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ABSTRACT OF THESIS 

AN EFFICIENT HEURISTIC TO BALANCE TRADE-OFFS BETWEEN 
UTILIZATION AND PATIENT FLOWTIME IN OPERATING ROOM 

MANAGEMENT 

Balancing trade-offs between production cost and holding cost is critical for 
production and operations management. Utilization of an operating room affects 
production cost, which relates to makespan, and patient flowtime affects holding cost. 
There are trade-offs between two objectives, to minimize makespan and to minimize 
flowtime. However, most existing constructive heuristics focus only on single-objective 
optimization. In the current literature, NEH is the best constructive heuristic to 
minimize makespan, and LR heuristic is the best to minimize flowtime. In this thesis, 
we propose a current and future deviation (CFD) heuristic to balance trade-offs between 
makespan and flowtime minimizations. Based on 5400 randomly generated instances 
and 120 instances in Taillard’s benchmarks, our CFD heuristic outperforms NEH and 
LR heuristics on trade-off balancing, and achieves the most stable performances from 
the perspective of statistical process control. 

Keywords: Operating Room Scheduling, Permutation Flow Shop, Trade-off 
Balancing, Constructive Heuristic, Makespan, Flowtime. 
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Chapter One: Introduction 

1.1 Background 

In modern industry system, the flow shop is widely applied in production systems 

to improve the effectiveness and efficiency, such as automotive assembly line. For a 

flow shop system, there are two important indicators which can be applied to assess 

system performance: one is utilization, and the other is work-in-process. The utilization 

impacts the efficiency of the whole system, while the inventory and holding cost are 

affected by the work-in-process. In order to improve the utilization and reduce the 

work-in-process, the flow shop scheduling problem attracted many researchers’ 

attention for last several decades. As a decision-making process, scheduling not only 

plays an important role in manufacturing field, it is also applied in many service 

industries, such as the transportation(Pinedo, 2012). In the real world, due to the 

available resources are always limited for a company, schedulers and decision makers 

should consider how to use the limited resources to finish the activities and meet the 

requirements. For example, a manufacturer might receive hundreds of orders with 

different due dates. Usually, for this situation, the decision maker will focus on 

improving the utilization of the manufacturing system to meet as many of due dates as 

possible. It means that schedulers need to minimize the idle time and the set-up times 

for each machine.  

According to the definitions of these two terms, the makespan is the time when the 

last job leaves the manufacturing system. A small value of makespan indicates a good 
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utilization of manufacturing system. For the flowtime, it can be calculated by using 

total completion of all jobs divide by job numbers. The value of flowtime usually 

represents the holding cost and work-in-process inventory cost generated by current 

schedule. Based on the definitions of makespan and flowtime, we can see that the 

makespan and flowtime are related to utilization and holding cost, respectively. As the 

utilization and holding cost both are important indicators of the performance of a 

manufacturing or service system, the schedulers always desire to improve the utilization 

and minimize the holding cost, especially for a long-time period manufacturing or 

service planning, such as the operating room scheduling for a hospital.  

In hospitals, the operating room can generate more than 40% of its total income, 

but the operating room also generates the largest proportion of the total cost for a 

hospital. (Denton, Viapiano, & Vogl, 2007). Therefore, the performance of operating 

room impacts the profit and service quality of whole hospital. 

As the demand increasing in recent years, hospitals have had to improve the 

efficiency of the operating room system to meet the demand. Generally, there are 

several common problems for an operating room system, such as the long waiting time 

for each patient and the idle time of each operating room. For an operating room system, 

the lateness will not only cause the postponement of other patients, but it will also result 

in overtime costs. If the operating room in an idle status, it means that the utilization of 

operating room system is low. To solve these problems, managers of a hospital might 

set up more operating rooms and buy more instruments or hire more professional 
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employees(Meskens, Duvivier, & Hanset, 2013). However, any of these approaches 

will increase the budget. Therefore, in recent years, the managers keep searching for 

some effective methods to improve the utilization of operating room and reduce the 

patients waiting time. 

Before generating the optimization model for the operating room system, we would 

like to introduce the process of perioperative. A perioperative period consists of three 

different phases, which are preoperative, intraoperative and postoperative. The first 

phase is preoperative, the nurses and doctors will do several pre-treatments for patients, 

such as the registration and some test. Usually, a patient might only stay in this phase 

for short time. For the intraoperative, patients can receive the operations in the operating 

room. Based on the processing time for the different type of operations, the time period 

of intraoperative is longest for these three phases. The last phase is post-operative. A 

patient will be transferred to the post-anesthesia care unit (i.e. PACU) to receive some 

recovery treatments after the operations are finished. Therefore, a patient has to go 

through these three phases and the order is unchangeable. 

In addition, according to the opinion of Cardoen(Cardoen, Demeulemeester, & 

Beliën, 2010), Two types of patients have to be considered when we try to propose a 

optimization method to improve the performance of operating room. One type is 

elective patients, and another type is non-elective. For elective patients, such as the 

patient who has cancer, the surgery for this type of patients is not very urgent. Therefore, 

doctors and nurses can generate a good planning for this type of patients. However, for 
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the non-elective patients, such as the victims of car accidents. The surgeries for these 

patients have to be performed immediately. It is extremely difficult for managers to 

generate a good planning for non-elective patients. In our current research, we only 

consider the elective patients. 

According to Marcon’s work(E. Marcon & Dexter, 2007), the scheduling method 

can be applied to improve the efficiency of operating rooms. In 2013, Meskens et 

al(Meskens et al., 2013) reviewed several different models, such as the scheduling 

model which can be used to optimize the performance of operating rooms. For the 

scheduling models, the author listed some common assumptions, such as:  

1) A surgical cannot be interrupted 

2) PACU is always available.  

3) One surgeon could only process one patient at the same time. 

4) The PACU can serve any type of patients, and so on. 

Based on the analysis that we mentioned above, we can see that a perioperative 

period can be formulated as a three-machine flow shop. The first machine (or stage) 

can be seen as the preoperative phase, the second machine is the intraoperative phase, 

and the last machine is the PACU. In order to find out a suitable model of flow shop, 

we compare two main types of flow shop, such as the traditional flow shop and the 

hybrid flow shop(Pinedo, 2012) and show as follows:  

 Flow shop (Fm) 
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To find out an optimal sequence of jobs for a flow shop scheduling problem, 

decision makers may consider changing the order of the jobs when these jobs waiting 

in the buffer to achieve a smaller makespan (i.e. maximum completion time). However, 

solving a flow shop scheduling problem is very difficult, if the sequence is changeable 

between two machines. Furthermore, we can always generate an optimal solution for 

two-machine or three-machine flow shop scheduling problem on makespan 

minimization objective without changing the order of jobs. A flow shop can be named 

as permutation flow shop, if the sequence of jobs is not allowed to change between two 

machines. Under this constraint, the jobs will go through the whole flow line and keep 

the same order. Moreover, another constraint of flow shop named as no-wait flow shop. 

For a no-wait flow shop, a job has to go through the whole flow line without waiting in 

the buffer between two machines. 

 Hybrid flow shop (HFS) 

Hybrid flow shop (HFS) is another type of flow shop. Compare to the traditional 

flow shop, a hybrid flow shop contains m stages and each stage has k parallel machines. 

For the hybrid flow shops, there are some common settings (Pinedo, 2012; Ruiz & 

Vázquez-Rodríguez, 2010): a) The stages number is larger than 2 (i.e. m≥2). b) The 

machine number of each stage is at least 1 (i.e. k≥1). c) The order of jobs can be changed 

between two stages and so on. 

According to the assumptions of scheduling model for operating room and the 

settings of permutation flow shop, we can see that a general operating room system can 
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be modeled as a permutation flow shop. In 2006, Marcon and Dexter(Eric Marcon & 

Dexter, 2006) showed that the simple sequencing rules, such LPT (longest processing 

time first) and SPT (shortest processing time first), can reduce the patient numbers in 

the waiting list. 

In 2007, Denton examined the impact of scheduling on the patient waiting list and 

idle time of the operating room (Denton et al., 2007). Furthermore, according to the 

work of Cardoen (Cardoen et al., 2010), there are several common measurements to 

evaluate the performance of the operating room system, such as the utilization which 

can be defined as the workload divided by total processing time, patient waiting time 

(i.e. the waiting list) and makespan. Usually, in order to improve the profit and service 

quality, the wait time of patients (i.e. work-in-process) should be decreased, and the 

utilization need to be increased. 

From the flow shop scheduling perspective, as we discussed before, the maximum 

completion time (Cmax) can be related to the utilization of an operating room scheduling 

problem. The patient flowtime can be represented by the flowtime (i.e. ΣCj,m, the total 

completion time of j patients on last stage). The waiting time of next (i.e. ( j+1)th) patient 

can be reduced, if we minimize the patient flowtime of the patients before this patient. 

From the literature in recent years, many researchers focus on the flow shop scheduling 

problems, and generate significant contributions to improve the performance of a 

production system, such NEH and LR. However, lots of studies focus on the single 

objective (i.e., makespan minimization or flowtime minimization.). For multi-objective 
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optimization problem, part of them focus on solving the related objective, such as the 

makespan and lateness or tardiness. However, for a flow shop scheduling problem, the 

makespan and flowtime are two fundamental criteria for flow shop scheduling. 

Moreover, as the growing of computational capacity of computers, researchers prefer 

to apply the evolutionary algorithm, such as the GA (Genetic Algorithm) and SA 

(Simulation Annealing), to achieve multi-objective optimization. However, the 

computation time is very large. 

1.2 Motivations 

Currently, the existing heuristics mainly focus on the single objective optimization, 

such as the makespan or flowtime minimization criteria. After the Johnson’s algorithm 

was proposed to generate the optimal solution for two-machine flow shop scheduling 

problem, many heuristics for the m-machine problem were developed by creating 

several virtual two-machine flow shop problems and applying Johnson’s algorithm to 

minimize the makespan. However, Johnson’s algorithm is only suitable for 2-machine 

flow shop with makespan criteria. Therefore, since the efficiency and effectiveness of 

NEH were approved, its framework was widely applied in constructive heuristic 

development. Furthermore, since the job selection scheme of NEH heuristic depends 

on the objective function, NEH framework is also suitable for flowtime minimization 

objective. 

However, for the real-world problems, to evaluate a manufacturing products 

system or service system, such as the operating room system, the decision-makers not 
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only need to optimize the system performance on a single objective, they also need to 

consider the others. Moreover, for the existing evolutionary multi-objective algorithm, 

their performance is good enough, but the computational time is not acceptable. 

Another problem is that most of these multi-objective heuristics and algorithms focus 

on the related objectives, such as makespan and tardiness. However, the tardiness time 

and the number of tardy jobs are related to the job due date. Furthermore, the most 

fundamental objectives of a flow shop are maximum completion time (i.e. makespan or 

Cmax) and total completion time (i.e. flowtime denote as ∑𝐶𝐶𝑗𝑗), and other objectives 

can be derived out from these two objectives. 

1.3 Difficulties and Challenges 

Although the flow shop scheduling problem has been researched for several 

decades, there are some challenges need to be handled. If we only consider the one-

machine flow shop scheduling problem, we can easily find out the optimal solution by 

applying LPT and SPT rule to minimize the makespan and flowtime, respectively. In 

1954, Johnson(Johnson, 1954) developed an exact method to obtain an optimal solution 

for 2-machines and 3-machines permutation flow shop on maximum completion time 

minimization objective. It is likely for us to assume that the jobs should be sequenced 

by increasing order of processing time. However, it easy to see that the processing times 

of one job on each machine are likely not less than the processing time of another job 

on corresponding machines. According to Garey’s work in 1976(Garey, Johnson, & 

Sethi, 1976), it has been proved that the flow shop scheduling problem is NP-complete, 
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which means that the exact optimal solution is too difficult to find within a polynomial 

time. In addition, for the minimization of makespan and minimization of flowtime, 

these two objectives are inconsistent with each other(W. Li, Mitchell, & Nault, 2014). 

It means that minimize one objective does not always can minimize another one. 

Moreover, there are two important measurements to evaluate the performance of 

heuristics and algorithms, which are effectiveness and efficiency. The effectiveness can 

be described as the relative deviation from the optimal solutions, and the computational 

complexity of a heuristic can be used to evaluate the efficiency. For many algorithms, 

they improved the quality of solutions (i.e. effectiveness), but the computational 

complexity of heuristic is increased (i.e. the efficiency is decreased.). Therefore, we 

desire to develop a new constructive heuristic to generate the solution with high solution 

quality and acceptable computation complexity.  

1.4 Contribution 

The contribution of our work that presented in this thesis are listed as follows. First, 

we developed a new method to generate the lower bound and upper bound for the 

completion time. Based on this lower and upper bound generation method, we proposed 

a new initial sequence scheduling method, which depends on the deviation of actual 

completion time from the lower and upper bound, to balance the trade-off between 

makespan and flowtime. Furthermore, in the initial sequence generation method, we 

are not only considered the impact of current job, but we also take the effect of 

unscheduled on our objectives into account. For the trade-off balancing objective, we 



 

10 
 

model the trade-off between two coupled deviations by a factor α for each job on each 

machine (i.e. operation level). Moreover, we also generate a model to balance the trade-

off at line level, which means the trade-off between makespan and flowtime for the 

whole flow line. 

In our heuristic, the job insertion method is applied to improve the quality of initial 

sequence. For the job insertion phase, we developed a new normalized evaluation 

function to determine which partial sequence should be selected. In order to justify the 

performance of our heuristic, the case studies are carried out on small-scale and large-

scale cases. The results show that our proposed heuristic can achieve better performance 

on trade-off balancing objective. For the single objective optimization, our heuristic 

also outperforms the existing heuristics with same computational complexity. 

Furthermore, we applied our proposed heuristic to solve the operating room scheduling 

problem for the UK healthcare. The utilization of operating room is increased, and the 

patient flowtime is reduced when our heuristic is applied. 

In addition, current existing heuristics are designed to solve the scheduling problem 

without considering the performance for a long-time period planning. However, in our 

work, we applied the statistical process control (SPC) to evaluate the long-time period 

performance of our heuristic based on the dataset from UKHC. The performance of 

proposed heuristic is more stable with a higher solution quality than the method which 

is used by UKHC.  

1.5 Structure of this thesis 
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The structure of this thesis is organized as follows:  

In the Chapter Two, we present the literature review for current status of flow shop 

scheduling. In this section, we review existing heuristics for both single objective and 

multi-objective optimization in permutation flow shop. Furthermore, we also review 

the basic concept of statistical process control. 

In Chapter Three, we show the problem description of  the permutation flow shop 

scheduling problem, and generate a Gantt chart to explain the calculation method of 

completion time. Then, we present a new initial sequence generation method for trade-

off balancing objective. Furthermore, a job insertion method with new evaluation 

scheme is generated to improve the solution quality of initial sequence. 

In Chapter Four, the results of case studies are provided. We compare our CFD 

heuristic with other existing heuristics on the single objective and trade-off balancing 

objective. The case studies are carried on small-scale and large-scale (i.e. Taillard’s 

benchmark) database. Moreover, we also applied the CFD heuristic on UK Healthcare 

database and the results are presented. 

In Chapter Five, the conclusions are summarized, and the future work is discussed.  
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Chapter Two: Literature Review 

As the classical flow shop scheduling problem, there are thousands of publications 

and research results for makespan minimization (denote as Fm|prmu|Cmax) and 

flowtime minimization (denote as Fm|prmu|ΣCj)(Graham, Lawler, Lenstra, & Kan, 

1979) on permutation flow shop scheduling problem. Currently, in many companies 

and service industries, the LPT and SPT dispatching rule are widely applied. However, 

these two simple dispatching rules can only obtain the optimal solutions for makespan 

and flowtime objectives on one-machine permutation flow shop scheduling problem. 

According to Johnson’s work in 1954(Johnson, 1954), the optimal solution can be 

generated for makespan objective on 2-machine flow shop. In Johnson’s algorithm, we 

find out the minimum processing time among all the jobs on two machines. If the 

minimum processing time occurs on the second machine, the corresponding job will be 

scheduled to the last position. Otherwise, allocate the job to the first location of the 

sequence. Then, delete the job from the unscheduled jobs, and repeat this procedure 

until there is no job left. However, Garey(Garey et al., 1976) proved the m-machines 

permutation flow shop scheduling problem is NP-complete. Which means that it is 

difficult to find the optimal solution within the polynomial time. Therefore, researchers 

start to develop the heuristics and algorithm to solve the flow shop scheduling problem 

within an acceptable computation time.  

In this chapter, we reviewed several existing heuristics and algorithms for flowtime 

and makespan minimization objectives. In general, there are two different types of 
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method to solve the scheduling problems: the first one is the exact method, such as the 

enumeration method and Branch & Bound method. For example, a branch-and-bound 

algorithm for tardy jobs minimization in a 2-machine flow shop with release date was 

proposed by Abouei et al(Abouei Ardakan, Hakimian, & Rezvan, 2013) in 2013. 

However, these exact methods cannot be applied to the large-size problem, because of 

the unacceptable computation time. Another type is the approximate method, which 

includes the heuristics and meta-heuristics and so on. For the approximate method, one 

can generate the solutions that close to the optimal results within a short computation 

period. Obviously, the approximate methods are more suitable for solving the real-

world problems. In this chapter, the literature review is classified as three different types 

based on the different objectives. Moreover, the evolutionary algorithms, such as the 

genetic algorithm (GA), are also reviewed briefly. 

2.1 Makespan objective 

The makespan minimization for permutation flow shop scheduling problem has 

been proved to be NP-complete for an m-machine flow shop (Rand, 1977). From 

Johnson’s algorithm (Johnson, 1954), the optimal solution of makespan can be obtained 

with O(n*log n) for two-machine flow shop. After Johnson’s algorithm was developed, 

there are many heuristics were developed based on the concept of Johnson’ algorithm. 

These heuristics solve the scheduling problems by creating several virtual 2-machines 

problems, and then Johnson’s algorithm was applied to solve these 2-machines 

problems. 
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Campbell et al proposed CDS heuristic (Campbell, Dudek, & Smith, 1970), which 

m machines were regrouped as (m-1) artificial two-machines flow shops. Then, apply 

Johnson’s algorithm to solve these (m-1) two-machine flow shop problems. Therefore, 

(m-1) candidate solutions can be obtained. Then calculate the makespan (i.e. Cmax) 

and the sequence with minimum makespan is selected as the final solution. 

In 1965, a heuristic is proposed by Palmer based on the concept of ‘slop index’ 

(Palmer, 1965), the solution is generated by decreasing order of the value of 𝑆𝑆𝑆𝑆𝑗𝑗, where 

the 𝑆𝑆𝑆𝑆𝑗𝑗 = −∑ [𝑚𝑚− (2 ∗ 𝑖𝑖 − 1)] ∗ 𝑡𝑡𝑗𝑗,𝑖𝑖 2⁄  𝑚𝑚
𝑖𝑖=1  . However, there are several works have 

proved that the Palmer’s algorithm is not effective. 

Gupta (J. N. Gupta, 1971) proposed a revised function of SI, and the author showed 

that the newly proposed heuristic obtained better performance than Palmer’s. The new 

index function of SI can be defined as: 

𝑆𝑆𝑆𝑆𝑗𝑗 = 𝑒𝑒𝑗𝑗 min�𝑡𝑡𝑗𝑗,𝑘𝑘 + 𝑡𝑡𝑗𝑗,(𝑘𝑘+1)�⁄ , (1 ≤ k ≤ m − 1) 

where 

𝑒𝑒𝑗𝑗 = �
1   𝑖𝑖𝑖𝑖   𝑡𝑡𝑗𝑗,1 < 𝑡𝑡𝑗𝑗,𝑚𝑚

−1   𝑖𝑖𝑖𝑖  𝑡𝑡𝑗𝑗,1 < 𝑡𝑡𝑗𝑗,𝑚𝑚      

Then, scheduling the jobs follow the non-ascending order of SI values. In this work, 

the case study was carried out, and Gupta proved that the new heuristic can provide 

better performance on makespan minimization than Palmer’s. 

The NEH heuristic was proposed by Nawaz et al in 1983 (Nawaz, Enscore, & Ham, 

1983). NEH heuristic has two different phases. Phase.I: an initial sequence is generated 
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by sorting jobs according to the non-increasing order of total processing times on all 

machines. The total processing time can be computed by: 

𝑝𝑝𝑗𝑗 = �𝑝𝑝𝑗𝑗,𝑖𝑖

𝑚𝑚

𝑖𝑖=1

, where 𝑗𝑗 = 1 …𝑛𝑛 

In the second phase, select first two jobs from the initial sequence to create a partial 

sequence with minimum makespan value. Then, insert the next jobs from the initial 

sequence into all possible locations of current partial sequence and select the partial 

sequence with minimum makespan. Repeat the second phase until all jobs are removed 

from the initial sequence. 

Furthermore, Taillard’s proposed a modified NEH heuristic in 1990(Taillard, 1990). 

In Taillard’s work, the new heuristic reduced the computational complexity of NEH 

from 𝑂𝑂(𝑛𝑛3𝑚𝑚)  to 𝑂𝑂(𝑛𝑛2𝑚𝑚)  without sacrifice the quality of the final solutions. 

However, this “speed-up” method was designed to solve the makespan minimization 

problem. For the flowtime minimization, this “speed-up” procedure does not work(J. 

M. Framinan, Leisten, & Rajendran, 2003). 

Since the NEH heuristic was developed, many newer heuristics and algorithms 

were developed according to the framework of NEH heuristic. For these newer 

heuristics and algorithm, they generated the initial sequence(s) first, and the 

constructive method (i.e. insertion method) is applied to generate the final solution. In 

order to obtain an initial solution, some simple sequencing rules can be used, such as 

the ascending or descending order of total processing time (i.e. SPT and LPT rule). 
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According to the structure of NEH, the quality of the final solution is very likely related 

to the goodness of the initial sequence. In 2003, Framinan(J. M. Framinan et al., 2003) 

evaluated 177 different initial orders to identify which initial sequence could obtain the 

best performance for makespan, idle time and flowtime minimization objectives. Based 

on the results that presented in Framinan’s work, the original NEH heuristic is the best 

heuristic for makespan objective among 177 candidate heuristics. According to the 

Framinan’s work, we can say that the strength of NEH depends on the order of which 

job is selected to be inserted during the second phase. 

As the good effectiveness and efficiency of NEH heuristic framework, researchers 

start to find out other objective functions that can be applied in the final sequence 

construction phase, such as the idle time. In the latter of this thesis, we use the definition 

of idle time that proposed by King and Spachis(King & Spachis, 1980) and show as 

follows:

 
Figure 2.1 Different type of idle time 

From the Figure 2.1, we can see that the makespan can be calculated by sum up the 
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total processing time of all jobs and total idle time on the last machine. Therefore, there 

are several heuristics and algorithms were developed by replacing the original objective 

function in phase II of NEH by minimization of idle time. For example, the heuristic 

which is proposed by Sarin and Lefoka(Sarin, 1992) (denote as SL). In SL heuristic, 

the initial sequence is also generated by following the descending order of total 

processing time of each job on all machines, which is same as the NEH heuristic. 

However, in the sequence construction stage, the job which could generate the 

minimum idle time on the last machine will be selected to append to the partial sequence. 

The specific steps of SL heuristic are shown as follows: 

Step.1:  Generate the initial sequence following the descending order of 

total processing time, which is 𝑇𝑇𝑇𝑇𝑗𝑗 = ∑ 𝑝𝑝𝑗𝑗,𝑖𝑖
𝑚𝑚
𝑖𝑖=1  

 Divide the jobs into two sets, one is scheduled jobs set {S} and 

another is unscheduled jobs set {U}. 

Step.2  Select each job in {U} to append to partial sequence (i.e. {S}). 

Then calculate the idle time on the last machine by 

𝑆𝑆𝑇𝑇 = � 𝑝𝑝1,𝑖𝑖

𝑖𝑖=𝑚𝑚−1

𝑖𝑖=1
 𝑖𝑖𝑓𝑓𝑓𝑓 |𝑆𝑆| = 1 

𝑆𝑆𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐶𝐶|𝑆𝑆|,𝑖𝑖−1 − 𝐶𝐶|𝑆𝑆|−1,𝑖𝑖 , 0} 

If the idle time of all candidate partial sequences are greater than 0, 

then select the one with minimum IT. 

In Sarin and Lefoka’s work, they used an indicator (denote as SLI), which can be 
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defined as SLI = 𝑆𝑆𝑆𝑆 𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚𝑝𝑝𝑚𝑚𝑛𝑛 𝑁𝑁𝑁𝑁𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚𝑝𝑝𝑚𝑚𝑛𝑛⁄ , to compare the effective of the SL 

and NEH heuristic. According to the results, the solutions generated by SL heuristic 

when the machine numbers are not large (i.e. machine number is less than 100). 

However, when the number of machines is large than 100, the performance of NEH is 

better than SL heuristic. 

Chakraborty and Laha(Chakraborty, 2007), in 2007, proposed a revised heuristic 

(denote as CL) based on the NEH. The initial sequence generation method is same as 

NEH heuristic. However, the job insertion phase was modified, and we presented the 

whole process of CL heuristic as follows: 

Step.1: Generate the initial sequence by following the descending order of total 

processing time. 

Step.2: The first 4 jobs are selected from the initial sequence and enumerate all 

possible sequence of these 4 jobs to generate (4!=24) candidate partial 

sequences. Then select the best k (a parameter in this heuristic.) 4-job 

sequence from these partial sequences. Set z=5. 

Step.3: Select the zth job from the initial sequence and insert to z possible 

position of k partial sequences. Then select the best k sequences from 

(z*k) z-jobs partial sequence. 

Step.4: Set z=z+1, and if z>n, then choose the best sequence from the k n-jobs 

sequences as the final solution. 

The author claimed that the proposed heuristic yield better performance than 
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original NEH heuristic. However, the whole heuristic is based on the framework of 

original NEH. Moreover, the computational complexity is same as NEH, but CL 

heuristic has to evaluate more sequence than NEH. In 2012, Singhal et al(Singhal, 

Singh, & Dayma, 2012) proposed a heuristic which is very similar with CL heuristic, 

but they did not provide any computational experiment results except a specific 

numerical example. 

In 2016, Li proposed a lever concept and applied this concept to solve the 

permutation flow shop scheduling problem(W. Li, Freiheit, & Miao, 2016). In their 

work, three sequencing methods were proposed and named as SBL (without applying 

the lever concept), SBLL, SLL. In SBLL, the impact of the idle time on bottleneck 

machine (𝑀𝑀𝐵𝐵) was considered. The larger idle time created on the bottleneck, the worse 

solution will be obtained for makespan objective. Therefore, we want the job can flow 

into the bottleneck machine as soon as possible to minimize the idle time on MB. It 

means that the jobs need to sequenced follow SPT rule from M1 to MB. For the machine 

following the MB to last machine Mm, sequence the job follow the LPT rule to improve 

the performance. The main step of the method can be defined as follows:  

Step.1: Calculate 𝑆𝑆𝑆𝑆𝑀𝑀𝑖𝑖 = ∑ 𝑝𝑝𝑗𝑗,𝑖𝑖
𝑛𝑛
𝑗𝑗=1  where i=1…m, select the machine with 

maximum SUMi as bottleneck machine. 

Step.2: Generate the value of Torques (T). For M1 to MB, 𝑇𝑇𝑗𝑗,𝑖𝑖 = (𝐵𝐵 − 𝑖𝑖 + 𝑗𝑗) ∗

𝑝𝑝𝑗𝑗,𝑖𝑖. For the MB+1 to Mm, 𝑇𝑇𝑗𝑗,𝑖𝑖 = (𝑖𝑖 − 𝐵𝐵 + 1) ∗ (−𝑝𝑝𝑗𝑗,𝑖𝑖) 
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Step.3: Sequence the job according to the ascending order of 𝑆𝑆𝑆𝑆𝑀𝑀_𝑇𝑇𝑗𝑗 =

∑ ∑ 𝑇𝑇𝑗𝑗,𝑖𝑖
𝑚𝑚
𝑖𝑖=1

𝑛𝑛
𝑗𝑗=1 . 

In order to highlight the contribution of the proposed heuristics, the performance 

was compared with LPT, SPT, and MIX heuristic which is proposed by Marcon and 

Dexter in 2006(Eric Marcon & Dexter, 2006). The numerical case study was carried on 

Taillard’s benchmark. From the results, the SBLL heuristic obtained the smallest 

average deviation of 14.5% from the best-known solution of benchmark for makespan 

minimization objective. Furthermore, the author also compared the performance 

between SBLL and SBL, and proved that the heuristic can achieve a better performance 

when the lever concept was considered. 

In the work of Ruiz (Ruiz & Maroto, 2005), they evaluated 25 existing heuristics 

until 2005 which includes the exact method, constructive heuristic and metaheuristic, 

for makespan objective. The author claimed that NEH heuristic is the best heuristic for 

both effectiveness and efficiency, when it is applied to solve Taillard’s benchmark 

problem. Meanwhile, the frame of NEH heuristic has been applied in many existing 

heuristics for different objectives. In recent years, there are several researchers claimed 

that their heuristics can generate better performance than NEH heuristic. However, 

Kalczynski and Kamburowski proved that these claims cannot be justified and the NEH 

is still the best constructive heuristic for permutation flow shop scheduling problem 

(Kalczynski & Kamburowski, 2007). 
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In 2015 Gupta and Chauhan(A. Gupta & Chauhan, 2015) came up the weighting 

factors for each pj,i, and then regroup the machines to generate several artificial 2-

machines problems. To prove the performance of this heuristic, they compared the 

proposed heuristic with other existing algorithms. The author reported their heuristic is 

more effective than Palmer, CDS and RA which is presented by 

Dannenbring(Dannenbring, 1977) ,but could not better than NEH 

For the solution construct phase, an objective function should be designed, and the 

partial sequence is evaluated by this objective function. Usually, the objective function 

can be the objective itself, such as the value of makespan. However, in the second phase 

of NEH heuristic, k partial sequences need to be evaluated when the kth job from initial 

sequence was inserted into k possible positions, the tie might be generated. Consider 

this situation, the tie-breaking strategies were deployed. In 2007, Kalczynski and  

Kamburowski compared NEHNM, which proposed by Nagano and Moccellin(Nagano 

& Moccellin, 2002), with NEH based on the Taillaid’s benchmark. Furthermore, a new 

evaluation function (PA) was presented in their work and defined as PA =

(No. of Wins − No. of Losses 𝑁𝑁⁄ ) ∗ 100% . The No. of Wins and No. of Losses 

represent the number of solutions that better or worse than NEH, respectively, the total 

number of cases denote as N. the author reported that the average PA of NEHNM is -

7.5%. It means that NEH heuristic could generate more best solution than NEHNM 

heuristic for Taillaid’s benchmark.  

Fernandez-Viagas et al(Fernandez-Viagas, Ruiz, & Framinan, 2017) reviewed and 
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generated exhaustively comparison among the best heuristic and meta-heuristic from 

effective and efficient perspective. According to the results, only five heuristics can be 

determined as effective, which are NEHFF (proposed by Fernandez-Viagas and 

Framinan(Fernandez-Viagas & Framinan, 2014)), FBR (proposed by Rad et al.(Rad, 

Ruiz, & Boroojerdian, 2009)). For NEHFF heuristic, the tie-breaking strategy was 

applied in the job insertion phase. In FBR heuristic, the authors used the local search 

method in their heuristic. Therefore, FBR heuristic can be classified as a composite 

heuristic. Due to the most existing heuristic are developed from NEH heuristic, the 

author also admitted that the superiority of NEH heuristic. 

2.2 Flowtime objective 

The flowtime minimization (denote as min(∑𝐶𝐶𝑗𝑗)) for permutation flow shop has 

been studied for several decades. Ho and Chang(Ho & Chang, 1991) (denote as HC) 

and obtained the best performance among CDS, Dannenbring, Gupta, Palmer, and 

Random sequence generation method. 

Rajendran & Chauduri(Chandrasekharan Rajendran & Chaudhuri, 1992) (denote 

as RC) proposed several different effective heuristics for the flowtime minimization 

objective in 1992. In this work, three criteria were presented which are: 

� max {𝐶𝐶(𝜎𝜎𝜎𝜎,𝑖𝑖−1) − 𝐶𝐶(𝜎𝜎,𝑖𝑖), 0}
𝑚𝑚

𝑖𝑖=2
  

� abs {𝐶𝐶(𝜎𝜎𝜎𝜎,𝑖𝑖−1) − 𝐶𝐶(𝜎𝜎,𝑖𝑖), 0}
𝑚𝑚

𝑖𝑖=2
  

� abs {𝐶𝐶(𝜎𝜎𝜎𝜎,𝑖𝑖−1) − 𝐶𝐶(𝜎𝜎,𝑖𝑖)}
𝑚𝑚

𝑖𝑖=2
+ � 𝐶𝐶𝜎𝜎𝜎𝜎,𝑖𝑖

𝑚𝑚

𝑖𝑖=1
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where σ is the partial sequence and the job a append to partial sequence σ denote 

as σa. 

Then, three algorithms were formed by using these three criteria. For the first 

algorithm, calculate the value of the first equation, which is listed above, for each 

unscheduled job, and the job with the minimum value should be appended to the partial 

sequence (σ ). Similarly, replace the evaluation function by the second and third 

equation to form the other two algorithms. After carried out the numerical illustration, 

the author claimed that three proposed heuristics obtained best performance for 

flowtime objective among existing heuristics (such as the Ho and Chang’s which we 

mentioned before.)  

Because of the strength of NEH job insertion strategy, many researchers modified 

and revised this strategy to generate the heuristics for flowtime minimization objective 

on permutation flow shop scheduling problem. In 1993, Rajendran proposed a heuristic 

to minimize the total flowtime, named as Raj (Chandrasekharan Rajendran, 1993). In 

this heuristic, the jobs are sequenced according to the ascending order of Tj, where 𝑇𝑇𝑗𝑗 =

∑ (𝑚𝑚− 𝑖𝑖 + 1)𝑝𝑝𝑗𝑗,𝑖𝑖
𝑚𝑚
𝑖𝑖=1 , where pj,i is the processing time of job j on machine i. Then select 

the first job as the partial sequence, and insert the rest job one by one into all possible 

location of the partial sequence. From the computational results, the Raj heuristic can 

obtain better solutions than heuristics proposed by Ho and Chang(Ho & Chang, 1991) 

and Rajendran & Chauduri (Chandrasekharan Rajendran & Chaudhuri, 1992). 

WY heuristic, proposed by Woo and Yim (Woo & Yim, 1998), also applied the 
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insertion strategy of NEH heuristic. The difference of WY heuristic is that the initial 

sequence is not required which means the insertion phase should be applied to each 

unscheduled job. The procedures of WY are shown as follows: 

Step.1: Set k=1, initialize the scheduled job sequence S = {ϕ} , and 

unscheduled job set U = {all jobs}. Select each job from U and insert 

to the S as the first job. Calculate the flowtime for n different S, and 

pick one with the minimum value of flowtime. Delete the selected job 

from U. 

Step.2 Set k=k+1, pick each job from U and insert to k possible position 

of S to form k partial sequence. Then, select the job with min(flowtime). 

Delete the selected from U. 

Step.3 If k>n, stop, otherwise, return to step.2. 

According to the experiment result, the performance of WY is the best among CDS, 

NEH and Raj on the mean flowtime objective.  

In 2003, LF heuristic presented by Framinan(J. M. Framinan & Leisten, 2003) 

modified the insertion phase of NEH heuristic. The revised insertion strategy combined 

with forward inter-exchange method. We summarized this strategy and presented as 

follows (the following steps focus on the pair-wise exchange because it is the only 

difference between LF and NEH): 

Step.1. Pick the best partial from k candidate sequences that generated by 



 

25 
 

NEH insertion method, denote as σ. 

Step.2. If the size of σ  is greater than 2 (i.e. |𝜎𝜎| ≥ 2 ), exchange the 

position of job a and b (1 ≤ 𝑚𝑚 ≤ |𝜎𝜎|,𝑚𝑚 ≤ 𝑏𝑏 ≤ |𝜎𝜎|). Generate all possible 

sequences and select the one with minimum value of flowtime as the 

partial sequence. 

Step.3. Return to NEH insertion phase, until |𝜎𝜎| = 𝑛𝑛. 

The performance of LF heuristic is better than WY and RZ on flowtime 

minimization objective for both small (job number= {5,6,7,8,9}; machine number = 

{5,10,15,20} and large-scale (job number={10,20,30,40,50,60,70,80}, machine 

number={5,10,15,20}) test-bed. Furthermore, the author also combined the proposed 

scheme with IH-7 composite heuristic, which is a composite heuristic and proposed by 

Allahverdi, Aldowaisan in 2002(Allahverdi, 2002). However, because the 

computational complexity of LF heuristic is O(𝑛𝑛4𝑚𝑚)  (J. M. Framinan & Leisten, 

2003)the computation time for large-scale problem is very large. 

In 2009, Laha and Sarin revised the pairwise interchange method of FL heuristic, 

and the new heuristic was denoted as FL-LS(Laha & Sarin, 2009). In this heuristic, the 

Step.2 of interchange method of LF, which we have presented above, was revised as 

follows. Each job in the k-job partial sequence that obtained from NEH insertion 

method inserted into (k-1) positions (i.e. insert kth into all position of current partial 

sequence except kth position). Therefore, (k-1) k-job sequences can be obtained and 

pick the one with minimum flowtime as the current partial sequence.  
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In the authors’ work, they proved that the performance of FL has been significate 

improved if the new exchange method was deployed. The average relative percentage 

deviation, which is defined as ARPD = ((𝑁𝑁𝑒𝑒𝐻𝐻𝑓𝑓𝑖𝑖𝑚𝑚𝑡𝑡𝑖𝑖𝐻𝐻 − 𝐵𝐵𝑒𝑒𝑚𝑚𝑡𝑡) 𝐵𝐵𝑒𝑒𝑚𝑚𝑡𝑡⁄ ), was applied to 

compare LF and LF-LS heuristic. According to the results, ARPD of LF changes from 

0.073% ~0.78% for small cases and 0.29%~1.37% for large cases. For LF-LS heuristic, 

the ARPD values change from 0.024%~0.56% and 0%~0.47% for small and large cases, 

respectively. In addition, according to the Pan’s work in 2013(Pan & Ruiz, 2013), the 

author also claimed that the FL-LS heuristic can obtained the best performance among 

existing heuristics. However, both of LF and LF-LS heuristic, their computational 

complexity is increased to O(n4m), because of the application of interchange method.  

Liu and Reeves presented LR heuristic in their work (Liu & Reeves, 2001). An 

index function was developed, which considered the effect of idle time and the expect 

completion time of unscheduled jobs. Assume that a k-jobs partial sequence S was 

generated, and a job J need to be selected from unscheduled jobs set U and append to 

S as (k+1)th job in S. Then, then the idle time between kth and k+1th job can be calculated 

by following equations: 

IdleTime = �w ∗ max {𝐶𝐶𝑘𝑘+1,𝑖𝑖−1 − 𝐶𝐶𝑘𝑘,𝑖𝑖 ,0}
m

i=2

 

𝑤𝑤 =
m

𝑖𝑖 + 𝑚𝑚 ∗ (𝑚𝑚− 𝑖𝑖) (𝑛𝑛 − 2)⁄  

To develop the expect flowtime part of index function, an artificial job A is created. 

The average processing time of all rest jobs in U is computed after the job J is appended 
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to S with k jobs. Then, they used the average processing time as the processing time of 

the artificial job A and this artificial job will be appended to the S with (k+1) jobs. The 

average processing time is used as the processing time of job A. The specific calculation 

method of average processing time is defined by following equations: 

pk+2,i = �𝑝𝑝𝑗𝑗,𝑖𝑖 (𝑛𝑛 − 𝑚𝑚 − 1)⁄
|U|

j=1

 

Then, the completion time (Cj,i) and expect flowtime (AT) can be calculated by 

following equations: 

C1,1 = p1,1 

Cj,1 = Cj−1,1 + 𝑝𝑝𝑗𝑗,1 where j = 2 … k + 2 

C1,i = C1,i−1 + p1,i 𝑤𝑤ℎ𝑒𝑒𝑓𝑓𝑒𝑒 𝑖𝑖 = 2 …𝑚𝑚 

Cj,i = max�𝐶𝐶𝑗𝑗−1,𝑖𝑖 ,𝐶𝐶𝑗𝑗,𝑖𝑖−1� + 𝑝𝑝𝑗𝑗,𝑖𝑖 

AT = Ck+1,m + Ck+2,m 

After artificial flowtime and idle time are generated, the index function can be 

formulated as below: 

𝑖𝑖 = (𝑛𝑛 − 𝑚𝑚 − 2) ∗ 𝑆𝑆𝐼𝐼𝐼𝐼𝑒𝑒𝑇𝑇𝑖𝑖𝑚𝑚𝑒𝑒 + 𝐴𝐴𝑇𝑇 

The specific procedure of LR heuristic is as follows: 

Step.1 Set 𝑁𝑁 = {all jobs} and 𝑆𝑆 = 𝜙𝜙, select each job from N and insert to the 

first position of S, then calculate the value of index function. Sort all 

jobs according to the ascending order of 𝑖𝑖 and save this sequence as U 
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Step.2 Use the first x sorted jobs as the first job in S, pick each of rest jobs in 

U and append to S, select the job with minimum index function value 

as the last job in S and delete from U. 

Step.3 Repeat the second step, until there is only one job left in U. Append the 

last job to S directly. 

In their work, the author showed that LR heuristic outperformed existing heuristics, 

such as Ho (Ho & Chang, 1991) and WY (Woo & Yim, 1998). From the literature, the 

LR(1) is the best constructive heuristic to minimize flowtime with the computational 

complexity of O(n3m). When the parameter x equal to 1, the proposed heuristic can 

obtain a better performance than Ho, WY, and RZ. 

2.3 Multi-objective  

In several works, the multi-objective optimization problem is solved by minimizing 

one objective subject to some conditions. For example, Gupta proposed a heuristic to 

minimize the flowtime in a 2-machine flow shop environment with minimum makespan. 

In their work, the exact solution method was developed from Johnson’s algorithm for 

2-machine flow shop. Furthermore, they also presented several heuristics based on the 

dominance rule to generate the approximate solutions to the flow shop scheduling 

problem. 

In 1994, Rajendran and Chaudhuri proposed a heuristic (denote as RC) based on 

two job selection schemes which are developed based on the lower bound of completion 
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time. These two relations can be defined as follows: 

LB(σa, i) = Cσ,1 + � 𝑝𝑝𝑗𝑗,𝑖𝑖

𝑚𝑚

𝑖𝑖=1
 

 Relation.1: 

The partial sequence σa is preferred to sequence σb, when: 

Cσ,1 + � 𝑝𝑝𝜎𝜎,𝑖𝑖

𝑚𝑚

𝑖𝑖=1
≤ 𝐶𝐶𝜎𝜎,1 + � 𝑝𝑝𝑏𝑏,𝑖𝑖

𝑚𝑚

𝑖𝑖=1
 

 Relation 2: 

For the second relation, a weighting factor was allocated to the processing time on 

each machine. 

Cσ,1 + � (𝑚𝑚− 𝑖𝑖 + 1) ∗ 𝑝𝑝𝜎𝜎,𝑖𝑖 ≤ 𝐶𝐶𝜎𝜎,1 + � (𝑚𝑚− 𝑖𝑖 + 1) ∗ 𝑝𝑝𝑏𝑏,𝑖𝑖

𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1
 

Moreover, the whole procedures of RC heuristic are shown as bellows: 

Step.1. Applying the NEH heuristic to generate the initial sequence, denote as 

S. 

Step.2 Compute the values of following 2 indicators: 

Dk = � 𝑝𝑝𝑘𝑘,𝑖𝑖

𝑚𝑚

𝑖𝑖=1
−� 𝑝𝑝𝑘𝑘+1,𝑖𝑖

𝑚𝑚

𝑖𝑖=1
 

D′
k = � (𝑚𝑚− 𝑖𝑖 + 1) ∗ 𝑝𝑝𝑘𝑘,𝑖𝑖 −� (𝑚𝑚− 𝑖𝑖 + 1) ∗ 𝑝𝑝𝑘𝑘+1,𝑖𝑖

𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1
 

Step.3 Pick the jobs with 𝐷𝐷𝑘𝑘 ≥ 0 to create a set L if there is no job can be 

selected, then stop. 

Step.4 Sort the job according the descending order of the value of Dk and tie 

can be broken by assign the job with larger D’k first. 

Step.5 Select the first job k in the L and interchange the corresponding job k  
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and (k+1) in S, denote the new sequence as S’. Compute the relative 

increment of makespan and flowtime of S’ by following equations: 

RS′ =
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚′ − min (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚,𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚′)

𝑚𝑚𝑖𝑖𝑛𝑛(𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚,𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚′)
+
∑𝐶𝐶′ − min (∑𝐶𝐶,∑𝐶𝐶′)

min (∑𝐶𝐶,∑𝐶𝐶′)
 

RS =
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚  − min (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚,𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚′)

𝑚𝑚𝑖𝑖𝑛𝑛(𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚,𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚′)
+
∑𝐶𝐶  − min (∑𝐶𝐶,∑𝐶𝐶′)

min (∑𝐶𝐶,∑𝐶𝐶′)
 

If RS′ < 𝑅𝑅𝑆𝑆, then save the S’ as S, and delete job k from set L 

Step.6 Return to Step.5 until the set L is empty 

In 2004, Ravindran proposed three heuristics (denote as HAMC1, HAMC2, 

HAMC3) to solve the makespan and flowtime minimization problem(Ravindran, 

Selvakumar, Sivaraman, & Haq, 2004). In these three heuristics, they solved the 

problem by RC firstly, and used the solution as the initial sequence. Then, interchange 

the position of job j and job i, where 1 ≤ i ≤ n − 1 and i + 1 ≤ j ≤ n . The new 

sequence is evaluated by using same evaluation scheme as RC, which are RS’ and RS. 

The sequence with the minimum value of RS is saved as current sequence. Repeat the 

iteration for a fixed number (denote as x) which generally varies from 10 to 20. For 

HAMC1 heuristic, the author selected the sequence with minimum makespan from the 

x sequences obtained from each iteration. For HAMC2, select the sequence with the 

minimum flowtime value from these x sequences. For HAMC3, select the sequence 

generated from the last iteration as the result. 

Framinan et.al developed a multi-objective heuristic in their work to minimize the 

makespan and flowtime, and the NEH insertion method was applied(Jose M Framinan, 
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Leisten, & Ruiz-Usano, 2002). However, in this heuristic, a function 𝑌𝑌 = 𝑤𝑤 ∗

(𝐶𝐶𝑚𝑚𝜎𝜎𝑚𝑚) ∗ (𝑛𝑛 2⁄ ) + (1 − 𝑤𝑤) ∗ ∑𝐶𝐶𝑗𝑗  was developed, and the partial sequence with 

minimum Y is selected as current partial sequence. They compared the proposed 

heuristic with other existing heuristics, such as WY and R94(C Rajendran, 1994) and 

R95(Chandrasekharan Rajendran, 1995), which we have already mentioned above. The 

results show that the performance of the heuristic is better than others. However, in 

their work, Ho heuristic(Ho, 1995) can obtain better solution when the value of w is 

equal to 0, which means that we only focus on the flowtime objective. When w is equal 

to 1, which means that we only focus on the makespan, the performance of proposed 

heuristic is worse than NEH. 

Furthermore, a lot of evolutionary algorithms were developed to solve the flow 

shop scheduling problem. For example, Varadharajan and Rajendran(Varadharajan & 

Rajendran, 2005) applied the simulated annealing(SA) algorithm to minimize flowtime 

and makespan. Sayadi et al (Sayadi, Ramezanian, & Ghaffari-Nasab, 2010) combined 

the firefly metaheuristic and local search method to solve the makespan minimization 

problem in permutation flow shop. However, several existing evolution algorithms and 

meta-heuristics applied constructive heuristics to generate the initial solution 

(population solution). For example, Framinan and Leisten(Jose M. Framinan & Leisten, 

2007) proposed the multi-objective iterated greedy search with makespan and flowtime 

criteria. In this heuristic, they used the NEH and FL heuristic to obtain initial sequences. 

In 2015, Li proposed a multi-objective local search algorithm for flow shop scheduling 
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problem (X. Li & Li, 2015)by applying NEH heuristic to generate the initial solution. 

In addition, the random sequence is also used as the initial sequence in several meta-

heuristics. For example, Lei and Guo proposed a parallel neighborhood search method 

for flow shop scheduling(Lei & Guo, 2015). In their work, the initial solution was 

randomly generated. Moreover, in 2014, Marichelvam et al(Marichelvam, Prabaharan, 

& Yang, 2014) proposed a discrete firefly algorithm for makespan and mean flowtime 

minimization. They also generated initial population solution randomly. In 2017, 

Framinan compared existing meta-heuristics and claimed that the IG, which proposed 

by Ruiz and Stuzle in 2007(Ruiz & Stützle, 2007), can be identified as the most 

effective meta-heuristic(Fernandez-Viagas et al., 2017). 

However, as we mentioned before, the computation time of meta-heuristic is much 

longer than constructive. Furthermore, based on Baskar’s idea that the research progress 

on constructive heuristic also can refine the meta-heuristic(Baskar, 2016). Therefore, in 

our work, we will focus on the development of constructive heuristic based on the 

analysis of the properties of permutation flow shop. 
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Chapter Three: Methodology 

The proposed heuristic (denote as the CFD) consists of two main stages: (1). the 

initial sequence is generated according to the value of the deviations from the lower 

bound and upper bound. In the second stage, we applied the insertion technique to 

improve the solution quality. In this chapter, the initial sequence generation method is 

presented, which also includes the lower and upper bound calculation method. 

Moreover, the processes of CFD heuristic are discussed in this chapter. 

3.1 Problem description 

Due to the inconsistent of the makespan minimization and flowtime minimization 

objective. In this research, the objective is trying to balance the trade-off between the 

makespan and flowtime minimization objectives. In other words, we seek to find an 

optimal sequence with the minimum value of trade-off.  

For a permutation flow shop scheduling problem (PFSP), there are some general 

assumptions and conditions are listed as follows: 

 All jobs have to be available at t=0. 

 No setup time for the machine. 

 The job sequence cannot be changed during the manufacturing process. 

 The intermediate storage between any two machines is unlimited. 

 Preemption is not allowed. 

 The processing time of each job on each machine is deterministic. 
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 Each machine can process only one job at same time. 

To demonstrate the procedure of heuristics and definitions of permutation flow 

shop scheduling problems, we generated a Gantt chart (Figure 3.1) to explain the 

calculation method of completion time of each job on each machine, and introduced 

following terms that will be applied in this thesis:  

n: The number of jobs 

m: The number of machines 

pj,i: Processing time of job j on machine i 

Cj,i: Completion time of the jth on machine i 

ITj,i: Idle time of the jth on machine i 

LBj,i: Lower bound of completion time of the jth job on machine i. 

UBj,i: Upper bound of completion time of the jth job on machine i. 

Cmax: The makespan (i.e. Cn,m) 

ΣCj: The flowtime of the sequence. 

 
Figure 3.1 Gantt chart for a permutation flow shop 

Because all jobs have to be available at t=0, there is no idle time on the first 
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machine. Furthermore, from Figure 3.1, we can see that the completion time (Cj,i) of 

job j on machine i can be obtained by following equations: 

𝐶𝐶1,1 = 𝑝𝑝𝑗𝑗,𝑖𝑖 (1) 

𝐶𝐶𝑗𝑗,1 = 𝐶𝐶𝑗𝑗−1,1 + 𝑝𝑝𝑗𝑗,1 (2) 

𝐶𝐶1,𝑖𝑖 = 𝐶𝐶1,𝑖𝑖−1 + 𝑝𝑝1,𝑖𝑖 (3) 

𝐶𝐶𝑗𝑗,𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶(𝑗𝑗 − 1, 𝑖𝑖),𝐶𝐶(𝑗𝑗, 𝑖𝑖 − 1)} + 𝑝𝑝𝑗𝑗,𝑖𝑖 (4) 

Cmax = Cn,m (5) 

∑C𝑗𝑗 = � 𝐶𝐶𝑗𝑗,𝑚𝑚

𝑛𝑛

𝑗𝑗=1
  

(6) 

3.2 Lower and upper bound of completion time 

In this section, we introduced the lower bound and upper bound of completion time 

(Cj,i) generation method. According to the main concept of our proposed heuristic, we 

need to compute the bound for each job on each machine (i.e. the 𝑆𝑆𝐵𝐵𝑗𝑗,𝑖𝑖,𝑆𝑆𝐵𝐵𝑗𝑗,𝑖𝑖). In order 

to obtain the theoretical lower and upper bound, we applied the sequence independent 

method. It means that we do not need to follow the same order on each machine. 

The sequence-independent lower and upper bounds for machine i are calculated 

based on the minimum and maximum idle time on machine i respectively. The 

minimum idle time (minIT) on machine i can be obtained by a fast flow from machine 

i-1 and a slow flow out of machine i. Moreover, the maximum idle time (maxIT) on 

machine i are generated by a slow flow from machine i-1 and a fast flow out of machine 

i. Therefore, the calculation method of minimum and maximum idle time is introduced 
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as follows: 

𝑚𝑚𝑖𝑖𝑛𝑛𝑆𝑆𝑇𝑇𝑗𝑗,1 = 0 (7) 

𝑚𝑚𝑖𝑖𝑛𝑛𝑆𝑆𝑇𝑇𝑗𝑗,𝑖𝑖 =  𝑚𝑚𝑚𝑚𝑚𝑚�𝐶𝐶𝑗𝑗,𝑖𝑖−1 − 𝐶𝐶𝑗𝑗−1,𝑖𝑖, 0� (8) 

𝑚𝑚𝑖𝑖𝑛𝑛𝑆𝑆𝑇𝑇𝑗𝑗,𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐶𝐶𝑗𝑗−1,𝑖𝑖−1 + 𝑚𝑚𝑖𝑖𝑛𝑛𝑆𝑆𝑇𝑇𝑗𝑗,𝑖𝑖−1 + 𝑝𝑝𝑗𝑗,𝑖𝑖−1
𝑆𝑆𝑆𝑆𝑆𝑆 − 𝐶𝐶𝑗𝑗−2,𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑛𝑛𝑆𝑆𝑇𝑇𝑗𝑗−1,𝑖𝑖

− 𝑝𝑝𝑗𝑗,𝑖𝑖−1
𝐿𝐿𝑆𝑆𝑆𝑆 , 0} 

(9) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑇𝑇𝑗𝑗,𝑖𝑖 = 0 (10) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑇𝑇𝑗𝑗,𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐶𝐶𝑗𝑗,𝑖𝑖−1 − 𝐶𝐶𝑗𝑗−1,𝑖𝑖, 0} (11) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑇𝑇𝑗𝑗,𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐶𝐶𝑗𝑗−1,𝑖𝑖−1 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑇𝑇𝑗𝑗,𝑖𝑖−1 + 𝑝𝑝𝑗𝑗,𝑖𝑖−1
𝐿𝐿𝑆𝑆𝑆𝑆 − 𝐶𝐶𝑗𝑗−2,𝑖𝑖 − 𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆𝑇𝑇𝑗𝑗−1,𝑖𝑖

− 𝑝𝑝𝑗𝑗,𝑖𝑖−1
𝑆𝑆𝑆𝑆𝑆𝑆 , 0} 

(12) 

where 𝑆𝑆𝐵𝐵0,𝑖𝑖 =  𝑆𝑆𝐵𝐵𝑗𝑗,0 =  0  and UB0,i= UBj,0 = 0. The 𝑝𝑝𝑗𝑗,𝑖𝑖
𝐿𝐿𝑆𝑆𝑆𝑆  and 𝑝𝑝𝑗𝑗,𝑖𝑖

𝑆𝑆𝑆𝑆𝑆𝑆  are the 

processing time of jth job on machine i that follow the decreasing and increasing order 

of processing time of all jobs on machine i. 

Based on the analysis that we mentioned above, the 𝑆𝑆𝐵𝐵𝑗𝑗,𝑖𝑖 and 𝑆𝑆𝐵𝐵𝑗𝑗,𝑖𝑖 can be defined 

as follows: 

𝑆𝑆𝐵𝐵𝑗𝑗,𝑖𝑖 = 𝐶𝐶𝑗𝑗−1,𝑖𝑖 + 𝑚𝑚𝑖𝑖𝑛𝑛𝑆𝑆𝑇𝑇𝑗𝑗,𝑖𝑖 + 𝑝𝑝𝑗𝑗,𝑖𝑖
𝑆𝑆𝑆𝑆𝑆𝑆 (13) 

𝑆𝑆𝐵𝐵𝑗𝑗,𝑖𝑖 = 𝐶𝐶𝑗𝑗−1,𝑖𝑖 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑇𝑇𝑗𝑗,𝑖𝑖 + 𝑝𝑝𝑗𝑗,𝑖𝑖
𝐿𝐿𝑆𝑆𝑆𝑆 (14) 

There is no idle time on machine 1, therefore, the LBj,1 and UBj,1 can be computed 

by: 

𝑆𝑆𝐵𝐵𝑗𝑗,1 = 𝑆𝑆𝐵𝐵𝑗𝑗−1,1 + 𝑝𝑝𝑗𝑗,1
𝑆𝑆𝑆𝑆𝑆𝑆 (15) 

𝑆𝑆𝐵𝐵𝑗𝑗,1 = 𝑆𝑆𝐵𝐵𝑗𝑗−1,1 + 𝑝𝑝𝑗𝑗,1
𝐿𝐿𝑆𝑆𝑆𝑆 (16) 

To explain the lower and upper bound calculation method, a 5-jobs, 3-machines 
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problem are given in Table 3.2.1 as an example: 

Table 3.2.1 Processing time of 5-jobs, 3-machines instance 
Pj,i M1 M2 M3 
J1 70 82 44 
J2 4 69 38 
J3 28 32 76 
J4 5 95 79 
J5 10 4 19 

According to the methods that we mentioned before, to generate the minIT(j,i), the 

jobs are sorted by following SPT on first machine 1 which is {2-4-5-3-1}, and follow 

the LPT rule on machine 2 which is {4-1-2-3-5}. Using equation (1) to (4), we can 

obtain the completion time on the first and second machine as follows: 𝐶𝐶𝑗𝑗,1 =

[4,9,19,47,117];𝐶𝐶𝑗𝑗,2 = [99,181,250,282,286], then minimum idle time on machine 2 

is 𝑀𝑀𝑖𝑖𝑛𝑛𝑆𝑆𝑇𝑇𝑗𝑗,2 = [4,0,0,0,0]  (according to equation (6) to (9)). Therefore, the lower 

bound on machine 2 is 𝑆𝑆𝐵𝐵𝑗𝑗,2 = [8,40,109,191,286] . To obtain the lower bound on 

machine 3, we sequence the jobs on machine 1 and 2 following LPT rule and applied 

SPT rule on machine 3, then we can obtain the 𝑆𝑆𝐵𝐵𝑗𝑗,3 = [27,65,109,185,306] . 

Similarly, the upper bound of each position on each machine are calculated by equation 

(10) to (16), and the results are listed below (Table 3.2.2 and Table 3.2.3): 

Table 3.2.2 The value of lower bound (LBj,i) 

LBj,i M1 M2 M3 
position 1 4 8 27 
position 2 9 40 65 
position 3 19 109 109 
position 4 47 191 185 
position 5 117 286 305 
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Table 3.2.3 The value of upper bound (UBj,i) 

UBj,i M1 M2 M3 
position 1 70 165 244 
position 2 98 271 407 
position 3 108 340 482 
position 4 113 372 520 
position 5 117 376 539 

3.3 Two coupled deviations 

In our work, the proposed heuristic aims to balance the trade-off between makespan 

and flowtime minimization. From the existing literature, it easy to see that the LPT rule 

is good for improving the performance of heuristic on makespan objective. Inspired by 

this idea, we minimize the deviation from upper bound for makespan objective, because 

it less likely generates idle time on machine i. For the flowtime minimization, the SPT 

rule can obtain good results. Therefore, we minimize the deviation from lower bound, 

which can generate small idle times on machine i, depending on the value of completion 

time on previous machines. 

From the analysis, we designed two different deviation calculation method for 

makespan and flowtime, respectively: (1) For makespan objective, we minimize the 

deviation from upper bound, because it less likely generate idle time on previous 

machines; (2) For the flowtime minimization objective, we minimize the deviation from 

lower bound, which can generate small idle times on previous machines, depending on 

the value of completion time on previous machines. Furthermore, for flowtime 

minimization objective, we did not only consider the impact of scheduled jobs but also 



 

39 
 

consider the impact of unscheduled jobs on our objectives. Therefore, we denote the 

scheduled job set as {S} and unscheduled job set as {U}. 

To calculate the deviation from upper and lower bound of completion time, we 

insert each job J[j] from unscheduled job set {U} to the current location k (i.e. the kth 

position of current sequence). Therefore, the deviations can be defined as follows: 

a) Deviation from upper bound: 

𝛥𝛥𝐶𝐶𝑀𝑀𝑗𝑗 = � |𝐶𝐶𝑘𝑘,𝑖𝑖 − 𝑆𝑆𝐵𝐵𝑘𝑘,𝑖𝑖|
𝑚𝑚

𝑖𝑖=1

  (17) 

where j changes from 1 to (n-k+1), Ck,i is completion time of kth job of current 

sequence on the ith machine. The UBk,i is the upper bound of completion time of kth 

job on ith machine 

b) Deviation from lower bound 

For the flowtime minimization objective, we are not only considered the impact of 

the current job in kth position, but we also consider the effect of the unscheduled 

jobs. The deviation of current job for flowtime minimization objective (denoted as 

∆𝐶𝐶𝑇𝑇𝑗𝑗𝑁𝑁) can be defined as follows: 

∆𝐶𝐶𝑇𝑇𝑗𝑗𝐻𝐻 = �(𝑚𝑚 − 𝑖𝑖 + 1) ∗ ��𝐶𝐶𝑘𝑘,𝑖𝑖 − 𝑆𝑆𝐵𝐵𝑘𝑘,𝑖𝑖�� 
𝑚𝑚

𝑖𝑖=1

 (18) 

where j is the jobs from unscheduled job set {U}and changes from 1 to (n-k+1). 

The Ck,i is the completion of the kth job on machine i, and the LBk,i is the lower bound 

of completion time of the kth job on the ith machine. 

In order to evaluate the effect of unscheduled jobs (denoted as ∆𝐶𝐶𝑇𝑇𝑗𝑗𝑆𝑆), we use 

average processing time of all unscheduled jobs on machine i as the processing time 
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of (n-k+1) unscheduled jobs (except the job J[j] ) on machine i. The average 

processing time can be obtained by following equation: 𝐴𝐴𝐴𝐴𝑒𝑒𝑇𝑇𝑖𝑖 =

∑ 𝑝𝑝𝑗𝑗,𝑖𝑖
𝑛𝑛−𝑘𝑘+1
𝑗𝑗=1 (𝑛𝑛 − 𝑚𝑚 + 1)⁄ . After the processing time of these (n-k+1) unscheduled 

jobs are obtained, we append these jobs to current k-jobs sequence and calculate the 

completion time from k+1th job to nth job. Then, the deviation from lower bound for 

unscheduled can be computed by following equations: 

∆𝐶𝐶𝑇𝑇𝑗𝑗𝑆𝑆 = ��(𝑚𝑚− 𝑖𝑖 + 1) ∗ � �𝐶𝐶𝑞𝑞,𝑖𝑖 − 𝑆𝑆𝐵𝐵𝑞𝑞,𝑖𝑖� 
𝑛𝑛

𝑞𝑞=𝑘𝑘+1

� 
𝑚𝑚

𝑖𝑖=1

 (19) 

Moreover, based on the deviation of current job and unscheduled jobs, we 

can generate the deviation from lower bound for flowtime minimization objective: 

∆𝐶𝐶𝑇𝑇𝑗𝑗 = ∆𝐶𝐶𝑇𝑇𝑗𝑗𝐻𝐻 + ∆𝐶𝐶𝑇𝑇𝑗𝑗𝑆𝑆 (20) 

From the equations for flowtime objective, there is a weighting factor was assigned 

to the deviation part and the following example illustration can explain why we select 

(m-i+1) as the weight in our heuristic. According to the definition of completion time 

𝐶𝐶𝑗𝑗,𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝐶𝐶𝑗𝑗,𝑖𝑖,𝐶𝐶𝑗𝑗,𝑖𝑖−1� + 𝑝𝑝𝑗𝑗,𝑖𝑖, the processing time of a job might be added for several 

times when we calculate the flowtime value. For example, 𝐶𝐶1,1 = 𝑝𝑝1,1 ,𝐶𝐶1,2 = 𝑝𝑝1,1 +

𝑝𝑝1,2. Therefore, the deviations generated on early machines have greater effects than 

those generated on later machines. The weight factor (m-i+1) shows the decreasing 

effects as the machine number increases. 

3.4 Development of CFD heuristic 
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3.4.1 Initial sequence generation 

As the CFD heuristic aims to balance the trade-off between makespan 

minimization and flowtime minimization objectives, the preference relation between 

two objectives are considered in the initial sequence generation method. In the proposed 

heuristic we allocate a weighting factor α on ∆𝐶𝐶𝑀𝑀𝑗𝑗and (1-𝛼𝛼) on ∆𝐶𝐶𝑇𝑇𝑗𝑗, to describe the 

different preference on the deviation. For the initial sequence, to determine whether a 

job is scheduled in current position or not, we proposed an evaluation scheme denote 

as total deviation (TDj), and the definition is shown as follows: 

𝑇𝑇𝐷𝐷𝑗𝑗 = 𝛼𝛼 ∙ ∆𝐶𝐶𝑀𝑀𝑗𝑗 + (1 − 𝛼𝛼) ∙ ∆𝐶𝐶𝑇𝑇𝑗𝑗 where j ∈ {𝑆𝑆} (21) 

The job J[j] with the minimum total deviation (i.e. min(TD)) will be appended to 

the current sequence.  

In order to explain the sequencing method specifically, the steps of initial sequence 

generation are shown as follows: 

Step 1: Set location index k=1. Set 𝑆𝑆 = ∅ and 𝑆𝑆 = {𝐽𝐽1, 𝐽𝐽2, … , 𝐽𝐽𝑛𝑛}. 

Step 2: Select the jth job, denote as J[j] in U (j=1,…,n-k+1), and insert into the kth 

position of S. Then we calculate the average processing time (AvePi) on 

each machine of the jobs in U except the J[j]. We generated (n-k) artificial 

jobs with AvePi as the processing time of each artificial job on each 

machine. These artificial jobs are temporarily appended to S. from (k+1)th 

to nth in S. 
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Step 3: Computed the completion times (Cji) of {𝑆𝑆} by applying the equation (1) 

to (3). Then, the current and future deviations for each objective can be 

generated by following equations (17) to (20): 

∆𝐶𝐶𝑀𝑀𝑗𝑗 = � |𝐶𝐶𝑚𝑚,𝑖𝑖 − 𝑆𝑆𝐵𝐵𝑚𝑚,𝑖𝑖|
𝑚𝑚

𝑖𝑖=1
 where j ∈ {U} 

∆𝐶𝐶𝑇𝑇𝑗𝑗𝐻𝐻 = �(𝑚𝑚− 𝑖𝑖+ 1) ∗ ��𝐶𝐶𝑚𝑚,𝑖𝑖 − 𝑆𝑆𝐵𝐵𝑚𝑚,𝑖𝑖�� 
𝑚𝑚

𝑖𝑖=1
 

∆𝐶𝐶𝑇𝑇𝑗𝑗𝑆𝑆 = ��(m− i + 1) ∗ � �Cj,i − LBj,i� 
|T|

j=k+1
� 

m

i=1
 

∆𝐶𝐶𝑇𝑇𝑗𝑗 = ∆𝐶𝐶𝑇𝑇𝑗𝑗𝑁𝑁 + ∆𝐶𝐶𝑇𝑇𝑗𝑗𝑇𝑇 

Then the total deviation can be obtained by equation (21): 

𝑇𝑇𝐷𝐷𝑗𝑗 = 𝛼𝛼 ∙ ∆𝐶𝐶𝑀𝑀𝑗𝑗 + (1 − 𝛼𝛼) ∙ ∆𝐶𝐶𝑇𝑇𝑗𝑗  

Where the α is the preference factor for DevCmax and DevSUMC which 

is obtained from decision makers. Then the job J[j] with the minimum value 

of total deviation (TDj) will be selected and inserted to the kth location of 

S. 

Step 4: Remove the select job J[j] from the U. If k<n-1, set k=k+1 and go to 

step 2. If k=n-1, append the remaining job in U to S, and save the S as initial 

sequence {π} 

3.4.2 CFD heuristic  

We also applied the insertion technique in the second phase of our heuristic to 

improve the performance after obtaining the initial sequence. As the CFD heuristic is 
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designed for the trade-off balancing objective, we also introduced the preference factor 

α into our insertion phase and developed a new evaluation scheme based on the relative 

deviation increment value (RIV) from lower bound of makespan and flowtime for the 

current partial sequence. The lower bound for a partial sequence can be computed by 

applying the equations (7) to (16). 

In addition, according to the calculation methods of makespan and flowtime, we 

can see that the scale of these two objectives are not same, the value of flowtime is 

significantly larger than makespan. Therefore, we normalized the deviation for both 

makespan and flowtime to reduce the impact of their different scales and defined the 

RIV as follows: 

𝑅𝑅𝑆𝑆𝑅𝑅 = 𝛼𝛼 ∙ �
𝐶𝐶𝑘𝑘,𝑚𝑚 − 𝑆𝑆𝐵𝐵𝑘𝑘,𝑚𝑚

𝑆𝑆𝐵𝐵𝑘𝑘,𝑚𝑚 − 𝑆𝑆𝐵𝐵𝑘𝑘,𝑚𝑚
� + (1 − 𝛼𝛼) ∙ �

∑ 𝐶𝐶𝑗𝑗,𝑚𝑚
𝑘𝑘
𝑗𝑗=1 − ∑ 𝑆𝑆𝐵𝐵𝑗𝑗,𝑚𝑚

𝑘𝑘
𝑗𝑗=1

∑ 𝑆𝑆𝐵𝐵𝑗𝑗,𝑚𝑚
𝑘𝑘
𝑗𝑗=1 − ∑ 𝑆𝑆𝐵𝐵𝑗𝑗,𝑚𝑚

𝑘𝑘
𝑗𝑗=1

� (22) 

where 𝐶𝐶𝑘𝑘,𝑚𝑚 and ∑ 𝐶𝐶𝑗𝑗,𝑚𝑚
𝑘𝑘
𝑗𝑗=1  are makespan and flowtime for the k-jobs partial sequence 

{𝜙𝜙}. The candidate partial sequence with the minimum RIV is selected as current partial 

sequence {𝜙𝜙} from all candidate sequences. 

To illustrate the strategy of job insertion phase more specific, the steps of job 

insertion phase are shown as below in details: 

Step 1: Generate the initial sequence (π) using the initial sequence generation 

method from section 3.2. 

Step 2: Set k=2. Select the first two jobs from π to create a new k-jobs partial 

sequence {𝜙𝜙} . Then exchange the position of these two jobs, and 
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calculate the value of RIV in the following equations for two candidate 

partial sequences: 

𝑅𝑅𝑆𝑆𝑅𝑅 = 𝛼𝛼 ∙ �
𝐶𝐶{𝜙𝜙} − 𝑆𝑆𝐵𝐵𝑘𝑘,𝑚𝑚

𝑆𝑆𝐵𝐵𝑘𝑘,𝑚𝑚 − 𝑆𝑆𝐵𝐵𝑘𝑘,𝑚𝑚
� + (1 − 𝛼𝛼)

∙ (
𝛴𝛴𝐶𝐶{𝜙𝜙} − ∑ 𝑆𝑆𝐵𝐵𝑗𝑗,𝑚𝑚

𝑘𝑘
𝑗𝑗=1

∑ 𝑆𝑆𝐵𝐵𝑗𝑗,𝑚𝑚
𝑘𝑘
𝑗𝑗=1 − ∑ 𝑆𝑆𝐵𝐵𝑗𝑗,𝑚𝑚

𝑘𝑘
𝑗𝑗=1

) 
 

Step 3: Set k=k+1, choose the kth job from initial sequence and insert to all 

k possible locations of {𝜙𝜙}. Calculate the RIV value for k candidate 

sequences. Update the {𝜙𝜙} by the candidate sequence with minimum 

RIV. 

Step 4: If k<n, go to Step 3, otherwise output the current partial sequence 

{𝜙𝜙} as the final solution. 

From the analysis that we present above, we can see that the computational 

complexity of our CFD heuristic is determined by the insertion phase in Step 3 (i.e. the 

job insertion phase). Hence, the CFD heuristic has the same computational complexity 

as NEH and LR heuristics, which is 𝑂𝑂(𝑛𝑛3𝑚𝑚). 

3.4.3 A Numerical example for CFD heuristic 

To explain the procedure of CFD heuristic in details, we use the same instance that 

presented in Section 3.2 (Table 3.2.1) and set the α = 0. The processing time 𝑝𝑝𝑗𝑗,𝑖𝑖 are 

shown as follows: 
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Pj,i M1 M2 M3 
J1 70 82 44 
J2 4 69 38 
J3 28 32 76 
J4 5 95 79 
J5 10 4 19 

Step.1  Set 𝑆𝑆 = {𝐽𝐽1, 𝐽𝐽2, 𝐽𝐽3, 𝐽𝐽4, 𝐽𝐽5} and S = {𝜙𝜙} 

Step.2  Calculated the lower bound (𝑆𝑆𝐵𝐵𝑗𝑗,𝑖𝑖) and upper bound (𝑆𝑆𝐵𝐵𝑗𝑗,𝑖𝑖 ) by 

applying the generation method which is mentioned in section 4.5.1. 

The matrix of 𝑆𝑆𝐵𝐵𝑗𝑗,𝑖𝑖 is  

LBj,i M1 M2 M3 
position 1 4 8 27 
position 2 9 40 65 
position 3 19 109 109 
position 4 47 191 185 
position 5 117 286 305 

Moreover, the matrix of 𝑆𝑆𝐵𝐵𝑗𝑗,𝑖𝑖 is shown as follows: 

UBj,i M1 M2 M3 
position 1 70 165 244 
position 2 98 271 407 
position 3 108 340 482 
position 4 113 372 520 
position 5 117 376 539 

 

Step.3 Computed the total deviation (TD) for each job and selected the 

job with the minimum value of TD to append to S. In this 

example: 𝑇𝑇𝐷𝐷𝑗𝑗 = {2909.5; 1316.5; 1585; 1640.5; 1229.5} . Then, 

the job 5 is picked to append to S as the first job of scheduled job 
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set, and delete from the U. Repeat step.3 and select the job with 

minimum value of TD in each iteration to append to S, until 𝑆𝑆 =

{𝜙𝜙}.For this case, the TD values and unscheduled job set {U} for 

each iteration are listed as below: 

Iteration #1 U={J1,J2,J3,J4,J5} 

𝑇𝑇𝐷𝐷𝑗𝑗 = {2909.5;𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏.𝟓𝟓; 1585; 1640.5; 1229.5}. 

We select the J2 to append to S and delete from U 

Iteration #2 U= {J1 ,J3,J4,J5} 

𝑇𝑇𝐷𝐷𝑗𝑗 = {2047,𝟕𝟕𝟕𝟕𝟏𝟏, 991,984}. 

We select the J3 to append to S and delete from U 

Iteration #3 U = {J1,J4,J5} 

𝑇𝑇𝐷𝐷𝑗𝑗 = {863,𝟒𝟒𝟏𝟏𝟒𝟒, 653} 

We select the J4 to append to S and delete from U 

Iteration #4 𝑇𝑇𝐷𝐷𝑗𝑗 = {341,𝟏𝟏𝟕𝟕𝟓𝟓} 

We select the J5 to append to S and delete from U 

 

Therefore, we can obtain an initial sequence as {5-2-3-4-1} for 

this case. 

Step.4 Set k=2; Select first two jobs from S, and generate two possible 

candidate sequences {5-2}, {2-5} and their RIV value are 154 and 

241.So we select the minimum one, which is {5-2} as current 
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sequence.  

Step.5 Set k=k+1. Pick the kth job from S and insert to k possible position 

in current sequence. For k=3, generate k candidate partial sequences 

which are: {3-5-2}, {5-3-2}, {5-2-3}. The RIV values are [484, 363, 

351]. Then we choose the one with min(RIV), which is {5-2-3}, as 

current partial sequence. 

For k=4, we insert the job 4 to the current partial sequence and 

obtain{4-5-2-3},{5-4-2-3},{5-2-4-3},{5-2-3-4}. The corresponding 

RIV are [925,725,744,640], the {5-2-3-4} is picked as current 

sequence. For last iteration, we insert the Job 1 and generate five 

candidate sequences which are: {1-5-2-3-4},{5-1-2-3-4}, {5-2-1-3-

4}, {5-2-3-1-4} and {5-2-3-4-1} with RIV values as 

[1444,1290,1022,963,976]. Therefore, the {5-2-3-1-4} is selected as 

current partial sequence. 

Step.6 If k ≤ n, return to Step.5, else stop and save current sequence as 

the solution. For this example, the final solution is {5-2-3-1-4} 
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Chapter Four: Case Study 

In the computational experiment, we compared our CFD heuristic with NEH and 

LR heuristics on makespan (α=1) minimization, flowtime (α=0) minimization, and 

trade-off (α=0.5) minimization objectives based on random small-scale problem and 

Taillard’s benchmark. Besides, we use the statistical process control to verify our CFD 

heuristic is better than the other two in terms of sustainable stableness.  

4.1 Evaluation scheme 

We test our CFD heuristic on both small-scale and large-scale instances. The 

processing times for small-scale instances are randomly generated following the 

uniform distribution in [1, 99]. For small-scale instances, the number of jobs is 5, 6, 7, 

8, 9, 10, and the number of machines is [3, 5, 7, 9, 11, 13, 15, 17, 19]. Thus, there are 

54 combinations. For each combination, 100 cases are randomly generated. Totally, we 

have 5400 instances for small-scale. For large-scale instances, the Taillard’s 

benchmarks are used to test the performances of heuristics for flow shop scheduling, 

consisting of 120 instances in 12 combinations, where the number of jobs is 20, 50, 100, 

200 or 500, and the number of machines is 5, 10 or 20. In each combination, there are 

10 instances.  

In order to evaluate the effectiveness of our CFD heuristic on makespan, flowtime 

and trade-off value minimization objectives. We applied three criteria to evaluate the 

performances of CFD heuristic for permutation flow shop scheduling problem: 
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a) For the makespan minimization objective (i.e. Fm|prmu|Cmax), we used the 

average relative percent deviation (ARPD) to evaluate the effectiveness. The 

calculation method of ARPD is defined as follows: 

 Average relative percent deviation (ARPD) for makespan: 

ARPDCmax =
1
𝑁𝑁
∗ �� �

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 −𝑀𝑀𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖
𝑀𝑀𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖

�
𝑁𝑁

𝑖𝑖=1
� ∗ 100 (23) 

where the N is the total case number and the Cmaxi is the makespan of the ith 

case. For the small cases, the MinCmaxi is the optimal solution which is 

generated by enumeration method. For large-scale cases, the MinCmaxi is the 

best-known solution of Taillard’s benchmark. 

b) Similarly, to evaluate the effectiveness of CFD heuristic on flowtime 

minimization objective (i.e. Fm|prmu|ΣCj), the ARPD vale is applied and can 

be calculated by the following equations: 

• Average relative percent deviation (ARPD) for flowtime: 

𝐴𝐴𝑅𝑅𝑇𝑇𝐷𝐷𝛴𝛴𝛴𝛴 =
1
𝑁𝑁
∗ �� �

𝑆𝑆𝑆𝑆𝑀𝑀𝐶𝐶𝑖𝑖 − 𝑀𝑀𝑖𝑖𝑛𝑛𝑆𝑆𝑆𝑆𝑀𝑀𝐶𝐶𝑖𝑖
𝑀𝑀𝑖𝑖𝑛𝑛𝑆𝑆𝑆𝑆𝑀𝑀𝐶𝐶𝑖𝑖

�
𝑁𝑁

𝑖𝑖=1
� ∗ 100 (24) 

where the N is the cases number and the SUMCi is the flowtime time for the ith 

case. The value of MinSUMCi is the optimal solution which is generated by 

enumeration method for small cases. For large-scale cases, MinSUMCi is the 

best-known solution for the ith case. 

c) As we said that the goal of our CFD heuristic is trade-off balancing. In order to 

describe the trade-off between minimization of makespan and flowtime, we 

defined the trade-off as the following equation: 
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𝑇𝑇𝑂𝑂𝑖𝑖 = 𝛽𝛽 × �
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 − 𝑀𝑀𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖

𝑀𝑀𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖
� + (1 − 𝛽𝛽) × �

𝑆𝑆𝑆𝑆𝑀𝑀𝐶𝐶𝑖𝑖 − 𝑀𝑀𝑖𝑖𝑛𝑛𝑆𝑆𝑆𝑆𝑀𝑀𝐶𝐶𝑖𝑖
𝑀𝑀𝑖𝑖𝑛𝑛𝑆𝑆𝑆𝑆𝑀𝑀𝐶𝐶𝑖𝑖

� (25) 

where the Cmaxi and SUMCi are makespan and flowtime for ith instance. For small 

cases, 𝑀𝑀𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖  and 𝑀𝑀𝑖𝑖𝑛𝑛𝑆𝑆𝑆𝑆𝑀𝑀𝐶𝐶𝑖𝑖  are optimal solutions obtained by 

enumeration method. For Taillard’s benchmark, 𝑀𝑀𝑖𝑖𝑛𝑛𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖  and MinSUMCi 

are the best-known solutions for the ith instance of Taillard’s benchmark. N is the 

number of instances for each combination. It means that N is 100 for small cases, 

but 10 for large-scale instances. β is the preference factor to evaluate the trade-off 

value, changing from 0 to 1 with the step of 0.1. 

4.2 Case study results 

4.2.1 Small-scale cases 

The case study results for small-scale cases are shown in Table.4.2.1, Table.4.2.2 

and Table 4.2.3. we can see that our CFD heuristic can achieve the best performance on 

flowtime minimization and trade-off minimization objective. For the makespan 

minimization, the performance of CFD heuristic is very close to the NEH. 

From the Table 4.2.1, we can see that our proposed CFD heuristic has smallest 

ARPD of 1.27% among three heuristics on makespan objective, while the NEH and LR 

are 1.28% and 11.14%, respectively. Moreover, our heuristic obtained smallest 

max(ARPD) of 12.09%, and the largest number of optimal solutions of 2171 (40.20%). 

According to the results in Table 4.2.2, the CFD (𝛼𝛼 = 0)  heuristic generated 

minimum ARPD of 0.90% on flowtime minimization objective. The NEH and LR have 
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ARPDs of 6.57% and 1.39%, respectively. Furthermore, our CFD heuristic achieves 

the minimum max(ARPD) and number of best solutions of 34.17% 

Table 4.2.1 Average relative percent deviations(ARPD) of makespan for small-scale 
cases. 

ARPD of Cmax CFD(α=1) NEH LR 
ARPD 0.0127 0.0128 0.1114 

Min(ARPD) 0 0 0 
Max(ARPD) 0.1209 0.1240 0.4255 

# of Best Solutions 2171 2088 137 
% of Best Solutions 40.20% 38.67% 2.54% 

Table 4.2.2 Average relative percent deviations(ARPD) of flowtime for small-scale 
cases. 

ARPD of SUMC CFD(α=0) NEH LR 
ARPD 0.0090 0.0657 0.0139 
Min(ARPD) 0.0000 0.0000 0.0000 
Max(ARPD) 0.0954 0.3666 0.1105 
# of Best Solutions 1845 110 1255 
% of Best Solutions 34.17% 2.04% 23.24% 

To justify the performance of our heuristic on trade-off balancing objective, we set 

the 𝛼𝛼 = [0; 0.5; 1] , and applying the 𝑇𝑇𝑂𝑂𝑖𝑖 = 𝛽𝛽 × �𝛴𝛴𝑚𝑚𝜎𝜎𝑚𝑚𝑖𝑖−𝑀𝑀𝑖𝑖𝑛𝑛𝛴𝛴𝑖𝑖
𝑀𝑀𝜎𝜎𝑚𝑚𝛴𝛴𝑖𝑖−𝑀𝑀𝑖𝑖𝑛𝑛𝛴𝛴𝑖𝑖

� + (1 − 𝛽𝛽) ×

� 𝑆𝑆𝑆𝑆𝑀𝑀𝛴𝛴𝑖𝑖−𝑀𝑀𝑖𝑖𝑛𝑛𝑆𝑆𝑆𝑆𝑀𝑀𝛴𝛴𝑖𝑖
𝑀𝑀𝜎𝜎𝑚𝑚𝑆𝑆𝑆𝑆𝑀𝑀𝛴𝛴𝑖𝑖−𝑀𝑀𝑖𝑖𝑛𝑛𝑆𝑆𝑆𝑆𝑀𝑀𝛴𝛴𝑖𝑖

�  to evaluate the performance. The results of experiment are 

presented in Table 4.2.3. 

From the Table 4.2.3 and Figure 4.2.1, the CFD heuristic obtained the best 

performance, which is 0.0313, and for LR and NEH are 0.0392 and 0.0627. 

Furthermore, when 𝛼𝛼 = 0 , our heuristic dominates LR heuristic on trade-off 

minimization objective. For CFD(𝛼𝛼 = 0.5) , our heuristic can dominate other two 

heuristics when β changes from 0.2 to 0.6. 
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Table 4.2.3 Trade-off (TO) value for different heuristics. 

TO CFD(α=0) CFD(α=0.5) CFD(α=1) NEH LR 
0 0.0090 0.0312 0.0659 0.0657 0.0139 

0.1 0.0187 0.0312 0.0606 0.0604 0.0237 
0.2 0.0284 0.0312 0.0553 0.0551 0.0334 
0.3 0.0381 0.0312 0.0500 0.0498 0.0432 
0.4 0.0478 0.0313 0.0446 0.0445 0.0529 
0.5 0.0576 0.0313 0.0393 0.0392 0.0627 
0.6 0.0673 0.0313 0.0340 0.0339 0.0724 
0.7 0.0770 0.0313 0.0286 0.0286 0.0822 
0.8 0.0867 0.0314 0.0233 0.0233 0.0919 
0.9 0.0964 0.0314 0.0180 0.0181 0.1017 
1 0.1061 0.0314 0.0127 0.0128 0.1114 

Ave 0.0576 0.0313 0.0393 0.0392 0.0627 
st.Dev 0.0307 0.0001 0.0168 0.0167 0.0308 

 

 

Figure 4.2.1 Trade-off value for small-scale cases 
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4.2.2 Large-scale cases (Taillard’s benchmark) 

For large-scale instances, we evaluate the heuristic performance by ARPD and 

maximum deviation from the best-known solutions. As shown in the Table 4.2.4, for 

the makespan objective, our proposed heuristic generated best ARPD of 3.32%, which 

is better than NEH of 3.33% and LR of 12.51%. For flowtime minimization objective, 

CFD also obtains the best performance among three heuristics. According to the results 

that shown in the Table 4.2.4, the ARPD of CFD on flowtime is 2.1%, and the deviation 

of NEH and LR are 10.09% and 2.23%. Moreover, for the first case in Taillard’s 

benchmark (i.e. Ta001), CFD heuristic obtained a solution which is better than current 

best-known solutions of Taillard’s benchmark on flowtime minimization objective. 

Table 4.2.4 Single objective optimization results for Taillard’s benchmark. 

ARPD 
CFD LR NEH 

Cmax ΣCj Cmax ΣCj Cmax ΣCj 

20*5 0.0273 0.0150 0.1185 0.0154 0.0330 0.1007 
20*10 0.0474 0.0217 0.1734 0.0266 0.0460 0.0850 
20*20 0.0369 0.0167 0.1651 0.0303 0.0373 0.0679 
50*5 0.0085 0.0252 0.0838 0.0140 0.0073 0.1526 
50*10 0.0518 0.0246 0.1697 0.0338 0.0507 0.1047 
50*20 0.0686 0.0232 0.1923 0.0268 0.0665 0.0770 
100*5 0.0042 0.0248 0.0401 0.0098 0.0053 0.1225 
100*10 0.0220 0.0262 0.0905 0.0205 0.0221 0.1126 
100*20 0.0533 0.0160 0.1926 0.0314 0.0534 0.0776 
200*10 0.0134 0.0189 0.0598 0.0165 0.0126 0.1140 
200*20 0.0426 0.0212 0.1349 0.0279 0.0444 0.0943 
500*20 0.0228 0.0183 0.0799 0.0151 0.0207 0.1021 

Ave 0.0332 0.0210 0.1251 0.0223 0.0333 0.1009 
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In Table 4.2.5, the performance on trade-off balancing of each heuristic is shown, 

the CFD (𝛼𝛼 = 0.5 ), which means we allocated same preference on makespan and 

flowtime objective, achieves the smallest value of trade-off (TO) of 0.0479 and 

minimum standard deviation of 0.0032, while the NEH and LR obtained 0.0671 and 

0.0737 on trade-off (TO) objective. In addition, the CFD (𝛼𝛼 = 0) and CFD(𝛼𝛼 = 1), 

which aimed to minimize flowtime and makespan respectively, also generate better 

solutions than LR and NEH. 

Table 4.2.5 Trade-off value of different heuristics on Taillard’s benchmark. 

TO CFD(α=0) CFD(α=0.5) CFD(α=1) NEH LR 
0 0.0210 0.0428 0.0987 0.1009 0.0223 

0.1 0.0305 0.0439 0.0922 0.0942 0.0326 
0.2 0.0399 0.0449 0.0856 0.0874 0.0429 
0.3 0.0494 0.0459 0.0791 0.0806 0.0532 
0.4 0.0589 0.0469 0.0725 0.0739 0.0634 
0.5 0.0683 0.0479 0.0660 0.0671 0.0737 
0.6 0.0778 0.0489 0.0594 0.0603 0.0840 
0.7 0.0872 0.0499 0.0529 0.0536 0.0942 
0.8 0.0967 0.0509 0.0463 0.0468 0.1045 
0.9 0.1062 0.0520 0.0398 0.0400 0.1148 
1 0.1156 0.0530 0.0332 0.0333 0.1251 

Ave 0.0683 0.0479 0.0660 0.0671 0.0737 
st.Dev 0.0299 0.0032 0.0207 0.0214 0.0325 

Figure 4.2.2 plots the trend of trade-off value based on the different β value. From 

this figure, we can see that the NEH and LR are dominated by CFD(𝛼𝛼 = 0.5) when β 

changes from 0.3 to 0.7. The CFD(𝛼𝛼 = 1) and CFD(𝛼𝛼 = 0) can dominate the NEH 

and LR respectively for all β values. Therefore, when CFD(𝛼𝛼 = 0), CFD(𝛼𝛼 = 0.5) 
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and CFD(𝛼𝛼 = 1) are applied in different range of β, we can generate the solutions that 

dominate other two heuristics. 

 
Figure 4.2.2 Trade-off value for Taillard’s benchmark. 

In addition, as the Figure 4.2.3(a) and (b) plots the changing of the average value 

of trade-off against the job numbers and machine numbers. It shows that CFD(α = 0.5) 

achieves the best performance for all job numbers and machine numbers. Furthermore, 

the LR can obtain better performance than NEH when the job number is increased. 

However, from the machine number perspective, the NEH generated better 

performance than LR heuristic on trade-off minimization objective. 
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(a) The average trade-off by number of jobs. 

 
(b) The average trade-off by number of machines. 

Figure 4.2.3 The average trade-off value by job number and machine number 

4.3 Statistical Process Control (SPC) 

As a quality control method, the statistical process control, which is developed by 

is wide applied in industry to control and monitor the production process. Usually, there 
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are two charts are used in SPC method named X-bar (mean)chart and R (range)-chart 

to evaluate the quality. In the X-bar and R chart, there are three important indicators: 

upper control limit, lower control limit, and central line. A point (or case) can be seen 

as out of control, if this point (or case) is above the upper control limit or below the 

lower control limit. 

To validate our CFD (α=0.5) heuristic for operating room (OR) scheduling across 

the perioperative process, we carry out case studies on historical OR data from 

University of Kentucky HealthCare, which consists of around 30,000 cases in a year 

from 2013 to 2014. Excluding the data from the weekend and holidays, we have 26,000 

cases in 260 days for a year.  

In this case study, utilization of the perioperative process and patient flowtime 

across the perioperative process is used to evaluate performances of OR scheduling 

methods. The value of patient flowtime and utilization are calculated by applying 

CFD(α=0.5) on UK healthcare database. Then the results are compared with results of 

first come first serve scheduling method, which is used by UK Healthcare currently. As 

we mentioned before, the utilization of the whole perioperative process is related to the 

makespan. Moreover, in the UK Healthcare case study, we also compare the 

performance of CFD(α=0.5) with UK Healthcare based on patient flowtime. The patient 

flowtime equals to the total completion time of all patient divide by total patient number. 
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After we generate the data of utilization and patient flowtime by using CFD(α=0.5) 

and UK healthcare scheduling method, the statistic process control (SPC) technique is 

applied to generate the X-bar charts and R-charts, and shown in Figure 4.3.1 

 
(a) Utilization of CFD heuristic 

 
(c) utilization of UKHC 

Figure 4.3.1 X-bar and R chart for utilization  
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(a) Patient flowtime generated by CFD heuristic 

 
(b) Patient flowtime generated by UKHC 

Figure 4.3.2 X-bar and R chart for patient flowtime 
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From the Figure 4.3.1 (a) and (b), the average utilization value (i.e. the value of 𝑋𝑋) 

that generated by CFD is slightly larger than the UKHC. Moreover, the upper control 

limit and lower control limit of CFD are both slightly larger than UKHC. However, for 

both CFD and UKHC, the out of control points are generated. In Figure 4.3.2 (a) and 

(b), we plot the X-bar and R chart for the patient flow criteria. It shows that our heuristic 

achieves the lower average patient flowtime and the range of upper control limit and 

lower control limit is narrower than UKHC. Based on the X-bar chart, the we can see 

that our CFD heuristic can obtain a patient flow of 338.23, which is smaller than UKHC 

of 375.30. It means the improvement of ((375.30-338.23)) ⁄ 338.23= 0.1096 = 10.96%. 

From the R-chart, our CFD heuristic does not generate any out of control points. 

However, there is a out of control point for UKHC. 

In addition, we generate the process capabilities for both CFD and UK Healthcare 

and the results are shown in Figure 4.4.3. In this case study, the process capabilities 

indicator cp and cpk can be calculated by following equations: 𝐻𝐻𝑝𝑝 = 𝑆𝑆𝑆𝑆𝐿𝐿−𝐿𝐿𝑆𝑆𝐿𝐿
6𝜎𝜎

 and 𝐻𝐻𝑝𝑝𝑘𝑘 =

min (𝑆𝑆𝑆𝑆𝐿𝐿−𝜇𝜇
3𝜎𝜎

, µ−LSL
3σ

) , where the µ  is the average value of output (i.e. utilization and 

patient flowtime) and σ is the standard deviation. Moreover, the USL and LSL are 

upper and lower specification limit. 

According to the definition of cp and cpk, the output of a process is more under 

control, if the value of cp is small, and a small cpk value means that the output of a 

process is more concentrate to the 𝜇𝜇. Therefore, given the results in Figure 4.3.3 (a), 

we can see that the cp of CFD heuristic is equal to the UK Healthcare on utilization 



 

61 
 

optimization objective, but the cpk of CFD heuristic is smaller than UK Healthcare. It 

means that the output (i.e. utilization) of CFD heuristic is more concentrate to µ.  

 

(a) Process capability of CFD for utilization optimization objective 

 

(b) Process capability of UKHC for utilization optimization objective. 
Figure 4.3.3 Process capability for utilization optimization objective. 
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(a) Process capability of CFD for patient flowtime optimization objective 

 

(b) Process capability of UKHC for patient flowtime optimization objective 

Figure 4.3.4 Process capability for patient flowtime optimization objective. 
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According to the results of patient flowtime that shown in Figure 4.4.3(b), the cp of 

CFD heuristic is 1.07, which is greater than the UK Healthcare of 0.93. Based on the 

figure, it easy to identify that the patient flowtime that generated by UK Healthcare is 

not under control. Furthermore, the cpk value of our CFD heuristic is 0.98, and it is also 

larger than UK Healthcare on patient flowtime optimization objective. 

Therefore, from the X-bar and R charts, our CFD heuristic can generate better 

performance for utilization and patient flow time optimization objectives. Furthermore, 

given the value of process capabilities index, we can see that the performance of CFD 

heuristic is more under control than UKHC in a long-term period. 
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Chapter Five: Conclusion and Future work 

5.1 Conclusion 

As a classical scheduling problem, the flow shop scheduling has been researched 

for many years. There are hundreds of heuristics and algorithms were developed in the 

last few decades, such as the Raj, LR, NEH heuristics and a lot of evolutionary 

algorithms. These heuristics and algorithms generated good solutions for makespan 

minimization or flowtime minimization objective. However, one weakness of these 

heuristics and algorithms is that they only optimizing single objective instead of multi-

objective optimization. For example, NEH is designed to minimize the makespan, and 

LR is a heuristic which is designed to minimize the flowtime objective. In real-life 

problems, the schedulers and decision makers might need to consider multi-objective 

optimization. As we mentioned in the thesis, although there are various criteria can be 

applied to generate a solid performance evaluation for a flow shop scheduling problem, 

the makespan and flowtime are the fundamental criteria and others can be related to 

these two criteria. Furthermore, it has been proved that these two objectives are not 

consistent. Therefore, there are trade-offs between makespan minimization and 

flowtime minimization objectives. According to the Pinnedo’s idea, the makespan and 

flowtime are related to the utilization and work-in-process. Usually, the decision makers 

might want to improve the utilization and reduce the level of work-in-process, because 

the production cost is impacted by the utilization and the work-in-process affects the 
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inventory cost. Therefore, balancing trade-offs between production cost and holding 

cost is critical for production and operations management 

Based on this perspective, the new heuristic is proposed to balance the trade-off 

between the makespan and flowtime (i.e. utilization and work-in-process). In this thesis, 

we proposed a current and future deviation (CFD) deviation heuristic to balance the 

trade-off between makespan and flowtime minimizations. In the CFD heuristic, we first 

generate the lower and upper bounds of completion time. Then, we proposed an initial 

sequence generation method based on the deviations from lower or upper bounds. To 

further improve the solutions, we developed a new normalized evaluation scheme 

which named as relative deviation increment value (RIV) and applied this scheme in 

the job insertion (i.e. the second phase of CFD heuristic) to improve the initial sequence. 

In the current literature, the NEH heuristic is the best constructive heuristic to 

minimize makespan, and the LR heuristic is the best to minimize flowtime. In this thesis, 

the comparison of the CFD heuristic with NEH and LR and the computational 

experiments are carried on random small cases and Taillard’s benchmark database. 

From the results of the case studies, our heuristic generates the best performance among 

three heuristics (i.e. CFD, NEH, LR) on makespan minimization, flowtime 

minimization and trade-off balancing objective. For small-scale cases Our proposed 

CFD (α = 1)  and CFD (α = 0)  heuristics can obtain minimum average relative 

percentage deviation (ARPD) of makespan and flowtime of 1.27% and 0.9% 

respectively. Furthermore, we also carried the case study on the Taillard’s benchmark 
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dataset (large-scale cases). Our proposed heuristic also provides the best performance 

on both makespan and flowtime minimization objectives with 3.32% and 2.10% 

correspondingly. For the trade-off balancing objective, the minimum trade-off values 

are provided by CFD(α = 0.5)  with 0.313 and 0.479 for small and large test-bed 

respectively. 

In order to justify the effectiveness of CFD heuristic on real-life flow shop 

scheduling problem, we applied our heuristic to solve the operation room scheduling 

problems. In the case study, we model the perioperative period as a three-machine flow 

shop scheduling problem. The processing time data of these three stages of 

perioperative is obtained from UK healthcare and applied in our case study. We used 

the statistic process control (SPC) method to evaluate the performance of CFD in a 

long-term period. From the x-bar R chart, the CFD heuristic achieves higher utilization 

level of 0.8664 and lower patient flow value of 338.23 than the value of the original 

method that applied by UKHC. In addition, the range of upper and lower control limit 

is much narrower than UKHC. It means that our CFD heuristic has a more stable 

performance on utilization and patient flow objective for long-term scheduling. 

5.2 Limitation and Future work 

As the main concept of proposed heuristic is based on the deviation from the lower 

bound and upper bound, the accuracy of bounds is very important during the 

development of heuristic. Currently, the lower and upper bounds are fixed in our CFD 

heuristic. It means that the lower and upper bound will not be updated when a job is 
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appended to the scheduled job set. However, the accuracy of the bounds can be 

improved, if we recalculate the bounds after a job is appended to the current sequence. 

What’ more, the adaptive CFD heuristic can be proposed to solve the stochastic 

problems while the processing times are not deterministic. Another future work is to 

integrate the CFD heuristic into the operating room (OR) schedule with other 

constraints, such as surgery type(Abedini, Ye, & Li, 2016) and priority 

blocking(Abedini, Li, & Ye, 2017)  and allocation of OR block times(Aringhieri, 

Landa, Soriano, Tànfani, & Testi, 2015). 

  



 

68 
 

References 

Abedini, A., Li, W., & Ye, H. (2017). An optimization model for operating room 

scheduling to reduce blocking across the perioperative process. Procedia 

Manufacturing, 10, 60-70.  

Abedini, A., Ye, H., & Li, W. (2016). Operating Room Planning under Surgery Type 

and Priority Constraints. Procedia Manufacturing, 5, 15-25.  

Abouei Ardakan, M., Hakimian, A., & Rezvan, M. T. (2013). A branch-and-bound 

algorithm for minimising the number of tardy jobs in a two-machine flow-shop 

problem with release dates. International Journal of Computer Integrated 

Manufacturing, 27(6), 519-528. doi:10.1080/0951192x.2013.820349 

Allahverdi, A., Tariq Aldowaisan. (2002). New heuristics to minimize total completion 

time in m-machine flowshops. International Journal of Production Economics, 

77(1), 71-83.  

Aringhieri, R., Landa, P., Soriano, P., Tànfani, E., & Testi, A. (2015). A two level 

metaheuristic for the operating room scheduling and assignment problem. 

Computers & Operations Research, 54, 21-34.  

Baskar, A. (2016). Revisiting the NEH algorithm- the power of job insertion technique 

for optimizing the makespan in permutation flow shop scheduling. International 

Journal of Industrial Engineering Computations, 353-366. 

doi:10.5267/j.ijiec.2015.9.001 

Campbell, H. G., Dudek, R. A., & Smith, M. L. (1970). A heuristic algorithm for the n 



 

69 
 

job, m machine sequencing problem. Management science, 16(10), B-630-B-

637.  

Cardoen, B., Demeulemeester, E., & Beliën, J. (2010). Operating room planning and 

scheduling: A literature review. European journal of operational research, 

201(3), 921-932.  

Chakraborty, U. K., and Dipak Laha. (2007). An improved heuristic for permutation 

flowshop scheduling. International Journal of Information and communication 

technology, 1(1), 89-97.  

Dannenbring, D. G. (1977). An evaluation of flow shop sequencing heuristics. 

Management science, 23(11), 1174-1182.  

Denton, B., Viapiano, J., & Vogl, A. (2007). Optimization of surgery sequencing and 

scheduling decisions under uncertainty. Health care management science, 10(1), 

13-24.  

Fernandez-Viagas, V., & Framinan, J. M. (2014). On insertion tie-breaking rules in 

heuristics for the permutation flowshop scheduling problem. Computers & 

Operations Research, 45, 60-67. doi:10.1016/j.cor.2013.12.012 

Fernandez-Viagas, V., Ruiz, R., & Framinan, J. M. (2017). A new vision of approximate 

methods for the permutation flowshop to minimise makespan: State-of-the-art 

and computational evaluation. European journal of operational research, 

257(3), 707-721. doi:10.1016/j.ejor.2016.09.055 

Framinan, J. M., & Leisten, R. (2003). An efficient constructive heuristic for flowtime 



 

70 
 

minimisation in permutation flow shops. Omega, 31(4), 311-317. 

doi:10.1016/s0305-0483(03)00047-1 

Framinan, J. M., & Leisten, R. (2007). A multi-objective iterated greedy search for 

flowshop scheduling with makespan and flowtime criteria. OR Spectrum, 30(4), 

787-804. doi:10.1007/s00291-007-0098-z 

Framinan, J. M., Leisten, R., & Rajendran, C. (2003). Different initial sequences for the 

heuristic of Nawaz, Enscore and Ham to minimize makespan, idletime or 

flowtime in the static permutation flowshop sequencing problem. International 

Journal of Production Research, 41(1), 121-148. 

doi:10.1080/00207540210161650 

Framinan, J. M., Leisten, R., & Ruiz-Usano, R. (2002). Efficient heuristics for flowshop 

sequencing with the objectives of makespan and flowtime minimisation. 

European journal of operational research, 141(3), 559-569.  

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and 

jobshop scheduling. Mathematics of operations research, 1(2), 117-129.  

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and 

approximation in deterministic sequencing and scheduling: a survey. Annals of 

discrete mathematics, 5, 287-326.  

Gupta, A., & Chauhan, S. R. (2015). A heuristic algorithm for scheduling in a flow shop 

environment to minimize makespa. International Journal of Industrial 

Engineering Computations, 6(2), 173-184. doi:10.5267/j.ijiec.2014.12.002 



 

71 
 

Gupta, J. N. (1971). A functional heuristic algorithm for the flowshop scheduling 

problem. Journal of the Operational Research Society, 22(1), 39-47.  

Ho, J. C. (1995). Flowshop sequencing with mean flowtime objective. European 

journal of operational research, 81(3), 571-578.  

Ho, J. C., & Chang, Y.-L. (1991). A new heuristic for the n-job, M-machine flow-shop 

problem. European journal of operational research, 52(2), 194-202.  

Johnson, S. M. (1954). Optimal two‐and three‐stage production schedules with setup 

times included. Naval Research Logistics (NRL), 1(1), 61-68.  

Kalczynski, P. J., & Kamburowski, J. (2007). On the NEH heuristic for minimizing the 

makespan in permutation flow shops. Omega, 35(1), 53-60.  

King, J., & Spachis, A. (1980). Heuristics for flow-shop scheduling. International 

Journal of Production Research, 18(3), 345-357.  

Laha, D., & Sarin, S. (2009). A heuristic to minimize total flow time in permutation 

flow shop☆. Omega, 37(3), 734-739. doi:10.1016/j.omega.2008.05.002 

Lei, D., & Guo, X. (2015). A parallel neighborhood search for order acceptance and 

scheduling in flow shop environment. International Journal of Production 

Economics, 165, 12-18. doi:10.1016/j.ijpe.2015.03.013 

Li, W., Freiheit, T., & Miao, E. (2016). A lever concept integrated with simple rules for 

flow shop scheduling. International Journal of Production Research, 55(11), 

3110-3125. doi:10.1080/00207543.2016.1246762 

Li, W., Mitchell, V. L., & Nault, B. R. (2014). Inconsistent Objectives in Operating 



 

72 
 

Room Scheduling. Paper presented at the IIE Annual Conference. Proceedings. 

Li, X., & Li, M. (2015). Multiobjective Local Search Algorithm-Based Decomposition 

for Multiobjective Permutation Flow Shop Scheduling Problem. IEEE 

Transactions on Engineering Management, 62(4), 544-557. 

doi:10.1109/tem.2015.2453264 

Liu, J., & Reeves, C. R. (2001). Constructive and composite heuristic solutions to the 

P//∑ Ci scheduling problem. European journal of operational research, 132(2), 

439-452.  

Marcon, E., & Dexter, F. (2006). Impact of surgical sequencing on post anesthesia care 

unit staffing. Health care management science, 9(1), 87-98.  

Marcon, E., & Dexter, F. (2007). An observational study of surgeons' sequencing of 

cases and its impact on postanesthesia care unit and holding area staffing 

requirements at hospitals. Anesth Analg, 105(1), 119-126. 

doi:10.1213/01.ane.0000266495.79050.b0 

Marichelvam, M. K., Prabaharan, T., & Yang, X. S. (2014). A Discrete Firefly 

Algorithm for the Multi-Objective Hybrid Flowshop Scheduling Problems. 

IEEE Transactions on Evolutionary Computation, 18(2), 301-305. 

doi:10.1109/tevc.2013.2240304 

Meskens, N., Duvivier, D., & Hanset, A. (2013). Multi-objective operating room 

scheduling considering desiderata of the surgical team. Decision Support 

Systems, 55(2), 650-659. doi:10.1016/j.dss.2012.10.019 



 

73 
 

Nagano, M., & Moccellin, J. (2002). A high quality solution constructive heuristic for 

flow shop sequencing. Journal of the Operational Research Society, 53(12), 

1374-1379.  

Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, 

n-job flow-shop sequencing problem. Omega, 11(1), 91-95.  

Palmer, D. (1965). Sequencing jobs through a multi-stage process in the minimum total 

time—a quick method of obtaining a near optimum. Journal of the Operational 

Research Society, 16(1), 101-107.  

Pan, Q.-K., & Ruiz, R. (2013). A comprehensive review and evaluation of permutation 

flowshop heuristics to minimize flowtime. Computers & Operations Research, 

40(1), 117-128. doi:10.1016/j.cor.2012.05.018 

Pinedo, M. (2012). Scheduling: Springer. 

Rad, S. F., Ruiz, R., & Boroojerdian, N. (2009). New high performing heuristics for 

minimizing makespan in permutation flowshops. Omega, 37(2), 331-345. 

doi:10.1016/j.omega.2007.02.002 

Rajendran, C. (1993). Heuristic algorithm for scheduling in a flowshop to minimize 

total flowtime. International Journal of Production Economics, 29(1), 65-73.  

Rajendran, C. (1994). A heuristic for scheduling in flowshop and flowline-based 

manufacturing cell with multi-criteria. THE INTERNATIONAL JOURNAL OF 

PRODUCTION RESEARCH, 32(11), 2541-2558.  

Rajendran, C. (1995). Heuristics for scheduling in flowshop with multiple objectives. 



 

74 
 

European journal of operational research, 82(3), 540-555.  

Rajendran, C., & Chaudhuri, D. (1992). An efficient heuristic approach to the 

scheduling of jobs in a flowshop. European journal of operational research, 

61(3), 318-325.  

Rand, G. K. (1977). Machine scheduling problems: Classification, complexity and 

computations: AHG RINNOOY KAN, Martinus Nijhoff, The Hague, 1976, ix+ 

180 pages: North-Holland. 

Ravindran, D., Selvakumar, S. J., Sivaraman, R., & Haq, A. N. (2004). Flow shop 

scheduling with multiple objective of minimizing makespan and total flow time. 

The International Journal of Advanced Manufacturing Technology, 25(9-10), 

1007-1012. doi:10.1007/s00170-003-1926-1 

Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation 

flowshop heuristics. European journal of operational research, 165(2), 479-494. 

doi:10.1016/j.ejor.2004.04.017 

Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the 

permutation flowshop scheduling problem. European journal of operational 

research, 177(3), 2033-2049.  

Ruiz, R., & Vázquez-Rodríguez, J. A. (2010). The hybrid flow shop scheduling problem. 

European journal of operational research, 205(1), 1-18.  

Sarin, S., and M. Lefoka. (1992). Scheduling heuristic for the n-jobm-machine flow 

shop. Omega, 21(2), 229-234.  



 

75 
 

Sayadi, M. K., Ramezanian, R., & Ghaffari-Nasab, N. (2010). A discrete firefly meta-

heuristic with local search for makespan minimization in permutation flow shop 

scheduling problems. International Journal of Industrial Engineering 

Computations, 1(1), 1-10. doi:10.5267/j.ijiec.2010.01.001 

Singhal, E., Singh, S., & Dayma, A. (2012). An Improved Heuristic for Permutation 

Flow Shop Scheduling. NEH ALGORITHM). International Journal of 

Computational Engineering Research, 2(6), 95-100.  

Taillard, E. (1990). Some efficient heuristic methods for the flow shop scheduling. 

European journal of operational research, 47, 65-74.  

Varadharajan, T., & Rajendran, C. (2005). A multi-objective simulated-annealing 

algorithm for scheduling in flowshops to minimize the makespan and total 

flowtime of jobs. European journal of operational research, 167(3), 772-795.  

Woo, H.-S., & Yim, D.-S. (1998). A heuristic algorithm for mean flowtime objective in 

flowshop scheduling. Computers & Operations Research, 25(3), 175-182.  

 

  



 

76 
 

Vita 
Name: Feidi Dang 
Education: 

University of Kentucky 

Master of Science  

Department of Mechanical Engineering  

Lexington, Kentucky 

Aug,2015~Now 

Xian University of Science and Technology 

Bachelor of Engineering  

Department of Mechanical Engineering 

 

Xi’an, China 

Aug,2010—May,2014 

Research interests: 
Optimization, Operation research, Flowshop scheduling. 
 
Publication: 

Under review: 
Dang, F.D., Li, W., Ye, H.H. An efficient constructive heuristic to balance trade-offs 
between makespan and flowtime in permutation flow shop scheduling. North 
American Manufacturing Research Conference. 
Preparation: 
Li, W., Dang, F.D., Abedini, A., Ye, H.H. Balancing trade-offs between maximum and 
total completion times in permutation flow shop scheduling (Working paper, in 
preparation for submission to OMEGA-International Journal of Management Science) 
 

 


	AN EFFICIENT HEURISTIC TO BALANCE TRADE-OFFS BETWEEN UTILIZATION AND PATIENT FLOWTIME IN OPERATING ROOM MANAGEMENT
	Recommended Citation

	TITLE PAGE
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Chapter One: Introduction
	1.1 Background
	1.2 Motivations
	1.3 Difficulties and Challenges
	1.4 Contribution
	1.5 Structure of this thesis

	Chapter Two: Literature Review
	2.1 Makespan objective
	2.2 Flowtime objective
	2.3 Multi-objective

	Chapter Three: Methodology
	3.1 Problem description
	3.2 Lower and upper bound of completion time
	3.3 Two coupled deviations
	3.4 Development of CFD heuristic
	3.4.1 Initial sequence generation
	3.4.2 CFD heuristic
	3.4.3 A Numerical example for CFD heuristic


	Chapter Four: Case Study
	4.1 Evaluation scheme
	4.2 Case study results
	4.2.1 Small-scale cases
	4.2.2 Large-scale cases (Taillard’s benchmark)

	4.3 Statistical Process Control (SPC)

	Chapter Five: Conclusion and Future work
	5.1 Conclusion
	5.2 Limitation and Future work

	References
	Vita

