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Abstract

A variety of metaheuristics have been developed to solve the permutation
flow shop problem minimizing total flow time. Iterated local search (ILS) is
a simple but powerful metaheuristic used to solve this problem. Fundamen-
tally, ILS is a procedure that needs to be restarted from another solution
when it is trapped in a local optimum. A new solution is often generated
by only slightly perturbing the best known solution, narrowing the search
space and leading to a stagnant state. In this paper, a strategy is pro-
posed to allow the restart solution to be generated from a group of solutions
drawn from local optima. This allows an extension of the search space, while
maintaining the quality of the restart solution. A multi-restart ILS (MR-
SILS) is proposed, with the performance evaluated on a set of benchmark
instances and compared with six state of the art metaheuristics. The results
show that the easily implementable MRSILS is significantly better than five
of the other metaheuristics and comparable to or slightly better than the
remaining one.
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1. Introduction

Flow shop scheduling is an important and well-known combinatorial op-
timization problem in operations research, first gaining attention with John-
son’s pioneering work [1]. In this problem, n jobs must be processed on m
machines in the fixed order 1, . . . ,m. Though the most commonly studied
objective is to minimize the maximum job completion time, or makespan,
research has also been devoted to minimizing the total flow time, as it is
considered more relevant in today’s dynamic production environment [2]. It
also tends to stabilize the use of resources and minimize the work-in-process
inventory [3]. In this paper, the objective is to minimize the total flow time.

The general flow shop problem is a notoriously hard problem. Among
various flow shop problems, the permutation flow shop problem (PFSP),
where each machine is required to process the set of all jobs in the same
order, has been extensively studied. The PFSP is a simplified version of
the flow shop problem; however, it is still a hard problem. Garey et al. [4]
prove that the PFSP with makespan criterion is strongly NP-complete with
more than two machines, and the PFSP with total flow time criterion is
even harder, strongly NP-complete even with two machines.

Many methods have been proposed for total flow time minimization in
the literature, including mathematical methods [5, 6, 7, 8, 9, 10] and simple
heuristics [11, 12, 13, 14]. However, the former methods are only feasible
to solve relatively small-sized problems, and the solution constructed by the
latter methods is often poor. A desire to find better solutions more quickly
led to the development of many metaheuristics.

Rajendran et al. [15, 16] propose several ant-colony algorithms that
lead to better solutions than those found by some constructive heuristics
[2]. Though the particle swarm optimization (PSO) algorithm is intro-
duced to optimize continuous functions, Tasgetiren et al. [17] apply this
algorithm to the flow shop problem by using the smallest position value
rule, and their hybrid algorithm with Variable Neighborhood Search (VNS),
PSOVNS, resulted in better solutions than those found by Liu et al. [2], or
those using a max-min ant system (M-MMAS) and a renewal ant-colony op-
timization (PACO) [15] for 57 of 90 of Taillard’s benchmark instances [18].
Researchers have developed several genetic algorithms [3, 19, 20], in which
di↵erent crossover operators and local search procedures are incorporated.
Jarboui et al. [21] propose an estimation of distribution algorithm by using
VNS to improve performance. Pan et al. [22] develop a di↵erential evolu-
tion algorithm hybridized with a referenced local search procedure. Dong
et al. show the e↵ectiveness of an iterated local search algorithm [23]. Most
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recently, Tasgetiren et al. [24] illustrate an artificial bee colony algorithm
and a discrete di↵erential evolution algorithm. In both algorithms, a well
designed local search procedure is used. In the local search procedure, the
advantages of both an iterated local search algorithm [23] and an iterated
greedy algorithm [25] are combined.

Past research shows that ILS is a metaheuristic providing a simple but
powerful framework for improving the performance of local search. It has
attracted a great deal of attention due to its simplicity, e↵ectiveness and e�-
ciency, and is applied successfully to the travelling salesman problem [26, 27],
job shop scheduling [28], and PFSP with makespan criterion [29]. Recently,
Ruiz and Stützle propose a very e↵ective iterated greedy algorithm, which is
quite similar to the ILS, for the PFSP with makespan criterion [25]. Dong et
al. also apply the ILS to the PFSP minimizing total flow time [23], and show
that its performance is better than several other metaheuristics, including
PACO and M-MMAS by Rajendran and Zeigler [15], ACO2 by Rajendran
and Zeigler [16], and PSOVNS by Tasgetiren et al. [17]. Chen et al. also
apply a variant of this algorithm to the capacitated vehicle routing problem
and find that it performs very e↵ectively [30].

In an ILS algorithm, a restart point is selected when the local search is
trapped in a local optimum, and this restart point has a significant e↵ect on
the performance of the ILS. Presently, the method to generate the restart
point is quite simple: perturbation of the best known solution [23]. This
restart method potentially narrows the search space and the search may be
lead to a stagnant state. In order to improve this heuristic, it is necessary to
develop a method that extends the explorative capability while maintaining
the exploitative capability.

In this paper, a scheme is designed in which the restart point is randomly
generated from several selective solutions and a new multi-restart ILS (MR-
SILS) algorithm is proposed. Considerable testing of a variety of alternative
techniques developed by the authors revealed that this methodology is the
most e�cient and e↵ective at solving the PFSP. Comparing MRSILS with
other published algorithms confirms this. MRSILS is tested against six re-
cently developed, state of the art metaheuristics here, outperforming five
of them and performing equal to or better than the other. In extending
the ILS algorithm developed by Dong et al. [23], this paper shows that a
simple, yet nontrivial, strategy can provide the best solutions with the least
e↵ort. While a great deal of research now focuses on more intricate, sophis-
ticated metaheuristics, this work may encourage others to revisit established
methods to determine if adjustments can lead to the improvements found
here.
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The remainder of this paper is organized as follows. In Section 2, the
formulation of the PFSP with total flow time criterion is presented. In
Section 3, the proposed MRSILS algorithm is discussed in detail. The com-
putational results are illustrated and analyzed in Section 4, and the paper
is concluded in Section 5.

2. Problem formulation

The PFSP minimizing total flow time can be formally defined as follows.
A set of jobs J = {1, 2, . . . , n} available at time zero must be processed on
m machines, where n � 1 and m � 1. Each job has m operations, each of
which has an uninterrupted processing time. The processing time of the ith
operation of job j is denoted by pij , where pij � 0. The ith operation of a
job is processed on the ith machine. An operation of a job is processed only
if the previous operation of the job is completed and the requested machine
is available. Each machine processes these jobs in the same order and at
most one operation of each job can be processed at a time. This problem is
usually denoted by Fm|prmu|

P
Cj [31], where Cj denotes the completion

time of job j. Let ⇡ denote a permutation, which represents a job processing
order, on the set J . Let ⇡(k), k = 1, . . . , n, denote the kth job in ⇡, then the
completion time of job ⇡(k) on each machine i can be computed through a
set of recursive equations:

Ci,⇡(1) =
Pi

r=1 pr,⇡(1) i = 1, . . . ,m (1)

C1,⇡(k) =
Pk

r=1 p1,⇡(r) k = 1, . . . , n (2)

Ci,⇡(k) = max{Ci�1,⇡(k), Ci,⇡(k�1)}+ pi,⇡(k) i = 2, . . . ,m; k = 2, . . . , n
(3)

Then C⇡(k) = Cm,⇡(k), k = 1, . . . , n. The total flow time is
P

C⇡(k), or
the sum of the completion time on machine m for all the jobs. The objective
of the PFSP when minimizing total flow time is to minimize

P
C⇡(k).

3. Algorithm description

The framework of ILS is very simple. The pseudo code is presented in
Figure 1, where s⇤ denotes the best solution found in the search history. In
the ILS framework, several methodologies must be specified: the method
to generate the initial solution in step 1; the local search procedure in step
2; the acceptance criterion in step 3; and, the termination criterion and
method to perturb solution s in step 4.
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1. Generate an initial solution s; let s0 = s; let s⇤ = s;

2. Generate s00 = LocalSearch(s0); update s⇤ if better solution is
found in the process;

3. Let s = Accept(s, s00) (this may be a simulated-annealing or
related function);

4. If the termination criterion is not satisfied, then generate s0 =
Perturb(s) and go to step 2; otherwise, output s⇤.

Figure 1: Pseudo code of an ILS framework

The MRSILS algorithm is presented in Figure 2. Dong et al. [23] use
the H(2) method developed by Liu and Reeves [2] to generate an initial
solution as it constructs a solution in negligible time and the corresponding
ILS performs well. For this reason, the same initial solution method is used
in this paper.

Similarly, the local search procedure and acceptance criterion are taken
from Dong et al. [23]. The local search procedure corresponds to steps 5
and 6, and it is imbedded in the loop in step 4. The goal of this procedure
is to improve the solution by inserting a job into another position in the
sequence. The acceptance criterion is that only improved solutions may be
accepted. This corresponds to step 8 in Figure 2.

In the literature, the termination criterion can be set as the maximum
number of iterations for the local search procedure or the maximum allow-
able CPU time. In order to make fair comparisons with other metaheuristics,
both criteria are used in this paper. This is implemented in step 3.

It is important that the solution s should not be excessively modified
during perturbation [23, 24]. In Dong et al. [23], s is set as the best known
solution and the perturbation method swaps six random pairs of adjacent
jobs. This allows the perturbed solution to still have some characteristics of
the best known solution, while potentially moving the algorithm away from
a local optimum. However, this method results in a small search space as
the restart solution is always relatively close to the best known solution, and
so it is di�cult to escape from local optima in many cases.

In this work, the search space is extended by generating the restart
solution from a set of selected solutions, which are drawn from local optima.
If the algorithm finds no improvement by generating the restart point from
the best known solution after several iterations, the local optimum is likely
di�cult to escape from and the search should make a jump larger than that
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1. Set cnt = 0, flag = false, pool = �, pool size, i;
2. Generate an initial permutation ⇡, set ⇡⇤ = ⇡.
3. While(termination criterion is not satisfied)

{
4. for(i = 1; i  n; i++)

{
5. Find k, which satisfies ⇡(k) = ⇡⇤(i);
6. Insert job ⇡(k) into other n� 1 positions in ⇡,

respectively, and let ⇡0 be the best one among
the n� 1 generated permutations;

7. if(⇡0 is better than ⇡)
Set ⇡ = ⇡0, cnt = 0;

else
Set cnt = cnt+ 1;

8. if(⇡ is better than ⇡⇤)
Set ⇡⇤ = ⇡, flag = true;

9. if(cnt == n)
{

10. if(flag == true)
Set pool = �, flag = false;

11. if(⇡ is not in pool)
Add ⇡ into pool;

12. if(|pool| > pool size)
Delete the worst schedule from pool;

13. if(|pool| < pool size)
Perturb ⇡⇤ to generate a new ⇡;

else
Select one schedule randomly from pool
and perturb it to generate a new ⇡;

14. if(⇡ is better than ⇡⇤)
Set ⇡⇤ = ⇡;

15. Set cnt = 0;
}

}
}
Output ⇡⇤ and stop.

Figure 2: Pseudo code of MRSILS
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allowed by simple perturbations. This is implemented by generating the
restart point from a set of selected solutions.

This set of solutions, denoted by pool, is initialized as empty and has a
maximum size pool size. When the search has found no improvements after
n iterations, the local optimum is added to pool, if it is not already in the set.
In order to maintain the best solutions, the worst solution in pool is deleted
if the size limit pool size is exceeded. When pool is not full, the restart
solution is generated from the best known solution ⇡⇤; otherwise, a solution
is randomly selected from pool and the selected solution is perturbed to
generate the restart solution.

Past research shows that the method used for perturbation has a sig-
nificant impact on performance. These methods include: swapping several
pairs of randomly selected adjacent jobs [23]; inserting a job to another po-
sition [24]; and, removing several jobs and then inserting them based on a
constructive heuristic [24, 25]. Tasgetiren et al. [24] found that the per-
formance is quite good by inserting one or two randomly chosen jobs into
randomly selected positions. Testing has shown that the performance of the
perturbation method of Tasgetiren et al. [24] is almost the same as that
used by Dong et al. [23] when running 1000 iterations, but the former is
slightly better for long run times, e.g., 5000 iterations. In MRSILS, solutions
are perturbed by inserting one randomly chosen job into another randomly
chosen position.

The time complexity of MRSILS is determined by the local search proce-
dure used in the algorithm. The time complexity for computing a solution is
O(mn), and moving a job to all other positions will generate n�1 solutions,
so the time complexity of step 6 is O(mn2). Step 6 is embedded in the loop
in step 4, resulting in a time complexity of O(mn3). In one iteration, the
loop will be computed once, so the time complexity for the entire algorithm
is O(iter ⇥mn3), where iter is the number of iterations. Given that iter is
often a constant, the time complexity for the algorithm is O(mn3).

4. Computational results

In this section, the procedure for evaluating the parameter pool size is
described and MRSILS is compared with six state of the art metaheuristics.
The benchmark instances used for the analysis are taken from Taillard [18],
with the 120 instances evenly distributed among 12 di↵erent sizes. The scale
of these problems varies from 20 jobs and 5 machines to 500 jobs and 20
machines. In the literature, most metaheuristics are tested on the first 90
benchmark instances [3, 15, 16, 19, 20, 21, 22, 23, 24] as the largest instances
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with 200 and 500 jobs are too time consuming. MRSILS is also only tested
on the first 90 instances.

MRSILS is implemented in C++, running on a PC with an Intel Core2
Duo processor (2.99 GHz) with 2G main memory. Though the computer
has two processors, only one is used in the experiments, as no parallel pro-
gramming technique has been applied.

4.1. Evaluation of parameter pool size

MRSILS has only one parameter, pool size, aside from the parameters
for the termination criterion which are primarily dictated by the metaheuris-
tics used for comparison. This parameter is tested with values ranging from
1 to 20. For each case, five independent runs with 1000 iterations are per-
formed on each benchmark instance, and the best solution among these five
runs is recorded. The relative percentage deviation (RPD) is calculated as:

RPD = (F � Fbest)/Fbest (4)

where F is the result found by MRSILS and Fbest is the best result provided
by BEST(LR) [2], M-MMAS and PACO [15] for Taillard’s benchmark in-
stances [18]. Here, BEST(LR) denotes the best performing heuristic among
several heuristics provided by Liu et al. [2]. Note that a negative RPD value
indicates that MRSILS performs better than the best solution found by the
other heuristics. The performance for these parameter settings is compared
by average RPD (ARPD). The results are shown in Figure 3.

0 2 4 6 8 10 12 14 16 18 20
−0.58

−0.57

−0.56

−0.55

−0.54

−0.53

−0.52

−0.51

pool_size

AR
PD

Figure 3: E↵ects of di↵erent pool size (1000 iterations)
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Figure 3 shows that pool size is a robust parameter that may take a
large range of values, with the best performance between 3 and 12. As the
parameter increases above 12, performance becomes somewhat unstable. It
should not be surprising that the worst performance occurs with pool size =
1. With that value, there is only one option when selecting a solution to
perturb, increasing the likelihood that the algorithm can not escape from the
local optimum. However, there are limitations to increasing this parameter.
As pool size increases, lower quality solutions may end up in the set pool and
these may be selected for perturbation. While this may drive the algorithm
out of a local optimum, it can also potentially degrade solution quality,
resulting in the instability that was evident in the results. In order to
allow for a wider range of available solutions, but to limit the potential
for instability, pool size is set at 5.

4.2. Performance against previous metaheuristics

In this section, MRSILS is first compared with the ILS algorithm devel-
oped by Dong et al. [23], then compared with five other recently published
metaheuristics, including the discrete di↵erential evolution algorithm and
the iterated greedy algorithm by Pan et al. [22], the hybrid genetic algo-
rithm by Zhang et al. [19], and the discrete artificial bee colony and discrete
di↵erential evolution algorithms by Tasgetiren et al. [24]. In the litera-
ture, it has been noted that some complex metaheuristics are not easily
re-implemented as e↵ectively and e�ciently as by the original authors [25],
so the results reported here are taken from the original papers. The hard-
ware used for each algorithm is reported as indicated within the respective
papers. The hardware used for the MRSILS test runs is very similar in
computing power.

In order to make a comparison with the ILS algorithm [23], both the ILS
and MRSILS are run for 1000, 3000, and 5000 iterations five independent
times, and the best solution among the five runs is recorded. The average
RPD for ILS and MRSILS are listed in Table 1.

From Table 1, it can be seen that the average RPD for MRSILS is less
than that for ILS, indicating that MRSILS performs better than ILS. Note
that for the two smallest data sets, the solutions do not improve on average as
the number of iterations increases. With smaller problem instances, the state
space is inherently smaller and the benefit of more iterations for exploring
this state space is diminished.

To provide more rigorous comparisons with respect to performance, one-
sided, paired-samples t-tests are carried out between the ILS and MRSILS
with 1000, 3000, and 5000 iterations. Suppose a problem instance is solved
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Table 1: Comparison of RPD for ILS and MRSILS

n|m 1000 3000 5000
ILS MRSILS ILS MRSILS ILS MRSILS

20|5 -0.168 -0.168 -0.175 -0.175 -0.168 -0.168
20|10 -0.035 -0.039 -0.031 -0.039 -0.039 -0.039
20|20 -0.058 -0.068 -0.068 -0.068 -0.068 -0.068
50|5 -0.451 -0.593 -0.592 -0.721 -0.691 -0.775
50|10 -0.955 -1.026 -1.014 -1.169 -1.180 -1.224
50|20 -0.780 -0.863 -0.932 -0.999 -1.024 -1.104
100|5 -0.458 -0.430 -0.549 -0.609 -0.609 -0.707
100|10 -0.814 -0.837 -1.035 -1.141 -1.077 -1.250
100|20 -1.063 -1.072 -1.241 -1.313 -1.353 -1.483
avg. -0.531 -0.566 -0.626 -0.693 -0.690 -0.757

Table 2: One-sided paired-samples t-tests with respect to the performance between the
ILS and MRSILS

iterations MRSILS > ILS
1000 p = 0.026
3000 p = 0.000
5000 p = 0.000

by two algorithms A and B, and the RPDs are denoted by rA and rB, re-
spectively, where the current best known solution and the solutions obtained
by A and B are quite good, such that it is assumed that they are close to
the unknown global best solution. Then, both rA and rB are quite small.
If there is no di↵erence between algorithms A and B, then the values of rA
and rB should be virtually identical. For a group of problem instances, the
di↵erences between rA and rB may be a result of random error, obeying a
normal distribution with mean zero. If the hypothesis of a mean of zero
does not hold, then there exists a statistically significant di↵erence between
algorithms A and B.

The tests are done for all the instances such that the degrees of freedom
value is 89. The results are arranged in Table 2, where the p value is given as
the minimum level of significance to accept the hypothesis. The hypothesis
is denoted as “MRSILS > ILS”, indicating that MRSILS performs better
than ILS. From this table, it can be seen that as ↵ = 0.05 > p, the hypothesis
can be accepted for all the cases. This confirms that MRSILS is significantly
better than ILS.
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Table 3: Comparison of CPU time (in seconds) for the ILS and MRSILS

n|m 1000 3000 5000
ILS MRSILS ILS MRSILS ILS MRSILS

20|5 0.13 0.13 0.40 0.40 0.65 0.65
20|10 0.31 0.29 0.92 0.92 1.48 1.46
20|20 0.60 0.58 1.75 1.74 2.96 2.90
50|5 1.79 1.74 5.25 5.21 8.77 8.67
50|10 4.24 4.15 12.65 12.57 21.11 20.80
50|20 8.87 8.73 26.24 26.33 44.25 43.67
100|5 13.01 12.68 38.30 38.18 63.97 63.39
100|10 31.99 31.13 93.16 93.44 156.17 155.79
100|20 69.36 67.15 200.81 201.22 339.31 335.70
avg. 14.48 14.06 42.16 42.22 70.96 70.33

The CPU times for both algorithms are listed in Table 3. The CPU time
is almost the same for each pair, with similar increases in time as instance
size grows, as the complexity of both algorithms is the same.

Pan et al. [22] propose a discrete di↵erential evolution algorithm (DDE)
for the flow shop scheduling problem minimizing total flow time. The DDE
with the referenced local search algorithm (DDERLS) performs quite well on
Taillard’s benchmark instances. The authors also design an iterated greedy
algorithm with referenced local search (IGRLS) and it performs well on the
same benchmark instances. Both algorithms are implemented in Visual
C++ and run on an Intel Pentium IV 3.0GHz PC with 512MB memory.
These two algorithms are run for n ⇥ m/2 ⇥ 90 milliseconds CPU time
for 5 replications and the best results are reported. In order to make a
fair comparison, MRSILS is run with identical settings, including the same
CPU stopping time criterion. Note that the speed of the computer used by
Pan et al. is comparable to that of the computer used for MRSILS testing.
Table 4 presents a comparison of the RPD for all three algorithms. MRSILS
performs similarly to or better than IGRIS and DDERLS on all nine group
instances. Two groups of paired-samples t-test are also carried out and the
results show that MRSILS is significantly better than IGRIS and DDERLS,
with p = 0.000 for all cases.

Zhang et al. [19] propose a hybrid genetic algorithm (denoted by HGA-Z
here), which is implemented in Java and tested on a 2.93GHz P4 PC with
512M RAM. The best solution in five runs and the average CPU time per
run for each instance are also reported. The RPD for HGA-Z is computed
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Table 4: Comparison in RPD between MRSILS, IGRIS, and DDERLS

n|m IGRIS DDERLS MRSILS
20|5 -0.168 -0.168 -0.168
20|10 -0.039 -0.039 -0.039
20|20 -0.068 -0.068 -0.068
50|5 -0.708 -0.683 -0.747
50|10 -1.089 -1.118 -1.212
50|20 -0.833 -0.876 -0.978
100|5 -0.422 -0.438 -0.512
100|10 -0.820 -0.879 -1.029
100|20 -1.011 -0.959 -1.147
avg. -0.573 -0.581 -0.656

using the best solutions reported by Zhang et al. and compared to MRSILS
results with 5000 iterations. The results are shown in Table 5, where t
denotes the average CPU time. The overall performance of MRSILS is much
better than HGA-Z, with a considerably lower average RPD for MRSILS.
A paired-samples t-test is also carried out, and the result shows that the
p value is 0.000, which indicates that MRSILS is significantly better than
HGA-Z. As computer speed and programming languages di↵er, it is di�cult
to compare the CPU times directly. However, these results show that the
improved performance of MRSILS is not at a cost of increased CPU time.

Table 5: Comparison in RPD and computational time (in seconds) between MRSILS and
HGA-Z

n|m HGA-Z MRSILS
RPD t RPD t

20|5 -0.175 2.18 -0.168 0.65
20|10 -0.039 4.14 -0.039 1.46
20|20 -0.068 7.57 -0.068 2.90
50|5 -0.707 40.85 -0.775 8.67
50|10 -1.041 111.74 -1.224 20.80
50|20 -0.941 189.98 -1.104 43.67
100|5 -0.739 461.33 -0.707 63.39
100|10 -1.045 826.76 -1.250 155.79
100|20 -1.295 2014.96 -1.483 335.70
avg. -0.672 406.61 -0.757 70.33

Tasgetiren et al. [24] propose a discrete artificial bee colony algorithm
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(DABC) and apply the artificial bee strategy to the discrete di↵erential
evolution algorithm developed by Pan et al. [22], forming a new algorithm,
hDDE. Both algorithms perform better than the estimation of distribution
algorithm by Jarboui et al. [21], the genetic local search algorithms by
Tseng and Lin [3, 20], and the traditional iterated greedy algorithm [25].
Both the DABC and the hDDE are implemented in Visual C++ and run
independently 10 times on an Intel Pentium IV 3.0 GHz PC with 512MB
memory. The best results are reported for both algorithms with a short-
term search, for which the CPU time is limited to 0.4 ⇥ n ⇥m seconds for
each instance, and a long-term search, for which the CPU time is limited
to 3 ⇥ n ⇥ m seconds for each instance. The long-term search is too time
consuming, requiring more than 20 days for one algorithm and these results
are not presented here.

Table 6 presents a comparison of RPD for MRSILS, DABC, and hDDE,
showing that all three algorithms perform well on those instances with 20
jobs. For the 50 and 100 job instances, MRSILS generally performs better on
larger instances and slightly worse on smaller instances. Paired-samples t-
tests show that MRSILS is significantly better than DABC with p = 0.001,
but this is not the case for hDDE with p = 0.162. However, MRSILS is
comparable to or even better than hDDE when average RPD is considered.
Additionally, hDDE is quite complex, while MRSILS is rather simple. The
best solutions obtained in this experiment are shown in Table 7, where 27
improved solutions are listed in boldface. The results on the instances with
20 jobs are identical for the three algorithms, so they are not presented here.
Compared with DABC, MRSILS finds a better solution for 37 instances and
is equivalent for one instance. MRSILS finds a better solution than hDDE
for 32 instances and is equivalent for 4 instances.

5. Conclusions

This paper presents a strategy to improve the performance of the ILS
algorithm on the permutation flow shop problem minimizing total flow time.
The strategy extends the explorative capability of the local search on which
ILS is based, while maintaining a strong exploitative capability. Experimen-
tal results on benchmark instances show that MRSILS performs better than
five state of the art metaheuristics and comparable to or slightly better than
another state of the art metaheuristic.

In addition providing good solutions, MRSILS is easily implementable.
Compared with other quite complex metaheuristics, this work shows that the
ILS algorithm is worthy of additional research. For example, the generation
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Table 6: Comparisons results for the MRSILS with the DABC and the hDDE

n|m DABC hDDE MRSILS
20|5 -0.175 -0.175 -0.175
20|10 -0.039 -0.039 -0.039
20|20 -0.068 -0.068 -0.068
50|5 -0.961 -0.984 -0.956
50|10 -1.426 -1.433 -1.436
50|20 -1.252 -1.191 -1.194
100|5 -0.704 -0.918 -0.874
100|10 -1.132 -1.313 -1.367
100|20 -1.508 -1.477 -1.616
avg. -0.807 -0.844 -0.858

of the restart solution in MRSILS still requires tuning, as the best known
solution is not improved after many iterations in some instances. Finding
a heuristic or designing a metaheuristic that can help generate more mean-
ingful restart solutions deserves attention in future research.
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