get PDF
    Balancing trade-offs between production cost and holding cost is critical for production and operations management. Utilization of an operating room affects production cost, which relates to makespan, and patient flowtime affects holding cost. There are trade-offs between two objectives, to minimize makespan and to minimize flowtime. However, most existing constructive heuristics focus only on single-objective optimization. In the current literature, NEH is the best constructive heuristic to minimize makespan, and LR heuristic is the best to minimize flowtime. In this thesis, we propose a current and future deviation (CFD) heuristic to balance trade-offs between makespan and flowtime minimizations. Based on 5400 randomly generated instances and 120 instances in Taillard’s benchmarks, our CFD heuristic outperforms NEH and LR heuristics on trade-off balancing, and achieves the most stable performances from the perspective of statistical process control

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Scheduling flow lines with buffers by ant colony digraph

    Get PDF
    This work starts from modeling the scheduling of n jobs on m machines/stages as flowshop with buffers in manufacturing. A mixed-integer linear programing model is presented, showing that buffers of size n - 2 allow permuting sequences of jobs between stages. This model is addressed in the literature as non-permutation flowshop scheduling (NPFS) and is described in this article by a disjunctive graph (digraph) with the purpose of designing specialized heuristic and metaheuristics algorithms for the NPFS problem. Ant colony optimization (ACO) with the biologically inspired mechanisms of learned desirability and pheromone rule is shown to produce natively eligible schedules, as opposed to most metaheuristics approaches, which improve permutation solutions found by other heuristics. The proposed ACO has been critically compared and assessed by computation experiments over existing native approaches. Most makespan upper bounds of the established benchmark problems from Taillard (1993) and Demirkol, Mehta, and Uzsoy (1998) with up to 500 jobs on 20 machines have been improved by the proposed ACO

    The distributed assembly permutation flowshop scheduling problem

    Full text link
    Nowadays, improving the management of complex supply chains is a key to become competitive in the twenty-first century global market. Supply chains are composed of multi-plant facilities that must be coordinated and synchronised to cut waste and lead times. This paper proposes a Distributed Assembly Permutation Flowshop Scheduling Problem (DAPFSP) with two stages to model and study complex supply chains. This problem is a generalisation of the Distributed Permutation Flowshop Scheduling Problem (DPFSP). The first stage of the DAPFSP is composed of f identical production factories. Each one is a flowshop that produces jobs to be assembled into final products in a second assembly stage. The objective is to minimise the makespan. We present first a Mixed Integer Linear Programming model (MILP). Three constructive algorithms are proposed. Finally, a Variable Neighbourhood Descent (VND) algorithm has been designed and tested by a comprehensive ANOVA statistical analysis. The results show that the VND algorithm offers good performance to solve this scheduling problem.Ruben Ruiz is partially supported by the Spanish Ministry of Science and Innovation, under the project 'RESULT - Realistic Extended Scheduling Using Light Techniques' with reference DPI2012-36243-C02-01. Carlos Andres-Romano is partially supported by the Spanish Ministry of Science and Innovation, under the project 'INSAMBLE' - Scheduling at assembly/disassembly synchronised supply chains with reference DPI2011-27633.Hatami, S.; Ruiz García, R.; Andrés Romano, C. (2013). The distributed assembly permutation flowshop scheduling problem. International Journal of Production Research. 51(17):5292-5308. https://doi.org/10.1080/00207543.2013.807955S529253085117Basso, D., Chiarandini, M., & Salmaso, L. (2007). Synchronized permutation tests in replicated designs. Journal of Statistical Planning and Inference, 137(8), 2564-2578. doi:10.1016/j.jspi.2006.04.016Biggs, D., De Ville, B., & Suen, E. (1991). A method of choosing multiway partitions for classification and decision trees. Journal of Applied Statistics, 18(1), 49-62. doi:10.1080/02664769100000005Chan, F. T. S., Chung, S. H., Chan, L. Y., Finke, G., & Tiwari, M. K. (2006). Solving distributed FMS scheduling problems subject to maintenance: Genetic algorithms approach. Robotics and Computer-Integrated Manufacturing, 22(5-6), 493-504. doi:10.1016/j.rcim.2005.11.005Chan, F. T. S., Chung, S. H., & Chan, P. L. Y. (2006). Application of genetic algorithms with dominant genes in a distributed scheduling problem in flexible manufacturing systems. International Journal of Production Research, 44(3), 523-543. doi:10.1080/00207540500319229Liao, C.-J., & Liao, L.-M. (2008). Improved MILP models for two-machine flowshop with batch processing machines. Mathematical and Computer Modelling, 48(7-8), 1254-1264. doi:10.1016/j.mcm.2008.01.001Framinan, J. M., & Leisten, R. (2003). An efficient constructive heuristic for flowtime minimisation in permutation flow shops. Omega, 31(4), 311-317. doi:10.1016/s0305-0483(03)00047-1Gao, J., & Chen, R. (2011). A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem. International Journal of Computational Intelligence Systems, 4(4), 497-508. doi:10.1080/18756891.2011.9727808Hansen, P., & Mladenović, N. (2001). Variable neighborhood search: Principles and applications. European Journal of Operational Research, 130(3), 449-467. doi:10.1016/s0377-2217(00)00100-4Hariri, A. M. A., & Potts, C. N. (1997). A branch and bound algorithm for the two-stage assembly scheduling problem. European Journal of Operational Research, 103(3), 547-556. doi:10.1016/s0377-2217(96)00312-8Jia, H. Z., Fuh, J. Y. H., Nee, A. Y. C., & Zhang, Y. F. (2002). Web-based Multi-functional Scheduling System for a Distributed Manufacturing Environment. Concurrent Engineering, 10(1), 27-39. doi:10.1177/1063293x02010001054Jia, H. Z., Nee, A. Y. C., Fuh, J. Y. H., & Zhang, Y. F. (2003). Journal of Intelligent Manufacturing, 14(3/4), 351-362. doi:10.1023/a:1024653810491Jia, H. Z., Fuh, J. Y. H., Nee, A. Y. C., & Zhang, Y. F. (2007). Integration of genetic algorithm and Gantt chart for job shop scheduling in distributed manufacturing systems. Computers & Industrial Engineering, 53(2), 313-320. doi:10.1016/j.cie.2007.06.024Kass, G. V. (1980). An Exploratory Technique for Investigating Large Quantities of Categorical Data. Applied Statistics, 29(2), 119. doi:10.2307/2986296Lee, C.-Y., Cheng, T. C. E., & Lin, B. M. T. (1993). Minimizing the Makespan in the 3-Machine Assembly-Type Flowshop Scheduling Problem. Management Science, 39(5), 616-625. doi:10.1287/mnsc.39.5.616Morgan, J. N., & Sonquist, J. A. (1963). Problems in the Analysis of Survey Data, and a Proposal. Journal of the American Statistical Association, 58(302), 415-434. doi:10.1080/01621459.1963.10500855Pan, Q.-K., & Ruiz, R. (2012). Local search methods for the flowshop scheduling problem with flowtime minimization. European Journal of Operational Research, 222(1), 31-43. doi:10.1016/j.ejor.2012.04.034Potts, C. N., Sevast’janov, S. V., Strusevich, V. A., Van Wassenhove, L. N., & Zwaneveld, C. M. (1995). The Two-Stage Assembly Scheduling Problem: Complexity and Approximation. Operations Research, 43(2), 346-355. doi:10.1287/opre.43.2.346Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 177(3), 2033-2049. doi:10.1016/j.ejor.2005.12.009Ruiz, R., Şerifoğlu, F. S., & Urlings, T. (2008). Modeling realistic hybrid flexible flowshop scheduling problems. Computers & Operations Research, 35(4), 1151-1175. doi:10.1016/j.cor.2006.07.014Ruiz, R., & Andrés-Romano, C. (2011). Scheduling unrelated parallel machines with resource-assignable sequence-dependent setup times. The International Journal of Advanced Manufacturing Technology, 57(5-8), 777-794. doi:10.1007/s00170-011-3318-2Stafford, E. F., Tseng, F. T., & Gupta, J. N. D. (2005). Comparative evaluation of MILP flowshop models. Journal of the Operational Research Society, 56(1), 88-101. doi:10.1057/palgrave.jors.2601805Tozkapan, A., Kırca, Ö., & Chung, C.-S. (2003). A branch and bound algorithm to minimize the total weighted flowtime for the two-stage assembly scheduling problem. Computers & Operations Research, 30(2), 309-320. doi:10.1016/s0305-0548(01)00098-3Tseng, F. T., & Stafford, E. F. (2008). New MILP models for the permutation flowshop problem. Journal of the Operational Research Society, 59(10), 1373-1386. doi:10.1057/palgrave.jors.260245

    A comprehensive review and evaluation of permutation flowshop heuristics to minimize flowtime

    Full text link
    [EN] In recent years, a large number of heuristics have been proposed for the minimization of the total or mean flowtime/completion time of the well-known permutation flowshop scheduling problem. Although some literature reviews and comparisons have been made, they do not include the latest available heuristics and results are hard to compare as no common benchmarks and computing platforms have been employed. Furthermore, existing partial comparisons lack the application of powerful statistical tools. The result is that it is not clear which heuristics, especially among the recent ones, are the best. This paper presents a comprehensive review and computational evaluation as well as a statistical assessment of 22 existing heuristics. From the knowledge obtained after such a detailed comparison, five new heuristics are presented. Careful designs of experiments and analyses of variance (ANOVA) techniques are applied to guarantee sound conclusions. The comparison results identify the best existing methods and show that the five newly presented heuristics are competitive or better than the best performing ones in the literature for the permutation flowshop problem with the total completion time criterionThis research is partially supported by National Science Foundation of China (60874075, 61174187), and Science Foundation of Shandong Province, China (BS2010DX005), and Postdoctoral Science Foundation of China (20100480897). Ruben Ruiz is partially funded by the Spanish Ministry of Science and Innovation, under the project "SMPA-Advanced Parallel Multiobjective Sequencing: Practical and Theorerical Advances" with reference DPI2008-03511/DPI and by the Small and Medium Industry of the Generalitat Valenciana (IMPIVA) and by the European Union through the European Regional Development Fund (FEDER) inside the R+D program "Ayudas dirigidas a Institutos Tecnologicos de la Red IMPIVA" during the year 2011, with project number IMDEEA/2011/142.Pan, Q.; Ruiz García, R. (2013). A comprehensive review and evaluation of permutation flowshop heuristics to minimize flowtime. Computers and Operations Research. 40(1):117-128. https://doi.org/10.1016/j.cor.2012.05.018S11712840
    corecore