
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Mechanical
Engineering Mechanical Engineering

2017

AN EFFICIENT HEURISTIC TO BALANCE TRADE-OFFS BETWEEN AN EFFICIENT HEURISTIC TO BALANCE TRADE-OFFS BETWEEN

UTILIZATION AND PATIENT FLOWTIME IN OPERATING ROOM UTILIZATION AND PATIENT FLOWTIME IN OPERATING ROOM

MANAGEMENT MANAGEMENT

Feidi Dang
University of Kentucky, feidi.dang@outlook.com
Author ORCID Identifier:

https://orcid.org/0000-0001-7894-005X
Digital Object Identifier: https://doi.org/10.13023/ETD.2017.471

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Dang, Feidi, "AN EFFICIENT HEURISTIC TO BALANCE TRADE-OFFS BETWEEN UTILIZATION AND PATIENT
FLOWTIME IN OPERATING ROOM MANAGEMENT" (2017). Theses and Dissertations--Mechanical
Engineering. 103.
https://uknowledge.uky.edu/me_etds/103

This Master's Thesis is brought to you for free and open access by the Mechanical Engineering at UKnowledge. It has
been accepted for inclusion in Theses and Dissertations--Mechanical Engineering by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232580853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/me_etds
https://uknowledge.uky.edu/me_etds
https://uknowledge.uky.edu/me
https://orcid.org/0000-0001-7894-005X
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Feidi Dang, Student

Dr. Wei Li, Major Professor

Dr. Haluk E. Karaca, Director of Graduate Studies

AN EFFICIENT HEURISTIC TO BALANCE TRADE-OFFS BETWEEN
UTILIZATION AND PATIENT FLOWTIME IN OPERATING ROOM

MANAGEMENT

——————————————————

THESIS

——————————————————

A thesis submitted in partial fulfillment of the
requirement for the degree of Master of Science in Mechanical Engineering

in the College of Engineering
at the University of Kentucky

By

Feidi Dang

Lexington, Kentucky

Co-Directors: Dr. Wei Li, Assistant Professor of Mechanical Engineering

and Dr. Fazleena Badurdeen, Associate Professor of Mechanical Engineering

Lexington, Kentucky
2017

Copyright © Feidi Dang 2017

ABSTRACT OF THESIS

AN EFFICIENT HEURISTIC TO BALANCE TRADE-OFFS BETWEEN
UTILIZATION AND PATIENT FLOWTIME IN OPERATING ROOM

MANAGEMENT

Balancing trade-offs between production cost and holding cost is critical for
production and operations management. Utilization of an operating room affects
production cost, which relates to makespan, and patient flowtime affects holding cost.
There are trade-offs between two objectives, to minimize makespan and to minimize
flowtime. However, most existing constructive heuristics focus only on single-objective
optimization. In the current literature, NEH is the best constructive heuristic to
minimize makespan, and LR heuristic is the best to minimize flowtime. In this thesis,
we propose a current and future deviation (CFD) heuristic to balance trade-offs between
makespan and flowtime minimizations. Based on 5400 randomly generated instances
and 120 instances in Taillard’s benchmarks, our CFD heuristic outperforms NEH and
LR heuristics on trade-off balancing, and achieves the most stable performances from
the perspective of statistical process control.

Keywords: Operating Room Scheduling, Permutation Flow Shop, Trade-off
Balancing, Constructive Heuristic, Makespan, Flowtime.

Feidi Dang

———————————————
Student’s Signature

10/30/2017
———————————————

Date

AN EFFICIENT HEURISTIC TO BALANCE TRADE-OFFS BETWEEN
UTILIZATION AND PATIENT FLOWTIME IN OPERATING ROOM

MANAGEMENT

By
Feidi Dang

Dr. Wei Li
———————————————

Co-Director of Thesis

Dr. Fazleena Badurdeen
———————————————

Co-Director of Thesis

Dr. Haluk E. Karaca
———————————————

Director of Graduate Studies

10/30/2017
———————————————

Date

iii

ACKNOWLEDGEMENTS

I would like to express my sincerest thanks to my advisor Dr. Li. Thanks for his

help with my research and thesis writing. His valuable advice and critical thinking have

inspired me when I have problem with my research.

I am grateful to the committee members of my thesis defense, Dr. Jawahir and Dr.

Badurdeen. Thanks for their critical comments on my work and this thesis. I also would

like to thank my research colleagues, Honghan, Vivek, Amin and Xinwei. Thanks for

their encouragement. It is my honor to work and study with them.

Finally, I would like to say thanks to my parents, uncles, aunts, brothers, and sister

for their constant support and encourage.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

LIST OF FIGURES .. vi

LIST OF TABLES ... vii

Chapter One: Introduction ... 1

1.1 Background .. 1

1.2 Motivations .. 7

1.3 Difficulties and Challenges .. 8

1.4 Contribution ... 9

1.5 Structure of this thesis .. 10

Chapter Two: Literature Review .. 12

2.1 Makespan objective ... 13

2.2 Flowtime objective... 22

2.3 Multi-objective ... 28

Chapter Three: Methodology ... 33

3.1 Problem description ... 33

3.2 Lower and upper bound of completion time .. 35

3.3 Two coupled deviations ... 38

3.4 Development of CFD heuristic .. 40

3.4.1 Initial sequence generation ... 41

3.4.2 CFD heuristic .. 42

3.4.3 A Numerical example for CFD heuristic .. 44

Chapter Four: Case Study .. 48

4.1 Evaluation scheme ... 48

4.2 Case study results ... 50

4.2.1 Small-scale cases .. 50

4.2.2 Large-scale cases (Taillard’s benchmark) .. 53

4.3 Statistical Process Control (SPC)... 56

Chapter Five: Conclusion and Future work ... 64

5.1 Conclusion ... 64

5.2 Limitation and Future work ... 66

v

References .. 68

Vita ... 76

vi

LIST OF FIGURES

Figure 2.1 Different type of idle time .. 16

Figure 3.1 Gantt chart for a permutation flow shop .. 34

Figure 4.2.1 Trade-off value for small-scale cases ... 52

Figure 4.2.2 Trade-off value for Taillard’s benchmark. 55

Figure 4.2.3 The average trade-off value by job number and machine number .. 56

Figure 4.3.1 X-bar and R chart for utilization .. 58

Figure 4.3.2 X-bar and R chart for patient flowtime .. 59

Figure 4.3.3 Process capability for utilization optimization objective. 61

Figure 4.3.4 Process capability for patient flowtime optimization objective. 62

vii

LIST OF TABLES

Table 3.2.1 Processing time of 5-jobs, 3-machines instance 37

Table 3.2.2 The value of lower bound (LBj,i) ... 37

Table 3.2.3 The value of upper bound (UBj,i) ... 38

Table 4.2.1 Average relative percent deviations(ARPD) of makespan for small-

scale cases. ... 51

Table 4.2.2 Average relative percent deviations(ARPD) of flowtime for small-

scale cases. ... 51

Table 4.2.3 Trade-off (TO) value for different heuristics. 52

Table 4.2.4 Single objective optimization results for Taillard’s benchmark. 53

Table 4.2.5 Trade-off value of different heuristics on Taillard’s benchmark. 54

1

Chapter One: Introduction

1.1 Background

In modern industry system, the flow shop is widely applied in production systems

to improve the effectiveness and efficiency, such as automotive assembly line. For a

flow shop system, there are two important indicators which can be applied to assess

system performance: one is utilization, and the other is work-in-process. The utilization

impacts the efficiency of the whole system, while the inventory and holding cost are

affected by the work-in-process. In order to improve the utilization and reduce the

work-in-process, the flow shop scheduling problem attracted many researchers’

attention for last several decades. As a decision-making process, scheduling not only

plays an important role in manufacturing field, it is also applied in many service

industries, such as the transportation(Pinedo, 2012). In the real world, due to the

available resources are always limited for a company, schedulers and decision makers

should consider how to use the limited resources to finish the activities and meet the

requirements. For example, a manufacturer might receive hundreds of orders with

different due dates. Usually, for this situation, the decision maker will focus on

improving the utilization of the manufacturing system to meet as many of due dates as

possible. It means that schedulers need to minimize the idle time and the set-up times

for each machine.

According to the definitions of these two terms, the makespan is the time when the

last job leaves the manufacturing system. A small value of makespan indicates a good

2

utilization of manufacturing system. For the flowtime, it can be calculated by using

total completion of all jobs divide by job numbers. The value of flowtime usually

represents the holding cost and work-in-process inventory cost generated by current

schedule. Based on the definitions of makespan and flowtime, we can see that the

makespan and flowtime are related to utilization and holding cost, respectively. As the

utilization and holding cost both are important indicators of the performance of a

manufacturing or service system, the schedulers always desire to improve the utilization

and minimize the holding cost, especially for a long-time period manufacturing or

service planning, such as the operating room scheduling for a hospital.

In hospitals, the operating room can generate more than 40% of its total income,

but the operating room also generates the largest proportion of the total cost for a

hospital. (Denton, Viapiano, & Vogl, 2007). Therefore, the performance of operating

room impacts the profit and service quality of whole hospital.

As the demand increasing in recent years, hospitals have had to improve the

efficiency of the operating room system to meet the demand. Generally, there are

several common problems for an operating room system, such as the long waiting time

for each patient and the idle time of each operating room. For an operating room system,

the lateness will not only cause the postponement of other patients, but it will also result

in overtime costs. If the operating room in an idle status, it means that the utilization of

operating room system is low. To solve these problems, managers of a hospital might

set up more operating rooms and buy more instruments or hire more professional

3

employees(Meskens, Duvivier, & Hanset, 2013). However, any of these approaches

will increase the budget. Therefore, in recent years, the managers keep searching for

some effective methods to improve the utilization of operating room and reduce the

patients waiting time.

Before generating the optimization model for the operating room system, we would

like to introduce the process of perioperative. A perioperative period consists of three

different phases, which are preoperative, intraoperative and postoperative. The first

phase is preoperative, the nurses and doctors will do several pre-treatments for patients,

such as the registration and some test. Usually, a patient might only stay in this phase

for short time. For the intraoperative, patients can receive the operations in the operating

room. Based on the processing time for the different type of operations, the time period

of intraoperative is longest for these three phases. The last phase is post-operative. A

patient will be transferred to the post-anesthesia care unit (i.e. PACU) to receive some

recovery treatments after the operations are finished. Therefore, a patient has to go

through these three phases and the order is unchangeable.

In addition, according to the opinion of Cardoen(Cardoen, Demeulemeester, &

Beliën, 2010), Two types of patients have to be considered when we try to propose a

optimization method to improve the performance of operating room. One type is

elective patients, and another type is non-elective. For elective patients, such as the

patient who has cancer, the surgery for this type of patients is not very urgent. Therefore,

doctors and nurses can generate a good planning for this type of patients. However, for

4

the non-elective patients, such as the victims of car accidents. The surgeries for these

patients have to be performed immediately. It is extremely difficult for managers to

generate a good planning for non-elective patients. In our current research, we only

consider the elective patients.

According to Marcon’s work(E. Marcon & Dexter, 2007), the scheduling method

can be applied to improve the efficiency of operating rooms. In 2013, Meskens et

al(Meskens et al., 2013) reviewed several different models, such as the scheduling

model which can be used to optimize the performance of operating rooms. For the

scheduling models, the author listed some common assumptions, such as:

1) A surgical cannot be interrupted

2) PACU is always available.

3) One surgeon could only process one patient at the same time.

4) The PACU can serve any type of patients, and so on.

Based on the analysis that we mentioned above, we can see that a perioperative

period can be formulated as a three-machine flow shop. The first machine (or stage)

can be seen as the preoperative phase, the second machine is the intraoperative phase,

and the last machine is the PACU. In order to find out a suitable model of flow shop,

we compare two main types of flow shop, such as the traditional flow shop and the

hybrid flow shop(Pinedo, 2012) and show as follows:

 Flow shop (Fm)

5

To find out an optimal sequence of jobs for a flow shop scheduling problem,

decision makers may consider changing the order of the jobs when these jobs waiting

in the buffer to achieve a smaller makespan (i.e. maximum completion time). However,

solving a flow shop scheduling problem is very difficult, if the sequence is changeable

between two machines. Furthermore, we can always generate an optimal solution for

two-machine or three-machine flow shop scheduling problem on makespan

minimization objective without changing the order of jobs. A flow shop can be named

as permutation flow shop, if the sequence of jobs is not allowed to change between two

machines. Under this constraint, the jobs will go through the whole flow line and keep

the same order. Moreover, another constraint of flow shop named as no-wait flow shop.

For a no-wait flow shop, a job has to go through the whole flow line without waiting in

the buffer between two machines.

 Hybrid flow shop (HFS)

Hybrid flow shop (HFS) is another type of flow shop. Compare to the traditional

flow shop, a hybrid flow shop contains m stages and each stage has k parallel machines.

For the hybrid flow shops, there are some common settings (Pinedo, 2012; Ruiz &

Vázquez-Rodríguez, 2010): a) The stages number is larger than 2 (i.e. m≥2). b) The

machine number of each stage is at least 1 (i.e. k≥1). c) The order of jobs can be changed

between two stages and so on.

According to the assumptions of scheduling model for operating room and the

settings of permutation flow shop, we can see that a general operating room system can

6

be modeled as a permutation flow shop. In 2006, Marcon and Dexter(Eric Marcon &

Dexter, 2006) showed that the simple sequencing rules, such LPT (longest processing

time first) and SPT (shortest processing time first), can reduce the patient numbers in

the waiting list.

In 2007, Denton examined the impact of scheduling on the patient waiting list and

idle time of the operating room (Denton et al., 2007). Furthermore, according to the

work of Cardoen (Cardoen et al., 2010), there are several common measurements to

evaluate the performance of the operating room system, such as the utilization which

can be defined as the workload divided by total processing time, patient waiting time

(i.e. the waiting list) and makespan. Usually, in order to improve the profit and service

quality, the wait time of patients (i.e. work-in-process) should be decreased, and the

utilization need to be increased.

From the flow shop scheduling perspective, as we discussed before, the maximum

completion time (Cmax) can be related to the utilization of an operating room scheduling

problem. The patient flowtime can be represented by the flowtime (i.e. ΣCj,m, the total

completion time of j patients on last stage). The waiting time of next (i.e. (j+1)th) patient

can be reduced, if we minimize the patient flowtime of the patients before this patient.

From the literature in recent years, many researchers focus on the flow shop scheduling

problems, and generate significant contributions to improve the performance of a

production system, such NEH and LR. However, lots of studies focus on the single

objective (i.e., makespan minimization or flowtime minimization.). For multi-objective

7

optimization problem, part of them focus on solving the related objective, such as the

makespan and lateness or tardiness. However, for a flow shop scheduling problem, the

makespan and flowtime are two fundamental criteria for flow shop scheduling.

Moreover, as the growing of computational capacity of computers, researchers prefer

to apply the evolutionary algorithm, such as the GA (Genetic Algorithm) and SA

(Simulation Annealing), to achieve multi-objective optimization. However, the

computation time is very large.

1.2 Motivations

Currently, the existing heuristics mainly focus on the single objective optimization,

such as the makespan or flowtime minimization criteria. After the Johnson’s algorithm

was proposed to generate the optimal solution for two-machine flow shop scheduling

problem, many heuristics for the m-machine problem were developed by creating

several virtual two-machine flow shop problems and applying Johnson’s algorithm to

minimize the makespan. However, Johnson’s algorithm is only suitable for 2-machine

flow shop with makespan criteria. Therefore, since the efficiency and effectiveness of

NEH were approved, its framework was widely applied in constructive heuristic

development. Furthermore, since the job selection scheme of NEH heuristic depends

on the objective function, NEH framework is also suitable for flowtime minimization

objective.

However, for the real-world problems, to evaluate a manufacturing products

system or service system, such as the operating room system, the decision-makers not

8

only need to optimize the system performance on a single objective, they also need to

consider the others. Moreover, for the existing evolutionary multi-objective algorithm,

their performance is good enough, but the computational time is not acceptable.

Another problem is that most of these multi-objective heuristics and algorithms focus

on the related objectives, such as makespan and tardiness. However, the tardiness time

and the number of tardy jobs are related to the job due date. Furthermore, the most

fundamental objectives of a flow shop are maximum completion time (i.e. makespan or

Cmax) and total completion time (i.e. flowtime denote as ∑𝐶𝐶𝑗𝑗), and other objectives

can be derived out from these two objectives.

1.3 Difficulties and Challenges

Although the flow shop scheduling problem has been researched for several

decades, there are some challenges need to be handled. If we only consider the one-

machine flow shop scheduling problem, we can easily find out the optimal solution by

applying LPT and SPT rule to minimize the makespan and flowtime, respectively. In

1954, Johnson(Johnson, 1954) developed an exact method to obtain an optimal solution

for 2-machines and 3-machines permutation flow shop on maximum completion time

minimization objective. It is likely for us to assume that the jobs should be sequenced

by increasing order of processing time. However, it easy to see that the processing times

of one job on each machine are likely not less than the processing time of another job

on corresponding machines. According to Garey’s work in 1976(Garey, Johnson, &

Sethi, 1976), it has been proved that the flow shop scheduling problem is NP-complete,

9

which means that the exact optimal solution is too difficult to find within a polynomial

time. In addition, for the minimization of makespan and minimization of flowtime,

these two objectives are inconsistent with each other(W. Li, Mitchell, & Nault, 2014).

It means that minimize one objective does not always can minimize another one.

Moreover, there are two important measurements to evaluate the performance of

heuristics and algorithms, which are effectiveness and efficiency. The effectiveness can

be described as the relative deviation from the optimal solutions, and the computational

complexity of a heuristic can be used to evaluate the efficiency. For many algorithms,

they improved the quality of solutions (i.e. effectiveness), but the computational

complexity of heuristic is increased (i.e. the efficiency is decreased.). Therefore, we

desire to develop a new constructive heuristic to generate the solution with high solution

quality and acceptable computation complexity.

1.4 Contribution

The contribution of our work that presented in this thesis are listed as follows. First,

we developed a new method to generate the lower bound and upper bound for the

completion time. Based on this lower and upper bound generation method, we proposed

a new initial sequence scheduling method, which depends on the deviation of actual

completion time from the lower and upper bound, to balance the trade-off between

makespan and flowtime. Furthermore, in the initial sequence generation method, we

are not only considered the impact of current job, but we also take the effect of

unscheduled on our objectives into account. For the trade-off balancing objective, we

10

model the trade-off between two coupled deviations by a factor α for each job on each

machine (i.e. operation level). Moreover, we also generate a model to balance the trade-

off at line level, which means the trade-off between makespan and flowtime for the

whole flow line.

In our heuristic, the job insertion method is applied to improve the quality of initial

sequence. For the job insertion phase, we developed a new normalized evaluation

function to determine which partial sequence should be selected. In order to justify the

performance of our heuristic, the case studies are carried out on small-scale and large-

scale cases. The results show that our proposed heuristic can achieve better performance

on trade-off balancing objective. For the single objective optimization, our heuristic

also outperforms the existing heuristics with same computational complexity.

Furthermore, we applied our proposed heuristic to solve the operating room scheduling

problem for the UK healthcare. The utilization of operating room is increased, and the

patient flowtime is reduced when our heuristic is applied.

In addition, current existing heuristics are designed to solve the scheduling problem

without considering the performance for a long-time period planning. However, in our

work, we applied the statistical process control (SPC) to evaluate the long-time period

performance of our heuristic based on the dataset from UKHC. The performance of

proposed heuristic is more stable with a higher solution quality than the method which

is used by UKHC.

1.5 Structure of this thesis

11

The structure of this thesis is organized as follows:

In the Chapter Two, we present the literature review for current status of flow shop

scheduling. In this section, we review existing heuristics for both single objective and

multi-objective optimization in permutation flow shop. Furthermore, we also review

the basic concept of statistical process control.

In Chapter Three, we show the problem description of the permutation flow shop

scheduling problem, and generate a Gantt chart to explain the calculation method of

completion time. Then, we present a new initial sequence generation method for trade-

off balancing objective. Furthermore, a job insertion method with new evaluation

scheme is generated to improve the solution quality of initial sequence.

In Chapter Four, the results of case studies are provided. We compare our CFD

heuristic with other existing heuristics on the single objective and trade-off balancing

objective. The case studies are carried on small-scale and large-scale (i.e. Taillard’s

benchmark) database. Moreover, we also applied the CFD heuristic on UK Healthcare

database and the results are presented.

In Chapter Five, the conclusions are summarized, and the future work is discussed.

12

Chapter Two: Literature Review

As the classical flow shop scheduling problem, there are thousands of publications

and research results for makespan minimization (denote as Fm|prmu|Cmax) and

flowtime minimization (denote as Fm|prmu|ΣCj)(Graham, Lawler, Lenstra, & Kan,

1979) on permutation flow shop scheduling problem. Currently, in many companies

and service industries, the LPT and SPT dispatching rule are widely applied. However,

these two simple dispatching rules can only obtain the optimal solutions for makespan

and flowtime objectives on one-machine permutation flow shop scheduling problem.

According to Johnson’s work in 1954(Johnson, 1954), the optimal solution can be

generated for makespan objective on 2-machine flow shop. In Johnson’s algorithm, we

find out the minimum processing time among all the jobs on two machines. If the

minimum processing time occurs on the second machine, the corresponding job will be

scheduled to the last position. Otherwise, allocate the job to the first location of the

sequence. Then, delete the job from the unscheduled jobs, and repeat this procedure

until there is no job left. However, Garey(Garey et al., 1976) proved the m-machines

permutation flow shop scheduling problem is NP-complete. Which means that it is

difficult to find the optimal solution within the polynomial time. Therefore, researchers

start to develop the heuristics and algorithm to solve the flow shop scheduling problem

within an acceptable computation time.

In this chapter, we reviewed several existing heuristics and algorithms for flowtime

and makespan minimization objectives. In general, there are two different types of

13

method to solve the scheduling problems: the first one is the exact method, such as the

enumeration method and Branch & Bound method. For example, a branch-and-bound

algorithm for tardy jobs minimization in a 2-machine flow shop with release date was

proposed by Abouei et al(Abouei Ardakan, Hakimian, & Rezvan, 2013) in 2013.

However, these exact methods cannot be applied to the large-size problem, because of

the unacceptable computation time. Another type is the approximate method, which

includes the heuristics and meta-heuristics and so on. For the approximate method, one

can generate the solutions that close to the optimal results within a short computation

period. Obviously, the approximate methods are more suitable for solving the real-

world problems. In this chapter, the literature review is classified as three different types

based on the different objectives. Moreover, the evolutionary algorithms, such as the

genetic algorithm (GA), are also reviewed briefly.

2.1 Makespan objective

The makespan minimization for permutation flow shop scheduling problem has

been proved to be NP-complete for an m-machine flow shop (Rand, 1977). From

Johnson’s algorithm (Johnson, 1954), the optimal solution of makespan can be obtained

with O(n*log n) for two-machine flow shop. After Johnson’s algorithm was developed,

there are many heuristics were developed based on the concept of Johnson’ algorithm.

These heuristics solve the scheduling problems by creating several virtual 2-machines

problems, and then Johnson’s algorithm was applied to solve these 2-machines

problems.

14

Campbell et al proposed CDS heuristic (Campbell, Dudek, & Smith, 1970), which

m machines were regrouped as (m-1) artificial two-machines flow shops. Then, apply

Johnson’s algorithm to solve these (m-1) two-machine flow shop problems. Therefore,

(m-1) candidate solutions can be obtained. Then calculate the makespan (i.e. Cmax)

and the sequence with minimum makespan is selected as the final solution.

In 1965, a heuristic is proposed by Palmer based on the concept of ‘slop index’

(Palmer, 1965), the solution is generated by decreasing order of the value of 𝑆𝑆𝑆𝑆𝑗𝑗, where

the 𝑆𝑆𝑆𝑆𝑗𝑗 = −∑ [𝑚𝑚− (2 ∗ 𝑖𝑖 − 1)] ∗ 𝑡𝑡𝑗𝑗,𝑖𝑖 2⁄ 𝑚𝑚
𝑖𝑖=1 . However, there are several works have

proved that the Palmer’s algorithm is not effective.

Gupta (J. N. Gupta, 1971) proposed a revised function of SI, and the author showed

that the newly proposed heuristic obtained better performance than Palmer’s. The new

index function of SI can be defined as:

𝑆𝑆𝑆𝑆𝑗𝑗 = 𝑒𝑒𝑗𝑗 min�𝑡𝑡𝑗𝑗,𝑘𝑘 + 𝑡𝑡𝑗𝑗,(𝑘𝑘+1)�⁄ , (1 ≤ k ≤ m − 1)

where

𝑒𝑒𝑗𝑗 = �
1 𝑖𝑖𝑖𝑖 𝑡𝑡𝑗𝑗,1 < 𝑡𝑡𝑗𝑗,𝑚𝑚

−1 𝑖𝑖𝑖𝑖 𝑡𝑡𝑗𝑗,1 < 𝑡𝑡𝑗𝑗,𝑚𝑚

Then, scheduling the jobs follow the non-ascending order of SI values. In this work,

the case study was carried out, and Gupta proved that the new heuristic can provide

better performance on makespan minimization than Palmer’s.

The NEH heuristic was proposed by Nawaz et al in 1983 (Nawaz, Enscore, & Ham,

1983). NEH heuristic has two different phases. Phase.I: an initial sequence is generated

15

by sorting jobs according to the non-increasing order of total processing times on all

machines. The total processing time can be computed by:

𝑝𝑝𝑗𝑗 = �𝑝𝑝𝑗𝑗,𝑖𝑖

𝑚𝑚

𝑖𝑖=1

, where 𝑗𝑗 = 1 …𝑛𝑛

In the second phase, select first two jobs from the initial sequence to create a partial

sequence with minimum makespan value. Then, insert the next jobs from the initial

sequence into all possible locations of current partial sequence and select the partial

sequence with minimum makespan. Repeat the second phase until all jobs are removed

from the initial sequence.

Furthermore, Taillard’s proposed a modified NEH heuristic in 1990(Taillard, 1990).

In Taillard’s work, the new heuristic reduced the computational complexity of NEH

from 𝑂𝑂(𝑛𝑛3𝑚𝑚) to 𝑂𝑂(𝑛𝑛2𝑚𝑚) without sacrifice the quality of the final solutions.

However, this “speed-up” method was designed to solve the makespan minimization

problem. For the flowtime minimization, this “speed-up” procedure does not work(J.

M. Framinan, Leisten, & Rajendran, 2003).

Since the NEH heuristic was developed, many newer heuristics and algorithms

were developed according to the framework of NEH heuristic. For these newer

heuristics and algorithm, they generated the initial sequence(s) first, and the

constructive method (i.e. insertion method) is applied to generate the final solution. In

order to obtain an initial solution, some simple sequencing rules can be used, such as

the ascending or descending order of total processing time (i.e. SPT and LPT rule).

16

According to the structure of NEH, the quality of the final solution is very likely related

to the goodness of the initial sequence. In 2003, Framinan(J. M. Framinan et al., 2003)

evaluated 177 different initial orders to identify which initial sequence could obtain the

best performance for makespan, idle time and flowtime minimization objectives. Based

on the results that presented in Framinan’s work, the original NEH heuristic is the best

heuristic for makespan objective among 177 candidate heuristics. According to the

Framinan’s work, we can say that the strength of NEH depends on the order of which

job is selected to be inserted during the second phase.

As the good effectiveness and efficiency of NEH heuristic framework, researchers

start to find out other objective functions that can be applied in the final sequence

construction phase, such as the idle time. In the latter of this thesis, we use the definition

of idle time that proposed by King and Spachis(King & Spachis, 1980) and show as

follows:

Figure 2.1 Different type of idle time

From the Figure 2.1, we can see that the makespan can be calculated by sum up the

17

total processing time of all jobs and total idle time on the last machine. Therefore, there

are several heuristics and algorithms were developed by replacing the original objective

function in phase II of NEH by minimization of idle time. For example, the heuristic

which is proposed by Sarin and Lefoka(Sarin, 1992) (denote as SL). In SL heuristic,

the initial sequence is also generated by following the descending order of total

processing time of each job on all machines, which is same as the NEH heuristic.

However, in the sequence construction stage, the job which could generate the

minimum idle time on the last machine will be selected to append to the partial sequence.

The specific steps of SL heuristic are shown as follows:

Step.1: Generate the initial sequence following the descending order of

total processing time, which is 𝑇𝑇𝑇𝑇𝑗𝑗 = ∑ 𝑝𝑝𝑗𝑗,𝑖𝑖
𝑚𝑚
𝑖𝑖=1

 Divide the jobs into two sets, one is scheduled jobs set {S} and

another is unscheduled jobs set {U}.

Step.2 Select each job in {U} to append to partial sequence (i.e. {S}).

Then calculate the idle time on the last machine by

𝑆𝑆𝑇𝑇 = � 𝑝𝑝1,𝑖𝑖

𝑖𝑖=𝑚𝑚−1

𝑖𝑖=1
 𝑖𝑖𝑓𝑓𝑓𝑓 |𝑆𝑆| = 1

𝑆𝑆𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐶𝐶|𝑆𝑆|,𝑖𝑖−1 − 𝐶𝐶|𝑆𝑆|−1,𝑖𝑖 , 0}

If the idle time of all candidate partial sequences are greater than 0,

then select the one with minimum IT.

In Sarin and Lefoka’s work, they used an indicator (denote as SLI), which can be

18

defined as SLI = 𝑆𝑆𝑆𝑆 𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚𝑝𝑝𝑚𝑚𝑛𝑛 𝑁𝑁𝑁𝑁𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚𝑝𝑝𝑚𝑚𝑛𝑛⁄ , to compare the effective of the SL

and NEH heuristic. According to the results, the solutions generated by SL heuristic

when the machine numbers are not large (i.e. machine number is less than 100).

However, when the number of machines is large than 100, the performance of NEH is

better than SL heuristic.

Chakraborty and Laha(Chakraborty, 2007), in 2007, proposed a revised heuristic

(denote as CL) based on the NEH. The initial sequence generation method is same as

NEH heuristic. However, the job insertion phase was modified, and we presented the

whole process of CL heuristic as follows:

Step.1: Generate the initial sequence by following the descending order of total

processing time.

Step.2: The first 4 jobs are selected from the initial sequence and enumerate all

possible sequence of these 4 jobs to generate (4!=24) candidate partial

sequences. Then select the best k (a parameter in this heuristic.) 4-job

sequence from these partial sequences. Set z=5.

Step.3: Select the zth job from the initial sequence and insert to z possible

position of k partial sequences. Then select the best k sequences from

(z*k) z-jobs partial sequence.

Step.4: Set z=z+1, and if z>n, then choose the best sequence from the k n-jobs

sequences as the final solution.

The author claimed that the proposed heuristic yield better performance than

19

original NEH heuristic. However, the whole heuristic is based on the framework of

original NEH. Moreover, the computational complexity is same as NEH, but CL

heuristic has to evaluate more sequence than NEH. In 2012, Singhal et al(Singhal,

Singh, & Dayma, 2012) proposed a heuristic which is very similar with CL heuristic,

but they did not provide any computational experiment results except a specific

numerical example.

In 2016, Li proposed a lever concept and applied this concept to solve the

permutation flow shop scheduling problem(W. Li, Freiheit, & Miao, 2016). In their

work, three sequencing methods were proposed and named as SBL (without applying

the lever concept), SBLL, SLL. In SBLL, the impact of the idle time on bottleneck

machine (𝑀𝑀𝐵𝐵) was considered. The larger idle time created on the bottleneck, the worse

solution will be obtained for makespan objective. Therefore, we want the job can flow

into the bottleneck machine as soon as possible to minimize the idle time on MB. It

means that the jobs need to sequenced follow SPT rule from M1 to MB. For the machine

following the MB to last machine Mm, sequence the job follow the LPT rule to improve

the performance. The main step of the method can be defined as follows:

Step.1: Calculate 𝑆𝑆𝑆𝑆𝑀𝑀𝑖𝑖 = ∑ 𝑝𝑝𝑗𝑗,𝑖𝑖
𝑛𝑛
𝑗𝑗=1 where i=1…m, select the machine with

maximum SUMi as bottleneck machine.

Step.2: Generate the value of Torques (T). For M1 to MB, 𝑇𝑇𝑗𝑗,𝑖𝑖 = (𝐵𝐵 − 𝑖𝑖 + 𝑗𝑗) ∗

𝑝𝑝𝑗𝑗,𝑖𝑖. For the MB+1 to Mm, 𝑇𝑇𝑗𝑗,𝑖𝑖 = (𝑖𝑖 − 𝐵𝐵 + 1) ∗ (−𝑝𝑝𝑗𝑗,𝑖𝑖)

20

Step.3: Sequence the job according to the ascending order of 𝑆𝑆𝑆𝑆𝑀𝑀_𝑇𝑇𝑗𝑗 =

∑ ∑ 𝑇𝑇𝑗𝑗,𝑖𝑖
𝑚𝑚
𝑖𝑖=1

𝑛𝑛
𝑗𝑗=1 .

In order to highlight the contribution of the proposed heuristics, the performance

was compared with LPT, SPT, and MIX heuristic which is proposed by Marcon and

Dexter in 2006(Eric Marcon & Dexter, 2006). The numerical case study was carried on

Taillard’s benchmark. From the results, the SBLL heuristic obtained the smallest

average deviation of 14.5% from the best-known solution of benchmark for makespan

minimization objective. Furthermore, the author also compared the performance

between SBLL and SBL, and proved that the heuristic can achieve a better performance

when the lever concept was considered.

In the work of Ruiz (Ruiz & Maroto, 2005), they evaluated 25 existing heuristics

until 2005 which includes the exact method, constructive heuristic and metaheuristic,

for makespan objective. The author claimed that NEH heuristic is the best heuristic for

both effectiveness and efficiency, when it is applied to solve Taillard’s benchmark

problem. Meanwhile, the frame of NEH heuristic has been applied in many existing

heuristics for different objectives. In recent years, there are several researchers claimed

that their heuristics can generate better performance than NEH heuristic. However,

Kalczynski and Kamburowski proved that these claims cannot be justified and the NEH

is still the best constructive heuristic for permutation flow shop scheduling problem

(Kalczynski & Kamburowski, 2007).

21

In 2015 Gupta and Chauhan(A. Gupta & Chauhan, 2015) came up the weighting

factors for each pj,i, and then regroup the machines to generate several artificial 2-

machines problems. To prove the performance of this heuristic, they compared the

proposed heuristic with other existing algorithms. The author reported their heuristic is

more effective than Palmer, CDS and RA which is presented by

Dannenbring(Dannenbring, 1977) ,but could not better than NEH

For the solution construct phase, an objective function should be designed, and the

partial sequence is evaluated by this objective function. Usually, the objective function

can be the objective itself, such as the value of makespan. However, in the second phase

of NEH heuristic, k partial sequences need to be evaluated when the kth job from initial

sequence was inserted into k possible positions, the tie might be generated. Consider

this situation, the tie-breaking strategies were deployed. In 2007, Kalczynski and

Kamburowski compared NEHNM, which proposed by Nagano and Moccellin(Nagano

& Moccellin, 2002), with NEH based on the Taillaid’s benchmark. Furthermore, a new

evaluation function (PA) was presented in their work and defined as PA =

(No. of Wins − No. of Losses 𝑁𝑁⁄) ∗ 100% . The No. of Wins and No. of Losses

represent the number of solutions that better or worse than NEH, respectively, the total

number of cases denote as N. the author reported that the average PA of NEHNM is -

7.5%. It means that NEH heuristic could generate more best solution than NEHNM

heuristic for Taillaid’s benchmark.

Fernandez-Viagas et al(Fernandez-Viagas, Ruiz, & Framinan, 2017) reviewed and

22

generated exhaustively comparison among the best heuristic and meta-heuristic from

effective and efficient perspective. According to the results, only five heuristics can be

determined as effective, which are NEHFF (proposed by Fernandez-Viagas and

Framinan(Fernandez-Viagas & Framinan, 2014)), FBR (proposed by Rad et al.(Rad,

Ruiz, & Boroojerdian, 2009)). For NEHFF heuristic, the tie-breaking strategy was

applied in the job insertion phase. In FBR heuristic, the authors used the local search

method in their heuristic. Therefore, FBR heuristic can be classified as a composite

heuristic. Due to the most existing heuristic are developed from NEH heuristic, the

author also admitted that the superiority of NEH heuristic.

2.2 Flowtime objective

The flowtime minimization (denote as min(∑𝐶𝐶𝑗𝑗)) for permutation flow shop has

been studied for several decades. Ho and Chang(Ho & Chang, 1991) (denote as HC)

and obtained the best performance among CDS, Dannenbring, Gupta, Palmer, and

Random sequence generation method.

Rajendran & Chauduri(Chandrasekharan Rajendran & Chaudhuri, 1992) (denote

as RC) proposed several different effective heuristics for the flowtime minimization

objective in 1992. In this work, three criteria were presented which are:

� max {𝐶𝐶(𝜎𝜎𝜎𝜎,𝑖𝑖−1) − 𝐶𝐶(𝜎𝜎,𝑖𝑖), 0}
𝑚𝑚

𝑖𝑖=2

� abs {𝐶𝐶(𝜎𝜎𝜎𝜎,𝑖𝑖−1) − 𝐶𝐶(𝜎𝜎,𝑖𝑖), 0}
𝑚𝑚

𝑖𝑖=2

� abs {𝐶𝐶(𝜎𝜎𝜎𝜎,𝑖𝑖−1) − 𝐶𝐶(𝜎𝜎,𝑖𝑖)}
𝑚𝑚

𝑖𝑖=2
+ � 𝐶𝐶𝜎𝜎𝜎𝜎,𝑖𝑖

𝑚𝑚

𝑖𝑖=1

23

where σ is the partial sequence and the job a append to partial sequence σ denote

as σa.

Then, three algorithms were formed by using these three criteria. For the first

algorithm, calculate the value of the first equation, which is listed above, for each

unscheduled job, and the job with the minimum value should be appended to the partial

sequence (σ). Similarly, replace the evaluation function by the second and third

equation to form the other two algorithms. After carried out the numerical illustration,

the author claimed that three proposed heuristics obtained best performance for

flowtime objective among existing heuristics (such as the Ho and Chang’s which we

mentioned before.)

Because of the strength of NEH job insertion strategy, many researchers modified

and revised this strategy to generate the heuristics for flowtime minimization objective

on permutation flow shop scheduling problem. In 1993, Rajendran proposed a heuristic

to minimize the total flowtime, named as Raj (Chandrasekharan Rajendran, 1993). In

this heuristic, the jobs are sequenced according to the ascending order of Tj, where 𝑇𝑇𝑗𝑗 =

∑ (𝑚𝑚− 𝑖𝑖 + 1)𝑝𝑝𝑗𝑗,𝑖𝑖
𝑚𝑚
𝑖𝑖=1 , where pj,i is the processing time of job j on machine i. Then select

the first job as the partial sequence, and insert the rest job one by one into all possible

location of the partial sequence. From the computational results, the Raj heuristic can

obtain better solutions than heuristics proposed by Ho and Chang(Ho & Chang, 1991)

and Rajendran & Chauduri (Chandrasekharan Rajendran & Chaudhuri, 1992).

WY heuristic, proposed by Woo and Yim (Woo & Yim, 1998), also applied the

24

insertion strategy of NEH heuristic. The difference of WY heuristic is that the initial

sequence is not required which means the insertion phase should be applied to each

unscheduled job. The procedures of WY are shown as follows:

Step.1: Set k=1, initialize the scheduled job sequence S = {ϕ} , and

unscheduled job set U = {all jobs}. Select each job from U and insert

to the S as the first job. Calculate the flowtime for n different S, and

pick one with the minimum value of flowtime. Delete the selected job

from U.

Step.2 Set k=k+1, pick each job from U and insert to k possible position

of S to form k partial sequence. Then, select the job with min(flowtime).

Delete the selected from U.

Step.3 If k>n, stop, otherwise, return to step.2.

According to the experiment result, the performance of WY is the best among CDS,

NEH and Raj on the mean flowtime objective.

In 2003, LF heuristic presented by Framinan(J. M. Framinan & Leisten, 2003)

modified the insertion phase of NEH heuristic. The revised insertion strategy combined

with forward inter-exchange method. We summarized this strategy and presented as

follows (the following steps focus on the pair-wise exchange because it is the only

difference between LF and NEH):

Step.1. Pick the best partial from k candidate sequences that generated by

25

NEH insertion method, denote as σ.

Step.2. If the size of σ is greater than 2 (i.e. |𝜎𝜎| ≥ 2), exchange the

position of job a and b (1 ≤ 𝑚𝑚 ≤ |𝜎𝜎|,𝑚𝑚 ≤ 𝑏𝑏 ≤ |𝜎𝜎|). Generate all possible

sequences and select the one with minimum value of flowtime as the

partial sequence.

Step.3. Return to NEH insertion phase, until |𝜎𝜎| = 𝑛𝑛.

The performance of LF heuristic is better than WY and RZ on flowtime

minimization objective for both small (job number= {5,6,7,8,9}; machine number =

{5,10,15,20} and large-scale (job number={10,20,30,40,50,60,70,80}, machine

number={5,10,15,20}) test-bed. Furthermore, the author also combined the proposed

scheme with IH-7 composite heuristic, which is a composite heuristic and proposed by

Allahverdi, Aldowaisan in 2002(Allahverdi, 2002). However, because the

computational complexity of LF heuristic is O(𝑛𝑛4𝑚𝑚) (J. M. Framinan & Leisten,

2003)the computation time for large-scale problem is very large.

In 2009, Laha and Sarin revised the pairwise interchange method of FL heuristic,

and the new heuristic was denoted as FL-LS(Laha & Sarin, 2009). In this heuristic, the

Step.2 of interchange method of LF, which we have presented above, was revised as

follows. Each job in the k-job partial sequence that obtained from NEH insertion

method inserted into (k-1) positions (i.e. insert kth into all position of current partial

sequence except kth position). Therefore, (k-1) k-job sequences can be obtained and

pick the one with minimum flowtime as the current partial sequence.

26

In the authors’ work, they proved that the performance of FL has been significate

improved if the new exchange method was deployed. The average relative percentage

deviation, which is defined as ARPD = ((𝑁𝑁𝑒𝑒𝐻𝐻𝑓𝑓𝑖𝑖𝑚𝑚𝑡𝑡𝑖𝑖𝐻𝐻 − 𝐵𝐵𝑒𝑒𝑚𝑚𝑡𝑡) 𝐵𝐵𝑒𝑒𝑚𝑚𝑡𝑡⁄), was applied to

compare LF and LF-LS heuristic. According to the results, ARPD of LF changes from

0.073% ~0.78% for small cases and 0.29%~1.37% for large cases. For LF-LS heuristic,

the ARPD values change from 0.024%~0.56% and 0%~0.47% for small and large cases,

respectively. In addition, according to the Pan’s work in 2013(Pan & Ruiz, 2013), the

author also claimed that the FL-LS heuristic can obtained the best performance among

existing heuristics. However, both of LF and LF-LS heuristic, their computational

complexity is increased to O(n4m), because of the application of interchange method.

Liu and Reeves presented LR heuristic in their work (Liu & Reeves, 2001). An

index function was developed, which considered the effect of idle time and the expect

completion time of unscheduled jobs. Assume that a k-jobs partial sequence S was

generated, and a job J need to be selected from unscheduled jobs set U and append to

S as (k+1)th job in S. Then, then the idle time between kth and k+1th job can be calculated

by following equations:

IdleTime = �w ∗ max {𝐶𝐶𝑘𝑘+1,𝑖𝑖−1 − 𝐶𝐶𝑘𝑘,𝑖𝑖 ,0}
m

i=2

𝑤𝑤 =
m

𝑖𝑖 + 𝑚𝑚 ∗ (𝑚𝑚− 𝑖𝑖) (𝑛𝑛 − 2)⁄

To develop the expect flowtime part of index function, an artificial job A is created.

The average processing time of all rest jobs in U is computed after the job J is appended

27

to S with k jobs. Then, they used the average processing time as the processing time of

the artificial job A and this artificial job will be appended to the S with (k+1) jobs. The

average processing time is used as the processing time of job A. The specific calculation

method of average processing time is defined by following equations:

pk+2,i = �𝑝𝑝𝑗𝑗,𝑖𝑖 (𝑛𝑛 − 𝑚𝑚 − 1)⁄
|U|

j=1

Then, the completion time (Cj,i) and expect flowtime (AT) can be calculated by

following equations:

C1,1 = p1,1

Cj,1 = Cj−1,1 + 𝑝𝑝𝑗𝑗,1 where j = 2 … k + 2

C1,i = C1,i−1 + p1,i 𝑤𝑤ℎ𝑒𝑒𝑓𝑓𝑒𝑒 𝑖𝑖 = 2 …𝑚𝑚

Cj,i = max�𝐶𝐶𝑗𝑗−1,𝑖𝑖 ,𝐶𝐶𝑗𝑗,𝑖𝑖−1� + 𝑝𝑝𝑗𝑗,𝑖𝑖

AT = Ck+1,m + Ck+2,m

After artificial flowtime and idle time are generated, the index function can be

formulated as below:

𝑖𝑖 = (𝑛𝑛 − 𝑚𝑚 − 2) ∗ 𝑆𝑆𝐼𝐼𝐼𝐼𝑒𝑒𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒 + 𝐴𝐴𝑇𝑇

The specific procedure of LR heuristic is as follows:

Step.1 Set 𝑁𝑁 = {all jobs} and 𝑆𝑆 = 𝜙𝜙, select each job from N and insert to the

first position of S, then calculate the value of index function. Sort all

jobs according to the ascending order of 𝑖𝑖 and save this sequence as U

28

Step.2 Use the first x sorted jobs as the first job in S, pick each of rest jobs in

U and append to S, select the job with minimum index function value

as the last job in S and delete from U.

Step.3 Repeat the second step, until there is only one job left in U. Append the

last job to S directly.

In their work, the author showed that LR heuristic outperformed existing heuristics,

such as Ho (Ho & Chang, 1991) and WY (Woo & Yim, 1998). From the literature, the

LR(1) is the best constructive heuristic to minimize flowtime with the computational

complexity of O(n3m). When the parameter x equal to 1, the proposed heuristic can

obtain a better performance than Ho, WY, and RZ.

2.3 Multi-objective

In several works, the multi-objective optimization problem is solved by minimizing

one objective subject to some conditions. For example, Gupta proposed a heuristic to

minimize the flowtime in a 2-machine flow shop environment with minimum makespan.

In their work, the exact solution method was developed from Johnson’s algorithm for

2-machine flow shop. Furthermore, they also presented several heuristics based on the

dominance rule to generate the approximate solutions to the flow shop scheduling

problem.

In 1994, Rajendran and Chaudhuri proposed a heuristic (denote as RC) based on

two job selection schemes which are developed based on the lower bound of completion

29

time. These two relations can be defined as follows:

LB(σa, i) = Cσ,1 + � 𝑝𝑝𝑗𝑗,𝑖𝑖

𝑚𝑚

𝑖𝑖=1

 Relation.1:

The partial sequence σa is preferred to sequence σb, when:

Cσ,1 + � 𝑝𝑝𝜎𝜎,𝑖𝑖

𝑚𝑚

𝑖𝑖=1
≤ 𝐶𝐶𝜎𝜎,1 + � 𝑝𝑝𝑏𝑏,𝑖𝑖

𝑚𝑚

𝑖𝑖=1

 Relation 2:

For the second relation, a weighting factor was allocated to the processing time on

each machine.

Cσ,1 + � (𝑚𝑚− 𝑖𝑖 + 1) ∗ 𝑝𝑝𝜎𝜎,𝑖𝑖 ≤ 𝐶𝐶𝜎𝜎,1 + � (𝑚𝑚− 𝑖𝑖 + 1) ∗ 𝑝𝑝𝑏𝑏,𝑖𝑖

𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

Moreover, the whole procedures of RC heuristic are shown as bellows:

Step.1. Applying the NEH heuristic to generate the initial sequence, denote as

S.

Step.2 Compute the values of following 2 indicators:

Dk = � 𝑝𝑝𝑘𝑘,𝑖𝑖

𝑚𝑚

𝑖𝑖=1
−� 𝑝𝑝𝑘𝑘+1,𝑖𝑖

𝑚𝑚

𝑖𝑖=1

D′
k = � (𝑚𝑚− 𝑖𝑖 + 1) ∗ 𝑝𝑝𝑘𝑘,𝑖𝑖 −� (𝑚𝑚− 𝑖𝑖 + 1) ∗ 𝑝𝑝𝑘𝑘+1,𝑖𝑖

𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

Step.3 Pick the jobs with 𝐷𝐷𝑘𝑘 ≥ 0 to create a set L if there is no job can be

selected, then stop.

Step.4 Sort the job according the descending order of the value of Dk and tie

can be broken by assign the job with larger D’k first.

Step.5 Select the first job k in the L and interchange the corresponding job k

30

and (k+1) in S, denote the new sequence as S’. Compute the relative

increment of makespan and flowtime of S’ by following equations:

RS′ =
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚′ − min (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚,𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚′)

𝑚𝑚𝑖𝑖𝑛𝑛(𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚,𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚′)
+
∑𝐶𝐶′ − min (∑𝐶𝐶,∑𝐶𝐶′)

min (∑𝐶𝐶,∑𝐶𝐶′)

RS =
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 − min (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚,𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚′)

𝑚𝑚𝑖𝑖𝑛𝑛(𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚,𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚′)
+
∑𝐶𝐶 − min (∑𝐶𝐶,∑𝐶𝐶′)

min (∑𝐶𝐶,∑𝐶𝐶′)

If RS′ < 𝑅𝑅𝑆𝑆, then save the S’ as S, and delete job k from set L

Step.6 Return to Step.5 until the set L is empty

In 2004, Ravindran proposed three heuristics (denote as HAMC1, HAMC2,

HAMC3) to solve the makespan and flowtime minimization problem(Ravindran,

Selvakumar, Sivaraman, & Haq, 2004). In these three heuristics, they solved the

problem by RC firstly, and used the solution as the initial sequence. Then, interchange

the position of job j and job i, where 1 ≤ i ≤ n − 1 and i + 1 ≤ j ≤ n . The new

sequence is evaluated by using same evaluation scheme as RC, which are RS’ and RS.

The sequence with the minimum value of RS is saved as current sequence. Repeat the

iteration for a fixed number (denote as x) which generally varies from 10 to 20. For

HAMC1 heuristic, the author selected the sequence with minimum makespan from the

x sequences obtained from each iteration. For HAMC2, select the sequence with the

minimum flowtime value from these x sequences. For HAMC3, select the sequence

generated from the last iteration as the result.

Framinan et.al developed a multi-objective heuristic in their work to minimize the

makespan and flowtime, and the NEH insertion method was applied(Jose M Framinan,

31

Leisten, & Ruiz-Usano, 2002). However, in this heuristic, a function 𝑌𝑌 = 𝑤𝑤 ∗

(𝐶𝐶𝑚𝑚𝜎𝜎𝑚𝑚) ∗ (𝑛𝑛 2⁄) + (1 − 𝑤𝑤) ∗ ∑𝐶𝐶𝑗𝑗 was developed, and the partial sequence with

minimum Y is selected as current partial sequence. They compared the proposed

heuristic with other existing heuristics, such as WY and R94(C Rajendran, 1994) and

R95(Chandrasekharan Rajendran, 1995), which we have already mentioned above. The

results show that the performance of the heuristic is better than others. However, in

their work, Ho heuristic(Ho, 1995) can obtain better solution when the value of w is

equal to 0, which means that we only focus on the flowtime objective. When w is equal

to 1, which means that we only focus on the makespan, the performance of proposed

heuristic is worse than NEH.

Furthermore, a lot of evolutionary algorithms were developed to solve the flow

shop scheduling problem. For example, Varadharajan and Rajendran(Varadharajan &

Rajendran, 2005) applied the simulated annealing(SA) algorithm to minimize flowtime

and makespan. Sayadi et al (Sayadi, Ramezanian, & Ghaffari-Nasab, 2010) combined

the firefly metaheuristic and local search method to solve the makespan minimization

problem in permutation flow shop. However, several existing evolution algorithms and

meta-heuristics applied constructive heuristics to generate the initial solution

(population solution). For example, Framinan and Leisten(Jose M. Framinan & Leisten,

2007) proposed the multi-objective iterated greedy search with makespan and flowtime

criteria. In this heuristic, they used the NEH and FL heuristic to obtain initial sequences.

In 2015, Li proposed a multi-objective local search algorithm for flow shop scheduling

32

problem (X. Li & Li, 2015)by applying NEH heuristic to generate the initial solution.

In addition, the random sequence is also used as the initial sequence in several meta-

heuristics. For example, Lei and Guo proposed a parallel neighborhood search method

for flow shop scheduling(Lei & Guo, 2015). In their work, the initial solution was

randomly generated. Moreover, in 2014, Marichelvam et al(Marichelvam, Prabaharan,

& Yang, 2014) proposed a discrete firefly algorithm for makespan and mean flowtime

minimization. They also generated initial population solution randomly. In 2017,

Framinan compared existing meta-heuristics and claimed that the IG, which proposed

by Ruiz and Stuzle in 2007(Ruiz & Stützle, 2007), can be identified as the most

effective meta-heuristic(Fernandez-Viagas et al., 2017).

However, as we mentioned before, the computation time of meta-heuristic is much

longer than constructive. Furthermore, based on Baskar’s idea that the research progress

on constructive heuristic also can refine the meta-heuristic(Baskar, 2016). Therefore, in

our work, we will focus on the development of constructive heuristic based on the

analysis of the properties of permutation flow shop.

33

Chapter Three: Methodology

The proposed heuristic (denote as the CFD) consists of two main stages: (1). the

initial sequence is generated according to the value of the deviations from the lower

bound and upper bound. In the second stage, we applied the insertion technique to

improve the solution quality. In this chapter, the initial sequence generation method is

presented, which also includes the lower and upper bound calculation method.

Moreover, the processes of CFD heuristic are discussed in this chapter.

3.1 Problem description

Due to the inconsistent of the makespan minimization and flowtime minimization

objective. In this research, the objective is trying to balance the trade-off between the

makespan and flowtime minimization objectives. In other words, we seek to find an

optimal sequence with the minimum value of trade-off.

For a permutation flow shop scheduling problem (PFSP), there are some general

assumptions and conditions are listed as follows:

 All jobs have to be available at t=0.

 No setup time for the machine.

 The job sequence cannot be changed during the manufacturing process.

 The intermediate storage between any two machines is unlimited.

 Preemption is not allowed.

 The processing time of each job on each machine is deterministic.

34

 Each machine can process only one job at same time.

To demonstrate the procedure of heuristics and definitions of permutation flow

shop scheduling problems, we generated a Gantt chart (Figure 3.1) to explain the

calculation method of completion time of each job on each machine, and introduced

following terms that will be applied in this thesis:

n: The number of jobs

m: The number of machines

pj,i: Processing time of job j on machine i

Cj,i: Completion time of the jth on machine i

ITj,i: Idle time of the jth on machine i

LBj,i: Lower bound of completion time of the jth job on machine i.

UBj,i: Upper bound of completion time of the jth job on machine i.

Cmax: The makespan (i.e. Cn,m)

ΣCj: The flowtime of the sequence.

Figure 3.1 Gantt chart for a permutation flow shop

Because all jobs have to be available at t=0, there is no idle time on the first

35

machine. Furthermore, from Figure 3.1, we can see that the completion time (Cj,i) of

job j on machine i can be obtained by following equations:

𝐶𝐶1,1 = 𝑝𝑝𝑗𝑗,𝑖𝑖 (1)

𝐶𝐶𝑗𝑗,1 = 𝐶𝐶𝑗𝑗−1,1 + 𝑝𝑝𝑗𝑗,1 (2)

𝐶𝐶1,𝑖𝑖 = 𝐶𝐶1,𝑖𝑖−1 + 𝑝𝑝1,𝑖𝑖 (3)

𝐶𝐶𝑗𝑗,𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶(𝑗𝑗 − 1, 𝑖𝑖),𝐶𝐶(𝑗𝑗, 𝑖𝑖 − 1)} + 𝑝𝑝𝑗𝑗,𝑖𝑖 (4)

Cmax = Cn,m (5)

∑C𝑗𝑗 = � 𝐶𝐶𝑗𝑗,𝑚𝑚

𝑛𝑛

𝑗𝑗=1

(6)

3.2 Lower and upper bound of completion time

In this section, we introduced the lower bound and upper bound of completion time

(Cj,i) generation method. According to the main concept of our proposed heuristic, we

need to compute the bound for each job on each machine (i.e. the 𝑆𝑆𝐵𝐵𝑗𝑗,𝑖𝑖,𝑆𝑆𝐵𝐵𝑗𝑗,𝑖𝑖). In order

to obtain the theoretical lower and upper bound, we applied the sequence independent

method. It means that we do not need to follow the same order on each machine.

The sequence-independent lower and upper bounds for machine i are calculated

based on the minimum and maximum idle time on machine i respectively. The

minimum idle time (minIT) on machine i can be obtained by a fast flow from machine

i-1 and a slow flow out of machine i. Moreover, the maximum idle time (maxIT) on

machine i are generated by a slow flow from machine i-1 and a fast flow out of machine

i. Therefore, the calculation method of minimum and maximum idle time is introduced

36

as follows:

𝑚𝑚𝑖𝑖𝑛𝑛𝑆𝑆𝑇𝑇𝑗𝑗,1 = 0 (7)

𝑚𝑚𝑖𝑖𝑛𝑛𝑆𝑆𝑇𝑇𝑗𝑗,𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝐶𝐶𝑗𝑗,𝑖𝑖−1 − 𝐶𝐶𝑗𝑗−1,𝑖𝑖, 0� (8)

𝑚𝑚𝑖𝑖𝑛𝑛𝑆𝑆𝑇𝑇𝑗𝑗,𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐶𝐶𝑗𝑗−1,𝑖𝑖−1 + 𝑚𝑚𝑖𝑖𝑛𝑛𝑆𝑆𝑇𝑇𝑗𝑗,𝑖𝑖−1 + 𝑝𝑝𝑗𝑗,𝑖𝑖−1
𝑆𝑆𝑆𝑆𝑆𝑆 − 𝐶𝐶𝑗𝑗−2,𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑛𝑛𝑆𝑆𝑇𝑇𝑗𝑗−1,𝑖𝑖

− 𝑝𝑝𝑗𝑗,𝑖𝑖−1
𝐿𝐿𝑆𝑆𝑆𝑆 , 0}

(9)

𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑇𝑇𝑗𝑗,𝑖𝑖 = 0 (10)

𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑇𝑇𝑗𝑗,𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐶𝐶𝑗𝑗,𝑖𝑖−1 − 𝐶𝐶𝑗𝑗−1,𝑖𝑖, 0} (11)

𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑇𝑇𝑗𝑗,𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐶𝐶𝑗𝑗−1,𝑖𝑖−1 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑇𝑇𝑗𝑗,𝑖𝑖−1 + 𝑝𝑝𝑗𝑗,𝑖𝑖−1
𝐿𝐿𝑆𝑆𝑆𝑆 − 𝐶𝐶𝑗𝑗−2,𝑖𝑖 − 𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆𝑇𝑇𝑗𝑗−1,𝑖𝑖

− 𝑝𝑝𝑗𝑗,𝑖𝑖−1
𝑆𝑆𝑆𝑆𝑆𝑆 , 0}

(12)

where 𝑆𝑆𝐵𝐵0,𝑖𝑖 = 𝑆𝑆𝐵𝐵𝑗𝑗,0 = 0 and UB0,i= UBj,0 = 0. The 𝑝𝑝𝑗𝑗,𝑖𝑖
𝐿𝐿𝑆𝑆𝑆𝑆 and 𝑝𝑝𝑗𝑗,𝑖𝑖

𝑆𝑆𝑆𝑆𝑆𝑆 are the

processing time of jth job on machine i that follow the decreasing and increasing order

of processing time of all jobs on machine i.

Based on the analysis that we mentioned above, the 𝑆𝑆𝐵𝐵𝑗𝑗,𝑖𝑖 and 𝑆𝑆𝐵𝐵𝑗𝑗,𝑖𝑖 can be defined

as follows:

𝑆𝑆𝐵𝐵𝑗𝑗,𝑖𝑖 = 𝐶𝐶𝑗𝑗−1,𝑖𝑖 + 𝑚𝑚𝑖𝑖𝑛𝑛𝑆𝑆𝑇𝑇𝑗𝑗,𝑖𝑖 + 𝑝𝑝𝑗𝑗,𝑖𝑖
𝑆𝑆𝑆𝑆𝑆𝑆 (13)

𝑆𝑆𝐵𝐵𝑗𝑗,𝑖𝑖 = 𝐶𝐶𝑗𝑗−1,𝑖𝑖 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑇𝑇𝑗𝑗,𝑖𝑖 + 𝑝𝑝𝑗𝑗,𝑖𝑖
𝐿𝐿𝑆𝑆𝑆𝑆 (14)

There is no idle time on machine 1, therefore, the LBj,1 and UBj,1 can be computed

by:

𝑆𝑆𝐵𝐵𝑗𝑗,1 = 𝑆𝑆𝐵𝐵𝑗𝑗−1,1 + 𝑝𝑝𝑗𝑗,1
𝑆𝑆𝑆𝑆𝑆𝑆 (15)

𝑆𝑆𝐵𝐵𝑗𝑗,1 = 𝑆𝑆𝐵𝐵𝑗𝑗−1,1 + 𝑝𝑝𝑗𝑗,1
𝐿𝐿𝑆𝑆𝑆𝑆 (16)

To explain the lower and upper bound calculation method, a 5-jobs, 3-machines

37

problem are given in Table 3.2.1 as an example:

Table 3.2.1 Processing time of 5-jobs, 3-machines instance
Pj,i M1 M2 M3
J1 70 82 44
J2 4 69 38
J3 28 32 76
J4 5 95 79
J5 10 4 19

According to the methods that we mentioned before, to generate the minIT(j,i), the

jobs are sorted by following SPT on first machine 1 which is {2-4-5-3-1}, and follow

the LPT rule on machine 2 which is {4-1-2-3-5}. Using equation (1) to (4), we can

obtain the completion time on the first and second machine as follows: 𝐶𝐶𝑗𝑗,1 =

[4,9,19,47,117];𝐶𝐶𝑗𝑗,2 = [99,181,250,282,286], then minimum idle time on machine 2

is 𝑀𝑀𝑖𝑖𝑛𝑛𝑆𝑆𝑇𝑇𝑗𝑗,2 = [4,0,0,0,0] (according to equation (6) to (9)). Therefore, the lower

bound on machine 2 is 𝑆𝑆𝐵𝐵𝑗𝑗,2 = [8,40,109,191,286] . To obtain the lower bound on

machine 3, we sequence the jobs on machine 1 and 2 following LPT rule and applied

SPT rule on machine 3, then we can obtain the 𝑆𝑆𝐵𝐵𝑗𝑗,3 = [27,65,109,185,306] .

Similarly, the upper bound of each position on each machine are calculated by equation

(10) to (16), and the results are listed below (Table 3.2.2 and Table 3.2.3):

Table 3.2.2 The value of lower bound (LBj,i)

LBj,i M1 M2 M3
position 1 4 8 27
position 2 9 40 65
position 3 19 109 109
position 4 47 191 185
position 5 117 286 305

38

Table 3.2.3 The value of upper bound (UBj,i)

UBj,i M1 M2 M3
position 1 70 165 244
position 2 98 271 407
position 3 108 340 482
position 4 113 372 520
position 5 117 376 539

3.3 Two coupled deviations

In our work, the proposed heuristic aims to balance the trade-off between makespan

and flowtime minimization. From the existing literature, it easy to see that the LPT rule

is good for improving the performance of heuristic on makespan objective. Inspired by

this idea, we minimize the deviation from upper bound for makespan objective, because

it less likely generates idle time on machine i. For the flowtime minimization, the SPT

rule can obtain good results. Therefore, we minimize the deviation from lower bound,

which can generate small idle times on machine i, depending on the value of completion

time on previous machines.

From the analysis, we designed two different deviation calculation method for

makespan and flowtime, respectively: (1) For makespan objective, we minimize the

deviation from upper bound, because it less likely generate idle time on previous

machines; (2) For the flowtime minimization objective, we minimize the deviation from

lower bound, which can generate small idle times on previous machines, depending on

the value of completion time on previous machines. Furthermore, for flowtime

minimization objective, we did not only consider the impact of scheduled jobs but also

39

consider the impact of unscheduled jobs on our objectives. Therefore, we denote the

scheduled job set as {S} and unscheduled job set as {U}.

To calculate the deviation from upper and lower bound of completion time, we

insert each job J[j] from unscheduled job set {U} to the current location k (i.e. the kth

position of current sequence). Therefore, the deviations can be defined as follows:

a) Deviation from upper bound:

𝛥𝛥𝐶𝐶𝑀𝑀𝑗𝑗 = � |𝐶𝐶𝑘𝑘,𝑖𝑖 − 𝑆𝑆𝐵𝐵𝑘𝑘,𝑖𝑖|
𝑚𝑚

𝑖𝑖=1

 (17)

where j changes from 1 to (n-k+1), Ck,i is completion time of kth job of current

sequence on the ith machine. The UBk,i is the upper bound of completion time of kth

job on ith machine

b) Deviation from lower bound

For the flowtime minimization objective, we are not only considered the impact of

the current job in kth position, but we also consider the effect of the unscheduled

jobs. The deviation of current job for flowtime minimization objective (denoted as

∆𝐶𝐶𝑇𝑇𝑗𝑗𝑁𝑁) can be defined as follows:

∆𝐶𝐶𝑇𝑇𝑗𝑗𝐻𝐻 = �(𝑚𝑚 − 𝑖𝑖 + 1) ∗ ��𝐶𝐶𝑘𝑘,𝑖𝑖 − 𝑆𝑆𝐵𝐵𝑘𝑘,𝑖𝑖��
𝑚𝑚

𝑖𝑖=1

 (18)

where j is the jobs from unscheduled job set {U}and changes from 1 to (n-k+1).

The Ck,i is the completion of the kth job on machine i, and the LBk,i is the lower bound

of completion time of the kth job on the ith machine.

In order to evaluate the effect of unscheduled jobs (denoted as ∆𝐶𝐶𝑇𝑇𝑗𝑗𝑆𝑆), we use

average processing time of all unscheduled jobs on machine i as the processing time

40

of (n-k+1) unscheduled jobs (except the job J[j]) on machine i. The average

processing time can be obtained by following equation: 𝐴𝐴𝐴𝐴𝑒𝑒𝑇𝑇𝑖𝑖 =

∑ 𝑝𝑝𝑗𝑗,𝑖𝑖
𝑛𝑛−𝑘𝑘+1
𝑗𝑗=1 (𝑛𝑛 − 𝑚𝑚 + 1)⁄ . After the processing time of these (n-k+1) unscheduled

jobs are obtained, we append these jobs to current k-jobs sequence and calculate the

completion time from k+1th job to nth job. Then, the deviation from lower bound for

unscheduled can be computed by following equations:

∆𝐶𝐶𝑇𝑇𝑗𝑗𝑆𝑆 = ��(𝑚𝑚− 𝑖𝑖 + 1) ∗ � �𝐶𝐶𝑞𝑞,𝑖𝑖 − 𝑆𝑆𝐵𝐵𝑞𝑞,𝑖𝑖�
𝑛𝑛

𝑞𝑞=𝑘𝑘+1

�
𝑚𝑚

𝑖𝑖=1

 (19)

Moreover, based on the deviation of current job and unscheduled jobs, we

can generate the deviation from lower bound for flowtime minimization objective:

∆𝐶𝐶𝑇𝑇𝑗𝑗 = ∆𝐶𝐶𝑇𝑇𝑗𝑗𝐻𝐻 + ∆𝐶𝐶𝑇𝑇𝑗𝑗𝑆𝑆 (20)

From the equations for flowtime objective, there is a weighting factor was assigned

to the deviation part and the following example illustration can explain why we select

(m-i+1) as the weight in our heuristic. According to the definition of completion time

𝐶𝐶𝑗𝑗,𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝐶𝐶𝑗𝑗,𝑖𝑖,𝐶𝐶𝑗𝑗,𝑖𝑖−1� + 𝑝𝑝𝑗𝑗,𝑖𝑖, the processing time of a job might be added for several

times when we calculate the flowtime value. For example, 𝐶𝐶1,1 = 𝑝𝑝1,1 ,𝐶𝐶1,2 = 𝑝𝑝1,1 +

𝑝𝑝1,2. Therefore, the deviations generated on early machines have greater effects than

those generated on later machines. The weight factor (m-i+1) shows the decreasing

effects as the machine number increases.

3.4 Development of CFD heuristic

41

3.4.1 Initial sequence generation

As the CFD heuristic aims to balance the trade-off between makespan

minimization and flowtime minimization objectives, the preference relation between

two objectives are considered in the initial sequence generation method. In the proposed

heuristic we allocate a weighting factor α on ∆𝐶𝐶𝑀𝑀𝑗𝑗and (1-𝛼𝛼) on ∆𝐶𝐶𝑇𝑇𝑗𝑗, to describe the

different preference on the deviation. For the initial sequence, to determine whether a

job is scheduled in current position or not, we proposed an evaluation scheme denote

as total deviation (TDj), and the definition is shown as follows:

𝑇𝑇𝐷𝐷𝑗𝑗 = 𝛼𝛼 ∙ ∆𝐶𝐶𝑀𝑀𝑗𝑗 + (1 − 𝛼𝛼) ∙ ∆𝐶𝐶𝑇𝑇𝑗𝑗 where j ∈ {𝑆𝑆} (21)

The job J[j] with the minimum total deviation (i.e. min(TD)) will be appended to

the current sequence.

In order to explain the sequencing method specifically, the steps of initial sequence

generation are shown as follows:

Step 1: Set location index k=1. Set 𝑆𝑆 = ∅ and 𝑆𝑆 = {𝐽𝐽1, 𝐽𝐽2, … , 𝐽𝐽𝑛𝑛}.

Step 2: Select the jth job, denote as J[j] in U (j=1,…,n-k+1), and insert into the kth

position of S. Then we calculate the average processing time (AvePi) on

each machine of the jobs in U except the J[j]. We generated (n-k) artificial

jobs with AvePi as the processing time of each artificial job on each

machine. These artificial jobs are temporarily appended to S. from (k+1)th

to nth in S.

42

Step 3: Computed the completion times (Cji) of {𝑆𝑆} by applying the equation (1)

to (3). Then, the current and future deviations for each objective can be

generated by following equations (17) to (20):

∆𝐶𝐶𝑀𝑀𝑗𝑗 = � |𝐶𝐶𝑚𝑚,𝑖𝑖 − 𝑆𝑆𝐵𝐵𝑚𝑚,𝑖𝑖|
𝑚𝑚

𝑖𝑖=1
 where j ∈ {U}

∆𝐶𝐶𝑇𝑇𝑗𝑗𝐻𝐻 = �(𝑚𝑚− 𝑖𝑖+ 1) ∗ ��𝐶𝐶𝑚𝑚,𝑖𝑖 − 𝑆𝑆𝐵𝐵𝑚𝑚,𝑖𝑖��
𝑚𝑚

𝑖𝑖=1

∆𝐶𝐶𝑇𝑇𝑗𝑗𝑆𝑆 = ��(m− i + 1) ∗ � �Cj,i − LBj,i�
|T|

j=k+1
�

m

i=1

∆𝐶𝐶𝑇𝑇𝑗𝑗 = ∆𝐶𝐶𝑇𝑇𝑗𝑗𝑁𝑁 + ∆𝐶𝐶𝑇𝑇𝑗𝑗𝑇𝑇

Then the total deviation can be obtained by equation (21):

𝑇𝑇𝐷𝐷𝑗𝑗 = 𝛼𝛼 ∙ ∆𝐶𝐶𝑀𝑀𝑗𝑗 + (1 − 𝛼𝛼) ∙ ∆𝐶𝐶𝑇𝑇𝑗𝑗

Where the α is the preference factor for DevCmax and DevSUMC which

is obtained from decision makers. Then the job J[j] with the minimum value

of total deviation (TDj) will be selected and inserted to the kth location of

S.

Step 4: Remove the select job J[j] from the U. If k<n-1, set k=k+1 and go to

step 2. If k=n-1, append the remaining job in U to S, and save the S as initial

sequence {π}

3.4.2 CFD heuristic

We also applied the insertion technique in the second phase of our heuristic to

improve the performance after obtaining the initial sequence. As the CFD heuristic is

43

designed for the trade-off balancing objective, we also introduced the preference factor

α into our insertion phase and developed a new evaluation scheme based on the relative

deviation increment value (RIV) from lower bound of makespan and flowtime for the

current partial sequence. The lower bound for a partial sequence can be computed by

applying the equations (7) to (16).

In addition, according to the calculation methods of makespan and flowtime, we

can see that the scale of these two objectives are not same, the value of flowtime is

significantly larger than makespan. Therefore, we normalized the deviation for both

makespan and flowtime to reduce the impact of their different scales and defined the

RIV as follows:

𝑅𝑅𝑆𝑆𝑅𝑅 = 𝛼𝛼 ∙ �
𝐶𝐶𝑘𝑘,𝑚𝑚 − 𝑆𝑆𝐵𝐵𝑘𝑘,𝑚𝑚

𝑆𝑆𝐵𝐵𝑘𝑘,𝑚𝑚 − 𝑆𝑆𝐵𝐵𝑘𝑘,𝑚𝑚
� + (1 − 𝛼𝛼) ∙ �

∑ 𝐶𝐶𝑗𝑗,𝑚𝑚
𝑘𝑘
𝑗𝑗=1 − ∑ 𝑆𝑆𝐵𝐵𝑗𝑗,𝑚𝑚

𝑘𝑘
𝑗𝑗=1

∑ 𝑆𝑆𝐵𝐵𝑗𝑗,𝑚𝑚
𝑘𝑘
𝑗𝑗=1 − ∑ 𝑆𝑆𝐵𝐵𝑗𝑗,𝑚𝑚

𝑘𝑘
𝑗𝑗=1

� (22)

where 𝐶𝐶𝑘𝑘,𝑚𝑚 and ∑ 𝐶𝐶𝑗𝑗,𝑚𝑚
𝑘𝑘
𝑗𝑗=1 are makespan and flowtime for the k-jobs partial sequence

{𝜙𝜙}. The candidate partial sequence with the minimum RIV is selected as current partial

sequence {𝜙𝜙} from all candidate sequences.

To illustrate the strategy of job insertion phase more specific, the steps of job

insertion phase are shown as below in details:

Step 1: Generate the initial sequence (π) using the initial sequence generation

method from section 3.2.

Step 2: Set k=2. Select the first two jobs from π to create a new k-jobs partial

sequence {𝜙𝜙} . Then exchange the position of these two jobs, and

44

calculate the value of RIV in the following equations for two candidate

partial sequences:

𝑅𝑅𝑆𝑆𝑅𝑅 = 𝛼𝛼 ∙ �
𝐶𝐶{𝜙𝜙} − 𝑆𝑆𝐵𝐵𝑘𝑘,𝑚𝑚

𝑆𝑆𝐵𝐵𝑘𝑘,𝑚𝑚 − 𝑆𝑆𝐵𝐵𝑘𝑘,𝑚𝑚
� + (1 − 𝛼𝛼)

∙ (
𝛴𝛴𝐶𝐶{𝜙𝜙} − ∑ 𝑆𝑆𝐵𝐵𝑗𝑗,𝑚𝑚

𝑘𝑘
𝑗𝑗=1

∑ 𝑆𝑆𝐵𝐵𝑗𝑗,𝑚𝑚
𝑘𝑘
𝑗𝑗=1 − ∑ 𝑆𝑆𝐵𝐵𝑗𝑗,𝑚𝑚

𝑘𝑘
𝑗𝑗=1

)

Step 3: Set k=k+1, choose the kth job from initial sequence and insert to all

k possible locations of {𝜙𝜙}. Calculate the RIV value for k candidate

sequences. Update the {𝜙𝜙} by the candidate sequence with minimum

RIV.

Step 4: If k<n, go to Step 3, otherwise output the current partial sequence

{𝜙𝜙} as the final solution.

From the analysis that we present above, we can see that the computational

complexity of our CFD heuristic is determined by the insertion phase in Step 3 (i.e. the

job insertion phase). Hence, the CFD heuristic has the same computational complexity

as NEH and LR heuristics, which is 𝑂𝑂(𝑛𝑛3𝑚𝑚).

3.4.3 A Numerical example for CFD heuristic

To explain the procedure of CFD heuristic in details, we use the same instance that

presented in Section 3.2 (Table 3.2.1) and set the α = 0. The processing time 𝑝𝑝𝑗𝑗,𝑖𝑖 are

shown as follows:

45

Pj,i M1 M2 M3
J1 70 82 44
J2 4 69 38
J3 28 32 76
J4 5 95 79
J5 10 4 19

Step.1 Set 𝑆𝑆 = {𝐽𝐽1, 𝐽𝐽2, 𝐽𝐽3, 𝐽𝐽4, 𝐽𝐽5} and S = {𝜙𝜙}

Step.2 Calculated the lower bound (𝑆𝑆𝐵𝐵𝑗𝑗,𝑖𝑖) and upper bound (𝑆𝑆𝐵𝐵𝑗𝑗,𝑖𝑖) by

applying the generation method which is mentioned in section 4.5.1.

The matrix of 𝑆𝑆𝐵𝐵𝑗𝑗,𝑖𝑖 is

LBj,i M1 M2 M3
position 1 4 8 27
position 2 9 40 65
position 3 19 109 109
position 4 47 191 185
position 5 117 286 305

Moreover, the matrix of 𝑆𝑆𝐵𝐵𝑗𝑗,𝑖𝑖 is shown as follows:

UBj,i M1 M2 M3
position 1 70 165 244
position 2 98 271 407
position 3 108 340 482
position 4 113 372 520
position 5 117 376 539

Step.3 Computed the total deviation (TD) for each job and selected the

job with the minimum value of TD to append to S. In this

example: 𝑇𝑇𝐷𝐷𝑗𝑗 = {2909.5; 1316.5; 1585; 1640.5; 1229.5} . Then,

the job 5 is picked to append to S as the first job of scheduled job

46

set, and delete from the U. Repeat step.3 and select the job with

minimum value of TD in each iteration to append to S, until 𝑆𝑆 =

{𝜙𝜙}.For this case, the TD values and unscheduled job set {U} for

each iteration are listed as below:

Iteration #1 U={J1,J2,J3,J4,J5}

𝑇𝑇𝐷𝐷𝑗𝑗 = {2909.5;𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏.𝟓𝟓; 1585; 1640.5; 1229.5}.

We select the J2 to append to S and delete from U

Iteration #2 U= {J1 ,J3,J4,J5}

𝑇𝑇𝐷𝐷𝑗𝑗 = {2047,𝟕𝟕𝟕𝟕𝟏𝟏, 991,984}.

We select the J3 to append to S and delete from U

Iteration #3 U = {J1,J4,J5}

𝑇𝑇𝐷𝐷𝑗𝑗 = {863,𝟒𝟒𝟏𝟏𝟒𝟒, 653}

We select the J4 to append to S and delete from U

Iteration #4 𝑇𝑇𝐷𝐷𝑗𝑗 = {341,𝟏𝟏𝟕𝟕𝟓𝟓}

We select the J5 to append to S and delete from U

Therefore, we can obtain an initial sequence as {5-2-3-4-1} for

this case.

Step.4 Set k=2; Select first two jobs from S, and generate two possible

candidate sequences {5-2}, {2-5} and their RIV value are 154 and

241.So we select the minimum one, which is {5-2} as current

47

sequence.

Step.5 Set k=k+1. Pick the kth job from S and insert to k possible position

in current sequence. For k=3, generate k candidate partial sequences

which are: {3-5-2}, {5-3-2}, {5-2-3}. The RIV values are [484, 363,

351]. Then we choose the one with min(RIV), which is {5-2-3}, as

current partial sequence.

For k=4, we insert the job 4 to the current partial sequence and

obtain{4-5-2-3},{5-4-2-3},{5-2-4-3},{5-2-3-4}. The corresponding

RIV are [925,725,744,640], the {5-2-3-4} is picked as current

sequence. For last iteration, we insert the Job 1 and generate five

candidate sequences which are: {1-5-2-3-4},{5-1-2-3-4}, {5-2-1-3-

4}, {5-2-3-1-4} and {5-2-3-4-1} with RIV values as

[1444,1290,1022,963,976]. Therefore, the {5-2-3-1-4} is selected as

current partial sequence.

Step.6 If k ≤ n, return to Step.5, else stop and save current sequence as

the solution. For this example, the final solution is {5-2-3-1-4}

48

Chapter Four: Case Study

In the computational experiment, we compared our CFD heuristic with NEH and

LR heuristics on makespan (α=1) minimization, flowtime (α=0) minimization, and

trade-off (α=0.5) minimization objectives based on random small-scale problem and

Taillard’s benchmark. Besides, we use the statistical process control to verify our CFD

heuristic is better than the other two in terms of sustainable stableness.

4.1 Evaluation scheme

We test our CFD heuristic on both small-scale and large-scale instances. The

processing times for small-scale instances are randomly generated following the

uniform distribution in [1, 99]. For small-scale instances, the number of jobs is 5, 6, 7,

8, 9, 10, and the number of machines is [3, 5, 7, 9, 11, 13, 15, 17, 19]. Thus, there are

54 combinations. For each combination, 100 cases are randomly generated. Totally, we

have 5400 instances for small-scale. For large-scale instances, the Taillard’s

benchmarks are used to test the performances of heuristics for flow shop scheduling,

consisting of 120 instances in 12 combinations, where the number of jobs is 20, 50, 100,

200 or 500, and the number of machines is 5, 10 or 20. In each combination, there are

10 instances.

In order to evaluate the effectiveness of our CFD heuristic on makespan, flowtime

and trade-off value minimization objectives. We applied three criteria to evaluate the

performances of CFD heuristic for permutation flow shop scheduling problem:

49

a) For the makespan minimization objective (i.e. Fm|prmu|Cmax), we used the

average relative percent deviation (ARPD) to evaluate the effectiveness. The

calculation method of ARPD is defined as follows:

 Average relative percent deviation (ARPD) for makespan:

ARPDCmax =
1
𝑁𝑁
∗ �� �

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 −𝑀𝑀𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖
𝑀𝑀𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖

�
𝑁𝑁

𝑖𝑖=1
� ∗ 100 (23)

where the N is the total case number and the Cmaxi is the makespan of the ith

case. For the small cases, the MinCmaxi is the optimal solution which is

generated by enumeration method. For large-scale cases, the MinCmaxi is the

best-known solution of Taillard’s benchmark.

b) Similarly, to evaluate the effectiveness of CFD heuristic on flowtime

minimization objective (i.e. Fm|prmu|ΣCj), the ARPD vale is applied and can

be calculated by the following equations:

• Average relative percent deviation (ARPD) for flowtime:

𝐴𝐴𝑅𝑅𝑇𝑇𝐷𝐷𝛴𝛴𝛴𝛴 =
1
𝑁𝑁
∗ �� �

𝑆𝑆𝑆𝑆𝑀𝑀𝐶𝐶𝑖𝑖 − 𝑀𝑀𝑖𝑖𝑛𝑛𝑆𝑆𝑆𝑆𝑀𝑀𝐶𝐶𝑖𝑖
𝑀𝑀𝑖𝑖𝑛𝑛𝑆𝑆𝑆𝑆𝑀𝑀𝐶𝐶𝑖𝑖

�
𝑁𝑁

𝑖𝑖=1
� ∗ 100 (24)

where the N is the cases number and the SUMCi is the flowtime time for the ith

case. The value of MinSUMCi is the optimal solution which is generated by

enumeration method for small cases. For large-scale cases, MinSUMCi is the

best-known solution for the ith case.

c) As we said that the goal of our CFD heuristic is trade-off balancing. In order to

describe the trade-off between minimization of makespan and flowtime, we

defined the trade-off as the following equation:

50

𝑇𝑇𝑂𝑂𝑖𝑖 = 𝛽𝛽 × �
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 − 𝑀𝑀𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖

𝑀𝑀𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖
� + (1 − 𝛽𝛽) × �

𝑆𝑆𝑆𝑆𝑀𝑀𝐶𝐶𝑖𝑖 − 𝑀𝑀𝑖𝑖𝑛𝑛𝑆𝑆𝑆𝑆𝑀𝑀𝐶𝐶𝑖𝑖
𝑀𝑀𝑖𝑖𝑛𝑛𝑆𝑆𝑆𝑆𝑀𝑀𝐶𝐶𝑖𝑖

� (25)

where the Cmaxi and SUMCi are makespan and flowtime for ith instance. For small

cases, 𝑀𝑀𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 and 𝑀𝑀𝑖𝑖𝑛𝑛𝑆𝑆𝑆𝑆𝑀𝑀𝐶𝐶𝑖𝑖 are optimal solutions obtained by

enumeration method. For Taillard’s benchmark, 𝑀𝑀𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 and MinSUMCi

are the best-known solutions for the ith instance of Taillard’s benchmark. N is the

number of instances for each combination. It means that N is 100 for small cases,

but 10 for large-scale instances. β is the preference factor to evaluate the trade-off

value, changing from 0 to 1 with the step of 0.1.

4.2 Case study results

4.2.1 Small-scale cases

The case study results for small-scale cases are shown in Table.4.2.1, Table.4.2.2

and Table 4.2.3. we can see that our CFD heuristic can achieve the best performance on

flowtime minimization and trade-off minimization objective. For the makespan

minimization, the performance of CFD heuristic is very close to the NEH.

From the Table 4.2.1, we can see that our proposed CFD heuristic has smallest

ARPD of 1.27% among three heuristics on makespan objective, while the NEH and LR

are 1.28% and 11.14%, respectively. Moreover, our heuristic obtained smallest

max(ARPD) of 12.09%, and the largest number of optimal solutions of 2171 (40.20%).

According to the results in Table 4.2.2, the CFD (𝛼𝛼 = 0) heuristic generated

minimum ARPD of 0.90% on flowtime minimization objective. The NEH and LR have

51

ARPDs of 6.57% and 1.39%, respectively. Furthermore, our CFD heuristic achieves

the minimum max(ARPD) and number of best solutions of 34.17%

Table 4.2.1 Average relative percent deviations(ARPD) of makespan for small-scale
cases.

ARPD of Cmax CFD(α=1) NEH LR
ARPD 0.0127 0.0128 0.1114

Min(ARPD) 0 0 0
Max(ARPD) 0.1209 0.1240 0.4255

of Best Solutions 2171 2088 137
% of Best Solutions 40.20% 38.67% 2.54%

Table 4.2.2 Average relative percent deviations(ARPD) of flowtime for small-scale
cases.

ARPD of SUMC CFD(α=0) NEH LR
ARPD 0.0090 0.0657 0.0139
Min(ARPD) 0.0000 0.0000 0.0000
Max(ARPD) 0.0954 0.3666 0.1105
of Best Solutions 1845 110 1255
% of Best Solutions 34.17% 2.04% 23.24%

To justify the performance of our heuristic on trade-off balancing objective, we set

the 𝛼𝛼 = [0; 0.5; 1] , and applying the 𝑇𝑇𝑂𝑂𝑖𝑖 = 𝛽𝛽 × �𝛴𝛴𝑚𝑚𝜎𝜎𝑚𝑚𝑖𝑖−𝑀𝑀𝑖𝑖𝑛𝑛𝛴𝛴𝑖𝑖
𝑀𝑀𝜎𝜎𝑚𝑚𝛴𝛴𝑖𝑖−𝑀𝑀𝑖𝑖𝑛𝑛𝛴𝛴𝑖𝑖

� + (1 − 𝛽𝛽) ×

� 𝑆𝑆𝑆𝑆𝑀𝑀𝛴𝛴𝑖𝑖−𝑀𝑀𝑖𝑖𝑛𝑛𝑆𝑆𝑆𝑆𝑀𝑀𝛴𝛴𝑖𝑖
𝑀𝑀𝜎𝜎𝑚𝑚𝑆𝑆𝑆𝑆𝑀𝑀𝛴𝛴𝑖𝑖−𝑀𝑀𝑖𝑖𝑛𝑛𝑆𝑆𝑆𝑆𝑀𝑀𝛴𝛴𝑖𝑖

� to evaluate the performance. The results of experiment are

presented in Table 4.2.3.

From the Table 4.2.3 and Figure 4.2.1, the CFD heuristic obtained the best

performance, which is 0.0313, and for LR and NEH are 0.0392 and 0.0627.

Furthermore, when 𝛼𝛼 = 0 , our heuristic dominates LR heuristic on trade-off

minimization objective. For CFD(𝛼𝛼 = 0.5) , our heuristic can dominate other two

heuristics when β changes from 0.2 to 0.6.

52

Table 4.2.3 Trade-off (TO) value for different heuristics.

TO CFD(α=0) CFD(α=0.5) CFD(α=1) NEH LR
0 0.0090 0.0312 0.0659 0.0657 0.0139

0.1 0.0187 0.0312 0.0606 0.0604 0.0237
0.2 0.0284 0.0312 0.0553 0.0551 0.0334
0.3 0.0381 0.0312 0.0500 0.0498 0.0432
0.4 0.0478 0.0313 0.0446 0.0445 0.0529
0.5 0.0576 0.0313 0.0393 0.0392 0.0627
0.6 0.0673 0.0313 0.0340 0.0339 0.0724
0.7 0.0770 0.0313 0.0286 0.0286 0.0822
0.8 0.0867 0.0314 0.0233 0.0233 0.0919
0.9 0.0964 0.0314 0.0180 0.0181 0.1017
1 0.1061 0.0314 0.0127 0.0128 0.1114

Ave 0.0576 0.0313 0.0393 0.0392 0.0627
st.Dev 0.0307 0.0001 0.0168 0.0167 0.0308

Figure 4.2.1 Trade-off value for small-scale cases

53

4.2.2 Large-scale cases (Taillard’s benchmark)

For large-scale instances, we evaluate the heuristic performance by ARPD and

maximum deviation from the best-known solutions. As shown in the Table 4.2.4, for

the makespan objective, our proposed heuristic generated best ARPD of 3.32%, which

is better than NEH of 3.33% and LR of 12.51%. For flowtime minimization objective,

CFD also obtains the best performance among three heuristics. According to the results

that shown in the Table 4.2.4, the ARPD of CFD on flowtime is 2.1%, and the deviation

of NEH and LR are 10.09% and 2.23%. Moreover, for the first case in Taillard’s

benchmark (i.e. Ta001), CFD heuristic obtained a solution which is better than current

best-known solutions of Taillard’s benchmark on flowtime minimization objective.

Table 4.2.4 Single objective optimization results for Taillard’s benchmark.

ARPD
CFD LR NEH

Cmax ΣCj Cmax ΣCj Cmax ΣCj

20*5 0.0273 0.0150 0.1185 0.0154 0.0330 0.1007
20*10 0.0474 0.0217 0.1734 0.0266 0.0460 0.0850
20*20 0.0369 0.0167 0.1651 0.0303 0.0373 0.0679
50*5 0.0085 0.0252 0.0838 0.0140 0.0073 0.1526
50*10 0.0518 0.0246 0.1697 0.0338 0.0507 0.1047
50*20 0.0686 0.0232 0.1923 0.0268 0.0665 0.0770
100*5 0.0042 0.0248 0.0401 0.0098 0.0053 0.1225
100*10 0.0220 0.0262 0.0905 0.0205 0.0221 0.1126
100*20 0.0533 0.0160 0.1926 0.0314 0.0534 0.0776
200*10 0.0134 0.0189 0.0598 0.0165 0.0126 0.1140
200*20 0.0426 0.0212 0.1349 0.0279 0.0444 0.0943
500*20 0.0228 0.0183 0.0799 0.0151 0.0207 0.1021

Ave 0.0332 0.0210 0.1251 0.0223 0.0333 0.1009

54

In Table 4.2.5, the performance on trade-off balancing of each heuristic is shown,

the CFD (𝛼𝛼 = 0.5), which means we allocated same preference on makespan and

flowtime objective, achieves the smallest value of trade-off (TO) of 0.0479 and

minimum standard deviation of 0.0032, while the NEH and LR obtained 0.0671 and

0.0737 on trade-off (TO) objective. In addition, the CFD (𝛼𝛼 = 0) and CFD(𝛼𝛼 = 1),

which aimed to minimize flowtime and makespan respectively, also generate better

solutions than LR and NEH.

Table 4.2.5 Trade-off value of different heuristics on Taillard’s benchmark.

TO CFD(α=0) CFD(α=0.5) CFD(α=1) NEH LR
0 0.0210 0.0428 0.0987 0.1009 0.0223

0.1 0.0305 0.0439 0.0922 0.0942 0.0326
0.2 0.0399 0.0449 0.0856 0.0874 0.0429
0.3 0.0494 0.0459 0.0791 0.0806 0.0532
0.4 0.0589 0.0469 0.0725 0.0739 0.0634
0.5 0.0683 0.0479 0.0660 0.0671 0.0737
0.6 0.0778 0.0489 0.0594 0.0603 0.0840
0.7 0.0872 0.0499 0.0529 0.0536 0.0942
0.8 0.0967 0.0509 0.0463 0.0468 0.1045
0.9 0.1062 0.0520 0.0398 0.0400 0.1148
1 0.1156 0.0530 0.0332 0.0333 0.1251

Ave 0.0683 0.0479 0.0660 0.0671 0.0737
st.Dev 0.0299 0.0032 0.0207 0.0214 0.0325

Figure 4.2.2 plots the trend of trade-off value based on the different β value. From

this figure, we can see that the NEH and LR are dominated by CFD(𝛼𝛼 = 0.5) when β

changes from 0.3 to 0.7. The CFD(𝛼𝛼 = 1) and CFD(𝛼𝛼 = 0) can dominate the NEH

and LR respectively for all β values. Therefore, when CFD(𝛼𝛼 = 0), CFD(𝛼𝛼 = 0.5)

55

and CFD(𝛼𝛼 = 1) are applied in different range of β, we can generate the solutions that

dominate other two heuristics.

Figure 4.2.2 Trade-off value for Taillard’s benchmark.

In addition, as the Figure 4.2.3(a) and (b) plots the changing of the average value

of trade-off against the job numbers and machine numbers. It shows that CFD(α = 0.5)

achieves the best performance for all job numbers and machine numbers. Furthermore,

the LR can obtain better performance than NEH when the job number is increased.

However, from the machine number perspective, the NEH generated better

performance than LR heuristic on trade-off minimization objective.

56

(a) The average trade-off by number of jobs.

(b) The average trade-off by number of machines.

Figure 4.2.3 The average trade-off value by job number and machine number

4.3 Statistical Process Control (SPC)

As a quality control method, the statistical process control, which is developed by

is wide applied in industry to control and monitor the production process. Usually, there

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 50 100 150 200 250 300 350 400 450 500 550

A
ve

ra
ge

 T
ra

de
-o

ff
 v

al
ue

Number of jobs
CFD(α=0.5） NEH LR

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

5 10 15 20 25

A
ve

 tr
ad

e-
of

f v
al

ue

Number of machines
CFD(α=0.5） NEH LR

57

are two charts are used in SPC method named X-bar (mean)chart and R (range)-chart

to evaluate the quality. In the X-bar and R chart, there are three important indicators:

upper control limit, lower control limit, and central line. A point (or case) can be seen

as out of control, if this point (or case) is above the upper control limit or below the

lower control limit.

To validate our CFD (α=0.5) heuristic for operating room (OR) scheduling across

the perioperative process, we carry out case studies on historical OR data from

University of Kentucky HealthCare, which consists of around 30,000 cases in a year

from 2013 to 2014. Excluding the data from the weekend and holidays, we have 26,000

cases in 260 days for a year.

In this case study, utilization of the perioperative process and patient flowtime

across the perioperative process is used to evaluate performances of OR scheduling

methods. The value of patient flowtime and utilization are calculated by applying

CFD(α=0.5) on UK healthcare database. Then the results are compared with results of

first come first serve scheduling method, which is used by UK Healthcare currently. As

we mentioned before, the utilization of the whole perioperative process is related to the

makespan. Moreover, in the UK Healthcare case study, we also compare the

performance of CFD(α=0.5) with UK Healthcare based on patient flowtime. The patient

flowtime equals to the total completion time of all patient divide by total patient number.

58

After we generate the data of utilization and patient flowtime by using CFD(α=0.5)

and UK healthcare scheduling method, the statistic process control (SPC) technique is

applied to generate the X-bar charts and R-charts, and shown in Figure 4.3.1

(a) Utilization of CFD heuristic

(c) utilization of UKHC

Figure 4.3.1 X-bar and R chart for utilization

2602352091831571311057953271

0.875

0.870

0.865

0.860

0.855

Sample

S
am

pl
e

M
ea

n

__
X=0.86643

UCL=0.87638

LCL=0.85649

2602352091831571311057953271

0.04

0.03

0.02

0.01

0.00

Sample

S
am

pl
e

R
an

ge

_
R=0.01725

UCL=0.03647

LCL=0

11
1

2602352091831571311057953271

0.875

0.870

0.865

0.860

0.855

Sample

Sa
m

pl
e

M
ea

n

__
X=0.86603

UCL=0.87587

LCL=0.85618

2602352091831571311057953271

0.04

0.03

0.02

0.01

0.00

Sample

Sa
m

pl
e

R
an

ge

_
R=0.01707

UCL=0.03609

LCL=0

11
1

59

(a) Patient flowtime generated by CFD heuristic

(b) Patient flowtime generated by UKHC

Figure 4.3.2 X-bar and R chart for patient flowtime

2602352091831571311057953271

350

340

330

Sample

S
am

pl
e

M
ea

n

__
X=338.23

UCL=346.64

LCL=329.81

2602352091 831 571 311 057953271

30

20

1 0

0

Sample

S
am

pl
e

R
an

ge

_
R=14.59

UCL=30.85

LCL=0

2602352091831571311057953271

384

376

368

360

Sample

Sa
m

pl
e

M
ea

n

__
X=375.30

UCL=384.94

LCL=365.67

2602352091 831 571 311 057953271

40

30

20

1 0

0

Sample

Sa
m

pl
e

R
an

ge

_
R=16.70

UCL=35.32

LCL=0

1

60

From the Figure 4.3.1 (a) and (b), the average utilization value (i.e. the value of 𝑋𝑋)

that generated by CFD is slightly larger than the UKHC. Moreover, the upper control

limit and lower control limit of CFD are both slightly larger than UKHC. However, for

both CFD and UKHC, the out of control points are generated. In Figure 4.3.2 (a) and

(b), we plot the X-bar and R chart for the patient flow criteria. It shows that our heuristic

achieves the lower average patient flowtime and the range of upper control limit and

lower control limit is narrower than UKHC. Based on the X-bar chart, the we can see

that our CFD heuristic can obtain a patient flow of 338.23, which is smaller than UKHC

of 375.30. It means the improvement of ((375.30-338.23)) ⁄ 338.23= 0.1096 = 10.96%.

From the R-chart, our CFD heuristic does not generate any out of control points.

However, there is a out of control point for UKHC.

In addition, we generate the process capabilities for both CFD and UK Healthcare

and the results are shown in Figure 4.4.3. In this case study, the process capabilities

indicator cp and cpk can be calculated by following equations: 𝐻𝐻𝑝𝑝 = 𝑆𝑆𝑆𝑆𝐿𝐿−𝐿𝐿𝑆𝑆𝐿𝐿
6𝜎𝜎

 and 𝐻𝐻𝑝𝑝𝑘𝑘 =

min (𝑆𝑆𝑆𝑆𝐿𝐿−𝜇𝜇
3𝜎𝜎

, µ−LSL
3σ

) , where the µ is the average value of output (i.e. utilization and

patient flowtime) and σ is the standard deviation. Moreover, the USL and LSL are

upper and lower specification limit.

According to the definition of cp and cpk, the output of a process is more under

control, if the value of cp is small, and a small cpk value means that the output of a

process is more concentrate to the 𝜇𝜇. Therefore, given the results in Figure 4.3.3 (a),

we can see that the cp of CFD heuristic is equal to the UK Healthcare on utilization

61

optimization objective, but the cpk of CFD heuristic is smaller than UK Healthcare. It

means that the output (i.e. utilization) of CFD heuristic is more concentrate to µ.

(a) Process capability of CFD for utilization optimization objective

(b) Process capability of UKHC for utilization optimization objective.
Figure 4.3.3 Process capability for utilization optimization objective.

0.8960.8880.8800.8720.8640.8560.848

Pp 0.88
PPL 0.72
PPU 1.04
Ppk 0.72
Cpm *

Cp 0.89
CPL 0.73
CPU 1.04
Cpk 0.73

Potential (Within) Capability

Overall Capability

LSL USL
Overall
Within

0.8960.8880.8800.8720.8640.8560.848

Pp 0.89
PPL 0.71
PPU 1.06
Ppk 0.71
Cpm *

Cp 0.89
CPL 0.72
CPU 1.07
Cpk 0.72

Potential (Within) Capability

Overall Capability

LSL USL
Overall
Within

62

(a) Process capability of CFD for patient flowtime optimization objective

(b) Process capability of UKHC for patient flowtime optimization objective

Figure 4.3.4 Process capability for patient flowtime optimization objective.

360354348342336330324

Pp 1.08
PPL 0.98
PPU 1.17
Ppk 0.98
Cpm *

Cp 1.07
CPL 0.98
CPU 1.16
Cpk 0.98

Potential (Within) Capability

Overall Capability

LSL USL
Overall
Within

396384372360348336324

Pp 0.95
PPL 2.61
PPU -0.72
Ppk -0.72
Cpm *

Cp 0.93
CPL 2.58
CPU -0.71
Cpk -0.71

Potential (Within) Capability

Overall Capability

LSL USL
Overall
Within

63

According to the results of patient flowtime that shown in Figure 4.4.3(b), the cp of

CFD heuristic is 1.07, which is greater than the UK Healthcare of 0.93. Based on the

figure, it easy to identify that the patient flowtime that generated by UK Healthcare is

not under control. Furthermore, the cpk value of our CFD heuristic is 0.98, and it is also

larger than UK Healthcare on patient flowtime optimization objective.

Therefore, from the X-bar and R charts, our CFD heuristic can generate better

performance for utilization and patient flow time optimization objectives. Furthermore,

given the value of process capabilities index, we can see that the performance of CFD

heuristic is more under control than UKHC in a long-term period.

64

Chapter Five: Conclusion and Future work

5.1 Conclusion

As a classical scheduling problem, the flow shop scheduling has been researched

for many years. There are hundreds of heuristics and algorithms were developed in the

last few decades, such as the Raj, LR, NEH heuristics and a lot of evolutionary

algorithms. These heuristics and algorithms generated good solutions for makespan

minimization or flowtime minimization objective. However, one weakness of these

heuristics and algorithms is that they only optimizing single objective instead of multi-

objective optimization. For example, NEH is designed to minimize the makespan, and

LR is a heuristic which is designed to minimize the flowtime objective. In real-life

problems, the schedulers and decision makers might need to consider multi-objective

optimization. As we mentioned in the thesis, although there are various criteria can be

applied to generate a solid performance evaluation for a flow shop scheduling problem,

the makespan and flowtime are the fundamental criteria and others can be related to

these two criteria. Furthermore, it has been proved that these two objectives are not

consistent. Therefore, there are trade-offs between makespan minimization and

flowtime minimization objectives. According to the Pinnedo’s idea, the makespan and

flowtime are related to the utilization and work-in-process. Usually, the decision makers

might want to improve the utilization and reduce the level of work-in-process, because

the production cost is impacted by the utilization and the work-in-process affects the

65

inventory cost. Therefore, balancing trade-offs between production cost and holding

cost is critical for production and operations management

Based on this perspective, the new heuristic is proposed to balance the trade-off

between the makespan and flowtime (i.e. utilization and work-in-process). In this thesis,

we proposed a current and future deviation (CFD) deviation heuristic to balance the

trade-off between makespan and flowtime minimizations. In the CFD heuristic, we first

generate the lower and upper bounds of completion time. Then, we proposed an initial

sequence generation method based on the deviations from lower or upper bounds. To

further improve the solutions, we developed a new normalized evaluation scheme

which named as relative deviation increment value (RIV) and applied this scheme in

the job insertion (i.e. the second phase of CFD heuristic) to improve the initial sequence.

In the current literature, the NEH heuristic is the best constructive heuristic to

minimize makespan, and the LR heuristic is the best to minimize flowtime. In this thesis,

the comparison of the CFD heuristic with NEH and LR and the computational

experiments are carried on random small cases and Taillard’s benchmark database.

From the results of the case studies, our heuristic generates the best performance among

three heuristics (i.e. CFD, NEH, LR) on makespan minimization, flowtime

minimization and trade-off balancing objective. For small-scale cases Our proposed

CFD (α = 1) and CFD (α = 0) heuristics can obtain minimum average relative

percentage deviation (ARPD) of makespan and flowtime of 1.27% and 0.9%

respectively. Furthermore, we also carried the case study on the Taillard’s benchmark

66

dataset (large-scale cases). Our proposed heuristic also provides the best performance

on both makespan and flowtime minimization objectives with 3.32% and 2.10%

correspondingly. For the trade-off balancing objective, the minimum trade-off values

are provided by CFD(α = 0.5) with 0.313 and 0.479 for small and large test-bed

respectively.

In order to justify the effectiveness of CFD heuristic on real-life flow shop

scheduling problem, we applied our heuristic to solve the operation room scheduling

problems. In the case study, we model the perioperative period as a three-machine flow

shop scheduling problem. The processing time data of these three stages of

perioperative is obtained from UK healthcare and applied in our case study. We used

the statistic process control (SPC) method to evaluate the performance of CFD in a

long-term period. From the x-bar R chart, the CFD heuristic achieves higher utilization

level of 0.8664 and lower patient flow value of 338.23 than the value of the original

method that applied by UKHC. In addition, the range of upper and lower control limit

is much narrower than UKHC. It means that our CFD heuristic has a more stable

performance on utilization and patient flow objective for long-term scheduling.

5.2 Limitation and Future work

As the main concept of proposed heuristic is based on the deviation from the lower

bound and upper bound, the accuracy of bounds is very important during the

development of heuristic. Currently, the lower and upper bounds are fixed in our CFD

heuristic. It means that the lower and upper bound will not be updated when a job is

67

appended to the scheduled job set. However, the accuracy of the bounds can be

improved, if we recalculate the bounds after a job is appended to the current sequence.

What’ more, the adaptive CFD heuristic can be proposed to solve the stochastic

problems while the processing times are not deterministic. Another future work is to

integrate the CFD heuristic into the operating room (OR) schedule with other

constraints, such as surgery type(Abedini, Ye, & Li, 2016) and priority

blocking(Abedini, Li, & Ye, 2017) and allocation of OR block times(Aringhieri,

Landa, Soriano, Tànfani, & Testi, 2015).

68

References

Abedini, A., Li, W., & Ye, H. (2017). An optimization model for operating room

scheduling to reduce blocking across the perioperative process. Procedia

Manufacturing, 10, 60-70.

Abedini, A., Ye, H., & Li, W. (2016). Operating Room Planning under Surgery Type

and Priority Constraints. Procedia Manufacturing, 5, 15-25.

Abouei Ardakan, M., Hakimian, A., & Rezvan, M. T. (2013). A branch-and-bound

algorithm for minimising the number of tardy jobs in a two-machine flow-shop

problem with release dates. International Journal of Computer Integrated

Manufacturing, 27(6), 519-528. doi:10.1080/0951192x.2013.820349

Allahverdi, A., Tariq Aldowaisan. (2002). New heuristics to minimize total completion

time in m-machine flowshops. International Journal of Production Economics,

77(1), 71-83.

Aringhieri, R., Landa, P., Soriano, P., Tànfani, E., & Testi, A. (2015). A two level

metaheuristic for the operating room scheduling and assignment problem.

Computers & Operations Research, 54, 21-34.

Baskar, A. (2016). Revisiting the NEH algorithm- the power of job insertion technique

for optimizing the makespan in permutation flow shop scheduling. International

Journal of Industrial Engineering Computations, 353-366.

doi:10.5267/j.ijiec.2015.9.001

Campbell, H. G., Dudek, R. A., & Smith, M. L. (1970). A heuristic algorithm for the n

69

job, m machine sequencing problem. Management science, 16(10), B-630-B-

637.

Cardoen, B., Demeulemeester, E., & Beliën, J. (2010). Operating room planning and

scheduling: A literature review. European journal of operational research,

201(3), 921-932.

Chakraborty, U. K., and Dipak Laha. (2007). An improved heuristic for permutation

flowshop scheduling. International Journal of Information and communication

technology, 1(1), 89-97.

Dannenbring, D. G. (1977). An evaluation of flow shop sequencing heuristics.

Management science, 23(11), 1174-1182.

Denton, B., Viapiano, J., & Vogl, A. (2007). Optimization of surgery sequencing and

scheduling decisions under uncertainty. Health care management science, 10(1),

13-24.

Fernandez-Viagas, V., & Framinan, J. M. (2014). On insertion tie-breaking rules in

heuristics for the permutation flowshop scheduling problem. Computers &

Operations Research, 45, 60-67. doi:10.1016/j.cor.2013.12.012

Fernandez-Viagas, V., Ruiz, R., & Framinan, J. M. (2017). A new vision of approximate

methods for the permutation flowshop to minimise makespan: State-of-the-art

and computational evaluation. European journal of operational research,

257(3), 707-721. doi:10.1016/j.ejor.2016.09.055

Framinan, J. M., & Leisten, R. (2003). An efficient constructive heuristic for flowtime

70

minimisation in permutation flow shops. Omega, 31(4), 311-317.

doi:10.1016/s0305-0483(03)00047-1

Framinan, J. M., & Leisten, R. (2007). A multi-objective iterated greedy search for

flowshop scheduling with makespan and flowtime criteria. OR Spectrum, 30(4),

787-804. doi:10.1007/s00291-007-0098-z

Framinan, J. M., Leisten, R., & Rajendran, C. (2003). Different initial sequences for the

heuristic of Nawaz, Enscore and Ham to minimize makespan, idletime or

flowtime in the static permutation flowshop sequencing problem. International

Journal of Production Research, 41(1), 121-148.

doi:10.1080/00207540210161650

Framinan, J. M., Leisten, R., & Ruiz-Usano, R. (2002). Efficient heuristics for flowshop

sequencing with the objectives of makespan and flowtime minimisation.

European journal of operational research, 141(3), 559-569.

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and

jobshop scheduling. Mathematics of operations research, 1(2), 117-129.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and

approximation in deterministic sequencing and scheduling: a survey. Annals of

discrete mathematics, 5, 287-326.

Gupta, A., & Chauhan, S. R. (2015). A heuristic algorithm for scheduling in a flow shop

environment to minimize makespa. International Journal of Industrial

Engineering Computations, 6(2), 173-184. doi:10.5267/j.ijiec.2014.12.002

71

Gupta, J. N. (1971). A functional heuristic algorithm for the flowshop scheduling

problem. Journal of the Operational Research Society, 22(1), 39-47.

Ho, J. C. (1995). Flowshop sequencing with mean flowtime objective. European

journal of operational research, 81(3), 571-578.

Ho, J. C., & Chang, Y.-L. (1991). A new heuristic for the n-job, M-machine flow-shop

problem. European journal of operational research, 52(2), 194-202.

Johnson, S. M. (1954). Optimal two‐and three‐stage production schedules with setup

times included. Naval Research Logistics (NRL), 1(1), 61-68.

Kalczynski, P. J., & Kamburowski, J. (2007). On the NEH heuristic for minimizing the

makespan in permutation flow shops. Omega, 35(1), 53-60.

King, J., & Spachis, A. (1980). Heuristics for flow-shop scheduling. International

Journal of Production Research, 18(3), 345-357.

Laha, D., & Sarin, S. (2009). A heuristic to minimize total flow time in permutation

flow shop☆. Omega, 37(3), 734-739. doi:10.1016/j.omega.2008.05.002

Lei, D., & Guo, X. (2015). A parallel neighborhood search for order acceptance and

scheduling in flow shop environment. International Journal of Production

Economics, 165, 12-18. doi:10.1016/j.ijpe.2015.03.013

Li, W., Freiheit, T., & Miao, E. (2016). A lever concept integrated with simple rules for

flow shop scheduling. International Journal of Production Research, 55(11),

3110-3125. doi:10.1080/00207543.2016.1246762

Li, W., Mitchell, V. L., & Nault, B. R. (2014). Inconsistent Objectives in Operating

72

Room Scheduling. Paper presented at the IIE Annual Conference. Proceedings.

Li, X., & Li, M. (2015). Multiobjective Local Search Algorithm-Based Decomposition

for Multiobjective Permutation Flow Shop Scheduling Problem. IEEE

Transactions on Engineering Management, 62(4), 544-557.

doi:10.1109/tem.2015.2453264

Liu, J., & Reeves, C. R. (2001). Constructive and composite heuristic solutions to the

P//∑ Ci scheduling problem. European journal of operational research, 132(2),

439-452.

Marcon, E., & Dexter, F. (2006). Impact of surgical sequencing on post anesthesia care

unit staffing. Health care management science, 9(1), 87-98.

Marcon, E., & Dexter, F. (2007). An observational study of surgeons' sequencing of

cases and its impact on postanesthesia care unit and holding area staffing

requirements at hospitals. Anesth Analg, 105(1), 119-126.

doi:10.1213/01.ane.0000266495.79050.b0

Marichelvam, M. K., Prabaharan, T., & Yang, X. S. (2014). A Discrete Firefly

Algorithm for the Multi-Objective Hybrid Flowshop Scheduling Problems.

IEEE Transactions on Evolutionary Computation, 18(2), 301-305.

doi:10.1109/tevc.2013.2240304

Meskens, N., Duvivier, D., & Hanset, A. (2013). Multi-objective operating room

scheduling considering desiderata of the surgical team. Decision Support

Systems, 55(2), 650-659. doi:10.1016/j.dss.2012.10.019

73

Nagano, M., & Moccellin, J. (2002). A high quality solution constructive heuristic for

flow shop sequencing. Journal of the Operational Research Society, 53(12),

1374-1379.

Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine,

n-job flow-shop sequencing problem. Omega, 11(1), 91-95.

Palmer, D. (1965). Sequencing jobs through a multi-stage process in the minimum total

time—a quick method of obtaining a near optimum. Journal of the Operational

Research Society, 16(1), 101-107.

Pan, Q.-K., & Ruiz, R. (2013). A comprehensive review and evaluation of permutation

flowshop heuristics to minimize flowtime. Computers & Operations Research,

40(1), 117-128. doi:10.1016/j.cor.2012.05.018

Pinedo, M. (2012). Scheduling: Springer.

Rad, S. F., Ruiz, R., & Boroojerdian, N. (2009). New high performing heuristics for

minimizing makespan in permutation flowshops. Omega, 37(2), 331-345.

doi:10.1016/j.omega.2007.02.002

Rajendran, C. (1993). Heuristic algorithm for scheduling in a flowshop to minimize

total flowtime. International Journal of Production Economics, 29(1), 65-73.

Rajendran, C. (1994). A heuristic for scheduling in flowshop and flowline-based

manufacturing cell with multi-criteria. THE INTERNATIONAL JOURNAL OF

PRODUCTION RESEARCH, 32(11), 2541-2558.

Rajendran, C. (1995). Heuristics for scheduling in flowshop with multiple objectives.

74

European journal of operational research, 82(3), 540-555.

Rajendran, C., & Chaudhuri, D. (1992). An efficient heuristic approach to the

scheduling of jobs in a flowshop. European journal of operational research,

61(3), 318-325.

Rand, G. K. (1977). Machine scheduling problems: Classification, complexity and

computations: AHG RINNOOY KAN, Martinus Nijhoff, The Hague, 1976, ix+

180 pages: North-Holland.

Ravindran, D., Selvakumar, S. J., Sivaraman, R., & Haq, A. N. (2004). Flow shop

scheduling with multiple objective of minimizing makespan and total flow time.

The International Journal of Advanced Manufacturing Technology, 25(9-10),

1007-1012. doi:10.1007/s00170-003-1926-1

Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation

flowshop heuristics. European journal of operational research, 165(2), 479-494.

doi:10.1016/j.ejor.2004.04.017

Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the

permutation flowshop scheduling problem. European journal of operational

research, 177(3), 2033-2049.

Ruiz, R., & Vázquez-Rodríguez, J. A. (2010). The hybrid flow shop scheduling problem.

European journal of operational research, 205(1), 1-18.

Sarin, S., and M. Lefoka. (1992). Scheduling heuristic for the n-jobm-machine flow

shop. Omega, 21(2), 229-234.

75

Sayadi, M. K., Ramezanian, R., & Ghaffari-Nasab, N. (2010). A discrete firefly meta-

heuristic with local search for makespan minimization in permutation flow shop

scheduling problems. International Journal of Industrial Engineering

Computations, 1(1), 1-10. doi:10.5267/j.ijiec.2010.01.001

Singhal, E., Singh, S., & Dayma, A. (2012). An Improved Heuristic for Permutation

Flow Shop Scheduling. NEH ALGORITHM). International Journal of

Computational Engineering Research, 2(6), 95-100.

Taillard, E. (1990). Some efficient heuristic methods for the flow shop scheduling.

European journal of operational research, 47, 65-74.

Varadharajan, T., & Rajendran, C. (2005). A multi-objective simulated-annealing

algorithm for scheduling in flowshops to minimize the makespan and total

flowtime of jobs. European journal of operational research, 167(3), 772-795.

Woo, H.-S., & Yim, D.-S. (1998). A heuristic algorithm for mean flowtime objective in

flowshop scheduling. Computers & Operations Research, 25(3), 175-182.

76

Vita
Name: Feidi Dang
Education:

University of Kentucky

Master of Science

Department of Mechanical Engineering

Lexington, Kentucky

Aug,2015~Now

Xian University of Science and Technology

Bachelor of Engineering

Department of Mechanical Engineering

Xi’an, China

Aug,2010—May,2014

Research interests:
Optimization, Operation research, Flowshop scheduling.

Publication:

Under review:
Dang, F.D., Li, W., Ye, H.H. An efficient constructive heuristic to balance trade-offs
between makespan and flowtime in permutation flow shop scheduling. North
American Manufacturing Research Conference.
Preparation:
Li, W., Dang, F.D., Abedini, A., Ye, H.H. Balancing trade-offs between maximum and
total completion times in permutation flow shop scheduling (Working paper, in
preparation for submission to OMEGA-International Journal of Management Science)

	AN EFFICIENT HEURISTIC TO BALANCE TRADE-OFFS BETWEEN UTILIZATION AND PATIENT FLOWTIME IN OPERATING ROOM MANAGEMENT
	Recommended Citation

	TITLE PAGE
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Chapter One: Introduction
	1.1 Background
	1.2 Motivations
	1.3 Difficulties and Challenges
	1.4 Contribution
	1.5 Structure of this thesis

	Chapter Two: Literature Review
	2.1 Makespan objective
	2.2 Flowtime objective
	2.3 Multi-objective

	Chapter Three: Methodology
	3.1 Problem description
	3.2 Lower and upper bound of completion time
	3.3 Two coupled deviations
	3.4 Development of CFD heuristic
	3.4.1 Initial sequence generation
	3.4.2 CFD heuristic
	3.4.3 A Numerical example for CFD heuristic

	Chapter Four: Case Study
	4.1 Evaluation scheme
	4.2 Case study results
	4.2.1 Small-scale cases
	4.2.2 Large-scale cases (Taillard’s benchmark)

	4.3 Statistical Process Control (SPC)

	Chapter Five: Conclusion and Future work
	5.1 Conclusion
	5.2 Limitation and Future work

	References
	Vita

